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Abstract

Mixed-integer second-order cone optimization is a powerful mathematical framework capable
of representing both logical conditions and nonlinear relationships in mathematical models of
industrial optimization problems. What is more, solution methods are already part of many
major commercial solvers including that of MOSEK [72] as well as XPRESS [31], GUROBI
[46] and CPLEX [50]. This thesis concerns the performance and reliability of these solvers and
makes two contributions; a theoretical one and a practical one.

In the theoretical part of the thesis a fundamental issue with reliability, affecting both
continuous and mixed-integer conic optimization in general, is discovered and treated. This
part of the thesis continues the studies of facial reduction preceding the work of Borwein and
Wolkowicz [17] in 1981, when the first algorithmic cure for these kinds of reliability issues
were formulated. An important distinction to make between continuous and mixed-integer
optimization, however, is that the reliability issues occurring in mixed-integer optimization
cannot be blamed on the practitioner’s formulation of the problem. Specifically, as shown, the
causes for these issues may well lie within the modifications to the formulation performed by
the solution method itself. Hence, this calls for native support of facial reduction mechanisms
within the commercial solvers to function reliably. In pursuit of such mechanisms, many fast
and accurate heuristics are explored, supplementing the main discovery of this thesis that facial
reduction can be interleaved with common optimization methods of high efficiency. Finally, a
branch-and-bound method utilizing these mechanisms is established.

In the practical part of the thesis, a lack of consensus regarding basic definitions, represen-
tations and file formats is found, thereby increasing barriers for benchmarking with decreased
market transparency as result. These differences are explored and results in the design of a new
file format called The Conic Benchmark Format (CBF). Unlike any other file format for conic
optimization, this one is both cross-platform compatible, high performant and future-proof by
encompassing other conic extensions. Scripts and tools have moreover been developed to aid
parsing (resp. conversion) of the file format in service of software developers (resp. optimization
practitioners), and are actively distributed. The functionality of all of this is proven not only by
first-class citizenship in the modeling language PICOS [87], but also by The Conic Benchmark
Library (CBLIB) where the conversion tools have been used to test its more than a thousand
instances with MOSEK and CPLEX. This benchmark library was compiled as part of this thesis
in support of studies in performance and reliability, but has yet to be used for the theoretical
subjects of this thesis.



Danish abstract

Konisk kvadratisk blandet-heltalsoptimering er en stærk matematisk ramme der accepterer
b̊ade logiske begrænsninger og ikke-lineære relationer i matematiske modeller af industrielle
optimeringsproblemer. Hvad mere er, at løsningsmetoder allerede eksisterer i mange af de
største kommercielle løsere i s̊avel MOSEK [72] som i XPRESS [31], GUROBI [46] og CPLEX
[50]. Denne afhandling beskæftiger sig med ydeevnen og p̊alideligheden af disse løserer og giver
to bidrag; et teoretisk og et praktisk.

I den teoretiske del af afhandlingen opdages og behandles et fundamentalt problem vedrør-
ende p̊alidelighed, der p̊avirker b̊ade kontinuert- og blandet-heltalsoptimering mere generelt end
det valgte fokusomr̊ade. Denne del af afhandlingen fortsætter studierne af faciale reduktioner
der g̊ar forud for Borwein og Wolkowicz i 1981, hvor den første algoritmiske kur for denne
type p̊alidelighedsproblemer blev formuleret. En vigtig forskel p̊a kontinuert- og blandet-
heltalsoptimering er imidlertid, at de p̊alidelighedsproblemer der m̊atte forekomme ikke uden
videre kan bebrejdes den praktiserendes matematiske model i blandet-heltalsoptimering, fordi
årsagen ogs̊a kan findes i de ændringer i modellen der foretages af løsningsmetoden. Dette
betyder at de kommercielle løserer er nødt til at indbygge understøttelse for faciale reduktion-
smetoder for at fungere p̊alideligt. I jagten p̊a s̊adanne metoder udvikles mange hurtige og
præcise heuristikker der supplerer hovedresultatet; at faciale reduktionsmetoder kan integreres
i effektive almenkendte løsningsmetoder. Denne del af afhandlingen sluttes af med at etablere
en branch-and-bound metode baseret p̊a disse mekanismer.

I den praktiske del af afhandlingen udforskes den manglende konsensus vedrørende basale
definitioner, repræsentationer og filformater, der øger barriererne for benchmarking og derfor
nedsætter gennemsigtigheden p̊a markedet for løserer. Dette studie leder frem til udviklingen af
et nyt filformat kaldet The Conic Benchmark Format (CBF). I modsætning til andre filformater
for konisk optimering, er dette designet til at være b̊ade platformsuafhængigt, højtydende og
fremtidssikret ved at tillade andre koniske udvidelser. Scripts og værktøjer er desuden udviklet
til at afhjælpe parsing (hhv. konvertering) af filformatet i servicering af softwareudvikleren
(hhv. den praktitionerende), og distribueres aktivt. Funktionaliteten af alt dette bevises først
og fremmest af filformatets fremtrædende rolle i modelleringssproget PICOS [87], men ses ogs̊a
af The Conic Benchmark Library (CBLIB) hvor konverteringsværktøjerne er brugt til at teste
dets mere end et tusind probleminstanser med MOSEK og CPLEX. Dette koniske benchmark
bibliotek blev udarbejdet som en del af denne afhandling til støtte af studier i ydeevne og
p̊alidelighed, men er endnu ikke anvendt p̊a de teoretiske emner i afhandlingen.
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1
Mixed-integer conic optimization

Whenever I have to describe what optimization means to me, I usually take the connection to
real-world problems as my starting point. This connection is illustrated in Figure 1.1 and can
be explained as follows. In many fields there are problems (or situations) involving complicated
relationships or large amounts of data for which answers are sought. In order to quantify
the problem, practitioners within these fields may attempt to construct a rigorous problem
description quantifying the degrees of freedom over which we have control (the variables), how
they are limited and how they affect the problem (the constraints), and finally what answers
are sought (the objective). In the context of optimization, the objective may be to minimize or
maximize any value function such as costs, material properties or emotional happiness as long as
it can be quantified. The task of translating this description into a language (or mathematical
model) that computers can understand and have solutions methods for, as well as judging and
putting the computer output (or mathematical solution) into action, is known as operations
research. Some may also know it as prescriptive analytics. The study of mathematical modeling
techniques and development of solution methods for problems where a value function is to be
minimized or maximized, is known as mathematical optimization.

In this thesis I study mathematical modeling with, and solution methods for, mixed-integer
conic optimization problems defined as follows. For coefficients A ∈ Rm×n, b ∈ Rm, c ∈ Rn,
conic sets Ki ⊆ Rmi for i = 1, . . . , r, and an index set I ⊆ {1, . . . , n} of integer variables,
consider the mixed-integer conic optimization problem,

minimize
x

cTx

subject to (Ax− b)i ∈ Ki, for all i ∈ {1, . . . , r},
xj ∈ Z ∩ [lj , uj ], for all j ∈ I,

(1.1)

where lj , uj ∈ Z∪ {−∞,+∞} for all j ∈ I represent the possibly unbounded domain of integer
variables. The formulation (1.1) generalizes from the computationally hard (i.e., NP-hard [52])
but, as argued in [15], yet highly successful special case of mixed-integer linear optimization.

Mathematical model Solution method

Problem data Problem solution

Mathematical solution

Optimization universe

Practitioners universe

Problem description

Figure 1.1: The flowchart that I used to disseminate the concept of mathematical optimization
at the passed course in teaching and learning.
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Here, in this special case, the cones Ki may be either one of the linear cones {0}mi , Rmi
+ or Rmi

−
such that each conic constraint (Ax− b)i ∈ Ki describes a system of equations or inequalities.

Another special case of (1.1) is mixed-integer second-order cone optimization which is the
prime target of analysis in this thesis. This case can be regarded as the first step towards
nonlinearity in the formulation (1.1), as it allows a selection of quadratic terms in conic forms,
i.e., the quadratic cone Qn :=

{
x ∈ R+ × Rn−1 : x2

1 ≥
∑n

i=2 x
2
2:n

}
and the rotated quadratic

cone Qnr :=
{
x ∈ R2

+ × Rn−2 : 2x1x2 ≥
∑n

i=3 x
2
2:n

}
.

Specializations like the above are important. In particular, while the generality of the conic
form (1.1) allows it to capture a wide variety of nonlinear relationships, it is impossible to
construct efficient solution methods without limiting the choice of cones. Fortunately, as
recently presented in [60], 320 of the 333 problems in the mixed-integer general nonlinear
benchmark library MINLPLIB2 [68], can be reformulated to the conic form (1.1) using only
three different nonlinear cones. Specifically, in the interest of this thesis, 204 of these problems
needed only the quadratic cone. Another interesting but rather technical result, shown under
mild conditions in [12, projective transformation], is that perspective reformulations of second-
order cone representable epigraphs are, themselves, second-order cone representable. This result
is used to obtain (sometimes significantly) stronger conic relaxations of mixed-integer problems
in [3] and [45], oftentimes without increasing the computational overhead of solving it.

To give the reader an idea of how to reformulate mathematical models into the conic form
(1.1), the thesis offers two examples. One is the classical Markowitz portfolio optimization
problem [65] whose reformulation is given in the introduction of [Friberg 36]. The other is the
production planning problem [108] presented here.

Example 1. An economic quantity (or production planning) problem with mathematical model
as stated below, minimizes the cost of satisfying fixed annual demands d of managed items. All
items of volumes a are stored at the same facility with capacity b, from where items are shipped
out at a fixed rate. Orders of size x are placed regularly, to ensure that new items ship in when
the stored quantity drops to zero. There is a unit cost c, and a per-order cost p, associated with
every item. All parameters are members of Rn+ where n is the number of items.

minimize
x

cTx+
∑n

j=1 pj
dj
xj

subject to aTx ≤ b,
x ∈ Zn+.

The problem appears in CBLIB 2014 [Friberg 36], in its conic formulation,

minimize
x,y

cTx+ qT y

subject to aTx ≤ b,

(xj , yj ,
√

2) ∈ Q3
r , for j = 1, . . . , n,

x ∈ Zn+,

where q is defined per item as qj = pjdj.

The main contributions on the practical side of this thesis, towards handling mixed-integer
second-order cone optimization problems and testing solvers, are summarized in the following
subsections and nurses for mixed-integer conic optimization in general.

1.1 CBF: The conic benchmark format

CBF is a file format specialized to conic optimization, developed in this thesis with a technical
reference manual as found in [Friberg 35]. The idea of such a file format is not new, however,
and Imre Polik [82] did take quite a few steps towards designing it. His ideas were ambitious
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covering dense, sparse and low-rank representations, dictionaries for often used constructions,
short-hand notation for repetitive data, and several experimental cones for which the best solvers
are still proof of concepts. Although there are good reasons for all of these features, the project
never materialized for some reason.

When my supervisors and I picked up the idea at the beginning of my thesis, we focused on
making something simple and useful that would rapidly gain widespread acceptance (and on a
longer time scale, widespread adoption). This led me to work on the following overall goals.

1. Design a simple structured format allowing people to define experimental extensions on
their own in a clear and standardized way, and somehow try to maintain an official
standard accepting features as they gained traction. One could imagine the newly started
community driven CBLIB project [Friberg 36] to take the lead for such a standard.

2. Populate the format, and implement scripts and tools, to attain the functionality and
usability needed to obsolete other file formats in use for conic optimization. Please see
[Friberg 36] for an explanation of why these other file formations were dismissed.

The CBF file format started out as a keyword driven variant of the SDPA format [104] to allow
for more freedom in the type of problem and cones. Yet, CBF was also a performance driven
development with parsers in C, Python and MATLAB written and tested from very early on.
Features of the CBF file format can be summarized as follows:

• All text-based (hence human readable and cross-platform compatible).

• Keyword driven.

• Sectioned: 1st Format; 2nd Problem structure; 3rd Problem data.

• Simple but expressive: Affine maps into conic domains; four linear, two second-order and
one semidefinite (the ones listed at the end of Section 2.1).

• Versatile: The embedded data-section change list can be used to formulate a sequence of
closely related optimization problems where warmstart capabilities may be utilized.

• Compact: 50% smaller files one average than similar MPS [72, 50].

• High performant: Index-based lookup (as opposed to the name-based lookup in MPS)
and guarantees that preallocations for efficient memory usage are possible.

In its mathematical nature, the CBF file format is very close to the general conic formulation
found in Section 2.4, with a free choice of objective sense (maximize versus minimize). One clar-
ification worth pointing out, however, regards the handling of matrix variable and inequalities.
While the conic form (1.1), as well as the general formulation in Section 2.4, suggest that the
semidefinite cone of symmetric matrices need to be vectorized, the CBF file format continues
practices from the SDPA format. Hence a special notation with (row,column)-indexed matrices
are used as elaborated in both the technical reference manual [Friberg 35] and in CBLIB 2014
[Friberg 36]. This indentation seems to be common practice among semidefinite solvers, and
avoids unnecessary complications including the otherwise required consensus for whether to
use full vectorization, half vectorization or symmetric vectorization (half vectorization where
off-diagonal entries are multiplied by

√
2 to preserve dot products).

Finally, a converter tool was developed in supplement of the C, Python and MATLAB parsers,
in acceptance of the (at least initial) lack of support for the CBF format. As illustrated in
Figure 1.2, this tool features frontends to the CBF parser written in C, and to the MOSEK C
API such that all file formats supported by MOSEK can be read. Other frontends can easily
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CBF
MOSEK MPS (MOSEK)

CBF

MPS (CPLEX)

SDPA

...

Frontends Backends

CBF

Internal
representation

...

Figure 1.2: Layout of cbftool, a converter tool for the CBF file format distributed as part of
the CBLIB base of scripts and tools.

be added. Backends have been implemented for the MPS format in the two second-order cone
extensions introduced by MOSEK and CPLEX respective, as well as for the SDPA format albeit
with no attempts to represent non-semidefinite cones at the moment. A MATLAB-implemented
backend for the SEDUMI format [92] is furthermore found alongside the MATLAB parser in the
experimental and unfinished cone solver at https://github.com/HFriberg/micoso-solver.
The other parsers and the converter tool are distributed as CBLIB tools at http://cblib.zib.
de.

1.2 CBLIB: The conic benchmark library

CBLIB is a benchmark library specialized to conic optimization, developed in this thesis with
a continuously updated version at http://cblib.zib.de and a frozen instance selection called
CBLIB 2014 presented in [Friberg 36] (see also the erratum [Friberg 37]).

This library was, and continue to be, an attempt to replicate the momentum previous
caused by the benchmark libraries NETLIB LP [41] for linear optimization and MIPLIB [53]
for mixed-integer linear optimization. In particular, from a practical point of view, benchmark
libraries like these help to identify bugs, numerical instabilities and performance bottlenecks.
By furthermore embracing instances from real or realistic applications, commonly appearing
anomalies worth exploiting can be studied as opposed to if the library had been made up of
randomly generated instances. An application-driven benchmark library can hence be said to
act towards closing the gap between solver capability and industrial demand as captured by
Figure 1.3 used on a conference to promote CBLIB.

The unfortunate side-effect of a purely application-driven benchmark library is that subtle edge-
cases are rarely represented. Hence, to support theoretical studies of conic optimization it is

Industrial demandSolver capability

CBLIB

Figure 1.3: Bringing in process. Drawing from the CBLIB poster presented at the 2013
Mixed Integer Programming Workshop, hosted by the University of Wisconsin Madison and
the Wisconsin Institute for Discovery.

https://github.com/HFriberg/micoso-solver
http://cblib.zib.de
http://cblib.zib.de
http://cblib.zib.de
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just as important to embrace instances constructed with the sole purpose of exposing some
particular property. These instances are marked by the tag (academic), but CBLIB has not
yet been populated actively with instances from this category and only feature one instance pack
with this tag which was also part of the CBLIB 2014 selection [Friberg 36]. In contrast, the
continuously updated version of CBLIB at http://cblib.zib.de currently, as of March 2016,
has more than a thousand instances from 17 instance packs representing different applications
of mixed-integer and continuous second-order cone optimization. Applications of other conic
extensions, notably the semidefinite cone supported by the CBF file format have not yet been
gathered actively.

1.3 Reliability in solutions methods of high efficiency

To describe how this thesis has contributed to the subject of reliability in solutions methods
of high efficiency, a little background is required. To begin, note that a premise for solving
mixed-integer conic optimization problems of the form (1.1) in general, is that we can solve its
continuous relaxation. That is, the special case of (1.1) for which there are no integer variables,
or in other words, I = ∅. There are many possibilities for solving this problem and a few
honorable mentions, applicable to the special case of second-order cone optimization, are given
as follows.

1. Active set methods iterating like the simplex method between vertices of a polyhedron
are described in [73] and [29]. The former obtains the polyhedron by restricting attention
to formulations in which second-order cones only affect the objective function, and the
latter uses Lagrangian relaxation of a single second-order cone. A more general active set
approach is found in [78] with preliminary results presented in [55].

2. Cylindrical algebraic decomposition methods are described in [5, 6, 51] and generalizes
from Fourier–Motzkin elimination. While the latter eliminates variables one-by-one from a
system of linear inequalities, the former does it for a system of polynomial inequalities. The
cylindrical algebraic decomposition can hence be specialized to the quadratic inequalities
from second-order cones, but has doubly-exponential worst case running time.

Despite many alternatives, the perhaps most successful solution method for second-order cone
optimization is given by primal-dual interior-point methods. These methods are efficient in the
special case of linear optimization [63], and this efficiency is maintained for so-called symmetric
(previously known as self-scaled) cones as shown in [76, 96, 70]. Since second-order cones are
a special case of symmetric cones, as elaborated in Section 2.1, these efficiency results apply to
second-order cone optimization as well.

A variant of the primal-dual interior-point method, defined on the self-dual homogeneous
embedding of the problem to be solved, has the same attractive properties but is known to give
more stability in the detection of infeasible problems [103, 8]. As shown in [Friberg 81], the
self-dual homogeneous embedding strategy also gives more stability in the detection of so-called
ill-posed problems.

The term ill-posed comes from Renegar [85, 34] and means that the tiniest perturbation of
coefficients will alter the feasibility status. A weakly infeasible problem is thus arbitrarily close
to feasibility (Figure 1.4a), while a weakly feasible problem is arbitrarily close to infeasibility
(Figure 1.4b). These cases are challenging not only in practice, but also in theory. In particular,
a weakly infeasible problem has no dual improving ray [62] (the usual certificate of infeasibility),
and a weakly feasible problem has no generalized Slater point [18] (the usual constraint qual-
ification) whereby the KKT conditions may fail to verify optimal solutions depending on the
objective function. Specifically, in Figure 1.4c, there is only one feasible point and hence exactly
one optimal solution. Nevertheless, is can be confirmed that there is no way to satisfy the KKT

http://cblib.zib.de
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y>=1/x

y<=0

(a) Weak infeasibility. (b) Weak feasibility. (c) Failure of the
KKT conditions in
the weakly infeasible
example.

Figure 1.4: Examples and consequences of ill-posedness.

stationarity condition at this point, as no weighting of normal vectors (blue and red arrow)
can counterbalance the gradient direction of objective improvements (yellow arrow). Finally,
as shown by [Friberg 39, Example 1], the troublesome blue cutting planes of Figure 1.4 may
be added naturally in the process of solving mixed-integer conic problems. This shows that ill-
posed problems are a naturally occurring phenomenon for which algorithmic countermeasures
should be taken to ensure reliability.

The term ill-posed was also used in [8] to describe the situation when the limit point of the
primal-dual interior point method, applied to the self-dual embedding, could not be interpreted.
With the contributions of [Friberg 81], we now know that these limit points can actually be
interpreted as so-called facial reduction certificates proving ill-posedness in the original sense
of Renegar [85]. Facial reduction certificates do more than that, however, as they also hold the
key to escape the state of ill-posedness. In particular, they reveal reformulations of the problem
which act to regularize it such that the optimal value can be found and certified computationally.

The facial reduction certificates interpreted from the limit point of the primal-dual interior
point method, applied to the self-dual embedding, has especially attractive properties. These
properties, and how they can be used to solve conic optimization problems reliably, are elabo-
rated in Chapter 3 and summarizes the main conclusions to be drawn from [Friberg 81]. This
acts both as a recap and need-to-know crash course, to prepare the reader for the unpublished
results of Chapter 4. In particular, Chapter 4 shows how the reliable solution method for
continuous conic optimization problems from Chapter 3 can be used in a reliable branch-and-
bound solution method for mixed-integer conic optimization problems.

Finally, while these reliable solution methods work in theory, the limit points revealing
the facial reduction certificates are not computed exactly in practice. In order words, the
regularizing reformulations applied to the problem are inaccurate. Looking back at Figure 1.4
and recalling that the tiniest perturbation of coefficients will alter the feasibility status, these
inaccuracies can have quite an impact on the final result. In response to this issue, I made two
additional studies within this thesis project. One is in [Friberg 38], where the requirements for
a facial reduction certificate is relaxed such that all reductions needed can be found analytically.
The issue here turned out to be representational. The other study is in [Friberg 39] and
surveys existing methods, as well as develops many new ones, able to find facial reductions
heuristically by various analytical techniques. Neither of these studies completely solved the
problem of inaccurate facial reduction certificates, however, and the issue remains an open
research direction.



2
Theoretical introduction

This chapter introduces the concepts and properties with special interest to the work and
conclusions of this thesis. Additional care is taken to explain the common differences in
definitions and representations of cones and conic constraints respectively. Finally, the chapter
ends with two pedagogical remarks. One on dualization by hand, which came as a side-
product of designing the conic benchmark format covered in Section 1.1, and one on the naming
convention for the entries of conic domains.

2.1 Cones

A quadratic cone is defined by

Qn := {x ∈ Rn : x1 ≥ ‖x2:n‖2} , (2.1)

and can be thought of as an infinitely high ice cream cone (see the front page). Geometrically,
x2:n holds the set of points in a hyperball with radius x1. Linguistically, however, I propose
calling x1 the head and x2:n the base of the quadratic cone, as the concepts of a head and base
can be generalized to others cones as shown in Section 2.5. The boundary of the quadratic cone
is bndQn = {x ∈ Rn : x1 = ‖x2:n‖2}, and the interior is intQn = {x ∈ Rn : x1 > ‖x2:n‖2}. In
these terms, and in the important notion of a dual cone, K∗ := {y ∈ Rn : yTx ≥ 0, ∀x ∈ K},
many useful properties can be proven for the quadratic cone.

Proposition 1. The quadratic cone Qn has the following properties:

1. Non-empty: K 6= ∅.

2. Closed: K = clK.

3. Convex: λx+ (1− λ)y ∈ K for all x, y ∈ K and 0 ≤ λ ≤ 1.

4. Cone: λx ∈ K for all x ∈ K and λ > 0.

5. Solid: intK 6= ∅.

6. Pointed: K ∩ (−K) = {0}n.

7. Self-dual: K = K∗.

8. Homogeneous: For any x, y ∈ intK ⊆ Rn, there exists a mapping B ∈ Rn×n such that
BK = K and Bx = s.

Proof. Self-duality is shown by xT y = x1y1 +xT2:ny2:n ≥ x1y1−‖x2:n‖2‖y2:n‖2 ≥ 0 for x, y ∈ Qn
using the the Cauchy–Schwarz inequality, while xT y = ‖x2:n‖2(x1 − ‖x2:n‖2) < 0 for x 6∈ Qn
when selecting y = (‖x2:n‖2,−x) ∈ Qn. Hence, as K = (K∗)∗, the bipolar theorem [86] shows
properties 1-4. The point x̂ = (1, 0, . . . , 0)T ∈ intQn shows solidness, and hence pointedness
follows by self-duality and [30, Proposition 2.4.3]. Homogeneousity is constructively shown in
[76, Theorem 3.1(iii) and Theorem 3.2, using definitions from Section 2.3].
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Any subset of properties from Proposition 1 define a category of cones with similar properties,
and the results of this thesis are generalized, whenever possible, to one of these broader
categories.

Non-empty, closed convex cones is the category of cones satisfying the minimal subset of
properties considered in this thesis. These cones satisfy C = (C∗)∗, as shown by the bipolar
theorem [86], which is needed to define primal-dual pairs of problems (that is, two conic
optimization problems where the Lagrange-dual problem [19] of either gives you the other).

Note that the the conical hull of any set S ⊆ Rn, denoted cone(S), is the union of the origin
and all finite conical combinations, λ1s1 + . . . + λksk for λ ∈ Rk++, of points s1, . . . , sk ∈ S.
By [86, Corollary 2.6.2], the conical hull cone(S) is the smallest non-empty, convex cone which
contains the set S and the origin. Hence, its closure, cl cone(S), belongs to the category above
as it is the smallest non-empty, closed, convex cone which contains the set S.

