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GNSS Software Receiver for UAVs  
 

 

Daniel Olesen, Jakob Jakobsen, Hans-Henrik Benzon, Per Knudsen, DTU Space 

 

ABSTRACT 

 

This paper describes the current activities of GPS/GNSS 

Software receiver development at DTU Space. GNSS 

Software receivers have received a great deal of attention 

in the last two decades and numerous implementations 

have already been presented. DTU Space has just recently 

started development of our own GNSS software-receiver 

targeted for mini UAV applications, and we will in in this 

paper present our current progress and briefly discuss the 

benefits of Software Receivers in relation to our research 

interests.  

 

INTRODUCTION 

 

The history of software receivers can be dated back to the 

early 1990s, where the US Department of Defense started 

the Speakeasy project. The project originated from an 

increasing challenge to ensure communication with 

current allies, avoid hostile interception and taking 

advantage of rapid technology changes [1]. Prior to 

Speakeasy, military radio systems was developed with a 

30 year lifespan to support one function and optimized for 

a particular field application [1].  

 

The effects of this paradigm change for radio 

communication have since triggered a growing interest 

for use of software radios in commercial and academic 

applications, as software radios allows for great 

flexibility, offering wide support for various modulation 

schemes, bandwidths and baseband algorithms. In terms 

of GNSS receivers, reported software implementations 

have steadily grown in numbers and capabilities over the 

years. 

 

In contrast to commercial GNSS receivers, software 

implementations offer the ultimate level of control for the 

processing stage. The added control and access to 

parameters at the tracking loop level, allows for research 

in more advanced applications such as e.g. Ultra-

Tight/Deep Integration of GNSS and Inertial Navigation 

Systems (INS). Another application, where a software 

receiver is useful is within Space Weather monitoring. 

Here the two scintillation indices S4 and σφ are 

traditionally used as a measure for the scintillations 

caused by the ionosphere. Direct access to the correlators 

and the signal filtering gives control over the quality of 

these parameters, see [2]. This flexibility and low level 

access to the hardware is also very useful in other 

research areas such as multipath mitigation and GNSS 

based reflectometry. 

 

In this paper, two development projects related to GNSS 

software receivers are described. The first project is a 

small, portable GNSS sampler based on the low-cost 

Beagle Bone Black Single Board Computer (SBC) and 

the commercial GNSS RF Front-end, MAX2769. The 

advantages of this system are low cost, size and 

flexibility. The sampler has been developed with a 

distinct focus on portability to ensure it can be used in 

small UAV applications. 

 

In order to process the raw GNSS samples, a software 

receiver is needed. We have initially used the MATLAB 

based SoftGNSS [3]. This has been an excellent 

educational tool and a good reference. However as our 

investment in software receivers have grown, we decided 

to start working on our own implementation in C++ using 

an event-driven object-oriented approach. The 

implementation is aimed at post-processing and not real-

time capabilities. One of the design goals has been on 

modularity, such that the system easily can be expanded 

to include more advanced features and adapted to various 

applications. 

 

In addition to the projects above, the authors have also 

worked on a small, low-cost, real-time embedded 

GPS/GNSS SDR. The design is based on a small low-cost 

parallel computing platform known as the Parallella. 

Preliminary results for this work and Proof-Of-Concept 

have been published in [4].  

 

BASIC OPERATION OF A GNSS RECEIVER 

 

In this section a brief introduction to the operation of a 

GNSS receiver is given. For simplicity, only reception 

and processing of the GPS L1 C/A code will be described. 

 

The GPS Coarse / Acquisition (C/A) code is a 1023 chip 

Pseudo-Random Noise (PRN) sequence transmitted on 

the GPS L1 band with a carrier frequency of 1575.42 

MHz. The C/A code is modulated on to the carrier by 

Binary Phase Shift Keying (BPSK). As all GPS satellites 

are using the same carrier-frequency, a Code Division 

 
Figure 1: Hexacopter used for experimental testing 



 

 

Multiple Access (CDMA) coding scheme is applied on 

the C/A code. The C/A code is for each satellite a unique 

PRN code known as a Gold code. Gold codes have a 

bounded minimum cross-correlation with other Gold 

codes and hence the satellite transmitting the signal can 

be identified by correlation with a receiver generated 

replica.  

 

The chiprate of the C/A code is 1.023 Mchips/s, 

corresponding to a code-sequence length of 1 ms. The 

C/A code is modulated with the satellite navigation 

message, which contains the ephemeris, time etc. for the 

satellite. The signal structure for the GPS L1 C/A signal is 

visualized in Figure 2. 

