Failure Logic M odelling:
A Pragmatic Approach

Oleg Lisagor

Submitted for the degree of Doctor of Philosophy

University of Y ork

Department of Computer Science

March 2010



To the memory of my grandmother



Abstract

The research discipline of model-based system safety assessment, which has emerged in the last
two decades, has attracted a significant amount of interest from academia, industry and
government agencies. However, the discipline remains largely unorganised with various
individual, often conceptually dissimilar, techniques being only categorised and related in an ad
hoc fashion.

This Thesis identifies a coherent family of model-based safety assessment methods — failure logic
modelling — and unifies existing techniques through a single well-defined Metamodel. This
Failure Logic Metamodel (FLMM) identifies the key safety engineering concepts captured by
failure logic modelling techniques, together with their inter-relationships. Whilst maintaining
independence from any individual technique, notation or specification language, the abstract
Metamodel has been shown to be instantiable in a third party-specification language (AltaRica
Dataflow).

The Thesis demonstrates that existing failure logic modelling techniques cannot, without
modification, adequately address key pragmatic challenges posed by extant characteristics of
modern large-scale and complex safety-critical systems. To address such challenges two key
contributions are made through extensions to the metamodel. Firstly, these extensions enable the
modelling of reconfigurable systems (including those employing fault accommodation). Secondly,
they enable the composition of independently defined models in a variety of settings, such as the
composition of models of the same system defined from different viewpoints and composition of
models of different systems with un-harmonised interfaces. In addition to these contributions, the
general metamodel-based approach adopted by the thesis and proposed has helped identify some
significant ‘emergent’ characteristics and limitations of failure logic modelling that, to date, have

not been reported.

The overal contributions of the Thesis have been evaluated through case studies, peer reviews

and direct metamodelling experiments. The findings of these evaluations are presented.



Table of Contents

Ly 127V 3
TABLE OF CONTENTS weveeeetiiiissssssnsereesssessssssussressssssssssssssseessssssssssssssseeesssssssssssssssessssssssssssssesesssssssns 4
I 0 T U 11
LIST OF TABLES eeeeeeuuuereeeeisisiisssunseeeessisissssssssseessisssssssssseseesssssssssssssteessssssssssssseesssssssssssssseesssssss 15
ACKNOWLEDGEMENTS .1euutruesiranssranssrsessrssssssnssssssssrsssssssssrsssssssssssssssssssssssssssssssassssasssssssssssssssnssssns 17
AUTHOR’S DECLARATION ..ceeeeueesscesrireennnnsssssssssssssnnssssssssssssssnnssssssssssssssnnssssssssssssssnnsnssssssssssssnnnnsss 18
CHAPTER 1: INTRODUGCTION ...cccouueeiiessunesisnsnesisssssnessssssseessnssssessssssnsssssssnsesssssssessssssssssssssnnenas 19
1.1 FOREWORD: THE EVOLUTION OF SAFETY ANALYSIS IMETHODS .....cuueeiiissuneesssssunessssssnsessssssseessssnnenss 19
1.1.1 TRADITIONAL SAFETY ASSESSMENT IMIETHODS ..c.uvteruveeieeteeueenstesueesueeeteesieesseesaeesasessessnessseesseesaens 19
1.1.2 FAILURE LOGIC MODELLING IMETHODS ....ecuveeteesutesitesteesteesieesseesueesutesseesseesseesatesasesasesasessseesseesaees 22
1,22, 0 HUSEIATION . cciiitteitee ettt ettt et s e sttt e sat e e s b e e bt e e s b e e s be e e snbeesareeeaneeesaneeeanes 23
1.1.2.2 Claimed Benefits of Failure Logic Modelling ........cccceeeieiiiiiiiiiee e 26
1.2 RESEARCH CHALLENGES ..ceeeeeuuuseesessssessssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsssssssss 27
1.2.1 COMPLEXITY OF BEHAVIOUR ....veittiiuiieteeteesteesitesitesteebeesbeesbeesueesmteeateeneeesbeesaeesanesasesabeenseesseesnees 27
1.2.2 COMPOSITION OF MULTIPLE FAILURE LOGIC IMODELS .....eeuveeiieneeniteeieeeteeeee et esnee e 29
1.2.3 CONCEPTUAL INTEGRITY AND LANGUAGE INDEPENDENCE ....cevteueenieianereeeeneenieesieesinesnessreenneenneesnees 31
R 31V 0 117 1 o 32
1.4 THESIS PROPOSITION .euuureuucrnessrrnnsreasssrnsssrnssssssssrssssrsessrssssrsssssssssssssssssssssnsssssssssssssssssssassssnnssss 33
1.5 THESIS STRUCTURE....cuutteesirmessrrussrensssrasssrssssrasssrssssrssssrssssssssssssssssssssssssssnssssssssssssssassssnssssnnssns 33
CHAPTER 2: LITERATURE SURVEY .....cccccciiteeneniiieennniiiennnniieennsiseennsiieennssreenssnsteenssasseenssaseeenes 35
2.1 SAFETY ENGINEERING, ASSESSMENT AND TERMINOLOGY.....uueeeiessueessssssnesssssansessssssnessssssssessssnnenss 36
2.1.1 KEY TERMINOLOGY OF SYSTEM SAFETY ....ciutieteeieeiteesieesstesuteeutesuteenteesseesueesueesasesasesseesseesseesseesaees 36
2.1.2 SYSTEM SAFETY ENGINEERING, ASSESSMENT AND LIFECYCLE ....ceuteeuieeieerieeseiesitesieeeeeeveesieesneesneesaeas 37
2.1.3 SCOPE OF THE PRESENT RESEARCH ...c..vtiiutiritieteeteeiteesitesttesate st eateesteesbeesaeesatesabesatesbeenbeesbeesneesaeas 41
2.2 CLASSICAL SAFETY ASSESSMENT IVIETHODS ....uuueeereeiiieiissssnneeessssssssssssssessssssssssssssesssssssssssssnsenes 41
2.2.1 INDUCTIVE IMIETHODS ..uutteutteuteeteenteesieesutesutesteebeesseesseesueesmeeeaseenseesseesbeesaeesabesasesabeenbeenseenseesnees 42
2.2.2 DEDUCTIVE IMETHODS. ....utteutteuteenteesteesueesutesutesteesbeesseesseesaeesaeeeaseeseesseesbeesaeesasesasesabeeabeenseenseesnees 44
2.2. 3 ‘BOWTIE IMETHODS ..ocveiititiciientt ittt sttt sr st st s sa s sh e b b e s n s b nenrs 49
2.2 DISCUSSION . ..ttttutttututuuesasasasssssssassssssssssssssssssesssssssssssssesesssesesesesssessssssesasssssssssssssasasssasssssnsnnnsnnnsns 52



2.3 FAILURE LOGIC MODELLING IMIETHODS....cccuuuitttmueerienenierimnesieteneeistensesesiesessssessssiesesssssssesssssssennes 52

B T8 A = I\ PP PPPPPTPPPRRN 53
2.3 2 HIP-HOPS ..ttt e e e e e et et e e s e e e e e e tat s e s e e e e e e tb e s eeeaeetaabeeeeeeeeneraan 55
2.3.3 OTHER METHODS AND VARIANTS......cuvvevetiaisesesesesesesesssesesesssesesessesesesessssesesessssesesssssesesessssssess 57
2.4 OTHER MODEL-BASED SAFETY ASSESSMENT APPROACHES ....ccveereessersesssesssessesssessasssassssssasssessanssens 58
2.4.1 FAILURE INJECTION APPROACH ....vvviueatretisesesesesessesesassssssesasessesesessssesesesessssesessssesesssessssesessssssesas 59
2.4.2 FAILURE EFFECTS MODELLING APPROACH ...vvuvveteseaiesesesssesesesessesesessssesesessssssesssssssesssessssesesssssesas 62
2.4.3 HYBRID APPROACHES ....vvuvveteseseetesesessesesesessesesesessesesassssesesasessesesessssesesesessesesessssssesasessssesesssssass 63
2.4.4 MODEL-BASED SAFETY ASSESSMENT: SUMMARY .....cuveveveriiereresesesesesensesesesessssesessssssesesesssesessssssess 66
2.5 IMODELLING LANGUAGES ...veeueeeuesseessesssessesssesssesssssssssessssssssssssssessssssessssssssssessasssssssasssssssssnsssess 68
2.5.1 ALTARICA AND ASSOCIATED DIALECTS. .....vevruiriereresensesesesessssesesessesesesessesesesesesesessnsssesesesssesessssssess 69
2.5.2 THE ARCHITECTURE ANALYSIS & DESIGN LANGUAGE ......vcvveveveveeierereressesesesesssesesessssesesessssesesesssesenas 72
2.5.3 LANGUAGE SELECTION .....euvevevieissesesiseseseseasssesesesessesesessesesesessssesesessssesesessssesesesssesesessssasesesssesesas 75
2.6 CONCLUSIONS.....ceueruerenernessssssesssssssssessssssesssessssssessssssesssessssssesssassesssessssssessssssssssessssssessssssess 75
CHAPTER 3: UNIFYING FAILURE LOGIC METAMODEL.....cccoteuuiiueniraensrannsiennsionnsisnnsrennssennsrnnnees 77
3.1 INTRODUCTION «.eeuveereeeserssessesssessesssesssessesssesssessesssessesssesssessesssessssssesssessesssessasssesssessasssessasssans 77
3.1.1 INTRODUCTION TO THE ILLUSTRATIVE EXAMPLE & CASE STUDY ....cuvvevireaiererereieseseseessesesesesesesssssenas 78
3.1.2 SYSTEM INTENT & DESIGN ...vvruiuvevetiaiaietesiaessesesesessesesessssesesesssesesessssesesesssesesesssesesassssssesesssssesas 80
3.2. UNIFYING METAMODEL FOR EXISTING TECHNIQUES ....cceuveeuerseessesssessesssessesssssssessesssessssssassssssnsssens 81
3.2.1 COMMON KEY CONCEPTS ....vviuiuvevetisesesesesessesesesessesesassssssesasessesesessssesesesessssesessssssesasssssesesssssess 83
3.2.2 COMPONENT FAILURE LOGIC ..v.uvuvvviaeaievetisesietesesessesesesessssesesesesesesessssesesesesesessssssesessssesesessnsssesas 85
3.2.3 MODEL STRUCTURE AND HIERARCHICAL ORGANISATION ....cuvvvirirereresesesesesesesesesensssesesessesesessssssenas 86
3.2.4 ILLUSTRATION .voviututeterisesesesasessesesesesesesesessesesesessesesassssesesasessesesessssesesasensesesessnsesesesessasesesesssasas 88
3.3 EXTENDED FLMM: DYNAMIC AND NORMAL BEHAVIOUR......cecveeuersressesssessesssessnsssessnnssesssessssssssssess 90
3.3.1 VOID TRANSITION TRIGGERS.......cuveveveuearerereaessesesesessesesessesesesesssesesessssesesesssesesessssesesessssesesessssssess 91
3.3.2 NORMAL EVENTS AND STATES ....uveveviueeretesiaessesesesessesesessesesesesssesesessesesesesssesesessssesesesssesesessssssess 93
3.3.3 FAILURE HANDLING STATES ....vcutuvevetiuetetetiaessesesesessesesessesesesesssesesessesesesesssesesesssesesessssesesesssssesas 95
3.8 IVIODEL ANALYSIS «.vvveenernessessnessssssssssesssssssssssssssssessssssssssassssssessssssssssessssssessssssssssassssssesssssness 97
3.4.1 FAULT TREE SYNTHESIS AND SEQUENCE GENERATION .....vuvuvvevesiesresesesesesesesesesessssesesessssesesssnssssesas 97
3.4.2 SIMULATION AND FIMIEA/FIVIECA ...ttt et eete e et e e et e et e st e eteeeenreseneeennneas 100
3.5. INSTANTIATION OF THE FLIMIIVL......c.cveieeenerrenneecseseesaesssessesssessnessesssessssssessaessesssessesssensesssasnns 100
3.5.1 SPECIFICATION LANGUAGE REQUIREMENTS ......veveutuivereeesessesesessssesesessssesesesssesesssssesesessssesesesesenas 101
3.5.2 OVERVIEW OF CECILIA OCAS TOOL ..vuvuvviviniietesesissesesesssesesesesesesassssesesessssesessssssesesessssesesssssess 103
3.5.3 REPRESENTING FLIM CONCEPTS IN ALTRARICA / OCAS .....oveveeirieiereiiinieteiesesse st essssesesssssnenas 104



3.6 CASE STUDY: WHEEL BRAKING SYSTEM ..cccuuuiiirmueiiieeneniiieenesisneeneiisienseistesseesmesssessessssesesnsssseens 108

3.6.1 PREDEFINED TYPES: FAILURE MODES AND FIM CLASSES.....ccvteiuieruierresteeieesieesueesseesneesssesseenseesseens 108
3.6.2 MODEL ARCHITECTURE AND EXAMPLES OF COMPONENTS ....cevieruierireeteeteeseesueesueesueesmeesneeeseesseens 111
3.6.3 VIRTUAL COMPONENTS: MODEL-LEVEL INPUT FIMIS AND OBSERVER.......ceesteereeuienieeneeeneeeeeeeeenieens 112
3.6.4 MODEL SIMULATION AND ANALYSIS ....vteuterutesuteeeeeseeesteesseesueesusesusesasesasessseesseesseesuessnsesnsesnsassseens 113
3.7 ROLE OF THE FLIVIIM IN THE SAFETY CASE ....uuuuuuuneeeiiiniiississereessssssssssssssesesssssssssssssssssssssssssssanns 115
3.8 LIMITATIONS OF THE ‘BASELINE’ APPROACH .....uuueereieisiissssssssreessssmssssssssssesessssssssssssssssssssssssssanns 116
3.9 CONCLUSIONS ..cetiieuuuuneeeeesissssssissseseesssesssssssssssesssssssssssasssesssssssssssssssesssssssssssssssssessssssssssnnns 118
CHAPTER 4: COMPOSITION OF MULTIPLE MODELS.........coooeeeiiiiiinnnnnneeeiiiiiisisisnnneeeesisssnnnnnee 119
;8 B 1o 01U oy o T 119
4.1.1 ILLUSTRATION OF THE PROBLEM ADDRESSED BY THE CHAPTER ....ceutieuteeteenieenieesiee st sneeneesneenmee e 120
4.1.2 OBJECTIVES FOR THE COMPOSITION OF FAILURE LOGIC IMODELS .....ceeuveeieeieeriiesiteeiesieeieesieesanesaees 122
4.2 VIEWS AND DOMAINS OF SAFETY-CRITICAL PLATFORMS...cciiisiurerisssenesssssunessissseesssssanesssssansesssnns 122
4.2, 1 VIEWS AND VIEWTYPES ...euuveeuieeteerieesieesitestesseeseesseesseessessnsesnsesnsesssesssassssesssesnsesssesnsesssessssesnees 122
4.2.2 DOMAINS AND DOMAIN-SPECIFIC IMODELS ....ceeuveeureetienieenieeseesteeseesseesieessaesnnesnsessesssesssessseesnes 124
4.2.3 FLMM IN ENGINEERING DOMAIN FRAMEWORK. ... .eettettenuteeuteeieeieeseeesieesitesaeessesbeesseesseesaeesaeas 126
4.3 ALLOCATION VIEWTYPE AND COMPOSITION OF DSFIVIS .......uuuuimiiiiiiniiinnnetiiisnsissssnssssessssssssssnnes 127
4.3.1 THE ALLOCATION DOMAIN AS THE UNIFYING CONCEPT ...uveiiiiiueieiteeieesieesieesieesuteseesbeesseesseesaeesaeas 128
4.3.2 DSFM INTERFACES AND COMPOSITION ...uvveruteeuteereenteenueesueesueesseeseesseesseesseesusesnsessesssesssessseesnens 130
Y N o T=T gl B L] o - 11 3 TSP O PP R OPRSPO 131
4.3.2.2 AILEINATIVE VIBWS ... eeeiiiiiiiiiie ettt sttt e st e s ne e e smeeesnenesnneeeas 132
4.3.2.3 Different SEMaNtiC SPACES......cciiiciiieeiiieee ettt e e e ete e e e ebae e e e s rae e e e sbreeeeeanees 134
4.4 DEFINING COMPOSABLE DSFIMIS.......uuueiieiiiiiiiiinteteeisissisiseseee s sssssssssssssessssssssssssssseessssssssssnnns 136
4.4.1 THE CONSISTENCY OF FIVI INTERFACES .....vteruteeureeteeteenieesieesmee et eseenteesseesieesaeesanesaneeneenseenneesmees 136
4.4.2 RICHNESS OF ‘SOFT INTERFACES ...ccutterteerieerteeteereere e seesiee st see et et esreesaeesinesanesaneeneenneesmeesnees 138
4.4.3 THE GRANULARITY AND SCOPE OF MODEL ARCHITECTURES....ceuverureenteerseesieessneseessessesnseesseessnesnees 139
4.5, INSTANTIATION IN ALTARICA...cuuttteirreiirunsrmasiiruesirasssrssssrssssrssssrsssssssssssssssssssssnssssssssrsssssssssres 140
4.5.1 ALTARICA OCAS SYNCHRONISATIONS ...eevverureeteeteenseesseesseesneesseesseessesssaessesssesssesssesssesssessssesnees 141
4.5.2 EMULATING DEPENDENT WEAK SYNCHRONISATION ..c.uvteuvteiteruteeteeteesteesieesueesaeessesseesseesseesaeesaees 142
4.5.3 INSTANTANEOUS EVENTS: FLOW-TO-EVENT CONVERSION......cerutiruteeieenieerieesitesteeeesreesseesneesaeesaeas 144
4.6 CASE STUDY: COMMON COMPUTATIONAL PLATFORM ...ccceeiununnnernisssesssssnseseessssssssssassssessssssssssanns 145
4.6.1 OVERVIEW OF THE COMPUTATION INFRASTRUCTURE ....ceuvteutirutenteenteenteenieesieesueesanesneesseesseesmeesneas 147
4.6.1.1 Architecture of the INfrastructure SYStemM ........cccoviiiiiiiie e 147
4.6.1.2 DSFM of the INfrastructure SYStEM ........coii i e 148
4.6.2 PARTITION AND VL ALLOCATION ..eeutterteeriterteeteeteeteesieesseesmeeemteeseesteesbeesieesanesanesaneeneenseenseesnees 150



4.6.3 INTEGRATION LAYER AND DSFIM COMPOSITION ..uuuuuieaeaaeeensessssssssssssssssssssssss s saas 151

4.6.3.1 Software Components: Partitions and ProCESSES .........uueeeeeeeieicivriereeeeerciirreeeeeeeeeeearnneees 152
4.6.3.2 Software Communications: Virtual LiNKS .........ccceerieeiiiiiniiieie e 155
4.6.4 IVIODEL ANALYSIS «.etttttuueeseeettttutuieeseseeestnsuuusssesesetsssuasssesessesssusssseeeeesmnsmssnseseeseemsssnnresseesennsnns 158
4.7 RELATIONSHIP TO COMMON CAUSE ANALYSIS «.vuuieeiieecrascrassessrassrassssssssrasssasssssssssssssssssssssssssnssss 159
4.8 MODEL COMPLEXITY & LIMITATIONS OF THE ANALYSIS TOOL....cceuuiiiennnsirrennncsnennsscssenssssssensssssenns 162
4,9 CONCLUSIONS . ctuuuctenssraneressenssssssssssssssssssssssssssssssrsssssssssssssssssssssssssssssssssssssssssssssssnssssnssssnnnss 164
CHAPTER 5: MULTI-MODE AND RECONFIGURABLE SYSTEMS......cccceeeeeeeeeemmeeeeneeeeeeeeeeeeeeeeeeeees 165
5.1 INTRODUCTION tuuieuutenssernenirnsssrssssrsessrssssrasssrssssssssssssssssssssssssssssssssssssassssssssssssssasssssnssssnssssnes 165
5.1.1 [LLUSTRATION OF THE PROBLEM ADDRESSED BY THE CHAPTER .....uvvvvvvvvuvevrrrreerureenrnrensesesrsssesesesenenees 165
5.2 SYSTEM IVIODES ...euuuieuuiirueirnnssranssreessrnsssrasssrssssressstsssstssssssssssssssssssssssssssssssssssssasssssnssssnssssnes 166
5.2 1 FLIMIME EXTENSION ...eieuutteiureeetteenreesiteenuseesseeeueeesuseesseeesuseesasesessseesasessnsseesuseesnsessnnseesaseeesssens 168
5.2.2 MODES AS COMPONENT CONTEXT 11uuuuieiieettturuuieeseeeeeetnnueaseseesssnmmmnesesesssassssnensessessmsssnnnsesseessnssnns 173
5.2.2.1 Component Failures and Dynamic Exposure Intervals ........cccccvveiivciieeenciieeeiieee e, 173
5.2.2.2 Reusability of Component Characterisations .........ccccceeeiiiieiiiiiiee e 174
5.2.2.3 Context Boundaries and Dysfunctional Modes .........cccceeecciiiiiieeeccccciiiieeee e eeevveeee e 176
5.3 IMPLEMENTATION OF MODES IN ALTARICA/OCAS ..................................................................... 180
5.3.1 PROCEDURE FOR ENCODING MODES IN ALTARICA ... coiiiitiieeeteeetiiiiiiee e eeeeetiises e s e eeeanaae s e s s eeseannnns 180
5.3 2 ILLUSTRATION ..uuutuuuuuuuununerennnenenesensnsssnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnnnnnns 183
5.4 IMPLICATIONS FOR THE MODELLING PROCESS ..c..teuitersrasiansrassrasrestassrassrssssesssssssssrsssssssassrasssassens 186
5.4.1 ESTABLISHING IMODEL ARCHITECTURE .. .tetttttreuieseeeeerrnnnnnseeseeesensnnnsseseeesensmsssnssessessmnsnnnsessseesennnnns 186
5.4.2 BASIC COMPONENTS CHARACTERISATION AND MODEL COMPOSITION ...vvvvvvvvvvrvvererererersrererneeeeesenenees 189
5.5 CASE STUDY: ELECTRICAL POWER DISTRIBUTION SYSTEM ..uuuieuuetrasnrnessrasssrasssrnessrssssssnssrsnssssnssssnes 190
5.5. 1 EPDS OVERVIEW.....utttuuutuuetuuusunssusesnsesssesesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssseemmm.. 190
5.5.2 MODEL ARCHITECTURE: KEY PRINCIPLES AND ASSUMPTIONS .....ccevuruuuieeeeeerreinriesseseeernnsnnnsseeseessnnnnns 192
5.5.3 FAILURE LOGIC MODEL ARCHITECTURE: IMODES ......cieitiiiiiiiieieeeeieiiiieeseeeeeetnsiesseseeesnnssannsesseessnsnnns 194
5.5.4 COMPONENTS FAILURE LOGIC CHARACTERISATION ...ceettuvuueeeeeeeeenriniieeeeeesennnsnessesssesnnssnnssesseessennnes 196
5.5.5 REFINEMENT OF IMODE IMIODELS...utuuuietiettttiutiiesseeeeetisnusseseeesssssnnassseesssssssnssssssesnnssnseesseessnnsnns 199
5.5.6 CHARACTERISATION OF CONTROLLERS ... .iettttttuuieeeeeeeettnuuiseeseeetnnssnnssseeessnsssssssseseessnnsssssesseesenssnns 201
5.6 KEY FINDINGS AND LIMITATIONS...ccuctuectusceesransrassrassssssassrassrsssssssssssssssssssssssssssssssssssssasssasssassens 203
oI ST R o Lo O TP PPPTOTSRT 203
5.6.2 ORDER OF TRANSITIONS WITH VOID TRIGGERS .....uuvvuuuvrverreueessessesssssmsesssssssssssmsssssssmsssmsmmmmmsmmmmmmmmme 204
5.6.3 COMPLEXITY OF COMPONENT CHARACTERISATIONS ...uvvvvvvvvuvusseeresesesesenssesssenssssssssssmssssssssnssmsssmmnnnes 205
5.6.4 ANALYSIS COMPLEXITY .utuuuuuuuuuuseuuessessnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssesemsmsmsmmmnnes 206



5.7 RELATED WORK .ccuuiiimuuiriemeiiiieneiiiieneiiieeneieieenesietessesistessssistesssssstesssssssesssssssessssssesnssssseens 207

5.8 CONCLUSIONS .. ccuuirmunsrenserensensassirassssnsssrssssrssssrssssrssssssssssssssssnssssssssrsssssssssssssssssssssnssssnssssnnsss 210
CHAPTER 6: EVALUATION......c0uuuuuuuuuuunnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnsnnssssssssssssssssssssssnsssssssssssssssssssssssnns 213
6.1 EVALUATION STRATEGY .....uuuueensnnssnnsssnssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 213
6.1.1 TECHNICAL CHALLENGES IDENTIFIED BY THE THESIS PROPOSITION ....uvieieeteaieenieeniieseeeneeeeeeeeeseeens 214
6.1.2 PRAGMATIC APPROACH HYPOTHESIS ....eeutteutiruteeteesteesteesteesttesutesatesbesbeebeesueesmeesmeesmeeenseenseenseens 216
6.1.3 WELL-DEFINED AND SOUND APPROACH HYPOTHESIS ...c.uveetieiiieriieeieeieeieesiee sttt eee e 217
6.2 EVALUATION THROUGH CASE STUDIES....ccieiissssuneeesssssssssssssssessssssssssssssssesssssssssssssssssssssssssssssnnns 220
6.2.1 WHEEL BRAKING SYSTEM ...euutiiitietieteenieenitesiee st eteesteesseesbeesitesanesabesabeeseesseesmeesmeesmseenneenseenseens 221
5.2.2 AIRCRAFT FUEL SYSTEM ... utiiuiiettetteteesiee st st st et e st e steesbeesaeesanesatesabeebee bt esmeesmeesmeeenneenseenseens 221
6.2.3 INTEGRATED IMODULAR AVIONICS.....ceuvteueenmeisuetettesttenteesseesteesieesaressesseenseenseesseesmeesnsesnseenseesseens 224
6.2.4 AIRCRAFT ELECTRICAL POWER DISTRIBUTION SYSTEM ....uutiiiuieeeiieerreeeieeenireesieeesireesseessneeesasessnnes 226
6.2.5 CASE STUDIES SUMMARY ..c..uttteiureeritterreesseeesuteesbeeassseesaseesasseesuseesssessssseesssesesssessssessssseesasessnnes 229
6.3 METAMODEL EXPERIMENTS .ecuutreesirasssrasssrnnssnsessrssssrssssnsssssssssssnssssssssrsssssssssrsssssssssssnssssnssssnnnss 230
6.3.1 FLMM VALIDATION IN ECLIPSE ...veiititeriteenieeeniteesieeeniteesteessnteesuseesbeeesuseesaseeesusessasessssseesasessnnes 231
6.3.2 MAPPING BETWEEN FLMM AND EXISTING FAILURE LOGIC MODELLING METHODS .....cuvtreerieeieeienne 233
B.3.2. 1 HIP-HOPS ...ttt ettt h e st e bt s be e b e be e s bt e saeesaeesateeateebeenbeens 233
5.3.2.2 FPTIN Lttt ettt ettt ettt et h bt h e s a et sa e et e e bt e be e s b e e s bt e e at e e be e abe e be e b e e bt e eheeeaeeeateenbeebeenbeen 235
6.3.2.3 Summary: HiP-HOPS as a Set of FLMIM Constraints .......ccccccveeeeeiieeeeciiieeeecieeeeeieee e 236
6.3.3 RELATIONSHIP BETWEEN THE FLIMIM AND FTA ...ttt st 237
6.3.4 NON-COHERENT AND DYNAMIC BEHAVIOUR .....eerutieteeieenteenieenitesitesteeteesbeesueesseesmeesmeeeneeenseenseens 240
(ORI 0 0 R ALY = o o o [ 240
SRR R S A e g o a1 0 A\ 1 D I C T | T 240
6.3.4.3 DYNAMIC FAUIt TrE@ GateS....uuvieeiciiiieeeiiieeeeciiteeectte e e et ee e vr e e e e sarae e e s eabae e e e abaeeeesnseeeeesanees 242
6.3.5 EVALUATION BY METAMODEL INSTANTIATION ...uuveerurieeireerreessureesreesieeesureesseeessseesseessseeesasessnnns 243
6.4 EVALUATION THROUGH PEER REVIEW ...ccuuiieenirmenirenssreescrnnssissssnrnsssrnsssrsessrsssssssssrssssssnssssnssssnnsss 244
6.4.1 AIRBUS DEPENDABILITY NETWORK c...vvteuteeeteeesireesteeeniteesreessseeesuseesseeessseesseeessseesseesssseesaseesnnes 244
6.4.2 THE IMISSA PROJECT ..euvieeuiitenuteeeeiteesiteesteeesiteesabeeestteesabeessteesabeessbaessnteesabeeesaseesnseesnsseesseesnnes 245
6.4.3 PEER REVIEW SUMMARY ....cuiiitiattettenite sttt s et e et esteesteesheesatesatesabeeabeabeesaeesaeesatesabeenteenseesseens 246



6.5 IDENTIFIED LIMITATIONS AND IMIITIGATIONS .eeuutreuniranssrnescrsessrssssrasssrsessrssssrsnssssssssssssssnssssnssssnnsss 248

5.5.1 VOLUME OF RESULTS .veuvtvetenteseeseeseesesseesessessessessessesseseesessessessassessessessessessessssessessessensensessessesens 249
6.5.2 STRONG CIRCULAR DEPENDENCIES ...veuvvisveresesessesessesessesessassesessesessesessessssesessessssesessessssessesensesenes 250
6.5.3 COMPLEX MODES AND RECONFIGURATION LOGIC....cveveverierenieresesesesessessssesessessssesessesessessesessssenes 251
6.5.4 REUSE AND COMPOSABILITY OF THE COMPONENT CHARACTERISATIONS ....vevivvevereressesessesesseseesesensenas 252
6.5.5 COMPLEXITY OF MIODEL CONSTRUCTION .....veuvvisteseasesesseseesensesensesensesessesessesessessssesessensssensesensesenes 254
6.5.6 COMPLEXITY OF IVIODEL ANALYSIS....veuveverterersesessesessesesseseesesesessesessesessesessesessessssesessensssensesensesenes 254
6.6 SUMMARY ....overeueeinneresesseesssesessesssessssssssessssssssssssssssssssssssssasssessssssssesssesssssssssssnsssssessnsssnsasss 255
CHAPTER 7: CONCLUSIONS .......ccceeueuiieemanniieenenieennnnsieeennniiienansiieenasiieenssiieenssiieennssiieennnnieeees 257
7.1 SUMMARY OF CONTRIBUTIONS.....uveesuesesnssssesssssssnsssnssssssssssssnssssssssssssssssssasssssssnsssnssssssssssssasanns 257
7.1.1 UNIFYING FAILURE LOGIC IMIETAMODEL. .....vtuterttenesteneeteseeseneesensesessesessesessesessesessesessenessensesensesenes 258
7.1.2 COMPOSITION OF MULTIPLE FAILURE LOGIC IMIODELS.......vcevvetietestestessesieseeseeseessssessessessessensesseseesens 258
7.1.3 MODELLING RECONFIGURABLE AND IMULTIMODAL SYSTEMS ..vcuveviveienseseeseeseeseesessessessessessenseseesens 259
7.1.4 THE NON-AUTOMATABLE AND NON-DECOMPOSABLE NATURE OF FAILURE LOGIC MODELLING ............ 260
7.2 FURTHER WORK AREAS .....uviiiutietesssnsssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssassessessassssssns 260
7.2.1 TRANSFORMATION OF FAILURE LOGIC IMIODELS ....vvvaveveteseeveseetessesessesessessssesessessssesessesessessssensesenes 261
7.2.2 IVIODEL ANALYSIS ...uvuveveevestesessesessesessesessesessesessessssessesassssassesensesessesessessssesessessssessssessssensesansesenes 261
7.2.3 ISSUES OF MODELLING TIME ...uvviutetiieteiesessesessesessesessesessensesessesassesessessssesessessssessssessssensesensesenes 262
7.2.4 IMPROVING REUSABILITY ..uveviueeuiseeretesessesessesessesessesessesessensesessesessesessesessesessesessesessensssensesensesenes 262
7.2.5 ALTERNATIVE MIODELLING PARADIGMS .....vveuveverereasesesseseeseneesessesessesessesessesessessssesessessssensesensesenes 262
7.2.6 OTHER MODEL-BASED SAFETY ASSESSMENT APPROACHES .....cuvvereerereeresesessesensesessesessesessensesensesenes 263
782 T 0o ) N 263
APPENDIX A: FAILURE LOGIC METAMODEL .....ccceueeuiieenenniiennnniiiennnniieennnniieenasniieennssiieennnieenns 265
AL. METAMODEL SPECIFICATION ...uvveeeesssesssssssssssssssssssssssssssssssssssssssssssssssesssssssasssssssssessassssssssnass 267
A2. WELL-FORMEDNESS CONSTRAINTS ..cuveiieessunsesssssssssnssessessssssssessssssssssssasssssssssssssssssesssssssssssass 271
APPENDIX B: WHEEL BRAKING SYSTEM CASE STUDY ....cccieeeieanniiunnirannsronnsienncrennsiennsieanssennaes 277
B2. WBS FAILURE LOGIC IMODEL: “PSEUDO-CODE" .....ceeteeiiiiiisssnnneeenisiiississnneeessssssssssssneesssssssssanes 278
B2.1 BRAKING SYSTEM CONTROL UNIT ..vcuieuieuietietisiestistesseseseeseeseesessessessessessessessesasssssessessessensensessessns 278
B1.2 HYDRO-IMIECHANICAL COMPONENTS ...vuvviueetessesssesessesessesessesessesessessssessssessesessesensesessesessesessesesses 284
B2. WBS FAILURE LOGIC MODEL: ALTARICA DATAFLOW ...cccoveeeruenssnesssnnesssnnssssnsssssnesssnsssssnsssssnassnns 291
B3. REVISED BSCU IMODEL: ALTARICA DATAFLOW....cceieureeesnnesssnensssnessssnasssssssssnssssssasssssssssssssssnsssnns 302



APPENDIX C: COMPUTATION AND COMMUNICATIONS PLATFORM DSFM........co0i0niinnnnnnnnnnns 309

C1. MODIFICATION OF THE BSCU MODEL (WBS DSFIM)......ceitittrmumnnceeeereeeennnsesseeseeeessnnnsssssessesssnnnns 309
C2. INTRODUCTION TO THE COMPUTATION INFRASTRUCTURE AND ARCHITECTURE DESCRIPTION....cc0vveereee. 311
C2.1 INTRODUCTION TO THE INTEGRATED MODULAR AVIONICS ...eereeeeeeeesseeeseeeereeesssasesseeeresssesessnnnenens 311
C2.2 ARCHITECTURE OF THE INFRASTRUCTURE ..vvttteetteeeesereeeeeessesassseseresesssasassseessesssssasassesesessssssssnssseens 314
C3. IMIODEL DESCRIPTION .eeuuuereeseseeresseseressssssessssessesssssssessssssssssssssssssssssesssssssesssssssesssssssesssssssenns 316
C3.1 INFRASTRUCTURE FAILURE MODES: “EXTERNAL” OUTPUT FIMS AND IMA FUNCTIONS ...vveieeeennnne 317
C3.2 INFRASTRUCTURE FAILURE MODES: “INTERNAL” FIMIS . e 320
C3.3 FAILURE LOGIC MODEL: NETWORK COMPONENTS ...uvvvvreeeeesssesrrereeeeesssssssssessesesssssssssssesessssssmsssseess 321
C3.4 FAILURE LOGIC IMODEL: CPIOIMS ..ccoiitteeeeieeeeeeeeieeeeee e e s eeeiiaaeeeeeesssesasaeaseeessssssnssssesesssssssssseseens 325
APPENDIX D: SUMMARY OF THE AIRCRAFT FUEL SYSTEM REVIEW ......cccceuueereennnssseennsssseennnes 327
D1. COMPLEX IVIODE LOGIC ..uuvieruenerienesserernesseressessssensssssssssssssssnsssssesnsssssenssssssensssssesnsssssesnsssssenns 327
D2. INTENTIONAL ARCHITECTURAL LIMITATIONS...ccvuuueererueseereneessseenessssennessssenssssssensssssesnsssssesnsssssenns 329
D3. COMPLEXITY OF SCALE AND DESIGN DECOMPOSITION ....eeereeeereeneessrernesssresssssssensssssesnsssssesnsssssenns 330
DA4. CIRCULAR DEPENDENCIES AND LOOPS...ccvuuuuerireeeisrennesssrenessssrsnessssesnsssssesssssssensssssesnsssssesnsssssenns 331
D5. TIME-DEPENDENCY AND RELIANCE ON CONSUMABLE RESOURCE .cvevuerereeeererneseeressesersesssneresnssnssenes 333
ABB REV I ATION S ... tututtteterererereseresesesesesesesesesesssesssesssesssesssesssesssesssesssesssssssesssesssssssesssesssssssess 335
REFERENCES....ciiiieieieteretereteceresesesesesesesesssasesssssssssssssssssssssssssssssasssssssssssssssasssssssssssssssasssnsnsns 337

10



List of Figures

Figure 1 - Schematic of the lllustrative Tank SySteM..........cccvvereeiieieeie e 23
Figure 2 - HiP-HOPS Characterisation of the VAVE ..........ccccovveieii e 24
Figure 3 - Example of aFault Tree for "Tank Overflow" Condition...........c.cccevvvveveveiievcieenns 25
Figure 4 - Minimal Cut Setsfor "Tank Unable to Provide Fluid" Condition..........cccccccvvcvveineenen. 25
Figure 5 - ARP4761 Safety Assessment Diagram[139] .....cccccvievveriieriin e 40
Figure 6 - Principal FTA EVENt SYMDOIS.......ccviiiiiie e ste et eee s 45
Figure 7 - Standard FTA LogiC Gate SYMDOIS ........ccoiiieiieeeeiee e 45
Figure 8 - Villemeur's 'Failure Classification asto Causes [160] .....cccccevererreenenernereeeeneseeens 46
Figure 9 - Dynamic Fault Tree Gates: Functional Dependency (a), Cold Spare (D)........cccccceeeeee. 47
Figure 10 - Specific Symbols of Cause-Consegquence Diagrams [160] .........ccceveveererrneennrennnns 51
Figure 11 - Example of FPTN Module: Hydraulic PUMP.........cooco i 54
Figure 12 - Example of HiP-HOPS Component: Hydraulic PUMP........ccccoooiiiiiinieiereeee e 55
Figure 13 - HiP-HOPS Model Hierarchy (SChEMELIC) ........ccvveiirierieieieieeeese e 56
Figure 14 - Example Of FPTC EQUALTONS.........ciiiiriiieieisicsie st nnens 58
Figure 15 - Overview of the FI/ESM APProaCh ...........cceiiiiiiineneeeeessese e 60
Figure 16 - Node Example in AltaRICa SWITCN ........cceiiiiiiineeeeee e 70
Figure 17 - Node Composition in AltaRica: SWitCh Pair.........ccccovviieve e 70
Figure 18 - Node Example in AltaRica Dataflow: SWItCh..........cccovvievvieeii e 71
Figure 19 - Example of a Component in the AADL Error Model Annex [56].......cccceevevveeveivenens 73
Figure 20 - Architecture of the Hypothetical Aircraft Wheel Braking System .........cccccoveeieiieen. 78
Figure 21 - BSCU ATFCIITECIUIE .......ecueeie ettt sttt st st estesneenaesreennens 79
Figure 22 - Partial FLMM: Elementary CONCEPLS .......c.vccveieeieesie s see e s eee e 85
Figure 23 - Permissible Flowsin Hierarchical Failure Logic MOdelS........ccovevveveevie e, 87
Figure 24 - Basic FLMM: Model Structure and Component Behaviour ...........cccccevveevverceeecveeeen. 88
Figure 25 - Failure State Spaces lllustration: Green Meter ValVe........cccocoevveveeveeve e, 90
Figure 26 - Void Transition Triggers (in the Immediate FLMM Context).........cocevcvvvreeennreeenns 92
Figure 27 - Fault Tree Segment for Unavailability of Pressure from the Accumulator.................. 93
Figure 28 - Normal States and Events (in the Immediate FLMM Context) ...........ccoeeveeeeinienennens 94
Figure 29 - Complete BasaliNe FLIMM ..ot 96
Figure 30 - Possible Fault Tree for Pressure Omission Failure Mode of the Green Meter Valve..98
Figure 31 - Cecilia OCAS Interface: Behaviour SPeCifiCation............coouverirerenieieeieisereseneens 103
Figure 32 - AltaRica Characterisation of the WBS Accumulator (FMs as Booleans).................. 106
Figure 33 - Failure Logic Characterisation of the Accumulator (Pseudo-code)............cccccveenee. 107
Figure 34 - OCAS Characterisation of Accumulator (FMs as Enumeration Literals).................. 108

Figure 35 - OCAS: HydraulicFMs Type Along with Field Types (PressureFMs & LeakFM) ....109
11



Figure 36 - OCAS: PUMPFMS TYPE....viiuiieieieieiesiesie sttt sn e 110

Figure 37 - AltaRica: Failure Logic Characterisation of the Isolation Valve............ccccovvenneneee. 111
Figure 38 - OCAS: Top-Level Failure Logic Model Architecture of WBS..........ccccceeviniincniene 112
Figure 39 - Characterisation of the ‘Virtual’ Input Component for PowerFMs Type Input......... 113
Figure 40 - OCAS: WBS Modéd Architecture with ‘Virtual’ Input Components...........ccccueee. 113
Figure 41 - OCAS: MOdel SIMUIGLION.........cceeiueiiieeerieciee ettt ae e e e sne e 114
Figure 42 - SEI "Views and Beyond" Framework ..o 124
Figure 43 - Engineering Domain: Internal Structure and Tracesto Platform............cccccceevennnee. 125
Figure 44 - DSFMs and Engineering DOMEINS ........ccciieeiiriieriie e see e ses e see e este e e e snee e ens 127
Figure 45 - AllOCalion DOMAIN........cciieieeiee e esee st s e erte s re e s e s e e ete e ae e aeesreesreesnneens 129
Figure 46 - Peer Domains. Composition of Electrical and Wheel Braking Systems DSFMs...... 132
Figure 47 - Alternative Views. Composition of Leaks and Pressure DSFMs (WBS).................. 134
Figure 48 - Transformation of the Target (‘ Effect’) Component: Valve in “Pressure DSFM” .... 143
Figure 49 - Transformation of the Source (‘ Cause’) Component: Vavein “LeaksDSFM” ....... 143
Figure 50 - Synchronisations Between "Leaks" and "Pressure" DSFMs: Green Meter Valves... 144
Figure 51 - Boolean Flow Detector COMPONENT..........cccviieiierreeeeee e 145
Figure 52 - Revised Model Architecture 0f BSCU .........ccoiiiieiiiininenee e 146
Figure 53 - Revised Model Architecture of aBSCU Channél ..., 146
Figure 54 - SImple IMA ATChITECTUNE .........ooviieieiee e 147
Figure 55 - Redundant AFDX NEIWOIKS.........c.coeiriiiniiiseseeeesse e 148
Figure 56 - Architecture of IMA DSFM (Power FM FIOWS NOt ShOWN) ........covverieieininincnene 149
Figure 57 - Architecture of the Failure Logic Model’s Trandation Layer .........ccccceevvveeveieeneene, 152
Figure 58 - FM Flows Between the CPIOM and Allocated Partitions (Side 1 Only) .................. 152
Figure 59 - AltaRica Characterisation of Homogeneous Partition Trandation Component ........ 153
Figure 60 - Synchronisations Between Translation and WBS Components ..........cccceeeeeeneenene. 154
Figure 61 - Internal Structure of the COM Partition Trandation Component............cccccceeeevenee. 154
Figure 62 - Structure of a Simple VL Transglation Component (CPIOM-Internal VLS) .............. 156
Figure 63 - Structure of a General VL Trandation Component (VLs Across Different CPIOMSs)
...................................................................................................................................................... 156
Figure 64 - Composed Failure Logic Model (Automatically Generated FIOWS).........cccccecveenen.e. 157
Figure 65 - CCA iN DSFM CONEXL.......ccueiriieeeieieniesie s 160
Figure 66- Revised FLMM: Modes of Complex COMPONENES........cccveeerereenereneeneseeeesee e 169
Figure 67 - Revised FLMM: Normal Events of Complex Components............ccceceeereeceenenene 170
Figure 68 - Complete Revised Failure Logic Metamodel (FLMM) .....oooiiieiiiineneceeee e 172
Figure 69 - Difference Between Failure Logic of Green and Blue Meter Valves.........ccccuc....... 175
Figure 70 - BSCU ATCRITECIUIE. .......ccueiuiiiiiiieieeee ettt nre s 178
Figure 71 - BSCU M0deS and TranSItiONS ........cceoeeirereriniesiesiesieeeesiesiesie s e sesse s e 179
Figure 72 - Revised Failure Logic Model Architecture of BSCU (partial) ..........ccoceeveierinencnnene 179
Figure 73 - Characterisation of the Virtual Translator COmpPONENt...........cccuvererereeierieniereneneens 179

12



Figure 74 - BSCU MonitoringModeObserver in AltaRica OCAS ... 183

Figure 75 - Revised AltaRica OCAS Specification of the Switch Component ............cc.ccoevveneee. 184
Figure 76 - AltaRica Characterisation of the Virtual Translator Component.............cocceerereennen 184
Figure 77 - BSCU SyNChroniSatioNS..........ccceiiiieiiiicie sttt 185
Figure 78 - Revised Architecture of BSCU' s Failure Logic Moddl ........ccccoevvveieeievecciecce, 185
Figure 79 - EPDS ATChITECIUNE.........ecueeie ettt ettt st snennn s 191
Figure 80 - Architecture of EPDS Failure Logic MOdel ...........cccooveviieceie e 193
Figure 81 - EPDS Mode Model (Partial) .......ccoveeeveiieie e s 196
Figure 82 - Partial Characterisation of J2 Junction (AltaRica OCAS) ........ccccecveveeveeviensieniinnens 199
Figure 83 - GEN Controller in EPDS ........ccoooi ettt sre e 202
Figure 84 - Characterisation of GEN Controller (AltaRiCAOCAYS) .....cceveevirrcerieereeree e 203
Figure 85 - Some Loopsinthe AC Section of EPDS ...t 204
Figure 86 - Static and Dynamic Model Hierarchiesin HiP-HOPS.............cccoooi e 208
Figure 87 - Hierarchical Representation of EPDS MOUES .........ccccviiiiinenenieieeeeecese e 209
Figure 88 - EValUBLION SIFELEQY .......eecvereeeeeeieeeieeiere e sie st sie et e e e eesee e seeseeeneesneeneenes 214
Figure 89 - Technical Challenges Identified by the Proposition (Evaluation Argument) ............ 215
Figure 90 - Pragmatic Approach Hypothesis (Evaluation Argument)...........cccvceeeereneeienceene 218
Figure 91 - Well-defined Approach Hypothesis (Evaluation Argument) ..........ccoeeeeeeerieneneneens 219
Figure 92 - Strong Circular Dependency in EPDS MOEIS ........cccooiviiineneneeeeeeesese e 228
Figure 93 - Outline of the Overall EPDS Mode MOde! ..........cccoiiiriiineneeeeeeese e 229
Figure 94 - FLMM EXraCt (EMFELiC) ....ccueoveeeiriiieirieseseseeeeees e 231
Figure 95 - FLMM EXxtract (ECOre Diagram)........ccovieeieieeieseseeeseeeeste st eae e sae e sne s s 232
Figure 96 - FLMM Constraints EXIraCt (EVL) .....coovvieieieeiese e st 232
Figure 97 - HiP-HOPS Metamodel (' Core’ Method ONlY) .......ccecveveieceieceee e 234
Figure 98 - Relationship between HiP-HOPS and Failure Logic Metamodels.........ccccccveeieneee. 235
Figure 99 - Basic Failure State Space Model (FLM) for a HiP-HOPS Malfunction "Malf" ........ 235
Figure 100 - Mapping between FTA and Failure Logic Metamodels .........ccccvecveceeveevenvienninnns 238
Figure 101 - Typical Interpretation of aPAND QA€ .....cccceeveeiceieiicriesee e re e e 241
Figure 102 - Improved Fault Tree Representation of a State-Guard-Trigger relationship ........... 241
Figure 103 - Dynamic Fault Tree Gates. Functional Dependency (a), Cold Spare (b)................. 242
Figure 104 - Failure Logic Metamodel (ECore Diagram) ........ccoceeeeerereeeeneseeseseeeesee e 266
Figure 105 - Architecture of the Hypothetical Aircraft Wheel Braking System ..........ccccceeveeee. 277
Figure 106 - Revised Architecture of the BSCU Model in AltaRica OCAS.........cccccovvieernreenne 302
Figure 107 - Revised Model Architecture 0f BSCU.........coocoiiiieiere e 310
Figure 108 - Revised Model Architecture of aBSCU Channél ............ccoceiivereiieiecieienenenenns 310
Figure 109 - Failure Logic Characterisation of CMD Dataflow Component (AltaRica) ............. 310
Figure 110 - Revised BSCU Monitor Component with "External” Failure Causes .................... 311
Figure 111 - Layersof tNETIMA ... 312
Figure 112 - SImple IMA ATChITECIUNE. .......oviiiiieiriecii e 314



Figure 113 - Internal Structure of an ENA NOGE ...........cocoiiriiiieiicees e 315

Figure 114 - Redundant AFDX NEIWOIKS. ........cceiiriiiririnesieseseeeeeee s 316
Figure 115 - Architecture of the IMA DSFM ..o 317
Figure 116 - Failure Logic Modd of an End Node (Data Propagation "Pipelines' Only)........... 321
Figure 117 - AltaRica Characterisation of Portinterface Component...........ccccooeeveeviviecceieennne, 322
Figure 118 - AltaRica Characterisation of the MemoryUnit Component...........ccccceevveeeveieenenne 323
Figure 119 - Structure of the EndNode Complex COmMPONENt...........ccccevereereseseeseseeee s 324
Figure 120 - Structure of the AFDXswitch Complex Component Modél...........ccccevvvveeveieenenne 324
Figure 121 - Structure of the CPIOM Complex Component Model ...........cccovvceevieevieeveniienninens 325
Figure 122 - AltaRica Characterisation of the Scheduler Component ............cccoevieevieevinveniinenns 326
Figure 123 - Schematic of Wing Tanks ArChiteCtUre...........ccevcuveeierieesee e 328
Figure 124 - Simplified Phases Of OPEration .........ccccevieeiiriieriie e et seeese e e e e 328
Figure 125 - Simplified Mode Model of the Fuel System...........cccooviiiiiniicncicese e 329
Figure 126 - Schematic of aTrivial Aircraft FUel SyStem ..........ccooviiiiinercieeceeese e 332

14



List of Tables

Table 1 - HAZOP GUIAeWOrdS [90]......ccieeierieeiieeieesieesteesieeseeseesseesteeseesreesneesseenseesseesnesssessnnens 50
Table 2 - Classification of the Model-Based Safety Assessment Methods..........ccccevevievieviinnnens 67
Table 3 - Mapping Between FLM Concepts and Appropriate AltaRica/ OCAS Constructs......... 104
Table 4 - Minimal Cut Sets for Inadvertent Braking ...........ccocoeoeieeneneneseseseseeeeesesesesnes 114
Table5 - Stereotypes of Allocation Domains (depending on the scope and viewtype) ............... 129
Table 6 - Output Flows of CPIOM COMPONENTS .......eeiiriieeeierieeee e e eas 150
Table 7 - EPDS Reconfiguration RUIES ...........ooiiiiieeee et 192
Table 8 - Basic Components Sensitivity to- and Intent in- MOdeS ..........ccvvvevereieienenenens 197
Table 9 - EPDS Mode Transitions SPeCifiCaliON .........c.uveiirierieiieieesese s 200
Table 10 - Intended Behaviour of GEN Controller in Various MOdes ...........ccceveveieenencnennenn 201
Table 11 - Case Studies Coverage (OULIINE)........ccoviiiiririreeeeeeesese e 220
Table 12 - Coverage Achieved by the Case SIUAIES ..........ccoeiirieirierin e 230
Table 13 - Summary of Peer REVIEW INSLANCES .........ccveiiiiieiececee e 247
Table 14 - Classes of the “Externa” IMA Output Failure Modes (IMA DSFM).......ccccveeveeenee 319

15



16



Acknowledgements

| am forever indebted to my supervisor, Tim Kelly, for his encouragement and invaluable advice.
Without his help | wouldn't be able to finish this thesis.

| am also grateful to my colleagues at the High Integrity Systems Engineering Group and,

particularly, Katrina Attwood, David Pumfrey and John McDermid for their continuous support.

Also, | would like to thank my external examiners, Professor John Andrews (Loughborough
University, UK) and Professor Mats Heimdahl (University of Minnesota, USA) for their time,
insightful comments and robust discussions as well as exceptionaly kind and supportive

examination style.

Having greatly benefited from the involvement in three European collaborative projects — ISAAC,
Airbus DepNet and MISSA — | would like to thank colleagues from partner institutions for a
number of challenging discussions and their contributions to my research: Ove Akerlund, Pierre
Bieber, Marco Bozzano, Matthias Bretschneider, Antonella Cavallo, Marion Morel and Christel
Seguin. | am especially grateful to Chris Papadopoulos (Airbus Operations, UK) for the
opportunity to work in these projects, his help and friendship.

Jean Gauthier, Valerie Sartor and Xavier Leduc of Dassault Aviation have provided me with

licenses to Cecilia OCAS suite and continuous technical support which | gratefully acknowledge.

Finaly, | am grateful to my friends who have become my family in the UK and helped me to
maintain the pretence of sanity — Bernadette Martinez-Hernandez, Jennifer Winter, David Efird,
Barry Miller and Alvaro Miyazawa — and, most importantly, to my parents for their love and

support.

17



Author’s Declaration

All of the work contained within this thesis, unless explicitly stated otherwise, represents original

research and contribution of the author.

Some of the research presented in this thesis has been conducted under the auspices of two
projects. Dependability Network (DepNet) and, ongoing at the time of writing, More Integrated
Systems Safety Assessment (MISSA) — funded by Airbus Operations and European Commission
respectively. Consequently, some of the material presented in Chapters Three and Four has been
previoudy included in the DepNet ‘White Paper’ Report [74]. The material presented in Chapters
Three and Five has been incorporated into the ‘ Failure Logic Modelling Handbook’ written by the
author and included (in adraft form) in a MISSA project deliverable [94].

Further, some of the material of this thesis has been previously published in conference papers
[95-97].

18



Chapter 1: Introduction

1.1 Foreword: The Evolution of Safety Analysis Methods

Having emerged in the 1940s as a ‘grass roots’ movement, System Safety Engineering evolved
into an organised engineering discipline by the 1960s [151]. System safety assessment has been
identified as one of the key aspects of the safety engineering discipline. System safety assessment
is concerned with understanding how unsafe conditions (hazards) may arise as a result of

interactions between system components (including in the presence of failures).

1.1.1 Traditional Safety Assessment Methods

One of the first system safety assessment methods to emerge was Failure Modes Effects and
Criticality Analysis (FMECA). Still widely used today, it was originally specified in November
1949 in US Military Procedure MIL-P-1629 (later superseded by MIL-STD-1629 [152]). The
declared purpose of FMECA is“to study the results or effects of item failure on system operation”
and rank the identified groups of failures (failure modes) “according to the combined influence of
severity classification and its probability of occurrence based upon the best available data” [152].
The wider objective of FMECA is to facilitate the rational risk-based prioritisation of system

design (or re-design) activities.

FMECA is an inductive (or a ‘forward search’) analysis approach that considers all possible
effects of a single (or a small number of) component failure(s) (generalised into failure modes,
which are defined as “the manner by which a failure is observed. Generally describes the way the
failure occurs and its impact on equipment operation” [152]). The analysis is repeated for every
failure mode of every component of the system. MIL-STD-1629 provides some guidance on how
the analysis should be conducted; for instance, it stresses the importance of clear design
definition, suggests minimal (broad) ‘kinds' of failure modes that must be considered and requires
the documentation of *“local”, “next-higher-level” and “end” effects of such equipment failure
modes. The standard also provides guidance on the classification of probabilistic and severity
characteristics of failure modes. However, the focus of most normative FMECA descriptions is
not on the system analysis per se, but rather on overarching process management considerations
such as the systematic documentation of analysis outcomes and recommendations. Possibly
because of the lack of comprehensive system safety programs at the time of the original FMECA

definition, the method essentially definesits own context.

19



In the 1960s, the US Minuteman Inter-Continental Ballistic Missile (ICBM) program provided a
‘break through’ in system safety engineering. The program was launched against a dual backdrop.
Firstly, the Cold War and the Cuban Missile Crisis led to a sudden and dramatic increase (at |east
in the perception of the genera public, government and military) in the potential severity of any
possible incident or accident involving strategic weapons (far beyond the immediate catastrophic
damage caused by the accident itself'). The historical approach to safety engineering, which
partialy relied on a fly-fix-fly approach and partialy on decentralised and uncoordinated safety

engineering responsibilities, evidently became socially unacceptable in this context.

Second, pre-Minuteman ICBM programs — such as Atlas and Titan — had been marred by serious
and widespread safety deficiencies [91]. This demonstrated both that unstructured and ad hoc
approaches to safety assessment are no longer technically feasible given the complexity of
military systems and the fact that the costs of retrospective design modifications are prohibitively
high?.

As a result, the Minuteman ICBM project is widely accredited as pioneering a “contractual,
formal, disciplined system safety program” [91]. In addition to (and, possibly, because of) this,
the program also specified the first comprehensive and structured system safety assessment
method — Fault Tree Analysis (FTA).

Arguably the most widely used safety analysis method today, FTA was originally developed in
1961 at Bell Telephone Laboratories, extended by the Boeing Company [48, 90] and, eventudly,
codified by the US Nuclear Regulatory Commission in 1981 [157]. In contrast to FMECA, FTA
adopts a deductive — or backward search — approach. Starting from a specified undesired system-
level effect (a“Top Level Event”), and guided by explicit construction principles and rules, the
analysis method systematically and iteratively identifies the immediate causes of conditions
(faults) until some elementary level is reached. The result of the system analysisis a hierarchical
structure of such conditions connected by logica gates (typically representing logical disunction

and conjunction).

! For instance, Sagan attributes the following quote to the US Assistant Secretary of Defense: “The
explosion of a nuclear device by accident — mechanical or human — could be a disaster for the United
Sates, for its allies, and for its enemies. If one of those devices accidentally exploded, | would hope that
both sides had sufficient means of verification and control to prevent the accident from triggering a nuclear
exchange. But we cannot be certain that this would be the case” [130]

2 |_eveson reports (attributing to Rogers's 1971 “Introduction to System Safety Engineering”) that the cost
of necessary modifications to Atlas F missiles “would have been so high that a decision was made to retire
the entire weapon system and accel erate depl oyment of the Minuteman missile system” [91]

20



FTA was revolutionary in that it provided a systematic analysis method rather than merely stating
objectives of the activity and expected outcomes from it. Further, it has (implicitly) separated
three key elements of the method:

a) asystematic process for the assessment of system design

b) aclear notation for capturing a model of causal relationships

¢) methods for analysing this model (such as minimal cut set identification and various

quantitative analyses)

Finally, FTA defined the concept of “failure space” — aview of the system that exemplifies causal

dependencies between abnormal and undesired conditions (faults).

It isimportant to note that inductive and deductive analysis methods are often complementary and
effective in different contexts. Inductive methods are typically incapable of considering complex
and ‘wide’ failure scenarios but may be used to identify system hazards, or to verify that the set of
hazards which have been elicited previously is complete. By contrast, deductive methods (such as
FTA) must start with a specified system-level condition and thus cannot facilitate the
identification or the verification of hazards;, however, these methods can systematically identify

failure scenarios which contain alarge number of apparently independent failures.

Partly because of these complementary strengths of deductive and inductive approaches, methods
— such as Hazard and Operability Analysis (HAZOP) [85, 143] — combining both search
strategies have emerged. HAZOP is a ‘bow-tie’ technique whereby analysis starts with an internal
system condition and proceeds both deductively and inductively to identify possible causes and
consequences of the condition. Originating from the chemica process industry, HAZOP is a
structured and systematic brainstorming technique which utilises a description (typicaly — a

schematic) of the plant under consideration.

To identify conditions of interest, the team of experts considers possible interpretations of
deviation “guidewords’ (such as “more”, “less’, “as well as’) in the context of the physical
characteristics of each flow between plant elements identified in the design drawing. The resultant
viable deviations are used to prompt a systematic walk-through of the design drawing to identify
al possible causes of deviation and, subsequently, all possible plant level effects. Throughout
these walkthroughs the analysis team establishes whether the deviation is hazardous, whether the
operator is likely to be aware of the deviation from the intent and what protective measures are
feasible. In addition to being a powerful and still popular analysis method, HAZOP is relevant to
the model-based assessment approach developed in this thesis, since it establishes notions of

“intent” and “deviation”.

21



All traditional techniques, regardless of their logical orientation (backward, forward or ‘ bow-ti€’),
share one important characteristic — they investigate, sometimes iteratively, the causal projection
of one (or a very small number of) event(s) of interest. For example, FTA investigates a backward
projection of a single top-level event, and a single row in an FMECA table typicaly captures a
forward projection of a single initiating event. In consegquence, each method not only produces
voluminous results, but also produces a large number of (sets of) different results (e.g. numerous
fault trees or FMECA tables) that, whilst clearly related to the same system, cannot be easily and
systematically correlated. Furthermore, the increasing complexity and scale of modern safety
critical systems means that different analysis methods may be employed to investigate different
aspects or parts of the system. A need to integrate these different analysis methods and to
correlate their artefacts in a conceptually consistent and coherent way has motivated novel safety
assessment methods such as Failure Propagation and Transformation Notation (FPTN) [57, 58]
and Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) [115, 117].

1.1.2 Failure Logic Modelling Methods

Whilst numerous analysis methods, including HAZOP (described above) and cause-consequence
diagrams [90, 123], have combined the principles of inductive and deductive anaysis, FPTN and
HiP-HOPS have unified them by considering a system at the lowest level of design decomposition
— the level of elementary components. The key idea behind both methods is the specification of
causal relationships between deviations of component outputs on the one hand and interna

failures of the components and input deviations on the other.

Within this setting and at the level of ‘basic components’, inductive and deductive methods
converge: it is possible to perform a forward search exhaustively for all combinations of input
deviations and interna failures as well as to perform a backward search for all output deviations.
The resultant component specification holds information that can be seen as equivalent to multiple
fault trees or FMEA tables with consistency further ensured (by construction) by means of
reference to the same sets of failures, input and output deviations. Whilst the complexity of such
collections of fault trees and FMEA tables is clearly greater than that of a single artefact, it is
nevertheless manageable because of the relative simplicity of the component (i.e. the relatively
small number of inputs, outputs and viable failures). Combined with amodel of interdependencies
between components (or component interactions in the “failure world”), the above
characterisations hold all of the information necessary for the synthesis of system-wide FMEA
tables or fault trees — in HiP-HOPS author’s words: “If we know the ‘structure’ of a system
(model) and the ‘local failure behaviour of its components (IF-FMEAs) then we can

mechanically derive the *failure behaviour of the system’ (fault trees)” [115].

22



1.1.2.1 lllustration

The basic principles of HiP-HOPS and FPTN can be demonstrated on a smple system used
extensively at the University of York for teaching Fault Tree Analysis. The system (Figure 1) is
concerned with maintaining a certain level of potentialy hazardous fluid in a tank. It primarily
consists of atank with an outflow pipe and a valve-controlled inflow pipe. The inflow valve can
be either open or closed with the state being determined by a controller, implemented in software,
based on inputs of two redundant level sensors located in the tank. When the level of fluid in the
tank reaches a certain level (designated as “full”) the controller closes the valve; as soon as the

level islessthan full — the controller opens the valve.

External
fluid supply

Alarm

-— Controller

Valve

Inflow Pipe

Sensors

External fluid

Tank consumers
- / Outflow Pipe

Figurel - Schematic of the Illustrative Tank System

Since the key hazard associated with this system is tank overflow, a “full” reading from either
sensor is considered sufficient to stop the supply. Furthermore, the controller is capable of
detecting certain classes of sensor failures (open and short circuits — which are most likely to
occur). When failure of a single sensor is detected the controller raises the alarm and ignores the
value of that sensor; if failures of both sensors are detected the controller shuts down the fluid

flow into the tank (and, again, raises the alarm).

The system is aso associated with another hazard: inability of a tank to supply fluid on the

outflow pipe. This has lesser severity than the overflow condition.

Assuming that it is permissible to disregard failure of the pipework and electrical connectors in
safety assessment, HiP-HOPS and FPTN models of the system would consist of five modules —
corresponding to the components described above: tank, two sensors, valve and the alarm. Each
modul e describes causal relationship between output deviations of the component on the one hand
and its internal failures and input deviations on the other. For example, the tank module will have
two possible output deviations of the fluid leve: Value Too High (overflow) and Value Too Low
(inability to provide fluid downstream). The former can only be caused by a commission (provision
when not required) of the inflow whereas the latter can be caused by either omission (non-

provision when required) of the inflow or Rupture of the tank itself. In contrast, the two (identical)

23



sensor modules each have four possible output deviations: Open Circuit, Short Circuit, Reading Too
Low and Reading Too High. However, these output deviations can only be caused by the internal
malfunctions of the sensors. Finally the output deviations of the valve and controller modules can
be caused by input deviations as well as internal failures. To illustrate, Figure 2 shows a possible
characterisation of the valve module (in a HiP-HOPS-like format).

Description Input Deviation Component Failure

Output Failure Mode
Logic Malfunction Logic | Rate (A)

Hyd_Output.Omission  [Valve does not provide fluid when
intended Hyd_Input.Omission | |Stuck_Closed 2e-4

Caused by internal failure of the|Ctrl_Input.Omission
valve (Stuck Closed) or omission
of flud flow into the valve
(Hyd_Input.Omission) or lack of a
command from the controller to
open (Ctrl_Input.Omission)

Hyd_Output.Commission|Valve provides fluid when not
intended Ctrl_Input.Commission|Stuck_Open 8e-4

Caused by internal failure of the
valve (Stuck_Open) or inadvertent
command from the controller to
open (Ctrl_Input.Omission)
Figure 2 - HiP-HOPS Char acterisation of the Valve

The five modules are interconnected in terms of “flows of deviations’ (i.e. ability of an output
deviation of one component to affect the correct operation of the other) allowing for automated
traversal of the model to synthesise fault trees or FMEA tables. For instance, Figure 3 shows a
fault tree for the overflow condition. Alternatively, the model can be anaysed directly — to
generate Minimal Cut Sets (MCSs) for any condition (e.g. Figure 4 for the inability of the tank to
supply fluid on demand). It is important to stress that al such analysis artefacts (FTs, FMEA
tables and MCSs) generated from the same model for either the same or different conditions will

be consistent by construction.

24



Level of fluid
dangerously
high § over o

TARIK LEVEL TOO_HIGH

Valve provides
fluid when not
intended
fesmmissiont

VALVEHYD_SUTPUTZOMMESKN

Walve gets
stuck open
(rmalfunction)

WALVE STUCK_OPERN

r=0.0008

Controller
inadvertently
opens the valve

CONTRD LLER COMMAN D COMMIESE K

Corblk iRl

cortinnosly commanding
Boper
natmcton

CONTROLLER STUCK_HIGH

=1e-006

Controller output
deviates because
of sensor
deviations

CONTROLLERINPUT_DEVISTIONS

Conjunction #1
aver input
deviations

CONTROLLER.INPUT SONJUNETI

Conjunction #2
over input
deviations

SONTROLLER.INPUTSONJUNST2

CONTROLLER INPUTSONJUNETS

Conjunction #3
awer input
deviations

SensorAfails || Sensor B fails || Sensor A fails Disjunction Disjunction Sensor B fails
leading to too leading to too leading to too #2 1 over input #3.1 over input leading to too
lowr reading low reading lowy reading deviations devialions lowy reading
| . | | neas | | ‘ CONTROLLER.INPUT.DEJUNGT2 | | CONTROLLER INPUT.D EIUNCT3 | | noais \ ‘
r=0.003 r=0.003 r=0.003 r=0.003

Senzar B shorts | [ Sensor B opens
the circuit the circuit
(malfunction) [malfunction)

Senzor & shorts
the circuit
(malfunction)

Sensor & opens
the circuit
(malfunction)

r=0.02 r=0.07

r=0.02

=0.07

Figure 3 - Example of a Fault Treefor " Tank Overflow" Condition

Minimal Cut Sets: Omission-Level (Tank Module)

Tank.Rupture

Controller.Stuck_Low

Valve.Stuck_Closed

SystemInput.Fluid_Supply.Omission

Sensor_A.Callibration_Failure_High

Sensor_B.Callibration_Failure_High

Sensor_A.Fail_Open

Sensor_B.Fail_Open

Sensor_A.Fail_Open

Sensor_B.Fail_Short

Sensor_A.Fail_Short

Sensor_B.Fail_Open

Sensor_A.Fail_Short

Sensor_B.Fail_Short

Figure4 - Minimal Cut Setsfor " Tank Unableto Provide Fluid" Condition

25




1.1.2.2 Claimed Benefits of Failure Logic Modelling

Although HiP-HOPS and FPTN unify the key classical system safety analysis methods, they are
most closely related to FTA. Both approaches share the notion of “failure space” and advocate the
explicit modelling of causal dependencies between various events and conditions within this
‘world’. Most importantly, both approaches also share a key strength (which is often overlooked
in literature) — they facilitate a review of the system from an analytical perspective which is
conceptually dissimilar to that adopted by the design process. One of the key goals of such a
review is to uncover dependencies between system components which were previousy
overlooked by the design engineers or whose effect on safety was unappreciated. As a result, the
mere act of constructing fault trees or failure logic models can generate value-adding feedback to

the devel opment process before the constructed models are fully analysed.

In addition to this shared strategic strength, HiP-HOPS, FPTN and similar methods which were
subsequently developed have claimed a number of (related) relative advantages over the classical
methods:
o theability to partialy automate safety analysis of the system
o the establishment of much clearer and more detailed traceability between system design
and safety assessment artefacts through an explicit (and shared) notion of the
“component”
o theability to perform safety analysisin a compositional fashion
e theuse (and construction) of composable safety analysis artefacts
o the ability to reuse safety analysis artefacts (components' characterisations) whenever the

corresponding components are reused across different design models.

Overal, the artefacts produced by HiP-HOPS, FPTN and some of the later methods developed
using similar concepts (e.g. [163, 165]) became collectively known as failure propagation models
and, lately, failure logic models [96]. This thesis identifies how these methods can be applied to
modern complex safety-critical systems and how their underlying conceptual framework can be
systematically extended to tackle some of the key challenges posed by such systems in industrial
context. It is important to stress that the objective of this thesis is not to present “yet another”
failure logic modelling method but rather to consider the entire family of existing methods,

identify their shared practical weaknesses and propose pragmatic extensions.
The following sections present the motivation for, and the challenges addressed by, this thesis.

The chapter concludes with definition of the Thesis Proposition and the chapter-by-chapter

outline of the thesis.

26



1.2 Research Challenges

Despite its apparent strategic advantages (discussed above), failure logic modelling has not
hitherto been widely accepted by industry. The main obstacle to the acceptance is the lack of
application to systems of realistic complexity and scale. The two key examples of properties of
industrial safety-critical systems which are not addressed by failure logic modelling techniques
are
e Operation over different modes, whereby the system dynamically reconfigures upon
either detection of failure or transition between phases of operation. Failure logic
modelling has been perceived as being fundamentally inapplicable to systems exhibiting
such behaviour because of its typical reliance on both the combinatorial framework for
describing component logic and on a purely compositional view of the systems (whereby
behaviour of the system is attributed to the behaviour of elementary components).
e Complexity of scale, whereby it is impractical to design large-scale industrial safety-
critical systems as a single, unified whole. Instead, such systems are typically designed in
a federated fashion by a number of different stakeholders. Consequently, some of the
interactions between such independently-designed systems can only be identified at
integration time. Failure logic modelling is perceived as inapplicable in this context since,
under current methods, composition relies on the pre-existence of well-identified and

matching interfaces between models.

Furthermore, failure logic modelling techniques typically introduce idiosyncratic specification
notations which are often perceived as being unsuited to an industrial setting. Reliance on such
notations also makes it difficult to relate individual technigues and to establish whether particular
limitations are specific to an individua technique or the failure logic modelling approach as a

whole.

The following sections describe these challenges to the failure logic modelling approach,
addressed in thisthesis, in more detail .

1.2.1 Complexity of Behaviour

Model-based safety assessment approaches have historically been motivated by the increasing
complexity of modern safety-critical systems. A key aspect of this complexity is reliance on
dynamic reconfiguration, whereby a system may perform different functions at different stages of
its operation or may deliver functions in different ways depending on its failure history.
Traditional safety analysis methods are perceived as being inefficient (if capable at all) in the
context of highly reconfigurable systems.

27



Whilst the failure logic modelling approach shares this motivation, the issues related to
reconfigurable systems have largely remained unaddressed in publications on the proposed
methods. The challenges reconfigurable systems pose to failure logic modelling methods are two-
fold.

Firstly, the failure logic of the components of reconfigurable systems cannot be adequately
modelled in combinatorial terms (combinatorial techniques were inherited by the most prominent
failure logic modelling methods from Fault Tree Analysis). The purpose of reconfiguration is
often to remove detected threats from the system. However, some failures (e.g. short circuits or
hydraulic leaks) may have effects on some components (e.g. power generators or pumps
respectively) which persist even after the initiating failure is ‘isolated’ by reconfiguration. The
effects of other failures may, of course, be transient and ‘cleared’ by a reconfiguration action.
Combinatorial failure logic modelling methods, by definition, cannot differentiate between
persistent and transient effects of failure. Furthermore, these methods do not alow for the capture
of sufficient information — such as conditional exposure intervals of failures — as is necessary for

accurate quantitative analysis of complex and reconfigurable systems.

Secondly, the reconfiguration logic cannot be attributed to single basic components of the failure
logic models. Thisis a unique characteristic of the failure logic modelling approach which is not
shared by some other approaches that fully integrate design and safety models. However,
interactions between components in failure logic models are captured in terms of deviations from
intent. In a reconfigurable system, different modes of operation will allocate different intents to
components. For model behaviour to be consistent, all component characterisations must have
access to a consistent and coordinated indication of the ‘current intent’. System modes and their
switchover logic must be captured at higher levels of model decomposition, thus forming the
context of characterisations of basic components. Whilst the original definitions of failure logic
modelling methods were careful not to make strong assertions about the feasibility of complete
decomposition of the failure logic of the system to characterisations of individual elementary
components, some of the later work (e.g. [60] and [116]) implied that such completeness was
feasible. To a specialist reader, this assertion equates to a limitation of any ‘pure’ failure logic

modelling technique.

It is important to note that the above discussion highlights a significant general characteristic of
failure logic models: the dependency of component failure logic on the wider system
configuration (and the associated system intent). This context-dependency challenges the
compositionality and reuse claims often made for failure logic modelling. Challenges posed by

modes and reconfiguration are just one aspect of this general problem.

28



Overall, these limitations of the current failure logic modelling methods, have resulted in a
perception that the approach is fundamentally inapplicable to dynamically reconfigurable systems
and, consequently, in a shift of focus (especiadly of the industrially-sponsored research) to
different model-based safety assessment approaches. Therefore, the challenge posed by dynamic
systems to the failure logic modelling framework must be addressed, in author’s view, as a matter

of priority.

Thisthesis addresses this challenge by extending the failure logic modelling approach with the
concepts of “mode” and “mode space” and by specifying their relationship with pre-existing
concepts. The thesis also shows that different types of reconfiguration are merely particular
patterns of a mode space of system models and demonstrates the applicability of the extended

approach.

1.2.2 Composition of Multiple Failure Logic Models

The complexity of the modern safety-critical system has another facet that is rarely addressed
adequately by safety assessment methods — the complexity of the engineering process. In
particular, modern large-scale systems are too complex to be developed as a ‘single whole’ or
even by a single engineering organisation. Whilst large-scale system integrators typically
maintain overall responsibility for the safety of complete engineered artefacts, these organisations
are not necessarily well positioned to undertake assessment of all of the constituent subsystems
that are engineered by external stakeholdersin the context of complex supply chains and devolved

design responsibilities.

At the same time, large-scale engineering artefacts are typically highly integrated — due not least
to their reliance on shared infrastructures and computer-based controllers. This means that safety
assessment responsibilities cannot be devolved fully, since a part-wise safety assessment will
potentialy be incomplete and unable to uncover al of the potential dangerous interactions

between the constituent systems and subsystems.

Whilst compositionality of the safety assessment is an unrealistic objective, composability of
safety assessment artefacts has been a declared goal for most model-based methodologies. The
idealised model of such a “composable process’ relies on engineering stakeholders developing
‘safety models’ of their artefacts and maintaining responsibility for the correctness of these
models. The platform integrator is left with the responsibility of integration of such constituent

models and analysis of the product of this composition.

Indeed, many failure logic modelling methods claim to be ‘composable’. However, they all share

assumptions about the context in which models must be composed which are likely to be valid
29



only in the context of monalithic system development and safety assessment. In particular, the
composition of failure logic models typically relies on a consistency of interfaces between the
models. It is (often implicitly) assumed that the platform integrator is capable of identifying such
interfaces and of establishing their format and granularity a priori. This assumption is often
justified by analogy with coordination between models in the design process (and, sometimes,

with the notion of component-based engineering).

There is, however, a significant fundamental difference between modelling in design and safety
assessment contexts. The purpose of design models is to dictate how systems are to be built and
how they should be integrated together. These models are proactive ‘blueprints’ for further design
and production. In contrast failure logic models capture a hypothesis about undesirable behaviour
of the system; unlike design models, they are reactive. During construction of these models safety
engineers do not simply capture (hypothesised) effects of undesirable events and interactions
between systems — they identify what these interactions are. To require safety engineersto predict
interfaces between failure logic models of different, independently-designed, (sub)systemsis akin

to requiring them to predict results of analysis before any assessment is undertaken.

Whilst an iterative approach to the definition of interfaces can reduce the impact of this problem,
in general, the composition of failure logic models cannot assume fully identified and harmonised
interfaces between models of different engineering artefacts. The challenge of composing failure
logic models is further exacerbated by the need to protect the responsibilities of safety engineers
over the correctness of the models they define. If a model integrator significantly modifies
constituent models in order to harmonise or enrich interfaces, he risks undermining the

responsibility (and, possibly, the liability) of the authors of the original models.

Finally, large-scale engineering artefacts may be decomposed into manageable parts in different
ways. Some types of relationships between parts — such as relationships between systems and
infrastructure or those between different views of the same system — do not yield an intuitive
notion of an input-output interface in the context of failure logic models. This poses further

challenges for model composition.

This thesis addresses these challenges by proposing an approach to the composition of
independently-defined failure logic models in the absence of well-identified or harmonised
interfaces. This approach is based on an extension of the notion of model interface and is set in
a flexible conceptual framework which rationalises various forms of decomposition for

complex engineering artefacts.

30



1.2.3 Conceptual Integrity and Language Independence

In addition to defining key safety engineering and modelling concepts, most failure logic
modelling methods also introduce idiosyncratic languages and notations for the specification of
models. Whilst such notations are a useful tool for early research and permit a focus on
conceptual- rather than implementation- level issues, in practice they rarely reach the level of
maturity necessary for industrial application or even evaluation®. Furthermore, the introduction of
new notations, specific to a single engineering discipline (e.g. safety engineering), is often met
with an understandable resistance in industry. Use of such notations implies significant cost in
terms of training as well as in the development and maintenance of modelling and analysis tools.
It also makes the engineering skills of the company significantly less flexible and complicates
recruitment. Whilst these issues may appear superficia at first, they do represent significant
pragmatic concerns of the industry. To facilitate adaptation of the model-based paradigm to
safety assessment, researchers must recognise industrial trends for the adaptation of standard
specification languages — such as SCADE, Simulink, StateMate and UML/SysML - across

engineering disciplines.

From a more theoretical perspective, problems posed by idiosyncratic languages are symptomatic
of a more serious issue: the lack of a clear demarcation between the modelling approach and the
model specification language. Informally, the former is concerned with ‘what’ (addressing such
questions as “What properties of the system should be captured?’, “Which perspective is
advantageous?’, and “What is the semantic relationship between the key concepts of such
viewpoint?’). The latter is concerned with ‘how’ (addressing such questions as “How can
concepts of the modelling approach be represented within the syntax of the notation?’, and “How

is the relationship between the concepts supported by the semantics of the language?’)

A strong coupling between the conceptual framework and the specification language — typical of
current model-based approaches in general and failure logic modelling approaches in particular —
poses numerous difficulties from both the research and the industrial perspective. It particular, it
is difficult to differentiate the limitations of the conceptual approach taken by a particular method
from the superficial constraints imposed by the format of the notation used. For example, HiP-
HOPS [115, 117] does not permit the specification of situations in which component failure
modes are caused by combinations of external and internal conditions. Instead, the tabular format
of the notation always implies a disjunction between the external causes (“input deviation logic”)
of an output condition and causes internal to the component (“malfunction logic’). The
conceptual apparatus of HiP-HOPS, however, does not require this restriction, which seems to be

motivated merely by the prevalence of particular patterns of behaviour which the HiP-HOPS

% Out of the notations used for model-based safety assessment of which the author is aware, only HiP-HOPS
has reached the level of maturity that may allow repeatable application to some industrial case studies.

31



author has observed during application of the method. In contrast, the “once failed, always failed”
(OFAF) assumption and absence of an explicit notion of component state are fundamental to the
HiP-HOPS method and are relied upon by the model analysis (the fault tree synthesis algorithm).

Furthermore, strong coupling between the notation (whether general or custom) and the
conceptual modelling approach makes it difficult to transfer fundamental ‘lessons learned’ across
different methods adapted by different researchers and therefore to evaluate the relative
advantages and disadvantages of different conceptual approaches and their implicit viewpoints.
When generic specification languages are used, the problem is sometimes even more acute since
reports on the application of these languages often lack a consistent and clear definition of the
methodol ogy used to construct the models, and instead appear often to be driven by features of the

particular language employed.

It is therefore a key challenge for the discipline of model-based safety assessment that it should
not only utilise general-purpose and industrially-mature specification languages (and their
associated tools), but should also de-couple the conceptual definition of modelling approaches
from implementation considerations without undermining the consistency, coherence and

principled definition of the former.

Thisthesis addresses this challenge by:
e defining a unifying Failure Logic Metamodel which defines key concepts of the
approach and their interrelationships,
o extending the Failure Logic Metamodel to address the key characteristics of industrial
safety-critical systemsin a conceptually justified fashion
e demonstrating that the Metamodel (and all of the extensions defined in the thesis) can
be instantiated using a general specification language (AltaRica) and utilising an

industrially- mature third-party modelling and analysis tool (Cecilia OCAS suite)

1.3 Motivation

Of course failure logic modelling is not the only model-based system safety analysis approach.
Other researchers have sought to achieve a complete integration between safety and design
processes by using common models in both processes. These models capture normal interactions
between system components in terms of characteristics such as pressure, voltage or data. The
models are, however, extended (either manually [20] or semi-automatically [24]) to reflect the
immediate effect of failures on the input-output response of system components. Under this

approach, the problem of system modes and reconfiguration is dealt with seamlessly. In fact,

32



provided that reconfiguration logic can be correctly modelled in system design models, modes of

operation areirrelevant to the safety analysis tasksin the context of these methods.

However, system safety assessment based on integrated models typically only addresses
propagation of failure effects through intentional interactions identified in design models. With
this restriction multiple models can typicaly be composed through predefined interfaces. The
restriction, however, highlights the key limitation of safety assessment approaches based on
integrated models — an inability to address unintentional interactions between components and
sub-systems. However, as it stands now, this limitation can only be traded off against the

perceived inapplicability of failure logic modelling.

As outlined in the previous section, this thesis demonstrates how key pragmatic challenges posed
by modern safety critical systems and their engineering processes can be addressed within the
FLM Framework. However, it is important to stress that the thesis does not contend that failure
logic methods are universally superior to other model based approaches. On contrary, the author
strongly believes that most of the existing approaches have relative strengths and weaknesses and
that the decision as to which approach is most appropriate and most effective in a particular
context will remain complex. However, it is also believed that this decision should be well-
informed and objective; the need to provide the rational basis for such decisions motivates the

present author’ s research.

1.4 Thesis Proposition

Based on the challenges presented in the previous sections, and in the context of the motivation

indicated there, the key proposition defended in thisthesisis asfollows:

It is possible to provide a well-defined, sound and pragmatic
framework for the failure logic modelling of realistic systems which
tackles the problems of dynamic reconfiguration of systems and

composition of interdependent system models.

1.5 Thesis Structure

The remaining chapters of thisthesis are organised as follows:

o Chapter 2 defines the context of the research by discussing the role of the assessment in
the overall safety engineering process. It also presents an overview of key traditional and
model-based safety analysis methods, highlighting their key principles, strengths and
limitations. The chapter also proposes a classification of model-based safety anaysis

33



methods and reviews two specification languages than have been widely applied in this
context: AltaRicaand AADL Error Model Annex.

Chapter 3 presents the Failure Logic Metamodel (FLMM) which unifies and subsumes
existing failure logic modelling methods. The metamodel also extends most of the
existing techniques to alow the dynamic behaviour of system components to be
modelled. Whilst the metamodel is defined in alanguage-independent format, this chapter
also demonstrates that it can be instantiated within a third-party specification language
(AltaRica). In the context of the thesis as a whole, the chapter defines a “baseline
approach” which is extended by next two chapters.

Chapter 4 proposes a flexible framework for rationalising different types of
decomposition of large-scale engineering artefacts (platforms) into manageable parts
(engineering domains). It proposes an extension to the Metamodel which allows
composition of Domain-Specific Failure Logic Models (DSFMs) through the notions of

“external failure causes’, “tranglation components’ and the “tranglation layer”.

Chapter 5 addresses the challenge posed by reconfigurable systems by further extending
the FLMM with the concepts of “mode” and “mode space’. This chapter demonstrates
that different types of reconfigurations (such as phased operation and failure-handling
modes), as well as architectural limitations of systems, can be seen as particular patterns

of mode models.

Chapter 6 presents an evaluation of the FLM Framework proposed in Chapter 3-5. It
summarises the evidence obtained through peer review and case studies. The chapter also
demonstrates that the metamodel underlying the framework subsumes existing failure
logic modelling techniques and can be related to classical techniques such as Fault Tree
Analysis (including its dynamic and non-coherent extensions). This chapter concludes
with an outline of the limitations of the failure logic modelling approach identified during

the evaluation along with an outline of the pragmatic mitigations that were adopted.

Chapter 7 concludes the thesis by summarising its key contributions and discussing some

promising directions for further research.

The thesis is supplemented by five appendices. Appendix A presents a consolidated overview
of the FLM Framework as developed in Chapters 3-5 and formalised in the Eclipse Modelling

Framework; Appendices B and C present descriptions of the case studies discussed in
Chapters Three and Four: the Aircraft Wheel Braking System (WBS) and the composition of
models of the WBS and Common Computation/Communications Platform respectively.

Finally, Appendix D presents a summary of a review of the Aircraft Fuel System that was

carried out as part of the evaluation process and informed selection of the case studies.

34



Chapter 2: Literature Survey

This chapter clarifies the scope of the research presented in this thesis, and establishes a context
and a baseline for it, by presenting a survey of relevant literature. The chapter is organised in five
main sections. Firstly, key terms relevant to system safety and the processes and activities used to
achieve it are defined (predominantly based on industrial and regulatory standards and on some of

the key academic textsin the discipline).

Secondly, some of the most prominent ‘classical’ safety assessment techniques are described and
discussed. This section focuses (although not exclusively) on the three techniques introduced in
Chapter 1. As well as defining the context (and, to some extent, a ‘benchmark’) for any novel
techniques, this review of the traditional techniques aims at identifying key characteristics which

may have contributed to their popularity and (perceived) strengths.

Thirdly, failure logic modelling techniques, including HiP-HOPS [114] and FPTN [57] as well as
other, more recent, methods are presented. The research presented in this thesis unifies and builds

upon these techniques.

Fourthly, other alternative model based approaches to safety assessment are discussed in section
2.4. Over the past fifteen years, this area has attracted significant interest from academia and
industry alike; however, until now little work has been done on the classification of the emerging
techniques. The section proposes a preliminary (and basic) classification identifying two broad
approaches (in addition to failure logic modelling). These approaches are tentatively referred to as
‘failure injection’ and ‘failure effects modelling’. The reviewed techniques are variously classified

as being one, or the other or some form of ‘hybrid approach’.

Finaly, the chapter reviews some specification languages that can be used to support model-
based safety assessment in general and failure logic modelling in particular. Whilst the section
focuses specifically on two languages — AltaRica Dataflow and AADL Error Modelling Annex —
it is important to recognise that throughout this thesis it is argued that a model-based safety
assessment method and a specification language are separate (and sometimes orthogonal)
entities. The selection of the method should not limit the safety engineers to a particular language

and, often, vice versa.

35



2.1 Safety Engineering, Assessment and Terminology

This section briefly outlines the key definitions of concepts in system safety engineering, typical
safety engineering process as well as the role and types of assessments that underpin safety

engineering.

2.1.1 Key Terminology of System Safety

Although system safety has emerged as a distinct engineering discipline over the last 50 years,
definitions of some key safety terms differ and are, at times, disputed. The disagreement is
particularly severe for concepts applied to software and software-intensive systems [106]. For
example, van der Meulen lists eleven different definitions of the term “safety” itself [156]. To
avoid ambiguity, this section lists the definitions of key safety terms which are assumed in this

thesis.

Safety is defined as “freedom from unacceptable risk” [72, 109] with risk (or safety risk) being
defined as “combination of the likelihood of harm and the severity of that harm” [149] (with
nearly identical definition in [72]). In this context, harm is often interpreted broadly along the
lines of: “Death, physical injury or damage to the health of people, or damage to property or to
the environment.” [149] (although [72], for example, takes a more restricted view).

Causdlly related to harm are the notions of an accident®: “an unintended event, or sequence of
events, that causes harn” [149] — and an incident: “the occurrence of a hazard that might have
progressed to an accident”. Which, in turn, call upon the key concept of a hazard: a “physical
situation or state of a system, often following some initiating event, that may lead to an accident”
[149].

The concept of the hazard (and its potential severity) is the key to distinguishing between two
system attributes which are sometimes confused: safety and reliability. Reliability is defined as
the “ability of an entity to perform a required function under given conditions for a given time
interval” [160] and is different from safety in that it considers all possible failures of a system,
whereas safety (and safety engineering) is concerned only with the failures that may cause a
hazard, and by extension, an accident. The other source of confusion arises from the term
“required function” which can be interpreted as “origina” (as at the time of commissioning),
“designed”, “specified” or “intended”. The ‘correct interpretation’ (especialy in the context of
definitions of terms “fault” and “failure”) has given rise to numerous and long-standing disputes

between safety researchers (especialy between the USA and the UK), as described by Pumfrey

“In the USA thisistypically referred to asa‘mishap’ [154]
36



[123]. For the purpose of this thesis, “ required function” and “failure” are always interpreted
with respect to the intent.

This thesis is concerned with the safety of systems in general and of complex, reconfigurable and
software-intensive systems in particular. The current version of UK Defence Standard 00-56
defines a system as: “A combination, with defined boundaries, of elements that are used together
in a defined operating environment to perform a given task or [to] achieve a specific purpose. The
eements may include personnel, procedures, materias, tools, equipment, facilities, services
and/or software as appropriate” [149]. In the context of this thesis, this definition is too wide and,
whilst the author does not dispute the importance of the human, the organisation and the
procedures in a system context, the definition used in an older issue of the DS 00-56 is adopted
in scoping the research presented here: “a bounded physical entity that achieves in its domain a

defined objective through the interaction of its parts” [147].

2.1.2 System Safety Engineering, Assessment and Lifecycle

Whilst key safety terms frequently have several varying definitions, concepts relevant to the
System Safety Engineering (or just ‘System Safety’ [49, 90]) process tend to suffer from the
opposite problem — largely identical concepts are given different names. Furthermore, different

system safety standards and key texts tend to emphasise different aspects of the process.