Polyhedral cones are conical hulls, cone(S), of any finite set S of so-called extreme rays. By
definition, these are always non-empty, closed, convex cones [86, Theorem 19.1].

Proper cones are defined to satisfy the properties 1-6 of Proposition 1 (see, e.g. [19]). This
category is sometimes also known as regular cones, e.g., in [74, 57], but this name is discouraged
as it may erroneously be perceived as the output of a cone regularization procedure (this concept
is introduced in Section 2.3.3).

Symmetric cones are defined to be self-dual and homogeneous, and can be shown to satisfy
all properties 1-8 of Proposition 1 (see, e.g., [83, 32]).

The important concept of faces for polyhedra (extreme points, facets, etc.) can be generalized
to cones, or in fact to any convex set S ⊆ RN . In particular, faces of convex sets S, denoted
F E S, are convex subsets F ⊆ S for which any line segment in S, with a midpoint in F , has
both endpoints in F [86]. Faces satisfy the following property.

Proposition 2. Faces of a convex set F E S ⊆ Rn, are convex by definition and satisfy the
following properties.

1. F is closed if S is closed.

2. F is a cone if S is a cone.

Proof. Statement 1 is from [86, Corollary 18.1.1]. For statement 2, let x̂ ∈ F \ {0} ⊆ S and
suppose S is a cone. Then any point λ̂x̂ on the ray {λx̂ : λ > 0} ⊆ S belongs to F , since λ̂x̂ for
λ̂ 6= 1 is the endpoint of the line segment connecting λ̂x̂ and λ̂−1x̂ with x̂ ∈ F as a midpoint.

Two types of faces are now elaborated. A proper face of a convex set S is a face which is
non-empty and not equal to S. An exposed face of S is a face that appears as the optimal set
of S for some maximized linear functional. These two types of faces can also be characterized
in greater detail for non-empty, closed, convex cones C.

Let z⊥ := {x ∈ Rn : xT z = 0}. For z ∈ C∗, the intersection C ∩ z⊥ contains the origin
and is an exposed face of C as it maximizes −zTx over x ∈ C [86]. Hence, if z ∈ C∗ \ C⊥, the
intersection C ∩ z⊥ cannot equal C and must represent a proper face of C. The set z ∈ C∗ \ C⊥
can also be represented as the subset of points z ∈ C∗ having a positive inner product with a
relative interior point of C as shown in [80, Corollary 1]. This technical result is used a few
times throughout the thesis and is therefore repeated here under a simpler proof.

Lemma 1. Let C be a non-empty, closed, convex cone. Given z ∈ C∗ and p̂ ∈ relint C, the
following statements hold.

1. p̂T z = 0⇐⇒ z ∈ C⊥;

2. p̂T z > 0⇐⇒ z /∈ C⊥.
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Proof. Statement 1. If z ∈ C⊥, then pT z = 0 by definition. The claim thus follows if p̂T z = 0
implies z ∈ C⊥, that is, points p̄ in C with p̄T z 6= 0 (or equivalently, p̄T z > 0 by dual cones) are
forbidden. This holds since the existence of such points would imply (p̂ − αp̄)T z < 0 for any
α > 0, and hence p̂− αp̄ /∈ C by dual cones; a contradiction of p̂ ∈ relint C by the prolongation
lemma, [14, Proposition 1.3.3]. Statement 2 is simply the contrapositive of statement 1.

Another important concept is that of the Cartesian product, ×, which is used to glue cones
together in satisfaction of

x ∈ Kx, y ∈ Ky ⇐⇒
[
x
y

]
∈ Kx ×Ky,

for column vectors and

X ∈ KX , Y ∈ KY ⇐⇒
[
X 0
0 Y

]
∈ KX ×KY ,

for matrices. A cone which is not the Cartesian product of smaller cones is said to be primitive.
A non-primitive cone, such as R2

+ = R+ × R+, has the properties of Proposition 1 shared by
its Cartesian factors. Hence, the Cartesian product can, and often is, used to write the conic
formulation (1.1) in only one conic constraint without loss of generality.

Finally, I end this section with a formal introduction to the family of cones which appear in
the examples of this thesis, with a side note on a common difference to these definitions.

Linear cones This is the subset of polyhedral cones used as constraint and variable domains
in general linear optimization. I consider this family to contain the set of zeros {0}n, the
nonnegative orthant Rn+ = {x ∈ Rn | xj ≥ 0 for j = 1, . . . , n}, the nonpositive orthant Rn− =
−Rn+, and the set of reals Rn used as the domain of free variables. The nonnegative and
nonpositive orthants are both symmetric cones [102]. The set of reals and of zeros are both
non-empty, closed, convex cones, the former solid, the latter pointed, and they are each others
dual cone; (Rn)∗ = {0}n.

Second-order cones This family is also known as the quadratic cones, nicknamed the ice
cream cones, and often called the Lorentz cones in honor of the physicist Hendrik Lorentz and
his work on the similarly defined light cone. I consider this family to contain two members,
namely the quadratic cone Q1+n = {(r, x) ∈ R1

+ × Rn | r2 ≥ xTx} and the rotated quadratic
cone Q2+n

r = {(r, x) ∈ R2
+ × Rn | 2r1r2 ≥ xTx} related by Qr = TQ and TQr = Q for the

symmetric and orthogonal matrix

T =

[
1√
2

1√
2

0

1√
2
−1√
2

0

0 0 I

]
. (2.2)

The matrix T is chosen for its properties but is notably not a rotation matrix. The rotated
quadratic cone still is a rotation of Q, however, as shown by the rotation matrix at θ = π

4

which satisfy Qr =

[
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 I

]
Q. Specifically, this relation can be shown by swapping

the first two rows of T corresponding to a permutation within the (r1, r2) variable symmetry in
the definition of Qr. Both cones, Q and Qr, are symmetric; the former by Proposition 1 and
the latter because neither inner products (related to self-duality) nor the property of being a
homogeneous cone are affected by rotations.

Finally, on a side note, the rotated quadratic cone is often encountered without the factor 2
in front of r1r2. This cone is sometimes easier for practitioners, with respect to mathematical
modeling, and has a long history dating back to 1957 as a special case of the power cone
introduced in [54]. The practice of calling it a rotated quadratic cone is far more recent,
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however, and somewhat confusing. In particular, in contrast to common belief (without naming
and shaming), this cone it not a rotation of Q and is thus, perhaps, better denoted by another
name; possibilities include the quadratic power cone, the restricted hyperbolic as used in [58],
or something like the squeeze-rotated quadratic cone. When using this cone in mathematical
modeling rather than Qr, it should also be noted that this cone is not self-dual in the standard
inner product. Hence, for software developers, this means that abstractions of the inner product
space, or an extra cone definition, is needed represent the Lagrange-dual problem, e.g., in
modeling languages such as PICOS [87]. This offers at least some explanation for why Qr,
rather than this cone, is the right choice for the CBF file format [Friberg 35].

Semidefinite cones This family refers to the real-valued symmetric positive semidefinite
cone (often just denoted the semidefinite cone) Sn+ =

{
V V T : V ∈ RN×N

}
= {X ∈ Sn | λ(X) ∈

Rn+}, where λ is the eigenvalue function and Sn is the set of n-by-n symmetric matrices. The
semidefinite cone is a symmetric cone [102].

2.2 Conic constraints

A linear or affine conic constraint (often just denoted a conic constraint) is an affine map
constrained to the domain of a cone, that is

Dx− d = (D, d ) ( x
−1 ) ∈ K, (2.3)

where D ∈ Rp×n and d ∈ Rp are the coefficients of the affine entries and K ⊆ Rp is the conic
domain. For the choice K = Qp, this is called a second-order cone constraint. Just like a system
of equations, K = {0}p, it turns out that full row rank of (D, d ) can be assumed (at least in
theory) for K = Qp without loss of generality.

Proposition 3. The second-order cone constraint in dimension p ≥ 1,

Dx− d = (D, d ) ( x
−1 ) ∈ Qp, (2.4)

for some D ∈ Rp×n and d ∈ Rp, can be reformulated to a second-order cone constraint in
dimension r = rank (D, d ).

Proof. Omitted with reference to [Friberg 38].

Some optimization software does not support conic constraints directly and require slack vari-
ables to be added. That would be Dx− d = s and s ∈ Qp to represent (2.3). The second-order
cone constraint is sometimes also required in its quadratic-linear representation with slack:

s = Dx− d, s2
1 ≥

n∑

j=2

s2
j , s1 ≥ 0. (2.5)

Optimization software accepting this quadratic-linear representation needs to take a little extra
care to avoid loss of dual information as s ∈ Qp (with p dual variables) becomes a linear and
quadratic inequality usually having only one dual variable each. The representation (2.5) leads
to an interesting question, however, of whether the slack variable can be dropped. In particular,
with D =

(
αT

A

)
and d =

(
β
b

)
, the quadratic part of (2.5) can be expanded to the form of a

standard quadratic inequality,

xTQx+ qTx+ p ≤ 0, (2.6)

where Q = ATA − ααT . That is, the quadratic coefficient matrix Q of (2.6) is a rank-one
updated positive semidefinite matrix which can have up to one negative eigenvalue [95]. Due
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to dependencies between Q, q and p in this expansion, however, the other direction from (2.6)
to (2.5) is not always possible.

Mahajan and Munson [64] clarifies this relationship. In particular, necessary and sufficient
conditions are proven under which (2.6) can be reformulated as quadratic part of (2.5) without
slack, i.e., (αTx − β)2 ≥ ‖Ax − b‖22. To match the linear part of (2.5) without slack, i.e.,
αTx−β ≥ 0, the paper suggests that the two possible domains of αTx−β are treated separately,
that is, αTx − β ≥ 0 and αTx − β ≤ 0, respectively. Both cases leads to a second-order
cone constraint and this procedure hence works by growing a binary tree of subproblems to
consider, doubling in size with each reformulation. The following proposition characterize when
αTx − β ≥ 0, respectively αTx − β ≤ 0, contains the entire feasible set of the considered
optimization problem such that subproblem partitioning can be avoided.

Proposition 4. Suppose (αTx− β)2 ≥ ‖Ax− b‖22 is satisfied. Then

1.
(
αT x−β
Ax−b

)
∈ Qp ⇐⇒ λT

(
αT x−β
Ax−b

)
≥ 0 is a valid inequality for some λ ∈ intQp.

2.
(
−(αT x−β)
Ax−b

)
∈ Qp ⇐⇒ λT

(
αT x−β
Ax−b

)
≥ 0 is a valid inequality for some λ ∈ − intQp.

Proof. Let s =
( s1
s′
)

=
(
αT x−β
Ax−b

)
and consider statement 1. If s ∈ Qp, then λT s ≥ 0 for all λ ∈

intQp by self-duality of the quadratic cone. Conversely, if λT s ≥ 0 for some λ =
(
λ1
λ′
)
∈ intQp,

we need to show s1 ≥ 0 to fulfill the claim via the quadratic-linear form (2.5). If s1 = 0 we are
done. Otherwise,

0 ≤ λT s = λ1s1 + (λ′)T (s′) ≤ λ1s1 + ‖λ′‖2‖s′‖2 < λ1s1 + λ1|s1|,

firstly by the Cauchy-Schwarz inequality and secondly by assumption; λ ∈ intQp and s2
1 ≥ ‖s′‖22.

Since λ1 > 0, we find that |s1|+s1 > 0 and hence s1 > 0. Statement 2 follows by statement 1.

Searching for valid inequalities of the type required by Proposition 4 is difficult in practice.
Hence, it is generally nontrivial to recognize second-order cone constraints in the quadratic-linear
representation when the quadratic part is specified, without slack, as a standard quadratic in-
equality (2.6). Moreover, by [64], such a recognition would require an eigenvalue decomposition
of the quadratic coefficient matrix Q of (2.6) and hence be subject to numerical difficulties.

Finally, the second-order cone constraint is sometimes required as a semidefinite constraint,
e.g., to be dealt with in pure semidefinite optimization (e.g., for addition to SDPLIB [16]) or
when using SDPA [104] as a backend to SCIP-SDP [67]). All reformulations I have seen follow
Alizadeh and Goldfarb [4], and use that x ∈ Qn if and only if arrow(x) � 0, in terms of the
arrowhead matrix,

arrow(x) =

(
x1 xT2:n

x2:n x1I

)
.

I will now show that the dimension of the semidefinite matrix representation can be reduced
by one. This has computational advantages as solving a semidefinite problem requires at least
O(n3) arithmetic operations to compute the Cholesky factorization on each n×n block [40]. By
reducing the dimension n by one, we thus avoid O(n2) arithmetic operations for each represented
second-order cone.

Proposition 5. x ∈ Qn if and only if arw(x) � 0, where

arw(x) =

(
x1 + x2 xT3:n

x3:n (x1 − x2)I

)
.
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Proof. The eigenvalues of arw(x) is given by x1−‖x2:n‖2, x1+‖x2:n‖2 and x1−x2, the latter with
multiplicity n−2 [77]. Hence, arw(x) � 0 if and only if x1 +‖x2:n‖2 ≥ x1−x2 ≥ x1−‖x2:n‖2 ≥ 0
showing the claim.

This lower-dimensional representation can also be realized for the rotated quadratic cone.

Proposition 6. x ∈ Qnr if and only if arw(Tx) � 0, where

arw(Tx) =

(√
2x1 xT3:n

x3:n

√
2x2I

)
,

and T is the symmetric and orthogonal matrix from (2.2)

Proof. Follows by inspection given Proposition 5, noting that Tx ∈ Q if and only if x ∈ Qr.

At last, I end this section by mentioning that the adjective second-order cone representable is
used for nonlinear relationships that can be reformulated using one or more second-order cone
constraints. This is studied in [58, 12, 4] and progress is still being made as now exemplified.

Example 2. The geometric mean is defined by

{x ∈ R× Rm−1
+ | |x1|β1 ≤ xβ22 · · ·xβmm }, (2.7)

with integer powers β ∈ Zm satisfying β1 =
∑m

j=2 βj. The geometric mean is second-order cone
representable as shown by the “tower of variables”-type of construction in [4]. The number of
second-order cones needed in this construction was recently reduced in [71], however, showing
an economic formulation for all geometric cones of dimension m ≤ 4. These results apply to
other popularized cones.

1. The rational power cone is defined by

{(y, x) ∈ R× Rm−1
+ | |y| ≤ xα1

1 · · ·x
αm−1

m−1 }, (2.8)

for rational powers α ∈ Qm−1 summing to eTα = 1. Suppose αj = pj/qj and define
P = gcd(p1, p2, . . .) and Q = lcm(q1, q2, . . .). Then (2.8) can be rewritten as a geometric
mean with integer vector β = Q

P (1, α).

2. The rational p-order cone is defined by

{(y, x) ∈ R+ × Rm−1 | y ≥ ‖x‖α}, (2.9)

for rational α ≥ 1, and can be formulated using m− 1 four-dimensional geometric means
as shown by the constructions in [4, 71].

2.3 Primal-dual pairs of problems

The continuous special case of (1.1) with no integer variables, I = ∅, is given by

minimize
x

cTx

subject to (Ax− b)i ∈ Ki, for all i ∈ {1, . . . , r}.
(2.10)

The feasible set is the common denotation for the (possibly empty) set of points x that satisfy
all conic constraints. On the feasible set of (2.10), the objective cTx and the minimize statement
defines a comparison operator for judging points against each other, as well as an intent to find
good feasible solutions with respect to this metric, e.g., using trial and error by hand.

We can improve our understanding of the conic optimization problem (2.10) significantly,
however, by considering properties such as the infimum value of cTx over the feasible set, defined
as −∞ if the value can be arbitrarily decreased and +∞ if the feasible set is empty. This value
is also commonly known as the (possibly unattainable) optimal value of (2.10).



21

Definition 1. The optimal value of a problem is defined as the infimum value of the objective
function if minimizing, and the supremum value if maximizing. Its value can be

1. −∞ (designates a minimization problem as unbounded).

2. +∞ (designates a minimization problem as infeasible).

3. finite and attained by a feasible point.

4. finite and yet unattained by any feasible point; like the infimum of f(x) = 1/x for x ≥ 0.

The optimal value is subject to study using duality theory [62, 19, 97]. To simplify the matter of
duality for the considered conic optimization problem, it is assumed to be defined over a single
cone K (taking advantage of the Cartesian product) which is non-empty, closed and convex
(thereby satisfying the bipolar relation (K∗)∗ = K allowing for primal-dual pairs).

Satisfying these assumptions for the conic problem (2.10), it can be seen to be part of a
primal-dual pair as elaborated in Section 2.4. In the remainder of this section, however, I will
avoid deviating too much from existing work and consider the following de factor standard
primal-dual pair. That is, for coefficients A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and a non-empty, closed,
convex cone K ⊆ Rm, this section considers the primal-dual pair

(P ) : θP = inf
x
{cTx : Ax = b, x ∈ K}, (D) : θD = sup

s,y
{bT y : c−AT y = s, s ∈ K∗},

(2.11)
where θP ∈ R∪{−∞,+∞} is the optimal value of the primal problem and θD ∈ R∪{−∞,+∞}
is the optimal value of the dual. Primal-dual pairs have the property that the Lagrange-dual
problem of either is the other [19] and furthermore satisfy weak duality.

Proposition 7 (Weak duality). The primal-dual pair (2.11) satisfies θP ≥ θD.

Proof. For all primal-dual feasible triples (x, s, y) of (2.11) we have cTx ≥ bT y as

0 ≤ xT s = xT (c−AT y) = cTx− bT y;

first inequality by the dual cone variable domains, x ∈ K and s ∈ K∗, and remaining steps
by the equations of (2.11). Taking the supremum (i.e., the least-upper-bound) over all feasible
pairs (s, y) of (D) and the infimum (i.e., the greatest-lower-bound) over all feasible points x of
(P ) yields the claim.

Weak duality can sometimes be strengthened to the notion of strong duality.

Definition 2. Strong duality is said to hold for the primal-dual pair (2.11) if θP = θD.

Strong duality does not hold in general and is not even satisfied for linear optimization problems.
This is seen, e.g., in [Friberg 81, Example 1], when the feasible sets of the primal and dual
problems are both empty. This is nevertheless the only exception to strong duality that can be
found in linear optimization [105, Theorem 3] (also implied by the forthcoming Proposition 8),
and a far greater variety of strong duality failures can be observed in conic optimization over
non-polyhedral cones. One example is as follows.

Example 3 (Lack of strong duality). The following primal-dual pair of problems, taken from
[7] and studied in [Friberg 81], are both feasible but have different optimal values:

minimize x3

subject to x1 + x2 + x4 + x5 = 0
−x3 + x4 = 1
x ∈ Q3 ×Q2,

maximize y2

subject to

(
0
0
1
0
0

)
−
( y1

y1
−y2
y1+y2
y1

)
= s

s ∈ Q3 ×Q2.

(2.12)
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Primal feasible points can be seen to satisfy x1 +x2 ≥ 0 and x4 +x5 ≥ 0 given their membership
in Q3 × Q2. From the equation x1 + x2 + x4 + x5 = 0 we hence conclude x1 + x2 = 0, which
given (x1, x2, x3) ∈ Q3 implies x3 = 0 for all primal feasible points such as x̂ = (0, 0, 0, 1,−1).
Dual feasible points can be seen to satisfy s1 = s2, which given (s1, s2, s3) ∈ Q3 implies s3 = 0.
This in turn shows y2 = −1 for all dual feasible points such as ŝ = (0, 0, 0, 1, 0) and ŷ = (0,−1).
Conclusively, the primal optimal value is zero and the dual optimal value is −1.

The following is a sufficient condition for strong duality. In contrast to Slater’s original condition
[90] in conic form [91], it allows for the use of non-solid cones and proves strong duality for
primal or dual feasible problems in linear optimization. The definition of the generalized Slater
condition was given already in [17], but the implications of it stated here is from [18].

Proposition 8 (The generalized Slater condition). Strong duality holds if, in either (P ) or
(D), there exists a feasible point in the relative interior of all non-polyhedral cones. Moreover,
in addition to strong duality, if this point is found in (P ) then (D) is either infeasible or has
an attained optimal value, and vice versa swapping (P ) and (D).

In order to facilitate further analysis of the primal-dual pair, and characterize unboundedness,
infeasibility and optimality, the following vocabulary is formalized.

Definition 3. The following definitions denote the feasible sets of (P ) and (D), respectively,
and in the latter case also the projection of the feasible set onto each set of variables.

• Ωx
P = {x ∈ Rn : Ax = b, x ∈ K}.

• Ω
(s,y)
D = {(s, y) ∈ Rn × Rm : c−AT y = s, s ∈ K∗}.

• Ωs
D = {s ∈ Rn : c−AT y = s, s ∈ K∗}.

• Ωy
D = {y ∈ Rm : c−AT y = s, s ∈ K∗}.

Definition 4. The following sets denote the (value-normalized) improving rays for (P ) and
(D), respectively.

• The set of improving rays for (P ) is {cTx = −1, Ax = 0, x ∈ K}.

• The set of improving rays for (D) is {bT y = +1, AT y + s = 0, s ∈ K∗}.

2.3.1 Unboundedness and infeasibility conditions

Unboundedness denotes the situation when the objective value can be improved indefinitely,
while infeasibility (resp. feasibility) denotes that the feasible set is empty (resp. non-empty).
These concepts are closely related via weak duality, and hence we begin by formalizing the
former in terms of the optimal value.

Definition 5. Consider the optimal values of (P ) and (D), respectively.

• (P ) is said to be unbounded if θP = −∞.

• (D) is said to be unbounded if θD =∞.

A problem obviously has to be feasible in order to be unbounded. Combining this with a
non-empty set of improving rays yields a sufficient condition for unboundedness.

Proposition 9. Problem (P ), respectively (D), is unbounded if it has a feasible point and an
improving ray.

Proof. The objective value can be improved indefinitely by starting at the feasible point and
moving in the direction of the improving ray.
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A relation between unboundedness and infeasibility is given as follows.

Proposition 10. Problem (P ) is infeasible if (D) is unbounded, and vice versa swapping
(P ) and (D).

Proof. By weak duality.

The proposition above can be used to prove a stronger characterization of infeasibility.

Proposition 11. Problem (P ) is infeasible if (D) has an improving ray, and vice versa swapping
(P ) and (D).

Proof. The objective of the considered problem does not affect the feasible set, nor does it affect
the set of improving rays in the dual problem. Specifically, these set are unchanged if we fix
the objective to zero. Doing so gives the dual problem a feasible point, the origin, making it
unbounded if it has an improving ray. The claim hence follows by Proposition 10.

Proposition 11 allows one to construct an easily verifiable certificate of infeasibility, namely
a dual improving ray. Moreover, the proposition represents a both necessary and sufficient
condition of infeasibility in linear optimization as shown by Farkas lemma over polyhedral
cones [10, Theorem 3.5].

Proposition 12 (Farkas lemma over polyhedral cones). Let K and K∗ be polyhedral cones of
(P ) and (D), respectively. Problem (P ) is then infeasible if and only if (D) has an improving
ray, and vice versa swapping (P ) and (D).

2.3.2 Optimality conditions

Combining the definition of feasibility with an objective leads to the common denotation of
optimal solutions formalized below.

Definition 6. A feasible point (ŝ, ŷ) of Ω
(s,y)
D is an optimal solution of (D) if and only if

bT ŷ ≥ bT y for all y ∈ Ωy
D.

We can use this definition of optimality to derive the both necessary and sufficient Rockafellar-
Pshenichnyi condition [97, Proof of Theorem 4.10].

Proposition 13. A feasible point (ŝ, ŷ) of Ω
(s,y)
D is an optimal solution of (D) if and only if

b ∈ −(Ωy
D − ŷ)∗.

Proof. Optimality is defined as bT (ŷ − y) ≥ 0 for all y ∈ Ωy
D, or alternatively, bT z ≥ 0 for all

z ∈ ŷ − Ωy
D. That is, b ∈ (ŷ − Ωy

D)∗ by definition of dual cones showing the claim.

A necessary and sufficient variant of the Rockafellar-Pshenichnyi condition (closely related to
[97, Proposition 5.1]) can also be derived in the s-variable.

Proposition 14. A feasible point (ŝ, ŷ) of Ω
(s,y)
D is an optimal solution of (D) if and only if

there exists a solution x ∈ Rn to the system

Ax = b, x ∈ (Ωs
D − ŝ)∗.

Proof. Reformulate the objective function of (D) as bT y = xTAT y = xT c − xT s, for any fixed
choice of x ∈ Rn satisfying Ax = b. If there is no such x, then Ax = b is inconsistent, and by
Farkas lemma (Proposition 12) problem (D) has an improving ray which implies that the feasible
point (ŝ, ŷ) is not optimal. Otherwise, xT c is constant after the reformulation. Optimality is
thus defined as xT (s− ŝ) ≥ 0 for all s ∈ Ωs

D. That is, x ∈ (Ωs
D − ŝ)∗.
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Consider next the KKT optimality conditions in conic form (e.g., [89, 19]) yielding a symmetric,
but only sufficient, characterization of optimality in terms of the primal-dual pair (2.11).