 

Mathematically the broadcast signal is defined as: 

 

𝑆𝑆𝑉(𝑡) = sin(2 ⋅ 𝜋 ⋅ 𝑓𝑐𝑎𝑟𝑟 ⋅ 𝑡) ⋅ (𝑆𝐶/𝐴(𝑡) ⊕ 𝑆𝑁𝑎𝑣(𝑡)) (1) 

 

where ⊕ is modulo-2 addition, also commonly referred 

as an XOR operation. 𝑆𝐶/𝐴(𝑡) is the unique gold code for 

the satellite and 𝑆𝑁𝑎𝑣(𝑡) is the satellite navigation 

message. We here assume binary levels of the C/A code 

and navigation message are [−1; 1]. 
 

At the reception side, the basic blocks of operation for a 

GNSS receiver can be seen in Figure 3. The Antenna 

receives the broadcasted signals from the visible GNSS 

satellites. An RF-Front end amplifies, filters and down-

converts (mix) the received signals down to an 

Intermediate Frequency (IF). After the mixing the signal 

is normally processed by an Automatic Gain Control 

(AGC) circuit, which adjusts the signal amplitude before 

AD conversion.  

 

The receiver then performs an operation known as 

Satellite Acquisition. This operation determines which 

satellites are in view and provides estimates of code-delay 

and Doppler frequencies for the satellites. The acquisition 

process can be thought of as a parametric sweep through 

combinations of possible Doppler frequencies and code-

delays for the C/A PRN sequences used by the GPS 

satellites. Each combination of code-delay and Doppler is 

then correlated with the received signal and tested against 

a threshold. 

 

After acquisition, the receiver starts tracking the detected 

satellites and performs demodulation in order to extract 

the navigation messages from the satellites. The tracking 

of each of the visible satellites are typically performed by 

a variant of an Phase-Locked Loop (PLL) for tracking the 

Doppler on the down-mixed carrier (IF) and a Delay-

Locked Loop (DLL) for aligning the receiver generated 

C/A-code with the incoming signal. A basic 

implementation of satellite tracking for one channel is 

shown in Figure 4. The tracking loop consists of six 

correlators, three for the In-phase (I) and Quadrature (Q) 

arms respectively. The correlators for each arm are 

typically separated with a lag of 0.5 chip between them. 

This lag allows the DLL to accurately keep hold of the 

C/A code alignment, as under perfect lock the energy in 

the prompt-output is twice the early and late versions.   

When the tracking loop has sufficient lock on a particular 

satellite, the navigation message can be extracted from the 

In-phase Prompt correlator output. For more information 

on satellite tracking see [3], [5] and [6]. 

 

Both Acquisition and Tracking are part of the Baseband 

processing block in Figure 3.  In most commercial 

receivers the baseband processing algorithms is typically 

implemented in parallel using digital hardware on either 

Application Specific Integrated Circuits (ASIC) or on 

Field-Programmable Gate Arrays (FPGA). In a software-

receiver the baseband processing algorithms are 

implemented in code. 

 

Finally, the Navigation Processing calculates user 

position, velocity and time using the decoded navigation-

message.   

 
Figure 4: Tracking Loop for one channel. 
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Figure 2: Simplified illustration of C/A code and 

Navigation Message modulation for GPS L1. 
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Figure 3: Generic GNSS Receiver Structure. 



 

 

 
Figure 5: Block Diagram of GNSS sampler 
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GNSS SAMPLER 

 

As explained in the introduction one of our goals is to 

collect raw GNSS samples from small, lightweight 

UAV’s. This requirement naturally put some constraints 

on the allowed weight and size of the system. To the best 

of our knowledge the vast majority of commercial GNSS 

samplers designed for software-receivers are implemented 

with either USB or Ethernet interfaces and hence requires 

a host-computer for either real-time processing or data 

storage.  

 

Due to the above considerations and a desire to ensure the 

system was as flexible as possible, we decided to use 

some effort in designing our own GNSS sampler.  