In general System Safety is concerned with “The application of engineering and management
principles, criteria, and techniques to achieve acceptable mishap risk®, within the constraints of
operational effectiveness, time, and cost, throughout all phases of the system life cycle” [154].
Leveson lists key principles of system safety, among them the statement that: “system safety
emphasizes analysis rather than past experience and standards” [90]. Whilst most texts broadly
agree with this definition and principle, further ‘decomposition’ of what is meant by ‘analysis
differs significantly. Part of the problem is that safety engineering is a‘spiral’ process that iterates
as the underlying system devel opment process progresses. At each iteration the safety engineering
(or, dternatively, “safety management”) process proceeds through a broadly identical set of key
activities (although the nature of individual activities and their degree of detail and rigour may
differ from one iteration to the next). The results of this process are typicaly captured in an
evolving hazard log, which can be described as “the continually updated record of the hazards,
accident sequences and accidents associated with a system. It includes information documenting
risk management for each hazard and accident” [149]- although different industrial sectors and

standardisation/certification jurisdictions may use different terms for the same concept. For

® In context of the definitions presented in the previous section “mishap risk” should be read as simply
“risk” or, alternatively, as “the risk posed by hazards associated with the system”

37



example, European Civil Aircraft manufacturers sometimes refer to this as “aircraft safety
synthesis’ [89].

The current issue of the Defence Standard 00-56 (part 2) [150] emphasises and lists typica
activities at each iteration:

a) Hazard Identification

b) Hazard Analysis

¢) Risk Estimation

d) Risk Evaluation

€) Risk Reduction

f) Risk Acceptance

The key activity, from the perspective of this thesis, is the Hazard Analysis, which is concerned
with the identification of causal factors of hazards which are posed by the system (as generated by
the Hazard Identification activity), establishment of a model (whether an explicit model or an
implicit ‘mental model’) of relationships between those factors and estimation of the likelihood of
a hazard. It is important to note that Hazard Analysis can be used either reactively (e.g. to assess
the probability of a hazard based on concrete component data and an implemented design towards
the end of the development process) or proactively (e.g. at earlier iterations to assess the
architecture of the system, to alocate necessary requirements to components and to assess the
feasibility of the proposed system design). Hazard Analysis feeds into Risk Estimation, which
combines the estimated likelihood of hazards with their severity (obtained by a domain-specific
assessment of interactions between the system, its environment and its operations) to obtain
characterisations of risks posed by the system. The last three activities in the list are concerned
with an engineering and manageria judgement on whether such risks are acceptable and/or
whether any additional measures for their reduction are necessary (and feasible): the latter may
include redesign of the architecture (or, at the extreme, redefinition of the system concept),
reallocation or other changes to the derived regquirements as well as additions or changes to
operational procedures (including training, inspection and maintenance procedures as well as

monitoring programmes).

It is important to note that, whilst some analysis techniques can be uniquely mapped to the
individual activities, others cover more than one. For example, Functiona Failure Analysis (FFA)
is a Hazard Identification method and Fault Tree Analysis is a Hazard Analysis method; by
contrast, Hazard and Operability Studies (HAZOP) and, to a lesser extent, Failure Modes Effects
and Criticality Analysis (FMECA) can be used for both Hazard Identification and Hazard
Analysis.

38



As was said above, other key texts on safety engineering emphasise the chronologica aspect of
iterations. Leveson, for example, identifies four such stages [90] (confusingly, but in keeping with
the lack of consensus described above, some of those stages bear names similar to those of the
00-56 activities described above):

e Preliminary Hazard Anaysis (PHA)

e System Hazard Analysis (SHA)

e Subsystem Hazard Analysis (SSHA)

e Operating and Support Hazard Analysis (OSHA)

Whilst each stage typicaly contains each element of the activities in the previous list, the
emphasis gradually moves from Hazard Identification to Hazard Analysis and Risk Estimation
(with Risk Evaluation, Risk Reduction and Risk Acceptance underpinning all stages) as the stages
progress. Ericson proposes a more detailed list, identifying seven iterations for conceptua design,
preliminary design, detailed design, system design, operations design, health design and, finaly,

requirements design [49].

More simple, and more concrete, ‘chronological’ conceptualisations of the stages and activities of
the safety assessment process can be often found in industry-specific process standards and
guidance [55, 109, 140, 139, 153]. For example, in civil aerospace, ‘recommended practice
documents — ARP 4754 [140] and ARP 4761 [139] — define three key stages of assessment (see
aso Figure 5):
Functional Hazard Assessment (FHA): “A systematic, comprehensive examination of
aircraft functions to identify and classify Failure Conditions® of those functions according
to their severity” [140]. FHA is performed at both aircraft and system levels, and is
conducted by means of Functional Failure Anaysis [139]; the results between aircraft-
and system-level assessments are typically captured in a fault tree format (“aircraft fault
tree analysis’) athough no actual fault tree analysis (as defined in [157]) is being
conducted (see sections 2.2.3 below)
Preliminary System Safety Assessment (PSSA): “A systematic evaluation of a proposed
system architecture and its implementation, based on the Functional Hazard Assessment
and failure condition classification, to determine safety requirements for all items in the
architecture” [140].
System Safety Assessment (SSA): “A systematic, comprehensive evaluation of the
implemented system to show that the relevant safety requirements are met” [140].

® Failure Condition is defined as “a condition with an effect on the aircraft and its occupants, both direct
and consequential caused or contributed to by one or more failures considering relevant adverse
operational or environmental conditions”. This can be seen (broadly) as a specialisation of the concept of
“hazard”.

39



Because of the ‘divide and conquer’ and system-centred nature of the ARP process the three
stages defined above are supported by Common Cause Analysis — comprising zonal, particular
risk and common mode analyses — the objective of which is to verify the presumed (or explicitly

required) independence between aircraft functions, systems or lower-level items[140, 139].

Aircraft R.e.qui.rement System R_e_qui_rement ftem Re_q_uire_ment tem deSig!] Item Verification | System Verification Aircraft Verification
Identification Identification Identification Implementation
»
Aircraft Integratioﬁ@
FHA »> FE&P
System Integration '@ Crosscheck >
FHA Crosscheck FE &FPT: ) FgéA&
Prelim FC\C FC&C ucgaAte update
FTA FHA ; T
cca Arch req
FE & P_budget FE & P from
other items/
i systems
vy " PSSA SSA '
To other
CCA
systems Archreq FMES &
FE & P budget CCA
v 9 v l update FE & P from
To otr:er Prelim other items
FTA
KEY: systems CCA Safety Objectives for FMEAs FMES
i 2 budget
FE L>
FHA - Functional Hazard Analysis Arch req HW M
FTA - Fault Tree Analysis HW level o 4)»,' FMEA
CCA - Common Cause Analysis FE q FE T P/O other
Arch req - Architectural Requirements Archreq || sw HW level »| general
FE - Failure Effect SW level 1, SWievel  lverif.
FM - Failure Mode ’ (DO-178B,
FC & C - Failure Condition & Classification etc)
A - Failure rate
P - Probability
FMEA - Failure Modes & effects Analysis
FMES - Failure Modes & Effects Summary

Figure5 - ARP4761 Safety Assessment Diagram[139]

It is important to note that, from a narrow technical perspective, PSSA and SSA are similar
processes and are both conducted by means of Fault Tree Analysis, Reiability Block Diagrams,
Markov Analysis or similar techniques’. The two assessments, however, differ in their objectives:
whilst SSA is confirmatory analysis, performed on the basis of ‘real’ component data and system
design as implemented, PSSA is a [development process] “risk reducing and value adding phase”
of the ARP process, with the primary objective of driving the design of an aircraft system [40].
The latter is also envisaged as an iterative activity that is refined as the design of the system

matures.

In terms of the activities of the DefStan 00-56 (listed above), both PSSA and SSA are
predominantly Hazard Anayses, FHA is mainly Hazard Identification but also covers some
aspects of Risk Estimation (in that the severity of failure conditions is determined). Overall, in
civil aviation risk-related activities are simplified. The reason is that the acceptable probabilities
of failure conditions of a given severity (and the severity classification schema) are prescribed by

the overarching EASA and FAA airworthiness standard [53] and its associated “advisory

"It should be noted, however, that [139] suggests using FTA for PSSA and FMEA for the SSA.
40



materia”. In this context, any judgement about the acceptability of risk is essentially made by the

certification authority, rather than by an aircraft’s manufacturers.

2.1.3 Scope of the Present Research

In terms of 00-56 activities [150], the scope of the research presented in this thesis is Hazard
Analysis (athough subsequent chapters focus predominantly on the qualitative aspects of the
assessment). In Leveson’s terms [90] it is both System Hazard Analysis and Subsystem Hazard
Analysis. In terms of the ARP process [140, 139] PSSA, SSA and corresponding iterations of the
CCA dl fal within the scope of the current work; however, the main focus is on the PSSA and
especidly its early iterations, when less detailed, immature and unstable system design proposals
are being assessed and, consequently, when there is a significant opportunity (currently under-
utilised in the industrial context [40]) to affect the design in an cost-, time- and effort- effective
fashion.

In the remainder of the thesis, these activities and stages of the safety engineering process are

collectively referred to as system safety assessment.

It should be noted that the research presented here is not specific to the civil aviation domain,
even though the thesis refers to terms established by the ARPs (such as PSSA, SSA, CCA and
Failure Condition) and uses case studies from that domain. Standards and guidance material from
other domains use concepts akin to the ARP. In some cases, (e.g. Eurocontrol Safety Assessment
Methodology [55], MISRA Guidelines for Safety Analysis of Vehicle Based Programmable
Systems [109], and — currently superseded — US MilStd-882C [153]), these concepts are made
explicit, whilst elsewhere, (e.g. UK Defence Standard 00-56 [149, 150]), they remain implicit.
The selection of case studies for this thesis has been influenced by the author’s collaboration with
European aircraft manufacturers and suppliers. Furthermore, systems in the aerospace domain
typically exhibit characteristics that are investigated in this thesis: dynamic reconfiguration, multi-

phase operation and the composition of (relatively) independently designed artefacts.

2.2 Classical Safety Assessment Methods

This section reviews ‘classical’ and well-established safety anaysis techniques, focussing on
Failure Mode Effects and Criticality Analysis (FMECA), Fault Tree Analysis (FTA) and Hazard
and Operability Studies (HAZOP).

41



2.2.1 Inductive Methods

Inductive, or forward search, analysis methods progress from a known or hypothesised cause
(typically — a component failure or a failure mode) to identify general system-level effects (i.e. a
system-level failure condition or even a hazard). Therefore, many inductive methods, even when
they are focussed on system safety analysis, are capable of contributing to the identification of

hazards (or to the verification of the completeness of the previoudy identified hazards).

FMEA /FMECA

Failure Mode, Effects and Criticality Analysis (FMECA) aong with its more restricted and
reliability-centred variant — Faillure Modes and Effects Analysis (FMEA) — are the most widely
known inductive safety analysis methods. Originaly specified in 1949 as US Military Procedure
MIL-P-1629, FMECA has been described in a number of industrial standards, including MIL-
STD-1629A[152], IEC60812 [71]and SAE J-1739 [137], and aso features in most of the key
academic texts on dependability engineering (e.g. [90, 160]).

The objective of FMECA is to exhaustively identify failures of components® and their effects on
the system. The effects are typicaly classified according to their severity and probability (i.e. risk,
although thisis typically called ‘criticality’ in FMECA), which allows prioritisation of the design
actions such as re-design or the development of protective barriers or mitigation procedures. The
probability of the failure and its effect can be determined either in quantitative or in qualitative
form. The severity of the system-level effect can either be determined as part of the FMECA itself
[152] (in this case the analysis combines Hazard Identification, System Safety Assessment and
Risk Assessment/Consolidation objectives) or linked to the findings of earlier Hazard
Identification activities [139].

Whilst the details of the analysis procedure differ between many descriptions of FMECA and
FMEA, al procedures reflect four general steps [160]:

1. Thedefinition of the system, its functions and components

2. Theidentification of the component failure modes and their [immediate] causes
3. Thestudy of the failure modes’ effects
4

Conclusions and recommendations

For safety-centred FMECA, the third step can be subdivided into identification of the effects of
the failure modes and a detailed criticality analysis (e.g. task 102 in [152]).

8 Or, to be more precise, failure modes, typically defined as “The manner by which a failure is observed.
Generally describes the way the failure occurs and its impact on equipment operation” [152].

42



All FMEA/FMECA standards and descriptions typically prescribe a particular tabular format for
reporting analysis results. For example, the origina method definition [152] prescribes twelve

columns which must all be filled.

Whilst al FMEA/FMECA standards (and many descriptions of the technique) focus on the
procedural aspects of the analysis, they often contain significant guidance to facilitate
identification of the failure modes and their effects. For example, [152] above states that in
identifying failure modes and causes at least the following scenarios must be considered:

a. Premature operation
Failure to operate at the prescribed time
Intermittent operation
Failure to cease operation at the prescribed time

Loss of output or failure during operation

-~ o o o T

Degraded output or operational capability

Such lists act essentially as guide words with the goal of ensuring completeness of analysis.
Descriptions of FMECA rarely include step-by-step guidance on the systematic identification of
the effects of failure. Indeed, given the historical context in which this analysis method has
emerged, FMECA typically assumes the existence of relatively simple self-evident (to system and
safety engineers) causal dependencies within the system. In other words, the method (implicitly)
assumes that the key challenge for safety assessment is completeness (i.e. exhaustive
identification of components failure modes, modes of operation and effects) rather than the

complexity of system behaviour.

Whilst it is typically applied at the level of relatively detailed design and to concrete known
‘initiating’ failure modes, FMEA/FMECA can be applied at conceptual stages with hypothesised
failure modes. For example, Software FMEA [120] identifies the effects of different hypothetical
deviations in software behaviour and thus helps to focus and prioritise future development as well
as validation and verification activities. Another example is the application of FMECA to the
whole system as a ‘black box’, described in terms of top-level functions. This is known as
Functional Failure Analysis and is a prevalent hazard identification technique in the aviation
sector [139].

Other Inductive Methods

Although it is perhaps the most prominent inductive analysis technique, FMEA/FMECA is not the
only one. Event Tree Analysis [155, 160] is a graphical method that starts with a single initiating
event and systematically examines its effects under different scenarios. ETA originated in the
Nuclear Power Industry (although it is based on the decision theory of Economics [160]), and is

best suited for investigating the effectiveness of well-defined protective barriers. A typical
43



initiating event is clearly potentially hazardous (e.g. critical over-pressure conditions in the plant,
radiation or hazardous chemical leaks), and scenarios are described in terms of successful or
unsuccessful operation of successive protection mechanisms (either implemented in plant design
or in operational procedures). In particular, ETA is unlikely to be suitable for investigation of
effects of the type of ‘deeply nested’ failure modes of system components that are addressed by
FMECA. For thisreason it istypically applied in conjunction with Fault Tree Analysis[155].

2.2.2 Deductive Methods

In contrast to inductive safety analyses, where engineerstypicaly start with a known (or assumed)
failure mode of the component and hypothesise possible system-level outcomes (based on domain
knowledge and system descriptions), deductive analyses proceed in the reverse logical direction:
starting with a specific undesirable condition defined at the system level (such as a hazard or a
failure condition) analysts identify its possible causes systematically. The procedure is typically
recursive, whereby analysts first consider the immediate necessary and sufficient causes of the
undesirable condition; these identified causes are then themselves considered undesirable
conditions and their causes are identified. The recursion continues until a level judged as
elementary is reached; this is typically alevel at which conditions, such as component failures,
can be considered either to be random in nature or to be sufficiently implausible, or at which a

boundary of the system has been reached.

Fault Tree Analysis: Introduction and Syntax

The most widely used deductive safety analysis method is Fault Tree Analysis (FTA) [158, 157,
160]. Fault Trees are graphical models of a system which show how low-level conditions
gradually combine to cause an undesired Top Level Event (TLE). Syntactically, Fault Trees
consist of events connected by logic gates. Most of the events in the tree are Intermediate Events
which are further decomposed into other events. The leaves of the tree are Basic, Conditioning,
External (or “House”) and Undeveloped Events (see Figure 6). Each gate of the tree specifies a
condition over input events (such as logical conjunction or disunction) that must hold and must
be sufficient for the higher level event to occur. Figure 7 shows standard FTA gates (adopted from
[157]).

Essentially, each fault tree encapsulates a hypothesis of system behaviour in ‘failure space' [157];
furthermore, the hypothesis is partial since any tree only captures behaviour relevant to a single
top-level event. A fault tree can be analysed to generate a set of Minimal Cut Sets, a quantitative
measure of the probability of the top level (and/or intermediate) event or an importance measure
of the individual basic events. All such analyses essentially reduce the hypothesis (or a model) to
more simple propositions (or views). The graphical notation of fault trees discussed above

provides syntax for expressing the hypothesis.
44



Basic Event
An initiating fault requiring no further development

Undeveloped Event
An event which is not developed further, either because it is considered
unnecessary, or because insufficient information is available

Intermediate Event
An event arising from the combination of other, more basic events

Normal Event
An event which is expected to occur as part of the normal operation of
the system

Conditioning Event
Specific conditions or restrictions that apply to some types of logic gate
(e.g. PRIORITY AND and INHIBIT gates)

0D OGO

Figure6 - Principal FTA Event Symbols

AND
All input events must occur for the output to occur

OR
The occurrence of one or more input events will cause the output to occur

EXCLUSIVE OR
The output will occur if exactly one of the inputs occurs

PRIORITY AND
The output occurs if the input events occur in a specific sequence, described in
a CONDITIONING EVENT attached to the gate

INHIBIT
This gate produces an output if the single input event occurs in the presence of
the enabling condition described in the attached CONDITIONING EVENT

ODDDD

Figure7 - Standard FTA Logic Gate Symbols

FTA Construction Rules and Principles

However, it is important to stress that Fault Tree Anaysis covers more than merely the syntax of
the models and algorithms for their analysis/ traversal (although some FTA descriptions — such as
Appendix D of [139] — are, indeed, limited to these aspects). In particular, it includes rules, key
principles and significant guidance for the construction of fault trees. The importance of this
aspect of FTA cannot be overstated; by providing a systematic and repeatable method for system
assessment and model construction, FTA not only facilitates the assessment process but also
provides a degree of confidence in the validity of the hypothesis encapsulated in the Fault Tree
itself.

The earliest, and still most authoritative, description of FTA [157] lists two ground rules for the
construction of fault trees:
. “Write statements that are entered in event boxes as faults; state precisely what the fault
is and when it occurs’ ;
. “If the answer to the question, ‘Can this fault consist of a component failure’ is ‘Yes,
classify the event as * state-of-component fault’. If the answer is ‘No’, classify the system

as a ‘state-of-system fault’” .

45



The second rule introduces two new semantic concepts of FTA that are not explicitly represented
in the notation’s syntax. Whilst it may appear that the first rule is primarily syntactical, in fact it
ensures the conceptual consistency of the fault tree models and imposes a constraint of describing

behaviour grictly in the failure space.

In addition to the two “ground rules’ the FTA Handbook [157] lists three procedural statements:
The Complete-the-Gate Rule which structures the system analysis procedure by
mandating a breadth-first fault tree development;

The No Gate-to-Gate Rule which restricts fault tree notation syntax by expressly
prohibiting direct connections between the gates,

The No Miracles Rule that states: *If the normal functioning of a component propagates
a fault sequence, then it is assumed that the component functions normally” [157].

Whilst the last rule effectively prohibits negation and the ‘not’ operator is not included in the

original FTA definition, it has been argued that the failure logic of certain classes of systems

(referred to as “non-coherent”) can only be described accurately if negation is permitted [10, 11,

37, 75].

In addition to the above rules, the FTA Handbook defines some additional concepts such as
“Immediate Cause” — discussed at the beginning of this section — and classification of the causes
of state-of-component events into primary, secondary and command faults. Under this
classification, primary and secondary faults are essentially failures of a component in its intended
and unintended environments respectively whereas the command fault “involves the proper
operation of the component but at the wrong time or in the wrong place” [157]. In practice, these
three classes of faults are used by safety engineers as guide words to aid identification of the
causes of events and to assure the completeness of the fault tree. Villemeur illustrates and refines

these three broad classes as shown in Figure 8.

Componen

failure

Figure8 - Villemeur's'Failure Classification asto Causes' [160]

46



FTA: Dynamic Extensions

‘Classical’ Fault Tree Analysis is often perceived to be inappropriate for the assessment of
complex reconfigurable and software-intensive systems [90]. Indeed the FTA notation is
predominantly based on combinatorial logical operators which do not alow for the expression of
timing or sequencing behaviour. The only non-combinatorial gate defined in [157] is ‘Priority
And (PAND), however, its semantics are not precisely defined [161]. A further constraint is
imposed by the assumption of equivalence between events (fault occurrence) and states (fault

existence) which underlies Fault Tree Analysis (see, for example, section V.2 of [157]).

To dleviate these problems, a number of extensions to FT syntax have been proposed (e.g. [44,
79, 113, 161]). The detailed description of al proposed alternative extensions is beyond the scope
of thisthesis. However, two of the most prominent approaches — State/Event Fault Trees (SEFTS)
and Dynamic Fault Trees (DFTs) are briefly discussed below.

The first approach, proposed by Kaiser and Gramlich [79, 80] revokes the state-event equivalence
assumption of traditional fault trees. Consequently SEFTS refine the semantics of the fault tree
gates and introduce some new gates which distinguish between the notions of events and states on
their inputs and outputs. The semantics of SEFT is defined through representation in
Deterministic and Stochastic Petri Nets (DSPN).

Probably the most prominent of the extensions to Fault Trees, Dugan’s Dynamic Fault Trees
(DFT) approach [12, 44, 158] proposes two new gates — a Functional Dependency (FDEP) gate
and a Cold Spare (Spare) gate (Figure 9, (a) and (b) respectively).

Intermediate Intermediate
Event Event

| FDEP .

Intermedi Trigger SPARE

ter
Event
Failure of
Cold Spare

(a) (b)

Failure of

Cold Spare

Figure 9 - Dynamic Fault Tree Gates. Functional Dependency (a), Cold Spare (b)

The Functional Dependency gate allows for the expression of common causes of (otherwise
seemingly independent) basic events in afault tree. The gate connects a number of basic eventsin

the tree and a trigger event (which can be either a basic event or an intermediate/top event in the

47



hierarchical tree). When the trigger occurs, al of the basic events connected to FDEP are forced to

OocCcur.

A Cold Spare gate is connected to a number of basic events and an intermediate event. One of the
basic events is identified as the “primary event”, and a sequence between other basic events
(“spares’) is defined. The gate has two effects:
e [tactsasan AND gate
e It indicates that, until the primary (and any spares with a higher priority) has failed, the
failure rate of a cold spare may vary. This allows for more accurate modelling of the fact
that certain stand-by components (e.g. emergency electrical generators) have different
failure probabilities, depending on whether they are activated or not. The failure rate of
each inactive cold spare is a product of its “hot” failure rate and the dormancy factor (held
by the Spare gate). If the dormancy factor is one the spare is dways hot®, if it is zero — the

spareiscold (cannot fail until it is used); otherwise aspareis considered “warm”.

A common feature of both DFT and SEFT approaches is that they provide a ‘user friendly’ means
of access to the underlying more powerful non-combinatorial formalism (Markov models and
DSPN respectively) through a set of new or refined fault tree gates. Each of these refined gates
essentially captures a particular pattern in the underlying formalism that has been adjudged to be

frequent or prominent in modern safety-critical systems.

Other Deductive Methods

Whilst Fault Tree Analysis has dominated the deductive approaches ‘ market’, other methods have
been proposed. Closely related to fault trees, Reliability Block Diagrams (RBDs) [160] have been
quite popular for some time, especially in the European Aeronautics Sector. The expressive power
of RBDs s broadly similar to that of Fault Trees [101]; however, the models capture system logic

from the ‘ success space’ perspective™.

Finaly, Ladkin’s Why Because Analysis (WBA) [88] is another deductive method which relies
on a systematic construction of causal dependency models with well-defined semantics. However,

WBA is predominantly used by for accident investigations rather than system safety assessment.

® Consequently a spare gate with all dormancy factors set at oneis equivalent to an AND gate.
%1 fact Villemeur refers to RBDs as “ Success Diagram Method” [160]
48



2.2.3 ‘Bowtie’ Methods

Hazard and Operability Studies (HAZOP)

Deductive and inductive methods have different strengths, and their combination has been long
recognised as beneficial [155]. Consequently, analysis methods combining the two approaches
have emerged. The most prominent of such methods is Hazard and Operability Studies (HAZOP)
which emerged from the chemical process industry in the mid-1960s and has since then became
quite popular across the process sector in general (including the nuclear, chemical and food-

processing domains) [85].

HAZOP is essentialy a facilitated and structured brainstorming activity that covers both Hazard
Identification and System Safety Assessment. The method is different from most other safety
assessment techniques in that it is expressly team-based. Consequently HAZOP descriptions
typically dedicate at least as much attention to the composition of the assessment teams and
procedural aspects of the analysis as they do to the more ‘technical’ guidance. For example, in the
context of the safety assessment of new chemical process plants, Kletz advocates the following
HAZOP team composition [85]:

e Project or design engineer

e  Process Engineer

¢  Commissioning manager

e Control system design engineer

e Research chemist

e Independent team leader

Technically, HAZOP is typicaly applied to piping and instrumentation (P&I) diagrams of the
proposed plant design. Centred around the concept of “guide word”, the assessment proceeds by
considering every flow in the plant (material, energy and/or control) iteratively, using a standard
set of guidewords (Table 1) to identify possible deviations of a flow’s physical characteristics
(such as pressure or temperature) from that intended by the designers. For each viable deviation,
the assessment team walks through the diagram deductively and inductively to identify causes
(e.g. failures) and ultimate effects (i.e. hazards) of the deviation respectively. The deductive and
inductive parts of the assessment can be seen as informal or ‘lightweight’ Fault and Event Tree
Analyses respectively. However, in HAZOP these analyses are not bound by a particular
prescriptive procedure or notation — the strength of the method lies in alowing the team to
deliberate and investigate deviations freely (achieving what is sometimes referred to as a“ system
of imaginative anticipation of hazards’ [105]) . The results of the study are typically reported in a
tabular format, although HAZOP descriptions tend to be less prescriptive on the exact format of
such tables than FMEA/FMECA standards.

49



Table1 - HAZOP Guidewords[90]

Guideword Meaning
NO, NOT, The intended result is not achieved, but nothing else happens
NONE (such as no forward flow when there should be one)
MORE More of any physical property than there should be
(such as higher pressure, higher temperature, higher flow, or higher viscosity)
LESS Less of a relevant physical property than there should be

AS WELL AS | An activity occurs in addition to what was intended, or more components'! are
present in the system than should be there

(such as extra vapours or solids or impurities, including air, water, acids, corrosive
products)

PART OF Only some of the design intentions are achieved

(such as one of two components in a mixture)

REVERSE The logical opposite of what was intended occurs

(such as backflow instead of forward flow)

OTHER THAN | No part of the intended result is achieved, and something completely different
happens (such as the flow of the wrong material)

Software HAZOPs

From the perspective of the research presented in this thesis, the key features of the HAZOP are
the focus on flows rather than components of the plant design along with the concepts of deviation
from intent and guide words which aid in the identification of such deviations. In his work on a
software-oriented variant of HAZOP — SHARD - , Pumfrey [105, 123] maintains al three
aspects, but notes that standard guide words do not provide adequate coverage of issues of timing
and sequencing that are often vital to the safety of control software. Consequently SHARD is
based on six generic*? deviation “classes’: Omission”, “Commission”, “Too High Vaue”, “Too
Low Vaue”, “Too Early” and “Too Late” — applied to information flows in software. These
classes, which are often grouped in pairs by three ‘domains’ of service provision, service value
and service timing respectively [105], formed the basis of all of the failure logic modelling
methods described in section 2.3 below.

UK Defence Standard 00-58 (now obsolete) addressed the application of HAZOP to “systems
containing programmabl e electronics’ [146]. It makes a similar observation with respect to timing
deviations. However, the Standard’ s approach is to retain generic HAZOP guide words but extend
the list with two pairs of timing and sequencing keywords: “Early” and “Late”, “Before” and
“After”. Part 2 of the standard contains detailed guidance on the application of the guide words. It
isinteresting to note that the 00-58 guide words are applied not only to the information flows, but

1 j.e. component substances (does not refer to components in a sense of system equipment)

2 1n [107] McDermid et a present an account of application of HAZOP & SHARD with various sets of
guide words (including a larger number of refined deviations classes above as well as extended list of
original HAZOP guide words [146]) concluding that the six general classes are more likely to be efficient.

50



a so to the components and software/system architecture itself. The latter isintended to alleviate a
known limitation of HAZOP (and SHARD), the focus on deviations of flows (intentional or
otherwise) in intended plant layout / topology (or, in case of SHARD, intended system

architecture).

Other Methods Combining I nductive and Deductive Approaches

HAZOP and its variants do not construct an explicit safety assessment model. Cause-
Consequence Diagrams (CCD) — a graphica ‘bowtie’ analysis technique originally developed in
Denmark (by Riso Laboratory) — is, on first examination, closely related to HAZOP. The
development of CCDs starts with the specification of a particular “initiating event”. The causes of
the event are investigated using FTA (and the classical fault tree is constructed). Following the
deductive stage the consequences of the event are established, using a procedure similar to Event

Tree Analysis but represented using a more compact notation (Figure 10).

Input
* X Input Input
Condition
--» No [ Yes
* * Output
- ‘Delay’ ‘Consequence’
Decision box symbol event

Figure 10 - Specific Symbols of Cause-Consequence Diagrams [160]

The initiating event typically involves “failures of components or subsystems apparently likely to
produce dreaded consequences’ [160], and consequently the second, inductive, step of the
analysis is concerned with the identification of protective barriers and safety systems in the plant
under analysis (and their respective malfunctions). Because of this restricted choice of initiating
events, CCDs are more closely related to the process that combines fault and event trees™® as
described in [155] (and briefly mentioned in section 2.2.1 above) than they are to HAZOP.

Finally, Lutz and Woodhouse have proposed a Bi-directional Analysis Method for the analysis
(and certification) of safety-critical software [99]. Their method combines software FMEA and
FTA. This method differs from both HAZOP and the CCDs in that complete inductive analysis is
conducted first and its outcomes are then used to prioritise the construction of fault trees. In this

sense bi-directional analysisisa‘two-passes rather than a‘bowtie’ technique.

3 Although CCDs are more expressive than a simple combination of Fault and Event trees, since a failure
mode of every protective system (i.e. not just the initiating event) can be developed into a fault tree
“branching off” from the ‘no’ terminal of the decision box.

51



2.2.4 Discussion

It is important to note that all of the safety assessment methods that have achieved prominence
outside their original industrial sector - FMECA, FTA and HAZOP - share one common feature:
their original standards [143, 152, 157] provided significant guidance on the analysis method and
included sets of ‘guide words’ (in one form or another) to facilitate completeness. By contrast,
descriptions of techniques that have either faded out over the years or have not escaped the
boundaries of a particular industrial domain — such as Reliability Block Diagrams, Event Tree
Analysis and Cause-Consequence Diagrams — often focused on the graphical notation, rather than
providing a methodology and guidance on how to use the technique. Pumfrey makes this
observation and proposes, as his second principle for computer safety analysis, that “method is
more important than notation” [123]. In studying failure logic modelling approaches, this thesis
adopts this principle and focuses on the general FLM Framework that underlies diverse failure

logic modelling notations and techniques (described in the next section).

It is also important to stress that, regardless of the method, safety assessment models and results
will always remain an engineers hypothesis which istypically only weakly validated (if validated
a all). Therefore, in practice, evidence that this hypothesis was devel oped (postulated) as a result
of application of a structured, systematic and well-defined method provides an essentia (if not the
only) basis for justifying the adequacy and the trustworthiness of the safety engineering process as

awhole.

Finally, as was mentioned in the previous chapter, most of the ‘classical’ safety assessment
methods share a common ‘technical’ feature — they explore a causal projection of one undesirable
condition at a time. None of the classical methods, therefore, guarantee consistency between
analyses of multiple conditions (e.g. consistency between different Fault Trees). Furthermore, as
modern complex safety-critical systems are typically subjected to a number of different analyses,
there is an even lesser ‘ guarantee' that results across the boundaries of methods will be consistent.
Historically, the assurance of consistency between different safety analyses has motivated the

research into model-based safety assessment approaches [58] described in the next two sections.

2.3 Failure Logic Modelling Methods

Two of the most prominent early model-based safety assessment methods — Failure Propagation
and Transformation Notation (FPTN) and Hierarchically Performed Hazard Origin and
Propagation Studies (HiP-HOPS) — emerged from the Software Safety Assessment Procedures
(SSAP) project at the University of York [57, 58]. The original objectives of this research were,

on the one hand, to unify existing ‘classical’ system safety assessment methods such as FTA,

52



FMEA/FMECA and HAZOP and, on the other, to adapt them for application to software-
intensive safety-critical systems.

As was mentioned in Chapter 1, it was observed that, when applied at the component level,
inductive and deductive methods converge. Subsequently, notations were proposed for capturing
the results of safety assessment applied to individual components. To capture the behaviour of an
entire system, these component-level characterisations are connected in terms of their ability to
adversely affect one another’'s operation. The nature of such interconnections was heavily
influenced by HAZOP (or, to be more precise, its SHARD variant) in that component interfacesin
HiP-HOPS and FPTN are formed by deviations of system components outputs from the intent.
These deviations are often referred to as “failure modes’ whereas the dependencies in terms of

deviations are termed “failure mode flows’.

It isimportant to stress that failure modes are not deviations from a component’ s specification. A
component which performs as specified may nevertheless exhibit a failure mode as a result of a
deviation in some service (provided by some other component) that it relies upon. For example, a
hydraulic valve may fail to generate pressure on the output when pressure is intended (an
“omission” failure mode) if it either receives no hydraulic pressure from an upstream component
(again, an omission failure mode) or is incorrectly commanded to close by the controller or
operator (a “commission” failure mode). Of course, deviations from the specification — internal

failures or malfunctions of a component — may also cause deviations on the output(s).

The remainder of this section describes existing failure logic modelling approaches.

2.3.1 FPTN

The first failure logic modelling method to emerge, FPTN is a semi-graphical notation. System
components (called “modules’” in FPTN) are represented as rounded boxes. Modules are either
decomposable into other modules (shown within the notation by shading the box) or are already
stated at an elementary level. Specification of the module includes a number of standard
attributes, such as its name and its criticality. The criticality attribute was mentioned, but never
fully described, in the origina FPTN publications [58]. It seems that Felenon’'s intent was to
record information similar to the Software Levels defined in DO-178B [124] or Safety Integrity
Levels defined in  (the now-cancelled) UK Defence Standard 00-55 [148]. He provides no
guidance on how this level is derived from — or is otherwise related to — the FPTN model,

however.

The most important part of the module specification is a set of falure propagation and

transformation equations. Each output failure mode is described by at most one equation that is a
53



Boolean formula over input failure modes. Failure modes are referred to by both the identifier and
failure mode class separated by a colon, for example, no_hi : Omission specifies an omission failure
mode called “no_hi” (no hydraulic input). The standard set of failure mode classes in FPTN is
identical to the set of SHARD guidewords listed in the previous section. However, this default set
can be refined, generalised or extended by the user. For example, Fenelon also mentions a general

“infrastructure” class [57], athough its semantics are not fully explained.

In addition to the propagation and transformation equations, the module specification may include
a number of GENERATED BY and HANDLED BY statements. The former are used to indicate that
output failure modes can be caused by (specific) internal failures of the component whilst the
later specify any mechanisms that unconditionally prevent input failure modes from propagating
(such as a software exception handler for software components or the ‘tripping’ of an electrical

overcurrent circuit breaker).

Toillustrate, Figure 11 shows an FPTN characterisation of a simple hydraulic pump. The function
of the pump is to provide a constant, defined level of hydraulic pressure on its output (“0”). The
pump has two inputs: hydraulic (“hi”) and electrical (“ei”). The former is used to supply the pump
with (non-pressurised) hydraulic fluid; the latter powers the motor. As far as equations are
concerned, omission of either hydraulic or electrical input, clearly results in the omission of the
output pressure. However, it is assumed that the pump is not sensitive to any other deviations in
its hydraulic input. At the same time, al relevant failure modes of the electrical current (omission,
late provision and an incorrect value — too large or too small) generally result in similar failure

modes on pump’ s output, e.g. low current resultsin alow output pressure.

4 Hydraulic Pump h

Exceptions: none | Criticality: n/a
no_hi : Omission P
— | no_o==no_hi|no_ei no_o : Omission
_ late ei:late] jate o == jate_ei late_o : Late
no_ei : Omission | insuf_o == insuf_ei

excess_o == excess_ei insuf_o : Value

insuf_ei : Value, - - —VI)
I excess_o : Value
excess ei: Value| GENERATED insuf o BY pump_struggling ———
— 7/ GENERATED late_o BY pump_struggling
GENERATED no_o BY pump_stuck

- )

Figure 11 - Example of FPTN Module: Hydraulic Pump

The pump itself can also fail. It can either become fully non-functional (broken) or less responsive
to incoming power (“struggling”), e.g. due to increased impedance in the windings. These internal
failures would lead to omission of output pressure or low (insufficient) pressure respectively.
Finally, a pump which is “struggling” during start-up may provide the required hydraulic
pressure, albeit later than expected.

54



2.3.2 HiP-HOPS

Whilst the papers on the FPTN are widely cited, the research has not been finalised and certain
aspects of the notation remain undefined. By contrast, Papadopoulos's Hierarchically Performed
Hazard and Operability Studies (HiP-HOPS) [114, 115, 117] is probably the most ‘mature’ and
widely publicised failure logic modelling method to date.

Conceptualy, the origina HiP-HOPS is very close to FPTN with the magjor syntactical difference
being that, in the former, components are characterised in a tabular format. Figure 12 illustrates

HiP-HOPS using the same hydraulic pump example asin the previous section.

L Component
.OUtPUt Description DBkt De\!latlon Malfunction
Failure Mode Logic .
Logic
0-0 No pressure (i.e. omission) on pump’s output | O-hi | O-ei pump_stuck

Caused by omission of fluid on the hydraulic
input (*hi”) or omission on the electrical input
(“ei”) or by the internal failure of the pump
(“stuck”)

V_insufficient-o | Insufficient pressure on pump’s output (i.e. | V_insufficient-ei | pump_struggling
value FM)

Caused by insufficient voltage on electrical
input or by the internal failure of the pump
(“struggling”)

V_excessive-o | Excessive pressure on pump’s output (i.e. V_excessive-ei |-
value FM)

Caused by excessive voltage on electrical
input

Lo Late reaching required pressure on start-up | L-ei pump_struggling

Caused by late provision of electrical current
or by internal failure of a pump (“struggling”)

Figure 12 - Example of HiP-HOPS Component: Hydraulic Pump

Also, in HiP-HOPS, failure modes are identified by the name of the output flow of the system
component and the name of the failure mode class (separated by a hyphen). For example,
V_insufficient-o identifies an “insufficient value” output failure mode class associated with pump’s
output (that is, the same failure mode that was previously identified in the FPTN model as insuf_O
: Value). This difference is not merely syntactical, however: in HiP-HOPS, input and output failure
modes are expressly limited to parameters of flows explicitly identified in design representation of
the system [115]. Whilst this allows HiP-HOPS to reduce the workload of the safety engineers by
utilising the structure of design models of the system, it also potentially limits the power of the
method since some undesirable interactions between the components (such as propagation of
short circuits, hydraulic leaks or synchronous communications delays) may not occur in the same
direction as flows identified in the system architecture descriptions. It should be noted that in
[116] Papadopoulos and Maruhn emphasise this aspect of HiP-HOPS by annotating components

55



of Matlab Simulink diagrams, thus avoiding the need to remodel the architecture in the HiP-
HOPS environment.

The origina definition of HiP-HOPS limited propagation equations (“input deviation logic”) to
logical conjunctions and disjunctions. Recent work by Sharvia and Walker has extended the set of
operators to include negation [135] and a set of ‘tempora’ gates [162, 161] respectively. The
latter extension — referred by authors as “Pandora’ — essentialy refinesthe FTA’s PAND gate.

Also, whilst the components interfaces in the origina HiP-HOPS were dtrictly limited to
deviations from intent (failure modes), recent publications on the method suggest that it has been
extended to alow some dependencies to be modelled in terms of normal information flows (e.g.
see discussion on figure 2 in [162] and, in particular, flow StartA2-M). This modification of the
method is not fully described in any publication, despite the fact that it changes the conceptual
nature of HiP-HOPS and moves it closer to the ‘hybrid techniques’ discussed in section 2.4.3
below.

At the level of the model architecture, HiP-HOPS is based on a hierarchy of interconnected
components (Figure 13) which reflects the structure of the design model and is equivalent to the
FPTN decomposition of components. In the origina description of the method, however, the
highest level (root) of the hierarchy represented dependencies between system functions
constructed through an extended Functional Failure Analysis (FFA) [115]. The functions were
mapped onto the next level in the hierarchy (which was the highest level of structural
decomposition of the system). This provided a strong traceability between the system safety

assessment model and the (functional) hazard identification model.

System
Level

Sub-System
Level

Component
Level

Figure 13 - HIiP-HOPS Model Hierarchy (schematic)
Finally, Papadopoulos has implemented an algorithm for the automated synthesis of Fault Trees

from HiP-HOPS models [115]. Since component characterisations are logically equivalent to a

small ‘forest’ of very small fault trees (recorded in textual format), the algorithm is essentially a

56



parser and, thus, yields very fast “analysis’ times. A variant of FMEA tables can aso be

synthesised automatically for the system (or any subsystem) in a similar manner.

2.3.3 Other Methods and Variants

As was mentioned above, one of the key goals of the original failure logic modelling approaches
was the unification of FTA and FMEA/FMECA through introduction of the explicit notion of the
component (and the component hierarchy). The concept of component-centred or modular FTA
is, however, not novel (see, for example, section 3.6.4 of [155] dating back to 1983). More
recently, Kaiser has defined a Component Fault Trees (CFTs) [81] notation which was later [80]
combined with his dynamic extension to fault trees — State/Event Fault Trees — mentioned in
section 2.2.2 above. It isimportant to stress that, whilst CFTs share some key principles with HiF-
HOPS and FPTN, they cannot themselves be regarded as a failure logic modelling approach since
the safety engineering semantics of the interconnections between components is not defined. By
contrast, in this thesis failure logic methods are considered to be characterised by the specification
of component dependencies exclusively in terms of deviations of the behaviour under conditions

of failure from the intent.

Nevertheless, since the definition of FPTN and HiP-HOPS, other failure logic modelling methods
have emerged. As part of his research into issues surrounding Common Cause Failures, Mauri
defined Failure Logic Analysis for Systems Hierarchies (FLASH) [103, 104] — a tabular method
that shares much in common with HiP-HOPS. Wu and Kelly have constructed failure logic
models in both Communicating Sequential Processes (CSP) [165] and Object-Oriented Bayesian
Belief Networks (OOBBN) [166]. Grunske and Kaiser have combined FPTN with Component
Fault Trees [62], whereas Domis and Trapp have integrated both into a general framework of
Component-Based Safety Engineering [42, 43]. Similar to this last work, the SPEEDS project™
has embedded some of the failure logic modelling principles into a general framework of
Heterogeneous Rich Components (HRC) [78] and introduced the notion of patterns into failure
behaviour specification [38].

One of the recent failure logic methods — Wallace's Failure Propagation and Transformation
Calculus (FPTC) [163] — warrants a more detailed description. Closely related to the FPTN, FPTC
is based on a fully textual syntax (defined in EBNF). The principal novel contributions of this
method are two-fold; firstly, Wallace introduces a notion of variables, wildcards and privatives.
These allow for the specification of propagation equations in avery compact and intuitive format.

For example, Figure 14 shows three propagation conditions for a component with two inputs and

4 «gpeculative and Exploratory Design in Systems Engineering” - European Commission funded project
ongoing at the time of writing [41, 141].

57



a single output. The first equation uses a wildcard (underscore symbol) and states that if the
component is exposed to the commission failure mode on the first input then it will exhibit a
commission on the output regardless of any failure modes on the second input. The second
equation uses the privative and states that in absence of any deviations of the first input, but under
a value deviation of the second input, the component will exhibit an omission failure mode.
Finally, the third equation uses a variable (f) to specify that when the second input is missing, any
failure mode of the first input is propagated to the output (without transformation).

(commission, _) — commission
(*, value ) —» omission
(f, omission) — f
Figure 14 - Example of FPTC Equations

The second and, arguably, the main contribution of the FPTC is in terms of model analysis.
Unlike most other failure logic modelling methods, FPTC does not suggest the synthesis of fault
trees but rather adopts a fixpoint calculation technique (in essence, an inductive strategy). This
means that FPTC analysis is apparently possible in presence of loops in the model (which, in
contrast, pose significant challenges to most other failure logic modelling approaches). Ge et a
[59] further extend FPTC to allow non-deterministic failure behaviour and to analyse and vaidate

the model using a probabilistic model checker.

Finally, over the past decade significant research into application of the AltaRica language to
safety analysis of complex systems has been performed by researchers in Office Nationa
d’ Etudes et Recherches Aérospatiales (ONERA) in Toulouse (France). Whilst some simple
AltaRica models used for illustration in some of the publications that emerged from this group
(e.g. [21, 132]) can clearly be classed as failure logic models'®, we have seen other models by the
same researchers that use (some) non-deviational dependencies / flows between components.
Other model-based safety assessment approaches and the AltaRica language are discussed in

more detail in the following sections.

2.4 Other Model-Based Safety Assessment Approaches

Model-Based Safety Assessment has been an area of active research since the 1990s. This
research and pilot industrial applications have recently attracted the attention of the regulators, the
certification authorities and relevant standardisation bodies. For example, the ongoing review of
SAE ARP 4754 and APR 4761 documents is likely to result in an explicit reference to model-

5 Although it is worth noting that these models typically do not include deviations in the timing domain
(e.g. “early” or “late” failure modes); and the value domain is typically represented by a single failure mode
— “erroneous’

58



based safety engineering. Of course, failure logic modelling is not the only approach to have
emerged in the past two decades. Indeed, as was mentioned in the previous chapter, one of the key
motivations behind the research presented in this thesisis to provide the basis for an informed and
rational comparison of those different approaches. This section presents a brief overview of most

prominent existing techniques.

2.4.1 Failure Injection Approach

Whilst one of the historical objectives of failure logic modelling was to facilitate intuitive
traceability between safety assessment and design artefacts, some of the more recent work on
model-based safety assessment has sought to integrate those artefacts fully. The most prominent
body of research in this respect came from two European projects’®: ESACS [24, 50] and ISAAC
[9, 73]. The objective of the work was two-fold: to utilise formal and/or simulatable models of the
systems typically generated during the design process in the safety assessment and to utilise

formal verification techniques (namely, model-checking) in model analysis.

Unlike the failure logic modelling approach, Failure Injection (FI) does not require the
construction of a separate ‘safety model’; instead a “nominal” design model of the system —
expressed in a language such as SCADE/LUSTRE [27, 52] or StateMate [65, 69] — is extended
by safety engineers, to include behaviour under conditions of failure. The extension is performed
essentially by means of a process of injection of simple ‘components’, which model failure
modes, into the data flows of the original model. These components typically have two inputs and
one output. One of the inputs is used together with the output to insert the component into the
flow; the other — typically Boolean — input is used to ‘activate’ the component. An inactive failure
mode component propagates data from the main input to the output with no change; however,
once the failure mode is activated, it disturbs the input according to its predefined logic (i.e.
failure mode class) before propagating the result out (in place of the origina value vector). For
example, an “inverted” failure mode applied to a Boolean flow, when activated, would propagate
a negation of the origina flow value. Similarly, a “stuck at zero” failure mode would ignore the

origina flow (i.e. its main input) and propagate zero.

The original model of the system is referred to as the “ System Moddl” (SM) whilst the model
after the injection is caled the “Extended System Model” (ESM). In addition to the model
analysis (described below), tools developed by ESACS project provided a library of predefined

16 gtrictly speaking, both projects have investigated two different approaches to model-based safety
assessment that were internally referred to as the Extended System Model (ESM) and the Formal Safety
Model (FoSaM). This section focuses on the former, since that was more widely publicised by the projects.

59



failure mode classes as well as a graphical user interface for the definition of new classes and

model extensions. Figure 15 illustrates the model construction, extension and analysis processes.

Library of Failure
Mode Types ﬂ ﬂ

Safety Analyst Safety Analyst

l

Formal System
Model Extended System Safety
Model Requirements
(e.g. SCADE)

Y

Design Engineers

Analysis Platform
(Model Checker)

A

Minimal Cut Sets

Figure 15 - Overview of the FI/ESM Approach

Once the model is extended, safety engineers need to specify one or more “safety requirements’
(proof obligations) — invariants over model variables that describe freedom from a particular
unsafe behaviour (such as a system level failure condition). Depending on the system model
specification language and the exact tool used, these are specified using either aform of temporal
logic [23] or — in case of SCADE models — an observer component [3] (defined in the same

language as the model) with a single Boolean output.

Extended system models along with formalised safety requirements contain all of the information
necessary to establish whether safety requirements can be violated either by the “nominal” design
or by any particular set of failure modes. To analyse models, the ESACS and ISAAC projects
have adopted model-checkers — such as NuSMV [23, 31] and Prover Design Verifier [3, 51].
These were augmented since model checkers typically generate a single counter-example in cases
when a proof obligation can be violated; however, in the context of safety assessment — where in
the presence of failuresit is expected that a proof obligation will eventually be violated — a single
counter example is not sufficient and safety engineers are interested in all sets of failure modes

which may cause a potentially hazardous condition (i.e. Minimal Cut Sets).

The baseline failure injection approach and associated analysis tools have been developed in the
ESACS project [24, 50]. During the follow-on ISAAC project, interoperability between the tools
has been improved and capabilities have been extended beyond the analysis of the (extended)
system model[9, 73]. In particular, a methodology for model-based common cause analysis has
been established whereby groups of non-independent failure modes in ESM are identified based

on three-dimensional geometrical and installation models of the systems (for instance captured in
60



the CATIA environment) [119]. Other extensions have included mission reliability analysis,

failure detectability and diagnosability analysis as well as integration with human error analysis

[73, 119]. Whilst noteworthy, these extensions are beyond the scope of this thesis.

The failure injection approach potentially has two key advantages over failure logic modelling:

Since ESMs (by construction) contain the complete specification of system design

models, their analysis not only identifies failure scenarios that may lead to hazardous

effects but also verifies that system operation in the absence of failures does not lead to
unsafe conditions. In contrast, the failure logic modelling approach abstracts from failure-

free behaviour and typically assumes that system design is validated with respect to safety

requirements by other means

Since ‘safety models’, ESMs, are obtained by a conceptually trivial transformation of the

design model, the consistency between safety analysis results and design models'’ is

guaranteed by construction. Demonstration of the consistency between failure logic

models and design, on the other hand, is not trivial.

However, this approach also suffers from a number of limitations:

a)

b)

Detailed and fully-deterministic system models necessary for the anaysis typically
emerge relatively late in the design process, when the cost of re-design is already high.
The completeness of the analysis is dependent on the completeness of the set of injected
failure modes. To date, no methodological research has been conducted into a
systematic method or guidance for identification of the minimaly necessary set of
failure modes. The problem of completeness of the injection schema is further
exacerbated by the fact that each injected failure mode typically models a concrete
deviation (such as delay for a particular number of time-steps) whilst in failure logic
modelling failure modes are typically abstract.

The completeness and correctness of the analysis results is potentialy limited by the
flows identified in the system model, as well as by details of characterisation of these
flows. Effects of failure modes can only be ‘carried’ by such flows. At the same time,
system models are defined by design engineers for purposes which do not include safety
analysis. Consequently, these models are unlikely to identify all possible dependencies
between components that may exist under conditions of failure. In more general terms, it
can be observed that, by definition, any model is an “abstraction defined with an
intended goal in mind” [133]; the safety anaysis is not part of the intended goal of

system models that emerge from the design process. Furthermore, the formal

7 Also,

if design models are used for the automatic generation of implementations, between the safety

analysis results and actual implementations.

61



relationship between the results of automated safety analysis and the design model may

give unjustified superficial confidence in the absolute correctness of these results.

Asaresult it isunlikely that failure injection on its own will be an effective and appropriate basis
for system safety assessment. Nevertheless, it can clearly add value to the safety engineering
process, possibly as means of partially validating analysis results obtained using other approaches

at earlier stages of the design.

Finaly, the complexity of the system models of real industrial-scale systems — even before
extension — is typically high. Furthermore, these models may contain rea-time behaviour and

non-linear arithmetic that makes them intractabl e to the current analysistools [25, 29].

2.4.2 Failure Effects Modelling Approach

The problems of complexity of actual system models have led to a distinct model-based safety
analysis technique which has recently attracted significant attention in industrial experimentation
and trials. The approach can be seen as manual definition of the extended system model and is
referred to in thisthesis as “ Failure Effects Modelling” (FEM).

Under this approach, an abstract (typically — simplified) model of the system is constructed. The
dependencies between components are captured in terms of characteristics of flows of energy,
matter and/or information’®, but at an abstract — typically discrete (and, often, Boolean) — level
[20, 100, 134]. For example, electrical dependencies can be captured in terms of the presence or
absence of power (or, if more refined level is necessary, the presence or absence of each of the
voltage and electrical current ‘components’ of power). Similarly, hydraulic dependencies are
modelled in terms of discrete levels of flow rate and/or the presence or absence of pressure (or
refined discrete levels of pressure). By simplifying the model, engineers can, in principle, ensure
that its complexity is tractable by existing analysis tools whilst maintaining the relevant aspects of
behaviour and/or appropriate level of detail.

The system model is extended with the effects of failures on the input-output response of
individual components. However, since the model is constructed specifically for the purpose of
safety assessment, this “extended behaviour” can be integrated into the component specification
rather than added by the failure injection approach. An example of a failure effects model of an

aircraft hydraulic system encoded in the AltaRicalanguage can be found in [20].

8 |n this thesis, such flows are referred to as nominal flows (following the historically-established
terminology used in the ESACS, ISAAC and MISSA projects). Nominal flows (or dependencies or
interactions) are contrasted with failure mode dependencies or flows (see Chapter 3 for definition) which
are characterised in terms of a deviation from intent.

62



The approach offers a number of advantages over failure injection:
e The models are obvioudy less complex and are therefore tractable with currently
available analysistools
e They may be constructed at earlier stages of the design, in parallel with the ‘real’ system

models.

The approach aso retains some of the strengths of failure injection:
o Analysisof FEMsis capable of uncovering unsafe (abstract) design specifications as well
as hazardous effects of failures on system behaviour
e Issues of system reconfiguration are dealt with seamlessly by modelling reconfiguration

logic as directly implemented by controller components.

However, some of the key weaknesses of the failure injection approach are retained. Most
importantly, only the effects of failures on *design flows’ are captured and new interactions/flows
between components that are established by failures fall outside the scope of the approach. Also,
since, like extended system models obtained through failure injection, the FEMs capture system
behaviour from essentially the same viewpoint as that held by the design engineers, it can be
argued that analytical redundancy and conceptual dissimilarity between the safety assessment and
the design processes is lost. This is likely to result in less thorough review of the system design,
making confidence in safety of the system amost entirely dependent on the automated analysis

rather than on the safety engineers' judgement and “ creative anticipation”.

Finally, the * guarantee by construction’ of consistency between the safety analysis results and the
system design model offered by the failure injection approach is significantly weakened, if
retained at al, under the FEM approach. The situation is further exacerbated by the fact that, to
the author’s best knowledge, no systematic method for establishing the appropriate level of
granularity of FEMs (such as the appropriate number of discrete value levels or appropriate

selection of model’s ‘time-step’) either exists or is being devel oped.

2.4.3 Hybrid Approaches

The preceding two sections have outlined two distinct approaches to model-based safety
assessment: Failure Injection and Failure Effects Modelling. The approaches are different in that,
whilst FI relies on a pre-existing model of the system (which is merely extended for the purpose
of safety assessment), FEMs are constructed expressly for the purpose of safety assessment. Both
approaches, however, share a key feature: they rely on the models that capture nominal

dependencies between components (such as flows of energy, matter or information). In Vesely's

63



terminology [158, 157] both can be considered as “success models’ (as opposite to “failure
models’ such as fault trees and failure logic models described in sections 2.2.2 and 2.3 above).
However, examples of combinations of these approaches with the principles of failure logic

modelling can be found in publications and are briefly discussed in this section.

The FEM approach is frequently combined with failure logic principles to compensate for its
inability to capture dependencies between components established by failures. Closer to failure
logic modelling in the spectrum of ‘ hybrid methods’ is the approach illustrated by Bernard et a in
[19]. In their model of the A340 Rudder Control System (expressed in AltaRica), most of the
dependencies between components are characterised in terms of two failure modes. “erroneous”
(a generic value domain failure mode) and “lost” (essentially an omission failure mode in FPTN
or HiP-HOPS terminology) — along with a ‘correct’ privative. However, for modelling a ‘ switch-
over’ (reconfiguration) between redundant controllers of the system, a nominal Boolean
‘activation’ flow is used. In other words, this flow does not model a deviation from intent, but
rather captures the ‘real’ control signa from one controller to the other (as can be found in a
design model of the system). The author has learned from discussions with ONERA researchers
that the general approach being followed in this example is to model all of the flows which
participate in the system’s monitoring and the (consequent) control of reconfiguration actions in

the “success domain” whilst modelling all remaining flowsin terms of deviations from intent.

Another example of combining FEM and failure logic modelling approaches can be found in [82,
132]. Here, dependencies between the components in the direction from power sources (pumps
and electrical generators) towards consumers are modelled in terms of discretised nominal flows.
The dependencies in the opposite direction (propagation of short circuits and effects of leaks),
which would normally lie outside the scope of the FEM approach, are modelled as well (by
definition — in terms of the propagation of failure modes). However, this distinction between two
different engineering semantics of flows is not apparent (and requires detailed consideration of
example systems and extrapolation of models), and is further concealed by both *kinds of flows

being defined over the same enumerated type.

A conceptually similar but more explicit approach is taken by Joshi and Heimdahl [76, 77] for
integrating the principles of Failure Injection and failure logic modelling (the later described by
the authors as “error propagation”). Firstly, unlike the failure injection technique developed in the
ESACS and ISAAC projects, which is strictly limited to injection into flows, Joshi and

Heimdahl’s approach injects failure modes into system models by ‘wrapping’ components in

64



additional behaviour [77]. This approach may in some cases™ expand the expressive power of the
model extension, since it allows for the dependency of the deviation being injected into a
component’s output on the input of that component to be modelled. More importantly, the
technique enables the modelling of dependencies between the components in presence of failure
even if the system model does not identify a dataflow connecting the two components. This is
done by overlaying a failure logic mode onto the extended system model. However, unlike
Papadopoulos's approach, which overlays HiP-HOPS annotation over Matlab Simulink models
[116] without integrating their behaviours, Joshi and Heimdahl propose full integration of the two
models. Thus the effects of failure are propagated through the nominal flows whenever these are
available, or through the “error propagation layer” whenever failures establish new dependency
paths.

The authors aso propose a special-purpose extension to the Lustre language for capturing the
overall layered model [76].

Reese and Leveson proposed adifferent approach to combining characteristics of failure injection
and failure logic modelling — Software Deviation Analysis (SDA) [127, 128]. The objective of
this approach is to analyse the robustness of software in terms of its response to possible
deviations in the environment that the software is exposed to over its inputs. The software itself
and the underlying execution platform are assumed to be fault-free. The approach is similar to
failure injection, in that it utilises the model of the software (expressed in RSML [92]) rather than
relying on the construction of a separate model. Inputs of the software are associated with sets of

possible deviations — all in the value domain.

The approach, however, relies on symbolic execution over a set of (abstract) failure modes
propagated through the model as tokens. In this respect, SDA is close to the failure logic
modelling approach. To enable such analysis, Reese partitioned numeric (real) value deviations
into a qualitative / discrete domain by using a logarithmic scale. The analysis process takes an
RSML specification and converts it into a ssimplified internal causality diagram representation.
Reese has developed a catalogue of deviation transformation equations (deviation calculus)
associated with each causality diagram operator. This allows for the automated traversal of the
diagram to establish (in qualitative terms) the effects of input deviations upon outputs of the
software being analysed. Detailed description of the SDA is beyond the scope of this thesis and
the reader is referred to [127] for the definition of analysis algorithms as well as the deviation
calculus that underlies the SDA method. However, it is important to note that, whilst SDA uses

® That is, if the nominal input-output function of the component (for any output) is not bijective. Otherwise,
any Joshi and Heimdahl failure mode “wrapper” can be formaly reduced to an ESACS/ISAAC failure
mode “component”.

65



some features of failure logic modelling, this is done specifically to reduce the computational

complexity of the analysis and islargely hidden by the analysistools.

Finally, Heimdahl et a note some limitations of the SDA and propose a modification of the
method that uses the NuSMV model-checker [66]. The resulting approach is conceptually similar
to the ‘pure’ failure injection, with the two key differences:

e Failure modes are only injected into inputs of the software model;

e The target of analysis is a discrepancy between the co-analysed nominal and extended
models. Whilst conceptually the two models are composed in pardlel, in practice, the
authors propose a more effective, but mathematically equivaent, model representation
that minimises the problem of state explosion. Conceptualy, the composed models are
analysed for the identical input vector, discrepancies (deviations) are observed across a

pair of respective variables in two models selected by the safety engineer.

2.4.4 Model-Based Safety Assessment: Summary

The preceding sections 2.3 through 2.4.3 have described three key approaches to model-based
safety assessment — failure logic modelling, failure injection (also known as extended system
model approach) and failure effects modelling — along with a brief overview of some of the
combined approaches found in the literature. Two criteria can be used to distinguish between
these approaches:

a) The “provenance” of the model: whether the model being analysed is constructed
specifically for the purpose of the safety assessment or whether an existing model of the
system used in the design processis being utilised

b) The engineering semantics of dependencies: whether dependencies between components
are characterised in terms of nominal — “success world” — flows or in terms of deviations

from intent (failure modes).

The resultant classification of the model-based safety assessment approaches and techniques is
illustrated in Table 2.

In terms of the “classical” safety assessment methods, failure logic models relate closely to fault
trees and HAZOP in that they model system behaviour in the “failure space” and are based on the
concept of behaviour deviation from intent. Because the perspective of these models is
fundamentally dissimilar from that of system design engineers, model construction (which itself is
a system assessment activity) provides an opportunity for thorough review of the proposed system
architectures and yields a high a degree of analytic redundancy between safety and development
processes. This approach can also be applied at early stages of design when design descriptions

are incomplete and immature. However, whilst failure logic modelling enables strong traceability
66



between safety and design model architectures, the consistency between behaviours of two
models cannot be formally verified using current techniques. Furthermore, as will be

demongtrated in Chapter 5 of this thesis, dynamic reconfiguration of the system poses some

significant challengesto the ‘ purist’ application of failure logic modelling.

Table 2 - Classification of the M odel-Based Safety Assessment M ethods

Engineering semantics of components dependencies

3 Both nominal Only deviation
(gnly nomlr_lal and deviation (failure mode)
ependencies d . )
ependencies dependencies
Failure Effects Hybrid Failure Logic
Modelling Approaches Modelling
Model is constructed e.g. Shaikh [134], e.g. some e.g. FPTN [58],
manually specifically for Majdaraand ONERA models | FPTC[163] and
safety assessment Wakabayashi [100] [19, 82, 132] HiP-HOPS [114]
techniques, some
o ONERA models [20]
o
[=
§ Safety assessment Hybrid Approaches Hybrid Hybrid Approaches
§ model is partially e.g. ESACS/ISSAC ESM Approaches eg. HiP-HOPS
o automatically el : : . A .
= constructed approach if underlying eg. Joshi and integration with
S system models have to Heimdahl [76] Simulink [116]
S (e.g. model architecture) | be simplified [24, 25, 29]
Failure I njection Hybrid Hybrid Approaches
model is automatically FI/ESM methodology [3, Deviation Analysis
constructed 23, 119]; Heimdahl SDA [128]
Approach [66]

By contrast, Failure Effects Modelling is, to some extent, related to reliability block diagrams as
well as to some of the historical approaches to automated fault tree synthesis (such as digraphs
and flowgraphs). The key advantage of the FEM and failure injection approaches is that the
reconfiguration of the system poses no significant challenges. there is typically no need to
explicitly recognise the notion of modes, given that reconfiguration rules can be modelled as part
of the controller components’ specification. In addition, the failure injection approach guarantees
by construction that results of the safety assessment are consistent with the system design
model®°. However, a strong link with the design model (or, in the case of FEMs, with the design
engineers’ viewpoint) may also be considered a weakness of both approaches, as it may constrain
safety assessment to the mere consideration of effects of failures which can be propagated through

dependencies explicitly identified in system models. Furthermore, these approaches do not

% For failure effects modelling, it may in future be possible to verify consistency formally, by proofs of
refinement (or its liberalised forms [16, 98]), at least for the digital part of the system. A notable theoretica
work in that respect is being carried out by Banach and Bozzano [17].

67



provide an opportunity for a thorough review of the design proposals — one of the key (although

intangible and often understated) objectives of the safety assessment.

Finally, numerous hybrid approaches have recently emerged which attempt to compensate for the
limitations of ‘nominal’ methods. Whilst these have been demonstrated to be technically feasible,
a repeatable and systematic method for construction of such hybrid models is yet to emerge. In
particular, it remains to be shown that different paradigms (such as FEM and failure logic

modelling) can be combined systematically, avoiding any internal inconsistenciesin the model.

It should be noted that that the lack of a systematic construction method is also a concern for
‘pure’ FEM approaches. In fact, their conceptual proximity to the design models may in practice
concea some of the key challenges to the validity of any analysis— namely the granularity and the
level of abstraction of the model. Indeed, whilst FEMs typically abstract and discretise numeric
flows in system models, there are currently no systematic methods that would help safety
engineers to select the right abstraction level (i.e. the abstraction which reduces complexity of the
model whilst not discarding any information that is relevant to the safety analysis).

2.5 Modelling Languages

As was mentioned in the introduction chapter and in section 2.3 above, most of the failure logic
methods are intrinsically linked to idiosyncratic specification notations. Use of such notations is
invaluable in the formative stages of new research disciplines, however, it is undesirable once a
certain level of maturity is reached and is rarely acceptable in an industrial context. On the other
hand, many FEM and hybrid methods have been implemented in relatively general languages;
however, modelling methodologies (i.e. a clear definition of engineering concepts being modelled
and systematic model construction methods) for these approaches are lacking. Instead, FEM and
hybrid (and some of the failure logic modelling) approaches appear to be driven by the features

and constructs of particular specification languages.

Overal, whilst this thesis follows Pumfrey’s principle that “method is more important than
notation” [123] it does not contend that the choice of notation is irrelevant. However, the
objective of the research presented in this thesis is not to define yet another modelling notation or
language, but rather to clarify and extend the conceptual framework of failure logic modelling
whilst demonstrating that a concrete instantiation of the framework is possible. The latter is

achieved by implementation in arelatively general specification language.

Asfar as the choice of language is concerned, the alternatives range from safety-specific notations

(such as Kaiser’ s component state/event fault trees [81]) to general specification languages widely

68



used in model-based systems and/or software engineering (such as Simulink, SCADE or even
UML/SysML). Both ‘extremes of this scale suffer from significant limitations: the former
languages are idiosyncratic and thus do not convincingly demonstrate that separation between a
methodology and an implementation language is indeed possible; the latter — industrially mature —
languages are typically not (yet) associated with the tools necessary for safety anaysis. As a
result, this thesis makes a compromise of using languages that have been specifically adopted (by
others) in the context of safety assessment, on the one hand, whilst being both ‘ convertable’ into
more widely used languages and used by a number of different researchers on the other. This
section presents a brief overview of two such languages — AltaRica and AADL’s Error Model

Annex.

2.5.1 AltaRica and Associated Dialects

Developed by researchers at Laboratoire Bordelais de Recherche en Informatique (LaBRI) of the
University of Bordeaux in collaboration with a number of French industrial partners, AltaRicaisa
constraint automata language [13, 122] that has been extensively applied in the context of safety
and reliability analyses.

The language recognises the notion of components — called ‘nodes' . Each node is essentially an
interfaced automaton defined over a number of state variables, flow variables and events. Both
state and flow variables are defined over (potentially infinite) discrete domains. State variables
model the automata where events trigger transitions between the states; the values of the states are
hidden within the boundaries of the node. Flow variables provide an interface of the node (and

are, thus, visible both internally and externaly).

The behaviour of the node is specified through transitions and assertions. Assertions specify
constraints (invariants) over the values of flow and state variables. Transitions on the other hand,
determine the state of the node and consist of a single trigger (as mentioned before — an event)
and a guard that constraints the transition; the latter is essentially an assertion over any flow and
state variables. Following a change in state variables, flow variables are updated instantaneously
(through implicit e-transitions). To illustrate, Figure 16 shows a ‘classical’ AltaRica example of
an electrical switch (contactor) [61, 122]. The state space of the switch isfinite and is modelled by
a single Boolean state variable /sClosed; the transitions between the two states (values of the
variable) are triggered by events open and close and are specified in the trans clause. The switch
has two flow variables (interfaces corresponding to two terminals): f1 and f2. The assertion states
that when the switch is closed the power on both terminals is identical. Note that this is a non-

deterministic specification.

69



Nodes can be hierarchically organised to reflect system decomposition and architecture. A higher-
level (‘complex’ or ‘composed’) node specifies instances of (other) node models and
communications between them. Nodes can communicate in two ways: through interfaces or
through event dependencies. The former is specified as assertions over interfaces and the latter as
synchronisations. To illustrate Figure 17 shows a specification of a composite node SwitchPair,
which contains two switches (as previously defined) connected in parallel and operated

simultaneously. Note that the SwitchPair has its own flow variables— p1 and p2.

node Swith
flow
f1, 12 : bool;
event
open, close;
state
IsClosed : bool;
trans
not IsClosed |- close -> IsClosed := true;
IsClosed |- open -> IsClosed := false;
assert
IsClosed => (f1 = 2)
edon

Figure 16 - Node Examplein AltaRica: Switch

node SwitchPair
sub
S1, S2 : Switch;
flow
p1, p2 : bool;
assert
p1=S1f1;
S1.f2=82.f1;
p2 = S2.72;
sync
<S1.close, S2.close>
<S1.open, S2.open>
edon

Figure 17 - Node Composition in AltaRica: Switch Pair

The complete AltaRica language (referred to as AltaRica LaBRI) is supported by a number of
analysis tools. However, some language features (such as the non-determinism of the models)
introduce significant complexity into analysis. To overcome these issues and to provide alink to
dataflow languages (such as LUSTRE/SCADE), which are extensively used in industry, Rauzy et
a have developed a restricted dialect of AltaRica — AltaRica Dataflow [22, 125, 126]. The key
features of this dialect are that:
e All flow variables of the nodes must be characterised as either input or output;
o Non-determinism between assertions is prohibited. In other words, for every
configuration of state variables and input flow variables, the value of each output flow
variable must be defined,;

¢ Non-determinism between transitionsis also prohibited.
70



Figure 18 shows an AltaRica Dataflow characterisation of the switch component above; this
characterisation assumes that the f1 terminal of the switch is always connected to the power source

and that 2 is connected to the ‘ consumer’ network.

node UnidirectionalSwith

flow
f1: bool : in;
f2 : bool : out;

event
open, close;

state
IsClosed : bool;

init
IsClosed := false;

trans
not IsClosed |- close -> IsClosed := true;
IsClosed |- open -> IsClosed := false;

assert
f2 = ( case { IsClosed : 2,
else : false} );
edon

Figure 18 - Node Example in AltaRica Dataflow: Switch

AltaRica Dataflow was originaly supported by the Combava suite of anaysis tools (now
obsolete). A restriction of AltaRica LaBRI that is nearly identical to the Dataflow dialect can be
trandated into Lustre [61].

Most importantly, from the perspective of this thesis, Dassault Aviation has developed a tool —
Cecilia OCAS [131] — which implements a nearly identical AltaRica dialect. Cecilia OCAS
provides a graphical environment for the construction and simulation of models. It also provides
model analysis functionality including the generation of fault trees (based on Rauzy’s approach®
[126]) and sequence generation. The latter is essentially an inductive search tool that generates
minimal sequences of events, up to a pre-specified maximum length, that lead to a particular
condition defined by the user. Also, work is currently under way under the auspices of the MISSA
project [6] to integrate the NUSMV model checker and its associated NuSMV-SA anaysis
platform [23] into the Cecilia OCAS environment. Currently, the Cecilia OCAS platform can be
characterised as a mature industrial prototype. In addition to numerous research and evaluation
projects mentioned in the previous sections, the platform has been used for certification (at the
PSSA level) of the Flight Control System of the Dassault Falcon 7x aircraft [9, 131].

! Note that, whilst they are syntactically valid, the “fault trees’ generated by Rauzy are not necessarily
valid with respect to the engineering semantics of fault trees defined in [158, 157]. In particular,
intermediate events represent values of flow variable which, depending on the modelling approach, are not
necessarily “faults’.

71



Returning to syntax, AltaRica (including its Dataflow and OCAS dialects) provides a general
extern clause for tool-specific extensions of the language. These extensions typically take the form
of annotations associated with particular constructs of the core language — such as events, states or
nodes. A key example of such an extension is the association of events with parameterised
probability laws. These law associations are exported along with the analysis results (e.g. minimal
cut sets/sequences), thereby alowing quantitative analysis to be carried out using standard
reliability tools.

Overdl, AltaRicais a powerful and yet syntactically compact formally defined language. Its use
for model-based safety assessment has been demonstrated in both research and industrial contexts.
However, the language does not inherently restrict the modelling methodology and engineering
semantics of models. Indeed, previous sections have demonstrated that different AltaRica models

found in literature follow different modelling approaches.

2.5.2 The Architecture Analysis & Design Language

The Architecture Analysis and Design Language (AADL) is a domain-specific language for the
specification and anaysis of real-time embedded software standardised by SAE [138]. It has
evolved from an earlier proprietary architecture description language — MetaH — developed by
Honeywell [159]. The underlying semantics of the language is based on the notion of hybrid

automata [93]; however, syntactical constructs are tailored to the embedded software domain.

One of the key objectives of the AADL is provision of the unifying framework for “co-design” of
architectures of application software and underlying hardware platform. The language provides a
standard set of component stereotypes, such as ‘process, ‘thread’, ‘data’ and ‘subprogram’ for
software as well as ‘processor’, ‘memory’, ‘bus and ‘device' % for hardware [138]. Relationships
(e.g. alocations) between software and hardware components are specified through bindings. The
language supports various types of interaction between components, such as events and datafl ows.
Overall, the syntax of the AADL is very rich, reflecting various specific patterns of structure and
behaviour typically found in the designs of embedded software. Furthermore, the language is
extensible through customised “annexes’. The SAE standard itself defines two such annexes for
Behavioural and Error Modelling. The latter is described briefly in the remainder of this section.

The Error Model Annex of the AADL [56, 136] defines additional constructs for specifying
component behaviour in terms of the propagation of “faults”. In its simplest form, it can be seen
as a failure logic modelling language in its own right. A component’s failure behaviour is

specified as a single stochastic automaton consisting of afinite number of error states. Transitions

2 Devices are used to model equipment outside the control system such as sensors and actuators.
72



are triggered either by interna “error events” or by “error propagations’. Error events represent
malfunctions and repairs or, in the words of AS5506, are “internal intrinsic events that change the
error state of a component” [136]. Error propagations are effects of error states of other
components on the component in question; in other words, components of an AADL error model
communicate in terms of error propagations. In terms of automata semantics, both error events
and propagations are events with the only difference being their ultimate source. Figure 19
illustrates this description with a simple component error model which has two states: the initial
‘error free’ state and a Failed state. The transition from the initial state to a failed state can be
triggered by either an internal event (Fail) or an incoming error propagation from component’s
environment (FailedVisible). The reverse transition can be triggered by an internal error event that
models a repair action. Once it has failed, a component will generate an error event (i.e. an
outgoing error propagation) to its environment (FailVisible) with a (fixed) probability p. Similarly,
internal events are associated with a Poisson probability distribution (with parameters lambda and
mu for Fail and Repair respectively). Note that the definition of the component’s ‘failure logic' is
achieved in two steps: first an error model dependent specifies the structure of the component;

then amodel implementation (dependent.general) specifies the actual behaviour of the component.

error model dependent
features
ErrorFree: initial error state;
Failed: error state;