Proposition 15. The feasible points (ŝ, ŷ) of Ω
(s,y)
D and x̂ of Ωx

P are optimal solutions of (D)
and (P ), respectively, if the complementarity condition

x̂T ŝ = 0

is satisfied.

Proof. Follows by weak duality since xT s = xT (c − AT y) = cTx − bT y. The connection to the
KKT conditions is shown, e.g., in [42]. In summary, stationarity is given by the equation system
of Ωx

P , Lagrange multiplier feasibility is given the variable domain of Ωx
P , and the remaining of

the two complementarity conditions, yT (Ax− b), is trivially zero given Ax = b.

The lack of strong duality in Example 3 exemplifies why the KKT conditions gives an inadequate
description of optimality. It will now be compared to the necessary and sufficient Rockafellar-
Pshenichnyi condition of Proposition 14 using the following technical result.

Lemma 2. Let K ⊆ Rn be a non-empty, closed, convex cone, and s ∈ R an arbitrary point.
The following statements hold:

1. cone(K − s) = cone(K − cone(s)).

2. (K − s)∗ = K∗ ∩ s⊥.

Proof. Statement 1 is different from the similar statement shown in [97, Proposition 3.2] because
s is arbitrary. It follows, however, by cone(K − s) = cone(λ(K − s)) = cone(K − λs) for λ > 0.
In turn, Statement 2 follows by (K− s)∗ = (cone(K− s))∗ = (K− cone(s))∗ and application of
[86, Corollary 16.4.2].

Using this lemma, the KKT conditions can be restated as a sufficient condition for optimality
on the same form as the Rockafellar-Pshenichnyi condition.

Corollary 1. A feasible point (ŝ, ŷ) of Ω
(s,y)
D is an optimal solution of (D) if there exists a

solution x ∈ Rn to the system
Ax = b, x ∈ (K∗ − ŝ)∗.

Proof. Given Lemma 2, (K∗ − ŝ)∗ = K ∩ ŝ⊥ = {x ∈ Rn : x ∈ K, xT ŝ = 0}, whereby the
statement is seen equivalent to Proposition 15.

In order to facilitate a comparison between the restated KKT conditions and the Rockafellar-
Pshenichnyi condition, however, another technical result is needed.

Lemma 3. Let S1, S2 ⊆ Rn and ŝ ∈ Rn be arbitrary sets and a point. Then S1 ⊆ S2 implies

(S1 − ŝ)∗ ⊇ (S2 − ŝ)∗.

Proof. Note that (Si − ŝ)∗ = {x ∈ Rn : xT (s − ŝ) ≥ 0, ∀s ∈ Si}. Hence, S1 ⊆ S2 means that
(S2 − ŝ)∗ is described by all the inequalities of (S1 − ŝ)∗ and possibly more.

Finally, comparing Corollary 1 and Proposition 14, we see that Ωs
D ⊆ K∗ is satisfied by definition

of Ωs
D and implies

(Ωs
D − ŝ)∗ ⊇ (K∗ − ŝ)∗,

by Lemma 3. A strict containment here is thus the only reason for a difference between
Corollary 1 and Proposition 14, and inadequateness of the KKT conditions can be explained
by the set (K∗− ŝ)∗ being too small. This motivates reformulations of (D) which causes the set
(K∗ − ŝ)∗ to grow; a process called (cone) regularization.
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2.3.3 Regularization and facial reduction

The comparison of Corollary 1 and Proposition 14 in the previous Section 2.3.2, concluded
that reformulations which grow the set (K∗ − ŝ)∗ acts to regularize problem (D) in the sense
of making the KKT conditions a both necessary and sufficient condition for optimality. This
growth can be facilitated, as shown in Lemma 3, by reformulations shrinking K∗. The room for
these reformulations is specified in the following corollary.

Corollary 2. For any optimization problem, let Ωρ be its feasible set projected onto a variable
ρ for which a constraint ρ ∈ K̂ ⊆ Rr is given. Any non-empty, closed, convex cone C ⊆ Rn in
the sandwich Ωρ ⊆ C ⊆ K̂ is a valid replacement of K̂ in the optimization problem.

In general, we cannot shrink the cone K∗ of (D) all the way down to Ωs
D as this set may not

be a non-empty, closed, convex cone hence violating the problem definition. Fortunately, there
is no need for that as the Rockafellar-Pshenichnyi condition of Proposition 14 can be restated
in terms of certain relaxations of Ωs

D. To prove this, consider the smallest non-empty, close,
convex cone C∗ containing Ωs

D, that is, C∗ = cl cone(Ωs
D). The following proposition shows that

the Rockafellar-Pshenichnyi condition of Proposition 14 is a necessary and sufficient condition
for optimality even after replacing Ωs

D by cl cone(Ωs
D).

Proposition 16. A feasible point (ŝ, ŷ) to the constraint set of (D), is an optimal solution if
and only if there exists a solution x ∈ Rn to the system

Ax = b, x ∈ (cl cone(Ωs
D)− ŝ)∗.

Proof. Reformulate the objective function of (D) as bT y = xTAT y = xT c − xT s, for any fixed
choice of x ∈ Rn satisfying Ax = b and xT ŝ = 0. If there is no such x, then

(
A
ŝT

)
x =

(
b
0

)
is

inconsistent, and by Farkas lemma (Proposition 12) there exists a AT y+λŝ = 0 where bT y = 1.
For λ ≥ 0, this an improving ray for (D) since −AT y = λŝ ∈ K∗. For λ < 0, this is an improving
direction realized by (ŝ, ŷ)+ 1

|λ|(λŝ, y) which is feasible since c−AT (ŷ+ y
|λ|) = ŝ+ λ

|λ| ŝ = 0 ∈ K∗.
Both cases show (ŝ, ŷ) is not optimal. Otherwise, if there is such x to facilitate the reformulation,
xT c is constant afterwards. Optimality is thus defined as xT (s − ŝ) = xT s ≥ 0 for all s ∈ Ωs

D.
That is, x ∈ (Ωs

D)∗. This characterization is finally reformulated by enforcing xT ŝ = 0 via the
cone giving Ax = b and x ∈ (Ωs

D)∗ ∩ ŝ⊥ = ((Ωs
D)∗∗ − ŝ)∗, by Lemma 2, showing the claim.

An algorithm reducing the cone K∗ of (D) to cl cone(Ωs
D) was realized in [Friberg 38], and makes

the KKT conditions a necessary and sufficient condition for optimality as argued. The paper
concludes that while every iteration of the reformulating procedure is computationally efficient
and numerically accurate, representational issues impede its usefulness.

In light of Proposition 16 and its algorithmic realization a relevant question arises. To what
degree can the Rockafellar-Pshenichnyi condition of Proposition 14 can be restated in terms of
relaxed sets of Ωs

D? Or in other words, what is the least amount of regularization of (D) needed?
The best answer so far seems to be the greatest non-empty, closed, convex cone C∗ ⊆ Rn in the
sandwich Ωs

D ⊆ C∗ ⊆ K∗ for which the generalized Slater condition of Proposition 8 is satisfied.
To formalize this condition, an introduction of the minimal face [21] is needed.

Definition 7. Let S be a non-empty subset of a non-empty, closed, convex cone K. Then the
minimal face of K, containing S, is defined as the intersection of all faces of K containing S.
That is,

face(S,K) :=
⋂
{F : S ⊆ F E K},

which is itself a face of K.

Corollary 3. Let S be a non-empty subset of a non-empty, closed, convex cone K. Then
face(S,K) is a non-empty, closed, convex cone in the sandwich

S ⊆ face(S,K) ⊆ K.
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Proof. By Definition 7 and Proposition 2.

The reason for introducing the notion of a minimal face is that the generalized Slater condition
requires existence of a feasible point in the relative interior of all non-polyhedral cones (Propo-
sition 8). It is hence convenient for our quest that the minimal face, Ωs

D ⊆ face(Ωs
D,K∗) ⊆ K∗,

is not only a valid replacement of K∗ in (D), by Corollary 2, but also defines a relative interior-
maximizing operation of Ωs

D on K∗ .

Lemma 4. Let S be any non-empty subset of a non-empty, closed, convex cone K. The following
statements hold:

1. relintS ⊆ relint face(S,K).

2. face(S,K) = face(s,K) for all s ∈ relintS.

3. Any subset C ⊆ K for which relintS ∩ relint C 6= ∅, satisfy C ⊆ face(S,K).

Proof. Statements 1–2 are by [21, Proposition 2.2.5], and the latter represents a reformulation of
[86, Corollary 18.1.2]. For statement 3, there exists a z ∈ relintS ∩ relint C ⊆ relint face(S,K)∩
relint face(C,K); containment by statement 1. Hence, with a relative interior point z in common,
statement 2 shows face(S,K) = face(C,K) ⊇ C; containment by Corollary 3.

We are now in position to reduce the need of regularization to the greatest extend allowed by
the generalized Slater condition. Note that only the proof of the theorem below is novel, as the
statement is a well known consequence of facial reduction algorithms; see, e.g., [97, Corollary
4.4] although the detail on polyhedral cones is missing from this reference.

Theorem 1. A feasible point (ŝ, ŷ) to the constraint set of (D) with K∗ = K∗1 × · · · ×K∗k, is an
optimal solution if and only if there exists a solution x ∈ Rn to the system

Ax = b, x ∈ (C∗1 × · · · × C∗k − ŝ)∗, C∗j =

{
K∗j , if K∗j is a polyhedral cone,

face
(
(Ωs

D)j ,K∗j
)
, otherwise,

in terms of the Cartesian factors Ωs
D = (Ωs

D)1 × · · · × (Ωs
D)k.

Proof. Let (D)′ denote (D) after replacing K∗ by C∗, and let (P )′ be its Lagrange-dual problem.
Given Ωs

D ⊆ C∗ ⊆ K∗, the feasible sets of (D)′ and (D) are equal by Corollary 2 and non-empty
by existence of (ŝ, ŷ). Hence, there exists a feasible point (s, y) where s = (s1, . . . , sk) satisfies

sj ∈
{

(Ωs
D)j ⊆ K∗j = C∗j , if K∗j is a polyhedral cone,

relint(Ωs
D)j ⊆ relint face

(
(Ωs

D)j ,K∗j
)

= relint C∗j , otherwise,

which certifies the generalized Slater condition for (D)′. By strong duality and Proposition 8, ei-
ther (P )′ is infeasible and (D)′ is unbounded showing (ŝ, ŷ) is not optimal, or (P )′ is attained and
has a non-empty optimal set described by cTx = bT ŷ, A = b and x ∈ C. This characterization
can be reformulated by rewriting the former equation as 0 = cTx− bT ŷ = xT (c−AT ŷ) = xT ŝ,
and enforcing it via the cone giving x ∈ C ∩ ŝ⊥ = (C∗ − ŝ)∗, by Lemma 2, showing the claim.

An important consequence of Theorem 1 is that we can restrict regularization algorithms to only
consider facial reductions, that is, reductions of K∗ revealing its proper faces. The advantage
of such a restriction is that the representational issues that occurred for the realization of
Proposition 16 in [Friberg 38] are completely resolved, at least for the class of symmetric
cones. The disadvantage of such a restriction, however, is that each reduction takes a greater
computational effort to find, suggesting that a combination of the two may be advantageous; a
research direction left open. The room for facial reductions allowed by Corollary 2 is materialized
by what is here denoted valid facial reductions.
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Definition 8. For any optimization problem, let Ωρ be its feasible set projected onto a variable ρ
for which a constraint ρ ∈ K̂ ⊆ Rr is given. Any proper face F E K̂ in the sandwich Ωρ ⊆ F ⊆ K̂
is called a valid facial reduction of K̂.

Corollary 4. A valid facial reduction F of a non-empty, closed, convex cone K̂ is itself a
non-empty, closed, convex cone by Proposition 2, and may thus replace K̂ in the optimization
problem by Corollary 2.

As can be verified, repeated use of valid facial reductions on non-polyhedral cones of (D) will
eventual reduce K∗ to C∗ in Theorem 1, such that the KKT conditions becomes a necessary and
sufficient condition for optimality as argued. Regularization algorithms utilizing this property,
independently of whether polyhedral and non-polyhedral cones are distinguished, are commonly
known as facial reduction algorithms and were first established algorithmically in [17]. An
important and common special case of valid facial reductions, often utilized by these algorithms,
are those that are exposed by so-called facial reduction certificates.

Definition 9. For a non-empty, closed, convex cone C ⊆ Rn, and the problem data A ∈ Rm×n,
b ∈ Rm and c ∈ Rn of (2.11), define facial reduction certificates as follows:

• Call s ∈ K∗ a facial reduction certificate for (P ) if the hyperplane s⊥ contains the affine
set {x ∈ Rn : Ax = b} and K ∩ s⊥ ⊆ K holds strictly.

• Call x ∈ K a facial reduction certificate for (D) if the hyperplane x⊥ contains the affine
set {c−AT y : y ∈ Rm} and K∗ ∩ x⊥ ⊆ K∗ holds strictly.

Facial reduction certificates are closely related to the subset of non-improving rays in the
respective dual problem that cannot be extended to lines (or one-sided level directions in the
vocabulary of [62]). This subset is now formalized.

Definition 10. The subset non-improving rays that cannot be extended to lines (or one-sided
level directions) are given by:

1. Ω̊P = {x ∈ Rn : cTx = 0, Ax = 0, x ∈ K \ (K∗)⊥} for problem (P );

2. Ω̊D = {(s, y) ∈ Rn × Rm : bT y = 0, AT y + s = 0, s ∈ K∗ \ K⊥} for problem (D),

where C⊥ = C∗ ∩ (−C∗) is the largest linear subspace contained in K∗.

The connection between the facial reduction certificates of Definition 9 and the non-improving
rays of Definition 10 can now be established. Note that this result is slightly more elaborative
than the one presented in [Friberg 81, Proposition 2].

Proposition 17. Let C ⊆ Rn be a non-empty, closed, convex cone. The following statements
hold.

1. s ∈ Rn is a facial reduction certificate for the primal problem (P ) if and only if there
exists y ∈ Rm for which either

(s, y) ∈ Ω̊D,

or s ∈ K∗ \ K⊥ and (0, y) is an improving ray of (D).

2. x ∈ Rn is a facial reduction certificate for the dual problem (D) if and only if

x ∈ Ω̊P .

Proof. The two conditions of Definition 9 are restated to show the two claims as follows:
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1. K ∩ s⊥ ⊆ K holds strictly if and only if s /∈ K⊥ by the characterization of proper faces in
Section 2.1. Hence, s is a facial reduction certificate if and only if s⊥ contains the affine
set {x ∈ Rn : Ax = b}. If the affine set is empty this is trivially satisfied, and there exists
an improving ray (0, y) of (D) by Farkas lemma (Proposition 12). Otherwise, sTx = 0
needs to be a valid equation for the system Ax = b as shown by a row weighting y ∈ Rm
such that yTA = sT and yT b = 0. This corresponds to (s,−y) ∈ Ω̊D showing the claim.

2. K∗∩x⊥ ⊆ K∗ holds strictly if and only if x /∈ (K∗)⊥ as above. Hence, x is a facial reduction
certificate if and only if x⊥ contains the non-empty affine set {c − AT y : y ∈ Rm}. That
is, xT (c−AT y) = 0 for all y ∈ Rm as solved by xT c = 0 and xTAT = 0 showing the claim.

The facial reduction certificates of Ω̊P and Ω̊D can easily be seen equivalent to the reducing
certificates of [80, Lemma 2], the exposing vectors of [79, Lemma 1, statement 2] (as seen by
Lemma 1) and, of course, the one-sided level directions of [62, Theorem 3]. Moreover, under
appropriate assumptions of non-empty interiors, it is equivalent to the exposing vectors of [100,
Lemma 2.3(ii)] and of [22, Lemma 12.6] (which specializes [17, Theorem 7.1]).

Complete regularization methods So far regularization has only been discussed with
respect to optimality conditions, concerning only the special case of attained optimal values,
but complete regularization methods should also address all other cases.

Recent work in this direction includes the simplified facial reduction algorithms of [79, 100]
which, in contrast to [17], do not require a feasible point of the considered problem. These are
therefore able to deal with infeasible problems in general. In particular, in case of infeasibility,
these algorithms may keep on facially reducing the cone of the considered problem until it
becomes polyhedral (e.g., equal to {0}n), at which point Farkas lemma (Proposition 12) gives
a necessary and sufficient condition for this infeasibility. This ability was made explicit in the
facial reduction algorithm of [100].

Other cases includes unattained optimal values (for which all optimality conditions presented
so far are inadequate) and unboundedness without improving rays (for which the sufficient
condition of Proposition 9 is inadequate). These remaining cases were dealt with simultaneously
in [Friberg 81] and [59]. The approach of [Friberg 81] is special, however, in the sense that it
interleaves regularization and optimization by exploiting properties of the so-called self-dual
embedding – more details given in Chapter 3. In practice, this allows one to regularize using
common solutions methods of high efficiency, and avoid the computational burden and possible
loss of dual information (briefly mentioning in Section 2.3.4) associated with unnecessary facial
reduction. From a theoretical point of view it is also interesting that this method allows one
to distinguish necessary and unnecessary facial reductions. To give an example, note first
that unnecessary facial reductions are shown to appear in [80, Section 5.1.1] for semidefinite
problems, but are also present in second-order cone optimization.

Example 4. Consider the primal-dual pair,

minimize 2x1 + x2 + x3

subject to x1 − x2 = 0
x ∈ Q3,

maximize 0

subject to
(

2
1
1

)
−
( y
−y
0

)
= s

s ∈ Q3.

The minimization problem fails the generalized Slater condition (Proposition 8) as verified by
any valid facial reduction of a nonlinear cone, noting that the relative interior of different faces
are non-overlapping (Lemma 4). In particular, enforcing x1 − x2 = 0 via the cone exposes

the proper face x ∈ Q3 ∩
(

1
−1
0

)⊥
=
(

1
1
0

)
R+ (see [Friberg 38]). Nevertheless, this valid facial
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reduction is unnecessary as seen by the KKT conditions of Proposition 15 which are satisfied by

x̂ = (0, 0, 0), ŝ = (2, 1, 1), ŷ = 0.

Finally, take note of the fact that Example 4 and [80, Section 5.1.1] prove existence of an
even stronger characterization of optimality than the one presented in Theorem 1, that is, one
for which even less facial reduction is needed. Quantifying this in a computationally effective
manner is open to further research.

2.3.4 On the unnecessary loss of dual information

Proactive use of regularization has a downside. In particular, regularization of the considered
problem changes the feasible set of its dual problem thereby resulting in a possible loss of dual
information at the optimal solution. This part should come as no surprise, though, as the whole
purpose of regularization is to reformulate the considered problem such that the dual problem
changes to satisfy the desired properties, e.g., strong duality. The problem, however, lies in the
fact that active use of regularization may also cause unnecessary reformulations to be applied.
These reformulations will also change the dual problem and unnecessarily throw away the dual
information.

The challenge of recovering dual information after unnecessary facial reduction is consid-
ered in [80], where a simple procedure based on line search is established. In [80, Section
5.1.1], however, it is also shown that this procedure is only heuristic and may fail even when
dual recovery is possible. While this is not a concern for the interleaved regularization and
optimization method of Chapter 3 as argued in the previous section, it does affect the facial
reduction heuristics explored in [Friberg 39]. This thesis has not made progress on the topic,
however, and dual recovery hence remain open to further research.

2.4 MIN-VAR: A mnemonic for dualization by hand

The considered primal-dual pair (2.11) is useful from a theoretical point of view, but cumbersome
when working with duality in practice. In particular, real problems rarely fit into these rigid
definitions. A more general primal-dual pair was hence presented in [Friberg 36] and helped
shape the Conic Benchmark Format [Friberg 35]. That is,

minimize
x

cTx

subject to Ax − b ∈ Kg,
x ∈ Kx,

and

maximize
y

bT y

subject to AT y − c ∈ −K∗x,
y ∈ K∗g,

for coefficients A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and a non-empty, closed, convex cone K ⊆ Rm.
This dualization result is easily confirmed via reformulation to and from the primal-dual pair
(2.11). Moreover, assuming knowledge of dual cones, it may even be simpler to memorize than
the SOB (Sensible-Odd-Bizarre) mnemonic introduced in [13] and limited to linear programs.
Decide for yourself: Table 2.1 is reconstructed with slight modifications from the text book [49]
to illustrate the rules of the SOB mnemonic. Now compare this to Table 2.2 which encodes the
exact same information.
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Note first that while Table 2.2 is based on the general primal-dual pair above, the table does
not assume that conic constraints are combined using the Cartesian product and hence can be
used directly on conic forms such as (2.10).

Note second that the only difficulty in memorizing Table 2.2 regards the placement of the
negation and this is where the MIN-VAR mnemonic finds its use. The mnemonic can be stated
as follows: You dualize the cone, and whenever you transform to or from the variables of the
minimization problem (the MIN-VAR mnemonic) you also negate the cone. That’s it!

Minimize Maximize

Sensible
Odd
Bizarre

Constraint i:
≥ form
= form
≤ form

←−−−−−−−−−−−−→
←−−−−−−−−−−−−→
←−−−−−−−−−−−−→

Variable i:
≥ form
Free
≤ form

Sensible
Odd
Bizarre

Variable i:
≥ form
Free
≤ form

←−−−−−−−−−−−−→
←−−−−−−−−−−−−→
←−−−−−−−−−−−−→

Constraint i:
≤ form
= form
≥ form

Table 2.1: Dualization rules based on the SOB mnemonic.

Minimize Maximize

Constraint i:
K form ←−−−−−−−−−−−−→

Variable i:
K∗ form

Variable i:
K form ←−−−−−−−−−−−−→

Constraint i:
−K∗ form

Table 2.2: Dualization rules based on the MIN-VAR mnemonic.

2.5 Head and base: A naming convention for conic entries

The word cone head appears sporadically on online forums and conference discussions to denote
the first entry of the quadratic cone. To my knowledge, however, it has never been given a formal
definition and has never appeared in a paper. I propose to define the head and corresponding
base of a cone as follows.

Definition 11. Let K ⊆ X be any non-empty, closed, convex cone in a vector space X with
standard basis {ej}j∈{1,...,n}. Then a head of K is any minimal subset {ej}j∈J such that

s =
∑

j∈J
λjej ∈ relintK∗,

for some λ ∈ Rn. The complement of a head, {ej}j∈{1,...,n}\J , is the corresponding base.

This definition leads directly to the notion of head and base entries of a cone x ∈ K, since there
is a unique correspondence between steps λJ in the basis directions {ej}j∈J and changes λJ
in the entries xJ . The following are realizations of this definition.

Corollary 5. Let x ∈ Qn ⊆ Rn. Then x1 is the head and x2:n the base of the quadratic cone.

Corollary 6. Let X ∈ Sn+ in the vector space of symmetric matrices. Then the diagonal entries
of X is the head and the off-diagonal entries is the base of the semidefinite cone.
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(a) Head direction
which is not a relative
interior direction.

(b) Head direction
which is not a relative
interior direction.

(c) Relative interior
direction which is not
a head direction.

Figure 2.1: Examples of the head definition.

In clarification of Definition 11 and its relation to the proposed names, head and base, note
that the cone can be thought of as heading in direction s. In particular, sTxray > 0 for all
one-sided directions xray ∈ K \ (K∗)⊥ by Lemma 1. Moreover, bounding the direction s in K
leaves a generating base (a bounded subset plus the largest linear subspace (K∗)⊥ = K ∩ (−K)
of K [62]) generating the entire cone K via scaling.

Theorem 2. Consider a non-empty, closed, convex cone with a head defining some direction
s =

∑
j∈J λjej ∈ relintK∗ by Definition 11. Bounding K in direction s leaves a generating base

of the form B = S + (K ∩ (−K)), for some bounded set S ⊆ K, which satisfy K = ∪λ≥0(λB).

Proof. Bounding K in direction s gives K∩{x : sTx ≤ a} = {x ∈ K : sTx ≤ a} for some constant
a ∈ R+. By dual cones, this is equal to {x ∈ K : 0 ≤ sTx ≤ a} and all directions are hence given
by K ∩ {x : sTx = 0} = K ∩ (K∗)⊥ = K ∩ (−K); the first equality by statement 1 of Lemma 1
with C = K∗, the second by definitions. This shows K ∩ {x : sTx ≤ a} = S + (K ∩ (−K)), for
some bounded set S ⊆ K. To complete the claim, note that this set is a generating base for the
entire cone since ∪λ>0

(
λ(K ∩ {x : sTx ≤ a})

)
= ∪λ>0

(
K ∩ {x : sTx ≤ λa}

)
= K.