 

The RF front-end of our GNSS sampler/data-collector has 

been chosen to be the MAX2769 from Maxim Integrated 

[7]. Incorporated in the chip is a complete RF processing 

chain which can be configured for GPS L1, GLONASS 

G1 and Galileo E1 reception. The front-end features a 

programmable single-conversion stage and supports both 

active and passive antennas. The component is available 

as an evaluation kit (EV-kit) equipped with a number of 

SMA connectors for evaluation of separate stages of the 

front-end circuitry. The EV-kit also features an input for 

use of an external oscillator, which makes it possible to 

evaluate the system using different grades of reference 

oscillators.  

 

The local oscillator for the mixing-stage can be 

programmed to any given frequency in the range 1550-

1610 MHz. In our application we have chosen to use a 

low side injection oscillation frequency of 𝐹𝑂𝑆𝐶 =
1571.328 𝑀𝐻𝑧. This gives an IF Frequency of 𝐹𝐼𝐹 =
𝐹𝑅𝐹 − 𝐹𝑂𝑆𝐶 = 1575.42 − 1571.328 = 4.092 𝑀𝐻𝑧. The 

IF bandpass filter can be programmed to have a 

bandwidth of 2.5 MHz, 4.2 MHz, 8 MHz and 18 MHz. In 

addition the filter can be implemented as a 3
rd

 or 5
th

 order 

polyphase filter. We have selected the bandwidth to 2.5 

MHz using the 5th order filter setting. This effectively 

means that the system is configured to receive GPS L1 

C/A code. 

 

The MAX2769 chip includes an AD converter (ADC) 

with a configurable sample rate of up to 50 Msamples/s. 

The ADC has the ability to quantize the signal with up to 

3 bits for real samples and (2+2) bit for I/Q sampling.

 
 

In order to store the IF samples, a BeagleBone Black 

single-board computer (SBC) was used for data storage. 

This platform can be purchased for under $50 and has a 

number of hardware interfaces and GPIOs for external 

peripherals. 

 

The transfer of the IF samples from the ADC is done 

using a parallel interface on the MAX2769 and three 

digital inputs on the BeagleBone Black. For our system 

we are using real sampling with 2 bits resolution and a 

sample-frequency of 16.368 MHz. A block diagram of the 

system is shown in Figure 5. 

 

The BeagleBoard Black consists of a Texas Instruments 

Sitara AM335x Processor. This features a 1GHz ARM 

Cortex-A8. In addition the processor is also equipped 

with two Programmable Real-Time Units (PRUs) which 

runs with a clock-frequency of 200 MHz. The PRUs are 

especially useful in timing-critical applications, as they 

operate independently from the linux operating system on 

the ARM processor. In our design we have utilized one 

PRU to transfer data from the ADC on the MAX2769.  

 

The PRU is configured to have access to an allocated 

portion of the system memory and stores the samples in 

that range. Two reception buffers are created to ensure 

continuous operation, such that one buffer can be filled 

while the other is being emptied. The PRU has been 

configured to generate an interrupt to the ARM processor, 

when a buffer is full. In this way we offload the ARM 

processor, as it only has to write the stored data onto a file 

on a SD card whenever an interrupt is triggered.  

 

In Figure 6, the actual system mounted on a UAV payload 

plate is shown. 

  

 
Figure 6: GNSS sampler mounted on 20 x 25 cm 

aluminium-plate (UAV payload). The MAX2769 EV-KIT 

is the bottom circuit with the BeagleBone Black and a 

power-supply board fitted on top. 



 

 

GNSS Software Receiver 

 

As earlier stated we had initially used the MATLAB SDR 

implementation from [3], but as our interest and 

commitment in Software Receivers for GNSS has grown, 

it was decided to work towards making our own 

implementation from scratch. This choice was certainly 

not made due to a shortage of options, as there are a 

number of commercial and open-source implementations 

readily available. The reasoning for initiating our own 

project was primarily due to the educational value of 

working with all aspects first-hand and to design the 

implementation with future applications in mind.        

 

In order to ensure high portability it was decided to make 

the implementation in C++, using a class-oriented and 

event-driven approach. The current state of the 

implementation is limited to processing of GPS L1 C/A 

code signals, but a roadmap to expand the support to 

GLONASS and Galileo signals are in-place. In this 

regard, our design philosophy is to make use of class-

inheritance and polymorphism as signal processing of the 

different GNSS signals have a high degree of 

resemblance.  

 

In Figure 7 an UML sequence diagram of the basic 

implementation is shown. A main thread is calling a 

satellite acquisition method which initially determines the 

satellites in view and provides estimates of Doppler and 

code-delay. The Satellite acquisition is based on the well- 

known Parallel Code Phase Search Algorithm, as shown 

in Figure 8. This algorithm effectively performs 

correlation in the frequency domain by using the cross-

correlation theorem. 