e dependent.general N  Fail: error event {Occurrence => poisson lambdaj;
Repair: error event {Occurrence => poisson mu};
~~~~~~~ FailVisible (in) FailedVisible: in out error propagation

FailVisible (out) {Occurrence => fixed p};

w end dependent;

Fail: lambda

— =3

error model implementation dependent.general
transitions
ErrorFree-[Fail]->Failed;

Repair: mu

\_ ) Failed-[Repair]->ErrorFree;

ErrorFree-[in FailedVisible]->Failed;
Failed-[out FailedVisible]->Failed;
end dependent.general;

Figure 19 - Example of a Component in the AADL Error Model Annex [56]

In addition to propagating (and, in the general case, transforming) errors through a change in the
error state, the AADL Error Modelling Annex allows components to channel incoming errors out
directly through a Guard_Out construct. Such a propagation can be either unconditiona or
conditioned on the error state of the component and is conceptualy close to the assertion
declaration in AltaRica Dataflow. The same construct is used for filtering or masking outgoing

error propagations.

73



At the level of the system architecture, error propagations are not modelled explicitly but instead
utilise connectors and bindings in the ‘core’” AADL model. Component error models are attached
to the core specifications of components (using a predefined “annex error_model {...}" construct)
and outgoing error propagations are transmitted to al connected components according to rules
defined in section 3.5.2 of the Annex E [136]). For example, propagations may occur from a
processor to al bound threads, from a component to any outgoing connections and between all
sub-components of the same process. Conceptually this is close to Papadopoulos's approach of
integrating HiP-HOPS and Matlab Simulink models [116] (although the underlying core AADL
model provides significantly richer types of connections and bindings than do typical Simulink
models).

Aswell as reacting to explicitly defined propagations of connected components, error models may
access the internal (i.e. otherwise hidden) error state of the connected components through a
Guard_In property. The same construct is used to adjust error propagation names or to merge
incoming errors (e.g. if a sending component sends too detailed error propagations from the

perspective of the receiving component).

AADL Error Models are not simply ‘layered on top of’ core AADL models. The behaviour of two
‘layers’ can be integrated. For example, the Guard_Event property, declared in the error model
specification, can be used to generate a ‘real’ system event (that is, an event on a port declared in
the core AADL model); similarly, the Guard_Transition property can override the mode transitions
declared in the core model. This integration means that the AADL Error Modelling Annex is not
just afailure logic modelling language, but rather a more general language which can also be used

in the context of hybrid approaches.

Finaly, it is important to note that a number of researchers have recently integrated AADL and
AltaRica Dataflow. Bieber et a [21] briefly reports two such integration approaches investigated
by the ASSERT project [14]. Under the first approach, AltaRica Dataflow models are combined
with the core AADL models (the former thus essentially replace the Error Model Annex). To
achieve this, AADL models are annotated with references to the AltaRica nodes stored in a
library. The tool implemented by ONERA synthesises the overal AltaRica model from the
structure of the AADL model and the library of AltaRica components.

In contrast, the second approach does not replace the Error Modelling Annex, but rather translates
its models into AltaRica. Bieber et a, however, report that the resultant models are significantly
more complex than the manually constructed AltaRica models. Another approach to trandation
between AltaRicaand AADL Error Modelling Annex is currently being investigated by Mokos et
a at the Aristotle University of Thessaloniki (Greece) [108]. Their approach is based on an

ontology which unifies the AADL Error Modelling Annex and the AltaRica Dataflow semantics.
74



There is some similarity between this work and the genera metamodelling-based approach
adopted in this thesis. However, the ontology of Mokos et a is specificaly developed for the two
specification languages and may, in principle, be applied under different modelling approaches,
whereas the FLM Framework presented in this thesis presents an entirely language-independent
failure logic modelling domain framework with an instantiation in AltaRica used solely to
demongtrate that the framework is consistent, sound and ‘implementable’ in a third-party

specification language.

2.5.3 Language Selection

This thesis uses the OCAS and Dataflow dialects of the AltaRica language® to demonstrate the
concrete instantiation of the developed Failure Logic Modelling Framework. As the specification
language plays only a secondary role in the research presented in the thesis, it was felt that AADL
and its Error Model Annex are ‘over-configured’ to the particular class of embedded systems.
Also, whilst the Error Model Annex is a powerful specification formalism which can probably be
applied in the context of different modelling approaches, it is constrained by the strong tie with
the ‘core’ AADL.

By contrast, AltaRica Dataflow and AltaRica OCAS are general specification languages with a
powerful, yet compact and intuitive, syntax. The language itself is not constrained by any system
design or safety assessment features. Also, trandation from this language to Lustre (and, by
extension, to SCADE) has been demonstrated to be effective. At the same time, the language is
supported by relatively mature sets of tools for model construction, management, simulation and
sequence generation (as well as for model-checking and fault tree synthesis which are not used in
this thesis). Finally, selection of the language has been influenced by the present author’'s
collaboration with the Dassault Aviation (developers of the Cecilia OCAS suite) and ONERA

(prominent users of AltaRica).

2.6 Conclusions

This chapter has presented a review of literature in system safety engineering, and safety
assessment in general as well as in model-based safety assessment in particular. Although, the
latter topic has attracted significant interest in academia and industry over the past two decades,
the sub-discipline remains largely unorganised. This chapter has proposed a classification of the

model-based safety assessment approaches based on the provenance of the models being used and

% The OCAS dialect is used for model construction. However, in this thesis the Dataflow dialect is used for
illustrations. This is entirely due to the specifics of the export formats and functionality of the Cecilia
OCAS tool - the AltaRica OCAS export format requires significant manual re-formatting for integration
with the thesis whereas Dataflow export functionality (of the same tool) provides “clean” ASCII format.

75



the engineering semantics of the captured relationships between components. This classification
yields three ‘purist’ approaches: Failure Logic Modelling, Failure Injection and Failure Effects

Modelling along with a number of “hybrid’ techniques.

The provenance of the models is important, since any model is an “abstraction defined with an
intended goal in mind” [133]. The authorship of the models therefore clearly affects whether they
are likely to be appropriate for safety assessment. The engineering semantics is important because
it establishes (whether explicitly or implicitly) a particular ‘view of the world' or a ‘domain’ that
encapsulates key concepts and their relationships and which circumscribes the aspects of safety

behaviour of the system which can be described.

A key problem in al publications on model-based safety assessment is a focus on a particular
technique or, worse, a specification language without a definition and examination of the domain
of concepts being represented. Furthermore, the techniques are typically intrinsically linked to
particular specification languages, or worse, driven by the features of such languages. The
constraints imposed by a particular technique or a particular language on the domain are often not

examined.

The following chapter takes a broader view, and defines a Failure Logic Metamodel which
underpins a prominent family of model-based safety assessment techniques in a language- and
technique- independent fashion. Examination of this metamodel permits assessment of the
fundamental strengths and weaknesses of all of the individual methods that instantiate it.

76



Chapter 3: Unifying Failure Logic Metamodel

3.1 Introduction

The individual failure logic modelling techniques examined so far have introduced new notations
for capturing the failure logic (sometimes referred to as failure propagation logic) of the system
and its individual components. At the same time, some significant work has been done on the
adaptation of standard specification languages in the context of model-based safety assessment
(e.0.[19, 20, 24, 29, 77, 82, 126, 132]). As discussed in the previous chapter, such work has often
focused on language-specific features, and the construction of ‘safety models’ typically has not
followed any explicit and structured methodology. The purpose of this chapter is to unify the
research work on individual failure logic modelling methods and the use of standard specification
languages in a clear and repeatabl e fashion through the definition of a Failure Logic Metamodel.
Having clearly defined the ‘baseline’ approach in this chapter, the metamodel is further extended
in Chapters 4 and 5.

The key contributions and structure of this chapter are as follows:

e Section 2 presents a basic Failure Logic Metamodel (FLMM) which unifies existing
failure logic modelling methods such as HiP-HOPS [114], FPTN [57] and FPTC [163].
The purpose of this basic metamodel is not to improve on existing methods and, at this
stage, extensions are kept to the absolute minimum necessary to rationalise the
rel ationships between the various fundamental conceptsin a coherent manner.

e Section 3 extends the expressive power of the FLMM in two ways. Firstly, the dynamic
behaviour of components is enhanced. Secondly, extensions are introduced to allow the
impact of key aspects of normal (i.e. non failure-related) behaviour of the system on its
failure logic to be taken into account.

e Section 4, which has been included mainly for the sake of completeness, discusses
different approaches to the analysis of failure logic models and identifies some
fundamental problems of the automated synthesis of fault trees and FMEA/FMECA
tables.

e Section 5 demonstrates that the genera Metamodel can be instantiated in a standard
third-party specification language.

e The chapter concludes with an overview of the case study (introduced briefly in Section
3.1.1 below) and outline of some of the limitations of the * baseline methodology’ that are
addressed in the remainder of the Thesis.

77



3.1.1 Introduction to the lllustrative Example & Case Study

Throughout this chapter, an illustrative example of a simplified hypothetical aircraft Wheel
Braking System is used. The origina example is taken from Appendix L of Aerospace
Recommended Practice ARP 4761 [139], and is further simplified here®.

The main function of the system is to provide safe retardation of the aircraft in its taxiing and
landing phases as well as in the Rejected Take-Off scenario by means of the application of
hydraulic pressure to the brake assemblies of the main landing gear wheels. However, the design
of the brake assemblies is considered outside the scope of the system and the case study therefore

focuses on the provision of braking pressure to the actuators.

The architecture of the Braking System is shown in Figure 20. Overall, braking pressure is
provided to the landing gear assemblies via two redundant hydraulic channels — Green and Blue.
Normally (in absence of failures) both channels are operated simultaneously. However, a single

operational channel isfully capable of effecting safe wheel braking.

Green pump Blue pump
Pwr 11 lerz
Shutoff 1o oration
BSCU selector
valve
I_ valve
Electronic E

pedal pos. 1
—_—

Electronic

pece poe 2
—

Anti-skid
shut off

Anti Skid (AS) valve
]

cmp/ [ |Green  Blue Mech. Pedal
— > Meter Meter —
Antiskid 71 lvaive  valve Position

Wheel
O

Figure 20 - Architecture of the Hypothetical Aircraft Wheel Braking System

The Green channel is controlled by a computerised Braking System Control Unit (BSCU). The
primary output of the BSCU is a single cantrol signal to the Green Meter Valve, which combines
braking demands (communicated to the BSCU via two redundant electronic “Pedal Position”
signals from the cockpit) and anti-skid constraints. The BSCU aso provides the blue hydraulic
channel with ‘clean’ anti-skid controls and produces a “Validity” output which indicates whether
the main unit outputs are trustworthy. The outputs are deemed to be untrustworthy if an internal

failure is diagnosed or if a discrepancy in the pedal inputs has been detected. The validity output

% The original — not simplified — WBS design will be addressed in Chapter 5.
78



of the BSCU is fed into a dedicated Shut-Off Selector Valve (located upstream from the Meter
Valve of the Green Channel). In order to prevent an untrustworthy BSCU from interfering with

normal braking, the valve prevents hydraulic flow if the control unit is declared invalid.

The BSCU is an internally redundant sub-system (Figure 21) consisting of two identical “sides’
or “channels’ (BSCU1 and BSCUZ2). Each side consists of a Command module and a Monitor
modulg; it is assumed that all four modules are implemented in software and that the hardware
platform is outside the scope of the WBS. In addition to the two sides, the BSCU contains Validity
Monitor and Switch components which consolidate the Command (CMD), Anti-skid (AS) and
Validity outputs of BSCU1 and BSCU2.

Electronic Electronic
Pwr 1 pedal pos. pedal pos. Pwr2
1 2

BSCU

( mecuar ) (nscua )
BSCU #1 BSCU #2

2 valid

Monitor 1 —— Monitor 2

A\ 4

Command
2

Command
1

CMD| AS ] CMD AS2
/AS 1 AS2
\_ J o J
™ | Anti Skid (AS)
»
o1’ >
|
— | oMD/_
Anti Skid
Switch 1K

Figure 21 - BSCU Architecture

Returning to the hydro-mechanical part of the system, the blue channel is powered by a separate
pump as well as a hydraulic accumulator, with the accumulator providing pressure only if no
pressure is otherwise present on the line (e.g. due to pump failure). As the hydraulic accumulator
has a finite capacity, it is assumed that it can provide sufficient pressure for a safe single
execution of the braking manoeuvre (within the operational envelope of the aircraft). The
accumulator is assumed to be fully charged in a pre-flight / engine start-up sequence and it is
assumed that, in the absence of failures, the accumulator maintains full pressure for the duration
of the flight.

Regardless of whether the blue channel is powered by the pump or by the accumulator, the
pressure to the whesl is controlled by two valves: a meter valve connected mechanically to the
braking pedals in the cockpit and an Anti-Skid Shut-Off Valve driven by the dedicated output
from the BSCU.

79



3.1.2 System Intent & Design

Before the key concepts and the domain model of Failure Logic Modelling are presented, it is

necessary to discuss the concept of “Design Intent” (or “System Intent”).

Design Intent is never explicitly represented in failure logic models and is often overlooked by the
descriptions of particular techniques. However, it is arguably the single most important concept
behind the approach which underpins the theory of this kind of modelling. Indeed, the key
hypothesis of any failure logic modelling approach can be stated in the form of three (related)
propositions:

[For the practically significant proportion of systems and hazards:]

(1) Immediate causes of hazards posed by a system can be described in terms of the deviation
of system behaviour from the overall intent;

(2) The inability of the system as a whole to fulfil its intent can be attributed to — and
described in terms of — the deviation of externally-observable behaviour of one or more
individual components from their respective intents (in the context of the system design);

(3) Every such deviation of component behaviour can be attributed to — and described in
terms of — a combination of internal malfunction(s) of the component and/or deviation(s)
in the behaviour of some other component(s) that the component concerned is susceptible

to.

The above propositions highlight key assumptions about design intent that are made by the failure
logic modelling methods. However, it is important to qualify these assumptions to avoid

misinterpretation. First, it is clearly assumed that the intent of the systemisinherently safe.

Secondly, design of the system decomposes the overall intent into the intents of individual
components. A component’s intent is different from its specification. The latter is concerned with
a required input-output response of the component and assumptions about its operational
environment. The intent of the component is concerned with its desired behaviour when operating

as part of the entire system.

Furthermore, the design of a system may not implement its intent fully. In other words, it may
assign intents to the individual components which do not together guarantee the overall intent of
the system. This thesis calls this “design limitation”. In this chapter it is assumed that system
design always implements the intent the issues of limitations are addressed in Chapter 5.

The WBS example, presented in the previous section, can be used to illustrate the notion of intent
and its decomposition. The overall intent of the system isto provide braking pressure to the wheel

assembly whenever the pressure is commanded by the pilots. The top-level design identifies key

80



components of the system (BSCU, pumps, valves and pipework) and assigns an intent to each of
them. Thus, the intended behaviour of the meter valves is to provide pressure to the braking
assemblies whenever braking is commanded by the pilots. This, of course, is not the same as
specification of the valves, which merely mandates that the valves must open when a respective

electrical command is received on their electrical terminas.

Similarly, part of the intent of the BSCU is to provide braking commands to the green channel
when braking is requested, and to report (on its validity output) if it is unable to provide these
commands. The design of the BSCU decomposes this intent and alocates it to the individua
components. However, as will be demonstrated in chapter 5, this design violates the overall intent
of the BSCU.

Failure logic modelling’s dependence on the notion of design intent is a key characteristic which
distinguishes it from other model-based safety assessment methods. It can be seen as both the
strength and the weakness of the approach. Whilst the informal nature of the intent does not allow
for the automated generation of failure logic models from the formal models of system design, it
facilitates a thorough review not only of the design of the system but also of its justification. To
construct failure logic models, analysts not only have to consider what a particular component
would do in response to particular interactions initiated by its environment but also to anayse
what the component was intended to do had the system and its environment not suffered from
any malfunctions. Whilst this difference in perspectives may seem subtle for trivial components
(like the meter valve) it becomes significant for more complex components and in the context of
more complex systems (especialy reconfigurable systems). Overall, the difference in perspective

ensures a thorough review and understanding of the system design by safety engineers.

3.2. Unifying Metamodel for Existing Techniques

In this section a unifying metamodel for the existing failure logic modelling techniques, such as
HiP-HOPS, FPTN and FPTC, is presented. Pidcock defines a metamodel as “an explicit model of
the constructs and rules needed to build specific models within a domain of interest” [121] and
lists three possible perspectives in which metamodel can be viewed:

(1) “asaset of building blocks and rules used to build models’

(2) “asamodel of adomain of interest”

(3) “asan instance of another model”

This thesis is concerned with the second objective of metamodelling and the Failure Logic

Metamodel could in principle be called a“Failure Logic Domain Model”.

81



As used in model-driven engineering, a metamodel, typically used to describe a modelling
language, is expected to define [15]:

o “the concepts from which models are created” (an abstract syntax)

o “the concrete rendering of these concepts’ (concrete syntax)

o “rulesfor the application of the concepts’ (well-formedness rules)

e “description of the meaning of the model” (semantics)
However, this thesis is specifically not concerned with a definition of the specification language
(instead, a genera-purpose third-party language is utilised); consequently the Failure Logic

Metamodel does not define any concrete syntax.

The metamodel presented in this chapter generalises the existing failure logic modelling methods
through separation of the notions of failure and failure state. The key FLM concepts are defined
(providing the engineering semantics ‘component’ of the metamodel) and their relationship is
shown diagrammaticaly (providing the abstract syntax). The well-formedness rules are omitted
from the main text of the chapter, but are listed in Appendix A.

Whilst the FLMM has been defined using the Eclipse Modelling Framework (EMF) [46, 142] for

ease of the presentation relationships between FLM concepts are shown as UML class diagrams.

Elementary Concepts
To avoid ambiguity, it is necessary to define the context of failure logic modelling. Failure logic

models are models of a system which consists of a number of components.

The previous chapter has defined the system (based on [147]) as.

System:
A bounded physical entity that achieves in its domain a defined objective through the

interaction of its parts.

Based on the same source we define:

Component:
A discrete structure, such as an assembly, within the total system considered at a particular

level of analysis.

Using these definitions, it is observed that components within the system interact. Each possible
interaction is associated with some attribute (physical or logical property) of atransfer of energy,

material or information [112]. For example, components in a hydraulic circuit may interact in

82



terms of pressure, flow/displacement of the hydraulic fluid, or even the temperature of the fluid.
Similarly, software components may interact in terms of flows of data aswell asin terms of flows
of control (e.g. synchronous communication protocols). Interactions can be either intentiona or

unintentional (e.g. short circuitsin the electrical system) [54].

3.2.1 Common Key Concepts

All of the failure logic modelling methods examined in this thesis are based on a notion of
interdependent components, where dependencies are specified in terms of the deviation of
components interactions from the design intent. Each component of the model may exhibit
deviation or may be sensitive to deviations in its environment (i.e. interactions initiated by other

components), yielding notions of Input and Output Failure Modes.

Output Failure Mode:
A particular and externally observable deviation from the intent of a particular interaction

initiated by a particular component (including theinitiation of an unintended interaction)

A component is said to be exhibiting or generating output failure modes (or, for short, just ‘failure

modes’ or ‘FMS)).

Input Failure Mode:
A sensitivity of a component to a particular deviated interaction initiated by some other

component in its operational environment (including the initiation of an unintended

interaction).

A component is said to be sensitive to its input failure modes: when a component exhibits afailure
mode, all other components that are sensitive to that failure mode are said to be exposed to the
FM. In terms of failure logic models, input and output failure modes form the interface of a

component.

Components in the model can ‘communicate’ through these interfaces, yielding a notion of FM
Flow — a binding between an input FM of one component and output FM(s) of one or more other
components — which signifies a dependency between the components established by the system
architecture (and implementation technology). FMs and FM flows are associated with particular
possible (intentiona or unintentional) interactions between components which are often identified
in design models (typically as connectors between components which characterise flows of

energy, matter and/or information). However, the nature of a deviation can be captured

83



independently of the particular interaction of particular components yielding the notion of a

Failure Mode Class.

Failure Mode Class:

A general definition of a deviation of an interaction. Generalisation of a failure mode.

A Failure Mode Class may or may not be specific to the physical or logical nature of the
components' interactions. In general, most failure mode classes can be attributed to one of the
following three abstract categories [105, 123]:

(i) Provision — eg. the inability to initiate (or sustain) an interaction when (or, respectively,
while) required to do so or the initiation of an interaction when not intended (including
initiation of the altogether unintended interaction)

(i) Timing — e.g. the initiation or the termination of an interaction in an untimely fashion,
maintaining of the interaction for too long or too short a period of time, etc.

(iii) Value — quantitative deviation of some physical (or logical) attribute of the interaction.

Depending on the required level of granularity of the failure logic model and the level of detail of
the design description available to the safety engineer, a particular model can use abstract FM
Classes (such as “Omission” and “Commission”) or more concrete classes derived for a particular
technology (e.g. “Leak” and “Short circuit” for hydraulic and electrical systems respectively) or
even application-specific classes (such as “Fase Positive” and “False Negative’ for flows of
diagnostic information). However, for the purpose of constructing the Failure Logic Metamodel,

FM Classistreated as an elementary concept (metaclass).

Finally al failure logic modelling techniques recognise that components are not only sensitive to
their environment but may also themselves malfunction and, thus, ‘ generate’ or contribute to their

output FMs. Thisyields a concept of “failure’.

Failure:
An accidental and undesirable momentary event which is spontaneous and internal to the
component and which may have a persistent detrimental effect on the component’s ability

to fulfil its operational requirements.

Failures can be seen as being elementary to the failure logic model behaviour; they are the
ultimate causes of FMs. Typically assumed to be stochastic in nature, failures can be associated
with some probabilistic characterisation (e.g. a particular probability distribution function). Also,
it isimportant to note that whilst Failure Modes are defined with respect to the intended behaviour

of the component in the context of the entire system, failures are related to the component’s ‘local

84



intent’ or specification and design (if it can be assumed that these do not contain systematic

errors).

The above concepts define part of the Failure Logic Metamodel (Figure 22) which does not (yet)

cover the behaviour of the componentsin the failure domain.

1 FLM

ID : IDtype
1
1.* contains 0.* enables
1 Component FM Flow
ID:Dtype |
damages
1
1
0." damagedBy 0.* sensitiveTo 0.” exhibits
— to from
Failure Input FM Output FM
ID : IDtype ID : IDtype ID : IDtype
Probabilistic Characterisation 1.* 1
0.* Generalises 0.* generalises
describedBy FM Class 1
ID : IDtype
1 Deviation Description describedBy

Figure 22 - Partial FLMM: Elementary Concepts

3.2.2 Component Failure Logic

The behavioural specification of the FLM components must show how output failure modes are
related to (i.e. caused by) combinations of input FMs and internal failures. Whilst HiF-HOPS
links failures (which it terms “mafunctions’) directly to the output failure modes, a more
principled and structured approach is adopted in this thesis and in the metamodel presented here.
It is observed that, whilst failures may have lasting effects, they are themselves momentary
phenomena. Furthermore, two or more different failures may have the same effect on the
component behaviour even though they themselves have fundamentally different physical (and
probabilistic) natures. Finally, the effect of afailure may not immediately cause an output failure
mode and may remain dormant (e.g. only resulting in a deviation of behaviour when combined
with another failure or an input FM). To capture the immediate effects of failures on a component,

the concept of the Failure State isintroduced.

Failure State:
An abstract representation of the undesirable persistent condition of the component which,

in certain circumstances, has a particular effect on the component’s ability to fulfil its

operational requirements.

85



Determination of the failure states of a component is reliant on engineering judgement during
definition of the models. Failure states — unlike failures — do not necessarily relate to anything
‘rea’ (such as the description of a physical state of component if it was to be examined after
failure) — they may simply encapsulate the effect of failures at the level of abstraction necessary

for aparticular failure logic model.

To modd the failure behaviour of the components, causes of both the Failure States and the
output FMs need to be specified. To allow this specification each Failure State in the metamodel
is associated with one or more transition specification(s) which show(s) the circumstances under
which a particular failure may lead to a change in the state. Every such entity contains a
specification of a trigger (a component failure) and of the circumstances under which a state
transition is possible (a guard). In general a guard is a propositional logic sentence over (other)
failure state and input failure mode propositions. The guard allows for the specification of cases
in which certain failures only have an effect on component when combined with an input failure
mode or when following another failure of the same component. It can aso be used to model
situations where the presence of a particular input failure mode makes certain failures more
likely® or, on three contrary, where an input failure mode leads to an ‘incidental immunity’ from
afailure. Finally, a special case is a void guard (a guard which aways evaluates to true), which

places no restrictions on entry into a failure state upon occurrence of a particular failure.

As with state transitions’ guards, the FLMM associates each output Failure Mode of the
component with a propagation condition which, like a guard, is a propositional logic expression
over input failure modes and failure states. It isimportant to note that both guards and propagation

conditions may include negative as well as positive assertions.

3.2.3 Model Structure and Hierarchical Organisation

The concepts presented so far are, in principle, sufficient to allow the specification of failurelogic
models equivalent to any HiP-HOPS or FPTN model. However, the Metamodel lacks facilities for
the hierarchical organisation of the models that these concrete methods offer. Therefore, to

facilitate more efficient model construction and management it is necessary to enhance the

% This can be achieved by specifying two failures associated with different probabilistic characteristics but
in principle leading to the same failure state (through two separate “ state entry logic” specifications). The
guard can be used to select the applicable failure for the given (current) failure state and/or input FM(s) of
the component. Note that the metamodel essentially “forces’ engineers to specify separate failures for each
unique probabilistic characterisation of failure associated with different scenarios of component exposure to
internal and externa threats. This is justified by the fact that evidence supporting such different
probabilistic characterisations would be gathered from different sources (e.g. different tests) requiring
different assumptions to be reviewed and verified. Therefore each probabilistic characterisation should be
treated as a conceptually separate entity.

86



metamodel with three concepts — State Space, Complex Component and Failure Mode Group —

which allow structuring of the failure logic models. The extensions allow the organisation of :

Failure States into State Spaces. Some of the failure states may be mutually exclusive and
thus the grouping of such states (along with a specia privative state) into orthogonal state
spaces permits the more efficient and elegant specification of state entry logic (e.g.
avoiding some of the repetitive negations of other states in the space). Furthermore, this
construct permits intuitive implementation in general-purpose specification languages
(addressed later in this chapter), since state spaces can naturally be represented as
enumerated variables or parallel state charts. Within each state space, one failure state
(typically — the privative) must be marked as an initial state of the component.
Components into Complex Components. Complex components represent collections of
components (either basic or complex in themselves) and FM flows between them. In this
chapter, it is assumed that complex components have no failures or states of their own
(beyond the states of the basic components they contain). Whilst complex components
may have input and output Failure Modes these are propagated to or from their
constituent components by FM flows and are not associated with any propagation
conditions. Note also that the introduction of complex components requires some revision
of the FM Flows in the metamodel since it can no longer be assumed that flows connect
output and input FMs; for example, a flow may be established between an input FM of
the complex component and an input FM of a basic component it contains (Figure 23).
Failure Modes into FM Groups. Input and output failure modes may be grouped
according to the interaction, flow or a connector in design model that they are related to.
For example, in an electrical system failure modes related to voltage and current
deviations can be organised into two groups. These can be also grouped together (forming

ahierarchical structure) to reflect the fact that they relate to the same electrical terminal.

Complex Component A

A_in B_in C_Out A_Out

[ ] Component B [ ] Component C

Figure 23 - Permissible Flowsin Hierarchical Failure Logic Models

The resultant basic Failure Logic Metamodel is shown in Figure 24.

87



Complex C &
UK 2

1

1.0 contains

N Component
1 &

0.* enables

exhibits 0~ sensitiveTo

1 represents
groupedBy 1
Basic Component FM Group Output FM l l Input FM }7 FM Flow
1 ID : IDtype 01
B « - queries N 1 1
0.* damagedBy 0. 0. O 1 1. 1
collatedBy
Failure State Space ] l 'To' End ] l ‘From' End ]
ID : IDtype 1D : IDtype contains Failure Mode
Probablistic Characterisation
. 1
1 groupedBy ID : IDtype Flow End
1 0.*
1 isA o decomposedinto 0.*
queries Failure State 1 describedBy
ID : IDtype
IsInitial : Bool FM Class
1 IsPrivative : Bool ID : IDtype
Deviation Descrition
1 resultsin
1.* enteredThrough

causedBy

Propagation Condition

actsAs 0.*

0.* over

Conjunction

1

1. over

Elementary Proposition

IsNegation : Bool
JAN
0.* referredBy

l FM Proposition
0.*

i State Proposition l

referredBy

Figure 24 - Basic FLMM: Model Structureand Component Behaviour

3.2.4 lllustration

To illustrate some of the FLM concepts defined above the Green Meter Valve of the WBS is used.
The valve has three groups of failure modes related to its control input (from the BSCU) as well

asits hydraulic input and output.

Considering hydraulic input first, three input failure modes are identified: Omission of Pressure,
Too Low Pressure and Commission of Pressure. Whilst the failure mode classes of these input FMs
are trivial, the semantics of the commission failure mode highlights the significance of the design
intent discussed in the introduction. In principle, hydraulic pumps are expected to supply the
pressure to the WBS in al circumstances and they therefore cannot exhibit a commission FM
themselves. However, the intent of the system design is that the Shut-Off Selector Valve (located
upstream of the Green Meter Valve considered here) cuts off hydraulic supply whenever the
BSCU control outputs become untrustworthy (e.g. due to failures of both channels). In such
circumstances, the Shut-Off Selector Vave will not exhibit (and the meter valve will not be
exposed to) an Omission FM since its behaviour, whilst depriving the green line of pressure, is

compliant with the intent. However, if the Shut-Off Valve does not shut-off the supply when it is
88



expected to (e.g. due to internal failure or due to being exposed to a failure mode of the BSCU

Validity Monitor) it will exhibit a Commission of Pressure output FM.

The above three input failure modes are organised into a single FM Group (HydIn) to indicate that
they relate to the same design model flow. This group also contains one output FM — Leak (whose

classis atechnol ogy-specific refinement of the abstract commission class).

Turning to the valve's hydraulic output, the component has HydOut FM Group, which contains a
similar set of Failure Modes as HydIn (although the commission here has a different, more trivial,
interpretation). Furthermore, this group also contains an additional output FM — Pressure Too High.
The final group of failure modes (Ctrf) is formed by input FMs associated with the control input —
Inadvertent Braking Command, Lack of Braking Command, Lack of Antiskid and Too Little Braking.

Internaly, the valve is assumed to be spring-loaded to its “ shut” position and driven to “open” by
an electric motor. Internal failures of the valve may affect its operation. In particular the valve
may suffer from:

e Spring failure (SpringSnaps) or Mechanica Jam in the “open” position
(MechanicalJamOpen) leading to it becoming stuck in the “open” position (StuckOpen
failure state)

e Motor failure (MotorShaftSnaps) or a jam in the “closed” position (MechanicalJamClosed)
leading to the StuckClosed failure state

e Contamination of the moving parts (Contamination failure) that makes the valve less
responsive to control commands (Struggling failure state)

e Fracture of the casing (Rupture) that leads to its developing aleak (Leaking failure state)

The Failure States of the valve are organised in two orthogonal groups (with an additional OK
privative state in each) as shown in Figure 25. Note that for this particular component the
transition guards do not include any FM propositions; there is no guard for the Leaking failure
state, guards of StuckOpen and StuckClosed merely require the component not to be in the other
stuck state (i.e. they each contain a single negative state proposition) and the guard of the
Struggling state is a positive proposition over the privative failure state (which is equivalent to a

conjunction of negations of the two stuck states).

89



MechanicalJamCpen,
SpringSnaps

StuckOpen

SpringSnaps,
MechanicaldamOpen

Contamination

Struggling

Rupture

Leaking

MatarShaftSnaps,
MechanicalJamClosed

MatorShaftSnaps,

MechanicalJamClosed

|
|
|
|
|
|
StuckClosed :

State Space #1 I : State Space #2

Figure 25 - Failure State Spaces I llustration: Green Meter Valve

Finally, FM propagation conditions can be illustrated with an example of the Omission of Pressure
output FM of the valve. The FM can be caused internally by the valve being in either StuckClosed
or Leaking failure states. Externally to the valve, the FM can be caused by an Omission of Pressure
input FM over the hydraulic input or a Lack of Braking Command — over the control input (and
provided the later is not combined with both a Commission of Pressure input FM and the valve's
being StuckOpen). Furthermore, in the absence of a Commission of Pressure input FM, the valve
will convert all control input FMs into Omission of Pressure. The propagation condition can
therefore be formalised as follows:
HydOut.PressureOmission =

StuckClosed v Leaking v HydIn.PressureOmission v

( Ctrl.LackOfBraking A —( StuckOpen A HydIn.PressureCommission ) ) v

( ( Ctrl.InadvertentBraking v Ctrl.LackOfAntiskid v Ctrl. TooLittleBraking)

A —HydIn.PressureCommission)

The complete characterisation of the valveisincluded in Appendix B1.

3.3 Extended FLMM: Dynamic and Normal Behaviour

This section discusses the limitations of the “Basic Failure Logic Metamodel” presented in the
section 3.2 above (and, by implication, limitations of the existing failure logic modelling
methods). In response to these observations, metamodel extensions are defined to overcome these

limitations.

The extensions are concerned with modelling the normal and the dynamic behaviour of
components. Indeed, the basic metamaodel alows for some dynamic behaviour through the notions
of persistent failure states on the one hand and potentially transient failure modes on the other.
Furthermore, the notion of the state guard permits particular failures (or, more formally, their
effects) to be enabled or disabled, depending on the circumstances (e.g. the input FMs

components are exposed to). In this section, the notion of state is generalised and two new

90



specialisations of states (in addition to failure states) are introduced — Failure Handling States and

Normal Sates.

It is also observed that, whilst failure logic modelling methods have originated to alarge extent as
modular extensions of traditional Fault Tree Analysis, in comparison to the FTA they lack
facilities alowing the specification of non-failure events that are nevertheless significant for
modelling the behaviour of the system in the failure domain. To remove this limitation, the

notions of Normal Events and States (mentioned above) are introduced.

However, the section first revisits the relationship between the Input Failure Modes and Failure

States of the model components.

3.3.1 Void Transition Triggers

The FLMM presented so far has reflected the fact that the effect a component failure (a failure
state) has may depend on whether the component is exposed to any input failure mode at the time
of failure. The same feature of the metamodel — the transition guard — could be used to model
situations where a component failure is more likely if the component is exposed to a particular
failure mode (e.g. an electrical generator being exposed to a higher load than normal). However,
so far, failure state transitions can only be triggered by some failure of the component, whilst

input failure modes on their own can only have atransient effect on component output FMs.

This restriction of the persistence of the effects of input FMs cannot be justified in the context of
realistic system designs. Whilst components may propagate most of the FMs without sustaining
permanent damage, certain failure modes — such as “out of bounds’ value deviations and
unintended interactions (e.g. leaks or short circuits) — may lead to persistent or even permanent
effects on the component itself. Without the ability to reflect this dependency of the failure state
of the component on an input FM (without the need for a further failure) the failure logic models

can be considered incompl ete.

This limitation of the Metamodel can be demonstrated on the failure logic characterisations of the
Green Hydraulic Pump of the WBS. As was implied in the illustrative example in the previous
section, the pump can be exposed to a Leak failure mode (originating from the downstream
section of the green hydraulic ling). The effect of the leak is depletion of the pump’s reservoir,
which eventually leads to loss of pressure. In principle, for the purpose of a naive WBS model,
this can be modelled through the pump’s propagation condition whereby Omission of Pressure
output FM can be caused either by a TotalLoss failure state of the pump (only reachable through
some internal failure(s) of the component) or by exposure to the Leak input FM. However, such a

characterisation could be mideading in the wider aircraft context (where other systems may
91



depend on the pressure supplied by the pump) or if analysis of the failure logic model was to be
used to search for possible mitigation measures that could be ‘built into’ the system design. In
particular, simulation or a walk-through of such a model would show that if, following pump
exposure to the leak, the Shut-Off Selector Vave were to fal in a closed position, the pump
would stop exhibiting the Omission FM (since it would no longer be exposed to the leak). Thisis
clearly inaccurate, and the design modification that ensures that the green line is cut off from the
hydraulic pressure supply after the pressure in the system is lost (suggested by the above

simulation scenario) is unlikely to serve any useful purpose.

A more adequate representation of the failure logic of this component should move the pump into
a Total Loss failure state upon exposure to the Leak to indicate the persistence of the effects of this
input FM. In general, the FLMM must allow Failure State transitions to be caused by input failure
modes (or combinations thereof) without requiring any failures. In other words, the metamodel
must be extended to allow void transition triggers (Figure 26). The semantics of the transition
specification with the void trigger is that the corresponding failure state is entered as soon as the

transition guard becomes true.

1 1
1 1
[Tgger | [ovad ]

AN

isA

Tangible Trigger| |Void Trigger|

Figure 26 - Void Transition Triggers (in the Immediate FLMM Context)

This extension can be seen as a hatural extrapolation from the ability to ‘modify’ the likelihood of
failure depending on whether the component is exposed to input failure modes — in some cases the
probability of failure must be assumed to be 1. However, it is different from specifying a different
component failure with a probability equal to 1, since in the circumstances described above, no
‘qualitative advantage’ of a need for any further failure (e.g. of a pump itself in the previous

example) can be justified.
Finally, a further justification of extending the Failure Logic Metamodel to allow model

components essentially to ‘memorise’ the history of input failure mode exposures will become

evident in Chapter 5, where system reconfiguration is discussed.

92



3.3.2 Normal Events and States

As was mentioned in the introduction to this section and in the previous chapter the failure logic
modelling approach is closaly related to the traditional Fault Tree Analysis since both techniques
model behaviour of the systems in the failure domain. However, failure logic modelling
techniques have so far adopted a significantly more ‘purist’ approach to modelling this behaviour.
In particular, whilst FTA includes a number of facilities (such as External and Conditioning
Events) to condition the failure logic of the system on some key aspects of the “success space”, all
of the elementary FLM concepts introduced at the beginning of the previous section refer

exclusively to undesired events and conditions (i.e. to the “failure space”).

Whilst too frequent and unnecessary reference to the normal behaviour of the system — such asthe
precise state of the components (e.g. valves being closed or open) — may undermine the
abstraction that both FTA and the failure logic modelling approach rely upon, such references are
not aways avoidable. In particular, the failure logic of components which rely on a finite and
consumable resource (e.g. electrical batteries, hydraulic accumulators and fuel tanks) cannot be
modelled without reference to the presence or the exhaustion of that resource. The latter cannot
aways be considered a “failure” and, in safety analysis, no qualitative advantage can be taken for

such normal exhaustion events.

Omission of
pressure from
accumulator

Q |

Omission due to Omission due to
abnormal finite capacity of
conditions the accumulator

Omission of Blue
Accumulator Connector Pump Pressure
decompressed blocked (accumulator in use)

Capacity
exhausted through
braking

Figure 27 - Fault Tree Segment for Unavailability of Pressure from the Accumulator

This limitation of the failure logic modelling techniques can be demonstrated with the example of
the hydraulic accumulator of the WBS, by considering a failure scenario in which both hydraulic
pumps fail. According to the WBS description, braking will not immediately be lost and the
accumulator will provide sufficient pressure for a safe landing. However, if the pilots were to

execute an aborted landing manoeuvre, the accumulator could be depleted leading to a complete

93



loss of wheel braking on the second landing attempt. Whilst the failure logic model of the system
should show that the accumulator will produce an omission of pressure, at this stage the system
has not suffered from any further failure after both pumps were lost (since touch-and-go isin fact
an intended manoeuvre that aircraft are designed to execute). The correct failure logic of the
accumulator can be illustrated through a simple fault tree as in Figure 27 (above), but is beyond

the expressive power of the Failure Logic Metamodel constructed so far.

To ‘match’ the expressive power of the FTA, the FLMM must be extended with two new

concepts — Normal State and Normal Event — defined as follows:

Normal State:
An abstract representation of a persistent condition of the component which may, under
certain circumstances, occur in the course of the intended operation of the component but

which may have a significant effect on component behaviour in the failure domain.

Normal Event:
A momentary event which, under particular circumstances, can normally be expected to

occur.

1 represents

Basic Component
affects 1
0.” 0.* hasA
Normal Event | Event State Space
K IDtype _ ID : IDtype
m Probabilistic Characterisation VAN
1 isA Failure State Spacel |Norma| State Space
1 groupedBy 1 groupedBy
o decomposedinto 2.+| decomposedinto
Failure State | [Normal state

1 resultsin

0.* enteredThrough

Transition
0.* actsAs

1 ooy

Tangible Trigger
Trigger | [ cuard |
Void Trigger

Figure 28 - Normal States and Events (in the Immediate FLMM Context)

It is observed that Normal States have some common characteristics with Failure States — they are
organised in state spaces and entered through similarly structured transitions. Similarly, Normal

Events share some features with Failures — both may trigger state transitions and both can in

94



principle be assigned probabilistic characterisations. These commonalities are captured in abstract
Sate Space, Sate and Event metaclasses in the revised FLMM (Figure 28, above)

3.3.3 Failure Handling States

Allowing for limited representation of normal as well as failure behaviour of components greatly
improves the expressiveness of the failure logic models. However, system designs often foresee
certain known threats associated with particular implementation technologies (e.g. leaks and short
circuits associated with hydraulic and electrical systems respectively) and call for dedicated
components to mitigate them. The behaviour of these ‘failure handling components’ often cannot

be classified intuitively as either ‘failure behaviour’ or ‘normal behaviour’.

Examples of such components include leak arrestors and (overcurrent) circuit breakers. These
components are designed to ‘trip’ on exposure to particular failure modes; in atripped state failure
handling components prevent propagation of the threat often at the ‘cost’ of exhibiting another
output Failure Mode (often — an omission) which is deemed less harmful by systems engineers.
For example, a circuit breaker in electrical power distribution systems prevents propagation of
short circuits at the cost of cutting off electrical power supply to the network segment affected by

the short circuit in the first place.

On the one hand, it is unintuitive to consider a tripped state of aleak arrestor or a circuit breaker
as afailure state. These components are designed, expected and required to trip when facing leaks
and short circuits. Furthermore, these components may suffer from internal failures that either
prevent them from tripping when they should or make them trip when they shouldn’t. Clearly it
would be beneficial to separate the latter failure behaviour from the former ‘designed in’

behaviour.

On the other hand, tripped states cannot be intuitively considered as components Normal States:
they are never expected in a failure-free system and, after tripping, components often exhibit a
deviation from the overall system intent (which may, in some circumstances, have hazardous

consequences).

Therefore, it is beneficial to enhance the Metamodel with a separate notion of a failure handling
state. Typically, the trigger of such a state will be void and a functioning component will enter the
state as a result of an input failure mode (both the circuit breakers and the leak arrestors
mentioned above would follow this pattern); however, in some cases failure handling states may
be triggered by normal events. The later may be necessary, for example, to represent the time it

takes for a component to detect and react to a dangerous condition (or, alternatively, representing

95



a non-perfect coverage of failure handling mechanisms). During this period of time, the system
may be particularly vulnerable to additional failures.

Introduction of normal and failure handling behaviour into the FLMM has inevitably permitted a

certain degree of redundancy of the models (since norma and failure behaviour is not fully

orthogonal). This redundancy needs to be managed carefully by the safety engineers, to avoid

inconsistent or incoherent specification of the component behaviour.

uonlIOsaq uonelAsq|

Agpasneo

1d a1ers|
+0
=0
Tmmm_h._. v_o>_ Tmmm_r_. v_n_m:m.L‘
SYS]
pleng _ _ 1066111 _

ybnouypaseus

ujsynsal

loog : [enius|

adfial : ai
ojels

AN

sauenDd

_ |

[ | [100g - angenudsi|

[evers Buypuen ainjred]

T:Em _mEEz_ _ ajelg ainjiey _

£T
oju|pesoduiodap

op

-z Lz

vs!

sjoaye

adhial : al Agpadnoib L Agpednoib L Agpadnolb L
sse|D N4
aoedg aje}g Buipuey m,_s__un__ _momnm ajels _mE..oz_ _momnm ajels a._s__mn__
Kgpaquosep L
.0 L 0 \/
— adfial : al adhial : ai
e o sronsinies roeas o]
Sulejuod
sauanb j vsey 0
£0 4
[ | | dhiar- al
_ pu3z ,woug, _ _ pu3 01, _ 5 [ edfai:all jusuodwo) diseg
ndu, ndyn,
L

olompsuss | .0 SHAuxe | .0 o

(Mo wa |

sa|qeus

L f
b :
adhar:ail 4

jusuodwo) xa|dwod

_ ainpey _ _Ew>m_u:.:oz_

-

uonesla)orIBYD 213SI|Igeqold!
adfal : ai

eng

Figure 29 - Complete Baseline FLMM

This section concludes with the diagrammatic representation of the complete Failure Logic

Metamodel defined in this chapter (Figure 29, above). The model is reproduced in Appendix A

96



dong with all associated well-formedness constraints®. The constraints are divided into “hard”
and “soft”, whereby hard constraints exclude fundamentally inconsistent models (for example, a
specification of a component state space with either more or less than one initial state) whereas
soft invariants exclude structures judged as atypica by the author (e.g. failure state transitions
with avoid trigger and a guard that can be satisfied without the component’ s being exposed to any
failure mode). Violation of the later invariants indicates highly unusual behaviour and verification
of these constraints may partialy contribute to the validation and review of the failure logic

models.

Finally, Appendix B1 presents a complete failure logic model for the Wheel Braking System

recorded in atabular, specification-language-independent, ‘ pseudocode’ form.

3.4 Model Analysis

This section briefly discusses some of the approaches to the analysis of failure logic models.

3.4.1 Fault Tree Synthesis and Sequence Generation

The original failure logic modelling techniques — such as HiP-HOPS and FPTN — focussed on
fault tree generation (synthesis) as means of analysing the models. Indeed, the failure logic
characterisation of each basic component in a system can be seen as being broadly similar to a
forest of small local fault trees. Figure 30 shows an example of alocal fault tree for the Omission of
Pressure output failure mode of the WBS's Green Meter Valve. Whilst the tree was constructed
manually, it was derived from the FLM characterisation of the valve (Appendix B, pages 285-
286) semi-algorithmically and reflects a typical outcome of an automated fault tree synthesis
algorithm. To maintain correspondence with the original model the fault tree notation is relaxed:
negation is introduced, gate outputs are alowed to feed directly into gate inputs as well as
forming a direct connection between two events (the later two ‘anomalies’ can be removed by a

relatively trivial post-processing of the tree).

FM flows between components effectively establish equivalences between the top events of one
local tree and the undeveloped events in one or more other trees. Consequently, provided that
failure logic models are recorded in a structured, consistent and computer-readable form, it should

be possible to traverse (parse) models recursively and to construct FT-like representations.

% Note, however, that both the metamodel and the constraints described in Appendix A reflect extensions
introduced in the following two chapters of the thesis.

97



However, a Fault Tree representation of the model can only be guaranteed to exist under a set of
restrictions of the FLMM. These necessary restrictions include:
(i) Anabsence of Failure Mode flow loops in the failure logic model architecture;
(ii) Fully orthogonal failure states (i.e. for every failure there must exist a distinct failure
space with exactly two states and with the initial state being a privative);

(iii) An absence of recovery transitions from failure states to privatives.

Aswell as being theoretically infeasible in certain circumstances, it is not entirely clear why fault
tree synthesis is desirable. Fault Trees are models of system behaviour that is an alternative to
failure logic modelling. Further, as fault trees for realistic systems are very large, such a synthesis
cannot be considered to be “analysis of the model” — but rather a transformation of one model
representation into another. Furthermore, synthesised fault trees frequently cannot be easily
reviewed without reference to the original model. In particular, being automatically generated,
these trees cannot contain intermediate events that are not readily available in the model whilst
they may potentially contain semantically redundant logic (which is nevertheless correct syntactic
parsing of the model).

Green Meter Valve (GMV)
Pressure Omission
(Output FM)

Green Meter Valve Green Meter Valve Green Meter Valve
Leaking StuckClosed HydIn.PressureOmission
(Failure State) (Failure State) (Input FM)

Green Meter Valve
CTRL.LackOfBraking
(Input FM)

Green Meter Valve
CTRL.InadvertentBraking
(Input FM)

Green Meter Valve
CTRL.LackOfAntiskid
(Input FM)

Green Meter Valve Green Meter Valve Green Meter Valve
HydIn.PressureCommission not StuckOpen CTRL.ToolittleBraking
(Input FM) (Failure State) (Input FM)

GMV
Motor
Failure

GMV
Jam
Closed

GMV
Spring
Failure

Green Meter Valve Green Meter Valve
HydIn.PressureCommission HydIn.LowPressureCommiss
(Input FM) (Input FM)

GMV
Spring
Failure

GMV
Jam Open

GMV
Motor
Failure

GMV
Jam
Closed

GMV
Motor
Failure

GMv o
GMv Spring
Spring GMV Failure EDEEE
: Jam Open
ailure

Figure 30 - Possible Fault Treefor Pressure Omission Failure Mode of the Green Meter Valve

Figure 30 can be used to illustrate this last criticism as the sub-tree for Green Meter Valve
StuckClosed (Failure State) intermediate event is not intuitive to a human reader. The left branch of

this sub-tree essentially states that the component may move into this state as a result of either

98



GMV Motor Failure or GMV Jam Closed Failure provided that no failure that leads to the valve getting
StuckOpen (i.e. GMV Spring Failure or GMV Jam Open) takes place.

However, on its own this scenario is too restrictive. The valve could end up in the StuckClosed
state even if the failures that could, in principle, cause it to enter the StuckOpen state have
happened, but provided such failures have happened after the valve has already moved to the
StuckClosed state. In other words, if failures leading to StuckClosed (i.e. GMV Motor Failure or GMV
Jam Closed Failure) happen before failures that potentially lead to StuckOpen (i.e. GMV Spring Failure
or GMV Jam Open) the resultant state is, in fact, the former StuckClosed. This additional scenario is
captured by the ‘Priority AND’ gate of the right branch of the sub-tree.

Whilst being a correct fault tree parsing of the original failure logic model of the valve, the
resultant tree, is not only unclear but also contains an apparently contradictory condition — a
conjunction between GMV Jam Closed and GMV Jam Open failures. The information that these two
failures are contradictory is, however, purely semantic and cannot be recorded in (and, thus,

extracted by any synthesis algorithm from) afailure logic model.

Finally, the synthesis of fault trees and their submission to certification authorities or independent
safety auditors may, unless managed very carefully, give the illusion that a fault tree anaysis
(FTA) has been performed. With FTA being a comprehensive and structured analysis procedure —
that is both well-documented and tried-and-tested in industry — this may contribute to unjustified
confidence in the adequacy of the model.

At the same time, it should be noted that fault trees are themselves analysed to produce Minimal
Cut Sets, quantitative estimations of the likelihood of top-level event and importance measures.
As failure logic models hold similar information to the fault trees, it is possible to generate those

results directly from the models by-passing the intermediate FT synthesis step.

Focussing on a qualitative analysis, instead of deductively traversing the model (from effects to
basic causes), it is possible to search through the different permutations of the component failures,
normal events and model-level input FMs systematically and to establish for each permutation,
inductively, whether it leads to a system-level condition of interest. The collection of
permutations that do lead to the undesired condition can be seen as equivaent to the list of

minimal cut sets for that condition.

The search through the elementary causes of deviations can result in a brute-force strategy of
iterative simulation for every possible permutation of failures contained in the model. However,
for systems of realistic complexity the timing of the exhaustive analysis may be prohibitive and

the search may need to be limited to a pre-set maximum cardinality of the minima cut
99



setg/sequences. Alternatively, sequence generation may optimise internal model representations,
yielding a more time-efficient analysis. For example, the ESACS and ISAAC projects [9, 24, 50,
73] have adapted standard model checkers for the task of sequence generation from models
encoded in various specification languages such as StateMate and SCADE. One of the resultant
analysis tools based on the NuSMV model checker [23] is currently being adapted (as part of the
MISSA project [6]) to the AltaRica language and Cecilia OCAS tool discussed in the section 3.5.2
below.

3.4.2 Simulation and FMEA/FMECA

Claims are sometimes made about the ability of model-based safety assessment methods (whether
based on failure logic or any other type of model) to automate FMEA or FMECA. Whilst it istrue
that it is possible to generate FMEA/FMECA tables automatically, such process in no way a
substitute for Failure Mode and Effect Criticality Analysis.

Generation of FMECA tables from Failure Logic Models is essentially a sequence generation
process as described above, conducted with respect to multiple conditions of interest. The search
can be conducted to a maximum sequence size of one (yielding traditional tables) or to any larger
size (yielding expanded tables and claims of FMECA “improvements’). However, the targets of
the analysis must be predefined. This contradicts the explorative nature of the FMECA and its
role as either a hazard identification technique or a tool for the validation of results of previously

conducted hazard identification.

To conduct analysis comparable to FMECA, safety engineers need to simulate failure logic
models systematically (provided that these models are expressed in a specification language and
environment that facilitates such simulation) as well as to consider and to classify the effects of
each simulation based on their experience, domain knowledge and engineering judgement.
Although it is important to note that even in a simulation-driven analysis process, the model will
inevitably restrict the scope of the assessment (compared to the traditiona ‘manual’ and informal
FMECA)

3.5. Instantiation of the FLMM

Previous sections have presented a unifying metamodel of the failure logic modelling approach
and discussed some aspects of models in general. The purpose of the discussion so far was to
identify a set of concepts that must be captured by the models and the relationships between those
abstract concepts; the purpose of this section is to describe how the models themselves can be
effectively and adequately captured.

100



As discussed in Chapter 2 (section 2.3), most of the existing failure logic modelling techniques

introduce a custom notation for specifying the models. This section demonstrates that failure logic

modelling does not require idiosyncratic notations and that the framework can be instantiated in a

general purpose, well-defined third-party language. As discussed in Chapter 1, implementation in

such a language can yield significant benefits in the industrial context. From the academic

perspective, it alows the separation of concerns of the adequacy of the domain model from

concerns about the adequacy and expressiveness of a particular language or notation.

3.5.1 Specification Language Requirements

As far as the specification language is concerned, the requirements posed by the Failure Logic

Metamodel are relatively trivial. The specification language should:

support the notion of components and alow the hierarchical decomposition of
components;

support the notion of communications between components (i.e. input/output failure
modes, failure mode flows);

support the specification of components’ internal behaviour in terms of their reaction to
communications received from other components and internal events (i.e. spontaneous or
unbounded behaviour specific to a single component);

support the notion of persistent local conditions (states);

support annotations of modelling constructs, such as the assignment of probabilistic
characteristics to internal events and descriptions of deviations to communications;
support the designation of events as “failure” or “normal” and states as “failure”,

“normal” and “failure handling” in away that is accessible to analysis tools.

Highly desirable, but in practice not essential, characteristics of a specification language include:

the ability to declare an abstract type for communications. This is necessary to declare
Failure Mode Classes explicitly and to allow for specification of the deviation once when
it is declared as atype rather than for every single failure mode of aclass;

the ability to declare communications between components in a structured (hierarchical)
fashion (to capture “failure mode groups’ and, thus, better to reflect the relationships
between the system design and failure logic models);

a distinction between the concepts of momentary events, persistent states and potentially

transient input and output conditions.

These basic requirements are fulfilled by a large number of mature specification languages of
different paradigms. For example, Statechart [64] variants such as StateMate [69] and StateFlow

101



[144] naturally implement the notions of states and events and allow for the parallel composition
of state charts (which may reflect the decomposition of components). Communications between
different charts are achieved through events synchronisation, so the events would have to be used
for representing failure modes as well as failures and norma events’’. From a pragmatic
perspective concerning the maintainability of failure logic models implemented in a Statechart or
stochastic automata language, it is likely that orthogona states of basic components (normal
states, failure handling states and orthogonal groups of failure states) would have to be specified
as separate charts; further charts may be necessary for specification of the propagation conditions.
Therefore the decomposition of the overall failure logic model will, below a certain level
(corresponding to Basic Components), no longer reflect the structure of the system, but instead
will follow the structure of the component behaviour specification as shown in the metamodel. On
the one hand this can be seen as unintuitive representation; however, on the other hand, this low-

level structureislikely to be highly reusable from one component to another.

Similarly, the FLMM can aso be implemented in dataflow-centred languages, such as Simulink
[145] or SCADE [52]. Such languages aso provide a natural facility for the specification of
components and the hierarchica decomposition of structure. Further, they naturally model
dataflows between the components — which is a natural and intuitive representation of FLMM’s
failure mode flows. Furthermore, these languages often allow for flows to have both structure and
type — thus representing failure mode groups and classes respectively. Whilst dataflow languages
often do not have intrinsic notions of event and state, both can be represented. Events — i.e.
metamodel’ s failures and normal events — can be modelled as additional inputs of the components
which, unlike input failure modes, are not connected to outputs of any other model components®.
States can be implicitly reconstructed if a language permits loops in flows along with a “unit

delay” or “latch” operators.

However, since neither Statechart nor Dataflow- languages seem to represent certain aspects of
failure logic in an immediately intuitive way, using a hybrid of the two approaches might be
beneficial. A combination of MATLAB Simulink and StateFlow would be an example of such a
hybrid language.

Aswas discussed in sections 2.5.1 and 2.5.3 above, another language — AltaRica — is used in this
thesis. The Dataflow and OCAS dialects of AltaRica allow a similar dualism between
states/events and flows to that offered by the MATLAB solution (although integration between

these two aspects of behaviour is seamlessin AltaRica). The language is supported by the Cecilia

" Thisis the approach taken in the AADL Error Model Annex [56, 136] (see section 2.5.2 above).

% Depending on the precise syntax and well-formedness rules of a specification language these “free
variables” may, however, lead to significant clutter in the models as reported by Joshi et a [76, 77]

102



OCAS workbench — an industrial-strength tool that provides a graphical user interface, facilitates
definition of the models and allows simulation and analysis of the models. Finally, the analysis
facilities of Cecilia OCAS [39, 131] have been specifically developed for the context of safety
assessment (although not necessarily for failure logic models) and can readily be reused. Access
to developers of the Cecilia OCAS — Dassault Aviation — has been a significant pragmatic

consideration for selection of the tool.

3.5.2 Overview of Cecilia OCAS Tool

Cecilia OCAS provides a graphical interface for the definition of nodes (i.e. it reconstructs node
parameter declarations from data entered by a user through the GUI as shown in Figure 31) and
for the establishment of flows between the nodes (using a “drag-and-drop” facility between the
input and output flows of the components). The tool also performs some syntactical and
consistency checking on models and provides graphical facilities for the animation of models
during smulation. Tailored to the needs of safety assessment, Cecilia OCAS allows for the
association of events with probability laws and parameters (such as maintenance and inspection
intervals — which relate to exposure intervals in FTA). In most cases, probability parameters are
ignored by simulation and sequence generation tools. However, one specific “probability law” is

an exception — Dirac(x).

) Wadel editor : Nlustrations iSwitch 1 3

Icons r{,}/Bynchmmzannns rAIlarica code ‘
General r e} rCnment r [var> States r Events |

Code Cperators

Edit

EYEN YNV
mode Illustrationsl Switch
ELow

f1 : bool - im ;

£ : bool : ouk ;

state

IsClosed : kool ;

eveni

oper, close ;

init

trans
@ot IsClosed |- close -F IsClosed = brmwe;
IsClosed |- open -» IsClosed := Ffalse;

iz = { case {
IsClased : £2,
else : false

JE

[ = r—— =]

Figure 31 - Cecilia OCAS Interface: Behaviour Specification

Usually used with a parameter zero, the Dirac law allows for the specification of non-random
events. Events marked with Dirac(0) are ‘updates’ which are fired as soon as the guards they are
associated with become true. They alow for situations when component state(s) change only in

response to input flows to be modelled. A higher parameter can be used to specify events that are

103



similarly non-random, but which are expected to occur some time after the guard of the associated
transition becomes true. An important characteristic of Dirac(0) events in the context of model
anaysis is that they are not regarded as events. the model simulator triggers these events
automatically at the earliest opportunity and the sequence generator does not include

instantaneous events in its results.

In terms of the textual format of the AltaRica language, additional safety- and reliability-

information — described above — is stored in a dedicated extern clause.

Cecilia OCAS implements a particular dialect of the AltaRica language (referred to in this thesis
as AltaRica OCAYS). Other dialects include AltaRica Dataflow [22] (which is very similar to the
OCAS dialect), AltaRica LaBRI [13, 87], which is generally more expressive, and the temporal
dialect introduced by Pagetti et a [28, 111]. Finally, it is important to note that OCAS introduces
some additional terminology. Complex components, which are merely nodes in other AltaRica
dialects, are termed “equipment” in OCAS; similarly, a specia case of equipment — “system” — is
explicitly introduced.

3.5.3 Representing FLM Concepts in AltraRica / OCAS

Notions of flow, state and event make implementation of the FLMM’s concepts intuitive in

OCAS. Table 3 below shows the mapping between Failure Logic concepts and OCAS constructs.

Table 3 - Mapping Between FLM Concepts and Appropriate AltaRica/OCAS Constructs

FLMM Concept OCAS construct Additional constraints and conventions

Basic Component | Component

Complex System (for complex

Component components which are not | Distinction between “Component”, “Equipment” and
contained in any other “‘System” is specific to OCAS (other AltaRica dialects
complex component) consider all three as a single construct — “node”)

Equipment (for all other

cases)
Input Failure a) Boolean Input Flow or o . _
Two possibilities are open in OCAS/AltaRica:
Mode b) Aliteral in an

, e Each FM can be modelled as a Boolean flow (more
enumerated input flow

104



Output Failure
Mode

a) Boolean Output Flow, or
b) Aliteralinan

enumerated output flow

faithful implementation)

e Each FM can be considered as a literal
(enumeration symbol) of an enumerated type; the
flow assigned to such an enumeration type models
an FM Group. This is a more ‘efficient’
implementation, but it assumes mutually exclusive

FMs in a group.

FM Flow An assertion on the Can be graphically represented in OCAS environment
equipment or system level | or, alternatively, ‘hidden’ within textual representation.

FM Class Explicitly predefined and Dependent on the chosen representation of Input and
documented Boolean type, | Output Failure Modes (see above).
or OCAS provides facilities for documenting (in a free-text
A documented literal in a format) the nature of the FM Class that is represented
predefined enumerated type |by the predefined type

FM Group A predefined enumerated or | If FMs are represented as Boolean flows (see above)
structured (record) type FM groups can be represented as records. However, no

further grouping is permissible in OCAS (yielding a
constraint on the FLMM)

If FMs are represented as literals, the overall input and
output flow model an FM group (under a constraint that
all FMs in the group must have the same orientation).
Such FM groups can be further grouped by predefined
record types (with no constraint on orientation); however
no further (yet higher level) grouping is possible.

Propagation Assertion for the

Condition corresponding output flow (in
assert clause of the
component)

State Space A single state variable Distinction between Failure, Normal and Failure
assigned either a Boolean or |Handling nature of the state space is made by naming
an enumerated type convention only.

State Enumeration symbol in a o _
variable type (if enumerated) A privative staté must be modelled .e!ther as falsle value
true value for Boolean for Booleanlvarlables or as an explicit enur.neratlon
variables symbol (typically “OK”) for enumerated variables

Transition A single statement in frans

clause of component

characterisation

Syntactically transition specification distinguishes

between the guard and trigger (using “|-” separator)

105




Void Trigger Event Must be assigned Dirac(0) law

Failure Event May be assigned a probabilistic law (except Dirac)

Normal Event Event Identified as non-failure through naming convention.
Can be associated with the Dirac (x) law (where x > 0).

To illustrate the mapping, Figure 32 shows a Failure Logic characterisation of the Hydraulic
Accumulator of the Wheel Braking System in AltaRica. (The tabular pseudocode characterisation

is reproduced from Figure 33 in Appendix B for convenience)

node WBS_AccumulatorBool

flow
In : WBS_AccumulatorFMs : in ;
In"PressureOmission : bool : in ;
In"TooLowPressure : bool : in ;
In"Leak : bool : in ;
Out : WBS_AccumulatorFMs : out ;
Out"PressureOmission : bool : out ;
Out*TooLowPressure : bool : out ;
OutLeak : bool : out ;

state
FailSt : {OK,Isolated, TotalLoss,Leaking,PartialLoss} ;
NormsSt : {Full,Empty} ;

event
ConnectorBlocked, PartialDecompression, CompleteDecompression, Rupture,
NORMAL_UsedOnce, Void ;

init
FailSt := OK ;
NormSt := Full ;
trans

// Failure state entry logic

FailSt != Leaking and FailSt != Isolated |- CompleteDecompression -> FailSt := TotalLoss;
FailSt 1= Leaking and FailSt != Isolated and NormSt = Full

and In*Leak |- Void -> FailSt := TotalLoss; //Note void trigger

true |- ConnectorBlocked -> FailSt := Isolated; //Note void (tautology) guard

FailSt = Isolated |- Rupture -> FailSt := Leaking;

FailSt != TotalLoss and FailSt != Leaking

and NormSt I= Empty |- PartialDecompression -> FailSt := PartialLoss;

// Normal state entry logic
NormSt = Full and FailSt != TotalLoss
and FailSt I= Leaking and FailSt != Isolated
and In*PressureOmission |- NORMAL_UsedOnce -> NormSt := Empty;
assert
//Propagation conditions
Out*Leak = (FailSt = Leaking);
Out*PressureOmission = ((FailSt = Isolated) or (FailSt = TotalLoss) or (NormSt = Empty));
Out"TooLowPressure = ((FailSt = PartialLoss) and (NormSt = Full));
// Note no need to specify absence of other failure states
extern
law <event NORMAL_UsedOnce> = Dirac(1) ;
law <event Void> = Dirac(0) ;
edon

Figure 32 - AltaRica Characterisation of the WBS Accumulator (FM s as Booleans)

106



Accumulator
[Blue Channel]

Input Failure Modes

Failure Mode (ID) FM Class FM Group
PressureOmission Omission In
TooLowPressure LowValue In
Leak Commission In
Events
Failure (ID) Probability Characterisation Normal Event (ID) Comments
ConnectorBlocked UsedOnce Normal event
PartialDecompression Assume probability = 1
CompleteDecompression
Rupture
Normal States & Entry Logic
Normal State Trigger Guard
Empty UsedOnce Full & PressureOmission & ~Isolated & ~TotalLoss & ~Leaking
Full [Initial state, no re-entry]
Failure States & Entry Logic
Failure State Trigger Guard
Isolated ConnectorBlocked ~TotalLoss
TotalLoss <void> Leak & ~Leaking & ~Isolated
CompleteDecompression ~Leaking
Leaking Rupture ~Isolated
PartialLoss PartialDecompression ~Empty & ~TotalLoss & ~Leaking

Output Failure Modes & Propagation Conditions

Failure Mode (ID) FM Class FM Group Propagation Condition
PressureOmission Omission Out Empty | Isolated | TotalLoss
TooLowPressure LowValue Out PartialLoss & Full & ~Isolated & ~TotalLoss & ~Leaking
Leak Commission | Out Leaking

Figure 33 - Failure Logic Characterisation of the Accumulator (Pseudo-code)

The following observations should be made:

As was indicated above AltaRica does not permit the omission of an event in the
specification of transitions. To model a void trigger, an explicit event should be
introduced (in this example it is caled “Void") and assigned an ‘instantaneous’ Dirac(0)
law.

There is no facility in the language to distinguish between different types of states and
events — the distinction is made merely by naming conventions (e.g. see Norma Event
“NORMAL_UsedOnce”).

In the case of an accumulator a Normal event “UsedOnce” is expected to occur some time
after the supply of pressure from Blue Pump has ceased. This ‘temporal’ nature of this
event is highlighted by assigning it a Dirac(1) law.

A special state — “OK” — is added to a FailSt state variable that represents the

Accumulator’ sfailure state. This value represents the absence of any defect.

Finaly, it is important to note that the accumulator characterisation in Figure 32 essentially

implements each Failure Mode as a Boolean flow. Thisis aliteral implementation of the Failure

Logic Metamodel. However, an aternative representation is possible and is often more efficient:

failure modes can be represented as literals in an enumerated type (with a special case OK

107



enumeration symbol that represents absence of afailure mode). This representation, however, will
prohibit simultaneous output failure modes within the same FM Group. Figure 34 shows an

OCAS screen-shot with an alternative characterisation of the Accumulator component.

) WBSIACcumulatorEnurm;1

rGenera\ r o r iz I/@ States r Events r lcons ’/{..}" Sl Az r Altarica code

Code | Operators

Edit

BN =

node UBS_AccumulatorEnum
Flow
In : WBS_AccumFMs : in ;
Out @ WES_AccumFMs : omk ;
state
FailSt : {OK,Isolated, Totalloss,Leaking, Partialloss} ;
Fungt : {Full, Eupur}
avant

ConmecuorElocked, ParcislDeconpression, Coupletelecompression, Rupture, NOIMAL Usedinee, Void ;
init

FailSt := 0K ;
Fungt Full

trans

#/ Failure state entry logic

FailSt 1= Leaking and FailSt I= Isalated |- Completelbecompression -» FailSt := Totalloss;

Failt != Leaking ard FailSt != Isolated ard Funst = Full ard In=leak |- Void -»> Failft := Totalloss: //Noke: void trigger
tzwe |- ComnectorBElocked -> FailSt := Iscolated; //Note woid guard

FailSt 1= Isolated |- Pupture -» Failt := Leaking;

FailZt I= Totalloss ard FailSt != Lesking ard FunSt != Ewpty |- PartialDecowmpression -> Fail®t := Partialloss;

f/ Furctional state ertry logic

Funt = Full amd Fail3t 1= Totalloss

and FailSt != Leaking and FailSt != Tsolated

and In=Pressureluission |- NOEMAL Usedlnce -> PunSt := Empty:
assert

F/Propagation conditions

our = case [

(Faildt = Leaking} : Leak,
(Faildt = Isolated) or
(Fail3t = Totalloss) or

(Funft = Eupry) © PressureOmission,

(FailSt = Partialloss)
ard (Funft = Fuall) : TooLowPressure,

else OK } // Note the meed for a special spmbol "OK" o indicate sbsemce of any output Fi

Figure 34 - OCAS Characterisation of Accumulator (FMsasEnumeration Literals)

3.6 Case Study: Wheel Braking System

To demonstrate that the Failure Logic Metamodel can be adequately instantiated in AltaRica
language and the Cecilia OCAS tool, a pseudocode characterisation of the complete Wheel
Braking System is trandated into AltaRica equivalent. The complete AltaRica Dataflow model
(automatically exported by the Cecilia OCAS tool) is presented in the Appendix B2. In most

cases, the trandation is self-evident with only few aspects requiring further discussion.

3.6.1 Predefined Types: Failure Modes and FM Classes

First, as was suggested in previous section the choice is made to represent failure modes as literals
in enumerated flows. Furthermore, it can be observed that the output failure modes of most
hydraulic components adhere to a single pattern. In particular, al hydraulic components can
generate deviations of pressure. For each specific component, possible deviations are a subset of:

PressureOmission, PressureCommission, TooLowPressure, TooHighPressure and LowPressureCommiss

108



(although not all components are capable of producing al failure modes — for example, no

components on the Blue channel are capable of exhibiting either PressureCommission or
LowPressureCommiss).

In addition to pressure deviations, each hydraulic component is capable of generating a Leak

failure mode (which generally ‘flows’ in the opposite direction to pressure FMs).

This observation is utilised by declaring a general flow type in OCAS (Figure 35) and reusing it
for most hydro-mechanical components. The HydraulicFMs type is a record consisting of two
enumerated fields:

e The FWD field captures pressure failure modes

e The BWD field captures a Leak failure mode™

=l wBSiHydraulicFMs; 1

General I Properies

Type name  HydraulicFMs

Mame | Type | Crigntation | Crogs field
FiD VWEBSIPressureFMs;1 normal

B D WESILeakF ;1 inverse

& WESIPressureFMs;1 ik
General Properies
Type hame | PressureFMs JI: & SR 7
Name T General | Properties
oK ]
PressureQmission T TR | EEErA Assign ‘
PressureCommission . Name
LowPressureCommis — oK
TooHighFressure J Leak
TooLowPressure
B[] 2] 3] Bl % ]]_t][
e | ]
Save Close Save Close

Figure 35- OCAS: HydraulicFM s Type Along with Field Types (PressureFMs & LeakFM)

The two fields are each given a different “orientation” in OCAS. This means that whenever an
input, say Hydin, of the HydraulicFMs type is declared in a component, an input flow of HydIn"FWD
will be declared along with an output flow of HydIn"BWD.

On a component level, inapplicable input failure modes (with no viable interpretation) are simply

ignored and the characterisation ensures that these output failure modes are never generated.

% The BWD field could be equally modelled as a Boolean. The reason for modelling it as a two-valued

enumerated type is merely to maintain uniformity in the component characterisation and thus improve
readability of the code.

109



However, the HydraulicFMs type is not adequate for characterising the interface between the Pumps
and the Isolation Valve. In addition to generating pressure failure modes and to being susceptible
to the Leak (input) FM, pumps can themselves leak. This is particularly important for the Blue
Pump whose leak can propagate to the Accumulator causing it to empty prematurely.

Consequently, the Isolation Valve can propagate leaks in both directions.

To capture this additional faillure mode but to maintain as uniform a characterisation of
components as possible a separate flow type is introduced — PumpFMs. It has the same record
structure as the HydraulicFMs type; however, the FWD field is given a new enumeration type —
PumpPresFMs — that includes a‘forward leak’ described above (Figure 36).

=) WBSIPumpFMs;1

General Froperties

Type name PumpFMs

Name | Twpe | Qrientation |

FWD WESIPumpPresFMs;1 normal [ General r Properties

BWD WES/LeakFm1 inverse

Type nare  PumpPresFis

Mame

0K
Pressuredmission
PressureCormntnission

CIBENE e

LowPressureCommis

Name [FwD o
Type | predefine |WBE:IPumpPresFMs;1 ’—
— [&][2][=

TR T —

Figure 36 - OCAS. PumpFMs Type

Similarly, general flow types are introduced for al other groups of failure modes:
o the ControlFMs type encapsulates all of the failure modes which are associated with the
BSCU CMD output, the two Pedal inputs and the output and input of the Mechanical
Pedal Position;
o the AntiskidFMs captures failure modes associated with the AS output of the BSCU;
o the ValidityFMs model BSCU validity output as well as the outputs of individual monitors;
o the PowerFMs — describe the BSCU'’ s electrical power inputs.

In addition to providing a uniform structure to the AltaRica model, definition of these general

types ensures the consistency and correctness of the model (since OCAS does not permit the

establishment of connections between dissimilar flows).

110



3.6.2 Model Architecture and Examples of Components

Figure 37 shows an AltaRica characterisation of the isolation valve (which i< fully consistent with
the pseudocode characterisation presented in Appendix B1). Note that, since Vaves generaly
have two orthogonal failure state spaces — related to leakage and controllability — two state

variables are introduced (FailSt1 and FailSt2) in each component characterisation.

Figure 38 shows the top-level architecture of the WBS failure logic model in Cecilia OCAS. The
tool allows the user to associate components with a set of graphical icons, which facilitates

intuitive representation of the architecture and the representation of animation during simulation.

node WBS_lIsolationValve
flow
In: WBS_PumpFMs :in;
IN"FWD : WBS_PumpPresFMs : in ;
In"BWD : WBS_LeakFM : out ;
Out : WBS_PumpFMs : out ;
Out*FWD : WBS_PumpPresFMs : out ;
Out"BWD : WBS_LeakFM :in;
state
FailSt1 : {OK,StuckClosed,StuckOpen} ;
FailSt2 : {OK,Leaking} ;

event

Contamination, Jam, Rupture ;
init

FailSt1 := OK ;

FailSt2 := OK ;
trans

// Failure state entry logic
true |- Contamination -> FailSt1 := StuckClosed;
FailSt1 != StuckClosed and (In*"FWD = PressureOmission or InN"FWD = Leak) |- Jam -> FailSt1 := StuckOpen;
true |- Rupture -> FailSt2 := Leaking;
assert
// Propagation conditions
// Output FMs to downstream section of WBS:
Out*FWD = case {
FailSt2 = Leaking or
INAFWD = Leak and FailSt1 = StuckOpen : Leak,

FailSt2 != Leaking
and (FailSt1 = StuckClosed or IN"FWD = PressureOmission or

(In"FWD = Leak and FailSt1 != StuckOpen)) : PressureOmission,
IN"FWD = TooLowPressure and FailSt1 != StuckClosed
and FailSt2 != Leaking : TooLowPressure,
else OK};

// Output FM to upstream (pump) section:
In"BWD = case {
FailSt2 = Leaking or
Out"BWD = Leak and FailSt1 != StuckClosed : Leak,

else OK};
edon

Figure 37 - AltaRica: Failure Logic Characterisation of the Isolation Valve

111



¥ Cecilia WorkShop - Dutil de Conception et d'Analyse Systéme [System design and analysis tool] =13l x|

File Library Edition System ‘iews Options

E:E:@ @‘ﬂ|ﬂ|@ & |E“MH0| ‘Q"QHWU% |" WL ITNEISE @E WD % E “‘#;&
:_.5WESJW'BS|1 Sr s s s s s s s s sl ol E

“hystern IWESJWBS;1 Equiprment I

GreenPump BlueFunp

4h IsolationValve

h ShucOffielectorValve Accumulator

BSCU pscu Iunction —E:.

h ASShutOffValve
y
’ GreenMeterValve
A
BlueHeterValve4
MechPedalPosition
— :g
C i
i hee®races
02:33 \dfadmin (admins [130710a

Figure 38 - OCAS: Top-Level Failure Logic Model Architecture of WBS

3.6.3 Virtual Components: Model-Level Input FMs and Observer

The Wheel Braking System has a number of system-level inputs. However, OCAS does not
permit the analysis or simulation of models with free input flows. To simulate the WBS model in
OCAS, it is therefore necessary to define a number of “virtual components’ which emulate
system inputs. These observers have a simple structure — they all have one output of the
appropriate type (e.g. PowerFMs) and a state variable — FailSt — of the same type. For each literal in
the type except the OK privative, a ‘pseudo-failure’ is declared. Each such event moves the
component into a corresponding state; the state is propagated to a component output. Figure 39
shows the characterisation of such a “virtual component” for power inputs. Overal, the WBS
model contains seven input ‘stubs’: three pedal inputs, two power inputs as well as leak inputs for
the green and the blue meter valves (the latter two emulate leaks in the wheel assemblies, since
the internal structure of the assembly is outside the scope of the model) — al of these inputs are

shown in Figure 40.

Another type of “virtual component” that is often found in AltaRica Models is the Observer. An
observer may be necessary if the system level failure condition(s) of interest involve more than
one output flow. This is clearly the case in the WBS — since braking is determined by the
combination of the Green and Blue pressure outputs. The WheelBrakes component has the role of

observer in the WBS failure logic model.

112



node WBS_PowerStub
flow

Out : WBS_PowerFMs : out ;
state

FailSt : WBS_PowerFMs ;
event

INPUT_PowerOmission ;
init

FailSt := OK ;
trans

FailSt = OK |- INPUT_PowerOmission -> FailSt := PowerOmiss;
assert

Out = FailSt;
edon

Figure 39 - Characterisation of the ‘Virtual’ Input Component for PowerFMs Type Input

¥ Cecilia Workshop - Dutil de Conception et d'Analyse Systéme [System design and analysis tool] o [=] 1]
File Library Edition Systemn Views Oplions
lalu[@]a] (L B m[Al-] (@@
4
¥ WEBSIWBS 1 S s s i s
ystermn I\NBSIWESA Eqummem:l
ol
BusharB Greenfunp BluePump
Bushark
e
4 Tsolerioialue
X
22
; ) SoutOfEszlectarialve Acoumulator
Pedall BSCU | s . -
Junection
— Y
Fedalz ) AsshtOEEValve
; -
) Creenlietervalve y o
BlueMeterValve A8 Pedail{
MechPedalPosition
GreenBrakeshssembly Bluerak bly ~ ii
(g™
e Praes
03:00 W fadmin aemins) [13m07/09

Figure40 - OCAS: WBS Model Architecturewith ‘Virtual’ Input Components

3.6.4 Model Simulation and Analysis

Once al of the inputs are bound and the observer(s) is defined, it is possible to simulate the model
to perform inductive anaysis interactively (similar to a, potentially multi-failure,
FMEA/FMECA). Figure 41 shows an OCAS simulation of the WBS model where the user has
triggered two failures in the BSCU as well as a failure of the Accumulator’s connector and a
blockage of the Isolation Valve. The result is an omission of the wheel braking shown graphically
by the simulator’s GUI (using user-defined icons and col ours schema).

113



3 Cecilia WorkShop - Outil de Conception et d'Analyse Systéme [System design and analysis tool] _[al x|

ol <e] 7 [® ) [ [= %]
i s G g
ime| Current Time : 0.0 ME executmn| Current Cycle 10 System : |WESJWBS:1 Eguipment | =

B

File Library Edition Systern Views Options

| [salalas i s[elao] Qe EEINEE

q ”
} BWESIWES -

1k
usbarB GreenPunp BluePunp
usbat.

[

i - \ L L
] 2
i i o ShutDffSelectoralve

Pedall BSCU |gsa

4 > w

B

T
=

TzolationValve

Accumulator

Junction

PedalZ ABShutDff¥alve

s

o

b GreenMeterValve

Blueletervalve Pedalll

MechPedalPosition

]

SreerBrakeshssemsly [ W BlueBrakeshsseubly [ W

WheelBrakes

| com— |

03:05 J‘Edmm {admins) 13/07i08

Figure4l - OCAS: Model Simulation

In addition to simulation, sequence generation can be used to search through the permutations of
events (up to a particular size) exhaustively and to identify all causes (similar to FTA’s Minimal
Cut Sets) that lead to a particular system-level condition. Table 4 shows the list of MCSes up to
size (cardinality) of three failures for Inadvertent Braking (a potentially catastrophic failure
condition in WBS) generated by the OCAS sequence generator.

Table4 - Minimal Cut Setsfor Inadvertent Braking

Sequence / MCS generation results | FC: Inadvertent Braking
Single points of failure:

{BlueMeterValve.JamOpen}

{BlueMeterValve.SpringFailure}

{GreenMeterValve.JamOpen}

{GreenMeterValve.SpringFailure}

{MechPedalPosition.Jam}

{PedalM.INPUT _InadvertentBraking}

Double-failures:

{BSCU.BSCU1.COM.CMDprocessStuck, BSCU.BSCU1.MON.ProcessStuck}

{BSCU.BSCU1.MON.ProcessStuck, Pedal1.INPUT _InadvertentBraking}

{BSCU.BSCU1.MON.ProcessStuck, Pedal2.INPUT _InadvertentBraking}

{BSCU.BSCU2.MON.ProcessStuck, Pedal1.INPUT _InadvertentBraking}

{BSCU.BSCU2.MON.ProcessStuck, Pedal2.INPUT _InadvertentBraking}

{BSCU.ValidityMonitor.ProcessStuck, Pedal1.INPUT_InadvertentBraking}

{BSCU.ValidityMonitor.ProcessStuck, Pedal2.INPUT _InadvertentBraking}

{Pedal1.INPUT _InadvertentBraking, Pedal2.INPUT_InadvertentBraking}

{Pedal1.INPUT _InadvertentBraking, ShutOffSelectorValve.SpringFailure}

{Pedal2.INPUT _InadvertentBraking, ShutOffSelectorValve.SpringFailure}

Triple Failures:

{BSCU.BSCU1.COM.ASprocessStuck, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck}

{BSCU.BSCU1.COM.ASprocessStuck, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck}

{BSCU.BSCU1.COM.ASprocessStuck, BSCU.BSCU2.COM.CMDprocessStuck, ShutOffSelectorValve.SpringFailure}

{BSCU.BSCU1.COM.ASprocessTerminated, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck}

{BSCU.BSCU1.COM.ASprocessTerminated, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck}

114



BSCU.BSCU1.COM.ASprocessTerminated, BSCU.BSCU2.COM.CMDprocessStuck, ShutOffSelectorValve.SpringFailure}

BSCU.BSCU1.COM.CMDprocessStuck, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck}

BSCU.BSCU1.COM.CMDprocessStuck, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck}

BSCU.BSCU1.COM.CMDprocessStuck, BSCU.BSCU2.COM.CMDprocessStuck, ShutOffSelectorValve.SpringFailure}

BSCU.BSCU1.COM.CMDprocessTerminated, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck}

BSCU.BSCU1.COM.CMDprocessTerminated, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck}

BSCU.BSCU1.COM.CMDprocessTerminated, BSCU.BSCU2.COM.CMDprocessStuck, ShutOffSelectorValve.SpringFailure}

BSCU.BSCU1.MON.ProcessTerminated, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck}

BSCU.BSCU1.MON.ProcessTerminated, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck}

BSCU.BSCU1.MON.ProcessTerminated, BSCU.BSCU2.COM.CMDprocessStuck, ShutOffSelectorValve.SpringFailure}

BSCU.BSCU1.MON.ProcessorError, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck}

BSCU.BSCU1.MON.ProcessorError, BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck}

BSCU.BSCU1.MON.ProcessorError, BSCU.BSCU2.COM.CMDprocessStuck, ShutOffSelectorValve.SpringFailure}

BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck, BusbarA.INPUT_PowerOmission}

BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck, Pedal1.INPUT_ToolLittleBraking}

BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck, Pedal2.INPUT_LackOfBraking}

BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck, Pedal2.INPUT_ToolLittleBraking}

BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck, BusbarA.INPUT_PowerOmission}

BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck, Pedal1.INPUT_LackOfBraking}

BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck, Pedal1.INPUT_TooLittleBraking}

BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck, Pedal2.INPUT_LackOfBraking}

BSCU.BSCU2.COM.CMDprocessStuck, BSCU.ValidityMonitor.ProcessStuck, Pedal2.INPUT_ToolL ittleBraking}

BSCU.BSCU2.COM.CMDprocessStuck, BusbarA.INPUT_PowerOmission, ShutOffSelectorValve.SpringFailure}

BSCU.BSCU2.COM.CMDprocessStuck, Pedal1.INPUT_LackOfBraking, ShutOffSelectorValve.SpringFailure}

BSCU.BSCU2.COM.CMDprocessStuck, Pedal1.INPUT_ToolLittleBraking, ShutOffSelectorValve.SpringFailure}

BSCU.BSCU2.COM.CMDprocessStuck, Pedal2.INPUT_LackOfBraking, ShutOffSelectorValve.SpringFailure}

{
{
{
{
{
{
{
{
{
{
{
{
E
{BSCU.BSCU2.COM.CMDprocessStuck, BSCU.BSCU2.MON.ProcessStuck, Pedal1.INPUT_LackOfBraking}
{
{
{
{
{
{
{
{
{
{
{
{
{

BSCU.BSCU2.COM.CMDprocessStuck, Pedal2.INPUT_ToolLittleBraking, ShutOffSelectorValve.SpringFailure}

3.7 Role of the FLMM in the Safety Case

By definition, results of the system safety assessment provide evidence for a system’s safety case
(or, otherwise, indicate that the system is not adequately safe). In the context of model-based
safety assessment, the integrity of these results clearly depends on the ‘validity’ of the model.
Consequently, justification of the model’ s adequacy must form a crucial part of the overall safety
case of the system [63].

However, as was stressed in Chapter 2, any ‘safety assessment model’ is in essence a hypothesis
posed by the safety engineers, and as such can never be fully and formally validated. In this

setting, a structured and clear framework for deriving the model becomes indispensable.

The Failure Logic Metamodel presented in this thesis (along with the guidance developed by the
author®®) provides the basis for constructing an argument of model adequacy which should be
incorporated into the overall system safety case. Furthermore, the separation between the FLMM
and the language-specific instantiation facilitates a structured approach to safety case construction
capable of improving management of the safety case by identifying reusable arguments and by
defining the scope of valid reuse. In particular, the overall secondary safety case of a system may

be separated into a number of largely independent arguments:

% See section 6.4.2 (Chapter 6)
115



. Argument of the adequacy of the failure logic modelling approach as a whole for the
purpose of analysis of aparticular system;
1. Argument of the acceptability of the constraints introduced by the instantiation of the
approach in aparticular specification language;
1. Mode-specific argument of the adequacy of the modelling assumptions introduced by
safety engineers.

In practice, considering the first argument will yield a standard set of criteria for application of the
failure logic modelling approach (irrespective of the details of a particular technique). One such
criterion is the ability to represent system design adequately as a set of discrete components and
interactions over well-defined paths. Provided that these criteria are met, the first argument will

be standard for al systems and for al engineering organisations.

The second argument will yield further language-specific conditions and will generally be stable
and reusable within an engineering organisation across similar systems. For example, to argue the
adequacy of the schema for the FLMM instantiation in AltaRica OCAS, it must be demonstrated
that the lack of facilities for representing non-deterministic behaviour in the failure domain (e.g.
aternative outcomes of failures) does not adversely affect the accuracy of the WBS model.
Further aspects that may require justification are the lack of ability to construct deep hierarchies
of FM Groups and the strict constraint of mutual exclusivity of Failure Modes modelled as literals

within a single enumerated type.

The last argument is clearly specific for each safety critical system.

3.8 Limitations of the ‘Baseline’ Approach

Preceding sections of this chapter have unified most of the existing failure logic modelling
approaches and introduced natural extensions to previously exclusively combinatorial and FM-
focused technigues. Whilst the extensions increase the expressive power of the techniques such as
FPTN and HiP-HOPS, the notation-agnostic definition of the failure logic metamodel makes it
easier to identify some, previously unreported, problems shared by the existing techniques. We

use the simple tank system example — introduced in Chapter 1 —to illustrate.

Introduction of the notions of state and normal event permits more accurate representation of the
failure logic of the system. Firstly, it allows certain sequences of failures to be disregarded — such
as sensor’s calibration failing after the sensor has developed an open- or short- circuit (and was,
thus, disregarded by the controller). Secondly, and more importantly, the failure logic model can

capture the fact that, following the omission of fluid inflow into the tank, the hazardous condition

116



(inability of the tank to supply fluid on demand) will only occur after the fluid stored in the tank is
used-up by the consumers. Whilst the latter is a normal event, its recognition not only improves
the superficial accuracy of the analysis, but is also capable of providing valuable feedback to the
design of the process plant as awhole. In particular, given that the intent of the system isto raise
the alarm after any safety-significant failure, this signal can be provided to systems that consume
the fluid to avoid non-essential demands for the limited resource and, if necessary, to initiate

procedures for controlled plant shut-down.

This overal intent of the alarm to forewarn any hazard, however, aso highlights the limitation of
the failure logic modelling framework as presented in this thesis so far. It is reasonable to assume
that annunciation of the impeding hazard (whether an overflow or emptying of the tank) affectsits
potentia severity. “Unannunciated Emptying of the Tank” is therefore a reasonable refinement of
the original hazard and can be specified as a conjunction of the Too Low failure mode of the tank
level and the Omission failure mode of the alarm. However, analysis of the failure logic model of
the tank system (constructed along the lines of Chapter 1, but adapted to the metamodel presented
in this chapter) would not identify Stuck Closed failure of the valve as a sufficient cause for this

condition.

At the level of failure logic model specification the problem is that there is no physica
dependency path from the Valve to the Alarm. Whilst a failure mode flow between the two

components can be defined, in the absence of such a path, its semanticsis not clear.

Similar problems exist with the Rupture of the tank and Omission of the fluid supply to the
system. Problems, of non-local dependencies between components in the failure logic domain,
become particularly severe in reconfigurable and multi-modal systems (and are addressed in
Chapter 5 of the Thesis).

Further limitation of the failure logic modelling methods comes from a restricted notion of
component interface embedded in the metamodel. In particular both states and events (normal and
failure) of components are currently hidden within boundaries of component characterisations.
Consequently all dependencies between components must be specified as explicit failure modes
and failure mode flows. In the tank system this may pose a pragmatic problem for the controller
component. Chapter 1 has stipulated that this component is implemented in software and details
of the hardware platform were considered to be outside the scope of the assessment. Considering
the implementation platform may highlight dependencies of the controller on new external factors
(for instance on the provision of the electrical power). Furthermore, it may aso identify new
dependencies between existing components; for instance, if sensors are connected to the same
input/output card, a short circuit from one sensor may cause damage to the card, thus, rendering

the other sensor dysfunctional (due to the inability of the controller hardware to provide an
117



excitation signal). Similarly, the controller hardware may be sensitive to the short circuits of the
alarm and/or the valve. Finally, considering the zonal alocation of the equipment may reveal yet

more ‘covert’” dependencies and, thus, components’ input and output failure modes.

Overal, the ‘conceptua’ failure logic model of the system presented in Chapter 1 cannot be
presently composed with the models of plant zones and hardware platform. Instead, to conduct a
more complete safety assessment, safety engineers either need to remodel the entire system or to
have foreseen all external dependencies between al such different models in the first place (and
coordinated the failure mode interfaces between different models throughout their specification).
Neither of the approaches is practicable in the context of large-scae safety critical systems
engineering. This highlights issues with the claims of composability and compositionality of the

current failure logic modelling techniques which are discussed in the following chapter.

3.9 Conclusions

This chapter has demonstrated that existing failure logic modelling technigues can be generalised
by a single unifying Failure Logic Metamodel (FLMM) that defines key concepts of the approach
and outlines their inter-relationships. The metamodel has been further extended to cover dynamic
and normal behaviour in the failure domain (necessary for modelling realistic systems). The
extension also enables the relationship of failure logic modelling techniques to some, state-
focused, languages that have been used in the context of model-based safety assessment (such as
SEFT [80], AADL Error Model Annex [136] and, of course, AltaRica[22]).

The chapter has further demonstrated that the language-independent FLMM can be instantiated in
the context of a third-party general specification language. However, it was argued that the
metamodel-based approach is capable of separating conceptual- and implementation- level
concerns which may be beneficial for the construction and maintenance of the safety cases within

an engineering organisation.

Similarly, from the perspective of this thesis, the definition of the FLMM permits one to abstract
from the details of individual techniques and investigate fundamental properties of the failure
logic modelling approach as awhole. To this extent, in addition to the contributions listed above,
this chapter has defined a ‘baseline approach’ that is further investigated and extended in the
following chapters. In particular, it has often been claimed that individual failure logic modelling
techniques are more effective than traditional analysis approaches and yield compositional and,

often, reusable models. Chapters 4 and 5 of this thesisinvestigate these claims further.

118



Chapter 4: Composition of Multiple Models

4.1 Introduction

The previous chapter presented the generalised Failure Logic Metamodel (FLMM), along with the
claims made for individua failure logic modelling techniques (e.g. see [162, 163, 165])
concerning the compositionality and reusability of the modelling artefacts. This chapter
investigates the validity of such claims in more detail in the context of large-scale engineering

projects.

Claims of the compositionality of failure logic models are typically made in the context of a
single system development. Furthermore, it is often assumed that the system development is a
fully-integrated process and that the safety engineers have complete visibility of all of the
development activities and unrestricted access to al of the design materials and engineers
involved in the development. In such a context, it may be reasonable to assume that the safety
engineers are capable of comprehending the system as a whole at some level of abstraction
sufficient for the identification and definition of all failure mode interfaces between individual
components. Consequently, under such assumptions the failure logic models appear to be
compositional. Examples cited are typically relatively small-scale stand-alone systems or
individual systems of larger engineered artefacts such as aircraft, automobile, maritime vessel or a
process plant. In this chapter, the issue of the compositionality of failure logic models is addressed
in the context of such large-scale artefacts. To emphasise the qualitative difference in scale this
thesis adopts Pumfrey’s term of “platform”, defined as “the largest engineered artefact (e.g. a

complete aircraft, train or chemical process plant)” [123].

Unlike the development of individual systems, the design of platforms is too complex an
engineering activity to be carried out in a highly-integrated manner. Consequently, the overall
design is typically broken down into manageable parts. These parts are engineered in relative
isolation: their design utilises different engineering disciplines, methods and tools and the process
is often carried out by separate engineering organisations. It is also important to stress that a
platform is often decomposed in several orthogonal ways. On the one hand, the decomposition
can follow ‘structura’ criteria, such as the decomposition of an aircraft into individual systems or
decomposition of an airframe into mgor zones, whereby the different elements of a design are
‘sorted’ into a number of — typically non-overlapping — groups. On the other hand, the
decomposition criteria can be based on relevant engineering concerns, disciplines and classes of
interactions being considered (e.g. the propagation and effects of leaks being considered
separately from issues of pressure provision by a hydraulic power distribution system). In

practice, both of these broad types of decomposition are combined to form complex hierarchies of

119



the platform. To address issues of the construction and composition of failure logic models in the
context of platforms this chapter first rationalises platform decomposition using a flexible concept
of “engineering domain” — a generalisation of the “view” concept established in the field of
Software Architectures [33, 67, 70].

Clearly, in order for the failure logic modelling approach (or indeed any safety assessment
method) to be practicable in the context of safety critical platforms development, the technique
must be shown to be compositional with respect to the organisation of the engineering process and
the decomposition of the platform. In this context, many of the assumptions on which claims for
the compositionality of current failure logic modelling methods are based no longer hold. In
particular, it is unrealistic to expect that all dependencies between Domain-Specific Failure Logic
Models (DSFMs) will be systematically identified in atop-down fashion before individual models
are constructed; therefore the naive approach to failure logic model composition, based on the
connection of failure mode interfaces, is unlikely to be sufficient. This chapter systematically
examines how failure behaviour captured in one DSFM can affect and manifest in other models.
An extended approach to the composition of models is then presented and illustrated by means of
a case study concerning a common computational platform and its relationships with the Wheel

Braking System failure logic model constructed in the previous chapter.

4.1.1 lllustration of the Problem Addressed by the Chapter

To illustrate a problem of system failure logic model composition in the context of large scale
safety-critical platforms this section returns to the WBS case study introduced in the previous
chapter.

For the hydro-mechanical part of the system, the previously presented failure logic model of the
WABS has only considered failure modes due to intentional dependency paths between components
established by the hydraulic pipework. However, the spatial organisation of the components
within the airframe may aso inadvertently result in interactions between the WBS components as
well as their interactions with components of other systems. For example, if components of the
blue and green hydraulic lines are installed in physical proximity, a leak of the flammable
hydraulic fluid in one line combined with excessive heat (or sparks) generated by any valve (of
the same line) running dry may result in afire that can destroy equipment of seemingly redundant
hydraulic lines. Further interactions between the WBS equipment in terms of phenomena such as
vibration, electro-magnetic interference (EMI) and even temperature of the hydraulic fluid may
affect safe operation of the system. Furthermore, the failure state of the equipment can be affected
by components outside the WBS: for example valves or pipework may be destroyed by fragments

generated by aircraft tire burst or engine disc failure.

120



The baseline failure logic metamodel presented in the previous chapter stipulates that all such
unintentional interactions should be recognised (and modelled) as input and output failure modes
of the hydro-mechanical components. Not only is such model unlikely to be maintainable, but
input and output failure modes of the WBS components would not be fully identified before the
aircraft installation model is finalised by the design engineers and extensive zonal and particular
risk analysis is undertaken by the safety engineers. Therefore, as design progresses the
specification of the failure logic model — and, thus, the safety assessment — of the WBS would
either have to be postponed (reducing the opportunity for effectively influencing the design before

it matures) or would have to undergo extensive modifications.

Furthermore, this ‘supermodel’ approach undermines a key principle of modern system
development and safety assessment approaches — separation of concerns between different

engineering organisations.

Similar problems can be found when WBS interactions with other aircraft systems, especially
those providing aircraft-wide infrastructure, are considered. In addressing issues of the
compositional failure logic modelling in the context of safety-critical platforms, this chapter uses
the case study concerned with the composition of independently defined models of the WBS and
Aircraft Computation and Communications Infrastructure. Consistent with the notion of
Integrated Modular Avionics (IMA), the latter is typically considered to be an aircraft system in
its own right. The IMA and WBS can be designed by different suppliers and should be initialy
analysed in isolation.

However, as it was previoudy stipulated that the WBS controller (i.e. the BSCU) is
predominantly implemented in software, the two systems clearly interact. Consequently, failures
of the IMA can affect the correct and timely computation of braking commands, whilst —
depending on the details of scheduling and communication protocol — failure modes of the BSCU
software may affect the computation and communications infrastructure and, potentialy,
propagate to the application software of other aircraft systems (such as landing gear
extraction/retraction or fuel management systems). At the early stages of the design it is
unrealistic to expect safety engineers responsible for the wheel braking system to fully identify
feasible failure modes of the infrastructure that can affect the BSCU or, conversely, failure modes
of the BSCU that are relevant to the infrastructure (since these engineers will not necessarily have
sufficient knowledge of the infrastructure design and, thus, failure logic). This chapter extends the
failure logic modelling methodology to alow multiple failure logic models — the DSFMs — to be
specified in relative isolation and composed at the later stages of aircraft development.

121



4.1.2 Objectives for the Composition of Failure Logic Models

In providing a practical approach to DSFM construction and composition the following objectives
were established:

l. Support any organisation of the development process: the boundaries of DSFM's will

not necessarily coincide with intuitive boundaries for the safety assessment process. In
such cases it should be possible for DSFMs boundaries to be dictated by the
development rather than by safety assessment considerations.

1. Do not under mine the allocation of responsibilities and accountability (and, even, the

liability) of different organisations. the composition of failure logic models must be as

non-intrusive as possible. Any additiona modelling necessary for the integration of
DSFMs should be isolated from the constituent models themselves.

I1. Facilitate the proactive management of project risks associated with safety-

significant findings: the composition process should allow for the composition of models

at various levels of maturity throughout the development process. In particular it should
be possible to compose immature and ‘lightweight’ DSFMs which do not fully or
systematically identify interfaces with other domains.

V. Reduce the impact of imperfect interfaces and the evolution of domain

dependencies: it should be possible to compose DSFMs even in the absence of well-
defined FM interfaces and, as far as practicable, without requiring redefinition of

individual constituent failure logic models.

These four objectives have shaped the approaches to the rationalisation of platform decomposition

and the integration of failure logic models presented in this chapter.

4.2 Views and Domains of Safety-Critical Platforms

In this section, the decomposition of the platform (and platform engineering process) is
considered more closely and rationalised by a flexible conceptual framework. The traditional
decomposition model, al'so known as a containment hierarchy (whereby a platform is decomposed
into systems and structures), is combined with the notion of viewpoints (established in the
software architecture community) to yield a simple but flexible concept of the “engineering

domain”.

4.2.1 Views and Viewtypes

Having emerged as a consolidated discipline in the late 1990s, the study of Software Architectures
[18, 67] has taken an approach to managing the complexity of software systems and the
separation of concerns that is conceptually different from the traditional containment hierarchy.

122



Often attributed to a 1974 paper by David Parnas [118], the view of the software architecture
community is that software cannot adequately be represented in a “simple one-dimensional
fashion” [33] and as a single hierarchy. Instead the architecture should be rendered through a
number of different loosely coupled views, each addressing particular aspects of the software and

particular concerns of the stakeholders.

The IEEE's Recommended Practice for Architectural Description [70] describes how software
architectures can be documented through a number of views organised by viewpoint (defined as:
“a pattern or template from which to construct individual views. The viewpoint establishes the
purposes and audience for a view and techniques or methods employed in constructing a view”).
The standard suggests that viewpoints are determined according to the concerns of relevant
stakeholders. Thisis auseful observation for the purpose of this thesis. Indeed, different groups of
engineers with different responsibilities, expertise and modelling and analysis tool sets can be seen
as different stakeholders for the platform (or its parts). The IEEE’s conceptual model allows for
the ‘filtering’ of aspects of the platform design that are relevant for a particular group of

engineers.

The general notion of the viewpoint is specialised further by the SEI “Views & Beyond”
approach. This approach identifies three viewtypes (general families of views): Component-and-
Connector (C&C), Module and Allocation. Each viewtype “defines the element types and
relationship types used to describe the architecture of a software system from a particular
perspective’ [33]. The first two viewtypes document units of execution (and, thus, behaviour) and
principal units of implementation (and, thus, the organisation of the development process)
respectively. The alocation viewtype acts as ‘glue’ and documents various relationships between
the software (as represented in both C&C and Module views) and its environment (both in terms

of development and execution).

The concept of the viewtype is extremely general and does not in itself facilitate definition of the
views (i.e. representations of the particular architecture). To bridge the gap in levels of
abstraction, SEI researchers propose a notion of “ style” defined as the “specialization of element
and relation types, together with a set of constraints on how they can be used”* [33]. Individual
views are an instantiation of a style and a style can be seen as a refinement of one (or more) of the
three viewtypes (Figure 42). Styles are described through “style guides’ which capture both the
conceptual metamodel and, if applicable, the syntax of the views that adhere to the style.

*! |t isimportant to note that this definition of style (and its description in [32]) amalgamates two potentially
dissimilar concepts: the style of the architecture and the type of an architecture description (or view). In this
thesis the author focuses exclusively on the later interpretation.

123



Architecture Description

1 documents

1. organised by
conforms to documents
View Style Style Guide
* 0.1 1 1
collects
1.% belongs to
refines
Viewtype

1.

c&cC Viewtypel |Allocation View‘typel |Module Viewtypel

Figure42 - SEI " Views and Beyond" Framework

The following section shows how the SEI notion of viewtype, when combined with a traditional
systems engineering containment hierarchy, can be utilised to provide a flexible framework for

the rationalisation of the decomposition of large-scale safety-critical platforms.

4.2.2 Domains and Domain-Specific Models

To support the composition of failure logic models, it is first necessary to model the different
types of decomposition that can be found in the engineering of complex platforms. This thesis
defines a “platform” as a collection of elements which participate in some interactions in order to
deliver the necessary behaviour both in terms of functional and non-functional properties (as
shown on the right hand side of Figure 43). It is also observed that the interactions between the
components can be typically grouped into general “interaction types’ and that some (more
complex) elements can be decomposed into finer-grained elements. Note that the elements are not
necessarily limited to equipment or components of the system — they can equally represent

structura elements (e.g. zones or volumes).

As was dtated above, the complexity and scale of the platforms mean that they cannot be
engineered as a single artefact. Instead, platforms are decomposed into manageable parts which
can be designed and analysed relatively independently. The concepts of views and viewpoints
provide a useful facility to (partially) rationalise the decomposition of the platform into
representations focussed on particular engineering concerns and aspects of the platform. In other
words, the viewtype alows for the selection of a particular set of interaction types which are
relevant to a particular set of engineers. However, the concept of the viewtype is not sufficient to
capture the decomposition of the platform fully. Indeed, platform development is typically carried
out by an extended enterprise — a loosely coupled group of companies and organisations often
124



organised into a hierarchical supply chain. In such a hierarchy, an individual company (especialy
one located towards the top of the hierarchy) is likely to have the scope of its responsibilities
bound by some physical part of the platform, such as a particular system or a mgjor part of the
structure in the standard containment hierarchy model. Views and viewpoints do not define such a
physical scope clearly (for example, the IEEE standard defines the view as “a representation of a

whole system™ from a perspective of related sets of concerns’ [70]).

Platform
El t
oo S lemen :
|
|
1

In!eractionType}—{ Interaction l
0 7R
|

edScope

EngineeringDomain g

edViewpoint

edElement

connects

sensitiveTo 1.

influences

sensitiveTo o0
influences

. T enables
I
(-
|
|

____________________________________________________________________________

Figure 43 - Engineering Domain: Internal Structureand Tracesto Platform

To reflect both types of platform decomposition it is necessary to introduce a new concept of the
Engineering Domain. Characterised by Scope and Viewpoint, the engineering domain captures the
view of the particular engineering organisation of the part of the platform over which it has
responsibility. The scope of the engineering domain ‘selects’ the platform elements that are
relevant to the domain and the viewpoint ‘selects’ the relevant interaction types (as shown in the
upper section of Figure 43). Of course the scope and viewpoint are not fully independent entities
and have to be consistent such that, for example, at least some elements within the scope can
interact in the way selected by the viewpoint. However, details of this interdependence are beyond

the scope of discussion in thisthesis.

It is interesting to note that engineering domain is closely related to the SEI component &
connector viewtype. Domain representations identify elements (from the domain’s perspective),
classify those into components and paths (functionaly passive components which enable
interactions) and show how components interact over paths (as shown in the bottom-left of Figure

43). Domain elements and interactions clearly relate to the elements and interactions of the

% Our emphasis. Note that, given the contexts of the standard and this thesis, “whole system” should be
interpreted as “whole platform”

125



platform. However, this relation is relatively weak (shown as a “ dependency” relationship), since
a number of domains can represent the same (or overlapping) set of platform elements and the

same (or overlapping) interaction types at different levels of abstraction.

4.2.3 FLMM in Engineering Domain Framework

Having presented the framework for rationalisation of the platform decomposition and design
process, it is necessary to show how failure logic modelling relates to the framework. The
relationship is, in fact, two-fold: failure logic models are themselves an engineering domain and

they relate to other domains.

Firstly, the failure logic modelling approach is itself a viewpoint or, returning to the SEI
terminology, an architectural style, and the previous chapter of this thesis can be seen as the style
guide. Showing interaction between components in terms of failure modes, the ‘FLM style’
clearly falls within the C& C viewtype and — once supplemented with the scope in the context of
platform — yields an engineering domain on its own. In principle, the failure logic modelling
approach, itself, does not restrict the scope of this domain — it can be applied to the platform as a
whole or to any subset of its elements. However, for failure logic modelling to be compositional
and practicable in the context of an industrial development process, the scope of failure logic

models must be set to reflect the scope of other engineering domains.

This constraint establishes the relationship between failure logic models and the domain
framework and yields a notion of the Domain Specific Failure Logic Model (DSFM) — a failure
logic model with a scope identical to that of some (other) engineering domain. Indeed, the
structure of the DSFMs should relate closely to the structure of the engineering domain being
modelled and analysed. To illustrate this relationship further, it is necessary to refine the
conceptual model of the engineering domain to explicitly represent sensitivities and influences

(through which components participate in interactions) as shown in Figure 44.

To conclude this section it is important to make two brief observations.

Firstly, the direction of the trace relationships between the FLMM’s and Engineering Domain
concepts indicates that DSFMs are, to an extent, ‘secondary’ engineering domains — they typically

reflect (part of the) the platform through the proxy of design descriptions contained in other

(‘primary’) domains.

126



«traces»

«traces»

covers

1. 0.*

«traces»
1
connects  connectedBy
edDependencyPath

1.* 0.*

1 enabledBy

0.* enables

«traces» sensitiveTo

0.*
initiatedBy o

0.*

0.*

flmMetaModeI::FMF\owI» ———————————————————————————————————————————————————————————————————————————————————————————
Figure 44 - DSFM s and Engineering Domains

Secondly, the FLM Component metaclass traces to the Engineering Domain’s Element (rather
than the component). This reiterates a need to model passive components under the failure logic
modelling approaches, since these may have a failure logic of their own (e.g. they can fail).
Furthermore, as is explained in the next section, elements which appear to be passive in one
engineering domain may be functionally active (and, thus, have non-trivial failure behaviour) in

another domain.

4.3 Allocation Viewtype and Composition of DSFMs

The previous section has presented a framework for rationalising the decomposition of safety-
critical platforms and has demonstrated how the products of decomposition — engineering
domains — can be reflected by domain-specific failure logic models. The decomposition allows
different organisations and stakeholders to ‘ring fence’ their responsibilities for platform design
and assessment and to discharge these in relative isolation from other stakeholders. The ability to
define local DSFM s facilitates the early safety assessment of part of the platform and, thus, allows

for the proactive control of project risks associated with the late identification of safety concerns.
This section turns to the interactions between different engineering domains and the resultant

dependencies between corresponding DSFMs. The goal is to establish approach to composing

multiple DSFMsin a consistent but non-intrusive fashion.

127



4.3.1 The Allocation Domain as the Unifying Concept

Whilst engineering domains provide a facility for managing the complexity of platform
development and for separating overall design activity into manageable and relatively
independent parts, the design of the platform is clearly not merely a collection of engineering
domains (and their respective design artefacts). Interdependencies between engineering domains

are unavoidable and have to be engineered just as domains themselves are engineered.

Perhaps the simplest case of dependencies between engineering domains arises when two (or
more) domains reflect the traditional containment hierarchy decomposition of a platform into a
number of systems. “Peer systems’, whilst designed largely independently, may interact and
influence each other. The binding of interfaces between these systems clearly needs to be
managed at a higher level of decomposition and, in this scenario, it can be expected that the
interfaces are well-identified at the earliest stages of the design. However, less clear relationships
between domains may also exist. For example, even within the traditional containment hierarchy
model, it is often possible to group systems into two broad classes of resource management
systems (e.g. power generation and distribution systems) and user systems (e.g. aircraft wheel
braking system). In this scenario, during the early architectura design, the interfaces may be only
partially identified. Indeed, in the WBS model of the previous chapter the BSCU’ s dependency on
the electrical power distribution system was identified. However, it is likely that the WBS's
hydraulic valves also require electrical power — these interfaces were omitted from the system

description (and, consequently, from the DSFM).

Finally, as was discussed in the previous section, engineering domains do not necessarily follow
the containment hierarchy model: they may capture platform decomposition from fundamentally
different perspectives (such as system decomposition and structure decomposition into zones) or
may address the same scope from different viewpoints. In such cases, interdependencies between
engineering domains are almost never (and in many cases cannot be) captured through a smple
notion of interface. As aresult, these dependencies cannot be managed in afederated fashion from
‘within’ the engineering domains and require an atogether new type of engineering activities for

inter-domain coordination.

Returning to the SEI model of three generic viewtypes of an architecture, this observation should
not come as a surprise: the notion of the engineering domain has merely addressed a single
component & connector viewtype, whilst the very premise of viewtypesis that practical systems
cannot be captured from a single conceptual perspective alone (however genera it may be). In
particular, Clements et a define an allocation viewtype which documents “the relationship
between system software and its development and execution environments’ [33]. Abstracting

from software, and adopting the terminology consistent with the previous section, it is possible to

128



define a notion of the “Allocation Domain”. From the perspective of an individua engineering
domain, alocation domains address the relationship between the engineering domain and its
development and execution environments (captured in other engineering domains). In other
words, and from the perspective of the entire platform, alocation domains relate two or more

engineering domains by relating their respective elements (see Figure 45).

1 relates

AllocationDomain EngineeringDomain

* 1.*

1.* addresses

isA participatesin relates

adRelationshipType
1 * * / 1.
establishedBy ’

establishes /

adRole

Figure 45 - Allocation Domain

1.*

Examples of engineering artefacts which fall within the Allocation Domain include interface
control documents, busbar allocation databases, IMA blueprints and the zona allocation of
equipment. The predominant design concerns associated with these domains are distribution and

the ‘fairness’ of allocation.

Table5 - Stereotypes of Allocation Domains (depending on the scope and viewtype)

Engineering Domains’ Scopes

No significant overlap

: Significantly overlapping
0.
- Inconsistent / incoherent allocation of
.‘—E“ concerns to engineering domains
% | Allocation domains may be impossible to
‘q:'; define (requiring manual consolidation of the
T ‘elementary’ engineering domains and their
'§_ models into a new engineering domain) or are
w | defined on entirely ad hoc basis

“Peer” domains

Engineering domains represent different products of
a single platform decomposition hierarchy. The
allocation domain is predominantly concerned with
the identification and binding of interfaces (that may
not be explicitly identified within the engineering
domains, especially at the earlier stages of design)

Alternative views

Engineering domains represent different
(partial) views of the same artefacts (e.g. a
fuel provision versus leaks study ‘views' of
aircraft fuel system). The allocation domain
relates elements in different views (either
through explicit mapping or by adopting a
consistent naming convention) and, in some
cases, establishes consistency constraints
(e.g. mutually exclusive conditions) across
engineering domains

Engineering Domains’ Viewpoints

Dissimilar

Different semantic spaces

Engineering domains represent products  of
orthogonal decompositions of the same platform
(e.g. system decomposition versus structural
decomposition or conceptual decomposition of
controller software versus ‘physical’ organisation of
computational platform & communications network).

Allocation domains typically explicitly define both the
relationship between elements and constraints
across both engineering domains.

129




Whilst the precise nature of the relationship is entirely context dependent and may range from a
one-to-one interface binding to spatial relationships, based on the scope and viewpoints of the
engineering domains being related it is possible to recognise three stereotypes of relationships
(see Table 5, above):

e “Peer” domains,

e Alternative views;

o Different “semantic spaces’ (orthogonal hierarchies).

Identification of these three stereotypes of alocation domains provides a facility for rationalising
how failure behaviour of one engineering domain may be perceived from the perspective of
another DSFM and, consequently, how DSFMs can be composed to reflect relationships of an

alocation domain.

4.3.2 DSFM Interfaces and Composition

Whilst, as was mentioned earlier, the definition and analysis of failure logic models for individual
engineering domains is beneficial, such analysis always requires some simplifying assumptions to
be made about the context of the engineering domain. These assumptions can be explicit (e.g.
recorded as derived safety requirements and communicated to the appropriate stakeholders) or
implicit. An example of an implicit assumption can be found in the WBS case study used in the
previous chapter. In that failure logic model, the characterisation of the Braking System Control
Unit (BSCU) included two input failure modes associated with the two power inputs — PWR1 and
PWR2. In the analysis of the WBS, these system-level input FMs were included in the minimal
cut setsin asimilar way to failures of WBS components. The implicit assumption (in its weakest
form) that underpins such analysis is that no single failure outside the boundaries of WBS could

lead to the system being exposed to both input failure modes.

One approach to the verification of the assumptions made at the level of individua DSFMs is
progressive composition of the individual models and analysis of the results of such composition.
This approach is more powerful than traditional common cause analyses in that it can address
circular dependencies between two or more DSFMs. To illustrate in terms of the WBS, such a
circular dependency may arise, if a common cause of simultaneous loss of both power inputs is
dependent on some condition of the WBS itself (such as hydraulic leak potentially causing a
widespread short circuit in electrical system)

However, this section demonstrates that the integration of DSFMs cannot rely merely on the
pairwise binding of input and output failure modes of individual models — a broader perspective

on the notion of the DSFM interface needs to be adopted. The three stereotypes of relationships

130



between engineering domains — identified above — are used to guide and structure the discussion

on relationships between DSFMs and typical patterns of composition.

4.3.2.1 Peer Domains

Peer domains are arguably the simplest stereotype of the relationship between engineering
domains. It is also the only stereotype that is addressed in existing publications on failure logic
modelling methods, where it is (implicitly) assumed that the relationship between the DSFMs of
different peer domains is similar to the relationship between different complex components of a
single DSFM. In other words, it is assumed that the DSFMs of peer domains can be composed

through a‘trivial’ pairwise binding of FM interfaces.

Considering the WBS model, it is possible to see how this assumption is apparently justified. The
system can be divided into two engineering domains (or major subsystems): a hydro-mechanical
domain (comprising valves, pumps and brakes of two redundant lines) and controller domain
(comprising BSCU) — since the design is likely to be carried out by different teams of engineers.

However, the two DSFMs are clearly composed through failure mode interfaces.

Thisjustification is clearly flawed. The DSFMs of the BSCU and the hydro-mechanical section of
the WBS are only composable because the FM interfaces of all relevant components are
coordinated in the WBS moddl. If the model were to be composed from independently
constructed segments, it would not be possible to guarantee the equivaence of input and output
failure modes; for example, there could be mismatches in the level of granularity of failure modes
adopted on the BSCU and hydro-mechanical ‘sides’ of the DSFMs boundary leading to an

inability to define a naive one-to-one FM interface ‘binding’.

In general, it can be observed that when two or more DSFMs are composed through identified FM
interfaces it may be necessary to ‘convert’ failure mode flows from the FM Class vocabulary
established in the source model into the different vocabulary established in the target model.
Whilst they are in many cases trivial, such trangations are not necessarily one-to-one mappings.
different output failure modes (of one DSFM) may be trandated into a single input FM (of
another DSFM), output FMs may be unmapped or may trandlate to more than one input FM®. For
example, in the WBS model each of the power inputs of the BSCU (PWR1 and PWR2) is
associated with a single omission of power input FM. The output FMs of the electrical system

associated with the busbars may, however, be more detailed and may include too low and

* This typicaly requires the definition of one or several normal events at the point of translation in order to
“select” one of the mutually exclusive interpretations (the engineering semantics of such normal events is
similar to that of conditioning events and inhibit gates of the traditional fault tree analysis)

131



intermittent/unreliable a power provision in addition to the omission; al of these detailed FMs
will be mapped onto a single input FM of the WBS DSFM (Figure 46) whilst the DSFMs of other
systems may be ableto utilise more detailed electrical FMs directly.

Finally, the assumption that FM interfaces between two DSFMs of ‘peer’ engineering domains
will be always identified is in itself too strong. At the early, conceptual, stages of adesign it is
likely that the efforts of design and safety engineers will be focussed on a subset of ‘primary
concerns’, while the interfaces with other systems (or domains) of the platform, if perceived as
being well-understood and posing low project risk, may be postponed to later design iterations.
The interfaces between the WBS valves and the aircraft’ s electrical power system may be seen as
an example: being often controlled by low voltage electrical stimuli (e.g. from the BSCU), such
valves are likely to require electrical power to amplify control signals and to overcome resistance
forces posed by internal loading, friction and high hydraulic pressure. Composition of the DSFMs
of peer domains in the absence of a clear definition of FM interfaces is similar to the composition

of the DSFM s associated with different views discussed in the next section.

| by iy

l | Busbar AC1 | | Busbar AC2 | I

I Electrical Power Distribution
DSFM

PwrOmiss
PwrLow
Pwrintermittent
PwrOmiss
PwrLow
Pwrintermittent

Wheel Braking System
DSFM

PowerOmiss
PowerOmiss

PWR1 PWR2

BSCU

H

Figure 46 - Peer Domains. Composition of Electrical and Wheel Braking Systems DSFMs

4.3.2.2 Alternative Views

Composition of the DSFMs of engineering domains which address alternative views of the same

scope poses significant challenges and highlights a limitation of the FLMM defined in the

previous chapter. In this context it is unlikely that dependencies between the DSFM's are captured
132



in terms of input and output Failure Modes. Indeed, for well-aligned engineering domains, such
identification could require the definition of ‘free’ input FMs for every component of the DSFMs

concerned.

Nevertheless, failure behaviour in one ‘view' could clearly affect corresponding components in
another view’s DSFM. However, in the absence of a FM interface, the effect will appear to be
spontaneous from the perspective of the later DSFM. To accommodate such a relationship
between components (of different DSFMs) it is necessary to enhance the definition of failure

presented in previous chapter®.

Failure (revised):

An accidental and undesirable momentary event which is — from the restricted perspective of

the scope and viewtype of the relevant domain — spontaneous and internal to the component

and which may have a persistent detrimental effect on the component’s ability to fulfil its

operational requirements.

The new definition highlights that failures can be considered spontaneous only from the
perspective of a particular engineering domain. When DSFM's are composed in absence of a well-
defined FM interface, the failures and failure modes of one DSFM can manifest themselves as (or

‘cause’) failures in another DSFM.

For example, if the hydraulic section of the WBS was modelled in two DSFMs, one dedicated to
the propagation of hydraulic pressure and another to the propagation of leaks, then the failures
and failure modes of the “Leaks DSFM” would appear as failures in the “Pressure DSFM”. In
particular a Rupture failure of the Green Meter Valve in the Leaks DSFM would result in
propagation of the Leak FM through this model and, at the same time, in an apparent JamClosed
failure of the Green Meter Valve of the Pressure DSFM (since the immediate effect of aleak isa
loss of pressure downstream of the source). Furthermore, the Leak FM would propagate through
the former DSFM until it reaches the Green Pump where it would ‘cause’ an apparent TotalLoss

failure of the pump in the Pressure DSFM (see Figure 47).

The metamodel clearly needs to be extended to alow for the failure of components to be
associated with an external cause which may be another failure, a normal event or a logical
condition over one or more output failure mode propositions (provided that the cause and the
‘target’ failure belong to components in different DSFMs). A failure may have a number of such
external causes in addition to having the capacity to occur spontaneously (as specified in its

probabilistic characterisation). It is also important to stress that, in general, the relation between a

¥ The modified part of the definition is underlined.
133



failure and its causes (even when these are other internal failures) is not symmetric. For instance,
in the above example, a mechanical failure of the green meter valve (captured as JamClosed failure
in pressure DSFM) clearly would not manifest as a Rupture in the leaks' DSFM.

Green Pump  Blue Pump

“Pressure DSFM”

Grepn Pump  Blue Pump

“LeaksDSFM”

Wheelj

Figure 47 - Alternative Views: Composition of L eaks and Pressure DSFMs (WBYS)

4.3.2.3 Different Semantic Spaces

The nature of the relationship between the DSFMs related to products of different platform
decomposition hierarchies is similar to the relationship between different views discussed above:
failures and failure modes captured in one DSFM will generally manifest themselves as one or
more apparently spontaneous failures in another model. However, the significant difference in the
semantics of the domains (and of their respective DSFMs) makes the rel ationships between causes
and effects more complex. There are two broad aspects to this complexity:

e The relationships are rarely one-to-one and, unlike one-to-many relationships between
peer DSFMs, often cannot be localised. For example, a single zone of an aircraft is
typically related to componentsin a large number of systems. These components may not
naturally form a coherent subsystem from the perspective of the system models and often
belong to different systems altogether.

e The relationships may themselves be constrained and may thus give rise to non-trivia
behaviour. For example, whilst from the perspective of an engineering domain concerned

with fire propagation through aircraft zones, combustion can be treated as a spontaneous

134



failure, in order to integrate the DSFM with models of the aircraft systems it is necessary
to recognise that combustion may require the presence of inflammable material
(associated with hydraulic fluid or fuel leaks) as well as either high temperature for auto-
ignition or an explicit source of ignition (e.g. a short circuit). Furthermore, in the later

case the presence of inflammable material must precede ignition to result in combustion.

As aresult it is often necessary to introduce additional structure and, in some cases, dynamic
behaviour in order to ‘bridge the semantic gap’ between two engineering domains and to make
relationships clear and easier to review. FLM components — with their failure modes, states and
failures as well as the ability to nest components — already provide the necessary facilities for
structuring complex relationships. When used for integrating DSFMs, however, these components
do not ‘trace’ to any platform element, but rather capture more abstract concepts; to distinguish
these FLM components from the components that do represent concrete elements of the platform
the former are referred to as “virtual” or “trandation” components. For two or more composed
DSFMs, trandation components, together with interface bindings and causal links to and from
DSFM failures, form a“trandation layer” between (and, thus, externa to) the DSFMs themselves.
Whilst the individual DSFMs relate to the engineering domains, the translation layer relates to the
allocation domains. The trandation layer, in principle, facilitates non-intrusive composition of the
DSFMs; however, to achieve this, the layer has visibility of al of the events and failure modesin
the DSFMs.

An example of such atrandation layer is presented in the case study (section 4.6) where DSFMs
of the Wheel Braking System and (simplified) Integrated Modular Avionics (IMA) are composed
into asingle failure logic model. The trandation components in this case study are Partitions and
Virtual Links which provide a ‘conceptual bridge’ between the WBS ‘world’ of software
components and dataflow paths and the ‘IMA world’ of computation modules, end nodes and

network switches.

It is important to point out that the composition of ‘peer’ DSFMs and models which capture
different views of the same scope may require similar translation components (for instance, see
the example in Figure 46 above, where each OR gate is effectively a simple stateless component).
The only difference between this and the DSFMs defined for different semantic levels is the
typical complexity of the trandlation.

Finaly, whilst the relationships between DSFMs may be complex, it is observed that their
structure is typically regular and repeated for all relationships of the same type. This regular
structure can be exploited for the semi-automated generation of the trandation layer (and, thus,
the semi-automated composition of DSFMs) from various engineering artefacts of allocation

domains (such as IMA blueprints and various allocation databases).
135



4.4 Defining Composable DSFMs

The DSFM composition approach presented above effectively extends the notion of the FLM
component interface. In addition to traditionally recognised ‘hard’ interfaces® formed by
components input and output failure modes, the approach stipulates that component failures
should be considered as * soft interfaces’ in the context of DSFM composition. Together with the
notion of “virtual components’ and the “trandation layer” this extension improves the

composahility of failure logic models.

However, the approach itself does not guarantee that particular DSFMs will be composable: even
with the extended notion of the interface and with the capacity to ‘fix’ mismatches in the
trandation layer, it will not be possible to compose concrete models that do not have a sufficiently
expressive interface. Therefore, composability characteristics must be, to some extent, ‘built into’
the DSFMs at the time of specification.

This section outlines some broad principles which should be followed in order to improve the

composability of the models.

4.4.1 The Consistency of FM Interfaces

In the previous sections it was stated that the simplest form of DSFM composition is the binding
of FM interfaces (such as are typically found in the composition of DSFMs of “peer domains’).
However, the effort required for this composition can be increased by a mismatch between the
vocabularies of FM Classes employed in different DSFMs. Whilst proactive steps taken to ensure
consistency between vocabularies can clearly facilitate effective composition, the existence of too
stringent characterisation schemas — which dictate precise FM classes to be used for all DSFMss of
the platform — could undermine the very purpose of platform decomposition into domains such as
the independence of engineering organisations and the effective separation of concerns.
Consequently, the degree of coordination of FM Class vocabularies for a particular platform
should be a result of a considered trade-off between ease of composition and effectiveness of
(individual) DSFM construction.

However, as a minimum, some broad principles for the elicitation of FM Classes can be stated for
the vast mgjority of platforms, systems and engineering domains and can ensure a shared strategy
of dlicitation of FM classes whilst providing sufficient tactical flexibility for the detailed

specification. Some examples of such general principles are listed below, based on the notions of

* |n the sense that such input interfaces are expected to be bound to the outputs of some components and
should not remain as “free inputs’ after al of the models for the platform are integrated.

136



deviation, interaction and dependency path. These notions are related in a hierarchical fashion
with deviations (or FM classes) being defined with respect to particular interactions and
interactions being enabled by particular dependency paths (often formed by functionally passive
components). It is beneficial for that hierarchy to be reflected in the hierarchical organisation of
FM Groupsin DSFMs.

Dependency Paths: both Intended and Unintended Paths must be considered

Whether a dependency path is intended or unintended may depend on the view point of the
engineering domain. For example, the pipework of the hydraulic section of the WBS is an
intended path for interactions in terms of pressure but can be seen as an unintended path from the
perspective of electrical interactions (such as the valves control signals) which can be exploited

inaDSFM by short-circuit conditions.

Interactions: both Intentional and Unintentional | nteractions must be considered

The correct behaviour of the system does not merely depend on alack of deviations in intentional
interactions: entirely unintentional interactions may take place, cause component damage and —
ultimately — result in unsafe system- or platform- level conditions. Unintentional interactions are
notoriously dependent on the implementation technology and may range from leaks and short
circuits (for hydraulic and electrical dependency paths) to jitter and writer locking (for computer
networks and software communications). Unintentional interactions are typically represented as
commission failure modes in DSFMs; however, further refinement of this general FM class is
often beneficial. Finally, unintentional interactions can take place in the same or opposite

direction to the intentional ones.

These first two principles can be found in the CENEL EC 50129 standard [54].

Interactions: in identifying possible interactions, flows of Energy, Matter and Infor mation must be

considered

The three types of flows are not mutually exclusive (for example, whilst the primary purpose of
computer network is to enable information flow, this is achieved through flows of energy).
Considering all three types of flows not only helps to clarify the viewpoint of the engineering
domain and the scope of the DSFM, but also ensures that all aspects of interactions are considered
and that the DSFM FM class vocabulary is likely to be sufficiently rich.

Deviations: use standard sets of Guidewords to identify possible FM Classes

The adopted sets of guidewords can be derived based on experience in a particular industrial
sector or, dternatively, generic guidewords — such as those suggested for HAZOP analysis [85] —
can be used.

137



Particularly advantageous in ensuring consistency between DSFMs is the adaptation of
hierarchical guideword- and FM classes- schemas. At the top of such a hierarchy are three broad
‘domains of deviation: Provision, Timing and Value. At the next level are abstract guidewords:
Omission, Commission, Early, Late, Too High Value and Too Low Value. Lower levels of the
hierarchy provide interpretations of abstract guidewords in the context of a concrete
implementation technology and — lower yet — application-specific FM classes (where issues such

as detectability and the potential for permanent damage to other components are considered).

Finally, whilst Functional Hazard Analysisis incapable of identifying all dependencies between a
platform’s engineering domains, it can till be used in the context of DSFM composition to
identify some of the key dependencies (typically in terms of intentional interactions between peer
domains) and, thus, to further minimise the likely incidence of unidentified or incompatible
interfaces between models. Ideally, FHA should be conducted iteratively and incrementaly
throughout most (if not al) of the design process alongside the DSFM-centred platform

assessment.

4.4.2 Richness of ‘Soft Interfaces’

As stated above, component failures provide soft interfaces between DSFMs which improve the
models composability characteristics. However, care should be taken during DSFM construction

to provide a sufficiently rich and not over-constrained interface.

In particular, in identifying failures of components, events arising from other domains have to be
considered. The WBS case study has included examples of such events — ‘failures’ of software
BSCU components. If taken to the extreme this principle may be interpreted as a requirement to
define failures for every output FM of the component even when the failure has no viable
interpretation within the scope and the viewpoint of the engineering domain at hand. Such
hypothetical failures can be removed from the results of DSFM analysis through relatively trivia

post-processing.

However, this extreme approach may be perceived as impractical in the industrial context and a
compromise between the composability of the model and its complexity may need to be found.
This trade-off can be informed (at least in part) by the traditional Common Cause Analysis which,
when based on sound engineering judgement and experience, can identify the likely key threats
posed by other domains of the platform. CCA can thus be used to verify whether the DSFM is
likely to provide sufficient interfaces for composition with other models and to control the risks of

modelling roll-backs.

138



The second potentia threat to DSFM composability and the appropriateness of soft interfaces is
posed by over-constrained failure state transition conditions. As was stated in the previous
chapter, the transition guards must not prevent a failure from being triggered even if, given the
state of component and input FMs, it will have no persistent and tangible effect on the
component’s behaviour. Instead, in such cases, transitions to the same state should be declared
explicitly. Failures should be prohibited by guards only in circumstances where the physical
phenomena they model cannot occur. Whilst it is important for the model analysis, this principle
is even more critical for the composability of DSFMs since seemingly inconsequential component

failures may have a significant effect in other DSFMSs.

4.4.3 The Granularity and Scope of Model Architectures

Whilst it is clearly necessary to take action to ensure the consistency and adequacy of the DSFM
interfaces (whether in terms of FMs and their classes or in terms of component failures) in order
to facilitate definition of composable DSFMs, such action is not in itself sufficient — certain

qualities of the architecture and the scope of the models may render them non-composable.

The two key principles that need to be followed in establishing the architecture of a DSFM are as
follows:
i.  Functionally passive components (including conceptual connectors) must be modelled
explicitly;
ii. DSFM components which are introduced solely for the purpose of model analysis and

which represent the context of the engineering domain must be identified clearly.

The first principle has aready been mentioned in the previous chapter. Functionaly passive
components — such as wires, pipework or conceptual software ‘dataflow’ connectors — may
themselves fail and, thus, affect the failure logic of the engineering domain. Whilst in the context
of design and assessment of ‘monoalithic’ systems, omission of these components from the failure
logic models can sometimes be justified (for a failure of a functionally passive component a
failure of an active component with an identical effect can frequently be found), the justification
isunlikely to hold in the context of safety-critical platform development and DSFM composition.
Components which appear passive in one domain may rely on complex and functionally active
mechanisms in other engineering domains. For example, apparently trivia dataflows between
software components of an aircraft system (eg. the WBS) can be supported by complex
mechanisms in engineering domains concerned with the on-board computation and
communication infrastructure (e.g. Integrated Modular Avionics). Ability to compose respective
DSFMs in an efficient and clear fashion is clearly dependent on the presence of appropriate

components (or groups of components) in all relevant DSFMs.

139



Finally, functionally passive components of the systems (e.g. the pipework and wiring of the
hydraulic and electrical power generation and distribution systems respectively) are frequently
most extensive in ‘geometrical’ and installation models of the platform and are therefore most
exposed to the threats arising from geometrical engineering domains. As a result, unless such
components are explicitly modelled (along with their failures) the DSFM composition may yield

unduly optimistic results.

The second principle listed above recognises that the analysis of DSFMs often requires
introduction of components that emulate domain’s environment. These components are typically
not only abstract representations of the other domains but are also simplified representations. For
example, the WBS DSFM included two pumps as explicit basic components, even though the
system is unlikely to generate its own hydraulic power but will rather depend on aircraft’s
hydraulic power generation and distribution system. Modelling the pumps was nevertheless
advantageous, since it enabled consideration of the likely effects of WBS leaks on the failure
logic of the system. However, this representation is significantly simplified and once the DSFM
for the hydraulic system is available and composed with the WBS DSFM the WBS pumps

components should be removed.

In general, DSFMs and their associated documentation should identify the ‘core’ part of the
model, which represents the engineering domain concerned and is reusable in the context of other
models, as well as that part of the model which forms a simplification ‘wrapper’ aimed at

enabling early analysis.

4.5. Instantiation in AltaRica

This section shows how DSFMs specified in the AltaRica OCAS can be composed. The
composition of modelsis performed over three concepts:

o DSFMs which are individua models and are specified in AltaRica as shown in the
previous chapter.

e Trandation components which convert failure modes between vocabularies of classes and
provide a facility for structuring relationships between the DSFMs. Again, these are
essentially FLM components and are specified according to the schema of the previous
chapter.

e External causes of DSFM failures which require new constructs of the specification

language.

140



This section focuses exclusively on the last concept. The specification of external causes in terms
of failures is discussed first followed by failure mode causes. Both scenarios rely on the same

language construct — synchronisation.

4.5.1 AltaRica OCAS Synchronisations

The description of AltaRicain the previous chapter showed how components interact in terms of
flow interfaces (which were used to specify input and output FMs) connected by flows or

complex components assertions (which were used to model FM Flows).

However, the AltaRica language supports another type of component communication —
synchronisations — which establishes relationships between components events. The OCAS
diaect of the language supports three types of synchronisations:

e Synchronization (which in this thesis is referred to a “strong synchronisation” to avoid

confusion)
e CCF*®
e Diffusion.

Declared at the level of any complex component (in OCAS terms — either an equipment or a
system), synchronisations essentially declare a new implicit event. This event (i.e. the
synchronisation itself) may be associated with a probability law. Formally, synchronisation
establishes a relationship between this event and one or more events of basic components (or
other, lower-level, synchronisations). The relationship between the events is dependent on the
type of synchronisation.

Srong synchronisations force al synchronised events to occur at the same time (and do not allow
any single or a subset of events to occur independently). This synchronisation essentially
substitutes all synchronised events, and imposes, where specified, its own probability law instead
of the laws of constituent events. The synchronisation can only be triggered when the guards

associated with al of the synchronised events evaluate to true.

In contrast, CCF — or “weak synchronisation” — does not substitute the synchronised events but
rather establishes a new external common cause. Whenever the CCF is triggered it triggers all
synchronised events whose guards happen to evaluate to true at the time. However, CCF itself is

not predicated on any guards and can be triggered at any time (in accordance with its probabilistic

% The abbreviation stands for Common Cause Failure (Whilst AltaRica is a general specification language,
the Cecilia OCAS suite was developed by Dassault Aviation specifically for the purpose of model-based
safety assessment). Despite its name, as shown below, CCF synchronisations are not suitable for modelling
relationships between different DSFMs

141



characterisation). Subsequently, events synchronised by the CCF can still be triggered
independently, in accordance with their own probability laws. This will not affect either peer
synchronised events or the CCF itself.

Finally, Diffusion is another form of weak synchronisation, in that it can be triggered at any time
regardless of the guards of synchronised events. As with CCF, once it is triggered, diffusion will
‘force’ dl (if any) synchronised events whose guards are true to ‘fire’. However, unlike CCF (but
similar to the strong synchronisation), diffusion ‘hides synchronised events in that, once they
have been synchronised, these events cannot be triggered individually but rather only through the

synchronisation.

In terms of a need to specify the external cause(s) of failures, the CCF synchronisation may at
first appear suitable (since it would still allow failures to occur independently). However, this
synchronisation establishes a new and unguarded ‘ cause’ event and cannot be linked to the event
that is aready declared in another component (e.g. within another DSFM). At the same time,
strong synchronisation between cause and effect failures is clearly unsuitable since it would only

allow both failures to occur simultaneously.

4.5.2 Emulating Dependent Weak Synchronisation

Ideally, to implement a causal relationship between two failures a new type of synchronisation is
necessary which will link synchronisation to an existing cause (declared as an event in some

component) and will inherit its probability law.

In the absence of such a synchronisation in OCAS, the relationship has to be emulated through

other language constructs both on the “cause” and “ effect” sides.

Firstly, for each failure that has an external cause, a new event must be declared in the same
component. Every transition equation that refers to the failure must be replicated with the failure
replaced by the newly-declared event. Composition of hypothetical “Leaks’ and *Pressure”
DSFMs (see Figure 47 above) is used to illustrate this. Figure 48 shows a transformation of the
specification of Green Meter Valve of the “Pressure DSFM”.

Secondly, for each failure that is a cause of another failure (in another DSFM) a new Boolean
state variable (with initial value false) and a new event (assigned an instantaneous — Dirac(0) —
law) must be declared. All state transition equations referring to the origina failure must be
modified to assign a newly defined state variable a value of true (in addition to any origina state
transitions). Also, a new state transition must be added to the component characterisation; the

guard of thistransition is the new state variable being true, the trigger is the newly declared event
142



and the effect is assignment of false to the state variable. The effect of this transformation is that

whenever a ‘cause’ failure takes place in addition to its origina effect a corresponding

instantaneous event is immediately issued. Figure 49 shows the transformation of the Blue Meter

Vave specification in the “Leaks DSFM”.

node GreenMeterValve
flow
HydIn : WBS_PressureFMs : in ;
CTRL : WBS_ControlFMs : in ;
HydOut : WBS_PressureFMs : out ;
state
FailSt : {OK,StuckOpen,StuckClosed} ;
event

init
FailSt := OK ;

trans
// Failures & Failure State Transitions:
FailSt I= StuckOpen |- MotorFailure

FailSt I= StuckClosed |- SpringFailure

true |- JamOpen -> FailSt1 := StuckOpen;

true |- JamClosed -> FailSt1 := StuckClosed;
assert

// Failure Mode propagation conditions

SpringFailure, JamClosed, JamOpen, MotorFailure, Rupture

-> FailSt1 := StuckClosed:;

-> FailSt1 := StuckOpe

> node GreenMeterValve
flow

HydIn : WBS_PressureFMs : in ;

CTRL : WBS_ControlFMs : in ;

HydOut : WBS_PressureFMs : out ;
P | state

FailSt : {OK,StuckOpen,StuckClosed} ;
event

SpringFailure, JamClosed, JamOpen, MotorFailure, Rupture,
> ExternalJamClosed ;
init

FailSt:= OK ;
trans

// Failures & Failure State Transitions:
P | FailSt = StuckOpen |- MotorFailure

-> FailSt1 := StuckClosed;
FailSt != StuckClosed |- SpringFailure
-> FailSt1 := StuckOpen;

p | frue |- JamOpen -> FailSt1 := StuckOpen;
true |- JamClosed -> FailSt1 := StuckClosed;

// Duplicated transition (external cause):

true |- ExternalJamClosed -> FailSt1 := StuckClosed;
assert

// Failure Mode propagation conditions

Figure 48 - Transformation of the Target (‘Effect’) Component: Valvein “ Pressure DSFM”

node GreenMeterValve
flow
LeakIn : {ok,Leak} : in ;
LeakOut : {ok,Leak} : out ;
state
FailSt : {OK,Leaking} ;
event
Rupture ;
init
FailSt := OK ;
trans
// Failure & Failure State Transition
FailSt = OK |- Rupture -> FailSt := Leaking;
assert
// Failure Propagation
LeakOut = ( case {
Leakln = ok
and FailSt = OK : Leak,

else ok})
extern
law <event Rupture> = exponential(2.5¢-3) ;
edon

node GreenMeterValve
flow
LeakIn : {ok,Leak} : in;
LeakOut : {ok,Leak} : out ;
state
FailSt : {OK,Leaking} ;
BroadcastPending : bool ;

event

Rupture, BroadcastRupture ;
init

FailSt := OK ;

BroadcastPending := false ;
trans

// Failure & Failure State Transition
FailSt = OK |- Rupture -> FailSt := Leaking, BroadcastPending := true;

// Broadcasting failure:
BroadcastPending |- BroadcastRupture -> BroadcastPending := false;
assert
// Failure Propagation
LeakOut = ( case {
LeakIn = ok
and FailSt = OK : Leak,

else ok})
extern
law <event Rupture> = exponential(2.5e-3) ;
law <event BroadcastRupture> = Dirac(0) ;
edon

Figure 49 - Transformation of the Source (' Cause’) Component: Valvein “Leaks DSFM”

143




Finally, the newly-created events on both the cause and effect sides of the relationship can be
strongly synchronised; the synchronisation should be assigned the Dirac(0) law. The overall
effect is that whenever a‘cause failure’ occurs — the effect on the target DSFM will be identical to
that of the ‘effect failure’. Figure 50 shows the synchronisation specification in the Cecilia OCAS
graphical interface.

#7 ThesislllustrationsWBS _Integrated;1 :

Synchronizations Law

GreenMetervalve_RuptureCausesdam |Dirac(D) |

BlueMetervalve_RuptureCausesdam Synchronization type
508Valve_RuptureCausesdam
lzoValve_RuptureCausesJam

ASSOValve_RuptureCausesdam

) CCF
1 Diffusian

i® Synchronization

Events
WES_LeaksDSFM.GreenMetervalve BroadcastRupture
WEBS_PressureDSFM. Greenhetervalve ExternalJamClosed

Figure 50 - Synchronisations Between " Leaks' and " Pressure" DSFMs: Green Meter Valves

This specification approach highlights the limitation of the AltaRica OCAS language as a
specification notation for failure logic models, and can be said to significantly undermine the
elegance of the composition approach presented in the previous section. However, the necessary
transformations of models are trivial and are clearly automatable. The author is working with
Dassault Aviation in order to extend the Cecilia OCAS suite either directly with the new type of
synchronisation or with functionality to enable the automation of the ‘emulation’ approach
described above.

4 5.3 Instantaneous Events: Flow-to-Event Conversion

Having established an approach for specifying the causal relationships between failures (that is
AltaRica events), it is necessary to outline how failure mode causes of failures can be similarly

specified.

In AltaRica, events can only be caused by higher-level synchronisations. As was described above,
in case of a strong synchronisation (or dependent weak synchronisation proposed) dependency on
other events can be established; however, there is no direct construct that can establish causal
links from flow to an event. The solution relies on the ‘conversion’ of flows into events which

clearly reduces the problem to the one addressed above.

Conversion is achieved through the notion of instantaneous events used in the previous chapter

for void triggers of state transitions and in the specification solution above to broadcast failure

occurrence. Since instantaneous events — identified by the Dirac(0) law — ‘fire’ immediately upon

the guard’s becoming true and since guards may contain a predicate over the component’s input
144



flow, specification of a flow value detector which emits events whenever a flow takes particular
valueisin fact trivial. Figure 51 shows the specification of such detector for a Boolean flow and
implements both rising-edge and falling-edge detection (signified by the emission of BecameTrue
and BecameFalse events respectively). In the context of DSFM integration such detectors are a
particular example of a virtual translation component and reside in the translation layer of the

failure logic model.

node FlowDetector
flow
FlowIn : bool :in;
state
Detected : bool ;
event
BecameFalse, BecameTrue ;
init
Detected := false ;
trans
// Rising Edge Detection:
Flowln and not Detected |- BecameTrue -> Detected := true;
// Falling Edge Detection:
Detected and not FlowIn |- BecameFalse -> Detected := false;
extern
law <event BecameFalse> = Dirac(0) ;
law <event BecameTrue> = Dirac(0) ;
edon

Figure51 - Boolean Flow Detector Component

FM detection can aso be incorporated into more complex components (e.g. to detect composite
conditions over FM flows). However, when implemented as standalone components, detectors
have an exceptionally simple and regular structure and their construction can in future be
automated by the GUI of the modelling tool.

Once the flow-to-event conversion is achieved, the emitted event can be synchronised with a

newly constructed event in the target component as shown in previous section.

4.6 Case Study: Common Computational Platform

This section demonstrates a non-intrusive composition of Domain-Specific Failure Logic Models
(DSFMs) through an example of the integration of the WBS DSFM with a model of a

hypothetical common aircraft computation and communications infrastructure.

In terms of the WBS DSFM amodel constructed in the previous chapter is re-used with relatively
trivial modifications to the complex BSCU component. Namely, functionally-passive data
communication paths are added as explicit components (see Figure 52 and Figure 53).
Furthermore, minor modifications are made to the COM and MON components to compensate for

the lack of appropriate form of synchronisation in AltaRica (as discussed in Section 4.5. above).

145



These modifications are described in Appendix C (section C1). For the purpose of the discussion
here it is necessary to stress that neither set of modifications compromises the principles of
composition of independently defined failure logic models: the former modification merely
enforces good modelling practice that was advocated throughout this and previous chapter, whilst
the later modification is algorithmic and is only necessary due to the limitation of the chosen

specification language.

PURL PWRZ PR
YALEID!JJ‘IUN% Validicy MIN
Pedall Pedall CHDElow P1_MON o
[ L validicyttoni cox MON Validity
BS{U1 BSqU2 VALLlow MONZ
Lg BSCU BSCU | ‘& CMDElow_P1_COM CMDELlow_PZ_MON
—% side side
Pedalz . IT_'L PedalZ " n
— e q COM e | o o
TALE 1ov_momLa A%flow COMZ CMDElow COMZ CﬂDleU_PZ_EﬁH
1 A3
WE -
MDELlow COoml D
. a Switch [e)
Ao Com Figure 53 - Revised Model Architecture of a BSCU
Figure 52 - Revised Model Architecture of BSCU Channe

The computation and communications infrastructure is akin to the civil aviation Integrated
Modular Avionics (IMA), consistent with the ARINC 653 specification [8], which utilises an
Avionics Full-Duplex Switched Ethernet (AFDX) data network (consistent with the ARINC 664
specification [7]). Following the civil aviation convention, the infrastructure (for simplicity
referred to as “IMA”) is viewed as an aircraft system in its own right. Since the purpose of the
case study is to demonstrate and evaluate the composition approach presented in this chapter, the

model of the infrastructureis simplified.

In terms of the framework of engineering and allocation domains presented in this chapter, the
engineering domains of the WBS and IMA are semantically dissimilar as they are concerned with
orthogonal decomposition hierarchies (conceptual software components versus a physical
network). The prevailing relationship between the failure logic models of these domains is
concerned with situations in which IMA output failure modes cause seemingly spontaneous
failures of BSCU componentsin the WBS DSFM.

The integration between IMA and WBS DSFMs is achieved through a trandation layer which
captures the view of WBS's BSCU components from the perspective of the IMA. The layer
allows us to ‘bridge the gap’ between semantics of two models. The trandation components
capture the effect of output failure modes of the IMA components on individual partitions and

virtual links which, in turn, correspond uniquely to the BSCU components in WBS DSFM. This
146



overal approach to integration provides a means for rationalising and structuring otherwise

unmanageably numerous dependencies between the DSFMs.

4.6.1 Overview of the Computation Infrastructure

This section presents a brief overview of the IMA architecture assumed for the purpose of the
case study and the corresponding Domain Specific Failure Logic Model (DSFM). The overview is
kept to the minimum necessary for describing the approach to model composition; however, a
more detailed description is provided in Sections C2 and C3 of Appendix C for the architecture
and the DSFM descriptions respectively.

4.6.1.1 Architecture of the Infrastructure System

The architecture of the IMA (Figure 54) comprises four Core Processing & Input/Output Modules
(CPIOMs) connected to the AFDX network via dedicated End Nodes (ENs). An additional EN
connects the network to a Line Replaceable Unit (LRU) of the braking system. Whilst the LRU,
which hosts the Switch and the Validity Monitor of the BSCU, is considered to be part of the
WBS, its End Node is considered to be part of the IMA system. End Nodes are essentialy
network input/output cards that are physicaly located inside- and powered by- their respective
modules. With exception of the LRU’s EN, the system is organised in the standard two side

arrangement — each side powered from a separate source.

Side 1 Side 2
cPIoM | cPIOM
#1 S8 | End Node End Node #2
#1 #2 «—>
— | —
5
E3
£
AFDX Network
< —
> End Node End Node
cPIOM #3 # CPIOM
#3 #4
End Node
CPIOM

8||:| ... | Scheduller I T

wBs

LRU/RDC
CPU Board

Figure54 - Simple IMA Architecture

HARDWARE

147



The AFDX network, which connects all the CPIOMs and the LRU, consists of two redundant and
identical switched networks — Network A and Network B — each consisting of a pair of switches
and a number of “twisted pair” cables (Figure 55). Each switch has four ports that can be
connected to either ENs or other switches. Consequently, each switch supports twelve unique
communication paths (from each port to each of the three other ports). Since each EN is
connected to both networks, it supports four unique paths: two — from the CPIOM (or LRU) to
each network and a further two — from each network to the CPIOM (or LRU).

Network A

/ End Node #4/
CPIOM#4

End Node #3
/CPIOM #3
End Node #7
/LRU

End Node #2

/ CPIOM #2

End Node #1
/ CPIOM#1

Network B
End Node #4/

CPIOM#4

End Node #3
/CPIOM #3
End Node #7
/LRU

End Node #2

/ CPIOM #2

End Node #1
/ CPIOM #1

Figure55 - Redundant AFDX Networks

4.6.1.2 DSFM of the Infrastructure System

The overall architecture of the IMA failure logic model is shown in Figure 56. Interna failure
mode flows of the IMA DSFM are predominantly related to the physical interactions between the

IMA components.

However, al major components (CPIOMs, ENs and Switches) also interact with the application
software yielding a set of ‘externa’ failure modes. In this case study the approach proposed by
Conmy [34-36] is adopted in a simplified form to rationalise these interactions and failure modes.
Conmy proposes six high-level IMA functions:

1) Provision of secure and timely data flow to and from applications and input/output

devices

2) Controlled accessto processing facilities

3) Provision of secure data storage and memory management

4) Provision of consistent execution state

5) Provision of health monitoring and failure management

6) General provision of computing capability

148



AFDXcabledh AFDXcabledh
AFDXswitchil
cPTam3 cPTOML
" L & T imxcaplesiza i

. By
b EndHode3 EndHoded .

F -

FDXc e3B AFDXcabledB
AFDXswitchiB
= CPION2
- + I
AFD¥cableZi HH
AFD¥cableTh AFDXswitch2h EndNode2
EndHode? &
AFDXcableld .E

AFD¥cableTB

Hosts partition that

brogdcasts Pedall sigmal

CPIOML - AFD¥cable312E R AFDXcahleZB (outaide WES scope)

Outside IMA # AFDX scope

Hosts partition that ik
broadcasts Pedall signal e
{outside WBS scope)

LR /7 RDC
(Switch and Validity Monitor)

EndHode 1

AFDXcablelE

Figure56 - Architecture of IMA DSFM (Power FM Flows not Shown)

Each of Conmy’s functions can be considered as an interaction initiated by the IMA system (or
more, specificaly, by each CPIOM) and can be associated with the set of failure modes. Since the
goal of this case study is not the construction of accurate IMA system failure logic model, but
rather the demonstration and evaluation of the DSFM composition approach, Conmy’s approach
issimplified by omitting functions (4) and (5) from consideration. The latter is a simplification of
the IMA system for the purpose of the case study, whereas, omission of the “provision of
consistent execution state” function (4) can be further justified by the focus of the failure logic

models on the run-time behaviour of the system.

Each of the remaining four functions is associated with a simplified set of failure modes
(predominantly identified by application of the Omission and Value keywords) and modelled as
an enumerated output flow of CPIOM components in the AltaRica model (so that each CPIOM has
four enumerated output flows). Table 6 lists such CPIOM outputs, their enumeration symbols

along with the brief description of the failure modes they denote.

Of course the BSCU (and other IMA subscribers) can be also affected by the malfunctions of
network components (switches and end nodes); consequently, these components aso have
external output failure modes. It is assumed that they interact with subscribers in terms of asingle
function — provision of network infrastructure. This function, that can be seen as amalgamation of
Conmy’s functions (1) and (3), is associated with four failure mode classes: TotalLoss, Partialloss,
AddressingCorruption and DataCorruption. However, these failure modes are associated with each
path through a network component. So, for example, the AltaRica characterisation of an end node
has four enumerated output flows (with the above enumeration symbols): two for the propagation
of data from the CPIOM to the redundant AFDX networks and two for receiving data (namely,

NetworkInfrastructureOutA, NetworkInfrastructureOutB, NetworkinfrastructurelnA and

149



NetworkinfrastructurelnB respectively); similarly, the network switches have 12 sets of network

infrastructure output FMs (and, thus, 12 enumerated output flows™).

Table 6 - Output Flows of CPIOM Components

. Conmy’s :
AltaRica IMA Enumeration FM description
Output Flow - Symbol
function

Communications | 1 TotalLoss CPIOM fails to provide support to any of the
communication channels it is responsible for
Partial Loss CPIOM fails to provide support to one or more (but not
necessarily all) communication channels it is responsible
for

AddressingFailure | CPIOM directs data to the wrong software component
(partition) or output port (this may affect one or more

channels)
OK Failure Mode Privative (function is provided as intended)
Computing 6 Incorrect CPIOM performs computation required by one or more
partitions incorrectly
Stuck CPIOM halts computation of one or more partitions or

processes (e.g. due to corruption of process execution
state or CPU failure)

OK FM privative
Datalntegrity 3 TotalLoss Data stored or transmitted by, to or from all partitions
supported by the CPIOM is lost/ unusable
PartialLoss As above but for a subset of partitions
Corruption Data is corrupted (affects one or more partitions)
OK FM privative
Scheduling 2 TotalLoss CPIOM fails to schedule any of its partitions appropriately
(including providing too little execution time)
PartialLoss As above for subset of partitions
PrioritiesLost CPIOM incapable of scheduling one or more processes as
intended (e.g. due to corruption or loss of priorities data)
OK FM privative

4.6.2 Partition and VL Allocation

For the purpose of the case study, it is assumed that the Command and Monitor components of
each BSCU channel are implemented as separate IMA partitions. Furthermore, each BSCU
command component (partition) contains two processes for the calculation of braking (CMD) and
anti-skid (AS) signals. Whilst partitions rely on afixed periodic scheduling (to guarantee temporal
partitioning), the exact scheduling principle for the processes is assumed to be unknown at the

point of the development process reflected by the case study.

The case study further assumes that both partitions of BSCUL1 are allocated to the CPIOM 3 and
both partitions of BSCU2 - to CPIOM 4. The BSCU’s Vadlidity Monitor and Switch are
implemented in hardware and contained within a dedicated LRU connected to the IMA’s End
Node 7.

3 These are all called Infrastructure<X>to<Y>, where <X> is an incoming port of the switch and <Y> -
outgoing (e.g. “Infrastructure 3to2").

150



Whilst the design of the sources of the electronic pedal inputs falls outside the scope of the WBS
engineering domain, their ‘location’ in the IMA is significant for the safety assessment. It is
assumed that the partitions that produce Pedal 1 and Pedal 2 data are allocated to CPIOM 1 and
CPIOM 2 respectively.

Finally, it should be noted that the architecture of the hypothetical simplified IMA system is such
that partition alocation to the CPIOMs uniquely determines the alocation of data
communications channels to IMA switches and their ports. For example, the Pedal 1 data channel
to COM2 partition is alocated to input port #2 and output port #1 of switch 2A(B) as well asto
input port #4 and output port #3 of switch 1A(B).

4.6.3 Integration Layer and DSFM Composition

The DSFMs subjected to composition are expected to be provided as separate AltaRica OCAS
equipment nodes (i.e. complex components) and, typically, frozen for further editing (to enforce
non-intrusiveness of composition). However, in this case study, whilst the WBS DSFM is indeed
‘wrapped-into’ equipment, for clarity of illustration, the IMA DSFM is kept at the OCAS system

level (i.e. the same model decomposition level as the translation layer described in this section).

As stated in the earlier sections of this chapter, the trandation layer captures the causa
relationships between various IMA output failure modes and appropriate failures of the BSCU
components in the WBS DSFM as well as structuring these dependenciesin — as far as practicable
— a reviewable and coherent fashion. The layer therefore consists of a number of virtua
transglation components (some complex and some basic), flows between the IMA model and these
components as well as strong instantaneous synchronisations between events in the virtua

components and events in the WBS DSFM.

Asfar asthe architecture of the layer is concerned it can be best described as the view of the WBS
BSCU from the IMA perspective. Namely the IMA ‘sees’ MON and COM software components of
the two BSCU channels as four partitions; similarly al BSCU dataflow components are ‘seen’ as
virtual links®. The resultant high-level components of the trandation layer (along with the

graphical annotations which contextualise them) are shown in Figure 57.

% | n this model “Virtual Link” denotes acommunication between two partitions regardless of whether these
partitions are located on the same or different CPIOMs (and thus of whether they do or do not rely on the
AFDX network). “Path” and “channel” (used interchangeably) refers to a single physical propagation route
through the redundant AFDX networks and/or the CPIOMs as well as coherent portions thereof (such as
“path through an end node”)

151



\I'L MONL VI VI, P1_MONZ
To Validity Nomitor =
VL_P1 MOH1 Part1t1DnMUNl — VI MON2 VI

MOH: (LRY / ROC) 17%%::1:10&101\12
UL - VL P2 MON?2
VL_P2 MON1 g

H«. COM1 MON1 ucwzmzH

VL P1 COML Part].tlunClJI{l VL_cOriicmd 5

‘ VL_COMIZcmd S partitioncoM2 VL P1 COM2
To BSCU Switch

VL P2 COML Vl.. COMlas S (IRV / RDC) VL COM2as S VL_P?_COM2
[ -

Figure 57 - Architecture of the Failure Logic Model’s Trandation Layer

The internal structure of these components along with relevant synchronisations and flows is
described in the following sub-sections.

4.6.3.1 Software Components: Partitions and Processes

Seen by the IMA as partitions, the COM and MON software components of the BSCU are sensitive
to three out of four groups of their CPIOM’s externa output failure modes: Scheduling,
Datalntegrity and Computing. Consequently each partition component has three enumerated input
flows linked to the output flows of the corresponding CPIOM (Figure 58).

PartitionMONL

PartitionCOM1

CPIOM3

Figure58 - FM Flows Between the CPIOM and Allocated Partitions (Side 1 Only)

Whilst the interfaces of all of a partition’s components are identical, the ‘internal’ failure logic is
to some degree dependent on the details of the corresponding BSCU components. Figure 59
shows a complete characterisation of the (identical) MON components partitions (i.e. virtual
components PartitionMONT and PartitionMONZ2 in Figure 57 above). In general, a partition’s
exposure to an input Faillure Mode results in an apparently spontaneous failure of the
corresponding MON component of the BSCU. To model this dependence the partition component
upon receiving a non-privative value on the input flow ‘fires' an instantaneous event (and enters

into a corresponding failure state to avoid repetitive events); this event is ‘picked up’ by a global

152



synchronisation which forces the corresponding failure in the WBS model to be fired (if permitted
by its guard). For example, when the monitor partition is exposed to TotalFailure of Scheduling the
instantaneous BroadcastUnschedulled event is issued and the partition enters a ProcessUnschedulled
state. This event is synchronised through the MON1_Unschedulled or MON2_Unschedulled strong
instantaneous synchronisation (see Figure 60) with the ExternalProcessTerminated event in the
appropriate BSCU’s MON component (see Section C1 in Appendix C where this event has been

defined to mimic the original ProcessTerminated failure).

node IMA_homogeneousPartition

flow
Scheduling : {ok, TotalLoss,PartialLoss,PrioritiesLost} : in ;
Computing : {ok,Incorrect,Stuck} : in ;
Datalntegrity : {ok, TotalLoss,PartialLoss,Corruption} : in ;

state
ProcessStuck : bool ;
ProcessDataLost : bool ;
ProcessDataCorrupted : bool ;
ProcessUnschedulled : bool ;
SchedulingAffected : bool ;
ComputingAffected : bool ;
IntegrityAffected : bool ;

event
BroadcastStuck, BroadcastDatalost, BroadcastDataCorrupted, BroadcastUnschedulled,
CONDITION_UnaffectedBySchedulingFailure, CONDITION_UnaffectedByComputingFailure,
CONDITION_UnaffectedByDatalntegrityFailure ;

init
ProcessStuck := false ;
ProcessDatalost := false ;
ProcessDataCorrupted := false ;
ProcessUnschedulled := false ;
SchedulingAffected := true ;
ComputingAffected := true ;
IntegrityAffected := true ;

trans
// Conditional (Normal) events
// Specifying which partial failures this process is (un)affected by
SchedulingAffected |- CONDITION_UnaffectedBySchedulingFailure -> SchedulingAffected := false;
ComputingAffected |- CONDITION_UnaffectedByComputingFailure -> ComputingAffected := false;
IntegrityAffected |- CONDITION_UnaffectedByDatalntegrityFailure -> IntegrityAffected := false;

I/ Broadcasting the effect of IMA platform FMs on the partition/process
not ProcessStuck and (Computing = Stuck) and ComputingAffected |- BroadcastStuck -> ProcessStuck :=
true;
not ProcessDatalost and ( (Datalntegrity = TotalLoss) or
((Datalntegrity = PartialLoss) and IntegrityAffected)
) |- BroadcastDataLost -> ProcessDatalost := true;
not ProcessDataCorrupted and (Datalntegrity = Corruption)
and IntegrityAffected |- BroadcastDataCorrupted -> ProcessDataCorrupted := true;
not ProcessUnschedulled and ( (Scheduling = TotalLoss) or
((Scheduling = PartialLoss) and SchedulingAffected)
) |- BroadcastUnschedulled -> ProcessUnschedulled := true;
extern
law <event BroadcastStuck> = Dirac(0) ;
law <event BroadcastDatalost> = Dirac(0) ;
law <event BroadcastDataCorrupted> = Dirac(0) ;
law <event BroadcastUnschedulled> = Dirac(0) ;
edon

Figure59 - AltaRica Characterisation of Homogeneous Partition Translation Component

However, many of the CPIOM failure modes (in fact al of the failure modes except TotalLoss of

each function) do not affect all partitions. To model situations when the MON partition is and is

153



not affected a set of normal events and states is used (these states are modelled through three
Boolean variables - SchedulingAffected, ComputingAffected and IntegrityAffected -for each of the three
partition’s input flows respectively). Consequently, some of the instantaneous broadcast events
are guarded by a conjunction of FM assertion (flow value condition) and normal state assertion

(state variable value condition).

Synchronizations Lany
COMTemd_StuckDown | [Diractt)
CONTas_StuckDown — Synchronization type
MON1_DataLost = | ©ccF
MOMN1_Stuck ) Diffusion

MOM1_Corrupted

MON1_Unschedulled ®) Synchronization

COmM2emd_Datalost Events

COMZemd_Stucklp PartitionM QM1 BroadcastUnschadullad
COMZermd_Corrupted | [WBS.BSCU.BSCU1MON. ExternalProcessTerminated
ComM2emd_Unschedulled =

Figure 60 - Synchronisations Between Trandation and WBS Components

The characterisation of the COM components partitions is dightly more complex, since the
BSCU’s COM components contain two separate processes — for calculation of the braking
command (CMD) and anti-skid modulation (AS) respectively. The partition is modelled as a
complex component (Figure 61) with two basic components for each process and a common
selector component (PartitionSelector) which contains conditioning events' logic and determines —
whenever there is a choice — whether the partition is affected by the CPIOM’s FMs (analogous
with the conditioning events in MON partitions described above). If the selector component
‘determines’ that the partition is unaffected, it replaces the FM enumeration symbol by the ok
privative (so that virtual process components simply do not see the inconsequential FMs). Aswith
the MON partitions, the two main process components (CMD and AS) issue broadcast events
whenever they are exposed to the appropriate FM. These components also contain further
conditioning events for selecting, whenever applicable, whether an individual process is affected
by the CPIOM failure mode which affects the partition.

ASeffect

CHMD

R

CMD Irocess's
MPirtual™ Components

CMDeffect

A5 Irocess's
TWirtual™ Components

Partitionielector

Schedulling Computing Datalntegrity

Figure 6l - Internal Structure of the COM Partition Transation Component

154



Whilst IMA guarantees by design that partitions cannot affect one other’s execution time or data,
the same protection is not afforded to the processes which reside within the same partition. For
example, a ProcessStuck failure of the COM’s CMD process may lead to it monopolising CPU time
alocated to the COM partition and, thus may have the same effect on the ‘co-residing’ AS process
as a TotalLoss of Scheduling by CPIOM™*. To capture this dependency, the COM partition
component contains two simple components CMDeffect and ASeffect. These components react to
the CMDprocessStuck and ASprocessStuck failures of the appropriate BSCU’'s COM component
(through global synchronisations) by exhibiting the MonopolisesCPU failure mode. The main
virtual process components (i.e. AS and CMD) are sensitive to this FM and ‘raise a
BroadcastUnschedulled event in response. This aspect of the failure logic of COM components
partitions is significant as it demonstrates the bi-directional dependency between DSFMs. Such
dependencies, where the initiating event is located in the same engineering domain as its effect(s)
but the unintended interaction is not ‘visible’ until both domains are considered, may be
overlooked by the traditional common cause analysis™. In contrast under the approach advocated
by this thesis the logic of this propagation is captured explicitly by the integrated DSFMs and is
therefore reviewable.

4.6.3.2 Software Communications: Virtual Links

BSCU dataflow components are seen from the IMA perspective as Virtual Links and can be
classified into two types.

(1) VLsinternal tothe CPIOM (e.g. those corresponding to CMDdataflows between the COM
and MON modules of the same BSCU side)

(2) VLs between partitions residing on different CPIOMs which rely on the AFDX
network functionality (e.g. VLs corresponding to the pedal positions dataflows to COM
and MON modules of the BSCU)

Of course the type of VL is determined by a partition’s allocation to the CPIOMs rather than by
any details of the WBS DSFM.

All *virtual’ VL components are modelled as AltaRica OCAS equipment with interfaces and
internal structure determined by the type of the VL above. Figure 62 shows the structure of the
first type of VL; it contains two input flows corresponding to the Datalntegrity and Communications
output flows (i.e. FM groups) of a CPIOM as well as two basic components — Module and
DSFMIink. The former component determines the status of the VL, based on the CPIOM failure

modes and, if applicable, an internal conditioning event (similar to that of partition componentsin

¥ Note that, since the WBS description did not include a description of the process scheduling schema, the
‘worst case’ of co-operative scheduling is assumed for the purpose of the DSFM integration.

40 See section 4.7 below
155



the previous section); the result of the consolidation is presented on the enumerated Status output

flow over the ok, Lost, Misrouted and Corrupted symbols (which are self-explanatory failure modes).

Input flows
{from the CPTOID)

Conmunications
E i Status
1 -
H1
Datalntegrity tuatput Flow
{model maintenance only)

Figure 62 - Structure of a Simple VL Translation Component (CPIOM-Internal VL)

The DSFMlink component is a simple flow-to-event converter (see section 4.5.3) which issues
appropriate instantaneous events (which are, in turn, synchronised with appropriate failures of the
BSCU dataflow components).

The structure of the virtual links that are supported by the AFDX network is more complex
(Figure 63), as they rely on two CPIOMs, two End Nodes and one or more pairs of switches. The
interna structure of VLs also reflects partial redundancy of communications in that for the
Virtual Link to fail dueto the End Node or Switches failure mode paths through both of the AFDX
networks must be affected. The redundancy is only partial because the failure modes of either
CPIOM that supports the VL on sending and receiving sides are single points of failure.
Furthermore, undetectable corruption of data by either AFDX network will potentially result in

corruption of the VL.

Redundant physical dourceB i)} HinkB
path (Hetwork B)

ENoutB SU_E ENinE

dgource

SourceComms PathE

SourceIntegricy j
Jratus
Core
Sink

SinkConns —‘
: o
l: L #1 DEFMlink
SinkIntegrity J

Common pathis) Pathd

of the Virtual Link

{CPIOM=) :
ENoutd SU_A ENind

Redundant physical
path (Hetwork R) Sourceld 5Wa Sinkd

Figure 63 - Structure of a General VL Trandation Component (VLsAcross Different CPIOM )

156



In Figure 63 the failure modes of CPIOMs are consolidated by Source and Sink components which
are identical to the Module component of an internal VL presented earlier. ENout_A, SW_A, ENinA,
ENout_B, SW_B and ENinB are identical selector components (which propagate Networkinfrastructure
FMs subject to conditioning events). PathA and PathB are simple stateless consolidation
components which determine the overall status of each redundant path; similarly, Core
consolidates the overall status of the VL from statuses of two common segments and two
redundant paths. Finally DSFMIink is a flow-to-event converter / event broadcaster component as
before.

Note that the highly regular structure of the VL components allows for the automated generation
of VLs that are supported by more than one pair of network switches by trivia extrapolation of
the structure presented above. Furthermore, the regularity of the flow interface of these trandation
components alows the automatic generation of — otherwise unmanageably numerous — flows
between VLs and IMA components as well as synchronisations between events in VLS DSFMlink
components and failures of appropriate BSCU dataflow components. Figure 64 shows the flows
between IMA DSFM and the trandation layer components (VLs and Partitions) which were
automatically generated from Partition and VL allocation spreadsheets in Microsoft Excel (the 70
necessary synchronisations between trandation layer and WBS DSFM were similarly generated
automatically).

fiheel Braking System DSFM B

/ Integration Layer [ Allocation Domain

= p| To Validity Momitow
Qoo (LRT / RDC)

\

CPIOH2

AFDfcablezd [
EndNzde2

IRY J RDC

(Swidch and Valididy Monitaz)

Hosts partition that
broadoasts Pedall sigmal
CPIOHL = ATDXcable312B AFDXcableZB foutside WES socope)

Quiside INMA / AFDX scops

Hosts pertitiom thed i R
Endledsl
broadcasts Pedall sigmal g Endiede o

foutside MBS scape) g
o L AFDNcaklz1E

Figure 64 - Composed Failure Logic Model (Automatically Generated Flows)

157



Aswell as liberating safety engineers from the repetitive, mundane and, thus, error-prone aspects
of DSFM integration, such an automation allows for the rapid adaptation of the overall falure
logic model to different alternative allocations and for the ‘porting’ of the WBS DSFM (along
with the trandation layer) to different models IMA DSFMs in a time-efficient manner. It is
important to stress that the generation procedure can be easily adapted to any computer-readable

format of partition and VL allocations.

4.6.4 Model Analysis

The integrated Failure Logic Model can be simulated and analysed by the Cecilia OCAS as a
single whole. Such analysis for example reveds a new single point of falure -
CPIOM3.CPUboard.PartialFailure — for the inadvertent application of brakes failure condition of the
WBS. The CPIOM failure causes a Stuck failure mode of the Computing function of the CPIOM,;
this propagates through the trandation layer to simultaneously cause CMDprocessStuck and
ASprocessStuck failures of the BSCUT COM component and a ProcessStuck failure of the side’'s
MON component leading to both commission of the braking command and an inability of the

monitor to report corruption of the primary controller.

The analysis results are not presented here due to their size: analysis of a single WBS failure
condition of inadvertent braking yields 62 minimal cut sets containing two events and 1270 — for
3 events. Whilst these results are apparently unmanageable, they are not intended to be reviewed
directly. Instead, the analysis results should be post-processed and considered incrementally with
respect to the results generated from a single WBS DSFM. This process ‘filters out’ most of the
cut sets only showing those which demonstrate new features of failure behaviour not previousy
seen in a single-DSFM analysis (thus dramatically reducing the number of cut sets that require

consideration).

The filtering process is based on two concepts defined by the author: a refinement relation
between sets of minimal cut sets and a mapping between failures (i.e. elements of MCSes) which
establishes equivalence between failures for the purpose of comparison. For example, for the
purpose of comparison al failures of BSCU1 COM component are mapped to all failures of
CPIOM3 since it is expected that a failure of the COM can be caused by a failure of the
corresponding CPIOM and safety analysts will typically not be interested in an expansion of the
results they have previousy seen. By contrast, the comparison process will highlight
CPIOM3.CPUboard.PartialFailure as a new and previousy unconsidered behaviour since it
invalidates the previously assumed independence between two COM failures (provided that the
analysis of the WBS DSFM contains at |east one MCS containing both of these failures).

158



The comparison process is fully automated whilst the mapping definition is facilitated by a
graphical “Mappings Management Tool”; the programs were written by members of the MISSA
project [6] based on specifications and pseudo-code provided by the author.

To conclude the case study description, it isimportant to reiterate that the IMA DSFM used in the
case study isintentionally simplified. An interesting extension to the case study therefore could be
application of a more principled and systematic approach to IMA assessment and construction of
a more detailed model. In particular, the LISA method [123] and Conmy’s approach could be
used to refine the failure logic characterisations of the CPIOMs and to provide these complex
components with a more meaningful structure in terms of the key hardware and OS components
of the platform. A particularly interesting approach would be to consider a modul€’ s hardware and
the operating system as two separate domains associated with separate DSFMs. The composition
approach presented in this chapter could then be used to compose the overall failure logic model
of the CPIOMs which, in turn, can be further composed with ‘subscriber’ systems (as shown in
this section).

A similar ‘layered’ approach could be applied to the AFDX network where the OSl Reference
Model [72], or similar, could be used, to guide the decomposition of the network into engineering

domains.

4.7 Relationship to Common Cause Analysis

As mentioned in Chapter 2, civil aviation safety assessment guidance [140, 139] mandates that
Common Cause Analyses (CCA) be performed at al levels of design process (forming athread of
activities run in parallel to the ‘core’ of FHA, PSSA and SSA). This section describes how the
composition of failure logic models as described in this chapter relates to the existing practice of
CCA.

CCA is not a single activity but rather denotes a broad (and, to some extent, eclectic) range of
individual analysis tasks whose goal is to identify common dependencies of the different systems,
sub-systems or equipment which undermine independence assumptions implied by the system-
wise decompositional core safety assessment process. CCA is typically divided into three broad
subgroups of analyses:
e Common Mode Analysis (CMA) which focuses on the common dependencies of
seemingly independent components that arise from the design and maintenance processes;
e Zonal Safety Analysis (ZSA) which addresses potential unintended interactions between
different systems, subsystems and equipment due to commonalities of their relationship

with aircraft structure (e.g. installation and spatial orientation);

159



e Particular Risk Analysis (PRA) which investigates the impact of known threats associated
either with the platform environment (e.g. lightning) or with the implementation
technology of the systems (e.g. hydraulic fluid leaks, eectric short circuits and aircraft
tyre burst events).

The goal of the CCA is to identify conditions which undermine the assumed independence of
failures in the safety assessment and to assess the impact of these conditions. In failure logic
modelling terms, CCA identifies and records externa causes of seemingly spontaneous and
independent failures of DSFM components. However, when integrated with the primary safety
models (whether Fault Trees, Markov Chains or failure logic models) these external causes are
typically assumed to be themselves spontaneous and elementary; effectively they are failures
external to the DSFM (see Figure 65).

/ Green Pump  Blue Pump /
To * ’ otalLoss

i ; System DSFM
/ selector, ]

o M Antl-skld /
A shut off valve

/_ — JE Y A Y 7
Qommon Mode Failure /

Common Threat / / (design commonality) / Common Causes
(zone co-location) /

Inplicit DSFMs
Figure 65 - CCA in DSFM Context

Clearly, the identification and representation of common cause events in failure logic models can
be seen as a special case of composition of two DSFMs related to different semantic levels of the
platform. The only two differences are that:
a) One of the DSFMs (the common cause DSFM) is exceptionally simple: it consists of a
collection of unconnected components (or even just a single component) with failures
being predicated on guards that always evaluate to true, and

160



b) All of the causal relationships between DSFMs are in the same direction: in particular no
failures in the common cause DSFM can have external causes in the sasme DSFM as their
effects.

Nevertheless, in its traditional form, common cause analysis can still add value alongside the
safety assessment based on failure logic modelling. Simplification of the ‘common cause DSFM'’
into a collection of independent failures enables engineers responsible for a particular engineering
domain to consider relationships with other domains before the respective detailed DSFMs
become available for integration. This facilitates more accurate safety assessment at earlier stages
of design and provides an opportunity to assess whether the DSFM is likely to be composable.
Furthermore, for some domains this simplification may be sufficiently accurate even at the later
stages of the safety assessment. Finally, the failure logic modelling approach may be
inappropriate for some of the engineering domains (e.g. domains that analyse continuous
structures and the spread of physical phenomena — such as mechanical stress — and consequently
cannot be accurately represented as collections of discrete components and connectors); CCA
provides a means of integrating analyses of such domains with DSFMs of other domains through

a‘proxy’ of common cause events.

One example of CCA being integrated with model-based system safety assessment is analysis of
the impact of particular risks carried out by the CCA theme of ISAAC project [5, 9]. In case
studies carried out by the project, aircraft equipment installation models in CATIA* were used to
identify components lying on particular trajectories of the products (shrapnel) of an uncontained
engine disc or tyre burst. In safety assessment models (captured in SCADE, StateMate or
AltaRica OCAS) each trajectory was represented as a common cause event; the effect of each

such event was the failures (total loss) of al equipment identified for the respective trajectory.

The goa of the ISAAC work, however, was not to extend or improve safety assessment
methodology but rather to investigate whether current processes can be ‘migrated’ into a model-
based framework. Whilst it appears that, for the engine disc burst scenario, defining an explicit
DSFM for engine events and/or trgectories would not add value to the analysis (and common
cause events provided an effective proxy for reflecting results of geometrical anaysis), the same
does not necessarily hold for the tyre burst case. The likelihood of tyre burst can be increased by
certain failures of the aircraft wheel braking system (e.g. failures that result in overly hard
braking). Furthermore, in the context of such failures the independence of tyre burst events from

different aircraft gear can no longer be assumed. The ISAAC approach to CCA does not permit

“ 3D modelling suite developed and marketed by Dassault Systémes  (France):
http://www.3ds.com/products/catia/

161



the capture of potential dependencies between different tyre burst events, or their individua

dependence on eventsin the “functional world”.

Furthermore, the ISAAC approach to CCA is not a restricted instantiation of the approach
presented in this thesis. Under the former, common cause events are considered to be part of the
same safety model as their effect. In the approach presented here, however, a subtly different view
is advocated: common causes (even when not arising from complex interactions captured in
DSFMs) should be considered as external to the DSFM of their effects. This separation highlights
the difference between the analyses and the engineering information used for DSFM definition on
the one hand and those used for integration of DSFMs and formalisation of common cause
analyses on the other. This, in turn, indicates that different aspects of composed failure logic
models are the responsibility of different engineering organisations and/or should be validated

through different processes.

Finally, it is interesting to note that the view of platform (aircraft) decomposition implicitly
adopted by the ISAAC CCA theme is consistent with the domain-based framework described in
this chapter. ISAAC CCA divides the aircraft into two broad engineering domains; “geometric”
and “functional”. The scopes of these domains overlap, since geometric models contain
representations of functional components. The allocation domain is established through
equipment naming conventions and unique referencing; in terms of Common Cause Analysis
specifically the alocation domain is supported by the mapping manager (developed by ONERA)
which trangates the geometry domain’s “hit lists’ (lists of equipment affected by a particular

trajectory) into sets of component failures.

4.8 Model Complexity & Limitations of the Analysis Tool

Whilst the approach to composition presented in this chapter significantly extends all current
failure logic modelling techniques as well as the common cause analysis approach developed by
the ISAAC project, it highlights a number of challenges in multi-system safety assessment of
platforms. The case study presented in section 4.6 has aso highlighted some limitations to the
approach implementation in AltaRica OCAS.

The challenges and limitations chiefly relate to the analysis complexity of the resultant composed
model. For instance the composed case study model can be analysed by the Cecilia OCAS
Sequence Generator, to the depth of three events, in approximately 20 hours. Analysis to the
depth of four events would sometimes result in memory overflow. Whilst generation of minimal
cut sets to the maximum cardinality of three is typically considered pragmatically acceptable, it is

important to stress that the current analysis tool does not achieve this within the above periods of

162



time. Developed as Dassault Aviation's ‘in-house’ tool and tailored towards features used by the
engineers under the (non-FLM) modelling style adopted by the company, Cecilia OCAS counts
temporal events towards the size of the Minimal Cut Set. As these events have been extensively
used by the author to represent “normal” and “conditioning” events, search to the depth of three
events therefore does not guarantee identification of all minimal cut sets of cardinality three (the
normal events essentially can ‘push’ failures out of the cut sets). Sequence generation that

guarantees such completenessis, at present, impracticable.

This problem however relates specifically to the anaysis tool used. A new sequence generator
‘plug-in’ is being currently developed by the author’s collaborators at Fondazione Bruno Kessler
(FBK) to address this limitation.

Further, whilst the analysis time — even to the depth of three events — may appear excessive it can
be largely attributed to two factors:
(i) Usage of the ‘computationally expensive’ modelling constructs to emulate directed weak
synchronisation — a fundamental limitation of the chosen implementation language
(i) A ‘bruteforce’, exhaustive simulation, approach to model analysis that underlies existing

tools— afeature of the specific analysis tool used by the author

The first factor is specific to the choice of implementation language and its impact can be reduced
in other languages whose constructs align better with the structure of the failure logic metamodel
presented in this thesis. The second factor is being addressed by the development of the new
analysis tool, mentioned above, that is based on NuSMV moded checker and the associated
NuSMV-SA analysis platform. The tool is expected to optimise the internal model representation

and significantly reduce analysistime.

Nevertheless, it is unredlistic to expect that the time required for the analysis of multi-system
models (composed from individual DSFMs), will ever be insignificant or that it will be
comparable to the analysis of fault trees with the similar number of events. Finaly, the time-
complexity of the automated analysis also has to be compared not only to the time of analysis of
fault trees but also to the efforts of the engineers necessary for re-modelling and integrating of the
trees. The efforts necessary for the remodelling task are minimised under the approach presented
in this chapter and it has been demonstrated in the course of the case study that significant

proportion of the DSFM integration work can be automated.

163



4.9 Conclusions

This chapter has addressed the issue of composing Failure Logic Models for redlistic, large-scale,
safety-critical platforms. It was argued that in such a context the assumptions that underlie the
composability claims of existing failure logic modelling methods (such as HiP-HOPS) are
unlikely to hold. In particular it may be unredlistic to expect models to identify all externa
dependencies in terms of input failure modes when platform decomposition does not follow a
traditional containment hierarchy model. Furthermore, even within the ‘pure containment
hierarchy model, it may not be possible to identify Failure Mode interfaces at early stages of

design and assessment.

The author has presented a flexible approach to rationalising the decomposition of the platform
which combines the principles of containment hierarchy model with the concept of views from
the discipline of software architectures and has defined the concepts of Engineering and
Allocation Domains. Different patterns of relationships between scopes and viewpoints of

engineering domains have been used to identify three key archetypes of allocation domains.

It was shown that whilst, for some of these archetypes, composition of domain-specific failure
logic models (DSFMs) may rely on ‘hard’ interfaces provided by failure modes (albeit that it may
require tranglation between FM class vocabularies used in different models), for others these will
not provide sufficiently rich interfaces for composition. The author has demonstrated that in the
latter cases failures and failure modes of one DSFM may be manifested as seemingly spontaneous
failures in another model. The FLMM has been extended to alow such composition. Based on
this, the approach to structuring relationships between different models (based on notions of
‘virtua’ translation components and a trandation layer) has been described and demonstrated

using a case study to illustrate its effectiveness.

Principles for the definition of composable DSFMs have been presented and the role of traditional
common cause analysis techniques in verifying the composability of the models has been
discussed. However, it has been shown that the DSFM composition approach significantly
extends traditional CCA and facilitates the representation of circular dependencies between
domains that cannot be easily addressed through traditional analysis methods.

164



Chapter 5: Multi-Mode and Reconfigurable Systems

5.1 Introduction

As was explained in Chapter 3 the key characteristic of failure logic modelling approaches is the
requirement to describe the behaviour of the system (and its components) in terms of deviations
from the design intent. Overall, with only one exception, discussed separately, all failure logic
modelling techniques implicitly assume the following characteristics of the system intent:

a) Theintent is coherent and consistent

b) System and component intent is inherently acceptably safe

¢) The intent of components can be characterised localy (i.e. in terms of relationship

between components inputs, internal abstract state and outputs)
d) The intent of the system (and, by implication, the intents of complex and basic

components) is unique and unchanging.

This chapter demonstrates that the last two assumptions do not hold for a large class of industrial
systems that can be operated in different modes and/or include functionality for failure detection
and reconfiguration (including the controlled degradation of overall functionality). The chapter
presents an extension to the FLM Framework that is necessary and sufficient for modelling multi-
mode systems and demonstrates how extended metamodel can be implemented in the AltaRica
language. Finally, the issues of the compositionality (or, more accurately, the composability) and
the reuse of failure logic models is discussed. Highlighted by the *problem’ of modes, these issues
are nevertheless present even in static models. In general, characterisation of the component in
failure logic models is highly dependent on component’s context; this means that in the genera

case component characterisations are neither reusable nor composable.

5.1.1 lllustration of the Problem Addressed by the Chapter

The problem of non-local dependencies between components in failure logic models has been
briefly illustrated in Section 3.8 of the Thesis. Here the problem isillustrated again in more detail
on the Wheel Braking System considered in Chapter 3 and in the particular context of system

modes.

Analysis of that model for the system-level failure condition of “Omission of Braking” will yield,
among others, the following two minimal cut sets:

{ BlueMeterValve.JamClosed, BSCU.BSCU1.MON.ProcessTerminated }

{ BlueMeterValve.JamClosed, BSCU.BSCU2.MON.ProcessTerminated }

165



The presence of the failure of the blue meter valve is obvious — it disables one of the redundant
braking channels. The presence of failures of single monitors, however, can be considered as
inaccurate: failure of a monitor should not (and does not) lead to loss of the other (“green”)
braking channel. The problem can be traced to the characterisation of the BSCU Validity Monitor
(the component that consolidates validity outputs of the two BSCU ‘sides’ to obtain the overall
validity of the control unit). In terms of failure logic characterisation, the Validity Monitor
currently propagates FalsePos FMs from either side as a FalsePos FM of the entire BSCU. Thisis
accurate when the other side of the BSCU (say, BSCU1) fails detectably: in this case the monitor
of the failed side will correctly report failure and, thus, an incorrect failure report by the other side
(the FalsePos FM of BSCUZ2) will result in the whole control unit declaring itself as failed too soon.
This declaration will of course result in the incorrect shut-down of the green hydraulic channel
(the Omission FM). In contrast, if the command module of the BSCUT remains failure-free
FalsePos FM of the BSCU1 will have no immediate effect on the correct operation of the control

unit as awhole and should not be propagated by the Validity Monitor.

The problem is that, a the level of the BSCU Validity Monitor, the two scenarios are
indistinguishable — in both cases BSCUT.MON generates no output FM whereas BSCU2.MON
generates the FalsePos. The only difference in the failure logic domain is the failure state and
output FM of the Command channel of BSCU1 which is not ‘visible’ to the Validity Monitor

component and, thus, cannot be referred to in its failure logic characterisation.

Under this restriction imposed by the present Failure Logic Metamodel (and shared by essentially
al current failure logic modelling techniques) the only possible modelling solution is to capture

failure logic of the Validity Monitor pessimistically, yielding the inaccuracy noted before.

To enable more accurate modelling the metamodel must be extended to allow capturing the fact
that at any point of time the BSCU as a whole can be in different modes depending of whether
and which of its channels are no longer trustworthy. Section 5.3.2, below, return to this problem
to demonstrate the modelling solution in the context of metamodel extensions introduced in the

present chapter.

5.2 System Modes

Many industrial systems are designed to perform multiple aternative and mutually exclusive
functions throughout their operational life. Examples of such systems can be found in the process
industry where plants can be configured to produce different chemicals in different modes of

operation or where maintenance and cleaning modes are often defined. Similarly, in the aerospace

166



domai

n most aircraft systems operate differently in different phases of flight (such as taxi, take-

off, climb, cruise, descent and landing). In such systems, behaviour of components which is

intentional and desirable in one mode of operation may be unintended and even unsafe in another

mode.

Example: The most famous example of such unsafe behaviour is the Therac-25
radiography machine [90]. The machine was designed to operate in two distinct
modes (determined by the operator). Errorsin the controller logic allowed in some
cases for the system hardware (that determined intensity of the treatment) to be
operated in different mode from that of the controller (that determined the duration
of treatment). Whilst the behaviour of the hardware had been consistent with its
configuration (and itsimplicit ‘local’ mode of operation) it was inconsistent with the
mode of controller as well as the mode required by the operator. The result was
patients' overexposure to radiation (which in some cases has been determined to be

the primary cause of death).

The types of modes that can be found in industrial systemsinclude:

Alternative modes of operation: the system or the equipment can be operated in a number
of aternative modes, selected by the operator as appropriate. The sequencing of modesis
relatively unrestricted. Examples of these modes may include process plant and Therac-25
modes of operation described above.

Phases of operation: the system operates through a predefined sequence of operational
modes. In normal circumstances the operator has a relatively limited influence on the
current mode (although they may sometimes influence the duration of each mode and/or
have a choice between some predefined alternative modes). Almost all aircraft systems
are operated in a phased manner.

Reconfiguration and failure mitigation modes: some system designs have sufficient
redundancy provision to be able to perform required functions even in presence of some
(diagnosed) failures. Upon detection of significant failures the system will reconfigure to
deliver functionality through aternative means. The switch-over between the failure
reconfiguration modes may range from appearing seamless to the operator (e.g. many

modern aircraft systems) to being facilitated by the operator.

In practice, the three classes of modes above are not mutually exclusive. For example, upon

detecti

on of failure some of the modes of operation may be disabled, phase sequence can be

simplified (e.g. restricting choice of available alternatives or inhibiting certain non-essential

phases altogether) or a special shut-down phase sequence can be initiated.

167



Returning to failure logic modelling, multi-mode systems clearly pose a significant challenge to
the naive methodology presented in Chapter 3. The challenge is two-fold:

e Multi-modal systems are associated with a number of alternative intents. This means that
there is no single reference of ‘nominal behaviour against which failure modes (i.e.
deviations) can be defined.

e Astransition between system modes may be determined by system inputs, global events
or failures of individual components, the correct mode cannot necessarily be established
by failure logic characterisations of basic components based on the information available
to that component (i.e. component inputs and states). As a result, basic components are
incapable of interpreting input failure modes and “ok” privatives since those have
ambiguous semantics unless a particular system mode is somehow indicated to the

component.

5.2.1 FLMM Extension

To address these challenges the Failure Logic Metamodel must be expanded firstly to enable
representation of the mode and transition between modes at the level of any complex component
(including the system), and secondly to ensure that al constituent components have access to the
mode of any ‘ancestor’ and can refer to it in their propagation equations and state entry logics (if

basic components).

Informally, as discussed above, a mode is an indicator of a current intent of a system (or a
complex component) and the corresponding intents of all constituent basic components. In other
words, modes can be seen as a facility of decomposing an otherwise complex system intent into
more simple ‘regions (predicated on some conditions) which yield unique intents of system
components (and thus provide unique interpretations to the input and output failure modes of the

components).

Since modes are typically persistent and can be predicated on other modes* they can naturally be
represented in the FLMM as a state of a complex component. Therefore, the concept of ‘ mode’
bears some similarity with the various concepts of a state (e.g. failure state or failure handling
state) of a basic component introduced in Chapter 3. As with the states of basic components,
modes are grouped into state-spaces; each mode also has to be associated with the “transition”
(Figure 66).

“2 For instance, in case of sequences of phases where each phase is predicated, among other conditions, on
the preceding phase of the system.

168



1.*

Component
contains

‘ 0.1

Basic Component |Complex Component|
1
1 represents 1 represents
0.* 0. 0.*
|Failure State Spacel |Norma| State Spacel |Fai|ure Handling State Spacel |Mode Spacel
groupedBy groupedBy
2.* 2.
decomposedinto 2% decomposedinto 2.
|Fa|Iure Statel |Norma’I Statel |Fai|ure Handling Statel | Mode |
\/

Figure 66- Revised FLMM: Modes of Complex Components

Containing a guard and a trigger, mode transitions can refer to other modes of the complex
component, the component’s input failure modes and any failures or norma events of the
constituent sub-components. The latter means that failures and normal events of basic components

arevisibleto all of acomponent’s ‘ancestors’ up to the level of the system®.

However, it is important to note that whilst transitions into the reconfiguration and failure
handling modes of a complex component are often fully determined by the preceding mode of the
component and events local to sub-components, the same does not hold for phases and alternate
modes of operation. Transitions between these modes are apparently non-deterministic from the
perspective of the failure logic of the system™. In order to resolve mode non-determinism it is
therefore necessary to alow complex components to contain norma events of their own.
Typically defined at the top level of system, these normal events are only used for transitions
between modes defined at the level of the same complex component. This requires a further
straightforward modification of the FLMM (Figure 67).

In terms of semantics, the modes of complex components are also similar to the states of basic
components: both are abstract representations of some conditions with the granularity established
specifically for the purpose of the model and based solely on the engineer’s judgement. It is
important to stress, however, that for modes the extent of the abstraction from physical states
observed in the system can be even greater than for failure and normal states. Reconfiguration of

the actual system from one mode to another is often achieved in a distributed manner with a

“ Note that this is consistent with the discussion in the previous chapter that has established that
components events form part not only of a component interface but also of the interface of sub-systems and
systems they are contained within. Further, note that the states of basic components — being a modelling
convention and an abstraction — remain fully hidden within component’ s boundaries.

“ For example, whether or not the Therac-25 machine should have been operated in photon or electron
therapy mode cannot be decided based on failures of the machine’ s components or deviations of user inputs.

169



number of controllers reconfiguring hardware (e.g. electrical switches or hydraulic selector
valves) based on the locally-defined rules and locally observed conditions. The notion of “mode”
in such context can be seen as an emergent feature of the system (with respect to the logic of the
distributed controllers). Under the FLM Framework it is the responsibility of the safety engineer
to reconcile behaviour of individual controllers and to rationalise it into a set of ‘holistic’ modes.
Consequently, sufficiently complex systems may yield a number of possible alternative (and

correct) mode characterisations.

1 1.7

/\

affects contains

Basic Componentl |Complex Component

1 damages

0.* affectedBy 0.* damagedBy

|NormaIEvent| | Failure |

\/

Figure 67 - Revised FLMM: Normal Events of Complex Components

At the same time, the engineering semantics of the modes is also significantly different from that
of basic components states: unlike the latter, modes neither represent a physical state of the
component nor determine components behaviour; instead modes capture (or indicate) what the
behaviour should be.

To summarise, this thesis defines a complex component mode (or just ‘mode’) as follows:

Complex Component Mode:

An abstract persistent condition of a complex component that:

¢ Determines the intended function of the complex component and the intended behaviour of
all sub-componentsit contains

o Associates all failure mode and privative flows within the complex component with unique
inter pretation

¢ Is wholly determined by the previous mode of the component, modes of the higher-level
complex components (the component belongs to) as well as failures and normal events of

the sub-components (that the component contains)

170



The complete revised Failure Logic Metamodel is shown in Figure 68. The model is

supplemented with a number of constraints guarding the ‘visibility rules’ (discussed throughout

this section) of various events and states:

(i)

(i)

(iii)

(iv)

Transition triggers associated with non-mode states of any (basic) component can only
refer to the events declared within the same component (or, aternatively, can be left
“void")

Transition triggers associated with modes of any (complex) component can only refer to
the normal events declared within the same complex component or to failures and
normal events declared within basic components that are themselves declared within the
domain of the complex component (or, alternatively, can be left “void”)

State Proposition declared within a component (as part of either a transition guard or a
propagation condition) can only refer to the state of the same component or the state (by
implication — mode) of its ancestors

FM Proposition declared within a component (as part of either a transition guard or a

propagation condition) can only refer to the Input FM of the same component.

The extended metamodel shows that the three broad classes of modes, identified in the beginning

of this

section, are fundamentally similar. Each different class is merely characterised by

particular prevailing patterns in the respective mode-space:

Alternative modes of operations are typically associated with transitions which are not
predicated on another mode and are usually triggered by normal events declared at the
level of the same complex component (typically — a system);

Phases of operation transitions are typically guarded by a small number of modes,
typically, with only one —or avery small number of— transition(s) leaving every mode (i.e.
showing nearly a ‘pipeline pattern’ of mode transitions). The transitions are typically
triggered by normal events declared either at the level of the same complex component
(e.g. representing abstraction of time) or at the level of constituent components (e.g.
representing exhaustion of some finite resource such as a fuel tank, a hydraulic
accumulator or an electrical battery).

Reconfiguration and failure mitigation modes are typically triggered by failures of basic
components or by input failure modes (viaavoid trigger). The models of these modes and

their transitions tend to form directed acyclic graphs (DAGS).

171



Agpadnoib

.0 Agpauayau

uonisodoad N4

uonisodoud ajels

Agpaisjel 0

uonisodoig Aieyuawajg

Jano

Jounfuo)ul

%0
_‘_wmm_‘_k v_o>_ _._wmm_._._. o_n_m:m._._‘

sysjoe
AV
uonipuo) uonebedoid pieng _ _ 496611 _
Agpasneo L
ap 10
ybnouy] passjua
I
pu3z moj4
I Vst
) sauanb
puz woud, | [ puaoL | 7 7
Spo aje)s Buljpuey ainjiey
suIgjuoD b . o _ || | BRI [ore3s @anpiey]
_wuoE aJnjed «’C  ojupasodwooap Frd
. . Olujpasodwoosp T
170 sauonb -k b | gpadnoib fgpadnoib
j0
EO N4 L \_ W4 induj _ _ W4 IndinQ _’ aoedg apo _ _mowaw ajeyg Buipuey w._z__uu_ _oomam ajels _nE._oz_ _oouam aje)g ainjreq
3
sa|qeus R <0
souyep 0 [TELNIETES .0 sHqyxe Y
sobewep
juauodwo odiseg
Agpajqeus

sulejuod spaye

sysisajluew .0

0 sysisajiuel

asneo N4 _ _mmsmo u:m>m_

asne) [eusdjxy

Agpasneo

soasned

€

ainjey _ _u:c>m _mE._oz_

Agpebewep 0
Agpajoaye X0

Figure 68 - Complete Revised Failure L ogic Metamodel (FLMM)

172



5.2.2 Modes as Component Context

Complex components’ modes can be seen to provide basic components with (a reference to) the
necessary contextual information that influences a component’s failure behaviour. This section
considers various implications of such a contextual dependency on the properties of basic
components, the concept of modes and even properties of the failure logic modelling approach as

awhole.

5.2.2.1 Component Failures and Dynamic Exposure Intervals

The influence of the system mode on the behaviour of basic components is not limited to the
interpretation of input failure modes (or the lack thereof) and, thus, propagation conditions of the
component that have been discussed so far. The expanded FLMM permits component state
transitions to be similarly context-dependent.
Example: certain failures of components may be more or less likely depending on
how a component is being used at the time: electrical fuses, circuit breakers and
hydraulic valves used in ‘stand-by’ redundant channels of the system may be more
likely to fail in modes when the respective lines are energised. The Failure Logic
Metamodel permits us to reflect this aspect of the component failure logic by
predicating failure state transitions on the mode of the system. In other modes,
failure state transitions of ‘cold’ spares may be prohibited; for ‘warm’ spares only
transitions triggered by ‘special’ — less likely — failures may be permitted. It is
important to note, however, that spares may also be energised inadvertently in
modes when they are not intended to be ‘active’. Consequently, transition guards
would rarely be predicated on a mode alone and would typically contain a

disjunction over modes and commission failure modes of the activation signal.

Considering the reverse of atypical cold spare scenario leads to an important observation about
the nature of modes in failure logic models. Consider a situation where a certain failure is only
possible in a certain mode of operation when the component is not actively utilised by the system.
Whilst such a failure may not have an immediate effect on the component’s interface, its local
effect will be ‘stored’ in afailure state of the component. The latter may cause an output FM of a
component once the system moves to another mode where the component is active (even though
the origina failure may be impossible in this mode). This simple hypothetica example shows
that, whilst modes partition the intent of the system, they cannot be generally seen as partitioning
the failure logic model itself into a number of independent more simple ‘ mode-free’ models:
Failure behaviour of a system in one mode may be influenced by any permanent

damage sustained in preceding modes.

173



At the same time, the concept of modes enables us to capture dynamic and conditional exposure
intervals of individual failures (associated with a particular probability distribution function) more
accurately in the FLM Framework. Of course, in some circumstances conditional exposure
intervals could be captured even without using modes by including input FMs in the guards of
failure state transitions (see Chapter 3). However, this only allows limited exposure to failure to
circumstances when the component is exposed to an input deviation (such as inadvertent
activation of a component). In the absence of input failure modes, there is no mechanism for
segregating situations when component is active and when it isn't. This yields the next
observation about modes:
Whilst modes are necessary to enable the correct interpretation of input
failure modes by individual components, they are also essential for

inter preting the absence of input FMs.

5.2.2.2 Reusability of Component Characterisations

For multi-modal systems, the context dependency of components clearly limits the reusability of
component models (characterisations). Indeed, for a system consisting of n redundant and
identical cold standby subsystems (“channels’) and, thus, potentialy operated in n modes, models

of seemingly identical componentsin different channels will not be identical.

It is important to stress that the problem of context dependency of components in failure logic
models is not specific to multi-modal systems. Multi-modal systems merely highlight this
problem since in these systems the context is dynamic and thus needs to be explicitly represented.
For fully static systems the context till exists, it is still non-local and models of basic components
are till sensitive to it. However, static context remains implicit in failure logic models and, thus,
the dependency is somewhat less obvious. Nevertheless it can be illustrated with the WBS
example used in Chapter 3.

The system contains two redundant hydraulic channels each containing one meter valve. The
design and functionality of these two valves are nearly identical®™. In these circumstances a
natural expectation is that the same failure characterisation could be reused for both components.
In practice, however, the characterisation of the two valves in the failure logic model is
significantly different (Figure 69). The blue valve would generate a commission of braking as a
result of inadvertent command with no need for any hydraulic input failure modes. In contrast, the

shut-off selector valve of the green channel ‘protects’ the green meter valve from being exposed

> Trivial modifications to system description (such as stipulating electronic rather than mechanical link
between cockpit pedal position and blue meter valve) will remove any differences whilst maintaining the
failure characterisation of the components.

174



to a commission of control: this meter valve will only exhibit a commission failure mode if it is

simultaneously exposed to failure modes on both control and hydraulic inputs.

Green pump Blue pump

Q) @)

Shut off Isolation
selector valve
valve

HydOut.FWD.PressureCommission ==
I

.("CTRL.InadvertentBraking HydOut.FWD.PressureCommission ==
& ( HydIn.FWD.PressureCommission |
HydIn.FWD.LowPressureCommiss) ( CTRL.InadvertentBraking

)| & ~HydIn.FWD.PressureOmission
Anti-skid )|

shut off
valve

AN
Green

Meter
Valve

Blue
Meter
Valve

Figure 69 - Difference Between Failure Logic of Green and Blue Meter Valves

Furthermore, if the design of the blue channel were to be modified and a single meter valve was to
be replaced with two identical valves connected in series and driven by the same mechanical
pedal position, the characterisations of these two valves would not be identical: the downstream
valve will be protected by the upstream ‘sibling’ and so will only exhibit a commission failure
mode if it is exposed to a commission of hydraulic pressure (along with suffering from an internal
failure or being further exposed to control failure mode); the upstream valve would not benefit
from such protection and could exhibit commission failure mode as a result of internal
malfunction alone. It is important to stress that this scenario will hold in purely ‘static’ (mode
free) models, and regardless of the specific modelling notations or techniques. The scenario
demonstrates a significant limitation to the validity of any claims that (in the context of failure
logic modelling approaches) “reuse of ‘component safety analyses across applications becomes
possible” [162]. In fact, component characterisations can only be reused when (sufficiently)
identical components are employed in (sufficiently) identical context; regardiess of whether that

context is static or dynamic.

Based on experience in the case studies, section 5.5.3 suggests that a partial solution to the
reusability of failure characterisations may be possible within the boundaries of individual
systems (or, possibly, in product families). However, as far as the author knows, no work on such
extension to any failure logic modelling technigue has been carried out to date and the proposal

remains not fully validated.

175



5.2.2.3 Context Boundaries and Dysfunctional Modes

Previous discussions have demonstrated that modes are sometimes needed to provide basic
components with contextual information that is necessary for the interpretation of failure modes
and, often more importantly, the absence of any deviations from the intent. At the same time the
FLMM has stipulated that modes are declared at the level of particular complex components
which limits their domain (boundaries of visibility). So what happens when a failure mode flow

crosses the boundary of a mode domain that essentially determines its semantics?

In general, two solutions can be taken to ensuring that FMs can still be interpreted outside the
‘source’ complex component:

e The context (i.e. component mode) can somehow be communicated to the environment

e A complex component’s output failure modes (and privatives) can be trandated to the

failure modes with identical semanticsin the new context.

The former approach clearly requires us to allow components in failure logic models to
communicate through means other than failure modes; it widens the component interface and
weakens information hiding in the model. Consequently, this thesis favours the latter approach

which is consistent with discussions on model composition in Chapter 4.

To demonstrate both the problem and modelling solution in concrete terms, a new (fourth) class
of system modes — dysfunctional modes — is discussed. Dysfunctional modes identify
circumstances when the design of the system (or complex component) deliberately does not
comply with the full intent (in a wider context). In general two sub-classes of such modes can be
identified:

o Design limitations: whereby in some well-defined circumstances incorrect operation of

the system is deemed acceptable in order to reduce complexity or improve performance

e Degraded modes. when following a number of failures some of the less essentid

functionality of the system is ‘sacrificed’ in order to maintain more critical aspects of

system operation and/or to reduce further threats to the limited remaining resource.

In practice, dysfunctiona modes are almost always a result of engineering trade-offs. Indeed,
whilst system safety is one of the key design driversit is not the only driver. In practical designsit
is often necessary to trade safety characteristics off against other quality attributes of the system
(such as weight, availability, modifiability or supportability). Even within the safety attribute
itself, trade-offs are often necessary between the availability of a safety-critical function and other
considerations that may impact safety of the system (such as the complexity of the system that
may adversely affect the engineers’ ability to validate and verify design correctness).

176



In terms of failure logic models, dysfunctional modes are typically triggered by failures of basic
components (indicating a need for ‘shedding’ non-essential functionality or exposing a limitation
of afailure detection or monitoring scheme) or normal events declared at the level of a complex
component (exposing a limitation of design in some circumstances)
Example: An aircraft fuel system may be required to provide annunciation of abnormal
fuel distribution or leaks. This functionality, however, is unreliable (and may be
inhibited) when the aircraft performs certain manoeuvres (e.g. steep climb or descent)
which, whilst ‘normal’, are judged to be sufficiently infrequent and not long-lasting.
Smilarly, certain cockpit announcements and warnings are typically intentionally

inhibited during the last stages of landing or after a certain speed isreached in take-off.

As was mentioned above, when failure mode flows cross the boundaries of domains of
dysfunctional modes they may need to be trandated into appropriate FMs in the new context. The
principled approach to such trandation — that is consistent with the approach to multi-system
composition described in the previous chapter — requires the introduction of a dedicated virtual
“trandator component”. However, since this approach increases the number of mode
components® it can sometimes be perceived as ‘cluttering’ the failure logic models. In a practical
setting, it may sometimes be possible to ‘absorb’ the logic of the trandlation component in the

failure logic characterisation of the components closest to the interface of the mode domain.

The model of the Braking System Control Unit (BSCU) of the WBS, used in previous chapters,
can be used to illustrate the solution. The BSCU contains two redundant sides (each consisting of
the Command and Monitor modules) as well as a Validity Monitor and a Switch (see Figure 70).
In al previously presented models it was assumed that the Switch component cannot fail. This

assumption is now revoked.

In particular it is now assumed that the switch can suffer from two hypothetical failures. one —
ProcessStuck — ultimately results in the switch’s becoming insensitive to the validity input; the
other — ProcessTerminated — prevents the switch from propagating any braking or anti-skid
commands (i.e. resulting in LackOfBraking and AntiSkidOmiss output failure modes over CMD and

AS outputs of the switch respectively).

The switch failures clearly affect the ‘trustworthiness’ of the command and anti-skid outputs of
the BSCU as awhole. Furthermore, in this scenario the Validity Monitor will clearly be unable to
detect and duly report that the main outputs are invalid. In other words, failures of the switch

expose fundamental limitations of the BSCU design in general and the specification of the

% And, in particular, the number of model components that cannot be traced to any elements of system
design.

177



monitoring schema in particular. This limitation cannot be attributed to any individual basic

component — it isalimitation of the design of the complex BSCU component as awhole.

FWEL PURZ

Validity
Pedall =

Ij alidityMonitor
BSCU1 BSqU2
BSCU BSCU
side side
Pedalz
[_®
P o 4%
% — ]
o R
Switch CMD

Figure 70 - BSCU Architecture

Generaly, there are two approaches that could be taken to correctly reflect the limitation in the
failure logic model of the BSCU. On the one hand, it can be observed that the limitation
effectively establishes a dependency between the Switch and Validity Monitor components in
terms of an assumption that the switch will never fail. This assumption can be considered to be
part of the intent and, thus, a deviation from the assumption (i.e. failure of the switch) can be
captured in terms of FM flow between the two components. However, this FM flow will have an
unintuitive interpretation in terms of BSCU design (since the two components do not interact in

any tangible fashion) and, more importantly, this solution is not scalable.

On the other hand, the more principled solution (described above) is to recognise that the known
limitation of the monitoring schema means that BSCU can be operated in two scenarios (i.e.
modes): normal operations (when validity monitoring is effective) and a dysfunctional mode
(when the design limitation is exposed and the monitoring is ineffective). Further, the conditions
upon which the BSCU moves from Effective to Ineffective mode are known*’ — failures of the

Switch component (Figure 71).

47 1t is interesting to note that the knowledge of these conditions along with clear understanding of
limitations (and, presumably, justification of why the limitation is acceptable) is the difference between
dysfunctional modes and systematic failures of complex components. Indeed, the same approach could be
used for modelling hypothetical systematic failures of complex components (i.e. design errors not
attributable to individual basic components).

178



Switch. ProcessStuck

Effective

(initial mode) Ineffective

Switch.ProcessTerminated

Figure 71 - BSCU Modes and Transitions

These two ‘monitoring modes’ alow us to model the contextual dependency between (the
semantics of) validity monitor output failure modes and failures of the validity switch without

establishing an explicit flow between two components.

The reinterpretation of the failure modes associated with the BSCU validity output is performed
through a dedicated virtual trandator component inserted between the Validity Monitor and the
BSCU interface (Figure 72). The translator component propagates both FMs (FalsePos and
FalseNeg) unchanged in both modes; however, in the Ineffective mode the absence of FalsePos is
trandlated into a FalseNeg output FM (Figure 73).

Translator
1 L

alidityMonitor ﬂ Walidity

Figure 72 - Revised Failure Logic Model Architecture of BSCU (partial)

Trandator (virtual)

[iIn BSCU]
Input Failure Modes
Failure Mode (ID) FM Class FM Group
In.FalsePos Omission In
In.FalseNeg Commission In
Output Failure Modes & Propagation Conditions

Failure Mode (ID) | FM Class FM Group Propagation Condition
FalsePos Omission Validity In.FalsePos
FalseNeg Commission | Validity BSCU.Ineffective & ~In.FalsePos |

In.FalseNeg

Figure 73 - Characterisation of the Virtual Translator Component

179



5.3 Implementation of Modes in AltaRica/OCAS

Originally the selection of the model specification language was influenced, among other factors,
by the claims of the compositionality of the various failure logic methods (e.g. see [162] for HiP-
HOPS). As aresult, the selected language (AltaRica Dataflow/OCAYS) is strictly compositional, in
that complex components (“equipment”) may only contain sub-components, assertions over
interfaces (input and output flows) of the complex components (and sub-components) as well as
synchronisations of sub-components events. In particular, equipment nodes may contain neither
states nor events of their own. Whilst it is still possible to implement the Failure Logic Metamodel
in AltaRica, these language restrictions mean that the implementation has to rely on more

complex language constructs.

Essentially, for each complex component with modes it is necessary to construct one or more
components to hold mode model(s). Furthermore, in order to make failures and normal events
‘visible’ to the mode observer and, in reverse, to make modes visible to the basic components a
number of synchronisations have to be explicitly established. Finally, the code of individual basic
components that are either sensitive to modes or influence mode transitions also needs to be
modified.

Overdll, whilst modes introduce significant additional complexity to the models and the task of
codifying the models, the process is systematic and agorithmic with the overal procedure
outlined below.

5.3.1 Procedure for Encoding Modes in AltaRica

The procedure for encoding modes in AltaRica OCAS consists of three steps:
(1) The mode model of the components is constructed in a dedicated (virtual) mode observer
component.
(2) Models of al basic components that trigger mode transitions are modified and
synchronisations are established between the basic components and mode observer.
(3) Models of al basic components that are sensitive to modes are modified and appropriate
synchronisations are established between these components and the mode observer.
In the following description it is assumed that, before the procedure commences, models of basic
components already include al failure and normal state transitions. In practice, the codification

processis likely to be iterative.

180



Step 1: Construction of the mode obser ver

For each mode-space in each Complex Component a special virtual basic component® is declared
(the “Mode Observer”). The component has two state variables:

e One (typicaly called “Mode”) defined over an enumerated type with each enumeration
symbol representing a distinct mode (i.e. an implementation of the State metaclass that
belongs to the Modes metaclass in the FLMM).

e The other — typically called BroadcastPending — defined as a Boolean with initia value

false.

For each input FM of the complex component that features in the mode transitions guards, an
input port of the observer is declared (and linked to the appropriate input of the complex

component).

For each void trigger of @ mode transition a separate event is declared in the observer and

assigned the Dirac(0) law.

For each non-void mode trigger an event is defined within the observer (typically named after the
component and event — Failure or Normal — that the trigger should be associated with) and for
each mode itself a further instantaneous event is defined (typically called “Broadcast<XXX>",
where <XXX> isreplaced by a mode identifier).

The mode observer has no assertions (i.e. no assert clause) but has two sets of transitions. First,
mode transitions are constructed as appropriate with reference to the observer inputs, void triggers
and mode triggers defined above. Each mode transition not only assigns an appropriate value to

Mode variable but also ‘turns’ BroadcastPending to true.
Second, for each value of Mode a transition is defined. The transition is predicated on this mode
and BroadcastPending variable being true and is triggered by the corresponding ‘ broadcast event’;

the effect of the transition is the assignment of false to the BroadcastPending variable.

Step 2: ‘Binding’ of modetriggers

At the level of the complex component which contains a mode observer, a synchronisation is
defined for every non-void (i.e. non-instantaneous) trigger event of the Mode Observer. For
triggers that relate to the normal events of the complex component itself, the synchronisation is
assigned aweak hiding type (“diffusion”). For triggers that relate to events of basic components the
synchronisation is assigned a strong type (“synchronization”) and an instantaneous — Dirac(0) — law.

Initially each synchronisation contains only the appropriate (trigger) event of the mode observer.

8 In asense that it does not model any component that can be identified in system design.
181



Next, each component that contains a failure or a norma event that should trigger the mode
change (aswell asthelocal state change of the component) is augmented by:

(i) Defining anew Boolean state variable — ModePending (with initial value false)

(ii) Defining a dedicated instantaneous event for every failure or normal event that should
trigger a mode change (typicaly called “ Trigger<XXX>", where <XXX> is replaced by the
identifier of the original event.

(iii)  Augmenting every existing component state transition that is triggered by such event so
that (in addition to the original effect) it assigns the ModePending variable a value of frue

(iv) Declaring a new transition from every state entered through the above transition. This
transition is triggered by the appropriate new trigger event (defined in the second step
above) and is predicated on both the component state and the ModePending being true; the
transition doesn't affect the original component state itself but changes ModePending to
false.

The result of this change is that whenever afailure or a normal event, XXX, which should trigger a

mode transition, ‘fires’ — a corresponding new Trigger<XXX> event immediately takes place.

Finally, the newly defined basic components’ trigger events are included in the appropriate strong
synchronisations defined in the beginning of this step.

At the end of this step the mode observer ‘sees’ all necessary failures and normal events and is
capable of executing mode transitions appropriately. However, the mode remains, so far,

‘invisible’ to the basic components.

Step 3: Local modes br oadcast

Similarly to the previous step, at the level of the complex component that contains a mode
observer a strong instantaneous synchronisation is defined for every broadcast event of the Mode

Observer. Each synchronisation initially only contains the respective observer’s event.

Every basic component whose behaviour is dependent on the mode of the higher-level
components must be changed as following:

(i) A new state variable is defined (typically called “Mode”) with exactly the same
enumerated type as the mode variable of the applicable mode observer. For components
that are sensitive to more than one orthogonal group of modes — more than one variable
may need to be defined.

(i) For each possible value of this mode (i.e. each enumeration symbol of its enumerated
type) anew event is defined (typically called “Broadcast<XXX>" where <XXX> is the value

of the mode variable).

182



(iii) For each such new event a transition of mode should be defined with the guard being
simply “true” and the effect of the transition being an assignment of the respective value
to the Mode variable.

Finally, each newly constructed event is added to the appropriate synchronisation of the complex
component (defined at the beginning of this step).

At the end of this step each ‘mode-aware’ component includes a ‘replica’ of the mode model of
the observer. This replica, on the one hand, is accessible and can be used in the behaviour
specification of the component; on the other hand it is fully synchronised with the observer and,

thus, reflects the mode of the *ancestor’ complex component at any point of time.

5.3.2 lllustration

In this section the previous example of (dysfunctional) BSCU monitoring modes is used to
illustrate implementation of modes in the AltaRica OCAS.

First, the mode observer is constructed (Figure 74). As the BSCU mode model contains only two
states — Effective and Ineffective — the observer’s Mode variable is defined over two enumeration
symbols and only one broadcast event (Broadcastlneffective) is necessary. The Ineffective state can
be entered through two transitions — associated with different failures of the Swvitch component —

yielding two trigger events (TriggerSwitchStuck and TriggerSwitchTerminated).

node MonitoringModeObserver
state
Mode : {Effective,Ineffective} ;
BroadcastPending : bool ;
event
TriggerSwitchStuck, TriggerSwitchTerminated, Broadcastineffective ;
init
Mode := Effective ;
BroadcastPending := false ;
trans
// *** Mode transitions
// Mode change in response to triggers
// Note: that each transition sets BroadcastPending flag
Mode = Effective |- TriggerSwitchStuck -> Mode := Ineffective, BroadcastPending := true;
Mode = Effective |- TriggerSwitchTerminated -> Mode := Ineffective, BroadcastPending := true;

// *** Mode broadcasts ***
// A broadcast consists of "firing" the instantaneous event
// After the broadcast the flag is reset to "false”
BroadcastPending and Mode = Ineffective |- Broadcastineffective -> BroadcastPending := false;
extern
law <event Broadcastineffective> = Dirac(0) ;
edon

*kk

Figure 74 - BSCU MonitoringM odeObserver in AltaRica OCAS

183



To communicate failures of the Switch to the mode observer the characterisation of the former is
modified (Figure 75). Upon failure, the Switch ‘memorises’ that an event needs to be ‘sent’ to the
mode observer by assigning the ModePending variable a value of frue. Consequently, whenever the
component is in the ModePending state and its FailSt is not equal to “OK” an appropriate trigger
event is‘fired’ immediately.

| node Switch |

state
FailSt : {OK,Stuck1,Lost} ;
ModePending : bool ;

event
ProcessTerminated, ProcessStuck,
TriggerTerminated, TriggerStuck ;

init
FailSt := OK ;
ModePending := false ;
trans

// *** Failure state entry logic ***

// Note "queing" of trigger commonications through ModePending variable
FailSt = OK |- ProcessStuck -> FailSt := Stuck1, ModePending := true;
FailSt = OK |- ProcessTerminated -> FailSt := Lost, ModePending := true;

// *** Mode trigger broadcast logic ***
ModePending and FailSt = Stuck1 |- TriggerStuck -> ModePending := false;
ModePending and FailSt = Lost |- TriggerTerminated -> ModePending := false;

assert
// *** Propagation conditions ***

extern
law <event TriggerTerminated> = Dirac(0) ;
law <event TriggerStuck> = Dirac(0) ;
edon

Figure 75 - Revised AltaRica OCAS Specification of the Switch Component

node Translator
flow
In: WBS_ValidityFMs : in ;
Out : WBS_ValidityFMs : out ;

state
Mode : {Effective,Ineffective} ;
event
Broadcastineffective ;
init
Mode := Effective ;
trans

// "Reading" mode broadcast
true |- BroadcastIneffective -> Mode := Ineffective;

assert
// Reinterpretation of Validity Monitor's
// failure modes from BSCU context (In flow)
// to the WBS context (Out flow)
Out = ( case { Mode = Ineffective and In = OK : FalseNeg,
else In})

edon

Figure 76 - AltaRica Characterisation of the Virtual Translator Component

184



Within the BSCU only one basic component is sensitive to the dysfunctional |neffective mode —
the Translator. Within this component the modes of the MonitoringModeObserver are replicated with

asingle transition triggered by a dedicated Broadcastlneffective event (Figure 76 above)

Finally, three synchronisations are defined at the level of the BSCU: two for communications of
trigger events from Switch to MonitoringModeObserver and one for the mode broadcast (from the
observer to the translator component). Figure 77 shows all three synchronisations with the mode

broadcast shown in detail.

WESIBSCLULS

e r lGons ri.}’ Synchronizations r Altarica code |
General |/ i r Content |/ Siziizs

Synhchronizations L
TriggerSwitchStuck |Dirac(D) |
TriggerSwitchTarminated Synchraonization type
Broadcastineffective ) GOF
) Diffusion

(@ Synchranization

Events
tonitoringtodeObserver Broadoastineffective
Translator. Broadcastineffective

Figure 77 - BSCU Synchronisations

Normal

(initial mode)

failure
failure

Switch. ProcessStuck

Effective
(initial mode)

Switch.ProcessTerminated

Any BSCU2.Command
Any BSCU1.Command

Alternate2

Alternate1
(BSCU2 inoperative)

(BSCU1 inoperative)

failure
failure

Untrustworthy

(Both Channels
Inoperative)

Any BSCU2.Command

Any BSCU1.Command

Figure 78 - Revised Architecture of BSCU’s Failure Logic M odel

Before concluding the illustration it is interesting to reiterate, that, even disregarding Switch
failures and the dysfunctional mode of the BSCU, the model of the BSCU presented in Chapter 3

is inaccurate. The problem, previously described in Section 5.1.1, is that without reference to the
185



real status of two command modules the failure logic of the Validity Monitor can only be
characterised pessimistically. In order to improve accuracy of the failure logic model of the
BSCU, the new mode model of the unit (orthogona to the dysfunctional mode model discussed
above) has to be constructed to capture the status of both redundant channels at any point in time
(Figure 78, above). The complete revised model isincluded in Appendix B, Section B3.

5.4 Implications for the Modelling Process

Throughout the discussion presented in preceding sections it was demonstrated that in general
failure logic models cannot be considered to be compositional:

e The failure behaviour of complex components and systems cannot be fully attributed to
the basic components they contain (since modes and some normal events are part of a
non-decomposabl e characterisations of the complex components).

e Individual components cannot be constructed in isolation and then ‘brought together’ to
form a model (since their characterisations are context-dependent and require us to
consider components intent in the wider context of the system).

e Even in the context of simple and intuitive component intents and in the absence of
dynamic reconfiguration and modes, the degree of effort required for integration of basic
components characterisations into a single model is greatly dependent on whether a

consistent interface between components has been established.

As a result, the key challenge to the failure logic modelling process is to reduce the impact of

non-compositionality of models on the cost and efficiency of the overall safety assessment.

In order to preserve some composability of the failure logic models and the compositionality of
the modelling process, the models have to be constructed in two analytical stages. a holistic
architectural stage and (relatively) compositional detailed component modelling stage. In practice,
the two stages are iterative with the detailed modelling stage being capable of identifying

necessary revisionsin the architecture.

5.4.1 Establishing Model Architecture

The informa goa of the architectural stage is to set the overall modelling principles and
conventions for the model. This consists of:
o the identification of components, their hierarchies and intents (based on system design
description);
o thedicitation of components failure modes and dependencies (i.e. FM flows);

e theconstruction of preliminary mode models of all complex components.

186



The underlying system assessment process is creative and relies on engineering judgement as well
as on a thorough understanding of the design proposal. We speculate that architectural analysis
can benefit from being conducted by small teams of engineers that include both safety and
reliability engineers on the one hand and design and domain experts on the other. Necessary
inputs for the process are design descriptions (and, where available, models), lists of known low-
level threats (e.g. short circuits for electrical systems or leaks for hydraulic systems) and design
issues (e.g. known limitations of sensors and/or failure diagnostic mechanisms) for the system
and alist of high-level safety concerns (such as failure conditions or hazards identified during the
FHA).

The process generally proceeds in a top down manner: first considering the level of the system,
and then decomposing any complex components into sub-components until the level of basic

components is reached.

In order to identify dependencies between the components, safety engineers consider both
intended and unintended paths that are established by the design as well as intentional and
unintentional interactions over these paths [54]. Furthermore interactions in terms of flows of

energy, material and information (including control) should be considered [68, 112].

Unintentional interactions (over intended and unintended paths) are typically captured as
specialised commission failure modes (e.g. short circuits, leaks etc.); however, safety analysts also
have to consider whether further refinement of such generic failure modes is necessary (e.g.
specialising the general “leak” FM into more detailed sub-types such as “slow leak” and “fast
leak” failure modes) in the context of particular system, high-level safety concerns and low-level
threats. By contrast, intentional interactions typically yield a significantly larger number of failure
modes as more subtle deviations from intent need to be considered. To aid the identification of
such failure modes a set of guidewords (such as HAZOP [85] and SHARD [123] guidewords) is

applied to each interaction in order to find viable interpretations.

Identification of the modes of complex components is similarly guideword-based whereby the
four classes of modes discussed throughout this chapter are used as cues. Where detailed
reconfiguration rules implemented by controllers are known, these can be used as a ‘starting
point’ for the mode model. For each identified mode each component that falls within the mode's
domain is briefly considered and its intent (for the given mode) is clarified. The result of the
process is a preliminary mode model that identifies all modes and possible transitions between the
modes. However, the details of the transitions' guards and triggers are typically not specified at
this stage (as they are likely to be dependent on the detailed characterisations of basic

components); instead, abstract and informal transition conditions are captured and retained until
187



the detailed failure logic model emerges. Overal, with respect to system modes, the process
envisaged hereis very similar to Papadopoulos' s “ Analytical Stage” of the safety analysis process
[115].

The process of diciting a system’s and its components modes and failure modes is highly
speculative, creative and judgement-driven. In general, safety engineers can only identify viable
interpretations of guidewords; whether the resultant modes and interfaces are sufficient or, even,
necessary can only be established with certainty during the detailed modelling stage. However, in
order to control the modelling process risks proactively and to reduce the incidence of expensive
architecture ‘roll backs a partial architecture validation step can be introduced. This step is
similar to HAZOP and SHARD and can be seen as a ‘lightweight’ and scenario-based variant of
both FMEA and FTA.. During the validation two types of scenarios (or “walk-throughs’) are used:

a) Inductive scenarios: These start with an initiating event (e.g. afailure) typically related to
one of the perceived key low-level threats for the system or its technological domain. The
scenario is developed by systematically walking through the architecture to identify how
the initiating event affects the system in terms of failure mode propagation and/or change
in components states. During scenario development, co-effectors (that affect failure mode
propagation) are systematically recorded and different corresponding causal ‘branches
are systematically explored. For each branch both the immediate effects (in terms of
system-level output failure modes) and ultimate effects (in terms of FMs and any
appropriate mode switches) are recorded.

b) Deductive scenarios. these are the reverse of the above. The development of a deductive

scenario starts with a significant effect condition — typically a system level failure
condition (although individual output FMs, ‘interna’ failure modes, transitions into
particular modes as well as any combinations thereof may aso be used). The scenario is
developed by deductive wakthrough where mode dependencies are considered one flow
at the time and the causes of the condition are recursively identified. The process is
similar to an informal fault tree analysis applied to the component-and-connector view of

the failure logic model architecture.

The primary goal of the above inductive and deductive analyses is to test whether significant
system failure behaviour scenarios can be expressed in terms of system modes and of FMs
captured by the failure logic model architecture and, thus, to increase confidence in architecture’s
expressiveness, completeness and correctness. However, when conducted with sufficient rigour
and appropriately documented, scenario-based validation can add further value to the safety
assessment process:

e By enabling some preliminary safety anaysis feedback to the design process (e.g.

identification of the key weaknesses and challenges);

188



e By generating material (i.e. simulation and review ‘cases’) that can be utilised for

simulation- and review- based validation of detailed failure logic models.

It isimportant to stress that for all but the most trivial systems, definition of the architecture of the
failure logic model is a highly iterative process where the ‘validation’ step highlights deficiencies
of the architecture and necessary modifications as well as triggers revision and refinement of both

failure modes and system mode models.

5.4.2 Basic Components Characterisation and Model
Composition

Once the model architecture is established the detailed characterisations of components can be
established in relative isolation. However, in specifying the failure logic of individual basic
components safety engineers till need to maintain a system-wide perspective in that the

components’ intent needs to be considered in awider context.

Thefirst step at the level of basic components is to establish which of the higher-level modes the
component is sensitive to and to establish the intended behaviour of the component in each such

mode.

Following this, component characterisations are constructed. The process typically starts with the
specification of failures and norma events, followed by the specification of local states (i.e.
failure states, norma states and failure handling states) and, eventually, the specification of
propagation conditions for all output FMs. Impact of all of the modes the component is sensitive
to must be considered at the time of specification of both state transitions (in terms of exposure to
individual failures and semantics of input failure modes in transition guards) and failure
propagation conditions (in terms of semantics of input and output failure modes as well as all

possible interpretations of privatives).

Establishing the failure logic characterisation of the components may, in some cases, identify
incompleteness, inaccuracy or an inappropriate level of granularity of the model architecture.
Therefore, whilst scenario-based validation of architecture should minimise the incidence of ‘roll-
backs', revisions of the failure logic model’s architecture may be triggered by component-level

analysis and modelling.

Once component models are complete, the final failure logic models can be assembled. Guided by
the architecture, the consolidation of the model proceeds ‘bottom-up’ through the progressive

composition of components models. At each level of composition, the components interfaces are

189



connected by FM flows and mode models of complex components are refined. In particular, the
abstract transition conditions of dysfunctional and failure mitigation modes are progressively
replaced by concrete specifications of guards and triggers in terms of (other) modes, events and
FM flows (made available by the component models and their composition respectively). This
model consolidation process is broadly similar to the “synthetic step” of analysis proposed by
Papadopoulos [115].

Finally, in some cases, analysis of failure logic models of the system or individual complex
components can be used to facilitate and inform progressive refinement of the mode models.
However, for most non-trivial models the process cannot be fully automated and will often rely on

the engineering judgement.

5.5 Case Study: Electrical Power Distribution System

The concept of modes is demonstrated on an Aircraft Electrical Power Distribution System
(EPDS). The system closely relates to that deployed on the A320 aircraft, although it has been
simplified for the sake of clarity here. This section presents a brief summary of the system,

architecture of the failure logic model and components characterisations.

5.5.1 EPDS Overview

The function of the EPDS is to distribute electrical power from three ultimate sources —
aternating current generators — to six busbars. Two of the generators (Generator 1 and Generator
2) are identical and are powered by aircraft engines; the third — “emergency” — generator is

hydraulically powered.

The six busbars are organised in two groups: three alternating current busbars (AC1, AC2 and AC
Essential) and three direct current busbars (DC1, DC2 and DC Essential). AC to DC conversion is
achieved by three transformers (Transformer 1, Transformer 2 and Essentia Transformer) — each

transformer is, in principle, capable of supporting all three DC busbars alone.

The architecture of the system is shown in Figure 79. Traditionally EPDS is divided into three
sides: Side 1, Side 2 and “Side Essential” — corresponding to the left, right and centre portions of
the diagram. Similarly, it is sometimes useful to consider the EPDS architecture as consisting of
DC and AC “sections’.

190



® ® ® =
Generator 1 Emergency Generator 2
Generator AC Power
Generator
GEN1ct GEN-Ect GENZ2ct
! ACI/DC
Transformer
A A A A
GEN12ct GEN21ct
Switch
( Circuitbreaker
AC1
@ Cable
Junction
ACT1ESSDK [
[ ] Busbar
hd
ACTESSct AC2ESSct
e
TR1bK| ( ( TR-ESSbk TR2bk
' w |Essential .
Transformer 1 ! ! Transformer ! Transformer 2
TR1ct TR2ct
TR-ESSct
DC1 DC ESS DC2
DC1bk DC2bk
DC-ESSct

[ A

DCfct DC2ct

Figure 79 - EPDS Ar chitecture

Each side of the EPDS is connected in a pipe-line fashion and is in principle capable of operating
in isolation. However, in order to provide redundancy the sides are connected by three “cross-
feed” lines: two in AC section and one in DC section of the system. The flow of the electrical
power in the system is controlled via 14 contactors (electrically controlled switches) by four
controllers (not shown). Exactly one controller controls each contactor and the configuration is
determined by relatively simple rules (Table 7).

Finaly, the system contains a number of overcurrent circuit breakers (which are intended to

interrupt the circuit in presence of short circuit conditions) as well as a number of functionally

passive junctions

191



Controller | Contactor ID
ID

Table 7 - EPDS Reconfiguration Rules

Configuration rules
(“closed when...”)

GEN1ct Generator 1 isoperative
GENZ2ct Generator 2 is operative
GEN GEN-Ect AC1 and AC2 are both unable to deliver power
GEN12ct Either Generator 1 or Generator 2 isinoperative (but not both)
GEN21ct Either Generator 1 or Generator 2 is inoperative (but not both)
ACI1ESSct Generator 1 and AC1 are both operative
AS2ESSct Generator 1 or ACL are not operative while both Generator 2
AC and AC2 are operative
AC-ESSct Both Generator 1 and Generator 2 are inoperative; or
Transformer 1 or DCL1 is not operative and Transformer 2 or
DC2 is not operative
TR1ct Transformer 1 is operative
TR TR2ct Transformer 2 is operative
TR-ESSct Essential Transformer is operative
DClct Generator 1 or Generator 2 is operative and DCL is operative
DC2ct Generator 1 or Generator 2 is operative and DC2 is operative
and Transformer 1 or DC1 isinoperative; or
DC Generator 1 or Generator 2 is operative and DCL1 is operative
and Transformer 2 or DC2 is inoperative
DC-ESSct Generator 1 or Generator 2 is operative and DCL1 is operative; or
Generator 1 or Generator 2 is operative and DC2 is operative
and Transformer 1 or DC1 isinoperative

5.5.2 Model Architecture: Key Principles and Assumptions

This section outlines some fundamental principles of the EPDS failure logic model: failure mode

types and flows and key failure logic characteristics of the different components.

First, aset of ‘basic’ failure mode types has to be established. Most of the dependencies between
EPDS components are established in terms of electrical power. The flow of electrical power
between a source and a consumer establishes dependencies in both directions in the failure
domain: the consumer’ s dependency on the source in terms of voltage and current provision (and
associated the failure modes of Omission and Commission) as well as a reverse dependency in
terms of short circuit failure modes. A conceptual power propagation path between two

components, thus, yields five failure modes organised in three basic groups.

However, physical paths established by EPDS wiring are generally capable of propagating power
in both directions; in other words, most physical paths host two conceptual paths described above
(and thus can propagate two sets of FMs — one in each direction). The overall failure logic model
architecture is shown in Figure 80 where each ‘connector line' indicates flows of al five failure

modes (associated with the conceptual dependency path).

192



Generatorl

GeneratorE Generatori

C5M_Got E
i4

GENlict GENET ot
£l

AC_ES3

i

Figure 80 - Architecture of EPDS Failure Logic M odel

The most interesting failure mode type in EPDS is a short circuit. This failure mode can be
ultimately caused by spontaneous failures of bushbars and transformers as well as by inadvertent
connections between pairs of live generators or transformers. The immediate effect of this failure
mode on junctions is that all of the electrical current is drawn towards the source of the short
circuit. So a junction powered from one terminal and receiving a short circuit from another
terminal will generate an omission of current to the remaining third terminal. The ultimate ‘worst
case’ effect of short circuits is permanent damage to generators (or transformers) leading to a

permanent loss of power provision.

Designed to protect the system from short circuits, circuit breakers — when operational — interrupt
power flow upon detection of the overcurrent condition. In terms of the failure logic
characterisations this means that circuit breakers transform a short circuit input failure mode into
afailure handling state (“tripped”). Once tripped, circuit breakers exhibit omissions of current and
voltage. For the purpose of this case-study it is assumed that once tripped, circuit breakers cannot
be reset until the end of the flight. It is aso assumed that an operational circuit breaker will trip
before any significant damage is caused to a generator or a transformer. However, an internal

failure (Stuck) may prevent acircuit breaker from tripping when necessary.

193



Turning to current and voltage failure modes, omissions can be caused by:

e  Spontaneous failures (TotalLoss) of busbars, junctions, transformers and generators

o Transformers and generators being exposed to short circuits (as described above)

e  Spontaneous failures of circuit breakers (OpenSpontan) and contactors (FailOpen)

e Contactors being inadvertently commanded to open by controllers (omission FM)
Furthermore, as was mentioned above, exposure of a junction to a short circuit may result in

omission of current (but not voltage) being exhibited on one of the terminals

Commissions of current and voltage can only be caused by spontaneous failures (FailClosed) of —
or inadvertent commands (commission FMs) to — contactors. Commission of current is modelled
predominantly to reflect cases of ‘incidental correctness’ when busbars are powered when not
expected or through an unexpected route. Commission of voltage, however, plays an important
part in the correct modelling of situations when live sources of power are inadvertently connected.
Operational generators and transformers ‘convert’ commission of voltage into an output short
circuit. The short circuit then propagates through the system alowing any circuit breakers along
the way to trip (and thus stop both the short circuit and originad commission FMs from

propagation) and, potentialy, threatening the (other) power source.

Finally, it isimportant to note that short circuits only propagate towards the source of power. So a
junction exposed to a short circuit FM on one terminal will only propagate it to those other
terminal (s) that are either exposed to a commission of voltage or are supposed to be powered in a
current mode of operation. The mode of operation of this system, therefore, affects the
propagation of failure modes in general and the potential damage caused by short circuits in

particular.

5.5.3 Failure Logic Model Architecture: Modes

The three EPDS cross-feed lines clearly provide the system with an ability to utilise redundant
power distribution paths. As aresult, the system may be operated in a large number of alternative
modes, each mode establishing an intended behaviour of the system in terms of a unique power

distribution path and, thus, an intended configuration of contactors.

In order to elicit modes of the EPDS it is necessary to consider and rationalise the reconfiguration
rules implemented by controllers (see Table 7 above) and to identify stable configurations. A
failure-free EPDS is powered by two non-emergency generators with Generator E disconnected
from the network. Each generator powers its own side with the lower AC and DC cross-feed lines
configured to power essential busbars from Side 1. Overdl, all busbars are intended to be

powered. When failures of EPDS components occur, the intent of the system is to reconfigure and

194



power all busbars through alternative power distribution paths (e.g. with only one non-emergency
generator powering the entire system). However, in some circumstances provision of power to all
busbars is no longer viable. In these circumstances the network is intended to reconfigure into an
“Emergency Mode”. In this mode the Emergency Generator is connected to the network to power
only two essential busbars (in case of DC_ESS - through an essential transformer). All other flows
of power are disabled and non-essential busbars are left intentionally unpowered. The emergency
mode is therefore an example of the degraded mode (see Section 5.2.2.3 of Chapter Five). Since
busbars lie on the interface of the EPDS and, thus, on the boundary of the domains of the system
modes, absence of input failure modes for the non-essential busbars in the Emergency Maode has
to be trandated into omissions of current and voltage output FMs within the busbar

characterisation.

Before describing the remaining (non-emergency) modes of the system it is necessary to
recognise that reconfiguration rules indicate that the lower AC cross-feed line is only used for
powering Side Essential and is never (intentionally) used for powering Side 1 from Side 2 or vice-
versa. For the purpose of this case study, it is merely assumed that some compelling justification
exists for not utilising all of the opportunities provided by the lower AC cross feed line. However,
consulting a more detailed and accurate representation of the system design (e.g. [2]) reveals that
the reason for the restriction is that contactors ACTESSct and AC2ESSct are in fact a single
assembly; the design of the assembly, in the absence of failures, prevents both contactors from

being closed simultaneously.

Overall, non-emergency modes can be captured through three ‘parallel’ models that relate to the
ability of generators to power the AC section of the system (ACG modes), to the effectiveness of
the lower cross-feed line in terms of powering Side Essential from Sides 1 and 2 (XF modes) as
well as to possible power distribution routes in the DC section of the EPDS (DC Modes) — see
Figure 81.

The abstract modes' transition conditions are:

e Alternate ACG modes are entered whenever the corresponding side of the AC section of
the system cannot be powered effectively by its own generator

¢ Alternate XF modes are entered whenever the corresponding (AC) side becomes incapable
of providing power effectively to the essential side

o Alternate1 and Alternate2 DC modes are entered whenever the corresponding (DC) side
becomes incapable of providing power effectively to the essentia side; AlternateE mode is
entered whenever both non-essential sides become ineffective.

e The Emergency mode is entered whenever effective power flow through both AC side 1

and AC side 2 becomes impossible.

195



NonEmergency

All busbars are to be
powered; Emergency
Generator is unused

DC_Normal

TR1 & TR2 drive

respective DC Sides,

Emergency

Only Essential busbars

are to be powered; only

Emergency Generator
is to be used

DC_Alternate1

TR1 drives entire DC
section

—

DC_AlternateE

TR_ESS drives entire
DC section

ACG_Normal

Gen1 & Gen2 drive
respective AC Sides

(e Atrarmara )
ACG_Alternate1

Gen1 drives entire
network
(Gen2 unavailable)

—

(TN .\
ACG_Alternate2

Gen2 drives entire
network

(Gen1 unavailable)

—

XF_Alternate1

Only Side 1 can supply
Side Essential

Side 1 drives DC_ESS XF_Normal (Side 2 unavailable)
——
Both Side 1 and Side 2
SN are capable of supplying TN
Side Essential XF_Alternate2

DC_Alternate2

Only Side 2 can supply
Side Essential
(Side 1 unavailable)

TR2 drives entire DC
section

—
Figure 81 - EPDSMode Model (partial)

5.5.4 Components Failure Logic Characterisation

Table 8 documents the modes to which some of the EPDS components are sensitive. It is
important to note that five components of the EPDS — two essential busbars and al three
generators — are not sensitive to any modes (their intent is static throughout operation of the

system and regardless of any failures).

Once the significant modes and respective intents for (each) component are clarified, the task of
characterising the failure logic of the basic components becomes broadly similar to that in a
mode-free context. Figure 82 (presented across two pages below) shows characterisation of the J2
junction in AltaRica OCAS™. The trans clause of the characterisation contains sections dedicated
to both failure state transitions and (reading of) EPDS mode broadcasts. With respect to the latter
section, two groups of modes are being read (in accordance with Table 8): NonEmergency /
Emergency and ACG modes; in order to reduce complexity, other ‘irrelevant’ modes (i.e. DC and

XF modes) are not being read.

Finally, the assert clause of the characterisation specifies failure mode propagation conditions

which refer to EPDS modes whenever appropriate.

“9 Only partial characterisation is shown. For the sake of brevity definitions of 1/0 flows and some of the
propagation conditions are suppressed.

196



Table 8 - Basic Components' Sensitivity to- and Intent in- M odes

Component(s) Mode Intent in the mode
AC1, AC2, NonEmergency Each busbar intended to be powered
DC1,DC2 Each busbar is intended to be unpowered in this mode. Lack of input FMs
(non-essential | Emergency is “translated” into omission FM. Exposure to commission of current may
busbars) lead to “incidental correctness”

Emergency No terminals are intended to be powered
52 NonEmergency One terminal of the junction is intended to be powered (depending on the
(wiring ACG mode — see.below) -
junction) ACG_Normal Only upper terminal of the junction is intended to be powered, other

ACG_Alternate1

terminals are only powered when exposed to commission FM

ACG_Alternate?

Only side terminal of the junction is intended to be powered

Emergency No terminals are intended to be powered
3 NonEmergency One terminal of the junction is intended to be powered (depending on the
(wiring ACG mode — see below)
junction) ACG_Normal Only upper terminal of the junction is intended to be powered, other
ACG_Alternate2 | terminals are only powered when exposed to commission FM
ACG_Alternate1 Only side terminal of the junction is intended to be powered
Upper terminal is intended to be powered; lower terminal is intended to be
unpowered. The contactor is intended to be open. Undue closing of the
Emergency contactor may result in commission of power exhibited on lower terminal;
in absence of other input FMs it will not result in commission of power on
upper terminal.
GEN1ct NonEmergency Intent is determined by the ACG mode (see below).
ACG_Normal Upper terminal is intended to be powered, lower terminal — unpowered,
and contactor - closed. Short circuit typically propagates freely in both
ACG_Alternate directions; commission of power typically propagates freely upwards.
Both terminals are intended to be powered; contactor is intended to be
ACG_Alternate? open. Inadvertent closing of the contactor may result in commission of
power in both directions.
Neither terminal is intended to be powered. Short circuits do not
Emergency propagate nor cause failure handling mode transition unless the opposite
terminal is exposed to the commission of voltage.
N One of the terminals is expected to be powered (depending on ACG and
onEmergency XF _
modes — see below)
ACIESSbk XF_Normal Intent is determined by the ACG mode (see below)

XF_Alternate1

Left terminal is intended to be powered, right terminal — not.

XF_Alternate2

Right terminal is intended to be powered, left terminal — not.

ACG_Normal

ACG_Alternate1

If in XF_Normal then intent is identical to that in XF_Alternate1; otherwise
these modes have no effect.

ACG_Alternate?

If in XF_Normal then intent is identical to that in XF_Alternate2; otherwise
this mode has no effect.

197




node j2

state

FailSt : {OK,Lost} ;

Mode : {NonEmergency,Emergency} ;

ModeACG : {Normal,Alternate1,Alternate2} ;
event

TotalLoss,

BroadcastEmergency, BroadcastAlternate1, BroadcastAlternate2 ;
init

FailSt := OK;

Mode := NonEmergency ;

ModeACG := Normal ;

// T-junction component for j2
// The component has three terminals A, B and C that can be connected to the circuits.
// Depending on system configuration each terminal can (directly or indirectly) connect to a circuit that
// produces or consumes the power. Therefore each terminal is associated with two ports (Xin and Xout)
// to model failure modes associated with electrical power flows into the junction as well as out of the
// junction (resp.)
// Note: associated with each power flow are three groups of FMs - Current and Voltage FMs (that flow
// in the same direction as power) as well as ShortCircuit FM (that flows in the opposite direction)
// So Ain*Voltage, Ain*Current and Aout*ShortCircuit are all inputs). Voltage and Current FM groups are
// modelled as enumerated types {ok,Omiss,Commis}; ShortCircuit FM is modelled as Boolean
trans
/| *** Failure & Failure State Transition***
FailSt = OK |- TotalLoss -> FailSt := Lost; // Junctions can only fail completely (no flow in any direction)

// *** "Reading" mode broadcasts ***

// Emergency Mode:

true |- BroadcastEmergency -> Mode := Emergency;

// ACG Modes:

true |- BroadcastAlternate1 -> ModeACG := Alternate1;
true |- BroadcastAlternate2 -> ModeACG := Alternate2;

assert
// *** Failure Propagation Conditions: Voltage FMs
(Aout*Voltage = ( case { // Lower terminal
Mode != Emergency
and ( (FailSt = Lost) or
( (ModeACG = Normal or ModeACG = Alternate1)
and Bin*Voltage = Omiss Cin*Voltage = Commis ) or
( ModeACG = Alternate2
and Cin*Voltage = Omiss and Bin*Voltage != Commis ) ) : Omiss,

Mode = Emergency and FailSt = OK
and (Bin*Voltage = Commis or

Cin*Voltage = Commis) : Commis,
else ok})) and

(Bout*Voltage = ( case { // Upper terminal
Mode != Emergency and ModeACG = Alternate2
and ( FailSt = Lost or
( Cin*Voltage = Omiss and Ain*Voltage = Commis ) ) : Omiss,
( Mode = Emergency or ModeACG = Normal or ModeACG = Alternate1 )
and FailSt I= Lost
and ( Ain*Voltage = Commis or Cin*Voltage = Commis) : Commis,

else ok})) and

*kk

*kk

// *** Failure Propagation Conditions: Current FMs
// (Broadly similar to voltage FM but possibility of a short circuit
// drawing current away from a terminal is considered)
(Aout*Current = ( case { // Lower terminal

Mode != Emergency

and ( (FailSt = Lost) or

( (ModeACG = Normal or ModeACG = Alternate1)
and ( Bin*Current = Omiss or

198




(Cout*ShortCircuit and not Aout*ShortCircuit))

and ( Cin*Current = Commis or
(Bout*ShortCircuit and not Aout*ShortCircuit)) ) or

( ModeACG = Alternate2

and ( Cin*Current = Omiss or
(Bout*ShortCircuit and not Aout*ShortCircuit))

and ( Bin*Current I= Commis or
(Cout*ShortCircuit and not Aout*ShortCircuit)) ) ) : Omiss,

Mode = Emergency and FailSt = OK
and ( ( Bin*Current = Commis
and (Aout*ShortCircuit or not Cout*ShortCircuit) ) or
( Cin®Voltage = Commis
and (Aout*ShortCircuit or not Bout*ShortCircuit)) ) : Commis,

else ok})) and

*kk

// *** Failure Propagation Conditions: Short Circuits
// - A short circuit on any terminal may propagate only to other terminals
// - A short circuit will not propagate if the junction has failed
// - A short circuit will only propagate to terminals that supply voltage
(Bin*ShortCircuit = ( (Aout*ShortCircuit or Cout*ShortCircuit) // Upper terminal

and FailSt= OK

and ( ( Mode != Emergency and ( ModeACG = Normal or ModeACG = Alternate1 )

and Bin*Voltage != Omiss ) or
Bin*Voltage = Commis ) ) )

Figure 82 - Partial Characterisation of J2 Junction (AltaRica OCAYS)

5.5.5 Refinement of Mode Models

Once characterisations of al of the basic components become available the overall failure logic
model of the EPDS is composed. Whilst the component composition part of thistask istrivia, the
task also requires refinement of the abstract modes models (with respect to the specification of

mode transitions).

Considering the ACG modes first, informally, the transition from ACG_Normal mode to
ACG_Alternate1 or ACG_Alternate2 modes will take place when the corresponding side of the AC
section (i.e. side 2 and side 1 respectively) of the system cannot be effectively powered by its own
generator. This condition isformalised for ACG_Alternate2 mode as following:

The systemisin ACG_Normal mode and either Generator 1 exhibits omission of voltage

failure mode or GEN1ct contactor fails open.

It is important to observe that this transition specification is not identical to the corresponding
GEN controller rule which merely considers the voltage output of Generator 1. This indicates that a
limitation of the controller that has to be addressed in the model (see next section). However, in
itself, it is a potentially valuable observation from the perspective of the safety assessment of
EPDS. It highlights possible improvement to the configuration rules and indicates that

justification of the limitation should be sought from the system design engineers.

199



Table 9 shows a transition specification (in pseudo-code) for al modes identified in Figure 81
above. In the AltaRica OCAS model of the EPDS the resultant mode models are captured in four
dedicated mode observers (one for each mode model). Characterisations of some of the basic
components (some of the contactors) are modified to allow them to ‘communicate’ occurrence of
relevant failures (e.g. GEN1ct.FailOpen in the above case) to the environment. Finally, the events of

the mode observers (both transition events and mode broadcasts) are synchronised with the

appropriate component’ s events.

Table 9 - EPDS Mode Transitions Specification

Emergency

Refined Transition Specification

In NonEmergency mode both junctions j7
and j9 exhibit omission of current FM on
essential side terminals

Abstract Specification
The mode is entered
whenever effective power
flows through both AC side
1 and AC side 2 become
impossible

ACG _Alternate1

In ACG_Normal mode Generator2 exhibits
omission of voltage or GEN2ct fails open

ACG_Alternate1

In ACG_Normal mode Generator! exhibits
omission of voltage or GEN1ct fails open

Alternate ACG modes are
entered whenever the
corresponding side of the AC
section of the system cannot
be effectively powered by its
own generator

XF_Alternate1

In XF_Normal mode AC2ESSbk exhibits
omission of voltage on essentia side
terminal or AC2ESSct fails open

XF_Alternate2

In XF_Normal mode ACTESSbk exhibits
omission of voltage on essentia side
terminal or ACTESSct fails open

Alternate XF modes are

entered whenever
corresponding  (AC) side
becomes  incapable  of

effectively providing power
to the essential side

DC_Alternate1

In DC _Normal mode DC2bk exhibits
omission of voltage FM on the essential
side terminal or DC2ct fails open

DC_Alternate2

In DC_Normal mode DC1bk exhibits
omission of voltage FM on the essential
side terminal or DC1ct fails open

Alternate1 and Alternate2 DC
modes are entered whenever
corresponding  (DC) side
becomes  incapable  of
effectively providing power
to the essential side

DC_AlternateE

In DC_Normal mode simultaneously (DC1bk
starts exhibiting omission of voltage FM
on the essential side terminal or DC1ct fails
open) and (DC2bk starts exhibiting
omission of voltage FM on the essential
sideterminal or DC2ct fails open); or

In DC_Alternate1 mode DC1bk exhibits
omission of voltage FM on the essential
side terminal or DC1ct fails open; or

In DC_Alternate2 mode DC2bk exhibits
omission of voltage FM on the essential
side terminal or DC2ct fails open

AlternateE  mode is entered
whenever both non-essential
sides become ineffective

200




5.5.6 Characterisation of Controllers

The previous section has highlighted that EPDS mode transitions do not mirror the
reconfiguration rules of the controllers. This means that either the mode model has to be modified
or the characterisation of the controllers needs to take into account that in some modes due to
design limitations controllers are capable of exhibiting failure modes even in the absence of

internal failures.

The latter approach is favoured and illustrated on the GEN controller of EPDS. The controller
commands five contactors based on voltage status at four points in the electrical network (Figure
83, page 202) and on predetermined reconfiguration rules (see Table 7 on page 192 above). For
simplicity it is assumed that the controller cannot fail; revoking this assumption, however, is
relatively trivial. The controller is clearly sensitive to both NonEmegrency | Emergency and ACG

modes. The intent allocated to the controller in each mode is shown in Table 10.

Table 10 - Intended Behaviour of GEN Controller in Various Modes

ode GEN1ct GENZ2ct GEN12ct GEN21ct GEN-Ect
Emergency Open™® Open Open Open Close
NonEmergency Depending on ACG mode Open
ACG_Norma Close Close Open Open
ACG_Alternatel | Close Open Irrelevant
Close Close
ACG_Alternate2 | Open Close

However, the controller is only capable of observing the system status at four points. Therefore
the status ‘perceived’ by the controller may be different from the real status of the system (as
reflected in the system modes). For example, whilst the controller is capable of correctly opening
GENTct and closing cross-feed contactors when ACG_Alternate2 mode is entered due to lack of
voltage from Generator1, it will fail with respect to itsintent (and will exhibit acommission FM on
the output to GENTct) whenever the alternate mode is entered through another cause (e.g. failure
of the GEN1ct). Furthermore, as the controller logic is determined by the voltage measurement
between GENf7ct and Generator1, it has no way of determining which generator supplies this
voltage; as a result, commission of voltage from the upper terminal of GEN7ct will also cause a

commission FM of the controller.

% For control of all contactors (except GEN-Ect) in Emergency mode the intent associated with the ACG mode
isirrelevant.

201



GEN
Controller

Generator 1 L

Generator 2

Emergency
Generator

GEN1ct I GEN-Ect

ey Ty
GEN12ct GEN21ct

Figure 83 - GEN Controller in EPDS

The same principle applies to the Emergency mode and control of the GEN-Ect contactor. Finaly,
the specification of the intent of the Emergency mode has stipulated than all contactors which do
not lie on the direct path from the emergency generator to the essential busbars have to be opened
(in order to avoid interference with the emergency provision and minimise threat to the ‘resource
of last resort’). This intent is not fully implemented in the GEN controller and, thus, in some
circumstances non-emergency generators and cross-feed contactors may be inadvertently closed

in the emergency mode.

node GEN_Controller
// Controller can be influenced by presence or absence of voltage failure modes at points of observation
// Note #1: controller is sensitive to the GEN1ct and GEN1ct failure modes (exhibited on upper terminals)
// Hence input FM groups include "forward" FMs (e.g. GEN1fw) and "backward" FMs (GEN1bw) representing
// FM flows from Generators and Contactors respectively.
// Note #2: Component is only sensitive to voltage failure mode (and not current FMs or ShortCircuits)
// Note #3: All FM groups (i.e. input voltage FMs and output control FMs) are modelled as a simple
// enumerated type {ok, Omiss, Commis}

assert
// *** Failure Mode Propagation Conditions ***
(GEN1ct = ( case {
Mode != Emergency and ModeACG != Alternate?

and GEN1fw = Omiss and GEN1bw != Commis : Omiss,
(Mode = Emergency or ModeACG = Alternate2)
and (GEN1fw != Omiss or GEN1bw = Commis) : Commis,

else ok})) and

(GEN12ct = ( case {
Mode != Emergency
and ( ( ModeACG = Alternate // Controller doesn't recognise that Side 2 failed
and ( (GEN2fw != Omiss or GEN2bw = Commis)
and GEN1fw != Omiss and GEN1bw != Commis)) or
( ModeACG = Alternate2 // Controller doesn't recognise that Side 1 failed
and ( (GEN1fw != Omiss or GEN1bw = Commis)
and GEN2fw != Omiss and GEN2bw != Commis)) or

202




( ModeACG != Normal // Controller "believes" that
and ( (GEN1fw = Omiss and GEN2fw = Omiss // both sides failed
and GEN1bw != Commis and GEN2bw != Commis) or //or
( (GEN1fw != Omiss or GEN1bw = Commis) // both sides healthy
and (GEN2fw != Omiss or GEN2fw = Commis))
)) ) : Omiss,

(Mode = Emergency or ModeACG = Normal) // Contactor should be open, and
and not (GEN1fw = Omiss and GEN2fw = Omiss // controller doesn't see both
and GEN1bw != Commis and GEN2bw != Commis) /  sides as failed, and
and ( (GEN1fw = Omiss and GEN1bw != Commis) or // controller sees either side 1
(GEN2fw = Omiss and GEN2bw != Commis) ) // orside 2 as failed
: Commis,
else ok})) and

(GEN21ct = ( case { // ldentical to GEN12ct above
Figure 84 - Characterisation of GEN Controller (AltaRica OCAS)

5.6 Key Findings and Limitations

This section presents an overview of key limitations identified in the course of implementing
expanded failure logic modelling methodology (presented in the current chapter) and illustrated
by the EPDS case study. The key findings are:

o Complexity of the retrospectively-constructed mode models of the system

e Time complexity of the analysis of models specified in AltaRica OCAS

e Thetypes of loops encountered in the models (and their effect on model analysis)

e Theneed for constraining the order of transitions with void triggers

e Complexity of component characterisations

5.6.1 Loops

The EPDS architecture clearly contains a number of loops (Figure 85 highlights two such loops).
The presence of these loops in the failure logic model of the system threatens our ability to
analyse it either through systematic parsing (as in Papadopoulos' s approach to fault tree synthesis)
or through exhaustive simulation (as implemented by the Cecilia OCAS sequence generator). The
majority of the loops are either purely syntactical or allow flows to converge to a correct fix paint.
In such cases the loop is ‘resolved’ by injecting atrivial ‘instantaneous delay’ (implemented in a
simple virtual component where the delay is guarded by an instantaneous event). Nevertheless, in
some cases more complex ad hoc solutions are necessary as loops may, in principle, stabilise in
an incorrect state. To illustrate the latter case consider the wiring loop in the AC section of the
system formed by two cross-feed lines. For ssmplicity consider a scenario when in Norma mode
of operation, first al of the circuit breakers and then all of the switches in the loop fail in closed
position. According to the modelling assumptions, commission of voltage (and current) will be
generated in the loop; this commission will be propagated to two non-emergency generators that

will ‘convert’ it to short circuit failure modes. Consider that as a result of such simultaneous
203



exposure to short circuits both non-emergency generators fail simultaneously. Clearly there is no
longer power provision in the system. However, the loop in the EPDS model would stabilise in a

wrong ‘equilibrium state’ and will continue exhibiting commission FMs.

r—=—== G
| lControIIer
| —
l Generator 1 l Generator 2
N, | ~\,
l Emergency
l l Generator
- -t <+
(| |
l GENZ2ct
| ey Ty
l ' i ___________ -
L | (
|

AC1

]
- aes o» a» e
>
(3]
a
7]

Figure 85 - Some Loopsin the AC Section of EPDS

To resolve such loops more complex solutions than a mere unit delay may be necessary (typically
requiring instantaneous injection of some behaviour — such as the omission FM — into the loop,

effectively to ‘shakeit out of’ the wrong equilibrium).

5.6.2 Order of Transitions with Void Triggers

Thirdly, the failure logic model of EPDS contains a large number of state transitions with a void
trigger: tripping of the circuit breakers and failures of the generators (and transformers) when
exposed to short circuits as well as transitions in ‘unit delay’ components (see above) and mode
observers. As a result, in some circumstances, guards of more than one instantaneous transition
become true at exactly the same point of time. The order in which transitions are executed may
affect the resultant state of the model and only some orders may be valid. For example, when a
bushar exhibits a short circuit FM, typically at least one circuit breaker and exactly one generator
are simultaneously exposed and in principle either one can change the state as a result. However,
in practice, the design of these components guarantees that failure-free circuit breakers will trip
before the generator sustains any significant damage. In the AltaRica OCAS, this assumption can
be captured by assigning instantaneous events an explicit priority. This imposes a total order on

al of the instantaneous events in the mode!.

204



In the EPDS model instantaneous events are assigned to one of the five priority classes as
indicated below:
(i) Instantaneous eventsin unit delay virtual components
(ii) Instantaneous events associated with Failure Handling State transitions of circuit
breakers
(iii) Instantaneous events associated with Failure State transitions of Generators and
Transformers
(iv) Instantaneous synchronisations associated with the broadcast of modes

(v) Instantaneous synchronisations associated with the broadcast of mode triggers

5.6.3 Complexity of Component Characterisations

The experience with modelling reconfigurable systems under the failure logic modelling approach
has uncovered (and the EPDS case study has illustrated) that for such systems models of
individual components are significantly more complex that has been previously described in the
publications on individual techniques. The source of complexity istwo-fold:
¢ Non-local context-dependency of failure logic of the components increases the number of
variables that need to be considered in specifying propagation equations of the output
failure modes
e The reconfiguration logic implemented by the controllers may be misaligned with the

corresponding mode models

Considering the latter issue first, it is important to note that the design of the EPDS has been
considered “as is’: failure logic modelling has not actively influenced the design, and the mode
model implemented in the failure logic model had to be constructed post-factum. This ‘forensic’
reconstruction of modes and rationalisation of the configuration rules sometimes yields complex
characterisations of the controllers. Other model- based approaches are likely to yield more
simple and intuitive models in such ‘over the wall’ contexts. Therefore, unless retrospective
rationalisation of configuration rules is considered to add significant value to the system
assessment, failure logic modelling may not be the most effective approach for the purely reactive
analysis of design proposas that include detailed (and relatively complex and/or distributed)

reconfiguration rules.

Returning to the first issue, the mode-dependency of all model components inevitably increases
the complexity of component models. However, it can be observed from Table 8 (page 197
above) that, whilst dependencies of different components with the same design (e.g. junctions J2
and J3) on higher-level context (i.e. modes) are different, components may be insensitive to some

aspects of the context (e.g. XF and DC modes for J2 and J3) and their context-dependency may

205



show common patterns. Indeed, junctions J2 and J3 have identical sets of four entries in the
“intent in the mode” column of the table; the only difference between two junctionsis what EPDS

modes each of those entries is mapped to. This observation can be generalised as follows:

Failurelogic of individual basic components is only dependent on a fixed set of aspects of the
high-level context.

It can further be observed that if such afixed set of important aspects (we call it “local modes’) is
captured locally (e.g. through alocal enumerated variable or a set of Boolean variables), and if the
characterisations of all propagation conditions and state transitions are only permitted to refer to
higher-level modes by virtue of such local modes then these characterisations themsel ves become
reusable across similar components. The only non-reusable part of the component logic is

‘isolated’ in the mapping between local and high-level modes.

Indeed, each of the junctions in the EPDS model has a subset of four simple local modes
characterised by the following intents:

a) Only the upper terminal of the junction isintended to be powered

b) Only the lower terminal of the junction isintended to be powered

¢) Only the sideterminal of the junction isintended to be powered

d) Noterminas are intended to be powered.

The propagation conditions of the junctions are not only simplified by referring to one of the four
local modes (instead of the EPDS modes) — they become identical for all of the junctions in the
system. Furthermore, the characterisations of the junctions could be reused in a mode-free context

by permanently ‘enabling’ the local mode (appropriate for the component’ s context).

This solution was used extensively in the complete EPDS model and it was observed that it uses a
principle similar to instantiation in the object oriented modelling paradigm. The solution allowed
us to capture the behaviour of busbars, circuit breakers, contactors, junctions and transformers in
five unique partial component models; these ‘super characterisations’ were reused across the

entire failure logic model.

5.6.4 Analysis Complexity

Introduction of the concept of “mode” also had an effect on the duration of the model analysis.
The segquence generation applied to the EPDS model presented in the previous section takes about
seven minutes to be completed to the cardinality of three events and a couple of hours — to the
cardinality of four. Similarly to the previous chapter, this is significantly higher than what would

be expected from a modern Fault Tree Analysistool for the model with the comparable number of
206



basic events. Whilst some of these overheads must be attributed to the inherent complexity of the
failure logic models with modes, a significant proportion can be attributed to the particular
characteristics of the AltaRica OCAS language and metamodel implementation schema adopted
by the author.

Firstly, AltaRica OCAS is a strictly compositional language that does not permit specification of
the state at the level of complex nodes. This means that the modes (which are states of such
nodes) have to be emulated by dedicated ‘virtual components’, which inevitably increases
analysis overheads. Secondly, the metamodel implementation schema adopted in this chapter has
intentionally favoured the clarity of the mapping between failure logic modelling concepts and
specification language constructs over the time efficiency of the model analysis. In particular
alowing virtual mode observers to communicate modes to the components through AltaRica
flows rather than computationally expensive synchronisations would significantly reduce the

analysistime.

Finally, it is important to reiterate that the present analysis tool adopts a brute force approach to
sequence generation. It is expected that the new generation of tools, currently under development,

will result in afurther significant reduction of the analysistime.

5.7 Related Work

Whilst the challenges posed by multi-phase, multi-mode and dynamically reconfigurable systems
are well recognised, the author is only aware of a single publication — Papadopoulos in [115] —

that systematically addresses this challenge in the context of failure logic modelling approach.

In his approach, tailored to HiP-HOPS, Papadopoul os establishes a hierarchical dynamic model of
the system in parallel to the hierarchy of ‘static’ IF-FMEA tables (Figure 86). The dynamic model
is captured through a Statechart-like notation. The dynamic model is hierarchical in two senses:
e The layers of dynamic model mirror component decomposition (and, thus, hierarchy of
the IF-FMEA tables)

e Within each layer every mode can be decomposed into a chart of sub-modes

Papadopoulos provides relatively strict rules to define what constitutes a mode and sub-mode; in
particular a mode is defined as “an abstract functional state in which the system maintains a
stable functional profile”, and a sub-mode as: “a distinguishable abstract state within a mode, in
which a certain structural configuration of components is employed to deliver the mode

functionality”.

207



Static Model Dynamic Model

System Level

System Level
Sub-Modes

Sub-System Level

Component Level

Figure 86 - Static and Dynamic Modd Hierarchiesin HiP-HOPS

Finally, each mode chart can “communicate” with any other mode chart in the dynamic hierarchy
(through a global broadcast) and with the IF-FMEA tables in the static hierarchy. Within the IF-

FMEA tables a new column — “Relevant Modes’ — is added. Whenever more than one mode is

entered into that field, the overal semantics of the field is a digunction of the entries. The

semantics of the entire row of the table is a conjunction of the “Relevant Modes’ field and a

digunction of “Input Deviation Logic” and “Component Malfunction Logic” fields respectively.

The HiP-HOPS solution is broadly similar to the one presented in this chapter. Papadopoulos's

“modes’ broadly map to Alternative Modes of Operation, Phases of Operation and Dysfunctional

Modes as discussed in section 5.2, whilst his sub-modes are similar to Reconfiguration and

Failure Mitigation Modes. Nevertheless, a number of important differences can be identified:

(D

2

©)

Whilst this thesis's insistence on a metamodel definition facilitates implementation in a
single specification language, HiP-HOPS sol ution relies on two separate formalisms.

The HiP-HOPS mode charts communicate exclusively through globa broadcasts;
therefore, whilst for the purpose of editing the mode charts are maintained locally, at the
level of complex component, they are effectively global constructs. This clearly increases
complexity of the HiP-HOPS models compared to models compliant with the FLMM
(which allows restricting the domains of the modes to boundaries of the appropriate
complex component).

HiP-HOPS mode charts and IF-FMEA tables do not appear to allow definitions of
“trandation components’ on the boundaries of mode domains (indeed, there is no notion
of the mode domain in HiP-HOPS). Therefore, composition of two or more independently
defined models may require integration of their dynamic models and/or modification of
the components characterisations. This is similar to the solution that was deliberately

avoided in section 5.2.2.3 as (further) undermining composability of failure logic models.

208



(4) It isunclear how a number of orthogona mode models — such as EPDS s ACG, DC and
XF modes — can be specified at the level of a single complex component (or a system)
under the HiP-HOPS schema. In particular, the apparent format of IF-FMEA tables does
not alow the specification of conjunctions over modes. We can only assume that
orthogonal mode charts have to be combined into a single ‘cross product chart’. This
clearly makes HiP-HOPS mode models suffer from explicit ‘state explosion’: the mode
chart of the EPDS would contain 29 modes (versus 12 in the EPDS model presented here)

(5) Despite mode information’s being made available to IF-FMEAS, the format of the tables
only permits modelling of dynamic mode-dependent exposure intervals of individual
faillures if, for each failure, the set of modes in which it can occur isidentical to the set of
modes in which it can result in an output failure mode™. One of the implications of this
constraint is that any failure of an unused ‘spare’ is assumed to have a probability of zero

(i.e. no ‘warm spares’ are allowed).
On the other hand, the HiP-HOPS facility for specialisation of modes into sub-modes can clearly

be beneficia in terms of the organisation and management of mode models. Indeed, with such
facility at hand the mode model of EPDS could be further rationalised asin Figure 87.

N

( NonEmergency )
_________ Allbusbars are to be powered; Emergency Generatorisunused _ __ _____ |
ACG_Alternate1
.\/ Gen1 drives entire
network
DC_Alternate1 ACG_Normal (e
TR1 drives entire DC Gen1 & Gen2 drive
section respective AC Sides ACG_Alternate2 Emergency
Gen2 drives entire
network 0
DC_Normal B8 A (Gen' unavailable) Only Essential busbars are to
- —_— be powered; only Emergency
TR1 & TR2 drive —> " f
respective DC Sides, TR—Egg :e’:t?:ne”t"e S Generator is to be used
Side 1 drives DC_ESS XF_Alternate1
. J
.\( Only Side 1 can supply
Side Essential
DC_Alternate2 XF_Normal (Side 2 unavailable)
" Both Side 1 and Side 2
TR2 drives entire DC are capable of supplying N
section Side Essential XF_Alternate2
. J
Only Side 2 can supply
Side Essential
(Side 1 unavailable)
L J

Figure 87 - Hierarchical Representation of EPDS M odes

At the same time, however, we find that the strict rules imposed by Papadopoulos on the
engineering semantics of modes and sub-modes sometimes defeat the value added by the

hierarchy of modes. In practice, the failure mitigating mode (e.g. aternative configuration) may

*! “Dynamically extended” IF-FMEA tables are conceptually equivaent to the collection of independent
“mode-unaware” tables for each possible mode. (This equivalence is explicitly noted by Papadopoul 0s)

209



be persistent across more than one mode or phase of operation. Furthermore, it may prohibit
further transitions into certain modes or phases. In such systems, without the flexible approach to
engineering semantics of modes and sub-modes, the information hiding utility of hierarchical

organisation of mode modelsislost and hierarchy is reduced to a decorative facility only.

Example: A fuel management system of a modern aircraft is operated in a succession of
phases. the Load Alleviation Transfers phase at take-off, the Main Transfers phase during
the flight and ‘reverse’ Load Alleviation Transfers after descend-to-land. In HiP-HOPS
each of these phases would be captured as a mode.

Some failures of hydro-mechanical equipment of the system may render some (redundant)
fuel galleries inoperative and, thus, require the re-routing of main transfers. Modes
yielded by such reconfigurations would be modelled as sub-modesin HiP-HOPS.
However, such alternate configurations may prohibit any further load alleviation
transfers in later phases of flight (since these are deemed as non-essential for flight
safety). In terms of the HiP-HOPS model this would mean that transition between two
modes will be predicated on a sub-mode of the ‘source’ mode or, in other words, within
each mode the initial sub-mode will depend on the exact transition into the mode. Such a

model is not hierarchical.

5.8 Conclusions

In this chapter the issues surrounding multi-modal and dynamically configured systems have been
discussed. It was shown that the metamodel presented in Chapter 3 is not sufficiently expressive
and does not permit accurate modelling of such systems. By implication, the same criticism
applies to al of the failure logic modelling techniques subsumed in that the ‘baseline’ Failure
Logic Metamodel.

Extension to the metamodel has been proposed and its impact on the failure logic modelling
process has been analysed. Furthermore, the chapter has demonstrated how the extended
metamodel can be implemented in a standard third-party specification language (AltaRica OCAS)
even in the context of apparent language limitations. This latter contribution reinforces the
principled approach to the FLM Framework definition taken in this thesis, which facilitates

separation between conceptual- and implementation notation specific- concerns.

The FLM Framework extension presented in this chapter favours the flexible treatment of
different ‘types’ of system modes such as phases of operation, degraded and failure mitigation
modes. It was shown that in practice, not only are these classes of modes broad and not mutually

exclusive, but they merely denote particular patterns of mode models. It was further argued that a

210



more restrictive approach (such as that taken by Papadopoulos), whilst apparently providing
structure and guidance to the model construction process, is likely to be inefficient and unintuitive

in practice for some systems.

Throughout the discussion in this chapter, it was shown how specific issues of system modes can
be generalised into an observation concerning the context dependency of the component
characterisations in failure logic models. It was shown that, in general, the FLM Framework
(regardless of the notation or technique employed) does not facilitate the reuse or the
‘compositionality’ of the safety assessment. Whilst this is a fundamental characteristic of the
modelling approach, partia remedies in terms of model construction process and modelling
approach have been proposed. The proposed solutions segregate holistic and compositional parts
of the process and, similarly, context-dependent and reusable parts of the component
characterisations.

The concepts developed and discussed in this chapter have been demonstrated on the practical
case study of Aircraft Power Generation and Distribution System (EPDS). The system contains
significant redundancy and a large number of possible configurations. Failure logic models were
constructed for the EPDS design as provided by author’ s collaborators; in this context, the modes
of the system along with their associated rationale and intent had to be ‘forensicaly’
reconstructed. Whilst the modelling process in such a context is labour-intensive and the resultant
models are in places comple, it is observed that the task of systematic rationalisation of systems
reconfiguration rules may bring substantia benefits to the safety assessment processes.
Specification of failure logic models results in a qualitatively better understanding of the system
design, its limitations and justifications which is likely to add value to the development process as

awhole. Further discussion of thisissueis provided in the next chapter.

211



212



Chapter 6: Evaluation

This chapter presents the evaluation of the thesis contributions in general and, in particular,
provides evidence to support the thesis proposition defined in Chapter 1. The first section of the
chapter outlines the evauation strategy. It begins with revisiting the thesis proposition and
decomposing it into manageable key hypotheses. An evauation argument then links each
hypothesis to the evidence presented in the thesis. To further aid navigation through the evidence,
the evauation strategy is illustrated by a small number of diagrams presented using the Goal
Structuring Notation (GSN) [83, 84] — a graphical notation for representing structured arguments.

Subsequent sections (6.2 through 6.3) present (or, where they have already been presented,
summarise) the three main forms of evidence used to support the proposition:

e Case Sudies (section 6.2) that are used to evaluate technical aspects of the proposition as
well as to confirm the overall soundness of the concepts defined in the proposed
framework;

o Metamodel Experiments (section 6.3) — consisting of the validation of the Failure Logic
Metamodel, its instantiation and traces to the concepts of pre-existing safety analysis
methods — that are used to confirm the consistency, soundness and completeness of the
framework;

e Peer Reviews (section 6.5), that are used to further assure the conceptual soundness of the

framework as well as to supplement and assure adequacy of the other forms of evidence.

The chapter concludes with the outline of the identified limitations of the failure logic modelling
approach that were identified during the research and evaluation. These limitations are common to
all failure logic modelling methods and are their identification is a key contribution of the thesis.
Wherever applicable, pragmatic mitigations of the effects of these limitations put in place in the

course of research are briefly outlined.

6.1 Evaluation Strategy

The proposition defended by this thesis has been defined in Section 1.3 asfollows:
It is possible to provide a well-defined, sound and pragmatic framework for the

failure logic modelling of realistic systems which tackles the problems of dynamic

reconfiguration of systems and composition of interdependent system models.

213



To discharge this proposition it is therefore necessary to show that the proposed FLM Framework
(as introduced in Chapter 3, and extended in Chapters 4 and 5) meets each of the criteria
highlighted in the proposition above as illustrated in Figure 88.

Thesis Proposition

It is possible to provide a well-defined,
sound and pragmatic framework for the
failure logic modelling of realistic systems
which tackles the problems of dynamic
reconfiguration of systems and
composition of interdependent system

models.

Evaluation Strategy

Chapter 4

Chapter 3 Extension of the FLM

Framework presented in
Chapter 4 (concepts of
DSFM, Virtual Component
and External Cause)

'Baseline' FLM
Framework presented
in Chapter 3

Appendix A

Summary of the overall
FLM Framework defined in
the thesis (concept
definitions, metamodel and
constraints)

Argument by demonstrating that Chapter 5

the FLM Framework presented
in the thesis satisfies the four
key creteria of the Proposition

Extension of the FLM
Framework presented in
Chapter 5 (concepts of
modes and mode models)

Well-Defined Framework Pragmatic Framework Model Composition Reconfiguration

The FLM Framework presented The FLM Framework (as The FLM Framework (as extended
The FLM Framework plresented in the thesis addresses pragmatic extended in Chapter 4) provides in Chapter 5) provides sufficient
in the thesis is well-defined and challeng§§ posed by industrial sufficient basis for composition of basis for modelling reconfigurable
conceptually sound safety critical systems independently defined FLMs and multi-mode systems

See Section 6.1.3: See Section 6.1.2:
Well-Defined Approach Hypothesis ~ Pragmatic Approach Hypothesis ~ See Section 6.1.1: Technical Challenges Identified by Proposition

Figure 88 - Evaluation Strategy

Each of the derived hypotheses is addressed in the following sub-sections starting with the last
two (addressed together due to their similar technical nature). The technical chapters (i.e. 3, 4 and
5) and Appendix A of the thesis that, respectively, present and summarise the proposed FLM
Framework form the context for the evaluation argument (shown in the goal structure of Figure 88

as GSN context elements — the “rounded” rectangles).

6.1.1 Technical Challenges Identified by the Thesis Proposition

The thesis proposition explicitly identifies two challenges posed by large-scale industrial safety-
critical platforms: the dynamic reconfiguration of systems and the composition of interdependent
system models — described in sections 1.2.1 and 1.2.2 of Chapter 1 respectively. Evaluation of the
proposed FLM Framework with respect to these challenges is based primarily on the two case
studies introduced in the respective chapters of the thesis. Specificaly, the adequacy of the
framework with respect to the issues of dynamic reconfiguration is confirmed through the Aircraft
Electrical Power Distribution System (EPDS) case study that demonstrated a successful definition
of models of such a reconfigurable and multi-mode system. Similarly, the adequacy of the model
composition approach was demonstrated through the integration of models of the Wheel Braking

System and a Common Aircraft Computation and Communications Platform (for simplicity

214



referred to as “IMA”). The contribution of these two case studies into evaluation is further

summarised in section 6.2 below.

It is important to stress that neither the EPDS nor the IMA case study has been used for
development of the FLM Framework itself (i.e. unlike the ARP WBS case study, they are not
formative). The evaluation based on the case studies has been overseen by the author’s industrial
collaborators, providing assurance that the experiments are representative of the challenges found

in real industrial systems.

EvaluationStrategy

EvaluationStrategy

Model Composition Reconfiguration

The FLM Framework (as The FLM Framework (as extended

extended in Chapter 4) provides in Chapter 5) provides sufficient
basis for modelling reconfigurable

sufficient basis for composition of
independently defined FLMs and multi-mode systems

Peer Review Argument

Argument by appealing to
the peer review of the FLM
Framework

P—

Peer review claim (Challenges)

Peer review confirmed adequacy of
the extended FLM Framework with
respect to challenges posed by
Well- reconfiguration of systems and

) composition of their models
Defined

Framewo

Case Study Argument
(EPDS)

Argument by appealing to
the electrical system
(EPDS) case study

K

Case Study Claim (EPDS)

Case Study Argument (IMA)

Argument by appealing to the
common aircraft computation
and communications platform
(IMA) case study

v

Case Study Claim (IMA)

See Section 6.1.3:
Well-Defined Approach
Hypothesis

Peer Review
(FLM
Framework)

<Section 6.4>

Case Studies Adequacy
The framework-compliant models of

EPDS have been constructed
correctly reflecting system
reconfiguration and behaviour in
different modes

Review by industrial
collaborators confirmed that the
IMA and EPDS case studies are
sufficiently representative

<Section 6.4.2>

DSFMs of WBS and IMA have
been successfully composed into
a single analysable and
simulatable failure logic model

Case Studies
Independence

IMA and EPDS case
studies are non-formative
<Section 6.2>

EPDS Case
Study

IMA Case
Study
<Section 4.6>,
<Section 6.2.3>
and
<Appendix C>

<Section 5.5>
and
<Section 6.2.4>

Figure 89 - Technical Challenges | dentified by the Proposition (Evaluation Argument)

Finally, to mitigate against any limitations of the coverage of the case studies, the proposed
Framework (including the concepts introduced in Chapters 4 and 5) has been directly reviewed by
research collaborators in the MISSA and Airbus Dependability Network projects (as discussed in
section 6.4 below). Whilst often involving robust discussions, the reviews have confirmed the

overall adequacy of the Framework and have identified no significant flaws.

215



Figure 89 summarises the evaluation strategy with respect to the two technical criteria of the
thesis proposition (note that shaded shapes indicate items first presented in this chapter whilst the
ellipses and circles of the GSN represent justification of the argument and ultimate evidence it is
based upon respectively).

6.1.2 Pragmatic Approach Hypothesis

The development of the evaluation strategy with respect to the criterion of “pragmatism”, shown
in Figure 90 (page 218), is based on three key branches. Firstly, it is demonstrated that the FLM
Framework adequately addresses key characteristics of realistic industrial safety-critical systems
(beyond the two technical challenges explicitly identified in the previous section). To achievethis,
areview of acomplete real system — the fuel system of amodern aircraft — has been undertaken in
order to identify such characteristics (section 6.2.2). The two non-formative case studies,
mentioned in the previous section, have been specifically selected/constructed to provide
sufficient coverage of all but one™ of the identified features (see Table 12 in section 6.2.5). The
completeness and adequacy of the set of the identified characteristics and their coverage by the
case studies has been confirmed by a review by industrial collaborators (section 6.4 with a

summary presented in Table 13 on page 247).

Secondly, the thesis has demonstrated that the proposed Framework is practicable in that the
notation-agnostic FLM Concepts and Metamodel can be adequately and systematically
instantiated in a third-party specification language — the AltaRica OCAS - and analysed
(including simulation) by the associated tools. The adequacy of the instantiation (and mapping
between the FLM concepts and AltaRica constructs) has been confirmed by research collaborators
from ONERA and Dassault Aviation — who have extensive experience with the AltaRica

language.

Thirdly, it was demonstrated that the FLM Framework is systematic in the sense that it includes
guidance for repeatable construction of the models. Whilst some of the guidance has been
included in this thesis (for example, in sections 4.4 and 5.4), this claim is made predominantly on
the basis of a stand-alone “Failure Logic Modelling Handbook” developed by the author and
fashioned after the NUREG and NASA Fault Tree Analysis Handbooks [158, 157]. Currently in
draft form, the handbook has been reviewed by the industrial and research partners of MISSA
project as part of the formal mid-term evaluation cycle and has attracted positive and constructive
feedback (see section 6.4.2).

*2 The one “uncovered” characteristic — of the significance of detailed temporal aspects of system failure
logic to the safety assessment — has been deemed to have atypicaly disproportional, if not unique,
importance for the fuel system.

216



Finaly, it is important to note that whilst the ability to instantiate the FLM Framework in a
specific language is clearly important for the claim that the presented approach is indeed
pragmatic, it is also important for the framework to be specified in a notation-agnostic fashion
that is not strongly coupled to any specification language (section 1.2.3). This objective is largely
achieved ‘ by construction’ and is further addressed in the next section.

6.1.3 Well-Defined and Sound Approach Hypothesis

Discharging the last hypothesis of the Thesis Proposition aso relies on three high-level claims
(see Figure 91): that the proposed Framework is conceptually sound, that it is internally consistent
and that it is not overly constrained by any particular specification language. As was mentioned
above the last claim is inherently upheld by the FLM Framework being based on a set of safety
engineering concepts and a notation-agnostic metamodel. Given that the Failure Logic Metamodel
is formalised in the Eclipse and Epsilon platforms®, it was possible to demonstrate internal

consistency of the metamodel (including its constraints) through automated “validation”.

The conceptua soundness of the FLM Framework is arguably the most substantial claim of this
part of the evaluation strategy and is demonstrated in a number of diverse ways. First, sections
6.3.2 through 6.3.4 demonstrate that the concepts of the FLMM can be traced to those of fault tree
analysis (including its dynamic and non-coherent extensions) and pre-existing failure logic
modelling approaches (such as HiP-HOPS and FPTN). Second, it is demonstrated that all of the
concepts of the framework have been exercised during the case study (see Table 12 in section
6.2.5) yielding a high degree of confidence that they have valid engineering interpretations.
Thirdly, the ability to instantiate the metamodel in the context of a genera third-party
specification language (discussed in the previous section) demonstrates that the framework is
‘complete’ (in that it identifies information sufficient for construction of concrete, consistent and
analysable models).

Finally, it isimportant to note that this aspect of evaluation relies most heavily on the peer review
of the presented approach. The FLM Framework has been extensively reviewed through both
presentations and technical reports by author’s industrial and research collaborators in the Airbus
Dependability Network and MISSA projects (see section 6.4) as well as by colleagues in the
HISE group in the Department of Computer Science at the University of York. These peer
reviews confirmed the soundness of the framework as well as consistency of the underlying

Failure Logic Metamodel.

%3 See section 6.3 for further description.
217



uomisodoid Aq painusp| sebusjieyd [eojuyos ]
‘7179 uolyIag 88g

<D Xipuaddy>
pue

<€'Z'9 UONOaS>

‘<9’ UoNO8S>

<¥'Z’9 UONVaS>
pue
<G'G U0NIAS>

Apmis
8sed sad3

Apnis ased vl

sabua|efid
sabusjeyo
| paiiuap|

<rvow®
Z''9 suondaS>

(saipms
ase)D) malnay
lelysnpuj

<G'C9
uondaS>

NAKAAY
SuonoasS>

(s,)oelRyD)
Buiddepy
salpnis ased

sisayL ul
aaueping

IN0-paLIed A|Njssaoons aiam
Salpnis 8sed SAd3 pue VA p

uoflen|eA salpnis asen

nuap! jo abelanod apinoid
Salpnis ased YA | pue SAd3

solsualoeIeyD Jo abesanod

salpnls ased Aq abelanod
JI8Y} pue sonsusloeeyDd PalnuUsp!

Jo Aoenbape ay) pawlyuod
siojeloqe||00 [ernsnpul Ag Mainay

sonsaloRIRyd

solsueoRRYD
40 uoiresy US|

<@ xipuaddy> ® <z'Z'9 UOIIAS>
si03el0qe||0d [eLlsnpul

Ylm suoissnasip juanbasgns

pue Yeldure ulspow sy} Jo Waisks

M3INDY WBISAS [an4 1eldlly

<Cv'9
uondaS>

(s19401) <2'¥'9
uonoas>

<rv’9®

(2ouepinb) 2'7°9 SuoNoaS>
joogpueH M3INDY
REl felsnpuj
(earyely)
MIINSY J93d

slojeloqe||oo
leisnpul Aq mainai
ul paniddal Ajpanisod uaaq

Sey ooqpueH N4 yeid

YoogpueH W14

SI0NAISU0D SYOO BoIHeNY
pue s)dasuod WINTH 8y usamiag
Buiddew ay jo Aoenbape pawiyuod
suadxa earyely Aq mainal 1aad

Aoenbapy uonenuelsu|

'G'E SUONDAS>

uolenuelsu|

<G'€'9
pueg's gy

SV00
BORYENY Ul

sisayjodAy
yoeouddy paulag-jlspm
:€°1°9 uolIag 993

swaysAs [eanud Alayes fesnpul
anisIfeal Jo sonsLaoRIRYD
Koy sassalpe siomaweld N4

solsiieloeIeyD dNewheld

uoniuyap |apow 0} yoeoidde

olyewa)sAs e sapinoid

3 ued lomaweld W14 ayL
slomaweld N4 ayL

a|qenuelsu| si yoeoiddy

aoueping Bunsauibug

abenbue| uoneayoads
Aue wouy Juspuadapul
Apuasayut st NINTH YL

PauIRIISUOIIBAQ JON

swalsAs [eanuo Aiojes

lewsnpul Aq pasod sabuajjeyd
onewbeld sassalppe sisay) ay} ul
pajuasaid siomawel N4 YL

slomawel olewbeld

ABajensuonenjeny

Jlomoseld

Figure 90 - Pragmatic Approach Hypothesis (Evaluation Argument)

218



<l'€e9
uonoas> pue
<V Xipuaddy>

|opoweje|
21601 ainjieq
uojisd3/esdijog

<V Xlpuaddy>
® <G-¢ s19ydeyd

<G'C9

Kous}sISu0D s} palIyuod
ININTTH 38U} JO MaIABI J93d

MalneY
1994 Aq Aouaysisuon

saIpn)s aseo ay}
ul pajeJjsuowap usaq aney
NN 8} Jo sidasuo) Iy

s3desuo) jo uonesysuowaq

ul suoyiuyegs>

Ayjeuonouny

<Ge9
puE G 'SH
'g'¢ SUojoIS>
SV00

<¥’€’9 Uonoes>

<p'9 UOPOBS> uoyoaS> sisaljodfH sdjysuone|es EEE <2T¢€9 ATEE
(ssdeouon) Yoeouddy ojewbeld Ssuoisua)xa uoioag> uoyoss> NG
(sHomawey Buiddepy :C’'}’9 UoiIag 999 «:m.a“.ww.:oz diysuonejel uolssnasip Buiddew
w14) sepmg ose) g oneukq vid N.dd SAOH-dIH
MIIASY J93d .

eoRjej|y ut
uonenuejsu|

Spoyjew juswissasse paseq

ININT4 33 Jo sydaouod ay |

sjdaouod
V14 9y} 0} paoel} aq ued

V14 0} 8|qesdel)

o160] ainjiey Bupsixe-a1d sawnsgns
sisay} ay} ul pajussald IWNTH BYL

N4 Bunsixe-aid sswnsqng

$S8UPUNOS S}

sydosuon N4
JO sonuewsas
Bunsauibug

uojisd3 pue asdijo3
ybnouyy pajepijen st WA

s}99y2
asdijo3 Aq Aoua)sisuon

paw.uod ‘sisuped syosfoid yYSSIN
pue JaNdaq Aq se ||am se (Aon)
Ajleuajul ussepapun ‘Iomawel
N4 @Y} Jo malnal 1sad ay |

MaIADY 109 Aq ssaupunog

abenbue|
uopeoy1oads Aped-paiyy
€ Ul pajenuejsul 8q ued WINTA

uonenue)su|
Aq ssauajoidwon

spoyjaw Bunsixa

-aid jo asoyy pue \INT4
usamjaq sdiysuonejal jo
uonesysuowsp Aq juswnbiy

ABojeuy Aq ssaupunog

abenbue| uoneoyioads
Aue wouy yuspuadapul
Apussayur st NINTH BYL

PBUIBIISUODIBAQ JON

JUSSISUOD
Ajjeussyul s (omawel4
ay) Buluuidiopun) W4 8YL

Kouaysisuog [eusaju)

punos Ajjenydasuod
pue pauyap-{[am si sisauy} sy} ul
pajuasaud suomswelq N4 YL

}ioMmawel4 pauyad-1loM

ABajenguoneneny

punos Ajjenydsouod
sI yJomawel4 N4

ssaupunog
|emydasuon

4

Figure 91 - Well-defined Approach Hypothesis (Evaluation Argument)

219



6.2 Evaluation through Case Studies

Case Studies were primarily used to evaluate the technical feasibility of the ‘baseline’ failure
logic modelling approach (Chapter 3) as well as the extensions proposed in this thesis for
modelling systems with dynamic reconfiguration (Chapter 5) and for the composition of
independently-defined failure logic models (Chapter 4). Careful selection of the case studies —
based on the review of areal aircraft system (discussed below) — also contributes to assurance that

the approach is pragmatic.

Table 11 - Case Studies Coverage (Outline)

Technical Thesis Contribution

PP © Composition of . :
Case Study Unifying ‘baseline independently defined Modelling reconfigurable|

FLM Framework systems
models
(Chapter 3) (Chapter 4) (Chapter 5)
HHES / Small-scale formative /
(ARP 4761) Formative Evaluation evaluation only Formative Evaluation

EPDS / /
IMA / WBS
(integration) / /

Evaluation through case studies was carried out in three steps:
1. At the research development stage the Aircraft Wheel Braking System (WBS), as
described in ARP 4761>, was used as a formative case study. This system has emerged as
a de-facto benchmark for both model-based safety assessment methods and safety

analysis of aircraft systems.

2. Upon completion of the research development phase a single aircraft system — the Fuel
System of a modern aircraft — was reviewed to identify key characteristics of rea
industrial safety-critical systems. The fuel system itself has not been modelled (due to the
scale and complexity of the system and time-constraints of a doctoral research
programme) beyond a number of small-scale partial experiments.

3. Two evauative (non-formative) case studies have been selected / constructed to provide
both the coverage of two challenges — of dynamic reconfiguration and model composition
— explicitly identified during the research, on the one hand, and — of the characteristics
identified during the Fuel System review (above) on the other. These case studies were

concerned with the Integration of the WBS with a Common Aircraft Computation and

> Note that this was not the simplified system used as an illustrative example in Chapters 3 and 5
220



Communications Platform (“IMA”) and a hypothetical aircraft Electrical Power
Distribution System (EPDS).

Overall, Table 11 provides an overview of the coverage of thesis contributions by the three case
studies (WBS, EPDS and IMA / WBS integration).

6.2.1 Wheel Braking System

Appendix L of ARP 4761 provides a detailed description of a ssimplified Wheel Braking System
of a hypothetical aircraft. The popularity of this system as a case study renders it a de facto

benchmark for model-based system safety assessment.

For the purpose of evaluation, the complete description of the system has been further extended in
this thesis with causes and effects of hydraulic leaks. The resultant case study is sufficiently
complex to demonstrate all relevant concepts of the FLM Framework introduced in Chapter 3 and

5 with the sole exception of Failure Handling States.

This case study was also used to assess the pragmatic importance of the concept of modes to the
failure logic modelling approach. The system has been progressively smplified until it could be
described without utilising concepts introduced in Chapter 5 of the thesis (this corresponds to the
expressive power of existing methods such as FPTN, FPTC and most variants of HiP-HOPS). The
resultant system was grossly inadequate: a selector valve between the blue and green hydraulic
channels had to be removed, the BSCU had to be limited to a single channel and the functionally-
passive connector between BSCU CMD output and Green Meter Valve had to be assumed as not

being susceptible to any failures.

It is important to note that the WBS case study has been used throughout the research for the
formative evaluation of the proposals. Because of this, further case studies were conducted
a posteriori to ensure acceptable degree of independence of evaluation activities from those of

research devel opment.

6.2.2 Aircraft Fuel System

Whilst the pragmatic focus of the thesis proposition requires case studies to be closely linked to
real industrial systems, the complete modelling and analysis of even one such system requires
resources beyond those available in the course of doctoral studies. To resolve this trade-off a two-
stage approach to the evaluation of the non-formative case study has been taken. In the first stage
(described in this section) a complete aircraft system has been reviewed to identify key general

features of modern industrial safety-critical systems. In the second stage (described in the
221



following two sections) smaller-scale case studies were selected (in case of EPDS) or constructed
(in the case of the WBS / IMA integration) to provide adequate coverage of the identified
features. As outlined in the Evaluation Strategy and described in Section 6.4 below, the integrity
of the process and adequate coverage of the pragmatic challenges by the case studies have both

been verified through peer reviews by industria collaborators.

The reviewed system was the Fuel System of a modern aircraft. The author was provided with
access to draft design documents by Airbus Operations on the company’s site in Filton, UK
during a five week visit. The review identified the following five key characteristics of the fuel
system:

(1) Complex mode logic

(2) Intentional architectural limitations

(3) Circular dependencies and loops

(4) Complexity of scale and design decomposition

(5) Time-dependency and reliance on consumabl e resource

The first four characteristics have been considered as being typical for alarge number of aircraft
systems and are briefly summarised below. The fifth characteristic, however, was judged — in
consultation with industrial collaborators — to be unique in its prominence to the fuel system and
was not addressed by the case studies. The fuel system and all five identified characteristics are
described in more detail in Appendix D.

Complex mode logic

The fudl system is typically operated through a number of phases and is highly reconfigurable
(e.g. upon failure). Whilst it may at first appear that the failure-handling modes of the system
(termed “workarounds’) can be seen as sub-maodes of phases of operation, a closer examination of
the mode model reveals that this is not the case. In particular, switch-over between the phases
may be affected by the active workarounds. For example, certain workarounds (entered upon
detection of equipment failures) may inhibit the non-essential phases of operation (such as load
dleviation fuel transfers prior to landing). Similarly, many workarounds affect the manner of
execution (the exact physical paths used by different types of fuel transfers) of more than one
phase of operation. This means that a structured mode model advocated by Papadopoulosin [115]
is not applicable to this system: with direct transitions between sub-modes of different modes, the
hierarchy of mode modelsis likely to be a purely decorative facility (since high-level modes will
not have a unique initia sub-mode). The complexity of the mode model of the fuel system is
further increased by the presence of some orthogonal sub-models (some workarounds are not
mutually exclusive and “side in control” modes of the fuel management sub-system are largely

independent from the workarounds of the liquid-mechanical architecture).

222



Intentional Architectural Limitations

In addition to the modes outlined above the fuel system can be operated in a manual mode with
pilots controlling transfers directly through the cockpit interface. The manua mode can be
initiated by the pilots at any time regardless of the system status; in addition, it is entered upon
FQMS detecting an unhandled combination of two or more failures. What makes this manual
mode remarkable is that the pilots do not have full control of the system. Certain transfers (or, to
be precise, certain transfer paths) are intentionally made unavailable in manual mode. Thus, even
in circumstances when a healthy transfer path exists in principle and can be utilised in automated
operations, effective manual operations may be impossible. This ‘intentiona sacrifice’ of some of
the functionality cannot be justified in terms of the system model. Instead, the justification comes
from a perceived trade-off between fuel transfer availability in rare circumstances (when manual
mode is required) and the need to minimise the likelihood of pilot error (that is increased by

complex control tasks).

Complexity of Scale and Design Decomposition

As was indicated above the fuel system is divided into two sub-systems: the Liquid-Mechanical
Subsystem and the Fuel Quantity Management Sub-system (FOMS) — designed in relative
isolation by different engineering organisations. Simplified partial failure logic models of the two
subsystems have been constructed during the review process. These experiments have indicated
that at early stages of the development two sub-systems can be meaningfully analysed in their
own right. For example, the analysis of the liquid-mechanical architecture can identify failures
that may lead to fuel becoming ‘unusable’ (either by being isolated in reserve tanks or through
leaks). Analysis of the FQMS could identify failure scenarios that lead to the management
subsystem inadvertently commanding transfers, erroneousy commanding transfers on
compromised paths or failing to command transfers when needed. The models of the sub-systems,
however, could not be effectively directly composed through input and output FM flows. Instead
the composition would require definition of complex virtual components to explicitly represent
the concept of “fuel transfer”*. This finding highlighted the utility of virtual components in the
integration of independently-defined large-scale models.

In addition to the composition of sub-systems models, other likely model integration scenarios
were identified during the review process. Firstly, the FQMS contains a number of software
partitions implemented on the IMA. The complete safety assessment should clearly take into
account the effects of IMA failures on the ability to continuously provide fuel to aircraft engines.
Secondly, review of the fuel system documentation has uncovered a case when the same set of

components (the liquid-mechanical architecture) is considered by separate safety analyses from

*® Thisis broadly similar to the “virtual link” components that were later used for composition of WBS and
IMA (see Section 4.6.4)

223



two different viewpoints: the ability to support effective transfers and the loss of fuel through
leaks. Thisis aclear case of two engineering domains being defined over the same scope but from
different viewpoints (see Table 5 in section 4.3.1, page 129). This observation has provided
further evidence of the necessity of aflexible conceptual framework for rationalisation of platform

(de)composition (as advocated in Chapter 4).

Circular Dependencies and Loops

Whilst the problem of loops in failure logic models is not new, review of the fuel system aong
with preliminary partial experiments have provided a new insight into this issue. Fuel system
models contained two types of loops: model loops due to control feedback (e.g. closed-loop
control schemas) and strong circular dependencies of abstract models. Control feedback |oops do
not aways result in circular dependencies in failure logic models. Furthermore, when such
dependencies are established they can be relatively easily resolved in the context of ‘forward
search’ model analysis. The issue of strong circular dependencies is, however, significantly more
complex. The nature of these dependencies is described in more detail in Appendix D. Broadly
speaking they are analogous to situations when zealous application of fault tree construction rules

would result in a non-terminating construction process.

In failure logic models these circular dependencies cannot be trivialy addressed by the
introduction of an infinitely short delay or the utilisation of afixed point search algorithm — as the
analysis may stabilise in an incorrect equilibrium. Instead such dependencies can only be
correctly resolved by enriching the models with a more complex loop resolution behaviour.
Whilst having no direct engineering interpretation, this injected behaviour can be informally seen

as an attempt to ‘shake’ the model out of afalse local equilibrium.

6.2.3 Integrated Modular Avionics

This case study, concerned with integration of the DSFMs of the Wheel Braking System and the
shared aircraft communications and computation platform, was designed specifically to evaluate
the proposed approach to model composition in contexts other than the classical containment
hierarchy view of decomposition of large scale engineering artefacts (“platforms’). As such the
case study addresses one of the key characteristics of realistic systems — complexity of scale and
design decomposition — identified in both the Thesis Proposition and the review of the Fuel
System.

The case study was constructed based on the following three objectives:
(1) To evaluate feasibility of the composition of two DSFMs that cannot be reasonably

expected to explicitly identify cross-model dependenciesin terms of FM flows;

224



(2) To evauate the feasibility of the composition of two DSFMs where semantic / conceptual
heterogeneity between typical views of the systems renders the allocation domain® non-
trivial (that is where effective and clear composition of failure logic models is likely to
require the introduction of “virtual components’);

(3) To evauate, as far as practicable, the applicability of the composition approach to
scenario(s) where causal dependencies between models do not have identical direction

(and, thus, fall beyond the expressive power of typical Common Cause Analyses).

It is important to note that evaluation of the applicability of the FLM Framework to the safety
assessment of Integrated Modular Avionics was not the objective of the case study. Consequently,
it was decided to significantly ssimplify the model of the infrastructure to the bare minimum
necessary for evaluating feasibility of model composition. The IMA model was constructed to be
broadly in line with the ARINC 653 specification [7], the safety assessment performed by Conmy
[34, 36] and descriptions of various aspects of the system found in the public domain [1, 4].

This integration scenario naturally addresses the first two objectives of the case study:
e Itisunreadlistic, especialy at the earlier — conceptual — stages of design, to expect safety
engineers working with the software engineers responsible for ‘subscriber’ systems (e.g.
WBS) to explicitly identify various dependencies of the software architecture on the
computation platform.
o Thedissimilarity of typica viewpoints adopted in the design (and analysis) of subscriber
systems and the platform itself requires the introduction of virtual components to model

concepts of Partitions and Virtual Links explicitly.

To address the third objective within the same case study a design assumption has been
introduced stating that:
a) Anti-skid and braking command calculations performed by the COM components of
BSCU channels are implemented as two pseudo-parallel software processes in the WBS;
b) The scheduling of processes in the same partition utilises a co-operative (rather than a

fixed-time) schema.

The assumption enables a ‘covert’ causal dependency path between otherwise apparently
independent failures of the COM component; the path is only revealed in integration of the WBS

and Infrastructure failure logic models.

Overall, the case study has demonstrated the technical feasibility of the proposed approach to the

composition of failure logic models. The composed models could be both analysed and simulated.

% See Section 4.3, Chapter 4
225



In terms of the composition process, the notion of “virtual components’ has allowed capturing
cross-model dependencies in a clear and structured fashion. Further, the introduction of these
components provided a means for addressing the issues of alocation (mapping) of partitions and
virtual links and the nature (i.e. logical structure) of these dependencies in relative isolation. For
example, reallocation of the software components and communication links to different physica
IMA equipment does not affect the structure of the virtual components; similarly, changes to the
platform’s communication protocol would not affect the dependencies between the WBS failure
logic model and the virtual VL components. Finally, the highly regular structure of interface and
interna logic of the virtual components (VLs and partitions) allowed for the composition of
failure logic models to be performed semi-automatically, demonstrating the feasibility of fully
automated integration of models based on allocation databases.

Whilst successful overall, the case study has identified some significant limitations at the level of
the specification language and analysis tool. Namely, the lack of weak-directed synchronisation in
AltaRica required models to be post-processed prior to composition. Also, it was discovered that
the Cecilia OCAS sequence generator does not currently treat ‘tempora’ Dirac(x) events in a
consistent fashion. This temporal law has been extensively used in the case study to mark Normal
Events (used in both the IMA DSFM and the “trandation layer” to resolve non-deterministic
effects of failures and failure modes). Whilst the latter problem does not affect model simulation,
it does require the sequence generator to be set to perform search to a very large cardinality

(which is prohibitively time consuming).

6.2.4 Aircraft Electrical Power Distribution System

The final case study undertaken as part of the research reported in this thesis is the Aircraft
Electrical Power Distribution System (EPDS). The main objective of the case study was to
evaluate the technical feasibility and adequacy of the FLM Framework extensions introduced in
Chapter 5 of the thesis. In addition to this, the case study was selected specifically to address the
following characteristics identified in the review of the fuel system:

e Complex mode logic containing a number of orthogonal mode models;

e Intentional architectural limitations;

e Circular dependencies and loops.

The system description has been developed as part of the MISSA project by ONERA and Airbus
Operations (France). Although the system is simplified, the author had no part in making the
simplification assumptions, thus, ensuring a high degree of independence between the evaluation

and the research development.

226



From the basis of the system description, a ‘hierarchy’ of models have been constructed in an
incremental fashion. The initial failure logic model (EPDS #1) included the electrical network
only (i.e. without its associated controllers and modes of operation) and was concerned with the
propagation of electrical power (and associated FMs); this system did not include the causes or
effects of short circuits allowing a simple global vocabulary of failure mode classes (i.e. omission
and commission of electrical power). The next model of the hierarchy (EPDS #2) has revoked the
‘freedom from short circuits assumption’. In addition to introducing circuit breaker components
and the short-circuit failure modes, it was necessary to refine the power FMs into two groups of
FM classes — concerned with provision of electrical current and voltage — in order to model short

circuit propagation and effects accurately.

It isimportant to note that the first two models of the hierarchy included a number of loops. Most
notably, the two cross-feed lines between the two main sides (see Figure 92 below) of the system
create strong dependencies between junction components which could not be resolved by the
propagation delay approach. In particular, such a naive approach results in a system reaching a
wrong equilibrium after the failure of all generators (that clearly resultsin atotal loss of electrical
power provision) since the absence of the failure mode (modelled by the OK privative) gets
‘locked’ inside the loop. This loop had to be resolved through injection of a transient omission

FM (in both directions) upon failure of any generator.

Whilst the first two models of the EPDS hierarchy do not allow for the analysis of the system
behaviour per se, they can be used to assess the fundamental adequacy of the physical system

architecture (before development of the controllers commences).

The models at the subsequent levels of the EPDS hierarchy have progressively enriched the
failure logic models with mode models. The first EPDS mode model (applicable to the entire
system) included only two modes: the initial Non-Emergency mode (where the system is powered
by non-emergency generator(s) and all busbars are expected to be powered) and the Emergency
Mode (whereby the system is only powered by the Emergency Generator and only two essential
busbars are expected to deliver electrical current). As discussed in Chapter 5, the Emergency
Mode is an example of both a degraded mode and an intentional design limitation since, although
the physical architecture of the system often makes it possible to deliver electrical power to non-
essential busbars, the design stipulates that — in order to protect the last remaining ‘live’ generator

— only the essential equipment should be powered.

227



Generatorl GeneratorE Generatorz

I'|
] Strong Circular CSM Got @& oy
GEN1GE Dependency |  CENZG
h'.l
Ty
]
GENLZct %J GE%.gJ.ict.
AC_E3Scr
2kl =
j_ace AC Cross-Feed E
|: Lines acz I! 2.
£ AC_ESS
AC_ESShk
- ] acz
Pt - —™ ;ﬁ, u y
] i ]
TRLbk TR_E8Hi: TRZbk
TR1 i TR_E3% i TRZ i
| ! |
e, TR_Essct DC_E3S k
TRlctX I X TRzCct

Figure 92 - Strong Circular Dependency in EPDS M odels

Further models of the hierarchy have introduced mode models related to the AC generators
(ACG), the AC cross-feed (XF) and the DC parts of the system (see Figure 93 below, reproduced
from Section 5.5.2) and corresponding controllers. It is important to make two observations here.
First, these three groups of modes are largely orthogona and yield a relatively complex overall
mode model. Second, introduction of the controllers increases the number of loops in the EPDS

and, in particular, introduces control loops.

The above discussion demonstrates that the EPDS case studies have addressed all three
outstanding system characteristics identified in the review of the aircraft fuel system:
o Complex mode logic — through the presence of three orthogonal groups of system modes
along with the overarching Emergency / Non-Emergency mode model;
¢ Intentional architectural limitations — through the presence of an Emergency Mode, where
provision of power to non-essential busbarsis intentionally sacrificed;
e Circular dependencies and loops — through the presence of strong circular dependenciesin
the abstract / early EPDS models as well as feed-back |oops of more detailed models.

228



(roc Ararmarar )
ACG_Alternate1

Emergency

NonEmergency Gen1 drives entire
network

(Gen2 unavailable)

Only Essential busbars
are to be powered; only
Emergency Generator
is to be used

All busbars are to be
powered; Emergency
Generator is unused

ACG_Normal

Gen1 & Gen2 drive
respective AC Sides

(aca atrormarao )
ACG_Alternate2

Gen2 drives entire
network
(Gen1 unavailable)

DC_Alternate1

TR1 drives entire DC
section

DC_Normal XF_Alternate1

DC_AlternateE

TR1 & TR2 drive
respective DC Sides,
Side 1 drives DC_ESS

Only Side 1 can supply

TR_ESS drives entire Side Essential

DC section

—

XF_Normal (Side 2 unavailable)

—
Both Side 1 and Side 2
are capable of supplying

Side Essential XF_Alternate2

DC_Alternate2

Only Side 2 can supply

TR2 drives entire DC Side Essential

section (Side 1 unavailable)

- NG
Figure 93 - Outline of the Overall EPDS M ode M odéel

The EPDS case studies also provided an additional opportunity to evaluate applicability of most
of the basic concepts of FLMM®’ including — most importantly — the notion of failure handling
states (due to importance of the short circuits and, consequently, the protection provided by circuit

breakers) which was not covered by the formative WBS case study.

6.2.5 Case Studies Summary

Overall the case studies contribute to three areas of the evaluation strategy:

a) Non-formative EPDS and WBS / IMA integration case studies provide direct assurance
that issues of model composition and reconfiguration (explicitly identified in the thesis
proposition) are adequately addressed;

b) Coverage by these two case studies of the key characteristics identified during Fuel
System review provides confidence that the FLM Framework addresses pragmatic
concerns of real industrial safety critical systems;

¢) Coverage of al concepts of the FLMM by the three case studies ensures that all concepts
have valid engineering interpretations and, thus, yields confidence in the conceptual

soundness of the framework.

Coverage by the three case studies of technical contributions of the thesis, key characteristics of
the fuel system identified in the review and concepts of the baseline FLM Framework are
summarised in Table 12.

" With exception of Normal Events and Normal States — which were extensively used in the IMA/ WBS
integration case study (as discussed in the previous section).

229



Table 12 - Coverage Achieved by the Case Studies

Case Study
Evaluation Subject WBS . WBS/IMA
(formative) Integration
Basic FLM concepts:
Components, Failure Modes, FM
%‘ Flows, FM Classes, FM Groups YEs Hee YEs
w 5 | Faluresand Failure States
(=
-g g Void Transition triggers
& | (incl. FM-caused failure state Yes Yes Yes
- % transitions)

Y| Failure Handling States No Yes Yes
Normal Events and Normal States Yes No Yes
Engineering & Allocation Small-scale

@ Domains, Domain Specific Failure experiments No Yes

3 2 | Logic Models (DSFMs) only

3 -8 Small-scale

o § External Causes [of failure] experiments No Yes

< 0 only

=

O Virtual Components Yes No58 Yes
Modes & Mode Spaces Yes Yes No
Complex mode logic (orthogonal o Yes No

% modes)

é B | Intentional architectural limitations n/a Yes No
@ [}
T § Circular dependencies and loops n/a Yes Yes
5@
L & | Complexity of scale and design
decomposition (non-trivia n/a No Yes
integration)

6.3 Metamodel Experiments

The FLM Framework presented in this thesis is based on a set of safety engineering concepts and
a metamodel. Definitions of concepts provide an engineering semantics to the framework, whilst
the metamodel specifies the relationship between the concepts. The language-agnostic format of
the metamodel ensures that the FLM Framework is not unduly influenced by the constraints of
any specification notation and, therefore, inherently provides some confidence in the interna

consistency and conceptual soundness of the approach.

%8 In EPDS case study virtual components — Mode Observers — are only necessary at the level of the FLM
Framework instantiation in AltaRica OCAS and therefore do not contribute to the FLM Concepts
evaluation

230



In addition to this ‘confidence by construction’, some direct investigations into the FLMM have
been undertaken to provide objective evidence of its interna consistency, completeness and

soundness. These experiments are reported in the following sub-section.

6.3.1 FLMM Validation in Eclipse

The Failure Logic Metamodel is formalised in the Eclipse Modelling Framework (EMF) [46, 142]
— an open-source environment dedicated to the development of tools based on a structured data
model (metamodel). Within Eclipse, the FLMM (metaclass diagram) has been specified using
Emfatic — an EMF based editor that provides a “compact and human readable syntax” [47]. A
short extract from the FLM Model specification — that defines Component, Complex Component
and Basic Component metaclasses — is shown in Figure 94. The editor also provides facilities for
syntax checking and for the conversion of specifications into an Eclipse core XMI format —
“Ecore’. These models, in turn, can be automatically visualised (see Figure 95 for an extract) and,

more importantly, “validated” (or, more precisely, checked for internal inconsistencies).

package FLM_metamodel;
/ *kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
// * Model Hierarchy Structure *
Y/ i
abstract class Component {

attr String ID;

attr Boolean IsVirtual;

val OutputFM[*] #of exhibits;

val InputFM[*] #of sensitiveTo;

val FMGroup[*] #definedIn defines;

val NormalEvent[*] #affects affectedBy;

ref ComplexComponent[0..1] #contains definedIn;}

class BasicComponent extends Component {
val Failure[*] #damages damagedBy;
val FailureStateSpace[*] #represents hasFailureStateModel;
val NormalStateSpace[*] #represents hasNormalStateModel;
val FailureHandlingStateSpace[*] #represents hasFailureHandlingStateModel;}

class ComplexComponent extends Component {
val Component[+] #definedIn contains;
val FMFlow[*] #enabledBy enables;
val ModeSpace[*] #represents hasModeModel;}

Figure 94 - FLMM Extract (Emfatic)

The metaclass diagram alone, however, does not provide a complete FLMM specification and has
to be supplemented by a number of well-formedness constraints. An example of such a constraint
would stipulate that the only component in a failure logic model which is not necessarily
contained within some complex component is a DSFM; another example would require every

state space of a component to contain exactly oneinitial state.

231



H state

=D
= Islnitial
Event
H Mode H FalureHandlingstate H Failurestate H Mormalstate EE D
o Characterisation
2% 2. 2. 2%
decomposedInto decomposedInto decomposedInto decomposedinto
H ModeSpace H FaiureHandingStateSpace H FailureStateSpace H MNormalStateSpace g Faiure
0. 0.* 0.* 0.* 0.*
H MormalEvent:
0.*
hasMadeModel i
 statespacd hasFailureStateModel hashormalStateModel
=D
damagedBy
ComplexComponent BasicComponent;
B D D hasFailureHandlingStateMaodel B D
contains 1* affectedBy

H component

=D

= IsWirtual

Figure95 - FLMM Extract (Ecore Diagram)

The constraints of the FLMM are specified in the Epsilon Validation Language (EVL) — part of
the Epsilon Framework [45, 86] — which has an intuitive syntax and can be easily related to the
Object Congtraint Language (OCL). Unlike the OCL, the EVL enables categorisation of
constraints as either ‘hard’ or ‘soft’ (the latter being caled “critiques’); Figure 96 shows an
extract from the EVL listing for the two hard constraints of the FLMM mentioned above, along
with a soft constraint which highlights an unusual and suspect situation when a non-initia stateis
not associated with at least one transition specification.

context ComplexComponent{
// Only a DSFM can be an "orphan"
constraint OnlyDSFMroot{
check: (not self.definedin.isDefined()) implies self.isTypeOf(DSFM)
b}

context StateSpace{
// Each state must contain exactly one initial state
constraint InitialStateldentified{
check: self.decomposedinto.select(S: State | S.Islnitial).size() = 1
}  /ltis unusual for a non-initial state not to have at least one transition
critique AvoidOrphanStates{
check: self.decomposedinto.forAll(S: State |
(not S.IsInitial) implies S.enteredThrough.size() > 0)
} )

Figure 96 - FLMM Constraints Extract (EVL)

232



The Epsilon Framework provides facilities for automated syntactical checks of the EVL
constraints and for checking consistency between the constraints and the Ecore metamodel

specification.

Further validation of both parts of the FLMM was carried out through testing on the basis of a
simplified component (the BSCU of the WBS case study). The component failure logic has been
specified in the OMG’'s Human-Usable Textual Notation® (HUTN) [110] and automatically
converted into an Eclipse model. The conformance of this model to the metaclass diagram and
EVL constraints could then be automatically checked using functionality provided by Epsilon.
The component model has been systematically mutated (including intentional introduction of

errors) to ensure appropriate testing coverage.

6.3.2 Mapping between FLMM and Existing Failure Logic
Modelling Methods

The thesis claims that the presented FLM Framework subsumes existing failure logic methods
such as HiP-HOPS and FPTN. In this section the claim is substantiated.

6.3.2.1 HiP-HOPS

The conceptual metamodel of the ‘core’ HiP-HOPS method is shown in Figure 97. For brevity,
this metamodel ignores some of the extensions such as negation [135] and PANDORA operators
[161], integration with design models [116] and the hierarchical mode model of the method (only
described by Papadopoulos’ s thesis® [115]).

In terms of model architecture (i.e. of component hierarchy and connectors) the HiP-HOPS
metamodel trivially refines the Metamodel presented in this thesis. The only point that is worth
noting in this regard is a minor mismatch between HiP-HOPS concept of Flow and the FLMM
concept of FM Flow. Failure Modes in HiP-HOPS are strongly linked, semantically, to flows in
design models. FMs are always associated with the design flows and only propagate in the same
direction as phenomena in design models. The validity of such a strong constraint is, however,
guestionable. For example, the EPDS and WBS case studies have demonstrated that dependency
paths established between components (e.g. by wiring, pipes or communication protocols) may, in

the presence of falures, enable FM flows in both directions. A HiP-HOPS “flow” is therefore a

* |t isimportant to point out that although HUTN is indeed an intuitive notation that could in principle been
used for specification of failure logic models throughout this thesis and in Appendix B, it tends to produce
voluminous specifications. For instance, the specification of failure logic of a single BSCU side fully
compliant with the FLMM takes over 1500 lines (although alarge number of those are trivial).

% See discussion in Chapter 5.
233



constrained specialisation of both the FLMM’s FM Group and FM Flow concepts; consequently,
if a HiIP-HOPS model is to be trandated into an FLMM-compliant one, such paths have to be

trivially expanded into individual FM Flows.

attachedTo 1

decomposedinto Model
Name : StringLiteral Interface
1" % Name : StringLiteral
consumes
within 0.1 generates Lﬁ
1 SubSystem Basic Component Output Input
bledB
enabledBy 1 damages 1 deviationOf 1 deviationOf
0.* enables 0.~ damagedBy 0.* exhibits 0.* sensitiveTo
1
1 Flow initiatedBy tion Output FM Input FM 1
«@lLabel : StringLiteral Name : StringLiteral of —
e FailureRate : Numeric
initiates| 1 queries
1 of
1 queries
1 . tesFrom Deviation
propagaiestrom 1.+ propagatesTo DeviationClass : Failure Class
‘From' End "To' End
0.1 internallyCausedBy 0.1 externallyCausedBy
Component Malfunction Logic Input Deviation Logic (DNF)
Flow End )
1 definedin 1 definedin
1.*
0.* over 0.* over
referfedBy - -
Malfunction Assertion Conjunction
0.*
1 definedin
1.% over
typer Deviation Assertion
Failure Class
ID : StringLiteral

0.* referredBy

Figure 97 - HiP-HOPS Metamodel (‘Core’ Method Only)

At the level of basic components, the relationship between the metamodelsis also straightforward
as illustrated in Figure 98. However, as was mentioned previously, HiP-HOPS does not make a
distinction between Malfunction as an event and as a state of the component. Furthermore, al
Malfunctions of a component are considered to be independent from each other. In FLMM terms,
this means that each malfunction represents a simple Failure State Space as well as a Failure
itself. The state space consists of two states: an initial privative state and a “failed state”. There
are no Transitions associated with the initial state (i.e. the Failure Logic Metamodel is constrained
by the *once-failed-aways-failed assumption’); the failed state can be entered through exactly one
Transition that is triggered by the Failure (also associated with the HiP-HOPS Malfunction, as
mentioned above) and is predicated on the Guard that is always true (i.e. it contains no
Conjunctions). For example, a HiP-HOPS Malfunction, caled Malf, can be agorithmically
234



transformed into a basic state model shown in Figure 99 along with an FLM Failure (called
“Malf” and assigned an identical failure rateto that of the original malfunction).

HiP-HOPS FL|

«refines»

HiP-HOPS::Deviation|- | — ——————— —— —— — — — — - = FLM::Failure Mode
{Exactly two States

trigge| in the State Space}

1 «refines» FLM::Failure //
HiP-HOPS::Malfunction|- | — — — — — Basic State Model //
+queries p _
1 FLM::Failure State Space FLM::Failure State

0.* +referredBy

queries \/
HiP-HOPS::Malfunction Assertionl— = ——————————————— - — FLM::State Proposition FLM::State
0.* 0. 1
D{FLm:Er y Proposition|
«refines»
|H|P-HOPS::Deviation Assertionl— i L S FLM::FM Proposition
1.
! i
«refines» 0.
HiP-HOPS:Conjunction- - -+ - ———-—-—-———— - — - — — |- - — — — - — — — — — — — — — — 5 o j i

0.*
1

|HiP-HOF’S::Input Deviation Logic (DNF)l—

«refines»
m 7777777 - —{ FLM::Propagation Condition FLM::Condition
1 > [
’l HiP-HOPS::Component Malfunction Logicl— i

Figure 98 - Relationship between HiP-HOPS and Failure Logic M etamodels

Malf [true]
Malf_Failed

Malf_OK (Privative)

Figure 99 - Basic Failure State Space Model (FLM) for a HiP-HOPS Malfunction " Malf"

6.3.2.2 FPTN

Whilst Failure Propagation and Transformation Notation (FPTN) is broadly similar to HiP-HOPS,
the lack of a published systematic definition of the method does not permit a detailed discussion
of the constraints it imposes on the Failure Logic Metamodel. However, it can be noted that by
contrast to HiP-HOPS the notation does not provide facilities for grouping Failure Modes (except

through naming conventions) and doesn’'t impose constraints on the relationships between FMs
and design flows.

In terms of failure, failure states and state spaces the notation offers a standard GENERATED BY
construct. Public-domain descriptions of the construct allow two interpretations:

235



(1) As with component malfunction logic in HiP-HOPS, A GENERATED BY B construct
specifies a causal relationship between a single output failure mode A and a failure B.
Thisisidentical to the HiP-HOPS approach.

(2) A GENERATED BY B construct specifies a causal relationship between afailure state A and
afailure B. Thisis aliberalisation compared to HiIP-HOPS, and permits the specification
of ‘mixed’ propagation equations over both input failure modes and internal failure states.
However, since the construct does not provide a facility to qualify the transition with a

guard, the HiP-HOPS restriction on the shape of the state spaces of components still
applies.

Finally, publications on FPTN also mention another construct — HANDLED BY — which is used for
specifying a mechanism that prevents propagation of a certain input failure mode on the
component. The FLMM readily provides facilities for specifying the non-propagation of failure
(although by omission rather than by explicit specification). What is interesting to note is that
FPTN considers the protection mechanism both ‘atomic’ and not susceptible to failure. This
assumption is revoked in the FLMM in an intuitive and structured fashion by inclusion of the
concept of Failure Handling State (and the corresponding state space) as discussed in Chapter 3
and extensively illustrated by the EPDS case study (Chapter 5).

6.3.2.3 Summary: HiP-HOPS as a Set of FLMM Constraints

Discussions in the previous two sections have demonstrated that any HiP-HOPS or FPTN model
can be transformed into a failure logic model fully compliant with the Failure Logic Metamodel.
The reverse is not true, however: the FLMM exhibits a greater expressive power than either
method. Listing of the additional FLMM constraints that are implied by HiP-HOPS both serves as
a concise summary of the above discussion and provides a useful insight into the contributions of

thisthesis.

The constraints imposed by HiP-HOPS are as following:

0) A model must contain exactly one DSFM;

(i)  Each FM Group may contain a set of Input FMs or Output FMs, but not a combination
of both;

(iii)  No FM Group may contain more than one Failure Mode associated with the same FM
Class;

(iv) If an FM Flow between two Failure Modes exists, then FM Flows between al Failure
Modes in respective groups must also exist;

(v)  All basic components must have no Normal Events, Normal State Spaces or Failure
Handling State Spaces,

236



(vi)  Each Failure State Space (if any) must contain exactly two Failure States. One of these
must be both initial and privative and must be associated with no transitions. The other
failure state must be associated with exactly one transition with a tangible trigger and
an empty (always true) guard;

(vii) Every failure must be associated with (act as) exactly one transition trigger;

(viii) Every conjunction of every propagation condition must contain either a set of FM
Propositions (i.e. with no state propositions) or a single state proposition;

(ixX)  No elementary propositions can be negations;

x) No complex component may have a Mode Space;

(xi)  No falure may have an external cause.

Note that some extensions to the ‘core’ HiP-HOPS [135, 161] revoke constraint (ix) and slightly
liberalise (vi); the hierarchical mode model [115] revokes (x) and integration with design models
and permission of non-FM flows [116] can be seen informally as an introduction of Normal
Events. For FPTN most of the above constraints are also likely to hold with exception of (ii), (iv)

and, under some interpretations, (vii) and (viii).

For systems where it is sufficient, the constrained version of the FLMM yields some advantages.
For example such models can be transformed into Fault Trees extremely efficiently using
Papadopoulos's synthesis algorithm [115]. In fact, the definition of the Failure Logic Metamodel
under the Eclipse platform can be relatively easily supplemented with automatable transformation
rules that permit conversion of the (constrained) failure logic models from a particular
specification notation or language (e.g. the HUTN or the AltaRica OCAS) into HiP-HOPS and

viceversa.

6.3.3 Relationship Between the FLMM and FTA

Previous sections have demonstrated that the Failure Logic Metamodel subsumes existing failure
logic modelling methods such as HiP-HOPS and FPTN. However, both methods are strongly
related to the traditional Fault Tree Analysis technique. Indeed, FTA is centred on the concept of
“failure space” [157] which is very close to what this thesis terms a “failure domain” and which
is described by the FLMM. Demonstration of the consistency between these two views, therefore,
yields a high degree of confidence in conceptual soundness of the FLM Framework. However, the
relatively informal nature of the FTA and the lack of explicit recognition (at least on a syntactic
level) of the concept of the “component” make it impossible to claim that the metamodel fully
subsumes FTA. This results in weaker “traces” relationships between FTA and FLM concepts

which indicate that those represent the same phenomena but at different semantic levels.

237



The starting point for the comparison presented in this section is the metamodel of the fault tree
notation specified by Briones et a [26]*. For the purpose of comparison, this section focuses on
the qualitative part of the FTA. Further, the Vote Gate is removed since it can be trivially reduced
to the remaining two gates. At the same time the FTA Metamodel is extended to include an

External Event (also sometimes referred to as a“ house event”).

The traces between classes of FTA and Failure Logic metamodels are shown in Figure 100 and to
some extent were established implicitly by Papadopoulos's fault tree synthesis algorithm [115]
(for a restricted subset of the FLMs). The unconstrained version of the FLMM provides
opportunities for a more complete mapping (e.g. its concept of Normal Events reflects FTA’s
External Events that have no interpretation under HiP-HOPS).

T
—
>
T
—
=

«traces»

FTA:External ("House") Eventl—- ————————————————————— —|FLM::Normal Event

FLM::Event

| FTA::Primary Event K H— FTA::Basic Eventl» ——————————————————————————————————— FLM::Failure
0.0 FTA::Undeveloped Event| - - - -+ - - - - ——————————————— L ——— > FLM::Input FM
: \/ FLM::Failure Mode
FTA:Event s
7~ FLM::Output FM !
«traces» '
|
Failure Model» —————
FTA::Derrived Event
b /\

FTA: Gate

I Guard-Trigger Aggregation |—

Normal Conjunction |» —— it ) FLM::Conjunction

FTA::AND Gate

Figure 100 - Mapping between FTA and Failure Logic M etamodels

However, the FTA Metamodel does not adequately describe the Fault Tree Analysis, but merely

the syntax of the fault tree notation. The construction rules and guiding principles defined in [157]
introduce a number of additional concepts which, whilst not explicitly reflected by the notation,
are no less part of the FTA than are its syntactical constructs. It is therefore necessary to consider

FTA rules and their relationship to the FLM Framework presented in this thesis.

. Whilst Mason developed an aternative, more detailed, FTA Metamodel [102] it focuses on the
guantitative aspects of the FTA and adds little value in the context of the comparison here.

238



The “No Miracles Rule” of the FTA® is addressed in the next section, where Non Coherent

behaviour is discussed. The remainder of this section considers other key rules and principles.

Ground Rule I “Write the statements that are entered in the event boxes as faults; state precisely
what the fault is and the conditions under which it occurs. Do not mix successes with faults”
In most cases, the rule is seamlessly implemented in the FLM Framework. The interface
of each component is formed by input and output failure modes which are by definition
deviations from “success’ (or, more precisely, intent). One exception from the first FTA
ground rule is the normal state of components in FLMs. The use of these states is
relatively rare and normal states are aways ‘hidden’ inside the boundaries of basic

components.

Ground Rule II: “If the answer to the question, ‘Is this fault a component failure?' is ‘Yes,
classify the event as a ‘state of component fault’. If the answer is ‘No’, classify the event as a
‘state of system fault’”

All failure modes and states of basic components defined in the FLMM can be clearly
considered as “ state of component faults’. The metamodel permits two types of “state of
system” constructs: the output FMs of complex components and their Modes. It is
important to note that since FPTN, FPTC and most versions of HiP-HOPS do not have a
concept of “mode” the scope of these methods may be considered as lesser that that of

Fault Trees.

The Primary-Secondary-Command principle of the FTA states that for every state of component
intermediate event three categories of causes need to be considered:

e Primary events — defined as “any fault of a component that occurs in the environment for
which component is qualified” — are loosely mapped into the FLM concept of failure
state. More precisaly, for a FLM failure state to be considered a “primary event”, it must
not be predicated on a guard which requires presence of an input failure mode.

e If atransition to a failure state does require an input failure mode, the transition is likely
to represent a secondary fault. One example of a secondary fault, mentioned in chapter 5,
isfailure of an electrical generator in response to a short circuit.

e Command Faults “involve a proper operation of a component, but at a wrong time or in
the wrong place” and map onto the concept of Input FMs. More precisely, if an output
failure mode can occur as a result only of input failure modes (i.e. with no need for
internal failures of the component) every such input FM can be considered a “ Command

Fault” in the FTA terminology.

% The No Miracles Rule states that: “If the normal functioning of a component propagates a fault sequence,
then it is assumed that the component functions normally” [157]

239



In general, Failure Logic Modelling does not make such a clear separation between these three
classes of conditions: propagation conditions and guards can mix Primary, Secondary and

Command causes as appropriate for accurate representation of component behaviour.

6.3.4 Non-Coherent and Dynamic Behaviour

6.3.4.1 Negation

A negation (or NOT gate) is a contentious point in Fault Tree Analysis [10, 75]. Since the models
and illustrations used throughout this thesis make extensive use of negation in both propagation

conditions and transition guardsiit is important to briefly justify this.

In the vast mgjority of the models presented in this thesis, the primary objective of the negation
operator is not the introduction of “miracles” (i.e. coincidental correctness) into the failure logic
of components but rather qualitative reduction of the unjustified non-determinism in propagation
conditions and transition guards. In other words the “not” operator is used predominantly to
provide deterministic characterisation of mutually exclusive failure modes (or state transitions) in
situations when a conjunction of their propagation conditions (or guards) would not otherwise

aways evaluate to false.

In fact, the presence of multiple output failure modes of a component (especialy when these are
associated with the same flow or interaction in the design model) turns a failure logic model into
what Andrews calls a “Multitask System” [10, 75]. This holds for the FLM Framework presented
in this thesis as well as for al of the more simple pre-existing methods that it subsumes. In fact,
Sharvia and Papadopoulos have extended the HiP-HOPS method (and the associated fault tree
synthesis algorithm) to alow inclusion of an explicit “not” operator [135]. Interestingly,
Wallace's Failure Propagation and Transformation Calculus (FPTC) [163] implicitly alows for a
non-coherent structure by specifying the failure propagation of components by means of “truth
tables” (which may contain logic equivalent to negation). This property of FPTC vyields an
important general observation: specification languages and notations may permit non-coherent
failure logic even in absence of explicit negation operators. In particular, implementation of
failure modes contained within the same FM group as an enumerated type potentially implicitly

introduces the negation.

6.3.4.2 Priority AND Gate

Traditional FTA provides a (limited) facility for capturing sequencing or timing constraints on

failure propagation — a Priority And (PAND) gate. Whilst the FLMM strictly limits propagation
240



conditions and transition guards to propositional logic, this does not represent a limitation of the
FLM approach with respect to the FTA. In fact, PAND gates imply existence of a state. For
example, a PAND Gate over two inputs X and Y typically implies that X moves the system into a

state when it isvulnerable to an event Y (Figure 101).

X
Initial Vu/nerable] [ Zz j
' State d/\_/
Y X Y

Figure 101 - Typical Interpretation of a PAND gate

In general, a PAND gate is an abstraction of an internal state logic of the component. Since the
FLM Framework permits explicit representation of the state — the abstraction is no longer

necessary.

PAND gates are closely related to the Transition specifications. In particular, in the earlier
discussion on ‘classica’ FTA (on page 238), Figure 100 implied an overly pessimistic
representation of a decomposition of atransition into a trigger and a guard viaa ‘classical’ AND
Gate; a more accurate representation, which acknowledges the fact that the trigger T must occur

after the guard G turnstrue, clearly requiresa PAND gate as outlined in Figure 102.

Figure 102 - Improved Fault Tree Representation of a State-Guard-Trigger relationship

However, this relationship is strictly informal and only holds for a small number of specific state
space patterns. Firstly, PAND gates have no memory and, in the above illustration, once G
becomes false the gate output will return false, suggesting that the component has left the state.
This is not the case for guards in the FLM Framework. Secondly, FLM state transitions may
contain loops (i.e. direct and indirect ‘return transitions’ to previoudly visited state). Such looped
state structures would yield infinite fault trees (or, aternatively, would make a fault ‘tree’ a

directed cyclic graph).

241



6.3.4.3 Dynamic Fault Tree Gates

Arguably the most prominent of numerous ‘dynamic’ extensions of the Fault Trees that have
emerged in the recent years, Dugan’s Dynamic Fault Trees approach [12, 44] proposes two new
gates — a Functional Dependency (FDEP) gate and a Cold Spare (Spare) gate (Figure 103, () and
(b) respectively). The semantics of these gates is discussed in Chapter Two of the thesis (Section
2.2.2). This section demonstrates how Dougan’s DFT gates can be related to the concepts defined
inthe FLMM.

From the perspective of the FLMM, the FDEP gate is strongly related to the concept of external
cause of failure (introduced in Chapter 4) as it permits the interconnection between two
independently defined models (in Dugan’s case, fault trees; in ours, failure logic models). The
FLM concept of ‘external cause’ as discussed in Chapter 4, however, explicitly recognises that
relationships between two models may potentially be more complex and require a trandlation

layer rather than direct connection.

Intermediate Intermediate
Event Event

| FDEP .
di SPARE

Trigger

Inter
Event

Failure of
Cold Spare
#

Failure of
Cold Spare
#2

Failure of
‘Primary’

(@) ()

Figure 103 - Dynamic Fault Tree Gates: Functional Dependency (a), Cold Spare (b)

More importantly the framework for rationalising the decomposition of large-scale engineering
artefacts (platforms) into Engineering Domains related by Allocation Domains has clarified (even
for the Fault Tree context) cases in which the usage of the FDEP gate is permissible. If acommon
mode failure (indicated by the FDEP trigger input) falls within the scope of the same Engineering
Domain, it is unlikely that FDEP gate can be justified (instead the common ‘trigger’ should be
modelled as a secondary or command fault of the component). Just as with external cause in the
FLM Framework, Dugan’s FDEP gate in FTA context is more likely to be justifiable if it arises
from considering alocations between two independently engineered domains of the platform

(such as IMA and software partitions of the subscribing system).

By considering the second DFT gate — Spare — from the perspective of Failure Logic Modelling

one limitation can easily be identified: the gate is unable to reflect the situation whereby a stand-
242



by component is wrongly activated. Existence of a“cold spare” implies existence of an activation
input to the component in the design. Just as with any other design interaction this input may
carry a Commission failure mode. So a Spare gate captures one — very specific — pattern of

behaviour associated with systems which exhibit dynamic reconfiguration.

Having said this, the gate highlights an important principle for the construction of failure logic
models. failure state transitions triggered by a failure should never be prohibited by the guards
when the failure is physically possible. If, in a certain state (and under certain input FM
conditions), a failure is possible but inconsequential, then the component characterisation should

contain atransition for re-entry into the same state.

Under this principle, failure logic models are capable of storing information about “cold spares’
which can be utilised for quantitative assessment. The “activation” of the sparesis captured in the
FLM Framework by inclusion of the mode and input FM assertions in the appropriate transition

guards (for normal and abnormal activation respectively).

6.3.5 Evaluation by Metamodel Instantiation

The Failure Logic Metamodel has been instantiated in the AltaRica OCAS language as discussed
in Chapters 3, 4 and 5 of the thesis. The fact that the metamodel can be instantiated in a third-
party genera language confirms both the practicability of the proposed framework and the
completeness (and, to some extent, the internal consistency) of the proposed framework it

underlies.

It is important to stress that, whilst the AltaRica OCAS was chosen as implementation language
before the metamodel definition had been completed, care has been taken throughout the research
not to permit features of the language to drive the metamodel definition. All new FLMM concepts
have been demonstrated in a language-neutral pseudocode format (e.g. the tabular format adopted
in this thesis or a semi-graphical format in [97]) and subjected to a review in a language-

independent form.

Also, it is important to note that whilst the ‘baseline€’ FLM Framework (presented in Chapter 3)
cleanly maps to elementary AltaRica OCAS language concepts (i.e. events, states, transitions,
flows and assertions), the extensions introduced in Chapters 4 and 5 could not be directly
supported by the language and required more complex (composite) constructs. Nevertheless for
each FLMM concept it was possible to provide a systematic (and, in principle, automatable)
implementation procedure. This, once again, provided confidence in the completeness of the

metamode!.

243



Finally, implementation of the FLM Framework in AltaRica helped to identify the pragmatic
impact of limitations of the language (in the FLMM context) as well as clarify criteria for a more
suitable implementation language yielded by the metamodel (such as permitting states of
composite/complex components and supporting directed weak synchronisations between events).

Thisin itself isa contribution of this research.

6.4 Evaluation Through Peer Review

Discharging the thesis proposition has relied on peer review to assure the adequacy of the other,
more formal, means of evaluation (outlined in the previous two sections) as well as to mitigate
against any limitations of case studies and metamodel experiments. Furthermore, the evaluation of
the FLM Framework with respect to the criteria of the Proposition (such as being “well-defined”
and “pragmatic”) calls, to some extent, upon engineering judgement that, whilst being informed

by other forms of evaluation, can only be elicited in the peer review.

The research has been subjected to peer reviews in two fora discussed in dedicated sub-sections
below: the Airbus Dependability Network project and the EU-funded MISSA project. The
research has also been treated to regular peer review in the High Integrity Systems Engineering
group at the University of York.

6.4.1 Airbus Dependability Network

The Airbus Dependability Network (DepNet) was a collaborative project funded by Airbus
between January 2004 and February 2007. The network comprised three European research
organisations: Kuratorium OFFIS e.V. (Germany), I’ Office National d'Etudes et de Recherches
Aérospatiales® (France) and the University of York (UK).

The first phase of the project looked into the issues of compositional safety assessment and
resulted in publication of a research report (the “white paper”) in June 2005 [74]. The report
proposed a preliminary framework for compositional assessment with significant contributions
from the author. From the perspective of the FLM Framework presented in this thesis, the White
Paper presented both the baseline framework outlined in Chapter 3 and the preliminary definitions
of the extensions proposed in Chapter 4. Having been formally reviewed and positively received
by the DepNet steering committee (which comprises of highly-qualified safety engineers and

program managers from al key Airbus sites and divisions), the report has been recommended by

8 Referred to as “ONERA”
244



Airbus as a foundation for the MISSA project proposa (subsequently submitted and granted

under the EU Framework 7 programme of research).

6.4.2 The MISSA Project

More Integrated Systems Safety Assessment (MISSA) is a European collaborative project funded
by the European Commission under Framework 7 programme®. Having started in April 2008 and
projected to run for 36 months, the MISSA project is being carried out by a consortium
coordinated by Airbus (UK) and consisting of 13 companies and research organisations including:
Alenia Aeronautica, Dassault Aviation, EADS APSY S, OFFIS, ONERA, Thales Avionique and
the University of York. Work Package 4 of this project is largely focused on the evaluation and

further development of the FLM Framework presented in this thesis.

The quarterly project meetings and formal deliverables have been extensively used by the author
to conduct a peer review of the proposed FLM Framework, its instantiation in the AltaRica OCAS
and the case studies presented in this thesis. Project partners have been broadly divided into the
following (overlapping) categories:

e Research partners with an interest in the conceptual and methodological aspects of the
FLM Framework: ONERA and OFFIS (the later with the focus on the metamodel
adequacy);

e AltaRica & AltaRica OCAS experts. Dassault Aviation, ONERA, EADS APSY S, Thales
Avionique;

e Industrial partners with an interest in the practical and methodological aspects of the
framework and associated guidance: Airbus, Alenia Aeronautica, Thales Avionique

e Industrial partners with a specific interest in case studies. Alenia Aeronautica and Airbus

The key formal MISSA report that outlined the key principles of the FLM Framework was the
MISSA mid-term Development Description Report (D4.10, Issue A). This also included a draft of
FLM Handbook compiled (solely) by the author. Fashioned after the FTA Handbooks [158, 157],
this document describes (and illustrates) all key FLM concepts and the overarching ‘ philosophy’
of failure logic modelling approach as well as presenting the step-by-step guidance on the system
assessment process which can be used to systematically construct the models. The handbook also
contains a forma definition of the FLMM and instantiation schema in the AltaRica OCAS.
Formally reviewed by project partners, the draft Handbook has attracted very positive feedback

with constructive suggestions of improvements, but no major or conceptual criticisms.

% Grant agreement ACP7-GA-2008-212088 [6]
245



In addition to this formal review a number of extensive presentations have been delivered by the
author to the project consortium throughout Phase | to elicit comments on the Framework and the
Case Studies. The three most significant such presentations were as following:
1) Bristol (UK), April 2008: Baseline FLM Framework
2) Trento (Italy), January 2009: A major haf-day presentation covering most aspects of the
work, including:
e Results of the review of the aircraft Fuel System
e In-depth review of the FLM Framework extensions with respect to reconfigurable
systems
¢ Review of the FLM Framework with respect to model composition
e Common computation and communications platform (IMA) case study
e FLM Framework implementation in AltaRica (incl. case studies) and identified
limitations of the language
3) Stockholm (Sweden), June 2009: An in-depth presentation of the EPDS case study
e Review of the FLM Framework with respect to modes
e EPDSmodel hierarchy
e Identified limitationsin Cecilia OCAS

e Preliminary results of the application of alightweight refinement relation

Finally, a number of small-scale review meeting and discussions were held with the individual
project partners including discussions with a senior safety engineer of Airbus UK on the
conclusions of the aircraft fuel system review, review of the Failure Logic Metamodel by
researchers in OFFIS, discussions with researchers at ONERA and engineers at Dassault Aviation
on implementation of the FLM Framework in AltaRica OCAS, review of the EPDS with Alenia
Aeronautica representative in MISSA project and review of FLM Handbook by the engineers in

Thales Avionique.

6.4.3 Peer Review Summary

The FLM Framework presented in this thesis and the evaluation activities presented in this
chapter have been extensively peer reviewed by author’s collaborators in DepNet and MISSA
projects as well as by colleagues in the HISE group at York. The comments received have been
positive overall, supporting the thesis proposition in general and finer-grained hypotheses outlined