For pointed cones where K ∩ (−K) = {0}n, a simple consequence of Theorem 2 is a follows.

Corollary 7. Let K be a pointed, non-empty, closed, convex cone. Fixing the value of all entries
of some head of K the resulting set, K ∩ {x : xJ = x̂J }, is bounded.

Finally I would like to stress, as illustrated in Figure 2.1, that the head definition may not
be unique nor correspond to a relative interior direction for non-symmetric cones. The latter
part is intentionally, however, as the properties of Theorem 2 and Corollary 7 does not hold for
relative interior directions in general as shown by Figure 2.1c.
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Interleaved regularization and optimization

For coefficients A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and a non-empty, closed, convex cone K ⊆ Rm,
consider again the primal-dual pair from (2.11),

(P ) : θP = inf
x
{cTx : Ax = b, x ∈ K}, (D) : θD = sup

s,y
{bT y : c−AT y = s, s ∈ K∗},

This problem pair was treated in [Friberg 81] by means of the self-dual embedding technique,
originally due to Goldman and Tucker [44] and generalized in [61, 25, 75, 84], which solves (2.11)
by finding solutions to the following self-dual homogeneous model :

Ax− bτ = 0,
−AT y − s+ cτ = 0,
bT y − cTx− κ = 0,

(x, s, y, τ, κ) ∈ K ×K∗ × Rm × R+ × R+.

(3.1)

The homogeneous model (3.1) contains the feasible set of (P ) and (D) with constants homo-
genized by τ ≥ 0. Moreover, while weak duality, cTx ≥ bT y as in Proposition 7, implicitly holds
for all feasible triples (x, s, y) of (2.11), the opposite relation, cTx ≤ bT y, is enforced explicitly
by the homogeneous model with slack κ ≥ 0. This causes all solutions of the homogeneous
model to satisfy the following two complementarity relations.

Proposition 18. All feasible points (x, s, y, τ, κ) of (3.1) satisfy xT s = τκ = 0.

Proof. Follows by 0 ≤ xT s = xT (cτ − AT y) = τ(cTx − bT y) = −τκ ≤ 0, the former inequality
by the definition of dual cones.

The complementarity relation, τκ = 0, gives a tight coupling between the homogeneous model
(3.1) and the primal-dual pair (2.11).

Proposition 19. The following solutions to the homogeneous model (3.1) can be interpreted in
terms of the primal-dual pair (2.11):

1. If τ > 0: Primal-dual optimum of (2.11) given by (x, y, s)/τ since bT y − cTx = κ = 0.

2. If τ = 0:

From the primal side:

(a) If cTx < 0: Dual infeasibility certified by the improving ray x (Proposition 11).

(b) If cTx = 0 and x /∈ (K∗)⊥: Reduction from K∗ to its proper face K∗ ∩ x⊥ in (D),
certified by the facial reduction certificate x (Proposition 17).

From the dual side:

(c) If bT y > 0: Primal infeasibility certified by the improving ray (s, y) (Proposition 11).

(d) If bT y = 0 and s /∈ K⊥: Reduction from K to its proper face K ∩ s⊥ in (P ),
certified by the facial reduction certificate (s, y) (Proposition 17).
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Note that the list of interpretations in Proposition 19 is not exhaustive as, for instance, bT y =
s = τ = 0 and y 6= 0 certifies linear dependency between the rows of A in (2.11). This does
not matter, however, as the list given above is enough for the interleaved regularization and
optimization procedure. In particular, the following condition guarantees that one of these
interpretations exist.

Corollary 8. There is an interpretation for the primal-dual pair (2.11) for all solutions of the
homogeneous model (3.1), additionally satisfying the logical condition

[τ /∈ (R∗+)⊥ = {0}] or [κ /∈ (R∗+)⊥ = {0}] or [x /∈ (K∗)⊥] or [s /∈ K⊥].

Proof. If τ > 0, statement 1 of Proposition 19 holds. Suppose τ = 0. If κ > 0, then either
statement 2a or 2c of Proposition 19 holds. Suppose also κ = 0. If x /∈ (K∗)⊥, then either
statement 2a, 2b or 2c holds, and if s /∈ K⊥, then either statement 2c, 2d or 2a holds.

The logical condition of Corollary 8 can also be represented by a solution normalizing equation.

Corollary 9. There is an interpretation for the primal-dual pair (2.11) for all solutions of the
homogeneous model (3.1), additionally satisfying any equation of the form

τ κ̂+ τ̂κ+ xT ŝ+ x̂T s = µ,

for κ̂, τ̂ ∈ relintR∗+ = R++, ŝ ∈ relintK∗, x̂ ∈ relintK, and some µ > 0.

Proof. By dual cones the strict inequality, τ κ̂+ τ̂κ+ xT ŝ+ x̂T s > 0, holds if and only if

[τ κ̂ > 0] or [τ̂κ > 0] or [xT ŝ > 0] or [x̂T s > 0],

showing the claim by Corollary 8 after application of Lemma 1.

Finally, the solution normalizing equation of Corollary 9 can be seen satisfied by all optimal
solutions of the so-called extended embedding of Ye et al. [105].

Corollary 10. There is an interpretation for the primal-dual pair (2.11) for all optimal solu-
tions of the extended embedding of (3.1) given by

minimize
x,s,y,τ,κ,θ

µθ

subject to Ax− bτ = rpθ,
−AT y − s+ cτ = rdθ,
bT y − cTx− κ = rgθ,

rTp y + rTd x+ rgτ = −µ,
(x, s, y, τ, κ, θ) ∈ K ×K∗ × Rm × R+ × R+ × R,

where (x̂, ŝ, ŷ, τ̂ , κ̂) are chosen in the relative interior of K ×K∗ × Rm × R+ × R+ to define

rp = Ax̂− bτ̂ , rd = −AT ŷ − ŝ+ cτ̂ , rg = bT ŷ − cT x̂− κ̂, µ = x̂T ŝ+ τ̂ κ̂.

Proof. Weighting the rows of the equation system by (ŷT , x̂T , τ̂ , 1), one gets

−τ κ̂− τ̂κ− xT ŝ− x̂T s = −θµ− µ.

The claim hence follows by Corollary 9, since optimal solutions of the extended embedding
satisfy θ = 0 (see [105] or [Friberg 81]) and µ > 0 by definition.
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3.1 Optimal values

Existence of some interpretation from some optimal solution to the extended embedding of
(3.1), as established in Corollary 10, is not always enough to determining the optimal value of
the considered problem, (P ) or (D). The beauty of [Friberg 81] is that the interpretations from
relative interior solutions of the self-dual homogeneous embedding (3.1) are shown sufficient
for this purpose, and that these can be obtained via relative interior (also known as maximally
complementary) optimal solutions to the extended embedding in Corollary 10. Hence, if the
central path of the extended embedding converges to the relative interior of the optimal set, any
central-path following algorithm will, in principle, yield the information needed to work out the
optimal value although practical issues of numerical accuracy may interfere. This requirement
is now formalized.

Requirement 1. The considered primal-dual pair gives rise to an extended embedding (as in
Corollary 10) with a central path whose limit point belongs to the relative interior of the extended
embedding’s optimal set.

Given that some of the interpretations from Proposition 19 are facial reduction certificates, this
requirement has to be satisfied recursively, as formalized next, for an optimal value computation
to succeed.

Requirement 2. The considered primal-dual pair satisfy Requirement 1 after any number of
primal and dual facial reductions.

In terms of these requirements, the computability of optimal values using the interleaved
regularization and optimization algorithm proposed in [Friberg 81], can be boiled down to
the following statement.

Theorem 3. The interleaved regularization and optimization algorithm can compute the optimal
value for any problem, (P ) or (D), given that the primal-dual pair (2.11) satisfy Requirement 2.
The computation will also show whether the optimal value is attained.

Proof. By [Friberg 81, Theorem 5] and [Friberg 81, Theorem 3] for (P ), which can be extended
to (D) as discussed in [Friberg 81, Section 4.2].

The requirements of this theorem can be satisfied as shown next, using existing results on the
limiting behavior of central paths for semidefinite optimization problems.

Proposition 20. The interleaved regularization and optimization algorithm can compute the
optimal value for any semidefinite optimization problem. The computation will also show
whether the optimal value is attained.

Proof. The claim follows by Theorem 3 since Requirement 1 is satisfied in semidefinite optimiza-
tion [47] and faces of a semidefinite cone are semidefinite-representable (see, e.g., [80]) hence
implying Requirement 2.

Finally, of special interest to this thesis, the following corollary is obtained as a consequence of
Proposition 20 and the definition of the central path, given equivalence of Jordan products in
the standard semidefinite representations of linear and second-order cones.

Corollary 11. The interleaved regularization and optimization algorithm can compute the
optimal value for any conic optimization problem over a cone composed as a Cartesian product
of linear, second-order and semidefinite cones. The computation will also show whether the
optimal value is attained.
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3.2 Solutions and other certificates

The interleaved regularization and optimization algorithm proposed in [Friberg 81] is able to
produce certificates for all computed optimal values. Although rarely formalized, the common
usage of the term certificate seems to comply with the rigorous definition used here.

Definition 12. A certificate is defined with respect to some predicate P (x) : Ω→ {false, true}
which, if true for any x̂ ∈ Ω, implies the statement Q, that is

[∃x̂ ∈ Ω : P (x̂)] =⇒ Q. (3.2)

Specifically, a point x̂ ∈ Ω is called a certificate of Q, with respect to (3.2), if P (x̂) is true.

Most of the time, and in this thesis, it is moreover implicitly understood by a certificate that
the predicate P (x) of Definition 12 is trivial to evaluate on its domain. In the interleaved
regularization and optimization algorithm of [Friberg 81], three basic certificates lay the basis for
certifying optimal values; one based on the optimality condition of Proposition 15, one based on
the unboundedness condition of Proposition 9, and one for based on the infeasibility condition of
Proposition 11. As already seen, however, these propositions represent only sufficient conditions
that can not always be satisfied. The algorithm works around this issue by not promising one of
these certificates for the primal-dual pair (2.11), but only for a member of the cone-parametrized
family of primal-dual pairs given by

P (C) : θP (C) = inf
x
{cTx : Ax = b, x ∈ C},

D(C) : θD(C) = sup
s,y
{bT y : c−AT y = s, s ∈ C∗},

(3.3)

for non-empty, closed, convex cones C ⊆ Rm. Specifically, the algorithm finds a cone C for which
the optimal value of the considered problem, say P (K), and the regularized problem, say P (C),
are equal, a so-called regularization certificate for this equality [Friberg 81, Definition 8], and
one of the three before-mentioned basic certificates for P (C). This behavior is now formalized,
following a proper write-up of the basic certificates.

Definition 13. Let C ⊆ Rn be a non-empty, closed, convex cone. For the conic optimization
problem P (C), define the following basic certificates:

• A complementary solution is a triple (x, s, y) ∈ C × C∗ × Rm satisfying

Ax = b, s = c−AT y, xT s = 0.

• An unboundedness certificates is a tuple (x, xray) ∈ C × C satisfying

Ax = b, Axray = 0, cTxray < 0.

• An infeasibility certificates is a tuple (sray, yray) ∈ C∗ × Rm satisfying

sray = −AT yray, bT yray > 0.

Theorem 4. Suppose Requirement 2 is satisfied for the primal-dual pair (2.11). Given P (K),
the interleaved regularization and optimization algorithm finds a non-empty, closed, convex cone
C ⊆ Rn, a regularization certificate [Friberg 81, Definition 8] showing that the optimal values of
P (K) and P (C) are equal, and one of the basic certificates from Definition 13 for P (C). The
equivalent statement in terms of D(K) and D(C) holds as well.
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Proof. By [Friberg 81, Theorem 5] and [Friberg 81, Theorem 3] for (P ), which can be ex-
tended to (D) as discussed in [Friberg 81, Section 4.2]. The definition and construction of the
regularization certificate is found in [Friberg 81, Section 4.1.3].

Algorithms that satisfy Theorem 4 can be said to weakly solve a conic optimization problem
because, while they do find the optimal value, there is potentially very little information to be
extracted from the certificate. Specifically, a weakly solving algorithm cannot be expected to
yield optimal solutions for the original primal-dual pair (2.11) even if they exist. This scenario
can happen when using facial reduction algorithms in the traditional way [17, 79, 100, 22, 59]
or when using the facial reduction heuristics of [Friberg 39], given the existence of unnecessary
facial reductions, illustrated by Example 4, changing the dual problem. Algorithms that satisfy
Theorem 4 with guarantees of cone equivalence K = C if possible, and feasible set equivalence
for the considered and regularized problem if possible, can be said to strongly solve a conic
optimization problem. This property holds for the interleaved regularization and optimization
algorithm of [Friberg 81] as will be elaborated once a basic understanding of the algorithm has
been established.

The interleaved regularization and optimization algorithm is sketched by Algorithm 2. The
algorithm consist of simple logic based on the output from at most two calls to the real
workhorse, namely Algorithm 1. In particular, Algorithm 1 satisfy all aspects of Theorem 4 by
itself, except that it is only able to return the first half of an unboundedness certificate (the
improving ray). Two calls are hence needed to finish the unboundedness certificate, but may
also be needed if both the primal and dual problems are infeasible and only the improving ray
certifying infeasibility of the Lagrange-dual problem was identified. The first call is with respect
to the optimization problem itself, and the potential second call is with respect to its feasibility
problem where the objective function is fixed to zero. These algorithmic descriptions are based
on [Friberg 81, Algorithm 1 and Algorithm 2] where more details can be found. The properties
that makes the interleaved regularization and optimization algorithm special are summarized
in the following proposition.

Proposition 21. The following statements hold for the interleaved regularization and optimiza-
tion algorithm:

1. Facial reduction is used only when needed. In particular, if a complementary solution,
infeasibility certificate or improving ray exists in any iteration of Algorithm 1, it will be
returned immediately without further reductions.

2. When facial reduction is needed, only optimal facial reductions [Friberg 81, Definition 3]
are found and used in Algorithm 1, causing the greatest possible reduction of all facial
reduction certificates in each iteration.

3. When dual facial reduction is needed, the algorithm will know exactly when to switch to
the dual facial reduction phase with no need to compute a generalized Slater point. This
point exists and is required, however, for construction of the regularization certificate.

Algorithm 1: Regularize as shown until one of the following items come into existence:
a complementary solution, infeasibility certificate or improving ray.
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Algorithm 2: Construct one of the items from Definition 13.

Execute Algorithm 1 on the optimization problem to find:

1. Complementary solution.

2. Infeasibility certificate.

3. Improving ray. In this case, execute Algorithm 1 on the feasibility problem to find:

(a) Complementary solution, that is, an unboundedness certificate when
combined with the improving ray.

(b) Infeasibility certificate.

(c) Improving ray. This case cannot occur for the feasibility problem as shown by
[Friberg 81, Theorem 4, statement 3].

Proof. Statement 1 and 2 follows by [Friberg 81, Theorem 1]. Statement 3 is a consequence of
[Friberg 81, Corollary 2] proven explicitly in [Friberg 81, Theorem 4, statement 4a].

Statement 1 of Proposition 21 implies, together with previous results on linear optimization,
that the algorithm never uses facial reduction when all cones of the primal-dual pair (3.3) are
polyhedral because this will always be unnecessary.

Proposition 22. The interleaved regularization and optimization algorithm does not use facial
reduction when given a problem where all cones are polyhedral.

Proof. By the generalized Slater’s condition (Proposition 8), Farkas lemma (Proposition 12),
and statement 1 of Proposition 21.

Statement 1 of Proposition 21 should not be overinterpreted, however, as it notably does not
imply that unnecessary facial reductions are completely avoided. In particular, since optimal
facial reductions are used in each iteration of Algorithm 1, as noted in statement 2 of Propo-
sition 21, a cone composed of multiple Cartesian factors may have some of its factors reduced
unnecessarily. The algorithm is nevertheless capable of distinguishing three fundamental cases
apart: when no regularization is needed, when a primal regularization phase is needed, and when
a dual regularization phase is needed (compare to Algorithm 1). Hence, by this distinction, the
algorithm can be seen to strongly solve a conic optimization problem by guaranteeing cone
equivalence K = C if possible, and feasible set equivalence for the considered and regularized
problem if possible. This is elaborated and formalized in the following subsections.

3.2.1 When regularization is not needed

When regularization is not needed, the following corollary holds.

Corollary 12. Suppose regularization is not needed to construct a certificate from Definition 13
for the considered problem, (P ) or (D). Then the interleaved regularization and optimization
algorithm will not use facial reduction (Proposition 21, statement 1) and hence satisfy Theorem 4
with C = K. Hence, primal and dual feasible points, optimal solutions and improving rays from
the identified certificate of Definition 13 are also valid for the original primal-dual pair (2.11).

In this case where regularization is not needed, it can also be note that primal-dual interior-
point methods with no built-in regularization mechanism, such as [8], will also succeed as a
substitute for Algorithm 1. For some reason, however, the additional logic of Algorithm 2
needed to guarantee that the considered problem is solved, seems to be left out of open source



38 INTERLEAVED REGULARIZATION AND OPTIMIZATION

and commercial implementations. Admittedly, this common incompleteness may be explained
by a fail-first principle given that improving rays often indicates a mistake in the practitioner’s
problem formulation.

3.2.2 When only primal regularization is needed

When primal regularization is needed, but dual regularization is not, the following corollary
holds.

Corollary 13. Suppose P (K) is the problem of interest, and that no dual regularization is
needed to construct a certificate from Definition 13. Then the interleaved regularization and
optimization algorithm will not use dual facial reduction (Proposition 21, statement 1) and
hence satisfy Theorem 4 for a cone C ⊆ K maintaining equivalence between the feasible set
of P (C) and P (K). Hence, primal feasible points, optimal solutions and improving rays from
identified certificate of Definition 13 are also valid for the original primal problem P (K).

3.2.3 When also dual regularization is needed

The interleaved regularization and optimization algorithm shows that there only exists two
subtle cases for which dual regularization can be needed.

Proposition 23. Given P (K), the interleaved regularization and optimization algorithm uses
dual regularization if and only if P (K) has a finite but unattained optimal value or is unbounded
and has an empty set of improving rays.

Proof. By [81, Theorem 4, statement 3].

When dual regularization is needed the following corollary holds.

Corollary 14. Suppose P (K) is the problem of interest, and that dual regularization is needed to
construct a certificate from Definition 13. Then the interleaved regularization and optimization
algorithm will satisfy Theorem 4 for a cone C maintaining that the feasible set of P (C) is greater
than or equal to that of P (K). In other words, P (C) is a relaxation of P (K).

Corollary 14 surprisingly states that when attempting to solve a problem that requires dual
regularization, we actually end up solving a relaxation of that problem instead. With respect to
mixed-integer optimization, as elaborated in Chapter 4, this is just fine as all relaxations (even
the unintentional ones) are useful. With respect to continuous optimization, however, one
may desire more intuition behind the identified certificate for P (C). This issue was addressed
for unattained optimal values in the slightly different context of [59, Section 6], in terms of
the computable generalized Slater point (see Algorithm 1) and points from the certificate for
P (C). In particular, the arguments of [59] show that convex combinations of these points are
capable of generating a sequence of feasible points in P (K), whose objective value approached
the unattained optimal value.



4
Branch-and-bound

For coefficients A ∈ Rm×n, b ∈ Rm, c ∈ Rn, a Cartesian product of linear, second-order and
semidefinite cones K ⊆ Rm, and the index set I ⊆ {1, . . . , n} of integer-constrained variables,
consider the mixed-integer conic optimization problem,

minimize
x

cTx

subject to Ax− b ∈ K,
xj ∈ Z ∩ [lj , uj ], for all j ∈ I,

(4.1)

where lj , uj ∈ Z for all j ∈ I represent a bounded integer variable domain.
The formulation in (4.1) may be recognized as a restricted form of the mixed-integer

formulation in (1.1), where the choice of cones and variable bounds have been limited. These
limitations enable us to design finitely converging algorithms for solving (4.1). In particular,
under these two limitations, it is possible to enumerate all integer assignments in finite amount
of time, compute the optimal value for each integer assignment (by Corollary 11), and compare
them to identify the best. The only additional requirement needed for this simple strategy to
succeed is a specification of the comparison operator, considering that optimal values can be
unattained.

Definition 14 (Optimal value pairs). Let optimal value pairs be members,

ψ ∈ (R ∪ {−∞,+∞})× {false, true},
where ψ = (θ, attained) holds the optimal value, and whether it is attained, for an optimization
problem. Associated with these pairs are the comparison operators (≺min. �min, �min, �min)
from the lexicographical order for which true < false, respectively the comparison operators
(≺max. �max, �max, �max) for which true > false.

With this definition, the left-hand-side of a satisfied relation ψ1 �min ψ2 is always preferred
when minimizing, respectively the right-hand-side of a satisfied relation ψ1 �max ψ2 when
maximizing. Optimal value pairs, and the lexicographical comparison operators of Definition 14,
is on abstraction to differentiate between attained and unattained optimal values. Another one
would be to redefine optimal values in terms of suprema and infima in the hyperreal numbering
system which would allow infinitesimal differences. In both cases, a so-called standard part
function to ”round off” these abstractions to the standard numbering system used till now, i.e.,
the extended reals, will be useful in latter derivations. In the abstraction of optimal value pairs,
this function is defined as follows.

Definition 15. The standard part of an optimal value pair, ψ = (θ, attained), is defined as

stψ :=

{
(θ, true), if θ is finite,

(θ, false), otherwise.

Corollary 15. The standard part function acts to reduce lexicographical comparison on optimal
value pairs, to the corresponding comparison on optimal values. Taking ψ′ = (θ′, attained′) and
ψ′′ = (θ′′, attained′′) as example,

[stψ′ �min stψ′′]⇐⇒ [stψ′ �max stψ′′]⇐⇒ [θ′ ≤ θ′′].
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Branch-and-bound The branch-and-bound algorithm, usually attributed to [26], is a divide-
and-conquer strategy which can be deployed to implicitly enumerate all integer assignments. It
iteratively partitions the integer variable domain, defined by lj , uj ∈ Z for all j ∈ I, and solves
a relaxation of (4.1) on this smaller domain. This approach can be graphically represented
by a search tree as illustrated in Figure 4.1. The so-called root node of this search tree holds
the original problem and is partitioned into subproblems, which may themselves be partitioned
further as needed.

The major advantage of branch-and-bound over explicit enumeration is that the relaxations
provides a bound on how good the optimal value pair can be on any given partition, as well
as a qualified guess at what the optimal solution could look like. The following list represent
examples of how this information can be used.

1. Entire partitions can be compared based on the bounding value pair enabling us to guide
the search towards the best-looking partitions.

2. Entire partitions can be disregarded (i.e., pruned from the search tree) if the bound
encodes infeasibility or simply represents no improvement over the value pair of an already
known solution.

3. The qualified guesses for integer assignments xI may reveal the optimal solution very early
in the search process, although further processing may be needed before its optimality can
be established.

A basic general purpose branch-and-bound algorithm for the mixed-integer conic optimization
problem (4.1) is given by Algorithm 3, followed by a proof of its correctness under the following
natural assumption.

Assumption 1. The considered relaxations allow line 5 and 7 in Algorithm 3 to be executed.
That is, allow one to

1. Compute optimal value pairs for the relaxation.

2. Extract a (possibly fractional) assignment of integer variables that attains the optimal
value pair of the relaxation whenever it is feasible.

This assumption is elaborated in Section 4.1 and Section 4.2 where it is shown satisfiable
for both the continuous relaxation and the considered linear relaxations of (4.1). Note that
Algorithm 3, for simplicity, only finds the optimal value pair even though the corresponding
integer assignment and other certificates from [Friberg 81] (such as a primal-dual optimal
solution for (4.1) at this integer assignment) can easily be registered as well.

1

2 3

54 76

8 9 10 11

Figure 4.1: The search tree in midst of the branch-and-bound algorithm. The root node with
index 1 holds the original problem. Nodes 8–11 are in the queue waiting to be processed,
while the subproblems of nodes 6–7 needed no additional processing as inferred from the solved
relaxations.
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Algorithm 3: A general branch-and-bound algorithm to solve the mixed-integer conic
minimization problem (4.1).

1 Let (θ?, attained?)← (∞, false).
2 Create and queue node holding the minimization problem (4.1).
3 repeat
4 Take out node from the queue for processing.
5 Compute bounding value pair (θ′, attained′) for node based on some relaxation.
6 if (θ′, attained′) ≺min (θ?, attained?) then
7 Extract attaining integer-variable assignment x′I for the relaxation.

8 if x′I /∈ Z|I| then
9 Create and queue nodes holding the subproblems obtained by partitioning the

integer variable domain to exclude the fractional assignment x′I .
10 else
11 Compute optimal value pair (θ′′, attained′′) for (4.1) with xI = x′I .
12 if (θ′′, attained′′) ≺min (θ?, attained?) then
13 Let (θ?, attained?)← (θ′′, attained′′).

14 if (θ′, attained′) ≺min (θ′′, attained′′) then
15 Create and queue nodes holding the subproblems obtained by partitioning

the integer variable domain to either exclude the assignment x′I or locally
improve the relaxation such that x′I is valued as (θ′′, attained′′).

16 until Until there are no more nodes in the queue;

Theorem 5. Under Assumption 1, Algorithm 3 terminates in finitely many iterations with the
optimal value pair of the mixed-integer conic optimization problem (4.1).

Proof. Finite termination. If the condition on line 6 is not satisfied, a node—and hence a
partition of integer assignments—is pruned from the search tree. Otherwise, line 7 is executed
to retrieve an integer-assignment x′I and finite terminate follows from a bounded integer variable
domain in (4.1) by showing that any such integer-assignment x′I can be visited at most twice.
Note that there are only three possible execution paths for any x′I . If line 9 is executed or the
condition on line 14 is not satisfied, then x′I is excluded from all remaining nodes on the queue.
Otherwise line 15 is executed to either exclude x′I directly or make sure that all relaxations
used on the partition holding x′I value this assignment as (θ′′, attained′′), which is a value pair
that will be pruned on line 6 if ever revisited as guaranteed by line 12-13.

Optimal value pair. The value pair (θ?, attained?) is initialized on line 1 to indicate infeasibil-
ity, and otherwise only modified on line 13 if an integer assignment with a better value pair (with
respect to Definition 14) has been established, based on Corollary 11, on line 11. Optimality of
the value pair (θ?, attained?) at termination thus follows by showing that all integer assignments
for which line 13 is not executed have value pairs inferior to (θ?, attained?). This is the case
whenever nodes—and hence a partition of integer assignment—are pruned from the search tree
by failing to satisfy the condition on line 6, as the bounding value pair is better than all integer
assignments in a partition by definition. This is also the case whenever nodes are pruned from
the search tree by failing to satisfy the condition on line 14 by the same argument, noting that
(θ?, attained?) �min (θ′′, attained′′) = (θ′, attained′), the former by line 12-13, the latter by
relative complement of the condition on line 14, noting that (θ′, attained′) �min (θ′′, attained′′)
holds by definition of the bounding value pair. Finally, an integer assignment may be pruned by
exclusion on line 15, but only after updating (θ?, attained?) based on its value on lines line 11-
13. The claim hence follows as these are the only lines that may cause integer assignments to
be pruned.
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There is a wealth of additional techniques that can be added to Algorithm 3 such as pre-
solving, cut generation and primal heuristics (see, e.g. [2] for a survey), as well as search
tree restructuring [106], advanced pruning (e.g., symmetry detection [23], conflict analysis [2]
and pruning moves [33]), and more. These techniques have an important impact on solving
problems in practice [88], but also significantly complicate the implementation of the algorithm.
In particular, Algorithm 3 already possess many degrees of freedom regarding node selection
(line 4) and branching decisions (line 9) (as witnessed, e.g., in [2]) as well as in the choice of
relaxation (line 5) and whether (or how) to improve it on line 15.

The last point here, namely the choice and usage of relaxations left open by the specification
of Algorithm 3, is elaborated in the following sections.

4.1 Continuous relaxation bounds

The continuous relaxation of (4.1) is given by

minimize
x

cTx

subject to Ax− b ∈ K,
xj ∈ R ∩ [lj , uj ], for all j ∈ I,

(4.2)

but can easily be rewritten to conform with the specification of the primal-dual pair (2.11), such
that the results of of the previous chapters apply. This demonstration is omitted. Instead, it is
now argued that continuous relaxations can be solved in satisfaction of Assumption 1.

Proposition 24. Let P (K) represent the continuous relaxation (4.2). Given P (K), the inter-
leaved regularization and optimization algorithm of Chapter 3 finds a relaxation P (C), and

1. Compute the optimal value pair for P (C).

2. Extract a (possibly fractional) assignment of integer variables that attains the optimal
value pair of P (C) whenever it is feasible.

Proof. That it finds a relaxation P (C) of P (K) is shown by Corollary 12, Corollary 13 and
Corollary 14. The statements follows by Theorem 4 noting that feasible points of P (C) in all
certificates of Definition 13 except the infeasibility certificate.

Note that the optimal value of P (C) and P (K) are identical in Proposition 24, and that their
feasible sets actually only differ in the special case of Corollary 14. This special case was
examined in Proposition 23, and appears whenever the continuous relaxation has a finite but
unattained optimal value, or is unbounded without improving ray. Beware that the difference
in feasible sets for P (C) and P (K) in this special case, represents a potential pitfall that was
avoided in the following proposed enhancements of the branch-and-bound method.

The first family of possible enhancements to Algorithm 3 comes from the fact that additional
restrictions of a problem does not invalidate previously valid facial reductions.

Proposition 25. Consider a conic constraint (2.3) with conic domain K ⊆ Rr, present in two
optimization problems P1 and P2 with feasible domains Ω1 ⊆ Ω2 ⊆ Rn. Then a valid facial
reduction of K in P2 is also a valid facial reduction of K in P1.

Proof. Let ρ equal the affine map of the conic constraint (2.3) which is then expressed by ρ ∈ K,
and let Ωρ

i denote the feasible set of Pi projected onto ρ for i ∈ {1, 2}. A valid facial reduction
in Pi from K to C is defined in Definition 8 to satisfy C E K and Ωρ

i ⊆ C ⊆ K. Hence, the claim
follows because Ωρ

1 ⊆ Ωρ
2 is implied by Ω1 ⊆ Ω2.
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First of all, this means that we can apply all primal facial reductions identified for the continuous
relaxation (4.2), to the corresponding mixed-integer problem it relaxes and to all subsequent
subproblems constructed from it by branching.

Corollary 16. All primal facial reductions identified for the continuous relaxation on line 5
of Algorithm 3, may be kept in the subproblems constructed by partitioning the integer variable
domain on line 9 and 15 of Algorithm 3.

Secondly, it leads to the fact that several interleaved regularization and optimization solves can
be skipped entirely to significantly improve expected performance.

Proposition 26. If the continuous relaxation on line 5 of Algorithm 3 can be solved with no—
or only primal—facial reduction, the cone, certificate and optimal value identified to satisfy
Theorem 4, also satisfy Theorem 4 for the corresponding problem on line 11 of Algorithm 3.

Proof. Let P1(K) be the continuous relaxation (the problem from line 5) and let P2(K) be P1(K)
after adding equations of the form xI = x′I (the problem from line 11). Solving P1(K) yields a
certificate of P1(C) for some C as in Theorem 4. Adding xI = x′I to P1(C) does not change its
feasible set by definition of x′I on line 7. Moreover, it does not change the set of rays (because
all integer variables are bounded from below and above by definition of (4.1)), and only adds
variables in the dual problem which can be fixed to zero. Hence, the certificate also satisfies
Theorem 4 for P2(C) and the claim follows because P2(C) can be reached from P2(K) through
primal facial reduction following Proposition 25.

While Proposition 26 showed a class of problems for which line 11 of Algorithm 3 could be
skipped, thereby showing the condition on line 14 to be false, there is also a class of problems
for which line 11 and the condition on line 14 are needed. This is the continuous relaxations
for which dual regularization is needed, as illustrated by the following example.

Example 5 (Triggering the condition on line 14). Consider appending x6 ∈ Z+ to Example 3
such that its continuous relaxation becomes the primal problem of the primal-dual pair,

minimize x3 + x6

subject to x1 + x2 + x4 + x5 − x6 = 0
−x3 + x4 = 1
x ∈ Q3 ×Q2 × R+,

maximize y2

subject to




0
0
1
0
0
1


−




y1
y1
−y2
y1+y2
y1
−y1


 = s

s ∈ Q3 ×Q2 × R+.

(4.3)

This primal-dual pair can be solved analytically. For x6 = 0, we have x3 = 0 by Example 3.
For x6 > 0, we have the family of solutions given by x1 =

√
x2

2 + x2
3, x2 = (x2

6 − 1)/(2x6) and
x3 = −1 (such that x1 + x2 = x6) as well as x4 = x5 = 0. Note, in this family, that x3 attains
its lower bound induced by x3 = x4 − 1 ≥ −1 from x4 ≥ 0 The primal problem thus has a finite
but unattained infimum value of −1, approached by positive x6 → 0, and strong duality holds by
feasibility of s = (0, 0, 0, 1, 0, 1), y = (0,−1) in the dual problem.

Despite of strong duality, dual regularization is needed by Algorithm 2 to solve the primal
problem as shown by Proposition 23. Taking the valid equality s1− s2 = 0 as basis, it is possible

to reformulate the conic constraint
(
s1
s2
s3

)
∈ Q3 as

(
s1
s2
s3

)
∈ Q3 ∩

(
1
−1
0

)⊥
, (4.4)

because
(
s1
s2
s3

)
∈
(

1
−1
0

)⊥
is just another way of writing

(
1
−1
0

)T ( s1
s2
s3

)
= s1 − s2 = 0. In turn,

given Q3 ∩
(

1
−1
0

)⊥
=
(

1
1
0

)
R+ (see [Friberg 38]) with dual cone

{(
1
1
0

)}∗
, this reformulation
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changes the primal conic constraint
(
x1
x2
x3

)
∈ Q3 into

(
x1
x2
x3

)
∈
{(

1
1
0

)}∗
, equivalent the linear

constraint x1 + x2 ≥ 0. Hence, the dual facial reduction enlarges the primal feasible set such
that the optimal value of −1 becomes attained, e.g., by x = (0, 0,−1, 0, 0, 0).

Recall that x6 ∈ Z+. When this mixed-integer conic optimization problem is solved by
Algorithm 3, the continuous relaxation is solved as above to yield the bounding value pair
(−1, false) on line 5 and the integer assignment x6 = 0 on line 7. On line 11, we hence
obtain and solve the problem of Example 3 yielding the inferior value pair (0, true) whereby the
condition on line 14 is triggered.

When the condition on line 14 is triggered, line 15 of Algorithm 3 is executed. As stated in
Algorithm 3, one possibility on line 15 is to partition the integer variable domain to exclude the
currently considered integer assignment. An expected improvement over this generic exclusion
approach can also be achieved, however, focusing the partitioning effort to facilitate local
changes to the continuous relaxation as indicated by the following theorem.

Theorem 6. If the condition on line 14 of Algorithm 3 is satisfied, the evaluation problem
on line 11 has duality gap-closing primal facial reductions which were not valid primal facial
reductions for the continuous relaxation on line 5.

Proof. Let P1(K) be the continuous relaxation (the problem from line 5) and let P2(K) be
P1(K) after adding equations of the form xI = x′I (the problem from line 11). By satisfaction
of condition line 14 and Proposition 26, solving P1(K) first goes through a primal facial reduction
phase ending with some other cone C′, and then through a dual facial reduction phase ending
with some cone C′′. We will show that the optimal value pair of P2(K) and P2(C′) is the same,
say (θ2, attained2), and that the optimal value pair of its dual problem, denoted D2(C′), and
P1(K) is the same, say (θ1, attained1). Hence, if the condition on line 14 is satisfied and there
is a difference between the optimal value pairs of P1(K) and P2(K), that is

(θ1, attained1) ≺min (θ2, attained2),

then θ1 < θ2 is the only option since attained1 = false by a need of dual facial reduction
(see Proposition 23). That is, there is a positive duality gap between P2(C′) and D2(C′). This
shows existence of duality gap-closing primal facial reductions for P2(C′), which did not exist
for P1(C′) since the dual facial reduction phase initiated (see Proposition 21, statement 3).

First, the optimal value pair of P2(K) and P2(C′) is the same because, by Proposition 25,
the primal facial reductions used on P1(K) can also be used on P2(K).

Secondly, note that the optimal value pair for P1(K) is the same as for the pair P1(C′′) and
D1(C′′). Exactly as in Proposition 26, adding xI = x′I does not violate any part of the certificate
returned for P1(C′′). Hence, this certificate is also valid for the pair P2(C′′) and D2(C′′), and
equivalence of the optimal value pair for P1(K) and D2(C′′) have now been shown. Finally, to
see that the optimal value pair of D2(C′′) and D2(C′) is the same, note that facial reduction
certificates used on D1(C′) to obtain D1(C′′) can also be used on D2(C′) to obtain D2(C′′). This
holds because the equations xI = x′I are redundant in the description of primal non-improving
rays (Definition 10), and hence redundant to the availability of dual facial reductions, since the
integer variable domain is bounded (i.e., xI = 0 already holds for all rays).

Theorem 6 states that if the condition on line 14 of Algorithm 3 is satisfied, the addition of
the equations, xI = x′I , to the continuous relaxation enlarges its set of valid and necessary
primal facial reductions. Hence, it also suggests the existence of a minimal set of equations,
say xI? = x′I? , for which these primal facial reductions become valid and necessary in the
continuous relaxation. This leads to the strategy of partitioning the integer variable domain to
obtain a subproblem for which xI? = x′I? holds, and for which the continuous relaxation and
the evaluation problem value the integer assignment xI = x′I equivalently. Formally:
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Corollary 17. Suppose the condition on line 14 of Algorithm 3 is satisfied, and let I? be the
subset of integer variables whose equation in the integer assignment xI = x′I is used in the primal
facial reduction phase when solving the evaluation problem on line 11 with Algorithm 2. Let
further (θ′′, attained′′) be the optimal value pair of this evaluation problem. Then the continuous
relaxation from line 5, restricted to a smaller partition where xI? = x′I? holds, will give the
bounding value pair (θ′′, attained′′) if ever proposing the integer assignment xI = x′I again.

Proof. All primal facial reductions needed to solve the continuous relaxation with xI = x′I
(the evaluation problem on the smaller partition), are also valid primal facial reductions for
the continuous relaxation with xI? = x′I? (the continuous relaxation on the smaller partition).
Hence, by Theorem 6, the condition on line 14 cannot be satisfied and the optimal value pairs
of the two problems must be identical.

The partitioning strategy of Corollary 17, needed to make xI? = x′I? explicit in one of the
subproblems, is expected to generate significantly fewer subproblems than the partitioning
needed to exclude xI = x′I . Moreover, the subset I? can be assembled by looking at the

primal facial certificates generated by Algorithm 2, which are all members of Ω̊D (as defined in
Definition 10) for an iteratively changing cone. In particular, for any (s, y) ∈ Ω̊D, the nonzero
values in the vector y identifies the equations used, or in other words, the equations needed for
the facial reduction to be valid.

4.2 Linear relaxation bounds

Applying linear outer approximation to all nonlinear Cartesian factors of K to define C ⊇ K,
e.g., using subgradients as described in [Friberg 39], gives life to a family of linear relaxations
of (4.1) on the form

minimize
x

cTx

subject to Ax− b ∈ C,
xj ∈ R ∩ [lj , uj ], for all j ∈ I.

(4.5)

In order to solve mixed-integer conic optimization problems with the branch-and-bound method
of Algorithm 3, using relaxations of the form (4.5), the algorithm considered for solving these
linear optimization problems has to satisfy Assumption 1. Rather than going into the details
of the simplex method [24] or its variants (e.g., [66]), which are often associated with branch-
and-bound algorithms, we will simply note that this assumption is satisfied by the interleaved
regularization and optimization method of Chapter 3. This is seen by the arguments of the
previous Section 4.1, noting that the linear relaxation (4.5) is a special case of (4.2). A notable
difference between (4.5) and (4.2), however, is that regularization is never used to solve the
linear relaxations as established by Proposition 22. Regarding how to build and refine the
linear relaxation, the following results can be used.

Proposition 27 ([Friberg 39, Corollary 2]). A subgradient-based outer approximation of a
non-empty, closed, convex cone K ⊆ Rn is given by C = Ω̂∗ = {x : ξTx ≥ 0 for ξ ∈ Ω̂}, that is
C = Ω̂∗ ⊇ K, for any finite subset Ω̂ ⊆ K∗.

One simple way to build or refine the linear relaxation is thus to fill Ω̂ with points and rays
found for the dual problem of the continuous relaxation or the evaluation problem. The following
corollary concerns this practice using the continuous relaxation.

Corollary 18. Let (CRP) denote the continuous relaxation (4.2) with dual problem (CRD).
By relaxation, all feasible points and rays of (CRP) are also feasible in the linear relaxation.
Hence, the following statement holds when using C = Ω̂∗ from Proposition 27:
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• If primal regularization is unnecessary to solve (CRP), then any certificate for Theorem 4
returned by Algorithm 2 for (CRP), can be made valid for the linear relaxation by adding
the returned dual point and/or ray to Ω̂.

Another way to build or refine the linear relaxation is to fill Ω̂ with generators of subgradient
inequalities supporting K at boundary points x̂ ∈ bndK. These points can be found either by
projection of points in C \ K from the linear relaxation itself, or from points and rays for the
primal problem of the continuous relaxation or the evaluation problem.

Proposition 28. The subgradient inequalities supporting K at boundary points x̂ ∈ bndK, is
given by ξTx ≥ 0 for ξ ∈ K∗ ∩ x̂⊥.

Proof. By the derivation of [Friberg 39, Theorem 1] based on [86, Corollary 23.5.4].

The latter way is used in [67] for mixed-integer semidefinite optimization, and a mixture of the
two are used in [27] for mixed-integer second-order cone optimization. The construction and
refinement of linear relaxations has not been the focus of this thesis, but a few pointers from
existing literature can be given follows.

In [1, Section 3.3] it is stated that points from the continuous relaxation yields more valuable
subgradient inequalities in Proposition 28 than points from the evaluation problem, but that
they typically also require a higher computational effort to obtain.

In [43], two principles leading to size-effective outer approximations are listed. Decompo-
sition, or disaggregation, of nonlinearities (see also [93]), and projections of extended formula-
tions. Beginning with the tower of variables decomposition and symmetry-exploiting extended
formulation constructed in [11], many alternatives based on these principles have appeared
[11, 43, 98, 99].

Considering Algorithm 3, one important enhancement when using linear relaxations is on line 15
where the default behavior, as stated, is to partition the integer variable domain to exclude the
currently considered integer assignment. The alternative of improving the linear relaxation is
not a simple task, however, as there are several cases that must be considered when line 15 is
executed. This characterization of cases most notably depends on the continuous relaxation,
and uses the following property of the standard function from Definition 15.

Lemma 5. Let ψ be the optimal value pair of a linear optimization problem. Then the standard
part function makes no transformation,

stψ = ψ.

Proof. By inspection of Definition 15 given attainment of all finite optimal values (Proposi-
tion 22) and unattainment of all infinite optimal values.

Theorem 7. Let (LRP) and (CRP) be the linear and continuous relaxation, respectively, on
line 5 of Algorithm 3, with dual problems (LRD) and (CRD), and let (EVAL) be the evaluation
problem on line 11 obtained by the integer assignment from (LRP). If the condition on line 14
of Algorithm 3 detects ψ(LRP) ≺min ψ(EVAL), then

ψ(LRP) = stψ(LRD) �min stψ(CRD) �min stψ(CRP) �min ψ(CRP) �min ψ(EVAL) (4.6)

holds with strict inequality in one or more places. In particular, all four inequalities represent
independent reasons for triggering the execution of line 15 of Algorithm 3.

Proof. Strong duality holds for (LRP), as failure of strong duality would imply infeasibility by
arguments following Definition 2 leading to inconsistency: ψ(LRP) = (∞, false) ≺min ψ(EVAL).
Hence, by Corollary 15 and [Friberg 39, Proposition 1] the following relation holds

ψ(LRP) = stψ(LRP) = stψ(LRD) �min stψ(CRD) �min stψ(CRP),
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first step by Lemma 5. Finally, stψ(CRP) �min ψ(CRP) holds for any optimal value pair, and
ψ(CRP) �min ψ(EVAL) follows by relaxation of the feasible set from right to left.

A difference ψ(CRP) ≺min ψ(EVAL) may be caused by inferiority of the integer assignment
identified by (LRP), compared to that which would have been found by (CRP). Otherwise,
the difference is caused by necessary duality-gap closing primal facial reductions which are not
valid on the current partition of the integer variable domain as formalized in Theorem 6.

A difference stψ(CRP) ≺min ψ(CRP) is caused by (CRP) having a finite but unattained
optimal value which cannot be represented by linear relaxations according to Proposition 22.

A difference stψ(CRD) ≺min stψ(CRP) is caused by lack of strong duality in the continuous
relaxation by Corollary 15 and Definition 2.

A difference stψ(LRD) ≺min stψ(CRD) may be caused insufficient refinement of the linear
relaxation by Proposition 27. Otherwise, primal facial reduction is necessary to solve (CRP)
and dual facial reduction is necessary to solve (CRD).

As already stated, the construction and refinement of linear relaxations has not been the focus
of this thesis, but for completion, one option on line 15 of Algorithm 3 is mentioned, namely to
jump to line 5 and solve the continuous relaxation. This step can also be taken already when
the integer variable assignment is found not to be fractional on line 8. The key to avoid getting
stuck with the continuous relaxation is to refine the linear relaxation. This is described by the
following steps needed after finished processing of the node with the continuous relaxation.

1. Refine the linear relaxation, using Corollary 18, around the continuous relaxation as it
appears after having applied all the primal facial reductions that was used to solve it.
This ensures

ψ(LRP) = stψ(LRD) = stψ(CRD) = stψ(CRP)

on the current node, but may not hold on subproblems however.

2. If line 15 of Algorithm 3 was executed using the continuous relaxation, the steps of
Corollary 17 constructed a partition containing the integer assignment for which all
primal facial reductions used to solve the evaluation problem are valid. Hence, the
linear relaxation on this partition can be further refined, using Corollary 18, around the
continuous relaxation as it appears after having applied all the primal facial reductions
that was used to solve the evaluation problem.

Finally, it should be mentioned that differences in the first part of Theorem 7,

ψ(LRP) = stψ(LRD) �min stψ(CRD) �min stψ(CRP),

should preferably be kept small throughout the branch-and-bound algorithm. Notably, for
branch-and-bound algorithms guided solely by the optimal value of linear relaxations, differences
in the above relation may cause a far greater number of nodes to be explored than actually
needed. Hence, such algorithms may benefit from the facial reduction heuristics developed
and discussed in [Friberg 39], which are based on simple analysis and do not require conic
optimization problems to be solved.
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Conclusions and future work

The thesis makes several pedagogical, practical and theoretical contributions extending well
beyond the main topic and scope given by mixed-integer second-order cone optimization.

(a) The introduced MIN-VAR mnemonic for dualization by hand (Section 2.4) and the pro-
posed head and base terminology for conic entries (Section 2.5) are small pedagogical
contributions that makes it easier to work with, talk about and educate in conic optimiza-
tion. The former adds to the list of simple results in conic optimization which may help in
making the jump from linear optimization less intimidating; other simple results includes
the proof of weak duality (Proposition 7) and the conclusions on strong duality in linear
optimization to be drawn from the generalized Slater condition (Proposition 8). The latter
contribution, regarding the head and base terminology, not only increase expressibility in
spoken and written language but also remove ambiguity. For instances, if someone referred
to the first or last entry of the quadratic cone you would first have to determine whether
they define the quadratic cone as {x ∈ Rn : x1 ≥ ‖x2:n‖2} or {x ∈ Rn : ‖x1:n−1‖2 ≤ xn}
because both definitions are common.

(b) The developed CBF file format (Section 1.1) and CBLIB library (Section 1.2) have
generally been well received by the optimization community, and have found several usages
already. One usage worth highlighting is the online second-order cone benchmark tests
carried out by Mittelmann [69]. Before this thesis, he would maintain different sets of
files for different sets of solvers to cope with their differences, making it unclear whether
the solvers were actually solving the same problem. Now he only needs to maintain one
version of each problem instance in the CBF file format, and use the developed conversion
tools to obtain the respective file formats compatibility with each solver. This approach
is transparent, reproducible and unambiguous, and gives an example of how the CBF file
format can be used to make cross-solver benchmarking easier.

(c) The theoretically established interleaved regularization and optimization method (Chap-
ter 3) adds the element of performance to previous facial reduction algorithms—and
maximizes the amount primal and dual information returned—by being able to distinguish
whether primal (resp. dual) regularization is necessary or not. It is moreover a complete
regularization method in the sense that it handles all subtleties such as unattainment,
unboundedness without improving ray and infeasibility without dual improving ray. This
completeness is reflected in the fact that it was possible to establish a reliable and
provably converging branch-and-bound method based on the outputs of the interleaved
regularization and optimization method. This my knowledge, this is the first theoretical
study of ill-posedness in mixed-integer optimization.

(d) The new facial reduction heuristics ([Friberg 39]) were developed with the main motivation
of breaking dependencies in regularization on conic systems and the limiting behavior of
numerically converging algorithms. This allows these heuristics to be used in combination
with branch-and-bound methods based solely on linear relaxations, which are notably
also affected by ill-posedness as proven. Moreover, as these heuristics rely only on linear
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algebra, this allows some or most facial reductions to be carried out in higher numerical
accuracy than otherwise possible, e.g, using interleaved regularization and optimization.
Worth highlighting are the two heuristics based, respectively, on the basic principles of
forcing constraints and linear dependencies. Subgradient matching integrates with domain
propagation to not only detect facial reductions in forcing constraints, but also strengthen
the performed bound analysis. Despite its simplicity, it was shown useful on various
examples of ill-posedness and goes beyond second-order cones. Single-cone analysis, on
the other hand, was only explored on second-order cones. In its original formulation it
used the general subspace intersections of [Friberg 38] to eliminate linear dependencies
as in Proposition 3, but was later revised to solve a least-norm problem pinpointing the
particular dependency (if any) of relevance to facial reduction. Notably, while subgradient
matching focus on variable bound information and ignores interdependencies, single-cone
analysis oppositely focus on interdependencies and ignores variable bound information.
Hence, these heuristics may complement each other well.

The two most profound questions not answered in this thesis and therefore subject to further
research is, perhaps, to what extend the reliability issues of ill-posedness occurs in real or
realistic applications of mixed-integer second-order cone optimization problems, and how the
theoretic establishments of this thesis behave in practice.

To elaborate on the first question, note that the property of being ill-posed is unstable
as, by definition, even the tiniest perturbation of coefficients may alter the feasibility status.
Hence, we would not expect a randomly generated problem to have this property but yet, several
applications of semidefinite optimization have been identified where it occurs in practice [28, 56,
20, 9, 107, 101]. Likewise, preliminary results produced in collaboration with Alper Atamtürk
on the series of relaxations solved by the branch-and-bound algorithm of MOSEK, have also
begun to indicate that ill-posedness might occur within some of the mixed-integer second-order
cone instances of CBLIB 2014. More research is needed, however, before any conclusions can
be drawn. An interesting angle on this question is the possible causality dilemma caused the
practitioners ability to use strict inequalities (R++ = {x ∈ R : (x, y, 1) ∈ Q3

r , y ∈ R}) and
unbounded disjunctions [48] (usually formulated by what is known as bigM-type inequalities)
if only ill-posedness could be handled reliably.

The second question can be divided into two subquestions regarding whether we can recog-
nize, and whether we can use, approximative facial reduction certificates. Taking the extended
embedding of Corollary 10 as example, a facial reduction certificate will most likely appear with
τ ≈ 0 and κ ≈ 0 in practice. Hence, there is the possibility of interpreting it as τ > 0 and
κ = 0 (complementary solutions of high norm) or τ = 0 and κ > 0 (weak improving rays). At
least, in this case, you have the alternatives to choose between. This is notably not the case in
branch-and-bound methods augmented with functionality that may heuristically come across
these hard to assess solutions of high norm and weak improving rays. To handle these cases,
it would seem that acceptance thresholds of some sort are necessary. Aside from this, suppose
now that the approximative facial reduction certificate of the extended embedding is correctly
interpreted as τ = 0 and κ = 0. Since interior point methods are characterized by maintaining
x ∈ intK and s ∈ intK∗ for proper cones throughout all iterations, it is not unreasonable of
them to also return such an interior point pair for the approximative facial reduction certificate.
If interpreted literally, this causes all cones to be facially reduced to the origin by Lemma 1,
and since this is not always the correct behavior, mechanisms of some sort are also necessary
to ensure that interior point pairs are projected to a smaller face if one is nearby.

On a final comment, these two questions and the brief examination given of them probably
only scratched the surface of the issues remaining before ill-posedness can be coped with in
practice. Hence, I hope other researchers will find inspiration in my work and carry on the
research needed to close the gap between theoretic results and software implementations. Thank
you for your attention!
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Abstract

This document constitutes the technical reference manual of the Conic
Benchmark Format with file extension: .cbf or .CBF. It unifies linear,
second-order cone (also known as conic quadratic) and semidefinite op-
timization with mixed-integer variables. The format has been designed
with benchmark libraries in mind, and therefore focuses on compact and
easily parsable representations. The problem structure is separated from
the problem data, and the format moreover facilitate benchmarking of
hotstart capability through sequences of changes.
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1 Minimal working example

The conic optimization problem (1), has three variables in a quadratic cone Q3 -
first one is integer - and an affine expression in domain {0} (equality constraint).

minimize 5.1x0
subject to 6.2x1 + 7.3x2 − 8.4 ∈ {0}

x ∈ Q3, x0 ∈ Z.
(1)

Its formulation in the Conic Benchmark Format begins with the version of the
CBF format used, to safeguard against later revisions.

VER

1

Next follows the problem structure, consisting of the objective sense, the number
and domain of variables, the indices of integer variables, and the number and
domain of scalar-valued affine expressions (i.e., the equality constraint).

OBJSENSE

MIN

VAR

3 1

Q 3

INT

1

0

CON

1 1

L= 1

Finally follows the problem data, consisting of the coefficients of the objective,
the coefficients of the constraints, and the constant terms of the constraints. All
data is specified on a sparse coordinate form.

OBJACOORD

1

0 5.1

ACOORD

2

0 1 6.2

0 2 7.3

BCOORD

1

0 -8.4

This concludes the example! Please see Section 2 and Section 3 for details about
the document structure and use of keywords.
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2 The structure of CBF files

This section defines how information is written in the CBF format, without
being specific about the type of information being communicated.

2.1 Information items

The format is composed as a list of information items. The first line of an
information item is the KEYWORD, revealing the type of information provided.
The second line - of some keywords only - is the HEADER, typically revealing the
size of information that follows. The remaining lines are the BODY holding the
actual information to be specified.

KEYWORD

BODY

KEYWORD

HEADER

BODY

The KEYWORD specifies how of each line in the HEADER and BODY is structured.
Moreover, the number of lines in the BODY is decidable either from the KEYWORD,
the HEADER, or from another information item required to precede it.

2.2 Information groups and their ordering

All information items belong to exactly one of the three groups of information.
These information groups, and the order they must appear in, is:

1. File format.

2. Problem structure.

3. Problem data.

The first group, file format, provides information on how to interpret the file. It
is currently limited to the keyword VER, specifying the version of the CBF format
in use. The second group, problem structure, provides the information needed
to deduce the type and size of the problem instance. Finally, the third group,
problem data, specifies the coefficients and constants of the problem instance.

2.3 Embedded hotstart-sequences

A sequence of problem instances, based on the same problem structure, is
allowed within a single file. This is facilitated via the CHANGE keyword used
within the problem data information group, as a separator between the in-
formation items of each instance. The information items following a CHANGE

keyword is appending to, or changing (e.g., setting coefficients back to their
default value of zero), the problem data of the preceding instance.
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The sequence is intended for benchmarking of hotstart capability, where
the solvers can reuse their internal state and solution (subject to the achieved
accuracy) as warmpoint for the succeeding instance. Whenever this feature is
unsupported or undesired, the keyword CHANGE should be interpreted as the end
of file.

2.4 File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two exten-
sions as listed below. Note, by definition, that none of these extensions can be
misinterpreted as printable US-ASCII characters:

• A line feed marks the end of a line, carriage returns are ignored.

• Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential
carriage return, line feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string rep-
resentation in the standard “C” locale. The format does not impose restrictions
on the magnitude of, or number of significant digits in, numeric data, but the
use of 64-bit integers and 64-bit IEEE 754 floating point numbers should be
sufficient to avoid loss of precision.

2.5 Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to ’#’ (US-ASCII 35) are comments, and
should be ignored. Comments are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled
according to the following rules:

• Leading and trailing whitespace characters should be ignored.

• The seperator between multiple pieces of information on one line, is either
one or more whitespace characters.

• Lines containing only whitespace characters are empty, and should be
ignored. Empty lines are only allowed between information items.
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3 How instances are specified

This section defines the spectrum of conic optimization problems that can be
formulated in terms of the keywords of the CBF format.

3.1 Problem structure

Conic optimization problems consist of variables, constraints and one objective
function. In the CBF format, these are defined as follows.

• Variables are either scalar-valued (part of a vector restricted to a cone),
or matrix-valued (restricted to be symmetric positive semidefinite). These
are refered to as the scalar variables, xj for j ∈ J , and PSD variables,
Xj for j ∈ J PSD. Only scalar variables can be integer.

• Constraints are affine expressions of the variables, either scalar-valued
(part of a vector restricted to a cone), or matrix-valued (restricted to be
symmetric positive semidefinite). These are thus refered to as the scalar
constraints, with affine expressions gi for i ∈ I, and PSD constraints, with
affine expressions Gi for i ∈ IPSD.

• The objective is a scalar-valued affine expression of the variables, either
to be minimized or maximized. We refer to this expression as gobj .

The problem structure defines the objective sense, whether it is minimization
and maximization, using the keyword OBJSENSE (follow the hyperlink or see
Appendix B). It also defines the index sets, J , J PSD, I and IPSD, which are
all numbered from zero, {0, 1, . . .}, and empty until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain,
such as (x0, x1) ∈ R2

+, (x2, x3, x4) ∈ Q3, etc. In terms of the Cartesian
product, this generalizes to x ∈ Kn1

1 ×Kn2
2 ×· · ·×Knk

k , which in the CBF
format becomes

VAR

n k

K1 n1

K2 n2

...

Kk nk

where n is the total number of scalar variables. The list of supported cones
is found in Appendix A. Integrality of scalar variables can be specified
afterwards, as in the minimal working example of Section 1, using the
keyword INT (follow the hyperlink or see Appendix B).

• PSD variables are constructed one-by-one. That is, Xj � 0nj×nj for
j ∈ J PSD, construct matrix-valued variables of size nj × nj restricted
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to be symmetric positive semidefinite. In the CBF format, this list of
constructions becomes

PSDVAR

N

n1

n2

...

nN

where N is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain,
such as (g0, g1) ∈ R2

+, (g2, g3, g4) ∈ Q3, etc. In terms of the Cartesian
product, this generalizes to g ∈ Km1

1 × Km2
2 × · · · × Kmk

k , which in the
CBF format becomes

CON

m k

K1 m1

K2 m2

...

Kk mk

where m is the total number of scalar constraints. The list of supported
cones is found in Appendix A.

• PSD constraints are constructed one-by-one. That is, Gi � 0mi×mi for
i ∈ IPSD, construct matrix-valued affine expressions of size mi × mi

restricted to be symmetric positive semidefinite. In the CBF format, this
list of constructions becomes

PSDCON

M

m1

m2

...

mM

where M is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints,
the definitions of the many affine expressions follow in problem data.

Keywords covered in this section:
OBJSENSE - Define the objective sense.
VAR - Construct the scalar variables.
INT - Put integer requirements on a selected subset of scalar variables.
PSDVAR - Construct the PSD variables.
CON - Construct the scalar constraints.
PSDCON - Construct the PSD constraints.
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3.2 Problem data

The problem data defines the coefficients and constants of the affine expressions
of the problem instance. These are considered zero until explicitly defined,
implying that instances with no keywords from this information group are, in
fact, valid. Duplicated or conflicting information is a failure to comply with
the standard. Consequently, two coefficients written to the same position in a
matrix (or to transposed positions in a symmetric matrix) is an error.

The affine expressions of the objective, gobj , of the scalar constraints, gi, and
of the PSD constraints, Gi, are defined separately. The following notation uses
the standard trace inner product for matrices, 〈X,Y 〉 =

∑
i,j XijYij .

• The affine expression of the objective is defined as

gobj =
∑

j∈JPSD

〈F obj
j , Xj〉+

∑

j∈J
aobjj xj + bobj ,

in terms of the symmetric matrices, F obj
j , and scalars, aobjj and bobj .

These are specified on a sparse coordinate form using keywords OBJFCOORD,
OBJACOORD, OBJBCOORD (follow the hyperlinks or see Appendix B).

• The affine expressions of the scalar constraints are defined, for i ∈ I, as

gi =
∑

j∈JPSD

〈Fij , Xj〉+
∑

j∈J
aijxj + bi,

in terms of the symmetric matrices, Fij , and scalars, aij and bi. These
are specified on a sparse coordinate form using keywords FCOORD, ACOORD,
and BCOORD (follow the hyperlinks or see Appendix B).

• The affine expressions of the PSD constraints are defined, for i ∈ IPSD,
as

Gi =
∑

j∈J
xjHij +Di,

in terms of the symmetric matrices, Hij and Di. These are specified on
a sparse coordinate form using keywords HCOORD and DCOORD (follow the
hyperlinks or see Appendix B).

Keywords covered in this section:
OBJFCOORD - Define the affine expression of the objective.
OBJACOORD

OBJBCOORD

FCOORD - Define the affine expressions of the scalar constraints.
ACOORD

BCOORD

HCOORD - Define the affine expressions of the PSD constraints.
DCOORD
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A List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones
as shown in Section 3.1. For scalar variables and constraints, constructed in
vectors, the supported conic domains and their minimum sizes are given as
follows.

• Free domain

CBF name F : A cone in the linear family defined by

{x ∈ Rn}, for n ≥ 1.

• Positive orthant

CBF name L+ : A cone in the linear family defined by

{x ∈ Rn | xj ≥ 0 for j = 1, . . . , n}, for n ≥ 1.

• Negative orthant

CBF name L- : A cone in the linear family defined by

{x ∈ Rn | xj ≤ 0 for j = 1, . . . , n}, for n ≥ 1.

• Fixpoint zero

CBF name L= : A cone in the linear family defined by

{x ∈ Rn | xj = 0 for j = 1, . . . , n}, for n ≥ 1.

• Quadratic cone

CBF name Q : A cone in the second-order cone family defined by

{(
p
x

)
∈ R× Rn−1, p2 ≥ xTx, p ≥ 0

}
, for n ≥ 2.

• Rotated quadratic cone

CBF name QR : A cone in the second-order cone family defined by








p
q
x


 ∈ R× R× Rn−2, 2pq ≥ xTx, p ≥ 0, q ≥ 0



 , for n ≥ 2.
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B List of keywords

All keywords are case sensitive and may not appear more than once in any
instance specification. In summary, by information group, they are given as:

• File format

VER

• Problem structure

OBJSENSE, PSDVAR, VAR, INT, PSDCON, CON

• Problem data

OBJFCOORD, OBJACOORD, OBJBCOORD
FCOORD, ACOORD, BCOORD
HCOORD, DCOORD
CHANGE

The information groups must be ordered as specified in Section 2.2. All key-
words, and their ordering within their information group, are optional unless
explicitly stated as a remark to the respective keyword.

VER
The version of the Conic Benchmark Format used to write the file.

HEADER None.

BODY One line formatted as:
INT

This is the version number.

Remarks:
Must appear exactly once in a file, as the first keyword.

OBJSENSE
Define the objective sense.

HEADER None.

BODY One line formatted as:
STR

Having MIN indicates minimize, and MAX indicates maximize.
Capital letters are required.

Remarks:
Must appear exactly once in a file.
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PSDVAR

Construct the PSD variables.

HEADER One line formatted as:
INT

This is the number of PSD variables in the problem.

BODY A list of lines formatted as
INT

This indicates the number of rows (equal to the number of
columns) in the matrix-valued PSD variable. The number of
lines should match the number stated in the header.

VAR

Construct the scalar variables.

HEADER One line formatted as:
INT INT

This is the number of scalar variables, followed by the number
of conic domains they are restricted to.

BODY A list of lines formatted as
STR INT

This indicates the cone name (see Appendix A), and the num-
ber of scalar variables restricted to this cone. These numbers
should accumulate to the number of scalar variables stated
first in the header. The number of lines should match the
second number stated in the header.

INT
Put integer requirements on a selected subset of scalar variables.

HEADER One line formatted as:
INT

This is the number of integer scalar variables in the problem.

BODY A list of lines formatted as
INT

This indicates the scalar variable index j ∈ J . The number
of lines should match the number stated in the header.

Remarks:
Can only be used after these keywords: VAR
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PSDCON
Construct the PSD constraints.

HEADER One line formatted as:
INT

This is the number of PSD constraints in the problem.

BODY A list of lines formatted as
INT

This indicates the number of rows (equal to the number of
columns) in the matrix-valued affine expression of the PSD
constraint. The number of lines should match the number
stated in the header.

Remarks:
Can only be used after these keywords: PSDVAR, VAR

CON
Construct the scalar constraints.

HEADER One line formatted as:
INT INT

This is the number of scalar constraints, followed by the num-
ber of conic domains they restrict to.

BODY A list of lines formatted as
STR INT

This indicates the cone name (see Appendix A), and the num-
ber of affine expressions restricted to this cone. These numbers
should accumulate to the number of scalar constraints stated
first in the header. The number of lines should match the
second number stated in the header.

Remarks:
Can only be used after these keywords: PSDVAR, VAR

OBJFCOORD

Input sparse coordinates (quadruplets) to define the symmetric matrices, F obj
j , as used in the

objective.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT INT INT REAL

This indicates the PSD variable index j ∈ J PSD, the row
index, the column index and the coefficient value. The number
of lines should match the number stated in the header.
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OBJACOORD

Input sparse coordinates (pairs) to define the scalars, aobjj , as used in the objective.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT REAL

This indicates the scalar variable index j ∈ J and the coef-
ficient value. The number of lines should match the number
stated in the header.

OBJBCOORD

Input the scalar, bobj , as used in the objective.

HEADER None.

BODY One line formatted as:
REAL

This indicates the coefficient value.

FCOORD

Input sparse coordinates (quintuplets) to define the symmetric matrices, Fij , as used in the

scalar constraints.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT INT INT INT REAL

This indicates the scalar constraint index i ∈ I, the PSD
variable index j ∈ J PSD, the row index, the column index
and the coefficient value. The number of lines should match
the number stated in the header.

ACOORD

Input sparse coordinates (triplets) to define the scalars, aij , as used in the scalar constraints.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT INT REAL

This indicates the scalar constraint index i ∈ I, the scalar
variable index j ∈ J and the coefficient value. The number of
lines should match the number stated in the header.
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BCOORD

Input sparse coordinates (pairs) to define the scalars, bi, as used in the scalar constraints.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT REAL

This indicates the scalar constraint index i ∈ I and the coef-
ficient value. The number of lines should match the number
stated in the header.

HCOORD

Input sparse coordinates (quintuplets) to define the symmetric matrices, Hij , as used in the

PSD constraints.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT INT INT INT REAL

This indicates the PSD constraint index i ∈ IPSD, the scalar
variable index j ∈ J , the row index, the column index and
the coefficient value. The number of lines should match the
number stated in the header.

DCOORD

Input sparse coordinates (quadruplets) to define the symmetric matrices, Di, as used in the

PSD constraints.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT INT INT REAL

This indicates the PSD constraint index i ∈ IPSD, the row
index, the column index and the coefficient value. The number
of lines should match the number stated in the header.

CHANGE
Start of a new instance specification based on changes to the previous.

HEADER None.

BODY None.

Remarks:
Can be interpreted as the end of file when the hotstart-sequence is unsupported or undesired.
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C Examples

C.1 Mixing linear, second-order and semidefinite cones

The conic optimization problem (2), has a semidefinite cone, a quadratic cone
over unordered subindices, and two equality constraints.

minimize

〈


2 1 0
1 2 1
0 1 2


 , X1

〉
+ x1

subject to

〈


1 0 0
0 1 0
0 0 1


 , X1

〉
+ x1 = 1.0 ,

〈


1 1 1
1 1 1
1 1 1


 , X1

〉
+ x0 + x2 = 0.5 ,

x1 ≥
√
x20 + x22 ,

X1 � 0 .

(2)

The equality constraints are easily rewritten to the conic form, (g0, g1) ∈ {0}2,
by moving constants such that the right-hand-side becomes zero. The quadratic
cone does not fit under the VAR keyword in this variable permutation, however,
as opposed to the minimal working example (1). Instead, it takes a scalar
constraint (g2, g3, g4) = (x1, x0, x2) ∈ Q3, with scalar variables constructed as
(x0, x1, x2) ∈ R3. Its formulation in the CBF format is written in verbatim.

# File written using this version of the Conic Benchmark Format:

# | Version 1.

VER

1

# The sense of the objective is:

# | Minimize.

OBJSENSE

MIN

# One PSD variable of this size:

# | Three times three.

PSDVAR

1

3

# Three scalar variables in this one conic domain:

# | Three are free.

VAR

3 1

F 3

# Five scalar constraints with affine expressions in two conic domains:

# | Two are fixed to zero.
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# | Three are in conic quadratic domain.

CON

5 2

L= 2

Q 3

# Five coordinates in F^{obj}_j coefficients:

# | F^{obj}[0][0,0] = 2.0

# | F^{obj}[0][1,0] = 1.0

# | and more...

OBJFCOORD

5

0 0 0 2.0

0 1 0 1.0

0 1 1 2.0

0 2 1 1.0

0 2 2 2.0

# One coordinate in a^{obj}_j coefficients:

# | a^{obj}[1] = 1.0

OBJACOORD

1

1 1.0

# Nine coordinates in F_ij coefficients:

# | F[0,0][0,0] = 1.0

# | F[0,0][1,1] = 1.0

# | and more...

FCOORD

9

0 0 0 0 1.0

0 0 1 1 1.0

0 0 2 2 1.0

1 0 0 0 1.0

1 0 1 0 1.0

1 0 2 0 1.0

1 0 1 1 1.0

1 0 2 1 1.0

1 0 2 2 1.0

# Six coordinates in a_ij coefficients:

# | a[0,1] = 1.0

# | a[1,0] = 1.0

# | and more...

ACOORD

6

0 1 1.0

1 0 1.0

1 2 1.0

2 1 1.0

3 0 1.0

4 2 1.0

# Two coordinates in b_i coefficients:

# | b[0] = -1.0

# | b[1] = -0.5

BCOORD
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2

0 -1.0

1 -0.5

C.2 Mixing semidefinite variables and linear matrix in-
equalities

The standard forms in semidefinite optimization are usually based either on
semidefinite variables or linear matrix inequalities. In the CBF format, both
forms are supported and can even be mixed as shown in (3).

minimize

〈[
1 0
0 1

]
, X1

〉
+ x1 + x2 + 1

subject to

〈[
0 1
1 0

]
, X1

〉
− x1 − x2 ≥ 0.0 ,

x1

[
0 1
1 3

]
+ x2

[
3 1
1 0

]
−
[

1 0
0 1

]
� 0 ,

X1 � 0 .

(3)

Its formulation in the CBF format is written in verbatim.

# File written using this version of the Conic Benchmark Format:

# | Version 1.

VER

1

# The sense of the objective is:

# | Minimize.

OBJSENSE

MIN

# One PSD variable of this size:

# | Two times two.

PSDVAR

1

2

# Two scalar variables in this one conic domain:

# | Two are free.

VAR

2 1

F 2

# One PSD constraint of this size:

# | Two times two.

PSDCON

1

2
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# One scalar constraint with an affine expression in this one conic domain:

# | One is greater than or equal to zero.

CON

1 1

L+ 1

# Two coordinates in F^{obj}_j coefficients:

# | F^{obj}[0][0,0] = 1.0

# | F^{obj}[0][1,1] = 1.0

OBJFCOORD

2

0 0 0 1.0

0 1 1 1.0

# Two coordinates in a^{obj}_j coefficients:

# | a^{obj}[0] = 1.0

# | a^{obj}[1] = 1.0

OBJACOORD

2

0 1.0

1 1.0

# One coordinate in b^{obj} coefficient:

# | b^{obj} = 1.0

OBJBCOORD

1.0

# One coordinate in F_ij coefficients:

# | F[0,0][1,0] = 1.0

FCOORD

1

0 0 1 0 1.0

# Two coordinates in a_ij coefficients:

# | a[0,0] = -1.0

# | a[0,1] = -1.0

ACOORD

2

0 0 -1.0

0 1 -1.0

# Four coordinates in H_ij coefficients:

# | H[0,0][1,0] = 1.0

# | H[0,0][1,1] = 3.0

# | and more...

HCOORD

4

0 0 1 0 1.0

0 0 1 1 3.0

0 1 0 0 3.0

0 1 1 0 1.0

# Two coordinates in D_i coefficients:

# | D[0][0,0] = -1.0

# | D[0][1,1] = -1.0

DCOORD
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2

0 0 0 -1.0

0 1 1 -1.0

C.3 Optimization over a sequence of objectives

The linear optimization problem (4), is defined for a sequence of objectives such
that hotstarting from one to the next might be advantages.

maximizek gobjk

subject to 50x0 + 31 ≤ 250 ,
3x0 − 2x1 ≥ −4 ,
x ∈ R2

+,

(4)

given,
gobj0 = x0 + 0.64x1.

gobj1 = 1.11x0 + 0.76x1.

gobj2 = 1.11x0 + 0.85x1.

Its formulation in the CBF format is written in verbatim.

# File written using this version of the Conic Benchmark Format:

# | Version 1.

VER

1

# The sense of the objective is:

# | Maximize.

OBJSENSE

MAX

# Two scalar variables in this one conic domain:

# | Two are nonnegative.

VAR

2 1

L+ 2

# Two scalar constraints with affine expressions in these two conic domains:

# | One is in the nonpositive domain.

# | One is in the nonnegative domain.

CON

2 2

L- 1

L+ 1

# Two coordinates in a^{obj}_j coefficients:

# | a^{obj}[0] = 1.0
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# | a^{obj}[1] = 0.64

OBJACOORD

2

0 1.0

1 0.64

# Four coordinates in a_ij coefficients:

# | a[0,0] = 50.0

# | a[1,0] = 3.0

# | and more...

ACOORD

4

0 0 50.0

1 0 3.0

0 1 31.0

1 1 -2.0

# Two coordinates in b_i coefficients:

# | b[0] = -250.0

# | b[1] = 4.0

BCOORD

2

0 -250.0

1 4.0

# New problem instance defined in terms of changes.

CHANGE

# Two coordinate changes in a^{obj}_j coefficients. Now it is:

# | a^{obj}[0] = 1.11

# | a^{obj}[1] = 0.76

OBJACOORD

2

0 1.11

1 0.76

# New problem instance defined in terms of changes.

CHANGE

# One coordinate change in a^{obj}_j coefficients. Now it is:

# | a^{obj}[0] = 1.11

# | a^{obj}[1] = 0.85

OBJACOORD

1

1 0.85
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CBLIB 2014: A benchmark library for conic

mixed-integer and continuous optimization

Henrik A. Friberg∗

February 4, 2016

Abstract

The Conic Benchmark Library is an ongoing community-driven project
aiming to challenge commercial and open source solvers on mainstream
cone support. In this paper, 121 mixed-integer and continuous second-
order cone problem instances have been selected from 11 categories as
representative for the instances available online. As current file formats
were found incapable, we embrace the new Conic Benchmark Format as
standard for conic optimization. Tools are provided to aid integration of
this format with other software packages.

1 Introduction

A conic optimization problem is the problem of minimizing (or maximizing) a
linear objective over a feasible region specified in terms of affine expressions,
convex cones, and, if any, integer constraints. It may be formulated as

minimize
x

cTx

subject to Aix− bi ∈ Ki, for i = 1, . . . , k,
xj ∈ Z, for j ∈ I.

(1)

The conic form (1) allows us to express all convex mixed-integer and continuous
optimization problems without loss of generality [21], but this generality offers
no advantages from a computational point of view. Instead, only three types of
cones (nonnegative orthant, quadratic cone and semidefinite cone) are typically
used to solve a broad range of applications [4]. These three cone types are
called the real-valued symmetric cones, and are usually accompanied by equality
constraints for convenience, which in (1) would be the cone of zeros {0}n.
As example, we compare the traditional and the conic form of the classical
Markowitz portfolio optimization problem [34]. The portfolio problem (2),
maximizes expected return subject to the accepted risk γ and investable wealth

∗PhD candidate at the Technical University of Denmark, Department of Wind Energy,
and employee at MOSEK ApS. E-mail: haf@mosek.com.
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ω. The return vector µ and covariance matrix Σ = UTU , characterize the
investments in consideration.

maximize
x

µTx maximize
x

µTx

subject to xTΣx ≤ γ
eTx = ω
x ≥ 0

↔
↔
↔

subject to (γ1/2, Ux) ∈ Q1+n,
eTx− ω ∈ {0},

x ∈ Rn+.

(2)

The traditional form on the left use a convex functional, f(x) ≤ 0, to express
the nonlinearity of the risk constraint. The conic form on the right achieves
the same using the quadratic cone, Q1+n = {(r, x) ∈ R1

+ × Rn | r2 ≥ xTx}. The
equation and variable nonnegativity of the traditional form are formulated using
two linear cones, the set of zero and the nonnegative orthant. More advanced
examples of conic reformulations are found in [1] and [4].

One advantage of the conic form is that convexity does not have to be
investigated, since it follows from convexity of the cones involved. In con-
trast, the convexity of a nonlinear problem in the traditional form cannot be
established based on structural information, but has to be verified using the
input data, such as Σ in (2). Another advantage stems from the efficiency
by which primal-dual interior-point methods are able to exploit the underlying
structure of symmetric cones [38]. This advantage is reflected in the state-of-the-
art optimization software, with high-performing implementations in all major
commercial solvers; XPRESS [18], MOSEK [37], GUROBI [25] and CPLEX
[27]. The open source projects listed in [43] are furthermore mostly based on
variants of the method proposed in [38], including the significant contributions
of SEDUMI [49] and SDPT3 [51]. SEDUMI, SDPT3 and MOSEK support
all real-valued symmetric cones, while XPRESS, GUROBI and CPLEX omit
support of the semidefinite cone. Integer constraints can be handled by all
listed commercial solvers, but not by any of the open source projects. Open
source support for conic mixed-integer optimization, however, is actively being
added to the constraint integer programming framework SCIP through cone
solver plugins [35] and outer approximations [6].

What is essentially missing from this development is a proper and publicly
available benchmark library. Benchmark libraries are known to have a great ef-
fect on stimulating improvements in reliability and performance in optimization
software. The NETLIB LP [20] library, for instance, was the first electronically
distributed benchmark library for continuous linear optimization and often at-
tributed for its major effect on the development of LP solvers. Correspondingly,
MIPLIB [32] has played a major role in the field of mixed-integer linear opti-
mization. In review of benchmark libraries for conic optimization, SDPLIB [8]
and the library of structured semidefinite programming instances [15] are worth
noticing although their focus is limited to the semidefinite cone. A mixture
of different cone types were considered in the 7th DIMACS Implementation
Challenge [40], but the benchmark library established for this challenge has
been inactive for years. The DIMACS instances are furthermore difficult to

2



use without MATLAB [50], and were reformulated at the time to eliminate free
variables even though the best was to handle free variables is still an open
research question [3]. No benchmark libraries were found for conic mixed-
integer optimization, although supported by all major commercial optimization
software available today. The closest match is probably the BIQMAC library
[55], containing pure-binary quadratic optimization problems which are second-
order cone representable.

The Conic Benchmark Library (CBLIB) is an ongoing community-driven project,
hosted at http://cblib.zib.de, with aims to stay updated with the conic
mixed-integer and continuous capabilities of mainstream solvers. First, however,
there are concrete areas to be nursed. As seen, mixed cone types and integer
variables represent cases where current benchmark libraries do not challenge
state-of-the-art solvers. Even worse, the shortage of these instances alongside
infeasible, dual infeasible and facially reducible problems prevent proper testing
of theoretical ideas as concluded in [44] and [22]. More fundamentally, however,
is the need of a file format for these conic problems that is supported across
all major solvers. With CBLIB 2014, we have taken the initial steps toward
addressing these issues.

First of all, a focused effort was made on gathering applications of second-
order cones, as we found it to be worst represented by current benchmark
libraries. In this effort, instances formulated with convex quadratic constraints
have been ignored, as there is usually a natural second-order cone representation
that only the problem owner can retrieve. Portfolio optimization (2) is a
good example of this, where a normalized, trimmed and often rank-reduced
data matrix U is the origin of the commonly used sample covariance matrix
Σ = UTU . Today, with the help of contributors from various fields, CBLIB
has become the largest collection of mixed-integer and continuous second-order
cone instances available online under a free and open license policy.

Second of all, a detailed analysis of existing file formats were carried out
eventually leading to the Conic Benchmark Format (CBF). Looking at the old
MPS format [37, 27], several extensions has been proposed over time, two of
which enables second-order cone support. MOSEK [37] uses an explicit cone
extension, while CPLEX [27] reuses a quadratic extension by reformulating
the cone as the intersection of a half-space and a non-convex quadratic con-
straint. This lack of consensus is less of an issue, however, compared to the
overwhelming task of augmenting the MPS format with the matrix notation
for coefficients, variables and inequalities needed to realize a semidefinite cone
extension. As consequence, many are currently using either the SDPA format
[56], simply describing a matrix inequality, or the SEDUMI format [49], which is
a MATLAB-based binary format. The CBF format can be seen as an attempt to
unify the SDPA and SEDUMI format under a common conic model (presented
in Section 3) and in portable clear text. The format is furthermore designed
to allow maximum performance reading into C, Python and MATLAB which
makes a transition to the format less cumbersome.
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The article is outlined as follows. Preliminaries are provided in Section 2. In
Section 3, the CBLIB standard reference for a conic problem is formalized
and related to the CBF file format. In Section 4, we discuss the notion of
feasibility and exact result in conic optimization, as well as the four basic
solution certificates for continuous problems. Section 5 describes the selection
of problem instances for this paper, as well as the tools distributed with them.
Final remarks are made in Section 6.

2 Notation and cone definitions

The notation in this section uses x = [x]+ − [x]− as the decomposition of
a vector into its nonnegative and nonpositive parts. That is, element-wise,
[x]+j = max(xj , 0) and [x]−j = max(−xj , 0). We use Sn ⊂ Rn×n as the subset
of symmetric matrices, and 〈X,Y 〉 =

∑
ij XijYij as the standard trace inner

product for such matrices. The Cartesian product, ×, is defined to satisfy

x ∈ Kx, y ∈ Ky ⇐⇒
[
x
y

]
∈ Kx ×Ky, (3)

for column vectors and

X ∈ Sn1 , Y ∈ Sn2 ⇐⇒
[
X 0
0 Y

]
∈ Sn1 × Sn2 , (4)

for matrices. A cone which is not the Cartesian product of smaller cones is said
to be primitive. That is, R2 = R× R is not primitive. The Euclidean distance
from a point x̃ to its projection y in K, is given by dist(x̃,K) = miny∈K ‖x̃−y‖2.
These distances are listed in the paragraphs below for projections y as shown
in [9]. The minimum distance to a point in Z, also known as the fractionality
of a scalar x̃, is given by dist(x̃,Z) = |x̃− round(x̃)|.

Linear cones This family covers the set of reals Rn, the set of zeros {0}n,
the nonnegative orthant Rn+ = {x ∈ Rn | xj ≥ 0 for j = 1, . . . , n}, and the
nonpositive orthant Rn− = {x ∈ Rn | xj ≤ 0 for j = 1, . . . , n}. Infeasible
points x̃, have a strictly positive Euclidean distance given elementwise over the
primitive cones by |x̃j | for {0}, [x̃j ]

− for R+, and [x̃j ]
+ for R−. Points in Rn

are always feasible.

Second-order cones This family, nicknamed the ice cream cones, covers the
quadratic cone Q1+n = {(r, x) ∈ R1

+×Rn | r2 ≥ xTx} and the rotated quadratic
cone Q2+n

r = {(r, x) ∈ R2
+ × Rn | 2r1r2 ≥ xTx}. Infeasible points x̃, have a

strictly positive Euclidean distance given by

dist(x̃, Qn) =

{ [
x̃1−‖x̃2:n‖2√

2

]−
if x̃1 ≥ −‖x̃2:n‖2,

‖x̃‖2 otherwise,
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and

dist(x̃, Qnr ) = dist (T x̃, Qn) , where T =

[
1√
2

1√
2

0

1√
2

−1√
2

0

0 0 I

]
.

We point out that the rotated quadratic cone is often encountered without the
factor 2 in front of r1r2. This is also called a restricted hyperbolic constraint,
originating with [33]. We did not consider the restricted hyperbolic constraint
as a separate cone, however, as it is not symmetric, making duality more
cumbersome, and because its transformation to a rotated quadratic cone has
no computational disadvantage.

Semidefinite cones Refers to the real-valued symmetric positive semidefinite
cone Sn+ = {X ∈ Sn | λ(X) ∈ Rn+}, where λ is the eigenvalue function. Infeasible

matrix-points X̃, have a strictly positive Euclidean distance defined here by
‖ [λ(X̃) ]− ‖2 (derived from the Schatten 2-norm). We point out an often
encountered alternative, ‖ [λ(X̃) ]− ‖∞ (derived from the induced 2-norm), but
leave the discussion on the best choice open.

3 Problem formulation

The simplicity of the conic form (1) is also its weakness in practice. It implies a
constraint-oriented (as opposed to a column-oriented) representation, hides a lot
of information, and is bloated with identity matrices, Ai = I, to define variable
domains as used, e.g., by conic form problems in standard form [9]. To approach
the first issues we stack all affine maps, g(x) = Ax− b = (g1(x)T , . . . , gkg (x)T )T

where gi(x) = Aix − bi from (1), and constrain them to the affine map cone
Kng
g = K1 × · · · × Kkg , with kg being the number of cones and ng the total

number of affine map entries. The latter issue is addressed by introducing a
variable domain cone Knx

x = K1× · · · ×Kkx , with kx being the number of cones
and nx the total number of variables. These changes lead to the conic form,

minimize
x

cTx

subject to Ax − b ∈ Kng
g ,

x ∈ Knx
x , and xj ∈ Z for j ∈ I,

(5)

for which dimensions can be specified as A ∈ Rng×nx , b ∈ Rng , c ∈ Rnx and
|I| = ni. The conic form (5) is still cumbersome and ambiguous, however,
when it comes to semidefinite cones, as it implies the use of linear indexes
into symmetric matrices. This requires a consensus regarding whether matrices
are seen as column-stacked or row-stacked and whether the symmetric upper
or lower triangular elements are skipped or not. To address this issue, the
conic form (5) has been augmented with an explicit matrix notation. The
affected variables are combined in a matrix, X, and explicitly constrained to the
semidefinite variable domain, SnX

+ , which is the Cartesian product of smaller
semidefinite cones. Similarly, the affected affine maps are combine in a matrix-
valued affine map, G(x), and constrained to the semidefinite affine map domain,
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SnG
+ , which is the Cartesian product of smaller semidefinite cones. With these

changes we finally arrive at the standard reference for the primal problem used
in CBLIB,

minimize
x,X

cTx+ 〈C,X〉
subject to Ax + F(X) − b ∈ Kng

g ,
H∗(x) − B ∈ SnG

+ ,

x ∈ Knx
x , X ∈ SnX

+ , and xj ∈ Z for j ∈ I,

(P)

where the linear operators from matrices to vectors, F(X), and from vectors to
matrices, H∗(x), are defined by

F(X) =



〈F1, X〉

...
〈Fng

, X〉


 , H∗(x) =

nx∑

j=1

xjHj .

These definitions match the usual semidefinite program in standard and inequal-
ity form [9], and the dimensions are given by C ∈ SnX , B ∈ SnG , Fi ∈ SnX

for i = 1, . . . , ng, and Hj ∈ SnG for j = 1, . . . , nx. For continuous problems,
the standard reference for the dual problem used in CBLIB is given by the
Lagrange-dual of (P) stated similarly as

maximize
y,Y

bT y + 〈B, Y 〉
subject to AT y + H(Y ) − c ∈ −(Knx

x )∗,
F∗(y) − C ∈ −(SnX

+ )∗,
y ∈ (Kng

g )∗, Y ∈ (SnG
+ )∗,

(D)

where the adjoint linear operators from vectors to matrices, F∗(y), and from
matrices to vectors, H(Y ), are defined by

F∗(y) =

ng∑

i=1

yiFi, H(Y ) =



〈H1, Y 〉

...
〈Hnx

, Y 〉


 .

Note that the domains of (D) are specified in terms of dual cones indicated by a
superscripted star. Nevertheless, this is easily dealt with as all cones mentioned
in this paper are self-dual, e.g., (SnX

+ )∗ = (SnX
+ ), with exception of the set of

reals, Rn, and the set of zeros, {0}n, which are each others dual cone. Now note
the negation of affine map domains in the maximization problem (D). Had the
objective sense of (P) been to maximize, this would have been a negation of
variable domains in the minimization problem (D). To memorize this relation,
it is always the variable domains of the minimization problem that is subject
to the sign change. On a pedagogical remark, this dualization procedure is just
as applicable and produces the same result as the sensible-odd-bizarre rules [5]
for linear optimization problems, but extends to support nonlinear cones.
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3.1 The file format

The instances of CBLIB 2014 are stored in the Conic Benchmark Format which
has a technical specification [19] matching the conic form (P). As a matter of
fact, it only differs in its choice of objective sense which can be changed from
minimize to maximize. In this section we will revisit the example from the
introduction and comment on its formulation in the CBF file format.

With two investments and an upper triangular covariance factor U , the
Markowitz portfolio optimization problem (2) can be written in the conic form
(P) as follows.

maximize
x0,x1

[
µ0

µ1

]T [
x0

x1

]

subject to



g0

g1

g2

g3


 =




0 0
U00 U01

0 U11

1 1



[
x0

x1

]
−




−γ1/2

0
0
ω


 ∈ Q3 × {0},

[
x0

x1

]
∈ R2

+.

(6)

This problem formulation translates into the CBF file format, shown in Table 1,
as follows. First we agree to the technical specification [19], by specifying that
the file is written in version 1 of the CBF format (line 4-5). This has to be
the first non-commentary line of the file, and is followed by a description of the
problem (6) separated into model structure and problem data.

01 ########################

02 ## FILE INFORMATION ##

03 ########################

04 VER

05 1

06 ########################

07 ## MODEL STRUCTURE ##

08 ########################

09 OBJSENSE

10 MAX

11 VAR

12 2 1

13 L+ 2

14 CON

15 4 2

16 Q 3

17 L= 1

18 ########################

19 ## PROBLEM DATA ##

20 ########################

21 OBJACOORD

22 2

23 0 µ0

24 1 µ1

25 ACOORD

26 5

27 1 0 U00

28 1 1 U01

29 2 1 U11

30 3 0 1

31 3 1 1

32 BCOORD

33 2

34 0 γ1/2

35 3 −ω

Table 1: A portfolio optimization problem in the CBF file format.
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Stated as model structure, the objective sense is to maximize (line 9-10).
The problem has two variables in one cone (line 11-12), namely R2

+ (line 13),
and there are four affine maps in two cones (line 14-15), namely Q3 (line 16)
and {0} (line 17).

Stated as problem data, the objective function has two nonzero coefficients
(line 21-22), namely µ0 for the first variable x0 (line 23) and µ1 for the second
variable x1 (line 24). Note that all data is specified on a sparse coordinate
form like this, with indexes counting from zero. The problem has five nonzero
constraint coefficients (line 25-26), listed as U00 for the first variable x0 in the
second affine map g1 (line 27), and so on. Finally, there are two nonzero
constraint constants (line 32-33), namely γ1/2 in the first affine map g0 (line
34) and −ω in the fourth affine map g3 (line 35).

Relevant to the benchmarking of warmstarting capability for continuous opti-
mization problems [47], the CBF format also introduced the CHANGE keyword.
At the end of a problem data specification, it can be used to start a new problem
data specification appending to or modifying the previous. These relative
changes allows the solver to reuse internal data structures in its reoptimization
after every change. In the portfolio optimization problem (6), this could be used
benchmark the solvers ability to generate (risk, return)-points on an investment
curve for incrementing values of γ.

4 Solution validation

Since numerical computations are performed in finite precision, small errors may
accumulate throughout the solution procedure. When a solver terminates with
a claimed feasible solution, it may thus deviate from the mathematically exact
feasible region by some tolerances defined in the solver. While a user may want
tolerances to meet the needs of a specific application, knowing that lowering
them can cause numerical issues rather than better solutions, a benchmarker
may instead want to align solvers with each other. In any case, it is sensible to
test the final result against vendor-independent error measures.

The best way to test the validity of a solution is to translate it to its natural
application-specific representation, such as a schedule, and verify it there. More
generally, and especially for comparative studies, a better basis of comparison
may, however, be given by the fractionality of integer variables and Euclidean
distances to each cone. These measures can for instance be used when the
individual formulations are studied, as it implies that bad formulations cause
solvers to struggle and yield large infeasibility measures. In contrast, when the
individual solvers are studied, it is unfair to blame these for the occurrences of
high infeasibility caused by badly formulated instances. In this latter case, the
following precautions are therefore recommended:

• Normalize affine expressions by the infinity norm of coefficients. By defi-
nition of a cone, the constraint Ax+ b ∈ K is invariant to positive scaling.
Invariance to scaling-based reformulations can also be achieved in the
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infeasibility measure, by computing the Euclidean distance for the normed
point (Ax+ b)/max(1, ‖vec(A)‖∞, ‖b‖∞).

• Treat each primitive cone separately. By definition of the Cartesian prod-
uct (3), two conic constraints can be merged into one. Invariance to such
reformulations can also be achieved in the infeasibility measure, by com-
puting the Euclidean distance separately for each factor of the Cartesian
product. For a block-diagonal semidefinite matrix, this corresponds to
computing it separately for each block.

Without going into details, a solution can be validated in terms of these measures
by comparing the Euclidean distances to some chosen absolute error tolerance.
In case of fractionality, it is also common to allow some relative error such that
1 000 000.1 is accepted as integer feasible while 1.1 is not. A brief survey of this
and other solution validation criteria is found in [10, Chapter 1].

A relevant question at this point is whether we are able to obtain any kind
of exact results freed from such tolerances. This question is addressed in [29]
and [26] using interval arithmetic, and for the general case their conclusion is
negative. Points that lie exactly on the boundary of a semidefinite cone are
nontrivial to verify in practice, and to compute a finite interval, guaranteed to
contain the optimal value, all primal variables have to be bounded. Another
approach is through symbolic-numeric quantifier elimination [28], generalizing
the concept of Fourier-Motzkin elimination from linear optimization. This
algorithm has doubly exponential complexity, however, and is not practical for
the instances of this benchmark library. This is in sharp contrast to continu-
ous linear optimization in which exact solutions in rational arithmetic can be
obtained fairly efficiently [31].

4.1 Validating status claims

Most solvers return from a successful termination with a claim such as the
solution is optimal or the problem is infeasible. In conic continuous optimization,
there exists simple certificates to support such claims. In terms of problem (P),
the solver has

• certified optimality of a feasible point, when we are given a feasible point
to problem (D) with the same objective value, cTx+〈C,X〉 = bT y+〈B, Y 〉
(within a tolerance). This is a direct consequence of weak duality.

• certified infeasibility when we are given a feasible point to problem (D),
modified such that c and C are fixed to zero, with a strictly positive
objective value, bT y + 〈B, Y 〉 > 0 (above a tolerance). This is the conic
generalization of the Farkas’ lemma from linear optimization.

• certified dual infeasibility when we are given a feasible point to problem
(P), modified such that b and B are fixed to zero, with a strictly negative
objective value, cTx + 〈C,X〉 < 0 (below a tolerance). This is also a
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direction in which the objective value of any primal feasible point can be
improved indefinitely.

• certified facial reducibility when we are given a feasible point to problem
(D), modified such that c and C are fixed to zero, with a zero-valued
objective value, bT y+〈B, Y 〉 = 0 (within a tolerance), and non-zero entries
of any self-dual cone. This is a facial reduction certificate for (P) showing
it to be ill-posed in the sense of Renegar [45].

• certified dual facial reducibility when we are given a feasible point to
problem (P), modified such that b and B are fixed to zero, with a zero-
valued objective value, cT c+〈C,X〉 = 0 (within a tolerance), and non-zero
entries of any self-dual cone. This is a facial reduction certificate for (D)
showing it to be ill-posed in the sense of Renegar [45].

These certificates all follow from the basic theory of conic duality [9] and facial
reduction [53], and the list is complete. That is, if problem (P) cannot be
certified as facially reducible (nor dual facially reducible), it either has a feasible
point that can be certified as optimal, an infeasibility certificate, or a dual
infeasibility certificate. In a recent result of Permenter et al. [41], the primal-
dual interior-point method [39] is shown capable of always finding one of these
certificates in theory. Hence, there might be a cure for the numerical issues faced
by all current implementations of the algorithm when used on facially reducible
problems [23, 54].

5 The instance catalog

This section brings an overview of the problem instances in CBLIB 2014. A
brief description of each instance is found in Table 2, along with references to
the researchers who worked with and described the instances. Most instances
have been found by data mining in the public domain, and the contributors of
these instances to the CBLIB project have been recognized in the distributed
benchmark library. Note that semidefinite cones are absent from this initial
release due to our focus on second-order cones.

The instance statistics are found in Table 3. For each instance the table shows
the total number of variables (var), affine expressions (map), and nonzero
constraint coefficients (nnz ) not counting constants and objective coefficients.
It then shows the number of primitive linear (lin) and second-order (so) cones
counted separately for each cone dimension. Primitive linear cones are always
one-dimensional, and for second-order cones the dimension is followed by a colon
and its count in a comma-separated list. Next follows the number of binary
variables defined in a linear (blin) and second-order (bso) variable domain cone.
Similarly, the table shows the number of general integer variables defined in
a linear (Ilin) and second-order (Iso) variable domain cone. The last columns
indicate the instance status. The column (obj ) reports the best primal objective
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Packs Origin and description Instances

chainsing Conn et al. [14], Kobayashi et al. [30].
The chained singular function (academic).