 

(𝑓 ⋆ 𝑔)(𝑥) ↔ ℱ−1(𝐹∗(𝑢)𝐺(𝑢)) (2) 

 

Here 𝐹∗ and 𝐺 are the Fourier Transforms of 𝑓 and 𝑔.  

The implementation of the algorithm has been based on 

the FFTW library [8]. After the parallel-code phase search 

algorithm has completed, a number of objects are 

instantiated corresponding to each of the visible satellites. 

The tracking for each channel is started in separate 

threads. The tracking is essentially implemented 

according to Figure 4. In addition each of the tracking-

threads implements a histogram detector for navigation-

bit synchronization and estimates carrier-to-noise density 

estimate using the algorithms described in [9].  In parallel 

to the tracking-threads an event handling-class named 

Observables is instantiated and executed in a separate 

thread. This class is hooked up to events generated by the 

tracking-objects whenever a new preamble in the 

navigation message is detected. When all the active 

channels have detected the first preamble, pseudoranges 

are calculated based on the principle of Common 

Transmission Time [10].  

 

The receiver implementation is not calculating a PVT 

solution on its own but merely produces raw observables 

and satellite ephemerides outputs to allow the 

computation afterwards. A script in MATLAB has been 

developed for subsequent tracking analysis and 

calculation of user position. The complete processing 

flow from data-capture to actual navigation solutions are 

shown in Figure 9. The GNSS sampler collects IF data 

and stores it in a binary file on a SD-card. The collected 

data is packaged with 4 samples per byte, in order to use 

space efficiently on the memory card. Before processing 

 
Figure 7: UML sequence diagram 
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Figure 8: Parallel Code Phase Search 
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Figure 9: SDR Processing Flow 
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of the data, a small stand-alone application converts the 

sampler format to 1 sample/byte and changes the 

byteordering of the file to Big Endian format. After this 

conversion the data can be processed by the software 

receiver. The receiver generates a file for pseudorange 

measurements and satellite ephemerides as well as 

multiple tracking files containing detailed information 

about correlator-values, C/N0 estimates, code-frequency 

and carrier-frequency for all the tracked satellites. 

 

RESULTS 

 

To verify the operation of the GNSS sampler and 

implemented software receiver, a static dataset was 

captured using a roof-antenna on top of the DTU Space 

building. The duration of this dataset was approximately 

130 seconds. In Figure 10, the estimated receiver-position 

based on pseudoranges is shown.  In Figure 11, the 

estimated C/N0 for the 8 satellites which was visible 

under the mission is shown. For the results presented 

below, it should be noted that only the broadcast 

ephemerides has been used for positioning, i.e. 

ionospheric corrections have not been applied.  

 
Figure 10: Google-Earth plot of Estimated Receiver position 

from Roof-antenna at DTU Space main building. The red 

star indicates the position of the GNSS antenna. 

 
Figure 11: C/N0 density plots of tracked satellites during 

static test from Roof-antenna 

σE 2.3360 m 

σN 3.8757 m 

σU 7.4598 m 

Table 1: Std. Dev of ENU transformed coordinates 

CONCLUSION AND OUTLOOK 

 

In this paper, we have presented a small, flexible and low-

cost solution for a simple GNSS sampler. The sampler 

was developed with a distinct focus on light-weight UAV 

applications and consist of commercial of the shelve 

components for simple integration. 

 

In addition a software receiver implemented in C++ was 

presented. The implementation lays a foundation, in 

which we plan to build upon and add more functionality 

and refinement to in the future. There are certainly easier 

ways to get involved with software processing of GNSS 

signals than to build the entire systems from the bottom-

up, but in this way we hope to get the most experience 

and know-how which we hope can be exploited in the 

future. Especially ensuring modularity of the solutions, 

have been a major concern as we wish to build our 

systems as generically as possible in order to make the 

system flexible with respect to adaptations to different 

applications. We see the involvement in software-

receivers as a long term investment, as this tool-kit opens 

up for a variety of new applications and advanced 

research topics within GNSS-related research.  

 

In terms of future developments and outlook, our next 

project is to work on a vector-based software receiver 

which can be utilized for Ultra-Tightly coupled GNSS 

and INS integration. In addition, we also plan to explore 

the benefits of Software Receivers in relation to Space 

Weather applications.   
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