in Evaluation Strategy (see section 6.1 above) in particular. The key review instances are
summarised in Table 13 below.

246



Table 13 - Summary of Peer Review I nstances

Review _ _ ;
J— Basisfor Review Reviewers Scope
York (UK), Research Seminar | HISE group Baseline FLM Framework
January 2005 (presentation) researchers
June 2005 1% DepNet White | Safety engineers | Baseline FLM Framework and
Paper (technical of Airbus approach to composition of
report) (DepNet Steering | independently defines DSFMs
Committee)
Bristol (UK), MISSA WP 4 MISSA Outline of the complete FLM
April 2008 Presentation Consortium, EC Framework
project officer
York (UK), Research Seminar | HISE group Engineering & Allocation
May 2008 (presentation) researchers Domains, DSFMs and model
composition
Trento (Italy), Series of ONERA, Thales, | FLM Framework extension for
January 2009 presentations Airbus, Alenia modelling reconfigurable
(quarterly MISSA systems
project meeting) | Airbus, Alenia Review of Aircraft Fuel System
& ldentified Characteristics
Airbus, Apsys, Composition of multiple models
Alenia, ONERA | (DSFMs, external causes of
failure)
Airbus, Thales, IMA case study
Apsys, Dassault
ONERA, Apsys, FLM Framework
Dassault, Thales implementation in AltaRica
(including resolution of strong
dependencies)
York (UK), Research Seminar | HISE group FLM Framework extension for
May 2009 (presentation) researchers modelling reconfigurable

systems

Non-compositional aspects of
FLM Framework (context
dependency & loops) and

approaches to mitigation

247




Stockholm Presentation MISSA FLM Framework extension for
(Swveden), June | (quarterly MISSA | Consortium modelling reconfigurable
2009 project meeting) systems (final review)

Alenia, Airbus, EPDS case study (hierarchy of

APSYS models)

ONERA, APSYS | Implementation in AltaRica
OCAS (incl. language and tools
limitations & adopted
mitigations)

Alenia, Airbus Preliminary results of
lightweight refinement
evaluation

Mid-term DA4.10: MISSA FLM Framework

MISSA project | Development Consortium, EC

review, Description Project Officer

September Report (Issue A)

2009 Draft FLM MISSA Key concepts and philosophy of
Handbook Consortium the approach
(Annex A of Airbus, Thales, Guidance for construction of
D4.10 above) Apsys models

OFFIS Failure Logic Metamodel

ONERA, Thales, | Framework implementation in

Apsys AltaRica OCAS

6.5 Identified Limitations and Mitigations

Whilst yielding a positive result overall, the evaluation activities reported in this chapter have
highlighted some fundamental limitations of the original underlying principles of failure logic

modelling. In this section, these are summarised aong, wherever applicable, with the pragmatic

mitigations of these limitations taken by the author.

It isimportant to stress that identified challenges and limitations are applicable to any failure logic
modelling approach, regardless of the details of the model specification language or notation used
to implement it. An ability to identify such fundamental issues in the approach as a whole
highlights the utility of the language-agnostic metamodel-based framework and contributes to

author’s long-term goal of comparing relative advantages and disadvantages of different model-

248




based safety assessment approaches that formed part of the motivation for the research presented
in thisthesis (see section 1.2).

6.5.1 Volume of Results

One of the well-established, although not frequently publicised, challenges posed by any model-
based safety assessment method is the accessibility of the results of the analysis. Failure logic
modelling is not an exception in this respect: some of the analyses of the models presented in this
thesis contained hundreds or even thousands of minimal cut sets (and even a greater number of

minimal cut sequences) of relatively modest cardinality.

This problem is more severe for model-based safety assessment than it is for traditional analysis
methods such as, for instance, the fault tree analysis. Under the latter safety engineers construct
separate models (fault trees) for each unsafe condition with no formal enforcement of consistency
between models. Whilst the lack of a ‘consistency guarantee’ between fault trees is often
criticised, and is one of the motivational factors for model-based safety assessment methods it is
often pragmatically useful. In particular, safety engineers can select the level of granularity of the
model appropriate for each individual condition of interest, thus, abstracting from details which,
whilst they may be more significant in some other context, have little impact for the selected top
level event. Safety engineers may aggregate a number of failuresin a single basic event or leave

some failure modes (possibly also aggregated) as undeveloped events.

By contrast, model-based approaches are, by definition, based on a single model of the system
defined at a particular fixed level of detail which must support multiple analyses. Consequently
the model has to be constructed at the ‘lowest common denominator’ of granularity, thus, leading
to voluminous analysis results that can often be perceived as ‘too detailed’. The overall result is
that it is impractical to review analysis results exhaustively, either for the purpose of establishing
safety qualities of the proposed system architecture or to review, validate and debug models

themselves.

In the light of this challenge, some of the case studies have adopted an incremental modelling
approach whereby less detailed (and, strictly speaking, less accurate) models are constructed first.
In subsequent iterations, models are improved and levels of detail are progressively added.
However, instead of reviewing all of the analysis results at each iteration minimal cut sets are
compared to those obtained in the earlier iterations. Only significant differences between the

results are reviewed manually.

To identify such significant differences a lightweight refinement relation has been defined. The

relation holds over two sets of minimal cut sets if and only if for every ‘concrete’ MCS it is
249



possible to find an identical or worse abstract MCS; where one cut set is said to be worse than
another if the later subsumes the former. Concrete cut sets that violate this refinement relation
provide significant new safety information not previously seen by the safety engineers at more
abstract iterations of the assessment. The comparison process has been automated and applied to
the EPDS case study. It has proven to be useful both in terms of significantly reducing the number
of cut sets requiring review in general and in facilitating more efficient model validation and

review in particular.

The basic refinement relation above has been supplemented with a notion of equivalence mapping
between failures (i.e. the vocabulary over which MCSes are defined). The original motivation for
this extension was the need to compare results obtained from models defined by different
engineers (i.e. in the absence of identical naming conventions for components and their failures).
However, some preliminary experiments on the application of the mapping to control the level of
granularity of the analysis have been undertaken. For example, the mapping was used in the IMA
case study to group similar failures of similar components (e.g. to consider all scheduling failures
of different CPIOMs as equivalent) and present shorter aggregated or summarised results to the
user. Nevertheless, further experiments in this area are necessary (and are planned under the
MISSA project).

6.5.2 Strong Circular Dependencies

The first challenge specific to the failure logic modelling approaches is the one posed by strong
circular dependencies between the failure logic of components in the context of abstract models.
To the author’s best knowledge, this issue has not been addressed in the literature and was
identified during the evaluation stage of the present research. As was discussed earlier in the
chapter, during model smulation and analysis such strong dependencies (unless explicitly
handled) lead to the model stabilising in an incorrect local equilibrium regardless of the analysis
method used. The problem is ultimately caused by the level of abstraction inherent to the FLM
Framework (that mandates description of deviation of behaviour from intent rather than system
behaviour itself) especially when the models purposely abstract from exact reconfiguration rules
(e.g. EPDS #1 and EPDS #2 models, described in Section 6.2.4, that only capture the physical
architecture of the system). The problem is effectively that of co-dependency between redundant
parts of the system (e.g. power distribution paths or fuel tanks) in terms of the provision of a

particular service.

It is important to stress that this problem is conceptualy different from the more widely
recognised issue of closed loop control systems. Control loops pose little challenge to the FLM
Framework as they frequently do not result in loops in the failure logic models (since sensors or

monitors are only dependent on the failure modes of the ‘primary’ channels if the latter can
250



mislead or incapacitate the former) and, if they do, can be trivialy resolved in the context of
inductive (bottom-up) model analysis. It is also important to note that resolution of control loops,
typically based on the introduction of minor delays, poses more significant risks to the validity of
models based on system “success’ (i.e. non failure logic modelling approaches) as delays are
more likely to interfere with the timing and sequencing aspects of the behaviour captured in the

models.

Returning to the FLM-specific strong circular dependencies, a pragmatic solution to the problem
has been found and successfully applied to the EPDS case study (which exhibits such
dependency). The solution relies on the injection of transient behaviour into the model for an
infinitely short time (undetectable by the analysis) to force analysis tools to search for a correct
non-local equilibrium before confirming afixed state. Whilst in case studies performed during the
research (including the EPDS and the model of the tank architecture of the fuel system) the
detection of circular dependencies was automated and the injected behaviour was trivid, it is
important to admit that this transient behaviour has no engineering semantics and cannot be
established at the level of individual components. Therefore the solution is not covered by the
FLMM and cannot be expressed in its terms.

Furthermore, the problem affects failure logic models constructed at the earliest stages of the
development process (e.g. where the objective of the analysis is to assess the feasibility of the
physical architecture of the system) — the very stage where the use of the failure logic modelling
approach is more likely to be justifiable. Subsequently, this problem clearly requires further
research in order to assess its impact on the feasibility of the failure logic modelling approach and

its comparison to other model-based safety assessment paradigms.

6.5.3 Complex Modes and Reconfiguration Logic

Whilst the research presented in this thesis has demonstrated that the FLM Framework can be
consistently and systematically extended to enable modelling of systems capable of dynamic
reconfiguration, the resultant framework and model construction process is significantly more
complex than is currently admitted in other descriptions of other failure logic modelling
approaches. Construction of the mode models of systems and complex componentsis a non-trivial
process that requires an understanding not only of behaviour of the system but also of the
rationale for this behaviour. Consequently, the degree of intellectual enquiry and, to some extent,
of creativity, necessary for the elicitation of modes, the specification of their transitions and the
reflection of the impact on individual components (within the relevance scope of particular mode)
are likely to render the FLM Framework less applicable for rapid ‘what-if' assessment of the
impact of changes to the logic of system controllers (which determines a system’'s concrete

reconfiguration rules).
251



However, this apparent inefficiency of the framework indirectly aids assessment of the scale of
design change. Indeed, seemingly minor changes of the controller logic (e.g. changes of a single
reconfiguration condition) are capable of having a significant impact on the behaviour of the
system. From the perspective of the FLM Framework such changes are (appropriately) seen as
affecting the system (and model) architecture and thus requiring substantial re-consideration by
safety engineers. In other words, the framework insists that the extent of safety (re-)assessment
should be determined by the impact of the design change on the overall behaviour of the system

rather than by the ease of implementing the change (e.g. changing controller code) itself.

Furthermore, whilst specification of the system modes (especially failure handling modes) under
the failure logic modelling approach is undeniably a labour-intensive activity, it is neither
mechanistic nor mundane and ensures that safety engineers gain a thorough understanding of the
system architecture and its operational ‘philosophy’. Also, this activity essentialy forces
engineers to conduct a thorough review of the system design from a perspective that is
conceptually dissimilar from that typically adopted in the ‘core’ design and implementation
processes. This can be seen as fulfilling one of the core (albeit frequently implicit) objectives of
the safety assessment process by ensuring a sufficient degree of independence and analytic

redundancy between the safety assurance and design processes.

It is expected that the FLM Framework is more likely to be perceived as adding value to the
assessment of radical system designs (that propose innovative architectures and implementation
technologies) than in the context of repeated well-established designs (often relied upon in

traditionally conservative civil aerospace sector).

6.5.4 Reuse and Composability of the Component
Characterisations

This investigation into challenges posed by the dynamically reconfigurable systems has brought
into focus the problems of the reuse and composability of the failure logic characterisations of
components. Indeed, as was discussed in Chapter 5 in the general case component

characterisations under the failure logic modelling approach are neither reusable nor composable.

The issue of composability is the more trivial of the two problems, and can be mitigated by a
proposed two-stage model construction methodology (see Section 5.4). During the first stage,
safety engineers identify components and key safety threats of the system and use lightweight
scenario-based assessment to establish the appropriate granularity for the FM interfaces. At the

second stage precise failure logic characterisation of the basic components is established and

252



mode models are completed with the specification of transitions. Overall, this two-stage process
minimises the incidence of non-composable component characterisations, provides opportunity
for early feedback to the design process and provides confidence that the constructed failure logic

model is suitable for anticipated analyses.

The problem of non-reusability and, generaly, of the context dependency of component
characterisations is much more significant. It is also largely unique to the failure logic modelling
approach and doesn’t affect ‘competing’ approaches based on modelling system behaviour under
conditions of failure from the perspective of the success domain. For example, under the FLM
Framework, amost every component of the EPDS case study had to be modelled separately
despite the fact that the design of many components (switches, circuit breakers, transformers and
junctions) isidentical. The problem is that the context of each such component and, in particular,

their intent in different modes of the system, was unique.

However, it was observed during the case study that characterisations of components of similar
types exhibit common patterns. Trivially, this allows reusing large sections of characterisations
with modifications limited to state propositions over system modes. More importantly it
highlighted a promising long-term conceptual solution to ‘restoring’ the reusability of FLM
components. In particular, it was observed that if in transition guards and propagation conditions
system-level modes are stated from the perspective of a component, the characterisation in terms
of such ‘local modes’ becomes significantly more stable. For example, from the perspective of
individual circuit breakers, modes are grouped into two categories. modes in which circuit
breakers are expected to be powered and modes in which they are not. The classification of the
EPDS modes into these two groups is indeed unique for almost every circuit breaker; however,

failure logic of circuit breakersin terms of these two local modesisidentical for al components.

The overall solution should therefore extend the FLMM by the concept of “local modes’ (for both
complex and basic components). Unlike other states of the components, these modes must never
be associated with transitions, but rather mapped on to modes (local or otherwise) of higher level
complex components. Furthermore, the guards and propagation conditions of the components
must only refer to higher-level modes by virtue of these local representations. This solution allows
for the segregation of reusable propagation conditions and guards from instance-specific

mappings between local and higher-level modes.
This approach to failure logic modelling has been successfully trialled on the EPDS case study.

However, since the case study is formative with respect to this extension, it has not been included

in the Failure Logic Metamodel presented in this thesis and requires further evaluation.

253



6.5.5 Complexity of Model Construction

Related to the issue of reuse and composahility of the failure logic models (discussed above) is
the problem of model construction in general. Whilst all of the extensions of the failure logic
metamodel introduced in this thesis are necessary for modelling modern complex safety critical
systems, these extensions make model construction a significantly more complex process. At the
level of individual components safety engineers have to consider a large number of variables
including component failure-, failure handling- and normal- states, input failure modes as well as,

potentially various higher-level modes.

At the level of models of systems and complex components the research reported in this thesis has
demonstrated that establishing the architecture of the failure logic models is a non-trivial task; an
inadequate model architecture can result in a time-consuming modelling roll-backs that affect
many components. In particular, the author’'s discussion with industria collaborators and
elicitation of the systems’' (or complex components') modes and mode models was highlighted as

aparticularly challenging step of model construction.

To dleviate some of the problems of complexity of the model construction, guidance for
systematic system assessment and elicitation of the failure logic model has been compiled by the
author (in the form of a*“FLM Handbook” mentioned previoudly in this chapter). To the author’s
knowledge, no such guidance had been previously provided for any model-based safety
assessment technique with existing publications focussing on the particular model specification
notations or, in some cases, the definition of safety engineering concepts underlying the technique

rather than a process of model construction.

However, whilst the Handbook has been reviewed by a number of the author’s collaborators,
more independent case study based evaluation is necessary to ensure that the guidance is
sufficiently clear, comprehensive and — most importantly — repeatable. Provisions for such
evaluation of the guidance has been made under the auspices of the MISSA project (ongoing at

the time of writing).

6.5.6 Complexity of Model Analysis

The duration of the analysis of failure logic models has been previously highlighted as being at
times inadequate (see sections 4.8 and 5.6.4). Whilst the author has argued that, to the large
extent, the excessive analysis duration can be attributed to the ‘brute force’ strategy embedded in
the analysis tools used as well as limitations of the AltaRica OCAS specification language, it is
also important to admit that introduction of the notions of component state as well as presence of

the potentialy global modes in the model inevitably increase model complexity. However, the

254



expressive power of the methodology presented in this thesis is significantly greater that that of
traditional combinatorial techniques (such as fault trees, reliability block diagrams, cause-
conseguence diagrams) and all existing failure logic modelling techniques that the author is aware
of (including FPTC, FPTN and HiP-HOPS). Furthermore, the various notions of state have been
demonstrated to be necessary for adequate modelling of the modern industrial-scale safety critical
systems.

Finally, it should be noted that the metamodel-based approach permits a clear definition of the
methodology constraints under which the failure logic models can be efficiently ‘analysed’ by
model transformation and parsing techniques (such as Papadopoulos's fault tree synthesis
algorithm [115]). Therefore decisions about whether or not to ‘sacrifice’ accuracy of the model
for more time-efficient model analysis can be made and justified on a case-by-case basis given

particular challenges of the system at hand and the stage of the devel opment process.

6.6 Summary

This chapter has presented the evauation argument adopted to support the proposition defended
by the thesis (as defined in section 1.3). Section 6.1 outlined the Evaluation Strategy,
systematically decomposing the overall thesis proposition into manageable claims and, ultimately,
backing evidence. Sections 6.2 through 6.4 have summarised the evidence that supports the
evaluation argument. The proposition has been defended on the basis of three magjor forms of

evidence: case studies, peer reviews and metamodel experiments.

The chapter has concluded with an outline of some of the limitations identified in the FLM
Framework (section 6.5) along with the pragmatic mitigations adopted during the research and
evaluation. Some of these are returned to in the following chapter as promising directions for
further research. However, the identification of fundamental limitations to failure logic modelling
as ageneral family of safety assessment approaches (rather than to individual methods, languages
or notations) demonstrates the utility of the language-agnostic metamodel-based framework and is

initself amajor contribution of the thesis.

255



256



Chapter 7: Conclusions

This chapter summarises the key contributions of the Thesis, presents some overal concluding

remarks, and identifies possible areas of future work prompted by the work reported in the thesis.

7.1 Summary of Contributions

The thesis has characterised a specific family of model-based safety assessment methods — failure
logic modelling — and has presented a FLM Framework that unifies and subsumes existing failure
logic modelling techniques. The framework has been demonstrated to be applicable and capable
with respect to the challenges posed by real industrial safety critical systems. However, the thesis
has also identified a number of important limitations inherent with this approach to safety
assessment (as described in detail in Section 6.5 of the preceding chapter). These limitations,
whilst shared by all of the existing techniques that the framework subsumes, to date have not been

reported.

Overall, the thesis contributions include:

e Definition of a general but instantiable, Failure Logic Metamodel that defines and
unifies a prominent family of model-based safety assessment methods and techniques.

e Definition and evaluation of an approach that enables the composition of multiple
failure logic models in the realistic context of large-scale industrial safety-critical
platforms

o Definition of an approach that enables the failure modelling of complex reconfigurable
and multimodal safety-critical systems; demonstration that the proposed approach
addresses various types and patterns of modes, reconfiguration and architectural

limitations of realistic systems

In addition to the above three contributions — broadly related to Chapters 3, 4 and 5 — there is a
fourth, ‘emergent’ contribution of the thesis as it has become clear that the goal of a fully
automatable or fully compositional process for safety analysis, based on failure logic models, is
not attainable. Whilst this may seem disappointing, there are also advantages as the approach
alows safety engineers to engage with the safety process at an appropriate intellectual level.

The contributions of the Thesis are summarised in the following sections.

257



7.1.1 Unifying Failure Logic Metamodel

Chapter Two has presented a survey of the existing model-based safety assessment techniques.
However, these techniques are currently only categorised and related in an ad hoc fashion in the
published literature. This thesis has proposed a classification of the existing techniques and
identified a coherent family of model-based safety assessment methods, namely failure logic
modelling. The thesis has presented a Failure Logic Metamodel that unambiguously defines this
family and subsumes all of the techniques such as FPTN, FPTC and HiP-HOPS. The metamodel
aso unifies failure logic modelling techniques with the general specification languages used in the
model-based safety assessment. Until now, the publications on the application of such languages
have not defined a clear engineering semantics of the use of language constructs for failure logic
modelling. At the same time publications on the failure logic modelling techniques that do address
engineering semantics typically introduced idiosyncratic notations. The metamodel-based

approach overcomes these limitations.

In particular, Chapters Three through Five have demonstrated that the general, notation-
independent, Failure Logic Metamodel can be instantiated in a third-party specification language
(AltaRica OCAS/Dataflow) in a systematic fashion. Whilst effective specification in a particular
language may impose constraints on the FLM Framework, the metamodel facilitates
identification and assessment of the impact of these constraints. Subsequently, it facilitates a
rational approach to language selection as well as structuring the safety case argument concerned

with the justification of safety assessment results obtained on the basis of failure logic models.

7.1.2 Composition of Multiple Failure Logic Models

Whilst publications on existing failure logic modelling techniques have made claims of model
composability (e.g. [162, 163, 165]), they have assumed that all necessary interfaces are
identifiable at the level of individual models. For the large-scale safety critical platforms, where
constituent parts are typically designed in relative isolation and by different engineering
stakeholders, this view is unreadistic. Furthermore, it potentially undermines the explorative
nature of the safety assessment tasked with identification of significant interactions between the
‘parts of the overall safety-critical platform. Chapter Four has presented a flexible abstract model
of platform decomposition, based on a concept of Domains that combine complementary notions
of a system model “containment hierarchy” and “architecture views”. The defined approach

captures and rationalises different relationships between engineered artefacts within the platform.

The FLM Framework, as extended in Chapter Four, provides a pragmatic means for composing
failure logic models utilising the concepts of Domain-Specific Failure Logic Models (DSFMs),

virtual trandlation components (accommodated in the model translation layer) and the explicit

258



modelling of external causes of failure. The resultant approach permits the composition of
independently defined failure logic models in absence of a priori well-identified or harmonised

failure mode interfaces.

7.1.3 Modelling Reconfigurable and Multimodal Systems

Of the existing failure logic modelling techniques surveyed, only one — described in [115] — has
attempted to address the issue of dynamic reconfiguration — a characteristic present in a number of
real industrial systems. This technique, however, was shown to be incapable of adequately
capturing the behaviour of reconfigurable systems in practice. In particular, it proposes an over-
constrained model of modes and sub-modes that has no natura interpretation for some systems.
Furthermore, being embedded in an otherwise combinatorial framework, the HiP-HOPS approach
cannot accurately reflect the persistent effects of failures sustained in one mode on system

operations in other modes.

A more flexible approach to handling reconfiguration has been incorporated into the FLM
Framework. Based on the well-defined concepts of modes and mode spaces of complex
components introduced in Chapter Five, and the dynamic behaviour of basic components as
defined in Chapter Three, the approach presented in this thesis permits the modelling of various
types of reconfigurations found in industrial safety critical systems. These include dissimilar
modes of system use (such as electron and photon treatment modes of the Therac-25 machine),
operation through a standard sequence of phases (such as take-off, climb, cruise, descend, land
and taxi ‘flight phases for a civil aircraft) or system reconfiguration upon detection of failure
(including fault accommodation and ‘graceful degradation’ provisions). Chapter Five has also
demonstrated that this approach can prove extremely useful in analysing the effects of limitations
of architectural designs of systems and complex components. This issue has not been addressed

by any of the surveyed failure logic modelling techniques.

Finaly, the research into the challenges posed by system reconfiguration to failure logic
modelling approach has demonstrated that simple application of this family of safety assessment
techniques does not guarantee reusable models. In particular, this thesis has clearly shown that
failure logic characterisations of components are inherently context-dependent regardless of
whether the context is dynamic or static. This result has not been previously reported by any of

the publications on existing failure logic modelling techniques.

259



7.1.4 The Non-Automatable and Non-Decomposable Nature of
Failure Logic Modelling

Through the research presented in this thesis it has emerged that construction of failure logic
models of realistic systems requires significantly more thorough assessment of the system than
has been previously acknowledged in publications. In particular, various publications have
suggested that failure logic models can be simply and trivially composed from component
characterisations [114, 115]. In contrast, this thesis has demonstrated that in order to define
composable component characterisations significant effort must be invested into non-
decomposable architecture-level assessment of the system. Chapters Four and Five have defined

the structure and provided the guidance for such assessment process.

The role of the failure logic modelling in the overall development and safety engineering
processes requires significant consideration. At the earliest stages of design failure logic models
are susceptible to strong circular dependencies that are not trivia to resolve (and, in some cases,
to detect), whilst at the later stages of the design, when detailed information about reconfiguration
emerges, the specification of failure logic models becomes labour-intensive — requiring significant
analytical effort. However, falure logic modelling requires very significant intellectual
engagement of safety engineers with the proposed design of the system and its justification. This
is likely to yield a thorough understanding of the system that is beneficia to the system safety

engineering process as awhole.

7.2 Further Work Areas

In the course of research reported in this thesis a number of areas for further research have been
identified. These include:

e Transformation of failure logic models between different ‘concrete’ specification

notations

¢ Improving the qualitative and quantitative analyses of failure logic models

e Addressing issues of modelling time in the failure logic modelling of complex systems

e Developing approaches to improving the reusability of the failure logic models

e Use of alternative modelling paradigms in the context of the Failure Logic Metamodel

o Performing a systematic comparison with, and establishing relationships with, other

model-based safety assessment approaches

260



7.2.1 Transformation of Failure Logic Models

The Failure Logic Metamodel can facilitate the transformation of models across different
notations in a semantics-preserving fashion. To achieve such transformations the metamodels of
individual notations must be captured (e.g. similar to the AltaRica Dataflow ontology developed
by Mokos et al [108]) along with a clear understanding of the constraints imposed by the notation
on the instantiation of the FLMM and transformation rules®™. In addition to this, customised
parsers may need to be developed for the precise model formats of individual tools. A similar
principled metamodel-centred approach can also be taken to the synthesis of fault trees (if deemed

necessary) or other ‘classical’ safety assessment formats from failure logic models.

Overdl, the Falure Logic Metamodel can provide a central interchange format for
transformations avoiding the need to establish a large number of pairwise trandlations.
Furthermore, it will enforce a principled and clear approach to failure logic model trandation that

preserves engineering semantics of the safety assessment artefacts.

7.2.2 Model Analysis

The main focus of the research presented in this thesis was on qualitative construction of failure
logic models and, to a lesser extent, their analysis. In terms of the time-complexity of the
qualitative analysis, it has been noted that the ‘brute force’ approach, based on exhaustive
simulation and search, adapted by the existing tools yields inadequate results. Further work is
necessary to develop more complex tools capable of optimising internal model representation and,
thus, reducing analysis run-time. Some of the work is currently underway to adapt NuSMV-SA
platform for analysis of failure logic models specified in OCAS and Dataflow diaects of the
AltaRicalanguage.

Also, whilst the Failure Logic Metamodel enables the specification of probabilistic aspects of
system behaviour in ‘failure logic domain’, this aspect of the metamodel has not been sufficiently
evaluated. The current prevailing approach to quantitative safety analysis in model-based
assessment relies upon the export of analysis results — typically Minimal Cut Sets — to commercial
RAM S tools (such as Isograph’ s Fault Tree Plus). This approach clearly doesn’t preserve dynamic
aspects of behaviour and can result in, potentially significant, overestimation of the probabilities

of system-level failure conditions.

¢ Given that the FLMM is specified in the Eclipse Modelling Framework and well-formedness constraints
in Epsilon Constraint Language (ECL), the transformation rules can be naturally specified in the Epsilon
Transformation Language (ETL) [45, 86]

261



To achieve amore accurate analysis two approaches can be taken:

e Failure logic models can be transformed to a standard ‘state-based’ reliability analysis
format (such as Markov Models or Petri Nets) using the approach described in the
previous section

e Tools can be developed specifically for standard modelling languages (such as AltaRica,
AADL Error Model Annex, SCADE/Lustre or StateM ate/StateFlow) and their respective
modelling environments. In practice, such tools are likely to be based on Monte Carlo
simulations or an emerging concept of Probabilistic Model Checking.

Since quantitative analysis plays an important role in both the safety engineering and certification

of safety-critical systems, thisis both afeasible and necessary area for further work.

7.2.3 Issues of Modelling Time

The review of the Aircraft Fuel System highlighted that for some systems modelling the timing
and duration of conditions (including failure modes) is critical to fully capturing failure
behaviour. For such systems it is unclear whether the level of abstraction inherent in current
failure logic modelling methods is adequate. Further systematic investigation into the challenges

posed by such systems to the FLM Framework presented in this thesis is therefore necessary.

7.2.4 Improving Reusability

Whilst it was demonstrated that components in failure logic models are context-dependent and,
thus, non-reusable an approach to separating context-independent and context-dependent parts of
component characterisations was proposed during the EPDS case study reported in Chapter Five
(Section 5.6.3). Based on the notion of a mapping between system modes and local modes (as
‘perceived’ by components), the approach, however, has not been thoroughly validated through
non-formative case studies and formal peer review. Formalisation and evaluation of this approach

istherefore a promising and viable areafor further work.

7.2.5 Alternative Modelling Paradigms

Whilst, as has been stressed throughout the Thesis, the Failure Logic Metamodel has not been
taillored to any particular specification language, it has been influenced by the prevailing
modelling language paradigms of data flow and state machines. Consequently, considering failure
logic modelling in the context of other paradigms may yield important insights into this approach
to model-based safety assessment and highlight possible improvements. In particular, principles
of constraint programming [129] appear to be well-aligned with the general philosophy of safety

assessment. A view can be taken that ‘ safety models' should not attempt to model deterministic

262



behaviour of the system, but rather incrementally rule out non-viable or mutualy excusive
conditions and causal dependencies. Furthermore, the notion of channelling constraints [30], that
enforce consistency between the models, appears to have natural interpretation in the context of

composition of multiple failure logic models.

Another two modelling paradigms, which may provide an interesting aternative or
complementary perspective of ‘failure logic domain’, are aobject-oriented (OO) modelling and
aspect oriented programming (AOP). The later was previously highlighted by Joshi et a as a

potentia areafor further research [77].

7.2.6 Other Model-Based Safety Assessment Approaches

This thesis has focused on a single family of model-based safety assessment methods
demonstrating its applicability to modern safety-critical system as well as identifying some of the
fundamental weaknesses of the approach as a whole. However, to the author’s knowledge, no
similar research has been conducted to-date on other model-based approaches. It is therefore
desirable to formalise the conceptua framework underlying various existing approaches (such as
failure injection, failure effects modelling and various forms of ‘hybrid’ techniques) in order to be

ableto systematically compare their relative strengths and weaknesses.

In practice it is expected that no single approach could be deemed as ‘superior’. In the simplest
form, different techniques will provide the best results at different stages of system design
development process. A metamodel-based approach, if employed for formalisation of other
techniques, will enable the correlation of different models used in safety assessment. This can
significantly improve the confidence gained in the analysis results and overall safety of the
system. Therefore, a promising area for further work is the formalisation of the metamodels
underlying other prominent model-based safety assessment techniques and establishing the
traceability between such metamodels and the FLMM presented in this thesis.

7.3 Coda

During the research presented in this thesis it has become apparent that failure logic modelling
cannot be considered an approach for the ‘automation’ of safety analysis. The approach requires
significant assessment of the system that cannot be simply decomposed to the level of individual
components. This, however, should not be simplistically regarded as a limitation of failure logic
modelling. By carrying out such assessment and constructing the models, safety engineers
intellectually engage with the system design — gaining a thorough understanding of the system
behaviour and itsimplications of safety.

263



Whilst automated safety assessment approaches may reduce assessment effort, on their own they
are unlikely to yield such a degree of understanding of the system. In the words of 19" century
English scientist and philosopher William Whewell [164], by relying solely on automated
assessment and drawing confidence in results solely from the application of formal specification
languages and verification techniques "we are carried along asin a rail-road carriage, entering it
at one station, and coming out of it at another, without having any choice in our progressin the
intermediate space. It is plain that... [it] is not a mode of exercising our own locomotive powers,
and in the same manner analytical processes [sic] are not a mode of exercising our reasoning

powers."

However, the author of this thesis believes that the automated approaches are capable of adding
significant value to the safety assessment process. An example of their complimentary use can be
identification of inconsistencies between safety analysis results (obtained by other means) and
design models, which clearly require justification in the system safety case. Returning to
Whewell, by adopting failure logic modelling that necessitates review of the system from a
perspective that is conceptualy dissimilar than that of design engineers "we tread the ground

ourselves at every step feeling ourselves firm."

264



Appendix A:
Failure Logic Metamodel

This appendix presents the Failure Logic Metamodel (FLMM) as defined in Chapters 3, 4 and 5
of the thesis. Only the final version of the metamodel is shown. The appendix is organised as
follows:
Section A1 specifies the FLMM defined under the Eclipse Modelling Framework
(EMF) [46, 142]; the specification uses Emfatic syntax [47]
Section A2 presents well-formedness constraints, specified in the Eclipse Validation
Language (EVL) [45, 86]

For convenience, Figure 104 below shows graphical a representation of the FLMM (as an Ecore

Diagram automatically generated from the textual specification).

265



gt

- o ...
1t &0
ﬂm 8| esnedns

SSIsAIURL

]
-
I =

Figure 104 - Failure L ogic M etamodel (Ecore Diagram)

266



Al. Metamodel Specification

@namespace(uri="lisagor/FLMM", prefix="flm")
package FLM_metamodel;

[ R **
II'* Model Hierarchy Structure *

/ F*hkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkk

abstract class Component {
attr String ID;
attr Boolean IsVirtual
val OutputFM[*] #of exhibits;
val InputFM[*] #of sensitiveTo;
val FMGroup[*] #definedIn defines;
val NormalEvent[*] #affects affectedBy;
ref ComplexComponent[0..1] #contains definedln;

}

class BasicComponent extends Component {
val Failure[*] #damages damagedBy;
val FailureStateSpace[*] #represents hasFailureStateModel;
val NormalStateSpace[*] #represents hasNormalStateModel;
val FailureHandlingStateSpace[*] #represents hasFailureHandlingStateModel;

}

class ComplexComponent extends Component {
val Component[+] #definedIn contains;
val FMFlow[*] #enabledBy enables;
val ModeSpace[*] #represents hasModeModel;

}

class DSFM extends ComplexComponent {
val FMClass[+] #identifiedIn identifies;

}

I
II'* Component interface structure:
II'* Failure Modes, Classes and Groups *

// F*hkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkhkkhkhhkhhkkkkkkk

*

class FMClass{
attr String[1] ID;
attr String DeviationCharacterisation;
ref DSFM[1] #identifies identifiedIn;

}

abstract class FailureMode {
attr String ID;
ref FMClass[1] ofClass;
ref FlowEnd[*] #propagates propagatedBy;
ref FMGroup #contains groupedBy;
ref FMCause[*] #isA manifestsAs;

}

class InputFM extends FailureMode {
ref Component[1] #sensitiveTo of;
ref FMProposition[*] #queries referredBy;

}

267



class OutputFM extends FailureMode {
val PropagationCondition #of causedBy;
ref Component[1] #exhibits of;

}

class FMGroup {
attr String ID;
ref FMGroup[*] #collatedBy collates;
ref FMGroup[0..1] #collates collatedBy;
ref FailureMode[*] #groupedBy contains;
ref Component[1] #defines definedIn;

}

// dkkkkkkkkkkkkkkkkhkhkkhkkhkkhkhkkkkkkk

II'* Internal component structure: *
II'* - States and Events *
! ¥

I/ *** Events ***
abstract class Event {
attr String ID;
attr String Characterisation;
val ExternalCause[*] #causes causedBy;
ref TangibleTrigger[*] #isA actsAs;
ref EventCause[*] #isA manifestsAs;

}

class NormalEvent extends Event {
ref Component[1] #affectedBy affects;

}

class Failure extends Event {
ref BasicComponent[1] #damagedBy damages;

}

[ *** State Spaces ***
abstract class StateSpace {
attr String ID;

}

class FailureStateSpace extends StateSpace {
val FailureState[2..*] #groupedBy decomposedinto;
ref BasicComponent[1] #hasFailureStateModel represents;

}

class NormalStateSpace extends StateSpace {
val NormalState[2..*] #groupedBy decomposedinto;
ref BasicComponent[1] #hasNormalStateModel represents;

}

class FailureHandlingStateSpace extends StateSpace {
val FailureHandlingState[2..*] #groupedBy decomposedinto;
ref BasicComponent[1] #hasFailureHandlingStateModel represents;

}

class ModeSpace extends StateSpace {
val Mode[2..*] #groupedBy decomposedinto;
ref ComplexComponent[1] #hasModeModel represents;

}

[1*** States ***
abstract class State {
attr String ID;
attr Boolean IsInitial;

268



val Transition[*] #resultsIn enteredThrough;
ref StateProposition[*] #queries referredBy;

}

class FailureState extends State {
attr Boolean IsPrivative;
ref FailureStateSpace[1] #decomposedinto groupedBy;

}

class NormalState extends State {
ref NormalStateSpace[1] #decomposedinto groupedBy;

}

class FailureHandlingState extends State {
ref FailureHandlingStateSpace[1] #decomposedinto groupedBy;

}

class Mode extends State {
ref ModeSpace[1] #decomposedinto groupedBy;

}

I
II'* Component Behaviour: *
II'* - Propagation conditions and transitions *

// F*hkkkkkkkkkkkkkkkkkkkhkkkkhkkhkkhkkhkhhkkhkkkkhhkkkk

class PropagationCondition extends Condition {
ref OutputFM[1] #causedBy of;

}

/1 *** State Transitions and their Structure
class Transition {

val Trigger[1] #triggers initiatedBy;

val Guard[1] #permits permittedBy;

ref State[1] #enteredThrough resultsin;

}

abstract class Trigger {
ref Transition[1] #initiatedBy triggers;

}

class TangibleTrigger extends Trigger {
ref Event[1] #actsAs isA;

}

class VoidTrigger extends Trigger {
}

class Guard extends Condition {
ref Transition[1] #permittedBy permits;

}

I*** Common basis for propagation conditions and guards

*k%k

*kk

abstract class Condition {
val Conjunction[*] #inDisjunct over;

}

class Conjunction {
val ElementaryProposition[+] #inConjunct over;
ref Condition[1] #over inDisjunct;

}

269



abstract class ElementaryProposition {
attr Boolean IsNegation;
ref Conjunction[1] #over inConjunct;

}

class StateProposition extends ElementaryProposition {
ref State[1] #referredBy queries;

}

class FMProposition extends ElementaryProposition {
ref InputFM[1] #referredBy queries;

}

// dkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkhhkhhkhhkkhkkkkkhkkhkhhkkkkkk

I FLM Architecture / cross-component dependencies: *
II* - FM flow & their structure *
II'* - External causes of events (inter-DSFM links)

// kkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkhkkhhkkhkkhhkkkkkkhkkkhhhkkkrddk

*

*kk

II*** FM Flows (typical dependencies)
class FMFlow {

val ToEnd[+] #initiatedBy propagatesTo;

val FromEnd[1] #initiates propagatesFrom;

ref ComplexComponent[1] #enables enabledBy;

}

class ToEnd extends FlowEnd {
ref FMFlow[1] #propagatesTo initiatedBy;

}

class FromEnd extends FlowEnd {
ref FMFlow[1] #propagatesFrom initiates;

}

abstract class FlowEnd {
ref FailureMode[1] #propagatedBy propagates;

}

II*** External Causes (inter-DSFM dependencies ***
abstract class ExternalCause {
ref Event[1] #causedBy causes;

}

class EventCause extends ExternalCause {
ref Event[1] #manifestsAs isA;

}

class FMCause extends ExternalCause {
ref FailureMode[1] #manifestsAs isA;

}

270



A2. Well-Formedness Constraints

/ Fkhkkkkkkkkkkkkkkkkkkkkkkkkkkkk

II'* Component Hierarchy *
// *kkkkkkkkkkkkkkkkkkkkkkkkkkkk
context Component{
Il Every complex component that has "children"
/I must be a parent of these components
constraint ConsistentDecomposition{
guard: self.isTypeOf(ComplexComponent)
check: self.contains.forAll(C : Component |
C.definedIn = self)
} /I Only a DSFM can be an "orphan"
constraint OnlyDSFMroot{
check: (not self.definedin.isDefined()) implies self.isTypeOf(DSFM)
} /I Every model must contain exactly one root (orphan) DSFM
constraint SingleRootDSFM{
check : DSFM.allinstances.select(D:DSFM |
not D.definedIn.isDefined()).size() = 1
} /I No complex component may contain itself
constraint TreeStucture{
check : not (self.definedIn = self)
} }

// *kkkkkkkkkkkkkkkkkkkkkkkkkkkkk

I1'* Structure of FM Flows *
[ R
context FailureMode({
Il Every FM can be connected to at most one "inflow"
constraint AtMostOneFlowIn{
check: self.propagatedBy.select(E: FlowEnd|
E.isTypeOf(ToEnd)).size() < 2
} I'lt is unusual for FM flow to be connected to
/I more than one "outflow" ("soft" constraint)
critique AtMostOneFlowOut{
check: self.propagatedBy.select(E: FlowEnd|
E.isTypeOf(FromEnd)).size() < 2

} }
context InputFM{

/1 Only top-level DSFM may have free input FMs
constraint FreelnputsOnlyAtRoot{
check: (self.propagatedBy.select(E: FlowEnd|
E.isTypeOf(ToEnd)).size() = 0)
implies ( self.of.isTypeOf(DSFM)
and (not self.of definedIn.isDefined()))
} }
context OutputFM{
/I Output FMs of complex components
/I must be connected to an inflow (from the "inside")
constraint ComplexOutputFMConnected{
guard: self.of.isTypeOf(ComplexComponent)
check: self.propagatedBy.select(E: FlowEnd|
E.isTypeOf(ToEnd)).size() = 1

271



context ToEnd{
Il FM Flows do not transform failure modes
Il'in transit (equivalent to strong typing)
constraint StronglyTypedFlows{
check: self.propagates.ofClass =
self.initiatedBy.propagatesFrom.propagates.ofClass
} I FM flows should not connect a component to itself
constraint NolmmediateLoop{
check: not (self.propagates.of =
self.initiatedBy.propagatesFrom.propagates.of)
} }
context FMFlow{
Il Any Flow from an input must be declared within the same
Il complex component (as the input FM)
constraint FlowsFromInputsValidLevel{
check: self.propagatesFrom.propagates.isTypeOf(InputFM)
implies (self.propagatesFrom.propagates.of = self.enabledBy)

} /I Any Flow from an input must lead exclusively to inputs of
I/ components declared at the same level (within the same complex
I/ component) as the flow
constraint FlowsFromInputsValidTarget{
guard: self.satisfies('FlowsFromInputsValidLevel')
check: self.propagatesFrom.propagates.isTypeOf(InputFM)
implies (self.propagatesTo.forAll(E : ToEnd|
E.propagates.of.definedin = self.enabledBy))
} /I Any flow from an output must be declared at the same
Il'level (within the same parent) as the source component
constraint FlowsFromQutputsValidLevell
check: self.propagatesFrom.propagates.isTypeOf(OutputFM)
implies (self.propagatesFrom.propagates.of.definedin = self.enabledBy)
} Il Any Flow from an output may only lead to an output of the parent component
Il or in input of a sibling component
constraint FlowsFromInputsValidTarget{
guard: self.satisfies('FlowsFromOutputsValidLevel')
check: self.propagatesFrom.propagates.isTypeOf(OutputFM)
implies self.propagatesTo.forAll(E : ToEnd |
((E.propagates.of.definedin = self.enabledBy) and
(E.propagates.isTypeOf(InputFM))) or
((E.propagates.of = self.enabledBy) and
(E.propagates.isTypeOf(OutputFM))))

1

// kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkk

II'™* Failure Modes and Groups *
// dkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkk
context FailureMode{
/I Only Output FMs of basic components
I may be associated with a propagation condition
constraint OnlyBasicFMwithLogic{
guard: self.isTypeOf(OutputFM)
check: self.causedBy.size() > 0 implies self.of.isTypeOf(BasicComponent)
} II'lf FMs are grouped then the group must be
Il defined in the same component
constraint ValidGroupingFM{
guard: self.groupedBy.isDefined()
check: self.of = self.groupedBy.definedIn

272



context FMGroup{
II'lf FM Group is further grouped then both
I/ groups must be defined in the same component
constraint ValidGroupHierarchy{
guard: self.collatedBy.isDefined()
check : self.definedIn = self.collatedBy.definedIn
} /I Each FM Group should contain at least one FM or another group
constraint NonEmptyGroup{
check: self.collates.isDefined() or self.contains.isDefined()

i

I **
II'* States and State Spaces *

// F*hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

context StateSpace{
/I Each state must contain exactly one initial state
constraint InitialStateldentified{
check: self.decomposedinto.select(S: State | S.Islnitial).size() = 1
} I ltis unusual for a non-initial state not to have
I/ at least one transition (into itself)
critique AvoidOrphanStates{
check: self.decomposedinto.forAll(S: State |
(not S.IsInitial) implies S.enteredThrough.size() > 0)

} }

// *kkkkkkkkkkkkkkkkkkkkkk

/I * State Transitions *
/ kkkkkkkkkkkkkkkkkkkkkkk
context Transition{
II'If transition has a void trigger its guard must contain
/I Note: this is a weak contraint that doesn't address all
I/ scenarios of runaway transitions (a loop of transitions
/l'initiated by void guards)
constraint NoRunawayTransitions{
check: self.initiatedBy.isTypeOf(VoidTrigger) implies
self.permittedBy.over.size() > 0
} /'t is unusual for a failure state to be entered through
I/ entirely normal circumstances (e.g. no failure, no
Il exposure to a failure mode) while component is still
/lin the initial state
critique FailureStateEntry{
check: (self.initiatedBy.isTypeOf(VoidTrigger) or
(self.initiatedBy.isTypeOf(TangibleTrigger) and
self.initiatedBy.isA.isTypeOf(NormalEvent)))
implies (self.permittedBy.over.forAll(C:Conjunction |
C.over.exists(P:Proposition |
(P.isTypeOf(StateProposition) and
((P.IsNegation and P.queries.IsInitial) or
(not P.IsNegation and not P.queries.IsInitial))) or
(P.isTypeOf(FMProposition) and not P.IsNehation))))
} I ltis unusual for Failure Handling State to be triggered by
I/ a failure
critique FailureHandIStateEntry{
check: self.resultsin.isTypeOf(FailureHandlingState)
implies not self.initiatedBy.isA.isTypeOf(Failure)

1}

273



!
II'* External Causes *
// dkkkkkkkkkkkkkkkkkkkkkk
context ExternalCause{
/I An event cannot cause itself
Il (i.e. no immediate circular dependency)
constraint CanNotCauseltself{
guard: self.isTupeOf(EventCause)
check: not (self.isA = self.causes)
} Il'tis higly unusual for an external cause
I/ of the event to come from the same model
I as the event itself (its not really very
II"external" then)
critique CauseAndEffectInDifferentModels{
check: not (self.causes.theDaddyDSFM() = self.isA.theDaddyDSFM())

// kkkkkkkkkkkkkkkkkhkkkkkhkkkkhkkkkkkkkkkkkdkk
II'* Visibility Constraints *

II'* (see also operations defined below) *
// kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx
context FMProposition{
constraint ValidFMProposition{
check: self.inConjunct.inDisjunct.theDaddy().CollectVisibleInputFMs().includes(self.queries)
} I Whilst valid it is highly unusual for FM proposition to refer to non-local FM
critique LocalFMProposition{
check: self.inConjunct.inDisjunct.theDaddy() = self.queries.of
H
context StateProposition{
constraint ValidStateProposition{
check: self.inConjunct.inDisjunct.theDaddy().CollectVisibleStates().includes(self.queries)

H
context TangibleTrigger{
constraint ValidTrigger{
check: self.theDaddy().CollectVisibleEvents().includes(self.isA)
i

Il Shared Operations
!

// dkkkkkkkkkkkkkkkkkkkkkhkhkkhkkkkkkkkk

*

II'* Collecting elements visible
II'* at the level of the component *

// kkkkkkkkkkkkkkkkkkkkkkhkkkkhkhhkkkkkk

operation Component CollectVisibleStates(){
Il At the level of component states of the same
I component and (modes of) all of its parents are visible
var States : Collection;
if (self.isTypeOf(BasicComponent))

{States := self.hasFailureStateModel.collect(c|c.decomposedInto) +
self hasFailureHandlingStateModel.collect(c|c.decomposedinto) +
self.hasNormalStateModel.collect(c|c.decomposedinto) +
self.definedIn.CollectVisibleStates();}

else {if (self.definedIn.isDefined())
{States := self.hasModeModel.collect(c|c.decomposedinto) +
self.definedIn.CollectVisibleStates();}
else {States := self.hasModeModel.collect(c|c.decomposedinto);}}
return States.flatten();}

274



operation Component CollectVisibleEvents(){

Il At the level of component events of the same component

/I'and all of its children are visible
var Events : Collection;
if (self.isTypeOf(BasicComponent))

{Events := self.damagedBy + self.affectedBy;}

else
{Events := self.affectedBy +

self.contains.collect(C|C.CollectVisibleEvents());}

return Events flatten();}

operation Component CollectVisibleInputFMs()}{

Il At the level of component input FMs of the same component

Il 'and all of its children are visible
var FMs : Collection;
if (self.isTypeOf(BasicComponent))
{FMs := self.sensitiveTo;}
else
{FMs := self.sensitiveTo +

self.contains.collect(C|C.CollectVisibleInputFMs());}

return FMs. flatten();}

// kkkkkkkkkkkkkkkkkkkkhkkkkkkhhkkkhhkkhkhhhkkkhrr

/1'* Shortcut for finding the component  *

/1'* in which logical expression is defined *

” kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
operation Trigger theDaddy(){

return self.triggers.resultsin.groupedBy.represents;}

operation Guard theDaddy(){
return self.permits.resultsin.groupedBy.represents;}

operation PropagationCondition theDaddy(){
return self.of.of;}

/ *kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

/1'* Shortcut for finding the "next up" DSFM *

[ R by ok
operation Component theDaddyDSFM(){

if (self.isTypeOf(DSFM))

{return self}

else {return self.definedin.theDaddyDSFM;}}

operation NormalEvent theDaddyDSFM(}
return self.affects.theDaddyDSFM();}

operation Failure theDaddyDSFM(){
return self.damages.theDaddyDSFM();}

operation FailureMode theDaddyDSFM(){
return self.of.theDaddyDSFM();}

275



276



Appendix B:
Wheel Braking System Case Study

This appendix presents further details of the Wheel Braking System (WBS), case study
complementing discussions in Chapters Three and Five of the thesis. The system design is closely
related to the presentation in Appendix L of ARP 4761 document [139], although it has been
simplified, and is described in Section 3.1.1 (Chapter Three). This appendix is organised as
follows:
Section A1 presents a complete failure logic model of the WBS recorded in an informal
tabular pseudocode format (as referred to in sections 3.2 through 3.4 of the
Thesis). For brevity the section focuses on component characterisations, FM
Flows are only shown between components within asingle BSCU side.
Section A2 presents the same model recorded in AltaRica Dataflow (as referred to in Section
3.6 of the main body of the thesis)
Section A3 presents a modified model of the Braking System Control Unit (BSCU), recorded
in AltaRica, which captures design limitations and reconfiguration modes of the
BSCU (asreferred to in section 5.2 of the Thesis)

For convenience, Figure 105 below presents the architecture of the WBS and the Control Unit

(reproducing Figure 20 and Figure 21 of the Chapter Three):

Green pump Blue pump

Electronic
Pwr 1l | pedal pos.
1

Electronic
pedal pos. Pwr2
2

BSCU #1

Monitor 1

BSCU

BSCU #2

Monitor 2

Switch 3

(a) Braking System Control Unit

Electronic

pedal pos. 1
—_—>

Pwr 1l ler 2

BSCU

Shut off
selector

e

Isolation

valve I]

B
v Electronic
!
! »
d »
Command Command
! 2 Anti-skid
shut off
cvp| AST cmp| As2 Anti Skid (AS) valve E:I
/AS1 AS2
N J o J il
™, | Anti skid (As) Green  Blue
“5 CMDI. Meter Meter Mech. Pedal
Anti Skid Valve Valve Position
]
Pl CILIEN Wheel
Anti Skid

5

(b) Top-Level WBS Architecture
Figure 105 - Architecture of the Hypothetical Aircraft Wheel Braking System

277



B2. WBS Failure Logic Model: “Pseudo-code”

B2.1 Braking System Control Unit

COM 1(2
[in BSCU1(2) in BSCU]
Input Failure Modes

Failure Mode (ID) FM Class FM Group
Pedal1.DemandLow LowValue Pedal1
Pedal1.DemandOmiss Omission Pedal1
Pedal1.DemandCommiss Commission Pedal1
Pedal2.DemandLow LowValue Pedal2
Pedal2.DemandOmiss Omission Pedal2
Pedal2.DemandCommiss Commission Pedal2
PowerOmiss Omission PWR

Events
Failure (ID) Probability Normal Event (ID) Comments
Characterisation
ASprocessStuck n/a (none)
ASprocessTerminated n/a
ProcessorError n/a
CMDprocessStuck n/a
CMDprocessTerminated n/a
Failure States & Entry Logic
Failure State Trigger Guard
CalculationError (1) ProcessorError ~(PowerOmiss | CalculationError | CMDstuckOn |
CMDstuckOff)
ASstuckOn (2) ASprocessStuck ~(PowerOmiss | ASstuckOff)
ASstuckOff (2) ASprocessTerminated ~PowerOmiss
CMDstuckOn (1) CMDprocessStuck ~(PowerOmiss | CMDstuckOff)
CMDstuckOff (1) CMDprocessTerminated | ~PowerOmiss
Output Failure Modes & Propagation Conditions
Failure Mode (ID) FM Class FM Group Propagation Condition
InadvertentBraking Commission | CMD ( (Pedal1.DemandCommiss |

Pedal2.DemandCommiss)
& ~(CMDstuckOff | PowerOmiss)) |
(CMDstuckOn & ~PowerOmiss)

LackOfBraking Omission CMD (Pedal1.DemandOmiss & Pedal2.DemandOmiss
& ~CMDstuckOn) |
CMDstuckOff |
PwrOmiss

LackOfAntiskid HighValue CMD ASstuckOff & ~(CMDstuckOn | CMDstuckOn |

Pedal1.DemandCommiss |
Pedal2.DemandCommiss |
Pedal1.DemandOmiss | Pedal2.DemandOmiss |
PowerOmiss)

TooLittleBraking LowValue CMD (ASstuckOn | CalculationError |
Pedal1.DemandOmiss | Pedal2.DemandOmiss |
Pedal1.DemandLow | Pedal2.DemandLow)

& ~( CMDstuckOn | CMDstuckOn |
Pedal1.DemandCommiss |
Pedal2.DemandCommiss |
Pedal1.DemandOmiss

& Pedal2.DemandOmiss |
PowerOmiss)
AntiSkidOmiss Omission AS ASstuckOff | PowerOmiss
AntiSkidCommiss Commission | AS ASstuckOn & ~PowerOmiss

278



MON 1(2)
[in BSCU1(2) in BSCU]
Input Failure Modes

Failure Mode (ID) FM Class FM Group
InadvertentBraking Commission CMD
LackOfBraking Omission CMD
LackOfAntiskid HighValue CMD
ToolLittleBraking LowValue CMD
Pedal1.DemandLow LowValue Pedal1
Pedal1.DemandOmiss Omission Pedal1
Pedal1.DemandCommiss Commission Pedal1
Pedal2.DemandLow LowValue Pedal2
Pedal2.DemandOmiss Omission Pedal2
Pedal2.DemandCommiss Commission Pedal2
PowerOmiss Omission PWR

Events
Failure (ID) Probability Normal Event (ID) Comments
Characterisation
ProcessStuck n/a (none)
ProcessTerminated n/a
ProcessorError n/a
Failure States & Entry Logic
Failure State Trigger Guard
StuckPos ProcessorError ~(PowerOmiss | StuckPos | StuckNeg)
ProcessTerminated ~PowerOmiss
StuckNeg ProcessStuck ~(PowerOmiss | StuckPos | StuckNeg)
Output Failure Modes & Propagation Conditions
Failure FM Class FM Propagation Condition
Mode (ID) Group

FalseNeg Commission | Validity (Pedal1.DemandLow & Pedal2.DemandLow & TooLittleBraking |
Pedal1.DemandOmiss & Pedal2.DemandOmiss & LackOfBraking |
Pedal1.DemandCommiss & Pedal2.DemandCommiss
& InadvertentBraking |

StuckNeg

)
& ~(StuckPos | PowerOmiss)

FalsePos Omission Validity StuckPos

& ~(Pedal1.DemandLow | Pedal2.DemandLow | TooLittleBraking |
Pedal1.DemandOmiss | Pedal2.DemandOmiss |
LackOfBraking | Pedal1.DemandCommiss |
Pedal2.DemandCommiss | InadvertentBraking |
LackOfAntiskid | PowerOmiss)

279




BSCU #1 (#2
[COMPLEX COMPONENT in BSCU]

Input Failure Modes

Failure Mode (ID) FM Class FM Group
Pedal1.DemandLow LowValue Pedal1
Pedal1.DemandOmiss Omission Pedal1
Pedal1.DemandCommiss Commission Pedal1
Pedal2.DemandLow LowValue Pedal2
Pedal2.DemandOmiss Omission Pedal2
Pedal2.DemandCommiss Commission Pedal2
PowerOmiss Omission PWR

Output Failure Modes

Failure Mode (ID) FM Class FM Group
InadvertentBraking Commission CMD
LackOfBraking Omission CMD
LackOfAntiskid HighValue CMD
ToolLittleBraking LowValue CMD
AntiSkidOmiss Omission AS
AntiSkidCommiss Commission AS
FalseNeg Commission Validity
FalsePos Omission Validity

280




Banesied AlplieA Jusied / xe|dwiod (z) L1nosg Banesied AplieA
sodesied AplieA Jusied / xe|dwiod (z) Lnosg sodasied AplieA olseg (z) LNOW
SSILULIDPHSHUY SY Jusled / xejdwo) (z) 1nosq SSILUWODPMSHUY SY
SSIWOPSHUY SY Jusled / xa|dwo) (z) 1nosg SSILOPMSHUY SY
PUSHUZIONET AND Jusled / xa|dwiod (z) 1nosq
PHSHUZIONBT AND olsed (z) LINOW PRISHUVION9B T AND
Buneigemiiool ano Jusled / xe|dwod (2) 1nosg
Bunjeigamiioo L ano olseg (z) INOW Bunieigemiioo L ano
BunieIgioNoeT and Jusled / xe|dwod (z) 1nosg
BunielgioNoeT and alseg (Z) INOW BunieIgloNoeTand
BupieigiuspeApeu) Qo Jusled / xe|dwod (z) Lnosg
bunjeigyuspienpeul giNo Jlseg (z) LINOW Bunfeigyuepanpeu| giNo Jlseg (z) LNOD
ssiwQamod YMd olseg (z) INOW
ssiwQIaMod HAd alseg (z) LoD ssiwQlamod HMd
ssiwLiopuUeLIRT ZI2Ped dlseg (z) LINOW
SSiWwoHpuewsJzleped Jlsegq Amv LJWOD SSIWwoHpueWsJzZlepad
ssiwopuews(d zZleped olseq (z) INOW
ssiwopuewad zlepad dlseg (z) LINOD ssiwopuewsd zlepad
MoTpueURdZIeped dlseg (z) LINOW
MoTpuUBIRd ZIEPed olsed (2) LINOD MoTpUBWRQ ZIEPed
SSIWL0DpUBWR( | IBpad olseg (z) INOW
SSIWWoDpUEWs (] | [epad Jlseg Amv LWOD SSIWWODpUEWR(T | [BPad
ssiwopuews (' | 1epad alseg (z) INOW
ssiwopuews( | leped olsed (2) LINOD ssiwopuews( | leped
MOTpUBLIRQ | [IEped olsed (Z) LINOW
MOTpUBWR( | [Epad olseg (z) LINOD MOTpUBWR( | [Bpad Jusled / xajdwo) (z) 1nosd

(dnoub -jpui)
apo 3injieq

adA] jusuodwon

ai yuauodwon

(dnoub -jpur)
apo ainjieq

adA] jusuodwon

al yusuodwon

oL

wolid

281



Validity M onitor

[in BSCU]
Input Failure Modes
Failure Mode (ID) FM Class FM Group
In1.FalsePos Omission In1
In1.FalseNeg Commission In1
In2.FalsePos Omission In2
In2.FalseNeg Commission In2
PWR1.PowerOmiss Omission PWR1
PWR2.PowerOmiss Omission PWR2
Events
Failure (ID) Probability Normal Event (ID) Comments
Characterisation
ProcessStuck n/a (none)
ProcessTerminated | n/a
Failure States & Entry Logic
Failure State Trigger Guard
StuckPos ProcessTerminated ~(PWR1.PowerOmiss & PWR2.PowerOmiss)
StuckNeg ProcessStuck ~(PWR1.PowerOmiss & PWR2.PowerOmiss) &
~StuckPos

Output Failure Modes & Propagation Conditions

FM Class

Failure Mode (ID)

FM Group

Propagation Condition

FalsePos Omission Validity (In1.FalsePos | In2.FalsePos | StuckPos)

& ~StuckNeg
& ~(PWR1.PowerOmiss & PWR2.PowerOmiss)

Commission (In1.FalseNeg | In2.FalseNeg | StuckNeg)
& ~StuckPos

& ~(PWR1.PowerOmiss & PWR2.PowerOmiss)

Switch
[in BSCU]

FalseNeg Validity

Input Failure Modes
Failure Mode (ID) FM Class FM Group

CMD1.InadvertentBraking Commission CMD1
CMD1.LackOfBraking Omission CMD1
CMD1.LackOfAntiskid HighValue CMD1
CMD1.ToolLittleBraking LowValue CMD1
AS1.AntiSkidOmiss Omission AS1
AS1.AntiSkidCommiss Commission AS1
CMD2.InadvertentBraking Commission CMD2
CMD2.LackOfBraking Omission CMD2
CMD2.LackOfAntiskid HighValue CMD2
CMD2.ToolLittleBraking LowValue CMD2
AS2.AntiSkidOmiss Omission AS2
AS2.AntiSkidCommiss Commission AS2
FalsePos Omission Validity
FalseNeg Commission Validity

282




Output Failure Modes & Propagation Conditions

Failure Mode
(ID)

FM Class

FM Group

Propagation Condition

InadvertentBraking

Commission

CMD

(CMD1.InadvertentBraking & FalseNeg) |
( CMD2.InadvertentBraking
& (FalsePos |
~FalseNeg & ( CMD1.InadvertentBraking |
CMD1.LackOfBraking |
CMD1.LackOfAntiskid |
CMD1.TooLittleBraking ) ) )

LackOfBraking

Omission

CMD

(CMD1.LackOfBraking & FalseNeg) |
(CMD2.LackOfBraking
& (FalsePos |
~FalseNeg & ( CMD1.InadvertentBraking |
CMD1.LackOfBraking |
CMD1.LackOfAntiskid |
CMD1.ToolLittleBraking ) ) )

LackOfAntiskid

HighValue

CMD

(CMD1.LackOfAntiskid & FalseNeg) |
(CMD2.LackOfAntiskid
& (FalsePos |
~FalseNeg & ( CMD1.InadvertentBraking |
CMD1.LackOfBraking |
CMD1.LackOfAntiskid |
CMD1.ToolLittleBraking ) ) )

ToolittleBraking

LowValue

CMD

(CMD1.TooLittleBraking & FalseNeg) |
(CMD2.ToolittleBraking
& (FalsePos |
~FalseNeg & ( CMD1.InadvertentBraking |
CMD1.LackOfBraking |
CMD1.LackOfAntiskid |
CMD1.TooLittleBraking ) ) )

AntiSkidOmiss

Omission

AS

(AS1.AntiSkidOmiss & FalseNeg) |
(AS2.AntiSkidOmiss
& (FalsePos |
~FalseNeg & ( CMD1.InadvertentBraking |
CMD1.LackOfBraking |
CMD1.LackOfAntiskid |
CMD1.TooLittleBraking ) ) )

AntiSkidCommiss

Commission

AS

(AS1.AntiSkidCommiss & FalseNeg) |
(AS2.AntiSkidCommiss
& (FalsePos |
~FalseNeg & ( CMD1.InadvertentBraking |
CMD1.LackOfBraking |
CMD1.LackOfAntiskid |
CMD1.TooLittleBraking ) ) )

283




BSCU #1 (#2

[COMPLEX COMPONENT]

Input Failure Modes
Failure Mode (ID) FM Class FM Group
Pedal1.DemandLow LowValue Pedal1
Pedal1.DemandOmiss Omission Pedal1
Pedal1.DemandCommiss Commission Pedal1
Pedal2.DemandLow LowValue Pedal2
Pedal2.DemandOmiss Omission Pedal2
Pedal2.DemandCommiss Commission Pedal2
PowerOmiss Omission PWR1
PowerOmiss Omission PWR2
Output Failure Modes
Failure Mode (ID) FM Class FM Group

InadvertentBraking Commission CMD
LackOfBraking Omission CMD
LackOfAntiskid HighValue CMD
ToolLittleBraking LowValue CMD
AntiSkidOmiss Omission AS
AntiSkidCommiss Commission AS

FalseNeg Commission Validity
FalsePos Omission Validity

B1.2 Hydro-Mechanical Components

Blue (Green) Pump

Input Failure Modes

Characterisation

Failure Mode (ID) FM Class FM Group
Leak Commission Out.BWD
Events
Failure (ID) Probability Normal Event (ID) Comments

MechanicalFailure

Contamination

Rupture
Failure States & Entry Logic
Failure State Trigger Guard
TotalLoss MechanicalFailure ~Leaking
<Void> Leak & ~Leaking
Struggling Contamination ~Leaking & ~TotalLoss
Leaking Rupture (true)

Output Failure Modes & Propagation Conditions

Failure Mode (ID) FM Class FM Group Propagation Condition
PressureOmission Omission Out.FWD TotalLoss
TooLowPressure LowValue Out.FWD Struggling
Leak Commission | Out.FWD Leaking

284




Shut-off Selector Valve
[Green Channel]

Input Failure Modes

Failure Mode (ID) FM Class FM Group
FWD.Leak Commission HydOut.FWD
PressureOmission Omission HydIn.FWD
TooLowPressure LowValue HydIn.FWD
FalsePos Omission CTRL
FalseNeg Commission CTRL
BWD.Leak Commission HydOut.BWD
Events
Failure (ID) Probability Normal Event (ID) Comments
Characterisation
SpringFailure
UnlocksSpontaneously
Rupture
Failure States & Entry Logic
Failure State Trigger Guard
StuckOpen (1) SpringFailure ~StuckClosed
StuckClosed (1) UnlocksSpontaneously ~StuckOpen
Leaking (2) Rupture (true)
Output Failure Modes & Propagation Conditions
Failure Mode (ID) FM Class FM Group Propagation Condition
Leak Commission HydIn.BWD Leaking |
BWD.Leak & ~StuckClosed &
(StuckOpen | ~FalsePos)
PressureOmission Omission HydOut.FWD StuckClosed | Leaking | PressureOmission |
FWD.Leak | (FalsePos & ~StuckOpen)
PressureCommission | Commission HydOut.FWD (StuckOpen | FalseNeg)
& ~StuckClosed & ~Leaking
& ~PressureOmission & ~ FWD.Leak
& ~TooLowPressure
LowPressureCommiss | LowCommission | HydOut.FWD (StuckOpen | FalseNeg)
& TooLowPressure
& ~StuckClosed & ~Leaking
& ~PressureOmission & ~ FWD.Leak
TooLowPressure LowValue HydOut.FWD TooLowPressure
& ~StuckClosed & ~StuckOpen & ~Leaking
& ~PressureOmission & ~ FWD.Leak
& ~FalsePos & ~FalseNeg

Green Meter Valve

Input Failure Modes

Failure Mode (ID) FM Class FM Group

Leak Commission HydOut.BWD
PressureOmission Omission HydIn.FWD
PressureCommission Commission HydIn.FWD
LowPressureCommiss LowCommission HydIn.FWD
TooHighPressure TooHightValue HydIn.FWD
TooLowPressure LowValue HydIn.FWD
InadvertentBraking Commission CTRL
LackOfBraking Omission CTRL
LackOfAntiskid HighValue CTRL
TooLittleBraking LowValue CTRL

285




Events

Failure (ID)

Probability
Characterisation

Normal Event (ID) Comments

SpringFailure

JamClosed
JamOpen
MotorFailure
Contamination
Rupture
Failure States & Entry Logic
Failure State Trigger Guard
StuckOpen (1) SpringFailure ~StuckClosed
JamOpen ~StuckClosed
StuckClosed (1) MotorFailure ~StuckOpen
JamClosed ~StuckOpen
Struggling (1) Contamination ~StuckClosed & ~StuckOpen
Leaking (2) Rupture (true)
Output Failure Modes & Propagation Conditions
Failure Mode (ID) FM Class FM Group Propagation Condition
Leak Commission HydIn.BWD Leaking |
Leak & ~StuckClosed
& (StuckOpen | ~LackOfBraking)
PressureOmission Omission HydOut.FWD Leaking |StuckClosed | PressureOmission |
(LackOfBraking
& (~StuckOpen | ~PressureCommission) ) |
( InadvertentBraking |
LackOfAntiskid |
ToolittleBraking)
& ~(PressureCommission | LowPressureCommiss)
PressureCommission | Commission HydOut.FWD (StuckOpen | InadvertentBraking)
& ~StuckClosed &~Leaking & ~PressureOmission
& ( PressureCommission |
LowPressureCommiss |
~ ( InadvertentBraking |
LackOfBraking |
LackOfAntiskid |
ToolLittleBraking
) )
TooHighPressure TooHightValue | HydOut.FWD (LackOfAntiskid & PressureCommission
& ~StuckClosed & ~StuckOpen & ~Leaking) |
(Struggling
& ~StuckClosed & ~StuckOpen &~Leaking
& ~PressureOmission & ~TooLowPressure
& ~LowPressureCommiss & ~LackOfBraking
& ~InadvertentBraking & ~LackOfAntiskid
& ~ToolittleBraking)
TooLowPressure LowValue HydOut.FWD (TooLittleBraking & PressureCommission
& ~StuckClosed & ~StuckOpen & ~Leaking) |
(LowPressureCommiss
& ~InadvertentBraking & ~LackOfBraking
& ~StuckClosed & ~StuckOpen & ~Leaking)

286




| solation Valve

Input Failure Modes

Failure Mode (ID) FM Class FM Group
PressureOmission Omission In.FWD
ToolLowPressure LowValue In.FWD
In.FWD.Leak Commission In.FWD
Out.BWD.Leak Commission Out.BWD
Events
Failure (ID) Probability Normal Event (ID) Comments

Characterisation

Contamination

Jam
Rupture
Failure States & Entry Logic
Failure State Trigger Guard
StuckClosed (1) Contamination (true)
StuckOpen (1) Jam (PressureOmission | In.FWD.Leak) & ~StuckClosed
Leaking (2) Rupture (true)
Output Failure Modes & Propagation Conditions
Failure Mode (ID) | FM Class FM Group Propagation Condition

PressureOmission | Omission Out.FWD StuckClosed & ~Leaking |
PressureOmission & ~Leaking |

In.FWD.Leak & ~StuckOpen
TooLowPressure LowValue Out.FWD TooLowPressure & ~StuckClosed & ~StuckOpen & ~Leaking
In.BWD.Leak Commission | In.BWD Leaking | Out.BWD.Leak & ~StuckClosed

Out.FWD.Leak Commission | Out.FWD Leaking | In.FWDLeak & StuckOpen

Accumulator
[Blue Channel]

Input Failure Modes
Failure Mode (ID) FM Class FM Group
PressureOmission Omission In
TooLowPressure LowValue In
Leak Commission In
Events
Failure (ID) Probability Characterisation | Normal Event (ID) Comments
ConnectorBlocked UsedOnce Normal event
PartialDecompression Assume probability = 1
CompleteDecompression
Rupture
Normal States & Entry Logic
Normal State Trigger Guard
Empty UsedOnce Full & PressureOmission & ~Isolated & ~TotalLoss & ~Leaking
Full [Initial state, no re-entry]
Failure States & Entry Logic
Failure State Trigger Guard
Isolated ConnectorBlocked (true)
TotalLoss <void> Leak & ~Leaking & ~Isolated
CompleteDecompression ~Leaking & ~Isolated
Leaking Rupture ~|solated
PartialLoss PartialDecompression ~Empty & ~TotalLoss & ~Leaking & ~Isolated
Output Failure Modes & Propagation Conditions
Failure Mode (ID) | FM Class FM Group Propagation Condition
PressureOmission Omission Out Empty | Isolated | TotalLoss
TooLowPressure LowValue Out PartialLoss & Full & ~Isolated & ~TotalLoss & ~Leaking
Leak Commission | Out Leaking

287



Pipe Junction
[Blue Channel]

Input Failure Modes

Failure Mode (ID) FM Class FM Group
Pump.FWD.PressureOmission Omission Pump.FWD
Pump.FWD.TooLowPressure LowValue Pump.FWD
Pump.FWD.Leak Commission Pump.FWD
Accum.FWD.PressureOmission Omission Accum.FWD
Accum.FWD.TooLowPressure LowValue Accum.FWD
Accum.FWD.Leak Commission Accum.FWD
Out.BWD.Leak Commission Out.BWD

Output Failure Modes & Propagation Conditions

Failure Mode (ID) FM Class FM Group Propagation Condition
Pump.BWD.Leak Commission Pump.BWD | Accum.FWD.Leak | Out.BWD.Leak
Accum.BWD.Leak Commission Accum.BWD | Pump.FWD.Leak | Out.BWD.Leak
Accum.BWD. Omission Accum.BWD | Pump.FWD.PressureOmission

PressureOmission &~Out.BWD.Leak
PressureOmission Omission Out.FWD Accum.FWD.Leak | Pump.FWD.Leak |
Pump.FWD.PressureOmission &
Accum.FWD.PressureOmission
TooLowPressure LowValue Out.FWD Pump.FWD.TooLowPressure &

~Accum.FWD .Leak |
Pump.FWD.PressureOmission
& Accum.FWD.TooLowPressure

M ech. Pedal Position (link

Input Failure Modes
Failure Mode (ID) FM Class FM Group
DemandLow LowValue Pedal
DemandOmiss Omission Pedal
DemandCommiss Commission Pedal
Events
Failure (ID) Probability Normal Event (ID) Comments
Characterisation
Contamination
Jam
MechanicalFailure
Failure States & Entry Logic
Failure State Trigger Guard
LimitedAmplitude Contamination ~StuckUp & ~StuckDown
StuckUp MechanicalFailure
StuckDown Jam ~StuckUp
Output Failure Modes & Propagation Conditions
Failure Mode (ID) FM Class FM Group Propagation Condition
InadvertentBraking Commission | CMD DemandCommiss & ~StuckUp |
StuckDown
LackOfBraking Omission CMD DemandOmiss & ~StuckDown |
StuckUp
ToolittleBraking LowValue CMD (DemandLow | LimitedAmplitude)
& ~StuckDown & ~StuckUp
& ~DemandOmiss & ~DemandCommiss

288




AS Shut-off Valve
[Blue Channel]

Input Failure Modes

Failure Mode (ID) FM Class FM Group
Leak Commission HydOut.BWD
PressureOmission Omission HydIn.FWD
TooLowPressure LowValue HydIn.FWD
AntiSkidOmiss Omission CTRL
AntiSkidCommiss Commission CTRL
Events
Failure (ID) Probability Normal Event (ID) Comments
Characterisation
LoadFailure
JamOpen

MotorFailure
Contamination

Rupture
Failure States & Entry Logic
Failure State Trigger Guard

StuckOpen (1) MotorFailure ~StuckClosed

JamOpen ~StuckClosed
StuckClosed (1) LoadFailure ~StuckOpen
Struggling (1) Contamination ~StuckClosed & ~StuckOpen
Leaking (2) Rupture (true)

Output Failure Modes & Propagation Conditions

Failure Mode (ID) FM Class FM Group Propagation Condition

Leak Commission HydIn.BWD Leaking |

Leak & ~StuckClosed
PressureOmission Omission HydOut.FWD StuckClosed | Leaking | PressureOmission
TooHighPressure TooHightValue HydOut.FWD (AntiSkidOmiss |

StuckOpen | Struggling)

& ~PressureOmission & ~TooLowPressure

& ~Leaking & ~StuckClosed
TooLowPressure LowValue HydOut.FWD ( TooLowPressure |

AntiSkidCommiss & ~StuckOpen )
& ~PressureOmission & ~StuckClosed
& ~Leaking

289



Blue M eter Valve

Input Failure Modes
Failure Mode (ID) FM Class FM Group
Leak Commission HydOut.BWD
PressureOmission Omission HydIn.FWD
TooHighPressure TooHightValue HydIn.FWD
TooLowPressure LowValue HydIn.FWD
InadvertentBraking Commission CTRL
LackOfBraking Omission CTRL
ToolittleBraking LowValue CTRL
Events
Failure (ID) Probability Normal Event (ID) Comments
Characterisation
SpringFailure (1)
JamClosed (1)
JamOpen (1)
MotorFailure (1)
Rupture (2)
Failure States & Entry Logic
Failure State Trigger Guard
StuckOpen (1) SpringFailure ~StuckClosed
JamOpen ~StuckClosed
StuckClosed (1) MotorFailure ~StuckOpen
JamClosed ~StuckOpen
Leaking (2) Rupture (true)
Output Failure Modes & Propagation Conditions
Failure Mode (ID) FM Class FM Group Propagation Condition
Leak Commission HydIn.BWD Leaking |
Leak & ~StuckClosed &
(StuckOpen | ~LackOfBraking)
PressureOmission Omission HydOut.FWD StuckClosed | Leaking |
PressureOmission |
(LackOfBraking & ~StuckOpen)
PressureCommission Commission HydOut.FWD (StuckOpen | InadvertentBraking)
& ~StuckClosed & ~Leaking
& ~PressureOmission
TooHighPressure TooHightValue HydOut.FWD TooHighPressure
& ~StuckClosed & ~StuckOpen &~Leaking
& ~PressureOmission & ~TooLowPressure
& ~InadvertentBraking & ~LackOfBraking
& ~ToolittleBraking
TooLowPressure LowValue HydOut.FWD (ToolLittleBraking | TooLowPressure)
& ~StuckClosed & ~StuckOpen & ~Leaking
& ~PressureOmission & ~LackOfBraking
& ~InadvertentBraking

290




B2. WBS Failure Logic Model: AltaRica Dataflow

This section is automatically generated by the “ Trandate Model” function of
Cecilia OCAS with minor manual post-formatting. The model includes the
specification of the failure behaviour of the components and the system
(partially presented in Chapter Three). Visualisation information and other

OCAS-specific annotations are removed.

domain ControlFMs = {OK, InadvertentBraking, LackOfAntiskid, LackOfBraking, TooLittleBraking};

domain PressureFMs = {OK, LowPressureCommis, PressureCommission, PressureOmission,
TooHighPressure, TooLowPressure};

domain PowerFMs = {OK, PowerOmiss};

domain LeakFM = {OK, Leak};

domain AntiskidFMs = {OK, AntiSkidCommis, AntiSkidOmiss};

domain PumpPresFMs = {OK, Leak, LowPressureCommis, PressureCommission, PressureOmission,
TooHighPressure, TooLowPressure};

domain ValidityFMs = {OK, FalseNeg, FalsePos };

node PedalStub
// Virtual inputs component: (Altarica does not permit free inputs at system level):
// Mimics command failure modes from the cockpit (transmitted to the WBS electronically or mechanically)
flow
Out:ControlFMs:out;
state
FailSt:ControlFMs;
event
INPUT_LackOfBraking,
INPUT_InadvertentBraking,
INPUT_ToolLittleBraking;
trans
(FailSt = OK) |- INPUT_InadvertentBraking -> FailSt := InadvertentBraking;
(FailSt = OK) |- INPUT_LackOfBraking -> FailSt := LackOfBraking;
(FailSt = OK) |- INPUT _TooLittleBraking -> FailSt := ToolLittleBraking;

assert
Out = FailSt;
init
FailSt := OK;
edon

node PowerStub
// Virtual inputs component: (Altarica does not permit free inputs at system level):
// Mimics power failure modes (that the BSCU is sensitive to)

flow
Out:PowerFMs:out;
state
FailSt:PowerFMs;
event
INPUT_PowerOmission;
trans
(FailSt = OK) |- INPUT_PowerOmission -> FailSt := PowerOmiss;
assert
Out = FailSt;
init
FailSt := OK;
edon
node LeakStub

291



// Virtual inputs component: (Altarica does not permit free inputs at system level):
// Mimics leak failure modes (exhibited by the brakes assembly)

flow

Out:LeakFM:out;
state

FailSt:LeakFM;
event

INPUT_Leak;
trans

(FailSt = OK) |- INPUT_Leak -> FailSt := Leak;
assert

Out = FailSt;
init

FailSt := OK;

edon

node WheelBrakes
// Virtual observer component: calculates WBS Failure Conditions based on the
// failure modes exhibited by green and blue hydraulic lines
flow
InBlue:PressureFMs:in;
InGreen:PressureFMs:in;
FailureCondition:{InadvertentBraking, InsufficientBraking, None, OmissionOfBraking, SuboptimalBraking}:out;
assert
FailureCondition = case {

((InGreen = PressureCommission) or (InBlue = PressureCommission)) : InadvertentBraking,
((InGreen = PressureOmission) and (InBlue = PressureOmission)) : OmissionOfBraking,
(((InGreen = TooLowPressure) or (InGreen = PressureOmission))
and ((InBlue = TooLowPressure) or (InBlue = PressureOmission))) : InsufficientBraking,
((InGreen = TooHighPressure) or (InBlue = TooHighPressure)) : SuboptimalBraking,
else None
3
edo

node GreenMeterValve
flow
HydIn*FWD:PressureFMs:in;
HydIn"BWD:LeakFM:out;
Ctrl:ControlFMs:in;
HydOut*FWD:PressureFMs:out;
HydOut*BWD:LeakFM:in;
state
FailSt1:{OK, Struggling, StuckClosed, StuckOpen};
FailSt2:{Leaking, OK};
event
Contamination,
JamOpen,
SpringFailure,
MotorFailure,
JamClosed,
Rupture;
trans
(FailSt1 # StuckClosed) |- SpringFailure -> FailSt1 := StuckOpen;
FailSt1 # StuckClosed) |- JamOpen -> FailSt1 := StuckOpen;
FailSt1 # StuckOpen) |- MotorFailure -> FailSt1 := StuckClosed;
FailSt1 # StuckOpen) |- JamClosed -> FailSt1 := StuckClosed;
(FailSt1 # StuckClosed) and (FailSt1 # StuckOpen)) |- Contamination -> FailSt1 := Struggling;
true |- Rupture -> FailSt2 := Leaking;

Py

292



assert
HydIn*BWD = case {
((FailSt2 = Leaking) or
(((HydOut*BWD = Leak) and (FailSt1 # StuckClosed)) and ((FailSt1 = StuckOpen) or
(Ctrl # LackOfBraking)))) : Leak,
else OK
3
HydOut"FWD = case {
(((((FailSt1 = StuckClosed) or ((Ctrl = LackOfBraking) and (FailSt1 # StuckOpen)) ) or
(HydIn*FWD = PressureOmission)) or (FailSt2 = Leaking)) or
((Ctrl # OK) and (not ((HydIn*FWD = LowPressureCommis) or
(HydInAFWD = PressureCommission))))) : PressureOmission,
((((((FailSt1 = StuckOpen) or
(Ctrl = InadvertentBraking)) and (FailSt1 # StuckClosed)) and (FailSt2 # Leaking))
and (HydInAFWD # PressureOmission)) and (((HydIn*"FWD = PressureCommission) or
(HydInAFWD = LowPressureCommis)) or (Ctrl = OK))) : PressureCommission,
((((((Ctrl = LackOfAntiskid) and (HydIn*FWD = PressureCommission)) and (FailSt1 # StuckOpen))
and (FailSt1 # StuckClosed)) and (FailSt2 = OK)) or
((((FailSt1 = Struggling) and (FailSt2 = OK)) and (Ctrl = OK)) and (HydIn*FWD = OK))) : TooHighPressure,
((((((Ctrl = ToolLittleBraking) and ((HydIn*FWD = PressureCommission) or
(HydInAFWD = LowPressureCommis))) and (FailSt1 # StuckClosed)) and (FailSt1 # StuckOpen))
and (FailSt2 = OK))
or (((((HydInAFWD = LowPressureCommis) and (Ctrl = OK)) and (FailSt1 # StuckClosed))
and (FailSt1 # StuckOpen)) and (FailSt2 = OK))) : TooLowPressure,
else OK
.}E
ini
FailSt1 := OK,
FailSt2 := OK;
edon

node MechPedalPosition
flow
Pedal:ControlFMs:in;
CMD:ControlFMs:out;
state
FailSt:{LimitedAmplitude, OK, StuckDown, StuckUp};
event
Contamination,
Jam,
MechanicalFailure;
trans
true |- MechanicalFailure -> FailSt := StuckUp;
(FailSt # StuckUp) |- Jam -> FailSt := StuckDown;
(FailSt = OK) |- Contamination -> FailSt := LimitedAmplitude;

assert
CMD = case {
((FailSt = StuckDown) or ((Pedal = InadvertentBraking) and (FailSt # StuckUp))) - InadvertentBraking,
((FailSt = StuckUp) or ((Pedal = LackOfBraking) and (FailSt # StuckDown))) - LackOfBraking,

(((( ((Pedal = ToolLittleBraking) or (FailSt = LimitedAmplitude))
and (Pedal # LackOfBraking)) and (Pedal # InadvertentBraking)) and (FailSt # StuckUp))
and (FailSt # StuckDown)) : TooLittleBraking,
else OK
N
ini
FailSt := OK;
edon

293



node BlueMeterValve
flow
HydIn*FWD:PressureFMs:in;
HydIn"BWD:LeakFM:out;
CTRL:ControlFMs:in;
HydOut"FWD:PressureFMs:out;
HydOut*BWD:LeakFM:in;
state
FailSt1:{OK, StuckClosed, StuckOpen};
FailSt2:{Leaking, OK};
event
SpringFailure,
JamClosed,
JamOpen,
MotorFailure,
Rupture;
trans
(FailSt1 # StuckClosed) |- JamOpen -> FailSt1 := StuckOpen;
(FailSt1 # StuckClosed) |- SpringFailure -> FailSt1 := StuckOpen;
(FailSt1 # StuckOpen) |- JamClosed -> FailSt1 := StuckClosed;
(FailSt1 # StuckOpen) |- MotorFailure -> FailSt1 := StuckClosed;
true |- Rupture -> FailSt2 := Leaking;
assert
HydIn"BWD = case {
((FailSt2 = Leaking) or
(((HydOut*BWD = Leak) and (FailSt1 # StuckClosed))
and ((CTRL # LackOfBraking) or (FailSt1 = StuckOpen)))) : Leak,
else OK
3
HydOut*FWD = case {
((((FailSt1 = StuckClosed) or (FailSt2 = Leaking)) or (HydIn*AFWD = PressureOmission)) or
((CTRL = LackOfBraking) and (FailSt1 # StuckOpen))) : PressureOmission,
(((((CTRL = InadvertentBraking) or (FailSt1 = StuckOpen))
and (HydInAFWD # PressureOmission)) and (FailSt1 # StuckClosed))

and (FailSt2 = OK)) : PressureCommission,
((((HydInAFWD = TooHighPressure) and (FailSt1 = OK))
and (FailSt2 = OK)) and (CTRL = OK)) : TooHighPressure,

(((((((HydIn"FWD = TooLowPressure) or (CTRL = TooLittleBraking))

and (HydIn"FWD # PressureOmission)) and (CTRL # InadvertentBraking))

and (CTRL # LackOfBraking)) and (FailSt2 = OK)) and (FailSt1 = OK)) : TooLowPressure,
else OK
h

init

FailSt1 := OK,

FailSt2 := OK;
edon

node ASShutOffValve

flow
HydInAFWD:PressureFMs:in;
HydIn"BWD:LeakFM:out;
CTRL:AntiskidFMs:in;
HydOut"FWD:PressureFMs:out;
HydOut"BWD:LeakFM:in;

state
FailSt1:{OK, Struggling, StuckClosed, StuckOpen};
FailSt2:{Leaking, OK};

event
LoadFailure,
JamOpen,
MotorFailure,
Contamination,
Rupture;

294



trans
(FailSt1 = OK) |- Contamination -> FailSt1 := Struggling;
(FailSt1 # StuckClosed) |- MotorFailure -> FailSt1 := StuckOpen;
(FailSt1 # StuckClosed) |- JamOpen -> FailSt1 := StuckOpen;
(FailSt1 # StuckOpen) |- LoadFailure -> FailSt1 := StuckClosed;
true |- Rupture -> FailSt2 := Leaking;
assert
HydIn*BWD = case {
((FailSt2 = Leaking) or ((HydOut"BWD = Leak) and (FailSt1 # StuckClosed))) : Leak,
else OK

13
HydOut"FWD = case {
(((FailSt1 = StuckClosed) or (FailSt2 = Leaking)) or (HydIn*FWD = PressureOmission)) : PressureOmission,
((((((CTRL = AntiSkidOmiss) or (FailSt1 = StuckOpen)) or (FailSt1 = Struggling))
and (FailSt2 = OK)) and (FailSt1 # StuckClosed)) and (HydIn*AFWD = OK)) : TooHighPressure,
(((((HydIn"FWD = TooLowPressure) or
((CTRL = AntiSkidCommis) and (FailSt1 # StuckOpen))) and (HydIn*"FWD # PressureOmission))
and (FailSt2 = OK)) and (FailSt1 # StuckClosed)) : TooLowPressure,
else OK
i
ini
FailSt1 := OK,
FailSt2 := OK;
edon

node ShutOffSelectorValve
flow
HydInAFWD:PumpPresFMs:in;
HydIn*BWD:LeakFM:out;
CTRL:ValidityFMs:in;
HydOut*FWD:PressureFMs:out;
HydOut"BWD:LeakFM:in;
state
FailSt1:{OK, StuckClosed, StuckOpen};
FailSt2:{Leaking, OK};
event
SpringFailure,
UnlocksSpontaneously,
Rupture;
trans
(FailSt1 = OK) |- SpringFailure -> FailSt1 := StuckOpen;
(FailSt1 = OK) |- UnlocksSpontaneously -> FailSt1 := StuckClosed;
true |- Rupture -> FailSt2 := Leaking;
assert
HydIn*BWD = case {
((FailSt2 = Leaking) or
(((HydOut*BWD = Leak) and (FailSt1 # StuckClosed)) and
((CTRL # FalsePos) or (FailSt1 = StuckOpen)))) - Leak,
else OK
13
HydOut*FWD = case {
(((((FailSt1 = StuckClosed) or
(FailSt2 = Leaking)) or (HydIn*"FWD = PressureOmission)) or (HydIn*FWD = Leak)) or
((CTRL = FalsePos) and (FailSt1 # StuckOpen))) : PressureOmission,
(((((FailSt1 = StuckOpen) or (CTRL = FalseNeg))
and (FailSt1 # StuckClosed)) and (FailSt2 # Leaking)) and (HydInAFWD = OK))  : PressureCommission,
(((((FailSt1 = StuckOpen) or (CTRL = FalseNeg))
and (FailSt1 # StuckClosed)) and (FailSt2 # Leaking))

and (HydInAFWD = TooLowPressure)) : LowPressureCommis,
(((HydIn"FWD = TooLowPressure) and (FailSt1 = OK))
and (FailSt2 = OK)) and (CTRL = OK)) : TooLowPressure,
else OK
3

295



init

FailSt1 := OK,
FailSt2 := OK;
edon
node Accumulator
flow
In:PumpPresFMs:in;
Out:PumpPresFMs:out;
state

FailSt{lsolated, Leaking, OK, PartialLoss, TotalLoss};
NormSt:{Empty, Full};
event
ConnectorBlocked,
PartialDecompression,
CompleteDecompression,
Rupture,
NORMAL_UsedOnce,
Void;
trans
true |- ConnectorBlocked -> FailSt := Isolated;
((FailSt = OK) and (NormSt = Full)) |- PartialDecompression -> FailSt := PartialLoss;
((FailSt # Isolated) and (FailSt # Leaking)) |- CompleteDecompression -> FailSt ;= TotalLoss;
((((FailSt # Leaking) and (FailSt # Isolated)) and (FailSt # TotalLoss)) and (In = Leak))
|- Void -> FailSt := TotalLoss;
(FailSt # Isolated) |- Rupture -> FailSt := Leaking;
(((NormSt = Full) and (In = PressureOmission)) and ((FailSt = OK) or (FailSt = PartialLoss)))
|- NORMAL_UsedOnce -> NormSt := Empty;

assert
Out = case {
(((FailSt = Isolated) or (FailSt = TotalLoss)) or (NormSt = Empty)) : PressureOmission,
((FailSt = PartialLoss) and (NormSt = Full)) : TooLowPressure,
(FailSt = Leaking) : Leak,
else OK
%
init
FailSt := OK,
NormSt := Full;
extern

law <event NORMAL_UsedOnce> = Dirac(1);
law <event Void> = Dirac(0);
edon

node Junction
flow
Pump”FWD:PumpPresFMs:in;
Pump*BWD:LeakFM:out;
Accumin:PumpPresFMs:in;
AccumOut:PumpPresFMs:out;
Out"FWD:PressureFMs:out;
Out"BWD:LeakFM:in;
assert
Pump”BWD = case {
((Accumin = Leak) or (Out*BWD = Leak)) : Leak,
else OK
13
AccumOut = case {
((Pump”FWD = Leak) or (Out*BWD = Leak)) - Leak,
((Pump*FWD = PressureOmission) and (Out*BWD # Leak)) : PressureOmission,
else OK

h

296



Out"FWD = case {

(((Accumin = Leak) or (Pump*FWD = Leak)) or ((Pump*FWD = PressureOmission)

and (Accumin = PressureOmission)))
(((Pump*FWD = TooLowPressure) and (Accumin # Leak)) or
((Pump*FWD = PressureOmission) and (Accumln = TooLowPressure)))
else OK
3

edon

node /solationValve
flow
IN"FWD:PumpPresFMs:in;
In"BWD:LeakFM:out;
Out*FWD:PumpPresFMs:out;
Out*BWD:LeakFM:in;
state
FailSt1:{OK, StuckClosed, StuckOpen};
FailSt2:{Leaking, OK};
event
Contamination,
Jam,
Rupture;
trans
true |- Contamination -> FailSt1 := StuckClosed;
((FailSt1 # StuckClosed) and ((In*FWD = PressureOmission) or (In*"FWD = Leak)))
|- Jam -> FailSt1 := StuckOpen;
true |- Rupture -> FailSt2 := Leaking;
assert
IN*BWD = case {
((FailSt2 = Leaking) or ((Out*BWD = Leak) and (FailSt1 # StuckClosed)))
else OK
b
Out"FWD = case {
((FailSt2 = Leaking) or ((IN"FWD = Leak) and (FailSt1 = StuckOpen)))
((FailSt2 # Leaking) and
(((FailSt1 = StuckClosed) or (In*"FWD = PressureOmission)) or
((IN"FWD = Leak) and (FailSt1 # StuckOpen))))

: PressureOmission,

: TooLowPressure,

. Leak,

: Leak,

: PressureOmission,

(((IN"FWD = TooLowPressure) and (FailSt1 # StuckClosed)) and (FailSt2 # Leaking)) : TooLowPressure,

else OK
h
init
FailSt1 := OK,
FailSt2 := OK;
edon

node Pump

flow
Out"FWD:PumpPresFMs:out;
Out"BWD:LeakFM:in;

state
FailSt:{Leaking, OK, Struggling, TotalLoss};

event
MechanicalFailure,
Contamination,
Rupture,
Void;

trans
true |- Rupture -> FailSt := Leaking;
(FailSt = OK) |- Contamination -> FailSt := Struggling;
(FailSt # Leaking) |- MechanicalFailure -> FailSt ;= TotalLoss;

(((FailSt # Leaking) and (Out*BWD = Leak)) and (FailSt # TotalLoss)) |- Void -> FailSt := TotalLoss;

297



assert
Out"FWD = case {
(FailSt = Leaking) : Leak,
(FailSt = TotalLoss) : PressureOmission,
(FailSt = Struggling) : TooLowPressure,
else OK
¥
init
FailSt := OK;
extern
law <event Void> = Dirac(0);
edon

node Switch
flow
AS1:AntiskidFMs:in;
AS2:AntiskidFMs:in;
CMD1:ControlFMs:in;
CMD2:ControlFMs:in;
AS:AntiskidFMs:out;
CMD:ControlFMs:out;
Validity:ValidityFMs:in;
assert
AS = case {
((Validity = FalseNeg) or ((CMD1 = OK) and (Validity # FalsePos))) : AS1,
else AS2
b
CMD = case {
((Validity = FalseNeg) or ((CMD1 = OK) and (Validity # FalsePos))) : CMD1,
else CMD2
3

edon

node ValidityMonitor
flow
In1:ValidityFMs:in;
In2:ValidityFMs:in;
PWR1:PowerFMs:in;
PWR2:PowerFMs:in;
Validity:ValidityFMs:out;
state
FailSt:{OK, StuckNeg, StuckPos};
event
ProcessStuck,
ProcessTerminated;
trans
((PWR1 = OK) and (PWR2 = OK)) |- ProcessTerminated -> FailSt := StuckPos;
(((FailSt = OK) and (PWR1 = OK)) and (PWR2 = OK)) |- ProcessStuck -> FailSt := StuckNeg;
assert
Validity = case {
(((((In1 = FalseNeg) or (In2 = FalseNeg)) or (FailSt = StuckNeg))

and (FailSt # StuckPos)) and ((PWR1 = OK) or (PWR2 = OK))) : FalseNeg,
(((((In1 = FalsePos) or (In2 = FalsePos)) or (FailSt = StuckPos))
and (FailSt # StuckNeg)) and ((PWR1 = OK) or (PWR2 = OK))) : FalsePos,
else OK
)
init
FailSt := OK;
edon

298



node MonitorModule
flow
Pedal1:ControlFMs:in;
Pedal2:ControlFMs:in;
CMD:ControlFMs:in;
PWR:PowerFMs:in;
Validity:ValidityFMs:out;
state
FailSt:{OK, StuckNeg, StuckPos};
event
ProcessStuck,
ProcessTerminated,
ProcessorError;
trans
(PWR = OK) |- ProcessTerminated -> FailSt := StuckPos;
((FailSt = OK) and (PWR = OK)) |- ProcessorError -> FailSt := StuckPos;
((FailSt = OK) and (PWR = OK)) |- ProcessStuck -> FailSt := StuckNeg;
assert
Validity = case {
((((((CMD = Pedal1) and (CMD = Pedal2)) and (CMD # OK)) or

(FailSt = StuckNeg)) and (FailSt # StuckPos)) and (PWR = OK)) : FalseNeg,
(((((FailSt = StuckPos) and (Pedal1 = OK)) and (Pedal2 = OK))
and (CMD = OK)) and (PWR = OK)) : FalsePos,
else OK
Y
init
FailSt := OK;
edon

node CommandModule

flow
Pedal1:ControlFMs:in;
Pedal2:ControlFMs:in;
PWR:PowerFMs:in;
AS:AntiskidFMs:out;
CMD:ControlFMs:out;

state
FailSt2:{ASstuckOff, ASstuckOn, OK};
FailSt1:{CMDstuckOff, CMDstuckOn, CalculationError, OK};

event
ASprocessStuck,
ASprocessTerminated,
ProcessorError,
CMDprocessStuck,
CMDprocessTerminated;

trans
((PWR # PowerOmiss) and (FailSt1 = OK)) |- ProcessorError -> FailSt1 := CalculationError;
((PWR # PowerOmiss) and (FailSt1 # CMDstuckOff)) |- CMDprocessStuck -> FailSt1 := CMDstuckOn;
(PWR # PowerOmiss) |- CMDprocessTerminated -> FailSt1 := CMDstuckOff;
((PWR # PowerOmiss) and (FailSt2 # ASstuckOff)) |- ASprocessStuck -> FailSt2 := ASstuckOn;
(PWR # PowerOmiss) |- ASprocessTerminated -> FailSt2 := ASstuckOff;

assert
AS = case {
((FailSt2 = ASstuckOff) or (PWR = PowerOmiss)) - AntiSkidOmiss,
((FailSt2 = ASstuckOn) and (PWR = OK)) : AntiSkidCommis,
else OK
3
CMD = case {
(((((Pedal1 = InadvertentBraking) or (Pedal2 = InadvertentBraking)) or (FailSt1 = CMDstuckOn))
and (FailSt1 # CMDstuckOff)) and (PWR = OK)) - InadvertentBraking,

((PWR = PowerOmiss) or
((((Pedal1 = LackOfBraking) and (Pedal2 = LackOfBraking)) or
(FailSt1 = CMDstuckOff)) and (FailSt1 # CMDstuckOn))) : LackOfBraking,

299



(((I(((((FailSt2 = ASstuckOn) or (FailSt1 = CalculationError)) or (Pedal1 = LackOfBraking)) or
(Pedal2 = LackOfBraking)) or (Pedal1 = ToolLittleBraking)) or
(Pedal2 = ToolLittleBraking)) and (FailSt1 = OK)) and (PWR = OK))
and (Pedal1 # InadvertentBraking)) and (Pedal2 # InadvertentBraking)) and (not ((Pedal1 = LackOfBraking)
and (Pedal2 = LackOfBraking)))) : ToolittleBraking,
(((((FailSt2 = ASstuckOff) and (PWR = OK)) and (FailSt1 = OK)) and (Pedal1 = OK))
and (Pedal2 = OK)) : LackOfAntiskid,
else OK
)
init
FailSt2 := OK,
FailSt1 := OK;
edon

node BSCUchannel

flow
Pedal1:ControlFMs:in;
Pedal2:ControlFMs:in;
AS:AntiskidFMs:out;
PWR:PowerFMs:in;
CMD:ControlFMs:out;
Validity:ValidityFMs:out;

sub
MON:MonitorModule;
COM:CommandModule;

assert
AS = COM.AS,
CMD = COM.CMD,
Validity = MON.Validity,
MON.Pedal1 = Pedalt,
MON.Pedal2 = Pedal2,
MON.CMD = COM.CMD,
MON.PWR = PWR,
COM.Pedal1 = Pedalt,
COM.Pedal2 = Pedal2,
COM.PWR =PWR;

edon

node BSCU

flow
Pedal1:ControlFMs:in;
Pedal2:ControlFMs:in;
PWR1:PowerFMs:in;
PWR2:PowerFMs:in;
AS:AntiskidFMs:out;
CMD:ControlFMs:out;
Validity:ValidityFMs:out;

sub
Switch:Switch;
ValidityMonitor:ValidityMonitor;
BSCU2:BSCUchannel;
BSCU1:BSCUchannel;

assert
AS = Switch.AS,
CMD = Switch.CMD,
Validity = ValidityMonitor.Validity,
Switch.AS1 = BSCU1.AS,
Switch.AS2 = BSCU2.AS,
Switch.CMD1 = BSCU1.CMD,
Switch.CMD2 = BSCU2.CMD,
Switch.Validity = BSCU1.Validity,
ValidityMonitor.In1 = BSCU1.Validity,
ValidityMonitor.In2 = BSCU2.Validity,
ValidityMonitor.PWR1 = PWR1,

300



ValidityMonitor.PWR2 = PWR2,
BSCU2.Pedal1 = Pedalt,
BSCU2.Pedal2 = Pedal2,
BSCU2.PWR = PWR2,
BSCU1.Pedal1 = Pedalt,
BSCU1.Pedal2 = Pedal2,
BSCU1.PWR = PWR1;
edon

node main
sub
Pedal1:PedalStub;
Pedal2:PedalStub;
PedalM:PedalStub;
WheelBrakes:WheelBrakes;
BusbarB:PowerStub;
BusbarA:PowerStub;
BlueBrakesAssembly:LeakStub;
GreenBrakesAssembly:LeakStub;
GreenMeterValve:GreenMeterValve;
MechPedalPosition:MechPedalPosition;
BlueMeterValve:BlueMeterValve;
ASShutOffValve:ASShutOffValve;
ShutOffSelectorValve:ShutOffSelectorValve;
Accumulator:Accumulator;
Junction:Junction;
IsolationValve:IsolationValve;
BluePump:Pump;
GreenPump:Pump;
BSCU:BSCU;
assert

WheelBrakes.InBlue = BlueMeterValve.HydOut*FWD,
WheelBrakes.InGreen = GreenMeterValve. HydOut*FWD,
GreenMeterValve HydIn*AFWD = ShutOffSelectorValve.HydOut*FWD,
GreenMeterValve.Ctrl = BSCU.CMD,
GreenMeterValve. HydOut*BWD = GreenBrakesAssembly.Out,
MechPedalPosition.Pedal = PedalM.Out,
BlueMeterValve HydIn*"FWD = ASShutOffValve. HydOut"FWD,
BlueMeterValve.CTRL = MechPedalPosition.CMD,
BlueMeterValve.HydOut*BWD = BlueBrakesAssembly.Out,
ASShutOffValve.HydIn*AFWD = Junction.Out*FWD,
ASShutOffValve.CTRL = BSCU.AS,
ASShutOffValve. HydOut*BWD = BlueMeterValve.HydIn*"BWD,
ShutOffSelectorValve.HydIn*AFWD = GreenPump.Out*FWD,
ShutOffSelectorValve.CTRL = BSCU.Validity,
ShutOffSelectorValve. HydOut*BWD = GreenMeterValve.HydIn"BWD,
Accumulator.In = Junction.AccumOut,
Junction.Pump*FWD = IsolationValve.Out*FWD,
Junction.Accumin = Accumulator.Out,
Junction.Out"BWD = ASShutOffValve.HydIn"BWD,
IsolationValve.In*AFWD = BluePump.Out*FWD,
IsolationValve.Out*BWD = Junction.Pump*BWD,
BluePump.Out*BWD = IsolationValve.In"BWD,
GreenPump.Out*BWD = ShutOffSelectorValve.HydIn"BWD,
BSCU.Pedal1 = Pedal1.0ut,
BSCU.Pedal2 = Pedal2.0ut,
BSCU.PWR1 = BusbarA.Out,
BSCU.PWR2 = BusbarB.Out;

edon

301



B3. Revised BSCU Model: AltaRica Dataflow

This section presents a revision of the failure logic model of the BSCU as
discussed in Chapter Five of the Thesis. Figure 106 shows the top-level
BSCU model architecture which now contains two virtual “ mode observer”
components and a “trandator” component. The remainder of this section
provides the AltaRica Dataflow listing as generated by the Cecilia OCAS

“Trandate Moddl” function (with minor post-formatting)

HGidesModelbzerver

a

Translator
Pedall

alidityMonitor Validity

BSCUL BSU2

MonitoringModeObserver

BSCU BSCU

- ’ a
’—4 side side

Pedalz

[
A5
i
=
e_T % 1
Switch CHD

Figure 106 - Revised Architecture of the BSCU Model in AltaRica OCAS

node BSCUTranslator
flow
In:ValidityFMs:in;
Out:ValidityFMs:out;

state
Mode:{Effective, Ineffective};
event
Broadcastlneffective;
trans
true |- BroadcastIneffective -> Mode := Ineffective;
assert
Out = case {
((Mode = Ineffective) and (In = OK)) : FalseNeg,
else In
¥
init
Mode := Effective;
edon

node MonitoringModeObserver
state
Mode:{Effective, Ineffective};
BroadcastPending:bool;
event
TriggerSwitchStuck,
TriggerSwitchTerminated,
Broadcastlneffective;

302



trans
(Mode = Effective) |- TriggerSwitchStuck -> Mode := Ineffective, BroadcastPending := true;
(Mode = Effective) |- TriggerSwitchTerminated -> Mode := Ineffective, BroadcastPending := true;
(BroadcastPending and (Mode = Ineffective)) |- Broadcastineffective -> BroadcastPending := false;
init
Mode := Effective,
BroadcastPending := false;
extern
law <event Broadcastlneffective> = Dirac(0);
edon

node ModeObserver
state
Mode:{Alternate1, Alternate2, Normal, Untrustworthy};
BroadcastPending:bool;
event
COM(1failed,
COM2failed,
BroadcastAlternate1,
BroadcastAlternate2,
BroadcastUntrustworthy;
trans
// Reading mode events:
(Mode = Normal) |- COM1failed -> Mode := Alternate2, BroadcastPending := true;
(Mode = Normal) |- COM2failed -> Mode := Alternate1, BroadcastPending := true;
(Mode = Alternate1) |- COM1failed -> Mode := Untrustworthy, BroadcastPending := true;
(Mode = Alternate2) |- COM2failed -> Mode := Untrustworthy, BroadcastPending := true;
(Mode = Alternate2) |- COM1failed -> Mode := Alternate2;
(Mode = Alternate1) |- COM2failed -> Mode := Alternate1;
(Mode = Untrustworthy) |- COM1failed -> Mode := Untrustworthy;
(Mode = Untrustworthy) |- COM2failed -> Mode := Untrustworthy;
// Broadcasting modes:
((Mode = Alternate1) and BroadcastPending) |- BroadcastAlternate1 -> BroadcastPending := false;
((Mode = Alternate2) and BroadcastPending) |- BroadcastAlternate2 -> BroadcastPending := false;
((Mode = Untrustworthy) and BroadcastPending) |- BroadcastUntrustworthy -> BroadcastPending := false;
init

Mode := Normal,
BroadcastPending := false;
extern

law <event BroadcastAlternate1> = Dirac(0);

law <event BroadcastAlternate2> = Dirac(0);

law <event BroadcastUntrustworthy> = Dirac(0);
edon

node Switch

flow
AS1:AntiskidFMs:in;
AS2:AntiskidFMs:in;
CMD1:ControlFMs:in;
CMD2:ControlFMs:in;
AS:AntiskidFMs:out;
CMD:ControlFMs:out;
Validity:ValidityFMs:in;

state
ModePending:bool;
FailSt:{Lost, OK, Stuck1};

event
ProcessTerminated,
ProcessStuck,
TriggerTerminated,
TriggerStuck;

303



trans
(FailSt = OK) |- ProcessStuck -> FailSt ;= Stuck1, ModePending := true;
(FailSt = OK) |- ProcessTerminated -> FailSt := Lost, ModePending := true;
(ModePending and (FailSt = Stuck1)) |- TriggerStuck -> ModePending := false;
(ModePending and (FailSt = Lost)) |- TriggerTerminated -> ModePending := false;
assert
AS = case {
(FailSt = Lost) : AntiSkidOmiss,
(((validity = FalseNeg) or (FailSt = Stuck1)) or ((CMD1 = OK) and (Validity # FalsePos))) : AS1,
else AS2
b
CMD = case {
(FailSt = Lost) : LackOfBraking,
(((Validity = FalseNeg) or (FailSt = Stuck1)) or ((CMD1 = OK) and (Validity # FalsePos))) : CMD1,
else CMD2
N
ini
ModePending := false,
FailSt := OK;
extern
law <event TriggerTerminated> = Dirac(0);
law <event TriggerStuck> = Dirac(0);
edon

node ValidityMonitor
flow
In1:ValidityFMs:in;
In2;ValidityFMs:in;
PWR1:PowerFMs:in;
PWR2:PowerFMs:in;
Validity:ValidityFMs:out;
state
FailSt:{OK, StuckNeg, StuckPos};
Mode:{Alternate1, Alternate2, Normal, Untrustworthy};
event
ProcessStuck,
ProcessTerminated,
BroadcastAlternate1,
BroadcastAlternate2,
BroadcastUntrustworthy;
trans
((PWR1 = OK) and (PWR2 = OK)) |- ProcessTerminated -> FailSt := StuckPos;
(((FailSt = OK) and (PWR1 = OK)) and (PWR2 = OK)) |- ProcessStuck -> FailSt := StuckNeg;
// ‘Copying’ modes into a local state variable:
true |- BroadcastAlternate1 -> Mode := Alternate1;
true |- BroadcastAlternate2 -> Mode := Alternate2;
true |- BroadcastUntrustworthy -> Mode := Untrustworthy;
assert
Validity = case {
(((((ln1 = FalseNeg) or (In2 = FalseNeq)) or (FailSt = StuckNeg))

and (FailSt # StuckPos)) and (PWR1 = OK) or (PWR2 = OK))) : FalseNeg,
((((ln1 = FalsePos) or (In2 = FalsePos)) or (FailSt = StuckPos)) and (FailSt # StuckNeg))
and ((PWR1 = OK) or (PWR2 = OK))) : FalsePos,
else OK
¥
init
FailSt := OK,
Mode := Normal;
edon

304



node MonitorModule
flow
Pedal1:ControlFMs:in;
Pedal2:ControlFMs:in;
CMD:ControlFMs:in;
PWR:PowerFMs:in;
Validity:ValidityFMs:out;
state
FailSt:{OK, StuckNeg, StuckPos};
event
ProcessStuck,
ProcessTerminated,
ProcessorError;
trans
(PWR = OK) |- ProcessTerminated -> FailSt := StuckPos;
((FailSt = OK) and (PWR = OK)) |- ProcessorError -> FailSt := StuckPos;
((FailSt = OK) and (PWR = OK)) |- ProcessStuck -> FailSt := StuckNeg;
assert
Validity = case {
((((((CMD = Pedal1) and (CMD = Pedal2)) and (CMD # OK)) or (FailSt = StuckNeg))

and (FailSt # StuckPos)) and (PWR = OK)) : FalseNeg,
(((((FailSt = StuckPos) and (Pedal1 = OK)) and (Pedal2 = OK))
and (CMD = OK)) and (PWR = OK)) : FalsePos,
else OK
Y
init
FailSt := OK;
edon

node CommandModule
flow
Pedal1:ControlFMs:in;
Pedal2:ControlFMs:in;
PWR:PowerFMs:in;
AS:AntiskidFMs:out;
CMD:ControlFMs:out;
state
FailSt2:{ASstuckOff, ASstuckOn, OK};
FailSt1:{CMDstuckOff, CMDstuckOn, CalculationError, OK};
ModePending:bool;
event
ASprocessStuck,
ASprocessTerminated,
ProcessorError,
CMDprocessStuck,
CMDprocessTerminated,
TriggerFailed;
trans
((PWR # PowerOmiss) and (FailSt1 = OK)) |- ProcessorError
-> FailSt1 ;= CalculationError, ModePending := true;
((PWR # PowerOmiss) and (FailSt1 # CMDstuckOff)) |- CMDprocessStuck
-> FailSt1 := CMDstuckOn, ModePending := true;
(PWR # PowerOmiss) |- CMDprocessTerminated -> FailSt1 := CMDstuckOff, ModePending := true;
((PWR # PowerOmiss) and (FailSt2 # ASstuckOff)) |- ASprocessStuck
-> FailSt2 := ASstuckOn, ModePending := true;
(PWR # PowerOmiss) |- ASprocessTerminated -> FailSt2 := ASstuckOff, ModePending := true;
// Broadcasting mode event::
(ModePending and ((FailSt1 # OK) or (FailSt2 # OK))) |- TriggerFailed -> ModePending := false;
assert

AS = case {
((FailSt2 = ASstuckOff) or (PWR = PowerOmiss)) : AntiSkidOmiss,
((FailSt2 = ASstuckOn) and (PWR = OK)) : AntiSkidCommis,
else OK

13

305



CMD = case {
(((((Pedal1 = InadvertentBraking) or (Pedal2 = InadvertentBraking)) or (FailSt1 = CMDstuckOn))
and (FailSt1 # CMDstuckOff)) and (PWR = OK)) : InadvertentBraking,
((PWR = PowerOmiss) or
((((Pedal1 = LackOfBraking) and (Pedal2 = LackOfBraking)) or
(FailSt1 = CMDstuckOff)) and (FailSt1 # CMDstuckOn))) : LackOfBraking,
(((I(((((FailSt2 = ASstuckOn) or (FailSt1 = CalculationError)) or (Pedal1 = LackOfBraking)) or
(Pedal2 = LackOfBraking)) or (Pedal1 = ToolLittleBraking)) or
(Pedal2 = ToolLittleBraking)) and (FailSt1 = OK)) and (PWR = OK))
and (Pedal1 # InadvertentBraking)) and (Pedal2 # InadvertentBraking)) and (not ((Pedal1 = LackOfBraking)
and (Pedal2 = LackOfBraking)))) : Tool.ittleBraking,
(((((FailSt2 = ASstuckOff) and (PWR = OK)) and (FailSt1 = OK)) and (Pedal1 = OK))
and (Pedal2 = OK)) : LackOfAntiskid,
else OK
)
init
FailSt2 := OK,
FailSt1 := OK,
ModePending := false;
extern
law <event TriggerFailed> = Dirac(0);
edon

node BSCUchannel

flow
Pedal1:ControlFMs:in;
Pedal2:ControlFMs:in;
AS:AntiskidFMs:out;
PWR:PowerFMs:in;
CMD:ControlFMs:out;
Validity:ValidityFMs:out;

sub
MON:MonitorModule;
COM:CommandModule;

assert
AS = COM.AS,
CMD = COM.CMD,
Validity = MON.Validity,
MON.Pedal1 = Pedalt,
MON.Pedal2 = Pedal2,
MON.CMD = COM.CMD,
MON.PWR = PWR,
COM.Pedal1 = Pedalt,
COM.Pedal2 = Pedal2,
COM.PWR =PWR;

edon

node BSCU
flow

Pedal1:ControlFMs:in;
Pedal2:ControlFMs:in;
PWR1:PowerFMs:in;
PWR2:PowerFMs:in;
AS:AntiskidFMs:out;
CMD:ControlFMs:out;
Validity:ValidityFMs:out;

306



event
TriggerCOM1fall,
TriggerCOM2fall,
BroadcastAlternate1,
BroadcastAlternate2,
BroadcastUntrustworthy,
TriggerSwitchStuck,
TriggerSwitchTerminated,
Broadcastineffective;
sub
Translator:BSCUTranslator;
MonitoringModeObserver:MonitoringModeObserver;
Switch:Switch;
ValidityMonitor:ValidityMonitor;
BSCU2:BSCUchannel;
BSCU1:BSCUchannel;
SidesModeObserver:ModeObserver;
assert
AS = Switch.AS,
CMD = Switch.CMD,
Validity = Translator.Out,
Translator.In = ValidityMonitor.Validity,
Switch.AS1 = BSCU1.AS,
Switch.AS2 = BSCU2.AS,
Switch.CMD1 = BSCU1.CMD,
Switch.CMD2 = BSCU2.CMD,
Switch.Validity = BSCU1.Validity,
ValidityMonitor.In1 = BSCU1.Validity,
ValidityMonitor.In2 = BSCU2.Validity,
ValidityMonitor PWR1 = PWR1,
ValidityMonitor. PWR2 = PWR2,
BSCU2.Pedal1 = Pedalt,
BSCU2.Pedal2 = Pedal2,
BSCU2.PWR = PWR?2,
BSCU1.Pedal1 = Pedalt,
BSCU1.Pedal2 = Pedal2,
BSCU1.PWR = PWRT;
sync
<TriggerCOM1fail , BSCU1.COM.TriggerFailed , SidesModeObserver.COM1failed>,
<TriggerCOM2fail , BSCU2.COM.TriggerFailed , SidesModeObserver. COM2failed>,
<BroadcastAlternate1 , SidesModeObserver.BroadcastAlternate1 , ValidityMonitor.BroadcastAlternate1>,
<BroadcastAlternate2 , SidesModeObserver.BroadcastAlternate2 , ValidityMonitor.BroadcastAlternate2>,
<BroadcastUntrustworthy , SidesModeObserver.BroadcastUntrustworthy ,
ValidityMonitor.BroadcastUntrustworthy>,
<TriggerSwitchStuck , MonitoringModeObserver.TriggerSwitchStuck , Switch.TriggerStuck>,
<TriggerSwitchTerminated , MonitoringModeObserver. TriggerSwitchTerminated , Switch.TriggerTerminated>,
<BroadcastIneffective , MonitoringModeObserver.Broadcastineffective , Translator.Broadcastineffective>;
extern
law <event TriggerCOM1fail> = Dirac(0);
law <event TriggerCOM2fail> = Dirac(0);
law <event BroadcastAlternate1> = Dirac(0);
law <event BroadcastAlternate2> = Dirac(0);
law <event BroadcastUntrustworthy> = Dirac(0);
law <event TriggerSwitchStuck> = Dirac(0);
law <event TriggerSwitchTerminated> = Dirac(0);
law <event Broadcastlneffective> = Dirac(0);
edon

307



308



Appendix C:
Computation and Communications Platform DSFM

This appendix supplements Section 4.6 of Chapter Four by presenting case study materia for
integration of the DSFMs of the Wheel Braking System and a simplified hypothetical Common
Computing and Communications Infrastructure (for simplicity referred to as the IMA). The
Appendix is organised as following:

Section C1  presents modifications to the failure logic model of the Braking System Control

Unit (BSCU) of the WBS
Section C2  discusses the genera principles and assumed architecture of the Infrastructure
Section C3 presents the Domain Specific Failure Logic Model (DSFM) of the

Infrastructure

C1. Modification of the BSCU Model (WBS DSFM)

This section briefly returns to the failure logic model of the wheel braking system to implement

some trivial — but significant from the composition perspective — modifications.

The key necessary modification is the explicit introduction of the functionally passive
components (conceptual data flows) into the model. A new component is introduced into the
failure logic model of the BSCU for each communicating pair of components. For the sake of
consistency these components are introduced as close as possible to the software component
receiving data; Figure 52 and Figure 53 show the new model architectures of the BSCU and its
single channel respectively.

Internaly, the data flow components are trivial and contain exactly two identical groups of input
and output failure modes. Normally, components simply propagate input FMs unchanged.
However, the dataflow components may themselves fail, thus, causing any of the output FMs.
Figure 109 shows the complete AltaRica code of one of the dataflow components that transmits
CMD signals. This characterisation is identical for al flow components that transmit this type of
data (that is, all flows from both Pedal inputsto COM and MON modules, as well as the CMD flows
from COM modules to the respective side's MON module and BSCU’s switch). Similar
components are defined for Validity status and antiskid (AS) signal flows. Although the BSCU
dataflow components were manually defined, the simplicity and regular structure of their

characterisations allows automatic generation of code for any given AltaRicaflow type.

309



PURL

1

PIRZ

VALELow MONL
7 =3 Validicy

Pedall

ValidityMonitor

tUL VALElow_MONZ

L BSCU BScu
4 side side

PedalZz

[

ASflow COMZ CMDElow COMZ

VALflow_MOM1s

CMDE Low_coml

©_T
Switch i)

'ASElow_COHL

Figure 107 - Revised Model Architectur e of
BSCU

Jutincy
Pedall CMDflow Pl MON
; 5 i Walidit:
i
ki ‘ MON
CHDflow P1_COM CMDflow Pz MON
PedalZ - M
lj CHDELow_COM_MON
cMDElow _Fz_cOm

co com
Figure 108 - Revised Model Architectureof a
BSCU Channél

node WBS_CMDflow
flow
In: WBS_ControlFMs :in;
Out : WBS_ControlFMs : out ;
state

event

init
FailSt:= OK;
trans

assert

Out = ( case {
FailSt = TotalLoss
FailSt = Spontaneous
FailSt = Corrupt
and In != LackOfBraking

elsein});
edon

FailSt : {OK,TotalLoss,Corrupt,Spontaneous} ;

Disintegrates, Corruption, ExternalSource ;

// Failures and Failure State transitions

true |- Disintegrates -> FailSt := TotalLoss;

FailSt = TotalLoss |- ExternalSource -> FailSt := Spontaneous;
FailSt = OK |- Corruption -> FailSt := Corrupt;

// Failure Mode propagation conditions

and In != InadvertentBraking : TooLittleBraking,

. LackOfBraking,
: InadvertentBraking,

Figure 109 - Failure Logic Characterisation of CM D Dataflow Component (AltaRica)

It is also important to stress that this modification of the BSCU model isin no way dependent on

any of the IMA considerations. The model is merely extended to follow the “best practice” for
definition of composable models discussed in Section 4.4 (Chapter Four) of the Thesis.

The second group of modifications is concerned with replication of the interna failures (and

fallure state transitions) in some of the basic components of the BSCU. Namely, the

characterisation of BSCU’s COM and MON components needs to be changed to allow for externa

causes of failures. Figure 110 shows part of the new characterisation of the MON component.

Whilst these maodifications are specific to integration with IMA (e.g., the reason why there are

two external causes of the ProcessError failure will become clear in later sections) and seemingly

310



violate the non-intrusion principle of DSFM composition, they are only necessary because of the
limitation of the AltaRica OCAS language (see section 4.5.2 of the Thesis) and, again, are trivial
and easily automatable.

node WBS_MonitorModule

flow
Pedal1 : WBS_ControlFMs : in ;
Pedal2 : WBS_ControlFMs : in ;
CMD : WBS_ControlFMs : in ;
PWR : WBS_PowerFMs :in ;
Validity : WBS_ValidityFMs : out ;

state
FailSt : {OK,StuckPos,StuckNeg} ;

event
ProcessStuck, ProcessTerminated, ProcessorError,
ExternalProcessStuck, ExternalProcessTerminated,
ExternalProcessorError1, ExternalProcessorError2 ;

init
FailSt:= OK;

trans
// Failure state entry logic
PWR = OK |- ProcessTerminated -> FailSt := StuckPos;
FailSt = OK and PWR = OK |- ProcessorError -> FailSt := StuckPos;
FailSt = OK and PWR = OK |- ProcessStuck -> FailSt := StuckNeg;

// Emulating non-independent synchronisations (DSFM composition)

PWR = OK |- ExternalProcessTerminated -> FailSt := StuckPos;

FailSt = OK and PWR = OK |- ExternalProcessorError1 -> FailSt :=
StuckPos;

FailSt = OK and PWR = OK |- ExternalProcessorError2 -> FailSt :=
StuckPos;

FailSt = OK and PWR = OK |- ExternalProcessStuck -> FailSt :=
StuckNeg;

Figure 110 - Revised BSCU Monitor Component with " External" Failure Causes

Finaly, the entire failure logic model of the WBS is converted into AltaRica OCAS equipment
node and “frozen” for further editing.

C2. Introduction to the Computation Infrastructure and
Architecture Description

This section outlines some of the key principles of Integrated Modular Avionics (section C2.1)

and presents the assumed architecture of the platform (section C2.2)

C2.1 Introduction to the Integrated Modular Avionics

Having emerged in late 1990s Integrated Modular Avionics (IMA) emulates the traditional
federated approach to control of aircraft systems whilst improving supportability, reusability,

modifiability, obsolescence management and weight characteristics of controller hardware.

311



The improvements are achieved by segregation of provision and management of the shared
“computation” and “communication” resources into a dedicated aircraft level function and, thus, a
dedicated resource or infrastructure system (similar to electrical and hydraulic power generation
and distribution systems). This system, IMA, provides a standard interface (API) to application
software (organised into “partitions”) and contains both computer hardware and operating system
software. The specification of the operating system for civil aviation IMA is contained in ARINC
653 standard [8] which, in addition to the API layer, recognises the hardware interface layer or
“Core Executive” (CO-EX) as shownin Figure 111.

Application Applicati Appl
Partition 1 Partition 2 Partition N

Hardware

Figure 111 - Layersof theIMA

The key concept of the IMA is partitioning, which provides conceptual bridge between the
traditional “federated systems’ approach (mentioned above) and that of the IMA. Partitioning is
the IMA mechanism used to ensure that each application is allocated sufficient resources (e.g.,
memory and processing time) that no other application can access. Two types of partitioning are
traditionally identified:

e Spatial partitioning concerned with allocation and segregation of data storage resources
and communication channels. This is achieved by pre-allocating each major application
software component with a unique area of memory and communication channels at the
configuration time. The Memory Management Unit detects and prevents any call from a
partition to the memory it has not been allocated.

e Temporal partitioning concerned with policing access to a shared processing resource.
This is currently achieved by the fixed periodic scheduling with the precise schema
determined at the configuration time (thus, by construction, preventing partition

overruns).

From the IMA perspective the application software is organised into maor components
(partitions) and elementary components (processes). Whilst protection described above is applied
to partitions, processes within the same partition are not that strongly segregated. For example,
scheduling of the processes is not necessarily fixed and, thus, malfunctions (e.g., exposed design

errors) in one process may affect the timely execution of other processes.
312



In terms of physical architecture, the principal elements of the IMA are CPIOMs. Each CPIOM is
typically organised as a cabinet of electronic boards with a dedicated CPU board, a humber of
input and output boards (including a dedicated network interface board), as well as a shared
power supply unit and a bus backbone that connects all boards. In addition to the CPIOMs, the
IMA architecture often contains a number of generic Input Output Modules (IOMs) for
interfacing with the “non-IMA world”, as well as interfaces to system-specific modules (referred
here as LRUs or Line Replaceable Units); the latter are not considered to be part of the IMA
system (beyond their network interface). In line with the standard aerospace practice, the CPIOMs
and the IOMs are organised into two “sides’ which are typically independently powered and
physically located in different parts of the aircraft in order to minimise incidence of common

modes of failure and exposure to common threats.

As was mentioned above, the key goa of the IMA is to provide application software with a
common and stable abstraction layer for the hardware and network implementations. As such, the
IMA may in principle utilise a wide range of network technologies. In practice, today, the IMA is
most closely associated with the AFDX network [7] — an Ethernet-based switched redundant
network designed specifically for avionics applications. Similarly to the IMA emulating the
federated processing, the AFDX emulates a deterministic point-to-point network through the
concept of Virtual Link (VL). Each VL emulates a point-to-point communication channel between
one source End Node (EN) and a number of destination ENs. Similarly to partitions, the runtime
parameters of each VL (e.g., bandwidth) are determined off-line by the configuration of the ENs

and the network switches.

To achieve high reliability, the physical architecture of the AFDX is based on full duplex
interconnections and two redundant networks. Each network connection consists of two separate
twisted pairs for transmit and receive channels respectively. The dual networks (to an extent
analogous to the two IMA “sides’) consist of two sets of switches and cables and provide
redundant communication paths between any two ENs. The end nodes themselves, however, are
not duplicated. The data sent over avirtual link is transmitted on both networks by the source EN;

the “receiving” EN accepts the first valid frame and discards the second valid frame (if any).

313



C2.2 Architecture of the Infrastructure

In this case study, asimplified architecture of the IMA is assumed (Figure 112).

Side 1 Side 2
cPiom | o CPIOM
#1 S | End Node End Node #2
#1 #2  [€7
—> fer—
5
3
&
AFDX Network
—_—— —>
> End Node End Node ¢
CPIOM #3 #4 CPIOM
#3 #4
End Node
cPioM

8||:| .. | Scheduller I T

wBS
LRU/RDC
CPU Board

PSU

HARDWARE

Figure 112 - Smple IMA Architecture

The system consists of four identical CPIOMs. These modules have no 1/O cards except for an
AFDX end node (one per each CPIOM); the latter is considered external to the CPIOM and is
connected to it through a data bus as well as a DC power supply. The CPIOM contains three
major hardware sub-components. a Power Supply Unit (PSU), a CPU board, and a Memory
Management Unit (MMU). It is aso recognised that the CPIOM “contains’ operating system
software that can be organised into a number of key conceptua components (e.g., Scheduler).
Overadl the CPIOMs are grouped into two “sides’ powered from different AC busbars. the
CPIOMs 1 and 3 form side 1 and the CPIOMs 2 and 4 — side 2.

Each CPIOM’s End Node has seven ports: one (mentioned above) for power provision from the
CPIOM’s PSU, as well as three pairs of communication ports (one for communication with the
CPIOM via data bus, and two pairs for communication with two redundant AFDX switches).
Inside the EN, each communication port is connected to a dedicated “port interface” component
and to a data processing “pipeling’ that consists of a number of memory units and redundancy
management components. There are two redundancy management components. one concerned
with duplication of output data over two redundant networks (WriteRedundancy), and another —
with the consolidation of redundant input data streams (ReadRedundancy). Both redundancy

management components are driven by an internal clock, whereas port interfaces are assumed to
314



be asynchronous. Between every port and its adjacent redundancy management component is a

memory unit. All components are powered from the same DC power input port.

End Node

L o
Interface ]
S <
O =y
S 2%
———P» DC Power Clock@ [ g
o N =
~ o9
< .22
g X

Interface
S— Q
L WriteRedundancy 'R
L. <

Figure 113 - Internal Structure of an End Node

Asovercurrent conditionsin the AFDX network are a known threat to continuous operation of the
network components as well as the CPIOMs, each EN port interface component is protected from
dangeroudly high current through an integrated circuit breaker. However, the memory units and
redundancy management components do not include such protection. Conseguently, in presence
of external overcurrent, if interface protection fails, memory units and redundancy management
components will both fail and propagate the threat further to the adjacent components (including
the CPIOMs or the network switchesif applicable).

In addition to the four CPIOM’s End Nodes, the IMA contains an additional EN connected to a
WBS LRU. As this is a bespoke hardware unit that hosts the BSCU Switch and the Validity
Monitor components, it is considered to be part of the WBS rather than the IMA system; however,
the LRU’sEN interface with the IMA is clearly part of the AFDX network.

The CPIOMs' and the LRU’s end nodes are connected to two redundant switching networks —
Network A and Network B (Figure 114). Each network consists of two cascaded switches and a
number of duplex twisted pair cables. Switches are externally powered with two redundant

networks powered by the same busbars asthe CPIOMS' sides 1 and 2 respectively.

In addition to the power port, each switch has four pairs of data ports. Similarly to the ENs, each
port is connected to a dedicated port interface component and a memory unit. The eight memory
units are connected to the switching fabric component that forms the “core” of the switch. The
main function of the fabric is to copy the data between appropriate input and output ports
memory units (as determined by the configuration of the switch and the addressing portion of the
AFDX frame concerned); the fabric also performs traffic policing and frame filtering duties (to

ensure compliance with the Virtual Links parameters). Finally, the switching fabric is not

315



protected from overcurrent threats and its behaviour, when exposed, is similar to that of memory

units described above.

Network A

/ End Node #4/
CPIOM#4

End Node #3
/CPIOM #3
End Node #7
/LRU

End Node #2

/CPIOM #2

End Node #1
/CPIOM #1

Network B

/ End Node #4 /
CPIOM #4

End Node #3
/CPIOM #3
End Node #7
/LRU

End Node #2

/CPIOM#2

End Node #1
/CPIOM #1

Figure 114 - Redundant AFDX Networks

C3. Model Description

The architecture of the IMA DSFM is shown in Figure 115. It identifies key components
(CPIOMs, End Nodes, AFDX cables and Switches), internal FM flows between these components,
and “external” IMA output FMs. As the EndNode7 is connected to the WBS LRU that is
considered outside the scope of the IMA (and instead — part of the WBS domain), the data input
flows of this component are permanently set to ok (by the IMA equipment-level assertion). The
power input is bound (again by assertion) to outputs of both AC1 and AC2 “stubs’ so that the flow

takes value of PowerOmiss if, and only if, both stubs produce PowerOmiss on their outputs®.

The following two sub-sections present failure modes of the IMA, which can be organised into
two groups:
a) “Internal” Failure Modes and FM flows: that is, flows between IMA components shown
as connectors in Figure 115
b) “External” failure modes: which form the IMA interface to “subscribing” systems and
are related to the high-level functions of the IMA (shown as unconnected output ports of
the CPIOMs, the ENs and the Switches in Figure 115)

Subsequent sections C3.3 and C3.4 outline key modelling principles with respect to al major

components of the infrastructure DSFMs.

% In other words, it is assumed that this end node is powered by both busbars (with a single busbar being
sufficient for correct functioning of the component). The justification for this can be found in the WBS
description contained in Chapter Three of the Thesis (where the Validity Monitor of the BSCU is connected
to both power inputs)

316



AFDXcable3d AFDXcabledh
AFDXswitchlh
CPIOM3 CPIOM4
K AFDXcable312ZA £

& -y
L EndHode3 EndHoded .
AFDXC: 3B AFDXcabledB
AFD¥switchlB
=
g
S
5 B = "l CPIOM2
g0
b= AFDXcablezh e
b AFDXcable7d AFDXswitch2h
§ ‘Ea Endiode A EndHode2 .
oo
ok AFDXcableld ’E
) o g AFDXcable’B Hosts partitioh that
=55 +3 § brozdeasts Pedall Bigmal
H B CPTOML AFDXcableS1zZB AFDXcablezB :
ﬁ B - AFDXshri Leh?B foutside WBS scope)
P Tl &
HE Hosts partition that 1
'\'SL broadcasts Pedall signal iy &
joutside WBS scope)
AFDXcablelB
3 R 4 IS
AC1 - Lt
-+ + ACz

Figure 115 - Architecture of the IMA DSFM

C3.1 Infrastructure Failure Modes: “External” Output FMs and
IMA Functions

With respect to the second group of FMs, whilst it is believed that it is unrealistic to expect WBS
(and other “subscriber” systems’) engineers to model the dependence of their system(s) failure
behaviour on the infrastructure explicitly (i.e. as input failure modes of software- and passive
dataflow- components), the services offered by the IMA to subscribers can clearly be considered
part of the IMA engineering domain. However, specification of such “external” output FMs s not
atrivial matter for the IMA system. In the author’ s experience the current industrial practiceisto
consider asmall number of failure modes of the entire IMA platform such astotal loss of the IMA
system, partial loss (typically — loss of one “IMA side”) as well as partial and total loss of the
AFDX network.

This approach essentially assumes a single interaction between the IMA and subscriber systemsin
terms of “provision of the IMA service” and seems too coarse in the context of failure logic
modelling. At the other extreme, operating systems response for each of the service requests
identified in ARINC 653 (such as RECEIVE_QUEUING_MESSAGE and STOP_SELF) can be
considered as an interaction in its own right and associated with a number of failure modes.
However, service requests appear to be too detailed as a basis for construction of manageable
failure logic models. Furthermore, they only identify intended interactions, so failure modes
associated with unintended interactions — such as corruption of a partition’s memory — would not
be identified.

317



To achieve a reasonable trade-off between too coarse and too detailed views of the computational
platform, in this case study the approach proposed by Conmy [34-36] is adopted in a simplified
form. Conmy proposes six higher-level IMA functions:

1. Provision of secure and timely data flow to and from applications and input/output
devices
Controlled access to processing facilities
Provisions of secure data storage and memory management
Provision of consistent execution state

Provision of health monitoring and failure management

© g &~ WD

General provision of computing capability

Each of Conmy’s functions can be considered as an interaction initiated by the IMA system (or
more specifically, by each CPIOM) and can be associated with the set of failure modes. Since the
goal of this case study is not the construction of an accurate failure logic model of the IMA
system, but rather the demonstration and evaluation of the DSFM composition approach,
Conmy’s approach is simplified by omitting functions (4) and (5) from consideration. In terms of
health monitoring and failure management (5), this is a pure ssimplification of the IMA system,
whereas omission of the “provision of consistent execution state” function (4) can be further
justified by the model’s focus on run-time behaviour of the system. Furthermore, as the latter
function is concerned with loading of the applications data into IMA modules from the datastore
(typically, following an upgrade or modification [34, 35]), it may be more efficiently treated as a
separate domain (with failures of loading process as well as corruption of the datastore modelled
in adifferent DSFM).

Each of the remaining four functions is associated with a simplified set of failure modes
(predominantly identified by application of the Omission and Value keywords) and modelled as
an enumerated output flow of CPIOM components in AltaRica model (so that each CPIOM has four
enumerated output flows). Table 14 lists such CPIOM outputs, their enumeration symbols along

with a brief description of the failure modes they denote.

318



Table 14 - Classes of the“ External” IMA Output Failure Modes (IMA DSFM)

AltaRica Output Flow Enumeration FM description
Symbol

Relevant
IMA

Components

CPIOMs

Communications

TotalLoss

CPIOM fails to provide support to any of
the communication channels it is
responsible for

Partial Loss

CPIOM fails to provide support to one
or more (but not necessarily all)
communication  channels it s
responsible for

AddressingFailure

CPIOM directs data to the wrong
software component (partition) or output
port (this may affect one or more
channels)

ok

Failure Mode Privative (function is
provided as intended)

Computing

Incorrect

CPIOM performs computation required
by one or more partitions incorrectly

Stuck

CPIOM halts computation of one or
more partitions or processes (e.g. due
to corruption of process execution state
or CPU failure)

ok

FM privative

Datalntegrity

TotalLoss

Data stored or transmitted by, to or from
all partitions supported by the CPIOM is
lost/ unusable

PartialLoss

As above but for a subset of partitions

Corruption

Data is corrupted (affects one or more
partitions)

ok

FM privative

Scheduling

TotalLoss

CPIOM fails to schedule any of its
partitions  appropriately  (including
providing too little execution time)

PartialLoss

As above for a subset of partitions

PrioritiesLost

CPIOM s incapable of scheduling one
or more processes as intended (e.g.
due to corruption or loss of priorities
data)

ok

FM privative

End Nodes,
AFDX
Switches

NetworkInfrastructure XXX¢”

TotalLoss

All VLs' data sent along this path is lost
(not transmitted)

PartialLoss

Data sent along this path by one or
more VLs is lost

DataCorruption

Data sent along this path by one or
more VLs is corrupted (in such a way
that corruption cannot be detected by
the network component(s))

AddressingCorruption

Data sent along this path by one or
more VLs is misrouted to wrong
destination

ok

FM privative

" Components have a number of Networkinfrastructure output flows (related to all paths through the
component) — “XXX” is replaced by the path identifier. For instance, output flows form every End Node
components include NetworkinfrastructureOutA,  NetworkinfrastructureOutB,  NetworkinfrastructurelnA  and
NetworkinfrastructurelnB.

319



Of course IMA subscribers can aso be affected by the mafunction of network components
(switches and end nodes); consequently, these components also have “externa” output failure
modes. It is assumed that they interact with subscribers in terms of provision of a single function
— provision of network infrastructure — associated with four failure mode classes (TotalLoss,
PartialLoss, AddressingCorruption and DataCorruption). However, these failure modes are associated
with each path through a network component. So, for example, AltaRica characterisation of an
end node has four enumerated output flows (with the above enumeration symbols): two for
propagation of data from the CPIOM to the redundant AFDX networks and two for the reception
of data (namely, NetworkinfrastructureOutA, NetworkinfrastructureOutB, NetworkInfrastructurelnA and
NetworkinfrastructurelnB respectively); similarly, network switches have 12 sets of network

infrastructure output FMs (and, thus, 12 enumerated output flows®).

C3.2 Infrastructure Failure Modes: “Internal” FMs

Most of the internal FM flows within the IMA system are related to interactions in terms of data
signals between CPIOMs, End Nodes, AFDX cables and switches (and their respective sub-
components). In the simplified DSFM, only physical aspects of these interactions — in terms of
electrical current — are considered. Consequently, each network or CPIOM bus signal link is
associated with two failure mode classes — modelled as SignalOmis and HighCurrent enumeration
symbols in AltaRica. The former denotes total omission of the electrical signal and the latter an
overcurrent condition that potentialy threatens the physical integrity of the IMA’s hardware. So,
for example, an end node component has three groups of such output failure modes — associated
with two AFDX output ports and the CPIOM bus port — as well as three “symmetrical” groups of
input FMs. Note also that AFDX cables have two sets of input and two sets of output FMs since
they model two twisted pairs dedicated to propagation of signalsin both directions.

In addition to the dependence on interactions over data signal links, al hardware components
(with exception of cables) also depend on the power supply, which, in this DSFM, is associated
with the single omission FM (PowerOmiss). Note that the CPIOMs and the Network Switches are
powered from two AC busbars external to the system (but modelled in AltaRica as two trivia
“stub” components (since the language does not permit free system-level inputs), whereas End
Nodes are powered indirectly by the DC current provided by “their” CPIOM (or, in case of
EndNode7 — LRU)

® These are all called Infrastructure<X>to<Y>, where <X> is an incoming port of the switch and <Y> -
outgoing (e.g. “Infrastructure 3to2").

320



C3.3 Failure Logic Model: Network Components

The IMA DSFM contains three types of top-level network components: AFDX cables, End Nodes
and Switches; the latter two are complex components, whereas the cables are modelled as trivial

basic components.

The failure logic of complex network components is illustrated on an End Node. Each node
contains a number of basic components that represent “physical” sub-components of the node as
well asfour “virtual” components that determine Networkinfrastructure failure modes for each of the
paths through the node respectively. Figure 116 shows the former group of basic components
within a node organised, according to node design, into two splitting / merging pipelines. Each
path through the node passes through two port interface components, two memory units and either
a ReadRedundancy or a WriteRedundancy component (depending on the path’s orientation). All of
these components are sensitive to PowerOmiss input FM of the node, dataflow signal output FMs
of their “neighbours’ and — in case of the redundancy management components — ActivationOmiss
output FM of the shared Clock.

Memorylnit Ind

PortInterface Ind

MenoryUnit_In

{]
i

ReadRedundanc
Datalut

Memorylnit Inb
PorcInterface_In PortInterface_InB

{]

Clock

L}

MenorgUnit_Outh

FortInterface_Qutd

Menorylnit_ouc
PortInterface_Out = WriteRedundancy

Dataln Inb

NenoryUnit_Outhk

PortInterface_OutE

E OuthE

Figure 116 - Failure Logic Model of an End Node (Data Propagation " Pipelines' Only)

All port interface components are modelled by identical AltaRica components in this simplified
model. Each such component is capable of exhibiting a SignalOmiss FM as a result of the similar
input FM, PowerOmmis FM, or an interna failure (FailLost). Furthermore, when exposed to a
HighCurrent input FM the component moves to a failure handling state (through an instantaneous
Update event that models the void state transition trigger) and, as a result, also exhibits a
PowerOmiss FM. However, the internal protection from overcurrent may fail (ProtectionFail event)
which will obviously result in propagation of the HighCurrent FM. Finally, an internal failure of the
component (FailHighCurrent) may also result in this output FM. Figure 117 shows the complete

characterisation of the component’sfailure logic in AltaRica.

321



The failure logic of MemoryUnit components is conceptually different. These components only
exhibit SignalOmiss following an internal failure (TotalFailure which moves the component into a
Lost failure state) or an exposure to either PowerOmiss or HighCurrent input FMs (the latter also
moves the component into a Lost state since memory is assumed to be unprotected from

overcurrent conditions).

node IMA_Portinterface
flow
Out : {ok,SignalOmiss,HighCurrent} : out ;
In : {ok,SignalOmiss,HighCurrent} : in ;
Pwr : {ok,PowerOmiss} : in ;
state
FailSt : {OK,Lost, Threatens,ProtectionLost} ;
FHState : {OK,Tripped} ;
event
Update, FailLost, FailHighCurrent, ProtectionFail ;
init
FailSt := OK ;
FHState := OK ;
trans
// Failures & Failure States
FailSt != Lost |- FailLost -> FailSt := Lost;
FailSt I= Lost and FailSt = Threatens |- FailHighCurrent -> FailSt := Threatens;
FailSt = OK |- ProtectionFail -> FailSt := ProtectionLost;

//Failure Handling State: Protection against dangerous network current/voltage
In = HighCurrent and FailSt != ProtectionLost and FHState = OK |- Update -> FHState := Tripped;

assert
// Propagation conditions (electrical network)
Out = ( case {
FailSt = Lost or Pwr = PowerOmiss or
(FHState = Tripped and FailSt I= Threatens) or
(In = SignalOmiss and FailSt != Threatens) : SignalOmiss,
Pwr = ok
and ( FailSt = Threatens or
(In = HighCurrent and FailSt = ProtectionLost
and FHState != Tripped)) : HighCurrent,
else ok})
extern
law <event Update> = Dirac(0) ;
edon

Figure 117 - AltaRica Characterisation of Portl nterface Component

Notably, the SignalOmiss input failure mode (in absence of the previoudy stated conditions) does
not result in an output omission since the loss of input data would not result in deviations of the
memory units electrical interface. However, in this case, the correctness of the data held by the
memory will clearly be affected. To account for this effect, the memory unit can exhibit a
standard set of Networkinfrastructure output failure modes. When the unit isin Lost state or exposed
to signal or power omissions it will exhibit a TotalLoss FM. Internal failures of component can
also result in PartialLoss, DataCorruption and AddressingCorruption FMss (these failures, however, will
have no effect on any of the signal output FMs of the component). MemoryUnits are the only
components in an End Node capable of exhibiting infrastructure failure modes. Figure 118 shows

the AltaRica characterisation of the MemoryUnit (identical for al unitsin end nodes and switches).

322



node IMA_MemoryUnit
flow
In : {ok,SignalOmiss,HighCurrent} : in ;
Out : {ok,SignalOmiss,HighCurrent} : out ;
Pwr : {ok,PowerOmiss} : in ;
Networklnfrastructure : {ok, TotalLoss,PartialLoss,DataCorruption,AddressingCorruption} : out ;
state
FailSt : {OK Lost,PartialLoss,DataCorrupted,AddressingCorrupted} ;
event
TotalFailure, PartialFailure, AddressingCorruption, DataCorruption, Update ;
init
FailSt:= OK ;
trans
// Failure & Failure States
FailSt != Lost |- TotalFailure -> FailSt := Lost;
(In = HighCurrent) and FailSt = Lost |- Update -> FailSt := Lost;
FailSt = OK |- PartialFailure -> FailSt := PartialLoss;
FailSt = OK |- DataCorruption -> FailSt := DataCorrupted;
FailSt = OK |- AddressingCorruption -> FailSt := AddressingCorrupted;

assert
Out = (case {
In=HighCurrent : HighCurrent,
FailSt = Lost or Pwr = PowerOmiss  : SignalOmiss,
else ok});

NetworkInfrastructure = (case {
FailSt = Lost or Pwr = PowerOmiss or In = SignalOmiss : TotalLoss,

FailSt = PartialLoss : PartialLoss,
FailSt = DataCorrupted : DataCorruption,
FailSt = AddressingCorrupted : AddressingCorruption,
else ok});
extern
law <event Update> = Dirac(0) ;
edon

Figure 118 - AltaRica Characterisation of the MemoryUnit Component

Returning to the complex EndNode component, as was mentioned in section C3.1, in addition to
“physical” FM interfaces (i.e. signal and power FMs), the component can exhibit four sets of
infrastructure FMs related to four conceptual dataflow channels through the node. To determine
which of these output FMs are exhibited by the EndNode, four “virtual” components are
introduced (ChannellnA, ChannellnB, ChannelOutA and ChannelOutB — i.e. one for each set of FMs).
Each of these components is essentially a stateless propagation condition that determines the
deviation of the channel’ s behaviour based on the FMs exhibited by the relevant memory and port
interface components. Namely, the status of each channel depends on the infrastructure FMs of
two memory units and the data signal FMs of one interface port component. Any output FM of
the Portinterface results in the TotalLoss of the relevant channel(s); in terms of channels’ sensitivity
to the memory units infrastructure FMs, “virtual” components essentially implement an “or”
gate. Figure 119 shows the complete OCAS representation of the model architecture of an End

Node (for clarity Power FMs are not shown).

The failure logic models of AFDX switches (Figure 120) are conceptually similar to those of end
nodes where the logic of the only new basic component — SwitchingFabric — can be seen as a multi-
port extrapolation of the memory unit. The “virtual” channel components of the switch
consolidate four groups of failure modes of switch components (the infrastructure FMs of two

memory units and the switching fabric, as well as the signa FMs of one port interface
323



component). The regular structure of virtual components and their FM dependencies makes it
possible (and the sheer number of these components and their FM flows makes it efficient) to

automatically generate part of the switch model in AltaRica®.

InfrastructureInd Infrastructurelnb Infrastructurelutd Infrastructureluth

IE Ind
]
oiylinit I X\q
3 PortIntqriqce_InE
l—_l utd
L |
MemoryTiiit Outd ¥
= Portl rface_Dutd
<
Memorylyit Out &

PorcInterface_Qut TriceRegundancy
Dataln Ing

ChanmielInd ChannelInk

Mencbsinit In

Datalut

PortInterface In =)

HemoryUitc OutE

Figure 119 - Structur e of the EndNode Complex Component

Infrastructureltod Infrastructureitol Infrastructureitod Infrastructure3toZ Infrastructuredtol Infrastructuredtold
Infrastrutureltoz Infrastruztureltod Infrastrutureitod Infrastrycture3tol Infrastructure3tod Infrastructuredto?
Channglltod CharmglZtal Channgl2tod Charmgl3ta2 Channgldtol Charngldtaod
Charmelltoz Channelltod Channelito3 Charmel3tol Channel3tod Charmeldtoz
Memory Cutl
Memory Out3

f— Port_Outl i Port_nur3

E out3
Memory Inl
Port_Inl =
Inl
;—% % Memory Ind

= Port_Ind

Ind
Sw:Ltch:Lx_’ngabri: ’7|
Hemory Outz Hemory Dutd

Port_QOutl & re Fort_Outd

outz E_ = Outd
Memory_InZ Menory_Ind

Port_InZ = = Port_Ind

Ini Ind

Figure 120 - Structur e of the AFDXswitch Complex Component M odel

 The flows were generated (in equipment assertions- rather than graphical flow- form) from a trivial
application of concatenate function in MS Excel worksheet. Each switch contains 48 automatically
generated flows/assertions (four for each of the 12 possible channels through the switch)

324



C3.4 Failure Logic Model: CPIOMs

The failure logic mode architecture of CPIOMs (modelled as complex components — see Figure
121) isintentionally simplified to the extreme. In terms of hardware, only the CPU board and the
power supply unit (PSU) are recognised. The memory management unit (MMU) FLM component
represents a combination of the hardware MMU and the operating system services related to data
storage and retrieval. Both MMU and CPU board are sensitive to the PowerOmiss failure mode of
the PSU and to the HighCurrent input FMs of the CPIOM (ultimately exhibited by the CPIOM’s
end node). The latter causes both components to enter Lost failure states, whereas the former

propagates out as Lost and TotalLoss output FMs of the CPUboard and MMU respectively.

The “amalgamated” MMU is the sole provider of the Datalntegrity function, and thus the associated
CPIOM’s failure modes (see Figure 121). With exception of TotalLoss mentioned above, these
output FMs can only be caused by internal failures of the MMU.

Computing Schedulling Comminications Datalntegricy D Operating System
{CO-EX)
ConputationCore scheduller CommsService|
4 * . N
Jtani)

\\./ Dataln

| crmoara  — acatu

T ENpomwrer

PET
CPIOH Hardware

k Power /

Figure 121 - Structur e of the CPIOM Complex Component Model

In contrast, CPUboard does not directly cause any of the CPIOM FMs associated the IMA
functions; instead it influences three operating system conceptual components concerned with
provision of scheduling, communications service and core computation. The board component
can exhibit three “hardware services” FMs: Lost, PartiallyLost and Untrustworthy (with the exception
of Lost, mentioned above, these FMs can only be generated through internal failure of the
CPUboard). The Lost FM propagates through the operating system components and causes

TotalLoss FMs on all three functions. However, other FMs of the CPU board do not have a “fixed”

325



effect. Instead, normal events” (and normal states) internal to OS components determine the

effect. Toillustrate, Figure 122 shows AltaRica characterisation of the Scheduling component.

To conclude the description of CPIOM OS components it is important to note that, with the
exception of the ComputationCore, OS components may exhibit failure modes as a result of an

internal failure (e.g. due to O/S software errors).

Whilst the CPIOM model may be considered as unreadlistically simplistic and can be significantly
improved, for example, through a systematic application of LISA method [123] and/or
incorporation of Conmy’s IMA analysis results [34], a more detailed and internally accurate
model is not essential (and even value-adding) in terms of the demonstration of the approach to
the DSFM integration.

node IMA_CoEx_Scheduller

flow
SchedulingFunction : {ok, TotalLoss,PartialLoss,PrioritiesLost} : out ;
HWservices : {OK,Lost,PartiallyLost,Untrustworthy} : in ;

state
FailSt : {OK,Lost,PartitionLost,ProcessLost} ;
NormSt : {UnaffectedByHW,HWaffectsPartition,HWaffectsProcess} ;

event
FatalFailure, DeadlinesCorruption, PrioritiesCorruption,
CONDITION_ProcessAffected, CONDITION_PartitionAffected ;

init

FailSt := OK ;

NormSt := UnaffectedByHW ;
trans

// Scheduler failures (Failure State)

FailSt = OK |- FatalFailure -> FailSt := Lost;

FailSt = OK |- DeadlinesCorruption -> FailSt := PartitionLost;
FailSt = OK |- PrioritiesCorruption -> FailSt := ProcessLost;

// Sensitivity to HW failure (Normal State / Conditioning Event)
NormSt = UnaffectedByHW |- CONDITION_PartitionAffected -> NormSt := HWaffectsPartition;
NormSt = UnaffectedByHW |- CONDITION_ProcessAffected -> NormSt := HWaffectsProcess;
//(Note: Scheduler is *always* sensitive to total loss of HW services)
assert
// Scheduler Failure Modes:
SchedulingFunction = ( case {
HWservices = Lost or FailSt=Lost  : TotalLoss,

FailSt = PartitionLost or
HWservices |= OK
and NormSt = HWaffectsPartition : PartialLoss,

FailSt = ProcessLost or
HWservices = Untrustworthy
and NormSt = HWaffectsProcess . PrioritiesLost,

else ok})

edon

Figure 122 - AltaRica Characterisation of the Scheduler Component

™ As described in Chapter 3, to model the equivalent of FTA conditioning events, FLMM’s normal events
may be assigned probabilistic characteristic. These events are not counted towards cardinality of the
minimal cut sets/sequences in model analysis.

326



Appendix D:
Summary of the Aircraft Fuel System Review

This appendix expands upon a concise summary of the review of the Aircraft Fuel System
presented in Section 6.2.2 of Chapter Six.

The key high-level functions of the system include:

e Storage of fuel

e Fuel management (in-flight)
Engine feed (including cross-feed)
Provision of fuel reservesto feed tanks

Airframe protection load relief

O O O o

Drag reduction (maintaining adeguate Centre of Gravity)
0 Aircraft weight reduction (fuel jettison)
e Provision of cockpit interface and indications/ annunciation; the later includes
0 Fue Quantity & Distribution (each tank, overall fuel on board, centre of gravity)
0 Fue Temperature (in selected tanks)
0 Failure and system status annunciation
e On-ground Refuel / Defuel

In order to complete the review within the set timeframe it was decided not to subject system
functionality related to fuel jettison, venting, temperature indication and on-ground operationsto a
detailed examination. The review has identified the following key characteristics of the fuel
system (each described in more detail in the following sections of this Appendix):

(1) Complex modelogic

(2) Intentional architectural limitations

(3) Complexity of scale and design decomposition

(4) Circular dependencies and loops

(5) Time-dependency and reliance on consumable resource

D1. Complex Mode Logic

The fuel system is highly reliable and designed to provide continuous operation in presence of
failures. The system can be operated in a large number of modes with predominantly automatic

reconfiguration upon detection of failure. A key example of such reconfiguration can be derived

327



from a consideration of the liquid-mechanical architecture of the system and its fuel transfer
paths.

The system consists of eleven tanks: 4 feed tanks (one per engine), three reserve tanks on each
wing (Outer Tank, Mid Tank and Inner Tank) and a Trim Tank. All wing tanks are connected by
two transfer galleries — Gallery A and Gallery B (see Figure 123 for a schematic representation);
two additional galleries are used for connecting the wing tanks' galleries to the trim tank and for
cross feed.

Engine Engine
Feed Feed

Gallery A

Inner Tank

1 1

Inner Tank

1 l

Middle Tank Middle Tank

| I

Figure 123 - Schematic of Wing Tanks Ar chitecture

Gallery B

Feed Tank 1

Feed Tank 4

Overadl, the system must support three types of fuel transfer: main transfers (from the reserve
tanks to the feed tanks), load alleviation transfers (from the inner or mid tanks to outer tanks at
take-off and in the reverse direction before landing) and centre of gravity transfers (from the trim
tank to the wing reserve tanks). In a simplified view the system can be seen as progressing
through a number of modes (see Figure 124). In practice, however, some of the transfers may take
place in parallel and in normal operation each transfer is allocated to a particular transfer gallery

(and the corresponding valves and pumps).

IT Emptied

OT Replenished

MT Emptied
Main Transfers Main Transfers mpte Main Transfers
from ITs from MTs from OTs
No Transfers \TakeOff (14 Transfers\ Descend to Land [ LA Transfers
(initial mode) to OTs from OTs

Figure 124 - Simplified Phases of Oper ation

If asingle failure of pumps or valves is detected and if that failure affects the feasibility of the
transfers the system enters one of nine alternate modes (termed “workarounds’) reallocating
transfers to different galeries or, in some cases, inhibiting certain non-essential transfers.
Workarounds are also used for some cases of double failure. Figure 125 shows a significantly
simplified schematic of a mode model. Firgt, it is important to note that the shape of the model
suggests that a hierarchical mode modelling approach proposed by Papadopoulos [115] (see
section 5.7 of Chapter Five) is unlikely to yield significant value for this system (with transitions
between sub-states of different states, the hierarchy is likely to be a purely decorative facility).

328



Second, it should be noted that the model shows a degree of independence between the phase-of-
flight and the workaround modes.

oT

Take-Off . Descend to Land
No Transfers LA Transfers | Replenished o S - LA Transfers
(initial mode) to OTs from OTs

Failures A

OT Replenished

Y

WA A: \ Take-Off

No Transfers

Failures B
Failures C

Failures C

Failures C

Failures B

Failures B

WA B:
No Transfers

Take-Off
No Transfers Main Transfers

Figure 125 - Simplified Mode M odel of the Fuel System

In terms of independence it should also be noted that workarounds and phases-of-flight are not the
only modes found in the fuel system. The Fuel Quantity Management (Sub-) System (FQMS),
consisting of two specialised Remote Data Concentrators (RDCs) and a number of software
partitions (implemented on aircraft IMA), is organised in the standard “two-side’ aviation
architecture. Upon detection of abnorma FQMS behaviour (either through direct monitoring or
through detection of abnormal fuel distribution) the control of the Fuel System is handed over to

the passive side. This yields a set of FQMS modes that is largely orthogonal to the workarounds
and phases discussed above.

D2. Intentional Architectural Limitations

In addition to the modes described in the previous section, when system operation is fully
automated, the fuel system can also be operated in a manual mode with pilots controlling transfers
directly through the cockpit interface. The manual mode can be initiated by the pilots at any time

regardless of the system status; in addition it is entered when FQMS detects an unhandled
combination of two or more failures.

What makes manual mode remarkable is that the pilots do not have full control of the system. For
example, whilst they can initiate any main, load alleviation or centre of gravity transfers, these
transfers will only take place on their respective pre-allocated galleries; if the gallery equipment
(a pump or a valve) is affected or if the galery itself is suspected of leaking, the pilots cannot
utilise redundancy of the liquid-mechanical architecture. This limitation cannot be justified in

terms of the system model: the justification comes from a trade-off between fuel transfer

329



availability in rare circumstances (when manua mode is required) and the need to minimise the
likelihood of pilot error (that is increased by complex control tasks). The effect of the limited
mode on a failure logic model of the fuel system would be that certain fuel transfer paths (via
alternate routes) are unavailable in Manual Mode even in the absence of any relevant equipment

failures.

D3. Complexity of Scale and Design Decomposition

Aswasindicated above the fuel system can be divided into two distinct parts:
o A hydro-mechanical subsystem comprising 11 fuel tanks, four fuel galleries (including
cross-feed), and the associated valves and pumps
e A Fuel Quantity Management Sub-System (FQMS) consisting of in-tank probes, pump &
valve sensors, two specialised remote data concentrators (RDC) and various software
partitions implemented on the IMA platform.
FQMS controls the pumps and valves of the liquid-mechanical sub-system either through discrete
signals (via dedicated electronic interfaces on FQMS CPIOMSs) or via AFDX broadcasts.

The two sub-systems are designed in relative isolation, suggesting that any effective safety
analysis process should reflect this decomposition. Simplified partial failure logic models of the
two subsystems have been constructed during the review process. These experiments have
indicated that at early stages of development two sub-systems can be meaningfully analysed in
their own right. The analysis of the liquid-mechanical architecture can identify failures that may
lead to fuel becoming unusable (either by being isolated in the reserve tanks or through leaks).
Analysis of the FQMS could identify failure scenarios that lead to the management subsystem
inadvertently commanding transfers, erroneously commanding transfers on compromised paths or
failing to command transfers when needed. The models of the subsystems, however, could not be
effectively directly composed through input and output FM flows. Instead, the composition would
require the definition of complex “conceptual” or “virtua” components to explicitly represent
transfers as model entities. Every transfer component would have to contain a sub-component for
each redundant “path”. Each path, in turn, would contain a representation of valves, pumps and a
fuel galery. The model of paths and transfers could be integrated with the liquid-mechanical
failure logic model as two views of the same system elements (i.e. through direct links between
failures of the corresponding components in two models) and with the FQM S failure logic model

through failure mode flows.

Finally, review of the fuel system documentation has uncovered a case when the same set of
components (the liquid-mechanical architecture) is considered by separate safety analyses from

two different viewpoints: an ability to support effective transfers and the loss of fuel through

330



leaks™. Thisis aclear case of two engineering domains having been defined over the same scope
but from different viewpoints (see Table 5 in Section 4.3.1, page 129). This observation has
provided some further confidence in necessity of a flexible conceptual framework for platform

decomposition (advocated in Chapter Four)

D4. Circular Dependencies and Loops

Whilst the problem of loops in failure logic models is not new, reviews of the fuel system along
with preliminary partial experiments have provided a new insight into this issue. The fuel system
models contained two types of loops. model loops due to control feedback (e.g. closed-loop

control schemas) and strong circular dependenciesin abstract models.

With respect to the first type, it is important to note that control loops in design models in fact do
not necessarily result in loops in the failure logic models. If the sensing strategy is perfect — that
is, if failure-free sensors can be assumed to provide correct measurement of physical phenomena
regardless of the value of the characteristic being measured — there is generally no failure mode
dependency between the “primary” control channel and the feedback / monitoring channel. FM
flows are only established by:
o Imperfect sensing strategy (e.g. when some failure modes of the primary channel may
cause an unintended behaviour of the sensor)
e The failure logic modelling process if safety engineers wish to reflect “incidental
correctness’ scenarios accurately (e.g. failure of the sensors combined with coincidental
failure modes of the primary channel resulting in apparently correct overall behaviour of

the system)

Regardless of the cause this type of failure logic model loops is well recognised and only poses a
challenge to “backward search” approaches to model analysis or transformation (such as fault tree
synthesis). In contrast, forward search techniques, such as that proposed by Wallace [163] or a
sequence generation approach utilised throughout this thesis, are significantly less susceptible to

feedback loops and resolution strategies are often trivial (e.g. see Section 5.6.1).

However, failure logic modes may contain strong circular dependencies even in absence of
control feedback. The problem is particularly acute for models of reconfigurable and redundant
systems which abstract from the details of the actual reconfiguration schema (for example, to

assess the safety of the hardware architecture in its own right).

™ Whilst it was possible to construct a partial simplified failure logic model that combined these two
aspects, the resultant model became exceptionally complex (in terms of review and maintenance as well as
in terms of computational complexity of the analysis)

331



This type of loops are best illustrated on a modified simple example of a fuel system routinely
used on University of York continuous professional development courses on safety engineering
(Figure 126). The system consists of a single feed tank and two reserve tanks. The fud can be
transferred from each reserve tank to the feed tank or, aternatively, across the reserve tanks

(through a single dedicated transfer galery).

Engine

Feed Tank

o K0

Transfer Gallery
Left Right
Reserve Tank Reserve Tank

Figure 126 - Schematic of a Trivial Aircraft Fuel System

Considering the failure logic modd of the liquid-mechanical architecture of the system (without
the details of the controller and, thus, the details of the reconfiguration algorithm) the key failure
mode of the reserve tanks is an inability to provide fuel to the feed tank. Each reserve tank
exhibits this FM if it is both empty (e.g. through normal exhaustion of the fuel) and incapable of
receiving fuel from the ‘peer tank’. This logic clearly establishes a circular dependency between
the two tanks. What is noteworthy about this dependency is that the naive loop resolution strategy,
based on a delay in FM propagation, results in the incorrect overall behaviour of the system. In
particular, analysis of such model would suggest that in the absence of falure of the transfer
galery (and associated valves and pumps) the fuel is never exhausted. In other words, whilst the
delay in FM propagation alows analysis and simulation to converge to a stable state, this

equilibriumis erroneous.

Such strong circular failure mode dependencies can only be correctly resolved by enriching
failure logic models with a more complex loop resolution behaviour (that has no direct
engineering interpretation). For the above example this behaviour will inject “virtual” transient
failure modes (not detectable by the analysis engine) into all FM flows between tanks upon either
transfer tank’ s becoming empty. The resultant model stabilises in the correct state upon the expiry

of the ‘temporary’ FM injection.

332



Returning to the actual aircraft fuel system — the failure logic model of the liquid mechanical
architecture (see previous section) exhibited such strong circular dependencies; the problem was
further exacerbated by a number of fuel tanks and presence of two adternative galleries for most

fuel transfers.

D5. Time-Dependency and Reliance on Consumable

Resource

The naive system-level failure condition of the aircraft fuel system, implied in some of the above
sections, is an inability to provide fuel to the engines. However, this failure condition is obviously
reachable in a“nomina case” (i.e. in the absence of failures of any components) — on-board fuel
reserves can be depleted through a normal aircraft engine burn. In general, normal consumption of
fuel (along with consideration of the leaks) renders timing a key aspect of the system behaviour.
In fact, even at the level of functional failure condition any realistic specification requires explicit
reference to timing characteristics (e.g. “inability to provide fuel to the engines within less than 4

hours of awarning given to the flight crew [necessary for anormal diversion]”)

Furthermore, the time dependency as well as the consumable and finite nature of fuel as a
resource introduce a strong coupling between flight time, the exact amount of reachable fuel and,
even, the rates of fuel flow and leakage. Whilst the FLM Framework provides some facilities for
describing deviation from intent in timing and value domains the approach is likely to be too
coarse for systems that exhibit this degree of dependence on detailed timing and quantity
characteristics. Overdl, it is not clear whether the abstraction inherent in any failure logic

modelling approach is applicable to aredistic aircraft fuel system.

However, whilst this characteristic of the reviewed system is noteworthy and clearly poses
challenges to the FLM Framework presented in this thesis, it was adjudged to be unique to the
fuel system. In particular, no other aircraft system relies on a consumable resource and precise
timing characteristics to this degree: whilst other systems — such as electrical power generation &
distribution system and hydraulically powered systems — may rely on some consumable resources
(e.g. €eectrical batteries and hydraulic accumulators) this reliance is either transient (only
necessary for successful reconfiguration) or is considered to be the last resort option (that can be
pessimistically abstracted from in safety assessment and/or, if necessary, addressed by isolated
safety analyses).

333



334



AADL
AFDX
ARP
BSCU
CCA
CCF
CPIOM
DSFM
EMF
EN
EPDS
ETA
EVL
FC
FDEP
FHA
FLM

FLMM
FM

FMEA
FMECA
FPTC
FPTN

FT

FTA

GUI
HAZOP
HiP-HOPS
ICBM
IF-FMEA
IMA
ISAAC
LRU

MCS
MISSA

Abbreviations

Architecture Analysis and Design Language

Avionics Full-Duplex Switched Ethernet

Aerospace Recommended Practice (typicaly refersto the ARP-4761 document)
Braking System Control Unit

Common Cause Analysis

Common Cause Failure (atype of synchronisation in AltaRica OCAS)
Core Processing and Input/Output Module

Domain-Specific Failure Logic Model

Eclipse Modelling Framework

End Node

Electrical Power Distribution System

Event Tree Analysis

Epsilon Validation Language

Failure Condition

Functional Dependency [gate]

Functional Hazard A ssessment

Failure Logic Model

Failure Logic Modelling

Failure Logic Metamodel

Failure Mode

Failure Modes and Effects Analysis

Failure Modes Effects and Criticality Analysis

Failure Propagation and Transformation Calculus

Failure Propagation and Transformation Notation

Fault Tree

Fault Tree Analysis

Graphical User Interface

Hazard and Operability Studies

Hierarchically Performed Hazard and Origin and Propagation Studies
Inter-Continental Ballistic Missile

Interface-Focussed Failure Modes and Effects Analysis

Integrated Modular Avionics

Improvement of Safety Activities on Aeronautical Complex systems [project]
Line Replaceable Unit

Minimal Cut Set

More Integrated and Cost-Effective Systems Safety Assessment [project]

335



PAND Priority AND [gate]

PASA Preliminary Aircraft Safety Assessment

PSSA Preliminary System Safety Assessment

SEFT State/Event Fault Tree

SEI Software Engineering Institute (of Carnegie Mellon University, USA)
SHARD Software Hazard Analysis and Resolution in Design

SSA System Safety Assessment

TLE Top-Level Event

VL Virtual Link

WBS Whedl Braking System

336



10.

11.

12.

13.

14.

References

Avionics on the A380 (Workshop). 2005, Royal Aeronautical Society: London, UK.
Report on the Serious Incident to Airbus A319-111, Registration G-EZAC near Nantes,
France on 15 September 2006, 2009. Aircraft Accident Report: Nr. 4/2009, Air Accidents
Investigation Branch (Department of Transport): London, UK.

Abdulla, P.A., et d., Designing Safe, Reliable Systems Using Scade, in proceedings of 1st
International Symposium on Leveraging Applications of Formal Methods (ISoLA), 2004.
LNCS-4313, pp. 115-129. Springer-Verlag.

Actel Corporation, Developing AFDX Solutions. Application Note AC221, 2005.
Available from:  http://www.actel.com/documents/AFDX_Solutions AN.pdf  [Last
accessed: 1 March 2010]

Airbus France and ONERA, Common Cause Analysis: Coupling of Functional and

Geometrical Models. Dissemination  Presentation, 2005. Available from:
http://www.cert.fr/isaac/doc/EY DLT PR0503970 v2.pdf [Last accessed: 1 March 2010]
Airbus Operations & MISSA Project Consortium. MISSA Project Website. Available
from: http://www.missa-fp7.eu/ [Last accessed: 1 March 2010]

Airlines Electronics Engineering Committee (ARINC), Spoecification 664, Part 1: Aircraft
Data Network, Systems Concepts and Overview (ARINC 664-1). 2002, Aeronautical
Radio Inc.: Annapolis, MD.

Airlines Electronics Engineering Committee (ARINC), Avionics Application Software:
Sandard Interface (ARINC 653-1). 2003, Aeronautical Radio Inc.: Annapolis, MD.
Akerlund, O., et a., ISAAC, a Framework for Integrated Safety Analysis of Functional,
Geometrical and Human Aspects, in 3rd European Congress on Embedded Real Time
Systems (ERTS). Toulouse, France, 2006.

Andrews, J.D., To Not or not to Not!, in 18th International System Safety Conference
(1SC). Fort Worth, TX, 2000. System Safety Society.

Andrews, J.D., The Use of Not Logic in Fault Tree Analysis. Quality and Reliability
Engineering International, 2001(17): p. 143-150.

Andrews, JD. and J. Dugan, Dependency Modelling using Fault Tree Analysis, in
proceedings of 17th International System Safety Conference (1SSC), 1999, pp. 67-77.
System Safety Society.

Arnold, A., G. Point, A. Griffault, and A. Rauzy, The AltaRica Formalism for Describing
Concurrent Systems. Fundamenta Informaticae, 2000. 34: p. 109-124.

ASSERT Project Consortium. ASSERT Project Website. Available from:
http://www.assert-project.net/ [Last accessed: 1 March 2010]

337


http://www.actel.com/documents/AFDX_Solutions_AN.pdf
http://www.cert.fr/isaac/doc/EYDLT_PR0503970_v2.pdf
http://www.missa-fp7.eu/
http://www.assert-project.net/

15.

16.

17.

18.

19.

20.

21

22.

23.

24,

25,

26.

Atkinson, C. and T. Kilhne, Model-Driven Development: A Metamodeling Foundation.
|EEE Software, 2003. 20(5): p. 36-41.

Banach, R. and M.R. Poppleton, Retrenchment, Refinement and Smulation, in
proceedings of 1st International Conference of B and Z Users, 2000. LNCS-1878, pp.
304-323. Springer-Verlag.

Banach, R. and M. Bozzano, Retrenchment, and the Generation of Fault Trees for Satic,

Dynamic and Cyclic Systems, in proceedings of 25th International Conference on
Computer Safety, Reliability, and Security (SAFECOMP), 2006. LNCS-4166, pp. 127-
141. Springer-Verlag.

Bass, L., P. Clements and R. Kazman, Software Architecture in Practice. (2nd ed). SEI
Series in Software Engineering. 2003, Boston, MA: Addison-Wesley.

Bernard, R., et d., Experiments in Model-Based Safety Analysis: Flight Controls, in IFAC
Workshop on Dependable Control of Discrete Systems. Paris, France, 2007. The

International Federation of Automatic Control.

Bieber, P., C. Castel and C. Seguin, Combination of Fault Tree Analysis and Model
Checking for Safety Assessment of Complex System, in proceedings of 4th European
Dependable Computing Conference, 2002. LNCS 2485, pp. 19-31. Springer Verlag.
Bieber, P., et a., Integration of Formal Fault Analysis in ASSERT: Case Studies and

Lessons Learnt in 4th European Congress on Embedded Real-Time Software (ERTS).

Toulouse, France, 2008.

Boiteau, M., Y. Dutuit, A. Rauzy, and J.-P. Signoret, The AltaRica Data-Flow Language
in Use: Modelling of Production Availability of a Multi-Sate System. Reiability
Engineering and System Safety, 2006. 91(7): p. 747-755.

Bozzano, M. and A. Villafiorita, Improving System Reliability via Model Checking: The
FSAP/NUSMV-SA Safety Analysis Platform, in proceedings of 22nd International
Conference on Computer Safety, Reliability and Security (SAFECOMP), 2003. LNCS-
2788, pp. 49-62. Springer-Verlag.

Bozzano, M., et a., ESACS an Integrated Methodology for Design and Safety Analysis of

Complex Systems, in proceedings of European Safety and Reliability Conference
(ESREL), 2003, pp. 237-245. Balkema Publishers.

Bretschneider, M., Lessons Learnt About System Safety Assessment Based on Scade
Models (Presentation), in Model-based Safety Assessment (Journées MISSA). Toulouse,
France, 2010. CISEC / MISSA Project Consortium. Available from:
http://cisec.enseeiht.fr/index.php?option=com_content& view=article& id=53:news& catid

=37:past-events& Itemid=61 [Last accessed: 1 March 2010]

Briones, JF., M.A. de Miguel, J.P. Silva, and A. Alonso, Application of Safety Analyses
in_Model Driven Development, in proceedings of 5th IFIP WG 10.2 International
Workshop, 2007. LNCS 4761, pp. 93-104. Springer Berlin / Heidelberg.

338


http://cisec.enseeiht.fr/index.php?option=com_content&view=article&id=53:news&catid=37:past-events&Itemid=61
http://cisec.enseeiht.fr/index.php?option=com_content&view=article&id=53:news&catid=37:past-events&Itemid=61

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Caspi, P, D. Pilaud, N. Halbwachs, and J.A. Plaice, LUSTRE: A Declarative Language
for Programming Synchronous Systems, in proceedings of ACM Symposium on Principles
of Programming Languages (POPL), 1987, pp. 178-188. ACM.

Cassez, F., C. Pagetti and O. Roux, A Timed Extension for AltaRica. Fundamenta
Informaticae, 2004. 62(3-4): p. 291-332.

Cavallo, A., System Safety Assessment Based on Formal Models. Lessons Learnt by
Alenia Aeronautica (Presentation), in Model-based Safety Assessment (Journées MISSA).
Toulouse, France, 2010. CISEC / MISSA Project Consortium. Available from:
http://cisec.enseeiht.fr/index.php?option=com_content& view=article& id=53:news& catid
=37:past-events& Itemid=61 [Last accessed: 1 March 2010]

Cheng, B.M.W., JH.M. Lee and J.C.K. Wu, A Constraint-Based Nurse Rostering System
Using a Redundant Modeling Approach, in proceedings of 8th International Conference
on Toolswith Artificial Intelligence, 1996, pp. 140-148. |EEE Computer Society.

Cimatti, A., et a., NuSMV2: An OpenSource Tool for Symbolic Model Checking, in
proceedings of 14th International Conference on Computer Aided Verification (CAV),
2002. LNCS-2404, pp. 241-268. Springer-Verlag.

Clements, P., Comparing the SEl's Views and Beyond Approach for Documenting
Software Architectures with ANS -IEEE 1471-2000, 2005. Technical Note: Nr. CMU/SEI -
2005-TN-017, Software Engineering Institute, Carnegie Mellon University (SEI/CMU):
Pittsburgh, PA.

Clements, P., et a., Documenting Software Architectures: Views and Beyond. SEI Series
in Software Engineering. 2002, Boston, MA: Addison -Wesley.

Conmy, P., Performing Failure Analysis for IMA as a Separate System, 2001. DCSC
Technical Note: Nr. DCSC/TN/2000/20, The University of York.

Conmy, P., Safety Analysis of Computer Resource Management Software (PhD Thesis),

2006. Dep't of Computer Science, The University of York.

Conmy, P. and JA. McDermid, High Level Failure Analysis for Integrated Modular
Avionics, in 6th Australian Workshop on Industrial Experience with Safety Critical
Systems and Software. Brisbane, Australia, 2001.

Contini, S., G.G.M. Cojazzi and G. Renda, On the Use of Non-Coherent Fault Trees in
Safety and Security Sudies. Reliability Engineering and System Safety, 2008. 93: p.
1886-1895.

Damm, W., B. Josko and T. Peikenkamp, Contract Based |SO CD 26262 Safety Analysis,
in 2009 SAE World Congress. Detroit, MI, 2009. SAE International .

Dassault Aviation, Cecilia Workshop (c) OCAS Module: System Design and Analysis
(v4.3). User Manual, Paris, France, 2007.

Dawkins, SK., et a., Issues in the Conduct of PSSA, in 17th International System Safety
Conference (1SSC). Unionville, VA, 1999. System Safety Society.

339


http://cisec.enseeiht.fr/index.php?option=com_content&view=article&id=53:news&catid=37:past-events&Itemid=61
http://cisec.enseeiht.fr/index.php?option=com_content&view=article&id=53:news&catid=37:past-events&Itemid=61

41.

42.

43.

45,

46.

47.

48.

49,

50.

51.

52.

53.

55.

56.

Dohmen, G., SPEEDS Methodology — a White Paper, 2008. Technical Report, SPEEDS
Project.

Domis, D. and M. Trapp, Integrating Safety Analyses and Component-Based Design, in

27th International Conference on Computer Safety, Reliability and Security
(SAFECOMP). Newcastle upon Tyne, UK, 2008. Springer Verlag.
Domis, D. and M. Trapp, Component-Based Abstraction in Fault Tree Analysis, in

proceedings of 28th International Conference on Computer Safety, Reliability and
Security (SAFECOMP), 2009. LNCS 5775, pp. 297-310. Springer-Verlag.

Dugan, J., S.J. Bavuso and M.A. Boyd, Dynamic Fault-Tree Models for Fault-Tolerant
Computer Systems. |EEE Transactions on Reliability, 1992. 41(3): p. 363-377.

Eclipse Foundation. Epsilon Home Page. Available from:
http://www.eclipse.org/gmt/epsilon/ [Last accessed: 2 March 2010]

Eclipse Foundation. Eclipse Modelling Framework web pages. [Web Page]; Available
from: http://www.eclipse.org/modeling/emf/ [Last accessed: 2 March 2010]

Eclipse Foundation. Emfatic Article in Eclipse Wiki. Available from:
http://wiki.eclipse.org/Emfatic [Last accessed: 2 March 2010]

Ericson, C., Fault Tree Analysis - A History, in 17th International System Safety
Conference (1SSC). Orlando, FL, 1999. System Safety Society.

Ericson, C., Hazard Analysis Techniques for System Safety. 2005, Hoboken, NJ: John
Wiley & Sons.

ESACS Project Consortium. ESACS Project Website. Available from: www.esacs.org
[Last accessed: 1 March 2010]

Esterel Technologiess SCADE Design Verifier Webpage. Available from:
http://www.esterel-technol ogies.com/products/scade-suite/design-verifier [Last accessed:
1 March 2010]

Esterel Technologies. SCADE Suite Webpage. Available from: http://www.esterel-
technol ogies.com/products/scade-suite/ [Last accessed: 1 March 2010]

European Aviation Safety Agency, Paragraph 1309: Equipment, Systems and
Installations (CS-25 (Amendment 4)). 2007, EASA: Cologne, Germany.[Certification

Requirements)

European Committee for Electrotechnical Standardization, Railway Applications - Safety
Related Electronic Systems for Sgnalling (CENELEC ENV 50129). 1998, CENELEC:
Brussels, Belgium.[European Standard]

European Organisation for the Safety of Air Navigation (EUROCONTROL), Air
Navigation System Safety Assessment Methodology (SAF.ET1.ST03.1000-MAN-01 ). 2006,
EUROCONTROL: Brussels, Belgium.[Standard]

Feiler, P. and A. Rugina, Dependability Modeling with the Architecture Analysis &
Design Language (AADL), 2007. Nr. CMU/SEI-2007-TN-043, Software Engineering

Institute, Carnegie Mellon University (SEI/CMU): Pittsburgh, PA.
340



http://www.eclipse.org/gmt/epsilon/
http://www.eclipse.org/modeling/emf/
http://wiki.eclipse.org/Emfatic
http://www.esacs.org/
http://www.esterel-technologies.com/products/scade-suite/design-verifier
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Fenelon, P. and JA. McDermid, New Directions in Software Safety: Causal Modelling as
an Aid to Integration, 1992. HISE Technical Report, High Integrity Systems Engineering

Group, Dep't of Computer Science, The University of York: York, UK.

Fenelon, P. and JA. McDermid, An Integrated Toolset for Software Safety Analysis. The
Journal of Systems and Software, 1993. 21(3): p. 279-290.

Ge, X., R. Paige and JA. McDermid, Probabilistic Failure Propagation and

Transformation Analysis, in proceedings of 28th International Conference on Computer
Safety, Reliability, and Security (SAFECOMP), 2009. LNCS 5775, pp. 215-228. Springer
Verlag.

Giese, H.,, M. Tichy and D. Schilling, Compositional Hazard Analysis of UML
Components and Deployment Models, in 23rd International Conference on Computer
Safety, Reliability and Security (SAFECOMP). Potsdam (Germany), 2004. Springer-
Verlag.

Griffault, A. and G. Point, On the Partial Translation of Lustre Programs into the
AltaRica Language and Vice Versa, 2006. Research Report: Nr. RR-1415-06, Laboratoire

Bordelais de Recherche en Informatique (Université Bordeaux): Bordeaux, France.

Grunske, L. and B. Kaiser, Automatic Generation of Analyzable Failure Propagation

Models from Component-Level Failure Annotations, in 5th International Conference on
Quality Software (QSIC). Melbourne, Australia, 2005. |EEE Computer Society.

Habli, I. and T. Kelly, Achieving Integrated Process and Product Safety Arguments, in
15th Safety-critical Systems Symposium (SSS). Bristol, UK, 2007. Springer.

Harel, D., Satecharts. A Visual Formalism for Complex Systems. Science of Computer
Programming, 1987. 8(3): p. 231-274.

Harel, D., et a., Satemate: a Working Environment for the Development of Complex

Reactive Systems, in proceedings of 10th International Conference on Software
Engineering, 1988, pp. 396-406. |EEE Computer Society.

Heimdahl, M.P.E., Y. Choi and M. Whalen, Deviation Analysis Through Model
Checking, in proceedings of 17th IEEE International Conference on Automated Software
Engineering (ASE), 2002, pp. 37-46. IEEE Computer Society.

Hofmeister, C., R. Nord and D. Soni, Applied Software Architecture. Object Technology
Series, G. Booch, |. Jacobson, and Rumbaugh series ed. 1999, Reading, MA: Addison
Wesley Longman.

Hubka, V. and W.E. Eder, A Sientific Approach to Engineering Design. Design Studies,
1987. 8(3): p. 123-137.

IBM. IBM Rational Satemate Webpage. Available from:  http://www-
01.ibm.com/software/awdtool /statemate/ [Last accessed: 1 March 2010]

Ingtitute of Electrical and Electronic Engineers, Draft Recommended Practice for
Architectural Description (IEEE P1471/D4.1). 1998, IEEE: New York, NY.[Draft
Standard]

341


http://www-01.ibm.com/software/awdtools/statemate/
http://www-01.ibm.com/software/awdtools/statemate/

71.

72.

73.

74.

75.

76.

77

78.

79.

80.

81.

82.

83.

84.

International Electrotechnical Commission (IEC), Analysis techniques for system
reliability — Procedure for failure mode and effects analysis (FMEA) (IEC 60812). 2006,
IEC: Geneva, Switzerland.[International Standard]

International Electrotechnical  Commission (IEC) and [.S.0. (ISO), Information
Technology - Open Systems Interconnection - Basic Reference Model: The Basic Model
(ISO/IEC 7498-1). 1994, ISO/IEC: Geneva, Switzerland.[International Standard]

ISAAC Project Consortium. |SAAC Project Website. Available from: http://www.isaac-
fp6.org/ [Last accessed: 1 March 2010]

lwu, F., et a., Compositional Analysis and Verification Approaches to Safety Analysis
and Systems Modelling, 2005. Airbus Dependability Network White Paper (D1.1), Airbus
DepNet Consortium: Filton, UK.

Johnston, B.D. and R.H. Matthews, Noncoherent Structure Theory: A Review of its Role
in Fault Tree Analysis, 1983. Nr. SRD R245, United Kingdom Atomic Energy Authority -
Safety and Reliability Directorate.

Joshi, A. and M.P.E. Heimdahl, Behavioral Fault Modelling for Model-based Safety
Analysis, in proceedings of 10th IEEE High Assurance Systems Engineering Symposium
(HASE), 2007, pp. 199-208. IEEE Computer Society.

Joshi, A., M.P.E. Heimdahl, S.P. Miller, and W.W. Whaen, Model-Based Safety
Analysis, 2006. Contractor Report: Nr. NASA/CR-2006-213953, US National Aeronautics
and Space Administration (NASA): Hampton, VA.

Josko, B., Q. Ma and A. Metzner, Designing Embedded Systems Using Heterogeneous
Rich Components, in 18th INCOSE International Symposium. Utrecht, Netherlands, 2008.
International Council on Systems Engineering (INCOSE).

Kaiser, B., A Fault-Tree Semantics to Model Software-Controlled Systems.
Softwaretechnik-Trends, 2003. 23(3).

Kaiser, B. and C. Gramlich, Sate-Event-Fault-Trees — A Safety Analysis Model for

Software Controlled Systems, in proceedings of 23rd International Conference on
Computer Safety, Reliability, and Security (SAFECOMP), 2004. LNCS 3219, pp. 195
209. Springer Berlin/ Heidelberg.

Kaiser, B., P. Liggesmeyer and O. Méackel, A New Component Concept for Fault Trees, in

proceedings of 8th Australian workshop on Safety critical systems and software, 2003. 33,
pp. 37-46. Australian Computer Society.

Kehren, C., et al., Advanced Smulation Capabilities for Multi-Systems with AltaRica, in
24th International System Safety Conference (1SSC). Providence, RI, 2004. System Safety
Society.

Kelly, T., Arguing Safety - A Systematic Approach to Managing Safety Cases (PhD

Thesis), 1999. Dep't of Computer Science, The University of York.
Kelly, T., A Systematic Approach to Safety Case Management, in SAE 2004 World

Congress. Detroit, M1, 2004. Society of Automotive Engineers.
342


http://www.isaac-fp6.org/
http://www.isaac-fp6.org/

85.

86.

87.

88.

89.

90.
91.

92.

93.

94.

95.

96.

97.

98.

99.

Kletz, T., HAZOP and HAZAN: Identifying and Assessing Process Industry Hazards. (4th
ed). 1999, Rugby, UK: Institution of Chemical Engineers (IChemE).
Kolovos, D., R. Paige and F. Polack, Eclipse Development Tools for Epsilon, in Eclipse

Summit Europe, Eclipse Modelling Symposium. Esslingen (Germany), 2006.

Laboratoire Bordelais de Recherche en Informatique. AltaRica Project Website. Available
from: http://altarica.labri.fr/ [Last accessed: 1 March 2010]

Ladkin, P.B. The Why-Because Analysis Homepage. Available from: http://www.rvs.uni-
bielefeld.de/research/WBA/ [Last accessed: 2 March 2010]

Lawrence, B., A380 Aircraft Safety Process, in proceedings of 1st IET International
Conference on System Safety, 2006, pp. 95-115 (Keynote Presentation). Institute of

Engineering and Technology (1ET).
Leveson, N., Safeware: System Safety and Computers. 1995: Addison-Wesley.
Leveson, N., White Paper on Approaches to Safety Engineering, 2003. Submission to the

Columbia Accident Investigation Board, Massachusetts Institute of Technology:
Cambridge, MA.

Leveson, N.G., M.P.E. Heimdahl, H. Hildreth, and JD. Reese, Requirements
Soecification for Process Control Systems. |IEEE Transactions on Software Engineering,
1994. 20(9): p. 684-707.

Lewis, B. and P. Feiler, Multi-Dimensional Model Based Engineering for Performance
Critical Computer Systems Using AADL, in 3rd European Congress on Embedded Real
Time Systems (ERTS). Toulouse, France, 2006.

Lisagor, O., Work Package 4 Development Description Report - Issue A, 2009. MISSA
Project Deliverable: Nr. D4.10, University of York & MISSA Project Consortium: Y ork,
UK.

Lisagor, O. and T. Kelly, Incremental Safety Assessment: Theory and Practice, in 26th
International System Safety Conference (1SSC). Vancouver, 2008. System Safety Society.
Lisagor, O., JA. McDermid and D.J. Pumfrey, Towards a Practicable Process for
Automated Safety Analysis, in 24th International System Safety Conference (1SC).
Albuquergue, NM, 2006. System Safety Society.

Lisagor, O., et a., Towards Safety Analysis of Highly Integrated Technologically

Heterogeneous Systems — A Domain-Based Approach for Modelling System Failure
Logic, in 24th International System Safety Conference (ISSC). Albuquerque, NM, 2006.
System Safety Society.

Liu, S. and R. Adams, Limitations of Formal Methods and an Approach to Improvement,

in proceedings of 2nd Asia Pacific Software Engineering Conference, 1995, pp. 498-521.
|EEE Computer Society.

Lutz, R. and R. Woodhouse, Bi-directional Analysis for Certification of Safety-Critical
Software, in 1st International Software Assurance Certification Conference (ISACC'99).
Chantilly, VA, 1999.

343


http://altarica.labri.fr/
http://www.rvs.uni-bielefeld.de/research/WBA/
http://www.rvs.uni-bielefeld.de/research/WBA/

100.

101.

102.

108.

104.

105.

106.

107.

108.

1009.

110.

111

112.

113.

114.

Majdara, A. and T. Wakabayashi, Component-Based Modelling of Systems for Automated
Fault Tree Generation. Reliability Engineering and System Safety, 2009. 94(6): p. 1076-
1086.

Malhotra, M. and K.S. Trivedi, Power-Hierarchy of Dependability-Model Types. |EEE
Transactions on Reliability, 1994. 43(3): p. 493-502.

Mason, P.A.J., MATrA: Meta-modelling Approach to Traceability for Avionics (PhD

Thesis), 2002. Dep't of Computer Science, University of Newcastle.
Mauri, G., Integrating Safety Analysis Techniques, Supporting Identification of Common

Cause Failures (PhD Thesis), 2000. Dep't of Computer Science, The University of Y ork.
Mauri, G., JA. McDermid and Y. Papadopoulos, Extension of Hazard and Safety
Analysis Techniques to Address Problems of Hierarchical Scale. IEE Digest, 1998.
98/249: p. 4.1-4.6.

McDermid, JA. and D.J. Pumfrey, A Development of Hazard Analysis to aid Software
Design, in proceedings of 9th Conference on Computer Assurance (COMPASS'94), 1994,
pp. 17-25. |[EEE.

McDermid, JA. and D.J. Pumfrey, Software Safety: Why is there no Consensus?, in 19th
International System Safety Conference (ISSC). Huntsville, AL, 2001. System Safety
Society.

McDermid, JA., M. Nicholson, D.J. Pumfrey, and P. Fenelon, Experience with the
application of HAZOP to computer-based systems, in proceedings of 10th Conference on
Computer Assurance (COMPASS'95), 1995, pp. 37-48. IEEE.

Mokos, K., et a., Towards Compositional Safety Analysis via Semantic Representation of

Component Failure Behaviour, in proceedings of 8th Joint Conference on Knowledge-
Based Software Engineering, 2008. 180, pp. 405-414. |0OS Press.

Motor Industry Software Reliability Association, Guidelines for Safety Analysis of
Vehicle Based Programmable Systems 2007, MISRA: Nuneaton, UK.[MISRA Guidance]
Object Management Group Inc, Human-Usable Textual Notation (HUTN) Specification
2004, OMG: Needham, MA.

Pagetti, C., F. Cassez and O. Roux, Hierarchical Modelling and Verification of Timed
Systems in Timed AltaRica, in 1st Workshop on Formal Aspects of Component Software
(FACS). Pisa, Italy, 2003.

Pahl, G. and W. Beitz, Engineering Design: A Systematic Approach. 1997, London:
Springer-Verlag.

Palshikar, G.K., Temporal Fault Trees. Information and Software Technology, 2002. 44:
p. 137-150.

Papadopoulos, Y., Hierarchically Performed Hazard Origin and Propagation Sudies, in

proceedings of 18th International Conference on Computer Safety, Reliability, and
Security (SAFECOMP), 1999. LNCS-1698, pp. 139-152. Springer-Verlag.

344



115.

116.

117.

118.

119.

120.

121.

122.

123.

124,

125.

126.

127.

128.

129.

Papadopoulos, Y., Safety-Directed System Monitoring Using Safety Cases (PhD Thesis),
2000. Dep't Computer Science, The University of York.

Papadopoulos, Y. and M. Maruhn, Model-Based Synthesis of Fault Trees from Matlab-
Smulink Models, in International Conference on Dependable Systems and Networks
(DSN). Goteborg (Sweden), 2001. |EEE Computer Society.

Papadopoulos, Y., JA. McDermid, R. Sasse, and G. Heiner, Analysis and Synthesis of the
Behaviour of Complex Programmable Electronic Systems in Conditions of Failure.
Journal of Reliability Engineering and System Safety, 2001. 71(3): p. 229-247.

Parnas, D.L., On a 'Buzzaword': Hierarchical Sructure, in proceedings of 6th IFIP

Congress on Information Processing, 1974, pp. 336-339. North-Holland.

Peikenkamp, T., et a., Towards a Unified Model-Based Safety Assessment, in
proceedings of 25th International Conference on Computer Safety, Reliability and
Security (SAFECOMP), 2006. LNCS-4166, pp. 275-288. Springer-Verlag.

Pentti, H. and H. Atte, Failure Modes and Effects Analysis of Software-Based Automation
Systems, 2002. STUK Technical Report: Nr. STUK-YTO-TR-190, Radiation and Nuclear
Safety Authority: Helsinki, Finland.

Pidcock, W. What are the Differences Between a Vocabulary, a Taxonomy, a Thesaurus,

an Ontology, and a Meta-model? ; On-line Article. Available from:
http://infogrid.org/wiki/Reference/PidcockArticle [Last accessed: 1 March 2010]

Point, G. and A. Rauzy, AltaRica: Constraint Automata as a Description Language.
Journal Européen des Systémes Automatises, 1999. 33(8-9): p. 1033-1052.

Pumfrey, D.J.,, The Principled Design of Computer System Safety Analyses (D.Phil
Thesis), 1999. Dep't Computer Science, The University of York.

Radio Technica Committee for Aeronautics (RTCA), Software Considerations in
Airborne Systems and Equipment Certification (DO-178b (also ED-12B)). 1994, RTCA /
EUROCAE: Washington, DC / Malakoff, France.[Means of Compliance Guidance]
Rauzy, A., The AltaRica DataFlow Language: Syntax, 2002. Technical Note: Nr.
AltaRica/TNO2-1, ARBoost Technologies. Marseilles, France.

Rauzy, A., Mode Automata and Their Compilation into Fault Trees. Reliability
Engineering and System Safety, 2002. 78(1): p. 1-12.

Reese, J.D., Software Deviation Analysis (PhD Thesis), 1996. University of California,

Irvine.

Reese, JD. and N.G. Leveson, Software Deviation Analysis, in proceedings of 19th

International Conference on Software Engineering, 1997, pp. 250-260. ACM.

Ross, F., P. van Been and T. Walsh, Handbook of Constraint Programming. Foundations
of Artificial Intelligence, J. Hendler, H. Kitano, and B. Nebel series ed. 2006, Oxford,
UK: Elsevier.

345


http://infogrid.org/wiki/Reference/PidcockArticle

130.

131

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

Sagan, S., The Limits of Safety: Organizations, Accidents and Nuclear \Weapons.
Princeton Studiesin International History and Politics, J.L. Gaddis, J.L. Snyder, and R.H.

Ullman series ed. 1993, Princeton, NJ: Princeton University Press.
Sartor, V., Plateforme CECILIA AltaRica-OCAS. L' Atelier de Sireté de Fonctionnement

de Dassault Aviation (Presentation), in 2émes Journées AltaRica (2003 AltaRica

Workshop). Bordeaux, France, 2003. Available from:
http://altarica.labri.fr/pub/dlides/workshop-20031022/jata_sartor.ppt [Last accessed: 1
March 2010]

Seguin, C., P. Bieber, C. Castel, and C. Kehren, Formal Assessment Techniques for
Embedded Safety Critical Systems, in 2nd National Workshop on Control Architectures of

Robots (CAR 2007). Paris, France, 2007. Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.2586 [Last accessed: 1
March 2010]

Sdic, B., The Pragmatics of Model-Driven Development. IEEE Software, 2003. 20(5): p.
19-25.

Shaikh, T., Assessment of Safety Critical Systems. New Model Based Safety Analysis
Technique (Industrial Project Report), 2009. Bristol Institute of Technology, University of
the West of England.

Sharvia, S. and Y. Papadopoulos, Non-coherent Modelling in Compositional Fault Tree
Analysis, in proceedings of 17th IFAC World Congress, 2008, pp. 4138-4143. The

International Federation of Automatic Control.

Society of Automotive Engineers, Architecture Analysis and Design Language (AADL),
Annex E: Error Model Annex (Annex Volume 1) (AS5506/1). 2006, SAE Aerospace:
Warrendale, PA.[Aerospace Standard)]

Society of Automotive Engineers, Potential Failure Mode and Effects Analysis in Design

(Design FMEA), Potential Failure Mode and Effects Analysis in Manufacturing and
Assembly Processes (Process FMEA) (SAE J1739). 2009, SAE International: Warrendale,
PA [ Standard]

Society of Automotive Engineers, Architecture Analysis and Design Language (AADL)
(ASE506A). 2009, SAE Aerospace: Warrendale, PA.[Aerospace Standard]

Society of Automotive Engineers (SAE), Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Systems and Equipment (ARP4761). 1996,
SAE International: Warrendale, PA.[Aerospace Recommended Practice]

Society of Automotive Engineers (SAE), Certification Considerations for Highly-
Integrated or Complex Aircraft Systems (ARP 4754 / ED-79). 1996, SAE International /
EUROCAE: Warrendale, PA.[Aerospace Recommended Practice]

SPEEDS Consortium / Airbus Deutschland GmbH. SPEEDS Project Website. Available
from: http://www.speeds.eu.com [Last accessed: 13 March 2010]

346


http://altarica.labri.fr/pub/slides/workshop-20031022/jalta_sartor.ppt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.2586
http://www.speeds.eu.com/

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

Steinberg, D., F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modelling
Framework. (2nd ed). The Eclipse Series, E. Gamma, L. Nckman, and J. Wiegand series
ed. 2008: Addison-Wesley.

The Chemical Industry Safety and Health Council of the Chemical Industries Association
Ltd., A Guide to Hazard and Operability Sudies 1977, CISHEC: London, UK.

The MathWorks Inc. Sateflow 7.5: Design and Smulate Sate Machines and Control
logic. Available from: http://www.mathworks.co.uk/products/stateflow/ [Last accessed: 1
March 2010]

The MathWorks Inc. Smulink: Smulation and Model-Based Design. Available from:
http://www.mathworks.co.uk/products/simulink/ [Last accessed: 1 March 2010]

UK Ministry of Defence (MoD), HAZOP Sudies on Systems Containing Programmable
Electronics (DefSan 00-58). 1996, MoD: Glasgow, UK.[Interim Defence Standard
(Cancelled)]

UK Ministry of Defence (MoD), Safety Management Requirements for Defence Systems;
Part 1: Requirements (DefStan 00-56 / 1; Issue 2). 1996, MoD: Glasgow, UK.[Defence
Standard (Superseded)]

UK Ministry of Defence (MoD), Reguirements for Safety Related Software in Defence
Equipment; Part 1: Requirements (DefStan 00-55 / 1; Issue 2). 1997, MoD: Glasgow,
UK.[Defence Standard (Superseded)]

UK Ministry of Defence (MoD), Safety Management Requirements for Defence Systems;
Part 1. Requirements (DefStan 00-56 / 1; Issue 4). 2007, MoD: Glasgow, UK.[Defence
Standard]

UK Ministry of Defence (MoD), Safety Management Requirements for Defence Systems;
Part 2. Guidance on Establishing a Means of Complying with Part 1 (DefStan 00-56 / 2;
Issue 4). 2007, MoD: Glasgow, UK .[Defence Standard)]

US Air Force Safety Agency, Airforce System Safety Handbook 2000: Kirtland AFB,
NM.

US Department of Defense, Procedures for Performing, a Failure Mode, Effects, and
Criticality Analysis (MIL-STD-1629A). 1980: Washington, DC.

US Department of Defense (DoD), System Safety Program Requirements (MIL-STD-
882C). 1993, AFMC/SE: Wright Patterson AFB, OH.[Military Standard (Superseded)]

US Department of Defense (DoD), Standard Practice for System Safety (MIL-STD-
882D). 2000, AFMC/SES: Wright Patterson AFB, OH.[Military Standard]

US Nuclear Regulatory Commission, PRA Procedures Guide: A Guide to the
Performance of Probabilistic Risk Assessments for Nuclear Power Plants (NUREG/CR-
2300). 1983, NUREG: Washington, DC.[Guide]

van der Meulen, M., Definitions for Hardware and Software Safety Engineers. 2000,

London: Springer-Verlag.

347


http://www.mathworks.co.uk/products/stateflow/
http://www.mathworks.co.uk/products/simulink/

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

Vesdy, W.E., F.F. Goldberg, N.H. Roberts, and D.F. Haadl, Fault Tree Handbook
(NUREG-0492). 1981, US Nuclear Regulatory Commission,
Vesdy, W.E., et al., Fault Tree Handbook with Aerospace Applications, 2002. NASA

Office of Safety and Mission Assurance.

Vesta, S., MetaH Support for Real-Time Multi-Processor Avionics, in proceedings of
Joint Workshop on Parallel and Distributed Real-Time Systems (WPDRTS / OORTS),
1997, pp. 11-21. IEEE Computer Society.

Villemeur, A., Reliability, Availability, Maintainability and Safety Assessment: Methods
and Techniques. Vol. 1. 1991, Chichester: John Wiley & Sons.

Walker, M. and Y. Papadopoulos, Synthesis and Analysis of Temporal Fault Trees with
PANDORA: The Time of Priority AND Gates, in proceedings of International Conference
on Hybrid Systems and Applications, 2006. Vol. 2, pp. 368-382. Elsevier Science.

Waker, M., L. Bottaci and Y. Papadopoulos, Compositional Temporal Fault Tree

Analysis, in proceedings of 26th International Conference on Computer Safety, Reliability
and Security (SAFECOMP), 2007. LNCS-4680, pp. 106-119. Springer Verlag.
Wallace, M., Modular Architectural Representation and Analysis of Fault Propagation

and Transformation, in proceedings of 2nd International Workshop on Formal
Foundations of Embedded Software and Component-Based Software Architectures
(FESCA 2005), 2005, pp. 53-71. Elsevier.

Whewell, W., Of Analytical Mathematics as an Educational Sudy (Ch.1, Sect.5), in Of a
Liberal Education in General; and With Particular Reference to the Leading Sudies of
the University of Cambridge. 1845, JOHN W. PARKER: London. p. 38-62.

Wu, W. and T. Kelly, Failure Modelling in Software Architecture Design for Safety, in
proceedings of Workshop on Architecting Dependable Systems (WADS05), 2005, pp. 1-7.
ACM.

Wu, W. and T. Kelly, Combining Bayesian Belief Networks and the Goal Sructuring
Notation to Support Architectural Reasoning About Safety in 26th International
Conference on Computer Safety, Reliability and Security (SAFECOMP). Nuremberg,
Germany, 2007. Springer-Verlag.

348



	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Author’s Declaration
	Chapter 1: Introduction
	1.1 Foreword: The Evolution of Safety Analysis Methods
	1.1.1 Traditional Safety Assessment Methods
	1.1.2 Failure Logic Modelling Methods
	1.1.2.1 Illustration
	1.1.2.2 Claimed Benefits of Failure Logic Modelling


	1.2 Research Challenges
	1.2.1 Complexity of Behaviour
	1.2.2 Composition of Multiple Failure Logic Models
	1.2.3 Conceptual Integrity and Language Independence

	1.3 Motivation
	1.4 Thesis Proposition
	1.5 Thesis Structure

	Chapter 2: Literature Survey
	2.1 Safety Engineering, Assessment and Terminology
	2.1.1 Key Terminology of System Safety
	2.1.2 System Safety Engineering, Assessment and Lifecycle
	2.1.3 Scope of the Present Research

	2.2 Classical Safety Assessment Methods
	2.2.1 Inductive Methods
	2.2.2 Deductive Methods
	2.2.3 ‘Bowtie’ Methods
	2.2.4 Discussion

	2.3 Failure Logic Modelling Methods
	2.3.1 FPTN
	2.3.2 HiP-HOPS
	2.3.3 Other Methods and Variants

	2.4 Other Model-Based Safety Assessment Approaches
	2.4.1 Failure Injection Approach
	2.4.2 Failure Effects Modelling Approach
	2.4.3 Hybrid Approaches
	2.4.4 Model-Based Safety Assessment: Summary

	2.5 Modelling Languages
	2.5.1 AltaRica and Associated Dialects
	2.5.2 The Architecture Analysis & Design Language
	2.5.3 Language Selection

	2.6 Conclusions

	Chapter 3: Unifying Failure Logic Metamodel
	3.1 Introduction
	3.1.1 Introduction to the Illustrative Example & Case Study
	3.1.2 System Intent & Design

	3.2. Unifying Metamodel for Existing Techniques
	3.2.1 Common Key Concepts
	3.2.2 Component Failure Logic
	3.2.3 Model Structure and Hierarchical Organisation
	3.2.4 Illustration

	3.3 Extended FLMM: Dynamic and Normal Behaviour
	3.3.1 Void Transition Triggers
	3.3.2 Normal Events and States
	3.3.3 Failure Handling States

	3.4 Model Analysis
	3.4.1 Fault Tree Synthesis and Sequence Generation
	3.4.2 Simulation and FMEA/FMECA

	3.5. Instantiation of the FLMM
	3.5.1 Specification Language Requirements
	3.5.2 Overview of Cecilia OCAS Tool
	3.5.3 Representing FLM Concepts in AltraRica / OCAS

	3.6 Case Study: Wheel Braking System
	3.6.1 Predefined Types: Failure Modes and FM Classes
	3.6.2 Model Architecture and Examples of Components
	3.6.3 Virtual Components: Model-Level Input FMs and Observer
	3.6.4 Model Simulation and Analysis

	3.7 Role of the FLMM in the Safety Case
	3.8 Limitations of the ‘Baseline’ Approach
	3.9 Conclusions

	Chapter 4: Composition of Multiple Models
	4.1 Introduction
	4.1.1 Illustration of the Problem Addressed by the Chapter
	4.1.2 Objectives for the Composition of Failure Logic Models

	4.2 Views and Domains of Safety-Critical Platforms
	4.2.1 Views and Viewtypes
	4.2.2 Domains and Domain-Specific Models
	4.2.3 FLMM in Engineering Domain Framework

	4.3 Allocation Viewtype and Composition of DSFMs
	4.3.1 The Allocation Domain as the Unifying Concept
	4.3.2 DSFM Interfaces and Composition
	4.3.2.1 Peer Domains
	4.3.2.2 Alternative Views
	4.3.2.3 Different Semantic Spaces


	4.4 Defining Composable DSFMs
	4.4.1 The Consistency of FM Interfaces
	4.4.2 Richness of ‘Soft Interfaces’
	4.4.3 The Granularity and Scope of Model Architectures

	4.5. Instantiation in AltaRica
	4.5.1 AltaRica OCAS Synchronisations
	4.5.2 Emulating Dependent Weak Synchronisation
	4.5.3 Instantaneous Events: Flow-to-Event Conversion

	4.6 Case Study: Common Computational Platform
	4.6.1 Overview of the Computation Infrastructure
	4.6.1.1 Architecture of the Infrastructure System
	4.6.1.2 DSFM of the Infrastructure System

	4.6.2 Partition and VL Allocation
	4.6.3 Integration Layer and DSFM Composition
	4.6.3.1 Software Components: Partitions and Processes
	4.6.3.2 Software Communications: Virtual Links

	4.6.4 Model Analysis

	4.7 Relationship to Common Cause Analysis
	4.8 Model Complexity & Limitations of the Analysis Tool
	4.9 Conclusions

	Chapter 5: Multi-Mode and Reconfigurable Systems
	5.1 Introduction
	5.1.1 Illustration of the Problem Addressed by the Chapter

	5.2 System Modes
	5.2.1 FLMM Extension
	5.2.2 Modes as Component Context
	5.2.2.1 Component Failures and Dynamic Exposure Intervals
	5.2.2.2 Reusability of Component Characterisations
	5.2.2.3 Context Boundaries and Dysfunctional Modes


	5.3 Implementation of Modes in AltaRica/OCAS
	5.3.1 Procedure for Encoding Modes in AltaRica
	5.3.2 Illustration

	5.4 Implications for the Modelling Process
	5.4.1 Establishing Model Architecture
	5.4.2 Basic Components Characterisation and Model Composition

	5.5 Case Study: Electrical Power Distribution System
	5.5.1 EPDS Overview
	5.5.2 Model Architecture: Key Principles and Assumptions
	5.5.3 Failure Logic Model Architecture: Modes
	5.5.4 Components Failure Logic Characterisation
	5.5.5 Refinement of Mode Models
	5.5.6 Characterisation of Controllers

	5.6 Key Findings and Limitations
	5.6.1 Loops
	5.6.2 Order of Transitions with Void Triggers
	5.6.3 Complexity of Component Characterisations
	5.6.4 Analysis Complexity

	5.7 Related Work
	5.8 Conclusions

	Chapter 6: Evaluation
	6.1 Evaluation Strategy
	6.1.1 Technical Challenges Identified by the Thesis Proposition
	6.1.2 Pragmatic Approach Hypothesis
	6.1.3 Well-Defined and Sound Approach Hypothesis

	6.2 Evaluation through Case Studies
	6.2.1 Wheel Braking System
	6.2.2 Aircraft Fuel System
	6.2.3 Integrated Modular Avionics
	6.2.4 Aircraft Electrical Power Distribution System
	6.2.5 Case Studies Summary

	6.3 Metamodel Experiments
	6.3.1 FLMM Validation in Eclipse
	6.3.2 Mapping between FLMM and Existing Failure Logic Modelling Methods
	6.3.2.1 HiP-HOPS
	6.3.2.2 FPTN
	6.3.2.3 Summary: HiP-HOPS as a Set of FLMM Constraints

	6.3.3 Relationship Between the FLMM and FTA
	6.3.4 Non-Coherent and Dynamic Behaviour
	6.3.4.1 Negation
	6.3.4.2 Priority AND Gate
	6.3.4.3 Dynamic Fault Tree Gates

	6.3.5 Evaluation by Metamodel Instantiation

	6.4 Evaluation Through Peer Review
	6.4.1 Airbus Dependability Network
	6.4.2 The MISSA Project
	6.4.3 Peer Review Summary

	6.5 Identified Limitations and Mitigations
	6.5.1 Volume of Results
	6.5.2 Strong Circular Dependencies
	6.5.3 Complex Modes and Reconfiguration Logic
	6.5.4 Reuse and Composability of the Component Characterisations
	6.5.5 Complexity of Model Construction
	6.5.6 Complexity of Model Analysis

	6.6 Summary

	Chapter 7: Conclusions
	7.1 Summary of Contributions
	7.1.1 Unifying Failure Logic Metamodel
	7.1.2 Composition of Multiple Failure Logic Models
	7.1.3 Modelling Reconfigurable and Multimodal Systems
	7.1.4 The Non-Automatable and Non-Decomposable Nature of Failure Logic Modelling

	7.2 Further Work Areas
	7.2.1 Transformation of Failure Logic Models
	7.2.2 Model Analysis
	7.2.3 Issues of Modelling Time
	7.2.4 Improving Reusability
	7.2.5 Alternative Modelling Paradigms
	7.2.6 Other Model-Based Safety Assessment Approaches

	7.3 Coda

	Appendix A: Failure Logic Metamodel
	A1. Metamodel Specification
	A2. Well-Formedness Constraints

	Appendix B: Wheel Braking System Case Study
	B2. WBS Failure Logic Model: “Pseudo-code”
	B2.1 Braking System Control Unit
	B1.2 Hydro-Mechanical Components

	B2. WBS Failure Logic Model: AltaRica Dataflow
	B3. Revised BSCU Model: AltaRica Dataflow

	Appendix C: Computation and Communications Platform DSFM
	C1. Modification of the BSCU Model (WBS DSFM)
	C2. Introduction to the Computation Infrastructure and Architecture Description
	C2.1 Introduction to the Integrated Modular Avionics
	C2.2 Architecture of the Infrastructure

	C3. Model Description
	C3.1 Infrastructure Failure Modes: “External” Output FMs and IMA Functions
	C3.2 Infrastructure Failure Modes: “Internal” FMs
	C3.3 Failure Logic Model: Network Components
	C3.4 Failure Logic Model: CPIOMs


	Appendix D: Summary of the Aircraft Fuel System Review
	D1. Complex Mode Logic
	D2. Intentional Architectural Limitations
	D3. Complexity of Scale and Design Decomposition
	D4. Circular Dependencies and Loops
	D5. Time-Dependency and Reliance on Consumable Resource

	Abbreviations
	References