9

estein Drewes [16].
Minimum Steiner tree problem.

9

filterdesign Coleman et al. [13].
Optimal design of a delta-sigma (’ds’ in name), a wideband (’wb’ in
name) or a nonlinear-phase FIR (’fir’ in name) filter.

12

nb Coleman and Vanderbei [12].
Calibration of antenna arrays, suppressing signals that do not come
from a chosen direction.

4

portfoliocard Vielma et al. [52].
Portfolio optimization with cardinality constraints.

24

pp Ziegler [57].
Production planning.

8

sched Skutella [48].
Job scheduling on parallel unrelated machines.

8

sssd Bonami et al. [7], Elhedhli [17].
Stochastic service system design with M/M/1 queues using Strong
formulation (’strong’ in name), or weak formulation (’weak’ in name).

16

strain Andersen et al. [2], Christiansen and Andersen [11].
Collapse states for loaded plastic plates using the plain strain model
(’nql’ in name), or the supported plate model (’qssp’ in name).

8

turbine Drewes [16].
Balancing high-speed rotating machinery with either the least axial
weight locations, the least distinct weight sets (’GF’ in name), or
minimum imbalance (’lowb’ in name).

7

uflquad Bonami et al. [7], Günlük et al. [24].
Separable quadratic uncapacitated facility location. With cuts (’psc’
in name) or without cuts (’nopsc’ in name).

16

Table 2: Description of packs in the CBLIB 2014 selection with references to
the researchers who worked with and described the 121 instances.

Size Conic domains Binary Integer Status

Instances var map nnz lin so lin so lin so obj M C
chainsing
chainsing-1000-1 12976 9982 17966 13976 [3:2994] 3.0180E+01 O O
chainsing-1000-2 9985 7988 14975 10985 [3:1996, 1000:1] 3.0180E+01 O O
chainsing-1000-3 6991 5992 11981 7991 [3:998, 1998:1] 3.0180E+01 O O
chainsing-10000-1 129976 99982 179966 139976 [3:29994] 3.0261E+02 O O
chainsing-10000-2 99985 79988 149975 109985 [3:19996, 10000:1] 3.0261E+02 O O
chainsing-10000-3 69991 59992 119981 79991 [3:9998, 19998:1] 3.0261E+02 O O
chainsing-50000-1 649976 499982 899966 699976 [3:149994] 1.5134E+03 O O
chainsing-50000-2 499985 399988 749975 549985 [3:99996, 50000:1] 1.5134E+03 O O
chainsing-50000-3 349991 299992 599981 399991 [3:49998, 99998:1] 1.5134E+03 O O

estein
estein4 A 67 108 128 148 [3:9] 9 0 0 0 8.0137E−01 O O
estein4 B 67 108 128 148 [3:9] 9 0 0 0 1.1881E+00 O O
estein4 C 67 108 128 148 [3:9] 9 0 0 0 1.0727E+00 O O
estein4 nr22 67 108 128 148 [3:9] 9 0 0 0 5.0329E−01 O O
estein5 A 132 211 258 289 [3:18] 18 0 0 0 1.0454E+00 O O
estein5 B 132 211 258 289 [3:18] 18 0 0 0 1.1932E+00 O O
estein5 C 132 211 258 289 [3:18] 18 0 0 0 1.4991E+00 O O
estein5 nr1 132 211 258 289 [3:18] 18 0 0 0 1.6644E+00 O O
estein5 nr21 132 211 258 289 [3:18] 18 0 0 0 1.8182E+00 O O

filterdesign
2013 dsNRL 61822 1616 66668564 1616 [3:20503, 313:1] -9.6379E−06 O O
2013 firL1 59706 20902 39787428 20902 [3:19902] -3.6669E+00 O O
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2013 firL1Linfalph 119412 20903 79574856 20903 [3:39804] -3.3116E+00 O -
2013 firL1Linfeps 59173 30085 9873426 30086 [3:19724] -1.5255E−02 O -
2013 firL2L1alph 49612 30268 9985771 30269 [3:9922, 19845:1] -2.4441E−01 O O
2013 firL2L1eps 60708 20903 40288929 20903 [3:19902, 1002:1] -3.0683E+00 O O
2013 firL2Linfalph 91783 2002 121660011 2002 [3:29927, 2002:1] -7.7910E−02 O O
2013 firL2Linfeps 59636 24655 19108570 24655 [3:11927, 23855:1] -1.0141E−02 O O
2013 firL2a 10002 10001 50015001 10001 [10002:1] -1.4368E−01 O O
2013 firLinf 59856 2001 79771354 2001 [3:19952] -1.0022E−02 O -
2013 wbNRL 40450 1042 39138234 38123 [38:7, 1035:1,

2068:1]
-3.8759E−05 O O

2013i wbNRL 63312 1710 101934231 59827 [51:4, 52:3,
1431:1, 3404:1]

Unbounded DI P

nb
nb 2383 123 191519 127 [3:793] -5.0703E−02 O O
nb L1 3176 915 192312 1712 [3:793] -1.3012E+01 O O
nb L2 4195 123 402285 127 [3:838, 1677:1] -1.6290E+00 O O
nb L2 bessel 2641 123 208817 127 [3:838, 123:1] -1.0257E−01 O O

portfoliocard
classical 50 1 152 255 2902 356 [51:1] 50 0 0 0 -9.4760E−02 O O
classical 50 2 152 255 2902 356 [51:1] 50 0 0 0 -9.0528E−02 O O
classical 50 3 152 255 2902 356 [51:1] 50 0 0 0 -8.8041E−02 O O
classical 200 1 602 1005 41602 1406 [201:1] 200 0 0 0 -1.1668E−01v P P
classical 200 2 602 1005 41602 1406 [201:1] 200 0 0 0 -1.1009E−01v P P
classical 200 3 602 1005 41602 1406 [201:1] 200 0 0 0 -1.0607E−01v P P
robust 50 1 207 365 5564 468 [52:2] 51 0 0 0 -8.5695E−02 O O
robust 50 2 207 365 5564 468 [52:2] 51 0 0 0 -1.4365E−01 O O
robust 50 3 207 365 5564 468 [52:2] 51 0 0 0 -8.9803E−02 O O
robust 100 1 407 715 21114 918 [102:2] 101 0 0 0 -7.2090E−02 O P
robust 100 2 407 715 21114 918 [102:2] 101 0 0 0 -9.1574E−02 O O
robust 100 3 407 715 21114 918 [102:2] 101 0 0 0 -1.1682E−01 O O
robust 200 1 807 1415 82214 1818 [202:2] 201 0 0 0 -1.4275E−01 O P
robust 200 2 807 1415 82214 1818 [202:2] 201 0 0 0 -1.2167E−01 O P
robust 200 3 807 1415 82214 1818 [202:2] 201 0 0 0 -1.2911E−01v P P
shortfall 50 1 205 361 5612 464 [51:2] 51 0 0 0 -1.1018E+00 O O
shortfall 50 2 205 361 5612 464 [51:2] 51 0 0 0 -1.0952E+00 O O
shortfall 50 3 205 361 5612 464 [51:2] 51 0 0 0 -1.0923E+00 O O
shortfall 100 1 405 711 21212 914 [101:2] 101 0 0 0 -1.1063E+00 O P
shortfall 100 2 405 711 21212 914 [101:2] 101 0 0 0 -1.1007E+00v P P
shortfall 100 3 405 711 21212 914 [101:2] 101 0 0 0 -1.1031E+00 O P
shortfall 200 1 805 1411 82412 1814 [201:2] 201 0 0 0 -1.1354E+00v P P
shortfall 200 2 805 1411 82412 1814 [201:2] 201 0 0 0 -1.1254E+00v P P
shortfall 200 3 805 1411 82412 1814 [201:2] 201 0 0 0 -1.1199E+00v P P

pp
pp-n10-d10 50 31 59 51 [3:10] 0 10 0 0 7.2481E+01 O O
pp-n10-d10000 50 31 59 51 [3:10] 0 10 0 0 1.4815E+03 O -
pp-n100-d10 500 301 599 501 [3:100] 0 100 0 0 7.7728E+02v P P
pp-n100-d10000 500 301 597 501 [3:100] 0 100 0 0 1.9856E+04 O -
pp-n1000-d10 5000 3001 5969 5001 [3:1000] 0 1000 0 0 7.3434E+03v P P
pp-n1000-d10000 5000 3001 5968 5001 [3:1000] 0 1000 0 0 2.1611E+05 P -
pp-n100000-d10 500000 300001 597382 500001 [3:100000] 0 100000 0 0 0.0000E+00a - -
pp-n100000-d10000 500000 300001 597463 500001 [3:100000] 0 100000 0 0 1.8348E+07a - -

sched
sched 50 50 orig 4979 2527 25488 5029 [3:1, 2474:1] 2.6673E+04a - -
sched 50 50 scaled 4977 2526 27985 5028 [2475:1] 7.8520E+00 O -
sched 100 50 orig 9746 4844 55291 9846 [3:1, 4741:1] 1.8189E+05 - O
sched 100 50 scaled 9744 4843 60288 9845 [4742:1] 6.7165E+01 O -
sched 100 100 orig 18240 8338 104902 18340 [3:1, 8235:1] 7.1737E+05 - O
sched 100 100 scaled 18238 8337 114899 18339 [8236:1] 2.7331E+01 O -
sched 200 100 orig 37889 18087 260503 38089 [3:1, 17884:1] 1.4136E+05 - O
sched 200 100 scaled 37887 18086 280500 38088 [17885:1] 5.1812E+01 O -

sssd
sssd-strong-15-4 125 180 372 269 [3:12] 72 0 0 0 3.2800E+05 O O
sssd-strong-15-8 249 344 744 521 [3:24] 144 0 0 0 6.2251E+05 O O
sssd-strong-20-4 145 205 432 314 [3:12] 92 0 0 0 2.8781E+05 O O
sssd-strong-20-8 289 389 864 606 [3:24] 184 0 0 0 6.0035E+05 O O
sssd-strong-25-4 165 230 492 359 [3:12] 112 0 0 0 3.1172E+05 O O
sssd-strong-25-8 329 434 984 691 [3:24] 224 0 0 0 5.0075E+05 P O
sssd-strong-30-4 185 255 552 404 [3:12] 132 0 0 0 2.6413E+05 O O
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sssd-strong-30-8 369 479 1104 776 [3:24] 264 0 0 0 5.2876E+05 P O
sssd-weak-15-4 125 180 360 269 [3:12] 72 0 0 0 3.2800E+05 O O
sssd-weak-15-8 249 344 720 521 [3:24] 144 0 0 0 6.2251E+05 O O
sssd-weak-20-4 145 205 420 314 [3:12] 92 0 0 0 2.8781E+05 O O
sssd-weak-20-8 289 389 840 606 [3:24] 184 0 0 0 6.0034E+05 P O
sssd-weak-25-4 165 230 480 359 [3:12] 112 0 0 0 3.1172E+05 O O
sssd-weak-25-8 329 434 960 691 [3:24] 224 0 0 0 5.0075E+05 P O
sssd-weak-30-4 185 255 540 404 [3:12] 132 0 0 0 2.6413E+05 O O
sssd-weak-30-8 369 479 1080 776 [3:24] 264 0 0 0 5.2876E+05 P O

strain
nql30 4501 6380 20569 8181 [3:900] -9.4602E−01 O O
nql60 18001 25360 82539 32561 [3:3600] -9.3504E−01 O O
nql90 40501 56940 185909 73141 [3:8100] -9.3136E−01 O O
nql180 162001 227280 744419 292081 [3:32400] -9.2764E−01 O O
qssp30 7565 11255 44414 11256 [4:1891] -6.4967E+00 O O
qssp60 29525 44105 178814 44106 [4:7381] -6.5627E+00 O O
qssp90 65885 98555 403214 98556 [4:16471] -6.5942E+00 O O
qssp180 261365 391505 1616414 391506 [4:65341] -6.6391E+00 O O

turbine
turbine07 84 101 313 101 [3:25, 9:1] 0 0 11 0 2.0000E+00 O O
turbine07GF 87 124 444 136 [3:25] 12 0 0 0 3.0000E+00 P O
turbine07 aniso 83 108 313 116 [3:25] 0 0 11 0 3.0000E+00 O O
turbine07 lowb 212 354 621 480 [2:1, 3:25, 9:1] 56 0 0 0 8.9930E−01 O O
turbine07 lowb aniso 210 361 621 496 [3:25] 56 0 0 0 1.3945E+00 - O
turbine54 366 477 2099 477 [3:119, 9:1] 0 0 11 0 3.0000E+00 P O
turbine54GF 369 500 2982 512 [3:119] 12 0 0 0 4.0000E+00 P O

uflquad
uflquad-nopsc-10-100 3011 5111 7010 5122 [3:1000] 10 0 0 0 5.4029E+02 O O
uflquad-nopsc-10-150 4511 7661 10510 7672 [3:1500] 10 0 0 0 7.0965E+02 O O
uflquad-nopsc-20-100 6021 10121 14020 10142 [3:2000] 20 0 0 0 3.9954E+02 O O
uflquad-nopsc-20-150 9021 15171 21020 15192 [3:3000] 20 0 0 0 5.6872E+02 O O
uflquad-nopsc-30-100 9031 15131 21030 15162 [3:3000] 30 0 0 0 3.5524E+02 O P
uflquad-nopsc-30-150 13531 22681 31530 22712 [3:4500] 30 0 0 0 4.6816E+02v P P
uflquad-nopsc-30-200 18031 30231 42030 30262 [3:6000] 30 0 0 0 5.5491E+02v P P
uflquad-nopsc-30-300 27031 45331 63030 45362 [3:9000] 30 0 0 0 7.8479E+02v P P
uflquad-psc-10-100 3011 5111 8010 5122 [3:1000] 10 0 0 0 5.4029E+02 O O
uflquad-psc-10-150 4511 7661 12010 7672 [3:1500] 10 0 0 0 7.0965E+02 O O
uflquad-psc-20-100 6021 10121 16020 10142 [3:2000] 20 0 0 0 3.9954E+02 O O
uflquad-psc-20-150 9021 15171 24020 15192 [3:3000] 20 0 0 0 5.6872E+02 O O
uflquad-psc-30-100 9031 15131 24030 15162 [3:3000] 30 0 0 0 3.5524E+02 O O
uflquad-psc-30-150 13531 22681 36030 22712 [3:4500] 30 0 0 0 4.6816E+02 O O
uflquad-psc-30-200 18031 30231 48030 30262 [3:6000] 30 0 0 0 5.5491E+02 O O
uflquad-psc-30-300 27031 45331 72030 45362 [3:9000] 30 0 0 0 7.6035E+02 O O

a(currancy) Infeasibility meassures exceed 10−4 on some primitive cones or integer requirements (points not normalized).
v(alue) Objective neither claimed by a solver to be within an absolute and relative gap of 0.0 from optimality (mixed-integer case), nor certified

to be within an absolute gap of 10−4 or relative gap of 10−7 from optimality (continuous case).

Table 3: CBLIB 2014 instance statistics.

value, whenever possible, among the primal feasible points found using MOSEK
version 7.1.0.12 [37] and CPLEX version 12.6.0.0 [27] on a 64-bit linux platform.
Default parameters settings were used in these runs, except for forcing single-
threaded behavior, a time limit of one hour, as well as an absolute and relative
optimality gap of zero for integer problems. Superscripts are appended to
this column, obj, when solutions could not be validated using the tolerances
on feasibility and optimality stated in the footnotes of the table. The same
tolerances are used to label the output of MOSEK (column M ) and CPLEX
(column C ). A dash, -, means that the output neither validated as a primal
feasible point nor a certificate of any kind. Moreover, P means primal feasibility,
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O means optimality is claimed (mixed-integer case) or certified (continuous case),
and DI means that a dual infeasibility certificate was recognized.

Overall, the CBLIB 2014 selection of instances can be described as follows.
The library contains 121 instances out of which 80 are mixed-integer. Only
eight of the 80 mixed-integer instances contain general integer variables, showing
binary variables to be the most common as expected. This is in line with the
mixed-integer linear instances of the MIPLIB library [32]. All instances contain
second-order cones, but only three of the 80 mixed-integer instances require the
entry of a second-order cone to be integer. Beware, that this latter observation
is based solely on the domain of integer variables, and does not consider affine
expression entries even though they might also be implied integer.

The average number of entries per second-order cone is close to three in many
of the instances. Elaborating on this, 86 of the 121 instances contain at least
one 3-dimensional second-order cone out of which 20 have exactly one other and
66 have no other second-order cones. In the other end of the scale we find nine
of the 121 instances with more than a thousand entries per second-order cone on
average. The total of second-order cones range as low as one (eleven instances)
to more than 100 000 (three instances).

We will now elaborate on the differences between MOSEK and CPLEX as shown
in Table 3, starting with instance 2013i wbNRL. This instance is an example
of the fact that it is quite normal to make mistakes or forget something in
the first attempt to formulate a problem. In this particular case, the problem
features a direction which may improve the objective value of any feasible point
indefinitely, and this direction is a dual infeasibility certificate. MOSEK found
this certificate, while CPLEX terminated with a primal feasible point.

Another observation from Table 3 is that the ”best” formulation is not always
clear. MOSEK terminated with primal infeasibilities on all sched * * orig

instances, but solved all of the sched * * scaled instances just fine. Thus, what
can be solved and not is exactly opposite to CPLEX, with sched 50 50 orig as
the only exception for which CPLEX also terminated with primal infeasibilities.
Only together, were they able to solve nearly all of the sched instances.

Numerical issues is unfortunately not an isolated case, however, as CPLEX
also terminated with primal infeasibilities on 2013 firL1Linfalph as well as
on 2013 firL1Linfeps. Moreover, MOSEK refused to claim optimality on
turbine07GF, turbine54 and turbine54GF, even though terminating in time
with the optimal solutions, presumably because numerical issues forced it to skip
subproblems rather than to prune them from the search tree. There were also
integer problems where optimality was claimed, but infeasible solutions were
returned. This happened for CPLEX on all of the pp-*-d10000 instances and
for MOSEK on turbine07 lowb aniso. In one case, sssd-weak-30-8, MOSEK
moreover seems to have cut off the optimal solution as it claimed optimality
although an objective improvement of 5.4 in absolute and 1.0E-05 in relative
measures could be achieved.
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Finally, to indicate the hardness of these instances in terms different from
numerical issues, we may state that neither CPLEX nor MOSEK were able
to find any feasible solution to pp-n100000-d10 in time. Interestingly, this is a
trivial task to perform by hand as seen by consulting the mathematical model
[57]. It is also worth pointing out that the continuous instances of the filterdesign
pack are absolutely huge, and CPLEX actually timed out on 2013 dsNRL and
2013 firLinf. This, despite actually outputting a valid solution and optimality
certificate in the former case. On the integer problems, CPLEX and MOSEK
timed out 20 and 21 times respectively. The 14 instances on which they both
timed out is given by the special case of pp-n100000-d10 (no solutions found)
and otherwise match when the letter P appears simultaneously in column M
and C of Table 3.

5.1 Filtering out instances of interest

Cone support is not uniform across all solvers, and it is often the case that
benchmarks focus on a subset of instances with certain characteristics. For this
reason the Python script, filter.py, has been developed to filter out instances
of interest. It takes a string as input, substitute all occurrences of ||*|...||

with the value of the filter * given arguments ..., and evaluate it as a boolean
expression. Instances evaluating to true are listed.

python filter.py "||cones|so|| == ||cones|so|==3||"

Instances where all second-order cones have exactly three entries. In this command, ||cones||
counts the number of conic domains, and takes two arguments to limit its scope. The first
argument specifies a cone type following the CBF format, with linear cones F, L+, L-, L=,
or all four, lin, as well as second-order cones Q, QR, or both, so. The second argument is a
relation with cone dimension as left-hand-side.

python filter.py "||int|| and ||cones|so|| and not ||psdcones||"

Mixed-integer second-order cone instances. This command uses Python boolean logic with
||int|| counting integer variables (the subset of binary variables is found by ||binary||),
and ||psdcones|| counting semidefinite cones.

python filter.py "||entries|so|| / ||cones|so|| <= 4"

Instances with no more than four entries per second-order cone on average. This command
shows the use of Python mathematics, with ||entries|| summing the dimension of cones
(here limited to second-order cones).

The script also accepts an execution argument, indicated by -x, whose result
will be evaluated and printed. With an empty filter (always true), this can be
used to generate tables of instance statistics.

python filter.py "" -x "[||path||, ||minimize||, ||var|F||, ||map|L=||]"

Instance statistics for all instances. The filter ||path|| is filepath (||name|| is filename
without extension) and ||minimize|| is whether the objective sense is to minimize. ||var||

and ||map|| are subsets of ||entries|| limited respectively to Knx
x and Kng

g from (P). Here,
the former is further limited to free variables, and the latter to equality constraints.

This argument can be useful for exploring the instances and filters. Note that the
filtering mechanism is implemented as a plugin system which can be extended
by adding functions to the directory of filters in the distributed library.
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5.2 Feeding instances into optimization software

A disadvantage of the CBF format is the lack of support in mainstream software.
This concern has led to the development of tools which can aid integration
with, or transformation to, the input format of most software packages. More
specifically, the library is distributed with CBF parsers in various programming
languages and a file converter tool.

Parsers of the CBF format has been written in the MATLAB, Python, and
C++ programming languages. These parsers may be used to feed instances
into optimization software through programming interfaces. An example of this
concept has been made with the Python script, run.py, which uses the CBF
parser in Python to feed instances into MOSEK [37] through its Python API.
This script was, for example, used to generate the last column of Table 3 in the
instance catalog. By default, the script is configured to save the optimization
result of each instance with the extension, .sol. Subsequent analysis with the
Python script, summary.py, is thus possible.

python run.py runmosek -f [CBFFILE1] [CBFFILE2] ...

Runs MOSEK on the listed instances, that is, [CBFFILE1], [CBFFILE2], and so on. A summary
of these results can be shown by python summary.py -f [CBFFILE1] [CBFFILE2] ....

python run.py runmosek -s [SET]

Runs MOSEK on the instances in [SET]. This can be a subdirectory of cbf in the distributed
library, or a file formatted as the default output of the filter.py script (a stripped version of
ref.csv in the distributed library). The summary is shown by python summary.py -s [SET].

The file converter tool, named cbftool, uses the CBF parser written in C++
to convert instances into another file format. It is capable of transforming conic
constraints, Ax− b ∈ K, into Ax− b = s and s ∈ K, but is otherwise incapable
of modifying problem formulations to match the limitations of a particular file
format. Thus, although the sparse SDPA format [56] is supported by cbftool,
nothing but matrix inequalities can be converted to this format. The tool
supports the two extensions of the MPS format, mentioned in the introduction,
to facilitate second-order cones. Examples of this are given below.

cbftool -o mps-mosek [CBFFILE1] [CBFFILE2] ...

Convert listed instances to the MPS format using the explicit second-order cone extension.
Results are stored in the current directory.

cbftool -o mps-cplex -opath [OUTPUTDIR] [CBFFILE1] [CBFFILE2] ...

Convert listed instances to the MPS format using the quadratic extension with nonnegative
variable bounds for second-order cones. Results are stored in [OUTPUTDIR].

6 Final remarks

Conic optimization has become mainstream during the past ten years. Excellent
commercial and open source solvers are available, frequent advancements are
being made, and its potential usage stretch all the way to general convex
optimization. Several issues have been identified in the availability of benchmark
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libraries, however, which may potentially slow down progress. Some of these
issues have been addressed with the release of CBLIB 2014. There is now a
large collection of mixed-integer and continuous second-order cone instances,
and a new CBF file format which unifies the SDPA and SEDUMI format under
a common mathematical formulation.

Since this publication, CBLIB has been used by XPRESS [18] (mentioned
in [42]), by MOSEK [37] and GUROBI [25] (private communication), as well
as in the public benchmarks of Hans Mittelmann [36]. Moreover, the library
has continued to grow from a few hundred to more than a thousand instances
distributed online. While this expansion includes new applications of conic
optimization, it mostly provides a wider variety of data for some of the math-
ematical models, and some very hard and unsolved problems which are not
suited for performance benchmarks. CBLIB 2014 thus remains representative
as a benchmark selection of the entire collection.

Future work includes categorizing the instances into test sets similar to the
sets of open, challenging and easy instances found in MIPLIB [32]. Adding
native support of the CBF format to the open source solvers and algebraic
modeling tools is also of high value to the project. This has already started to
happen with PICOS [46] as first mover. Finally, we are interested in instances
with properties rare to the existing library such as infeasibilities (as requested in
[44]) or integer variables in cones (as requested in [22]), or simply representing
new applications of conic optimization.

The Conic Benchmark Library, CBLIB, is a community project and grow through
external submissions. