

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Nov 09, 2017

GNSS Software Receiver for UAVs

Olesen, Daniel Haugård; Jakobsen, Jakob; von Benzon, Hans-Henrik; Knudsen, Per

Published in:
European Journal of Navigation

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Olesen, D. M., Jakobsen, J., von Benzon, H-H., & Knudsen, P. (2016). GNSS Software Receiver for UAVs.
European Journal of Navigation, June.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43258926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/gnss-software-receiver-for-uavs(e5b06ead-32fe-43e4-82cd-12a422b437e1).html

GNSS Software Receiver for UAVs

Daniel Olesen, Jakob Jakobsen, Hans-Henrik Benzon, Per Knudsen, DTU Space

ABSTRACT

This paper describes the current activities of GPS/GNSS

Software receiver development at DTU Space. GNSS

Software receivers have received a great deal of attention

in the last two decades and numerous implementations

have already been presented. DTU Space has just recently

started development of our own GNSS software-receiver

targeted for mini UAV applications, and we will in in this

paper present our current progress and briefly discuss the

benefits of Software Receivers in relation to our research

interests.

INTRODUCTION

The history of software receivers can be dated back to the

early 1990s, where the US Department of Defense started

the Speakeasy project. The project originated from an

increasing challenge to ensure communication with

current allies, avoid hostile interception and taking

advantage of rapid technology changes [1]. Prior to

Speakeasy, military radio systems was developed with a

30 year lifespan to support one function and optimized for

a particular field application [1].

The effects of this paradigm change for radio

communication have since triggered a growing interest

for use of software radios in commercial and academic

applications, as software radios allows for great

flexibility, offering wide support for various modulation

schemes, bandwidths and baseband algorithms. In terms

of GNSS receivers, reported software implementations

have steadily grown in numbers and capabilities over the

years.

In contrast to commercial GNSS receivers, software

implementations offer the ultimate level of control for the

processing stage. The added control and access to

parameters at the tracking loop level, allows for research

in more advanced applications such as e.g. Ultra-

Tight/Deep Integration of GNSS and Inertial Navigation

Systems (INS). Another application, where a software

receiver is useful is within Space Weather monitoring.

Here the two scintillation indices S4 and σφ are

traditionally used as a measure for the scintillations

caused by the ionosphere. Direct access to the correlators

and the signal filtering gives control over the quality of

these parameters, see [2]. This flexibility and low level

access to the hardware is also very useful in other

research areas such as multipath mitigation and GNSS

based reflectometry.

In this paper, two development projects related to GNSS

software receivers are described. The first project is a

small, portable GNSS sampler based on the low-cost

Beagle Bone Black Single Board Computer (SBC) and

the commercial GNSS RF Front-end, MAX2769. The

advantages of this system are low cost, size and

flexibility. The sampler has been developed with a

distinct focus on portability to ensure it can be used in

small UAV applications.

In order to process the raw GNSS samples, a software

receiver is needed. We have initially used the MATLAB

based SoftGNSS [3]. This has been an excellent

educational tool and a good reference. However as our

investment in software receivers have grown, we decided

to start working on our own implementation in C++ using

an event-driven object-oriented approach. The

implementation is aimed at post-processing and not real-

time capabilities. One of the design goals has been on

modularity, such that the system easily can be expanded

to include more advanced features and adapted to various

applications.

In addition to the projects above, the authors have also

worked on a small, low-cost, real-time embedded

GPS/GNSS SDR. The design is based on a small low-cost

parallel computing platform known as the Parallella.

Preliminary results for this work and Proof-Of-Concept

have been published in [4].

BASIC OPERATION OF A GNSS RECEIVER

In this section a brief introduction to the operation of a

GNSS receiver is given. For simplicity, only reception

and processing of the GPS L1 C/A code will be described.

The GPS Coarse / Acquisition (C/A) code is a 1023 chip

Pseudo-Random Noise (PRN) sequence transmitted on

the GPS L1 band with a carrier frequency of 1575.42

MHz. The C/A code is modulated on to the carrier by

Binary Phase Shift Keying (BPSK). As all GPS satellites

are using the same carrier-frequency, a Code Division

Figure 1: Hexacopter used for experimental testing

Multiple Access (CDMA) coding scheme is applied on

the C/A code. The C/A code is for each satellite a unique

PRN code known as a Gold code. Gold codes have a

bounded minimum cross-correlation with other Gold

codes and hence the satellite transmitting the signal can

be identified by correlation with a receiver generated

replica.

The chiprate of the C/A code is 1.023 Mchips/s,

corresponding to a code-sequence length of 1 ms. The

C/A code is modulated with the satellite navigation

message, which contains the ephemeris, time etc. for the

satellite. The signal structure for the GPS L1 C/A signal is

visualized in Figure 2.

Mathematically the broadcast signal is defined as:

𝑆𝑆𝑉(𝑡) = sin(2 ⋅ 𝜋 ⋅ 𝑓𝑐𝑎𝑟𝑟 ⋅ 𝑡) ⋅ (𝑆𝐶/𝐴(𝑡) ⊕ 𝑆𝑁𝑎𝑣(𝑡)) (1)

where ⊕ is modulo-2 addition, also commonly referred

as an XOR operation. 𝑆𝐶/𝐴(𝑡) is the unique gold code for

the satellite and 𝑆𝑁𝑎𝑣(𝑡) is the satellite navigation

message. We here assume binary levels of the C/A code

and navigation message are [−1; 1].

At the reception side, the basic blocks of operation for a

GNSS receiver can be seen in Figure 3. The Antenna

receives the broadcasted signals from the visible GNSS

satellites. An RF-Front end amplifies, filters and down-

converts (mix) the received signals down to an

Intermediate Frequency (IF). After the mixing the signal

is normally processed by an Automatic Gain Control

(AGC) circuit, which adjusts the signal amplitude before

AD conversion.

The receiver then performs an operation known as

Satellite Acquisition. This operation determines which

satellites are in view and provides estimates of code-delay

and Doppler frequencies for the satellites. The acquisition

process can be thought of as a parametric sweep through

combinations of possible Doppler frequencies and code-

delays for the C/A PRN sequences used by the GPS

satellites. Each combination of code-delay and Doppler is

then correlated with the received signal and tested against

a threshold.

After acquisition, the receiver starts tracking the detected

satellites and performs demodulation in order to extract

the navigation messages from the satellites. The tracking

of each of the visible satellites are typically performed by

a variant of an Phase-Locked Loop (PLL) for tracking the

Doppler on the down-mixed carrier (IF) and a Delay-

Locked Loop (DLL) for aligning the receiver generated

C/A-code with the incoming signal. A basic

implementation of satellite tracking for one channel is

shown in Figure 4. The tracking loop consists of six

correlators, three for the In-phase (I) and Quadrature (Q)

arms respectively. The correlators for each arm are

typically separated with a lag of 0.5 chip between them.

This lag allows the DLL to accurately keep hold of the

C/A code alignment, as under perfect lock the energy in

the prompt-output is twice the early and late versions.

When the tracking loop has sufficient lock on a particular

satellite, the navigation message can be extracted from the

In-phase Prompt correlator output. For more information

on satellite tracking see [3], [5] and [6].

Both Acquisition and Tracking are part of the Baseband

processing block in Figure 3. In most commercial

receivers the baseband processing algorithms is typically

implemented in parallel using digital hardware on either

Application Specific Integrated Circuits (ASIC) or on

Field-Programmable Gate Arrays (FPGA). In a software-

receiver the baseband processing algorithms are

implemented in code.

Finally, the Navigation Processing calculates user

position, velocity and time using the decoded navigation-

message.

Figure 4: Tracking Loop for one channel.

PRN generator

carrier
discriminator

code
discriminator

carrier
filter

NCO
carrier

generator

90°

code filter

NCO

DIF Q

I

E P L

IP QP

IP

QP

IE

IL

QE

QL

Figure 2: Simplified illustration of C/A code and

Navigation Message modulation for GPS L1.

+

φ

L1 Carrier (1575.42 MHz)

C/A code (1.023 MChips/s)

Navigation Message (50 bit/s)

Satellite Broadcast Signal

Baseband Signal

RF - Front End
Baseband
Processing

DIF Navigation
Processing

DIF
PVT

Figure 3: Generic GNSS Receiver Structure.

Figure 5: Block Diagram of GNSS sampler

ARM
Cortex-A8

PRU1

PRU2

L3 and L4 Interconect

512MB
DDR3

4Gb
eMMC

SD card

AM3358

BeagleBone Black MAX2769 EV-KIT

MAX2769

TXCO
(16.368 MHz)

CLK

ADC[MSB]

ADC[LSB]

GNSS SAMPLER

As explained in the introduction one of our goals is to

collect raw GNSS samples from small, lightweight

UAV’s. This requirement naturally put some constraints

on the allowed weight and size of the system. To the best

of our knowledge the vast majority of commercial GNSS

samplers designed for software-receivers are implemented

with either USB or Ethernet interfaces and hence requires

a host-computer for either real-time processing or data

storage.

Due to the above considerations and a desire to ensure the

system was as flexible as possible, we decided to use

some effort in designing our own GNSS sampler.

The RF front-end of our GNSS sampler/data-collector has

been chosen to be the MAX2769 from Maxim Integrated

[7]. Incorporated in the chip is a complete RF processing

chain which can be configured for GPS L1, GLONASS

G1 and Galileo E1 reception. The front-end features a

programmable single-conversion stage and supports both

active and passive antennas. The component is available

as an evaluation kit (EV-kit) equipped with a number of

SMA connectors for evaluation of separate stages of the

front-end circuitry. The EV-kit also features an input for

use of an external oscillator, which makes it possible to

evaluate the system using different grades of reference

oscillators.

The local oscillator for the mixing-stage can be

programmed to any given frequency in the range 1550-

1610 MHz. In our application we have chosen to use a

low side injection oscillation frequency of 𝐹𝑂𝑆𝐶 =
1571.328 𝑀𝐻𝑧. This gives an IF Frequency of 𝐹𝐼𝐹 =
𝐹𝑅𝐹 − 𝐹𝑂𝑆𝐶 = 1575.42 − 1571.328 = 4.092 𝑀𝐻𝑧. The

IF bandpass filter can be programmed to have a

bandwidth of 2.5 MHz, 4.2 MHz, 8 MHz and 18 MHz. In

addition the filter can be implemented as a 3
rd

 or 5
th

 order

polyphase filter. We have selected the bandwidth to 2.5

MHz using the 5th order filter setting. This effectively

means that the system is configured to receive GPS L1

C/A code.

The MAX2769 chip includes an AD converter (ADC)

with a configurable sample rate of up to 50 Msamples/s.

The ADC has the ability to quantize the signal with up to

3 bits for real samples and (2+2) bit for I/Q sampling.

In order to store the IF samples, a BeagleBone Black

single-board computer (SBC) was used for data storage.

This platform can be purchased for under $50 and has a

number of hardware interfaces and GPIOs for external

peripherals.

The transfer of the IF samples from the ADC is done

using a parallel interface on the MAX2769 and three

digital inputs on the BeagleBone Black. For our system

we are using real sampling with 2 bits resolution and a

sample-frequency of 16.368 MHz. A block diagram of the

system is shown in Figure 5.

The BeagleBoard Black consists of a Texas Instruments

Sitara AM335x Processor. This features a 1GHz ARM

Cortex-A8. In addition the processor is also equipped

with two Programmable Real-Time Units (PRUs) which

runs with a clock-frequency of 200 MHz. The PRUs are

especially useful in timing-critical applications, as they

operate independently from the linux operating system on

the ARM processor. In our design we have utilized one

PRU to transfer data from the ADC on the MAX2769.

The PRU is configured to have access to an allocated

portion of the system memory and stores the samples in

that range. Two reception buffers are created to ensure

continuous operation, such that one buffer can be filled

while the other is being emptied. The PRU has been

configured to generate an interrupt to the ARM processor,

when a buffer is full. In this way we offload the ARM

processor, as it only has to write the stored data onto a file

on a SD card whenever an interrupt is triggered.

In Figure 6, the actual system mounted on a UAV payload

plate is shown.

Figure 6: GNSS sampler mounted on 20 x 25 cm

aluminium-plate (UAV payload). The MAX2769 EV-KIT

is the bottom circuit with the BeagleBone Black and a

power-supply board fitted on top.

GNSS Software Receiver

As earlier stated we had initially used the MATLAB SDR

implementation from [3], but as our interest and

commitment in Software Receivers for GNSS has grown,

it was decided to work towards making our own

implementation from scratch. This choice was certainly

not made due to a shortage of options, as there are a

number of commercial and open-source implementations

readily available. The reasoning for initiating our own

project was primarily due to the educational value of

working with all aspects first-hand and to design the

implementation with future applications in mind.

In order to ensure high portability it was decided to make

the implementation in C++, using a class-oriented and

event-driven approach. The current state of the

implementation is limited to processing of GPS L1 C/A

code signals, but a roadmap to expand the support to

GLONASS and Galileo signals are in-place. In this

regard, our design philosophy is to make use of class-

inheritance and polymorphism as signal processing of the

different GNSS signals have a high degree of

resemblance.

In Figure 7 an UML sequence diagram of the basic

implementation is shown. A main thread is calling a

satellite acquisition method which initially determines the

satellites in view and provides estimates of Doppler and

code-delay. The Satellite acquisition is based on the well-

known Parallel Code Phase Search Algorithm, as shown

in Figure 8. This algorithm effectively performs

correlation in the frequency domain by using the cross-

correlation theorem.

(𝑓 ⋆ 𝑔)(𝑥) ↔ ℱ−1(𝐹∗(𝑢)𝐺(𝑢)) (2)

Here 𝐹∗ and 𝐺 are the Fourier Transforms of 𝑓 and 𝑔.

The implementation of the algorithm has been based on

the FFTW library [8]. After the parallel-code phase search

algorithm has completed, a number of objects are

instantiated corresponding to each of the visible satellites.

The tracking for each channel is started in separate

threads. The tracking is essentially implemented

according to Figure 4. In addition each of the tracking-

threads implements a histogram detector for navigation-

bit synchronization and estimates carrier-to-noise density

estimate using the algorithms described in [9]. In parallel

to the tracking-threads an event handling-class named

Observables is instantiated and executed in a separate

thread. This class is hooked up to events generated by the

tracking-objects whenever a new preamble in the

navigation message is detected. When all the active

channels have detected the first preamble, pseudoranges

are calculated based on the principle of Common

Transmission Time [10].

The receiver implementation is not calculating a PVT

solution on its own but merely produces raw observables

and satellite ephemerides outputs to allow the

computation afterwards. A script in MATLAB has been

developed for subsequent tracking analysis and

calculation of user position. The complete processing

flow from data-capture to actual navigation solutions are

shown in Figure 9. The GNSS sampler collects IF data

and stores it in a binary file on a SD-card. The collected

data is packaged with 4 samples per byte, in order to use

space efficiently on the memory card. Before processing

Figure 7: UML sequence diagram

Acquisition

PC_GNSS_SDR

Tracking Ch 1 Tracking Ch N

Satellite Acquisition

Active Channels

Observables

Dynamically allocate threads
based on number of visible

satellites

Pream
bles

detected

Pream
bles

detected

Calculate
Pseudoranges

Calculate
Pseudoranges

Calculate
Pseudoranges

Pream
bles

detected

Figure 8: Parallel Code Phase Search

FFTDIF

Complex
Conjugate

FFT

Code

IFFT

)2sin(tf)2cos(tf

};;{ DIFDIF ffffff

Threshold
Detector

Figure 9: SDR Processing Flow

GNSS Sampler

SDR-FileConverter

GNSS SDR

PVT-Processing
(MATLAB)

4 sam
ples/byte

(Little Endian)
1 sam

ples/byte

(Big Endian)

Observations,

Ephem
erides and

Satellite tracking

variables

of the data, a small stand-alone application converts the

sampler format to 1 sample/byte and changes the

byteordering of the file to Big Endian format. After this

conversion the data can be processed by the software

receiver. The receiver generates a file for pseudorange

measurements and satellite ephemerides as well as

multiple tracking files containing detailed information

about correlator-values, C/N0 estimates, code-frequency

and carrier-frequency for all the tracked satellites.

RESULTS

To verify the operation of the GNSS sampler and

implemented software receiver, a static dataset was

captured using a roof-antenna on top of the DTU Space

building. The duration of this dataset was approximately

130 seconds. In Figure 10, the estimated receiver-position

based on pseudoranges is shown. In Figure 11, the

estimated C/N0 for the 8 satellites which was visible

under the mission is shown. For the results presented

below, it should be noted that only the broadcast

ephemerides has been used for positioning, i.e.

ionospheric corrections have not been applied.

Figure 10: Google-Earth plot of Estimated Receiver position

from Roof-antenna at DTU Space main building. The red

star indicates the position of the GNSS antenna.

Figure 11: C/N0 density plots of tracked satellites during

static test from Roof-antenna

σE 2.3360 m

σN 3.8757 m

σU 7.4598 m

Table 1: Std. Dev of ENU transformed coordinates

CONCLUSION AND OUTLOOK

In this paper, we have presented a small, flexible and low-

cost solution for a simple GNSS sampler. The sampler

was developed with a distinct focus on light-weight UAV

applications and consist of commercial of the shelve

components for simple integration.

In addition a software receiver implemented in C++ was

presented. The implementation lays a foundation, in

which we plan to build upon and add more functionality

and refinement to in the future. There are certainly easier

ways to get involved with software processing of GNSS

signals than to build the entire systems from the bottom-

up, but in this way we hope to get the most experience

and know-how which we hope can be exploited in the

future. Especially ensuring modularity of the solutions,

have been a major concern as we wish to build our

systems as generically as possible in order to make the

system flexible with respect to adaptations to different

applications. We see the involvement in software-

receivers as a long term investment, as this tool-kit opens

up for a variety of new applications and advanced

research topics within GNSS-related research.

In terms of future developments and outlook, our next

project is to work on a vector-based software receiver

which can be utilized for Ultra-Tightly coupled GNSS

and INS integration. In addition, we also plan to explore

the benefits of Software Receivers in relation to Space

Weather applications.

REFERENCES

[1] R. Lackley and D. Upmal, "Speakeasy: the Military

Software Radio," IEEE Communication Magazine,

pp. 56-61, 1995.

[2] J. Curran, M. Bavaro, J. Fortuny and A. Morrison,

"Developing an Ionospheric Scintillation Monitoring

Receiver," InsideGNSS, no. September/October,

2014.

[3] K. Borre, D. Akos, N. Bertelsen, P. Rinder and S.

Jensen, A Software-Defined GPS and Galileo

Receiver, Birkhauser, 2007.

[4] D. Olesen, J. Jakobsen and P. Knudsen, "Software-

Defined GPS Receiver Implemented on the

Parallella-16 board," in Proceedings of ION GNSS+,

Tampa, Florida, 2015.

[5] E. D. Kaplan and C. J. Hegarty, Understanding GPS

- Principles and applications, Artech House, 2006.

[6] J. B. Tsui, Fundamentals of Global Positioning

System Receivers, John Wiley & Sons, 2000.

[7] Maxim Integrated, "MAX2769 Datasheet," San Jose,

2010.

[8] M. Frigo and S. Johnson, "The Design and

Implementation of FFTW3," Proceedings of the

IEEE, Vol 93, Issue 2, pp. 216-231, 2005.

[9] A. J. V. Dierendonck, "GPS Receivers," in "Global

Positioning System: Theory and Applications",

Volume I, Edited by B.W. Parkinson, J.J. Spiker Jr.

[10] M. Rao and G. Falco, "Code Tracking and

Pseudoranges," InsideGNSS, no. January/February,

2012.

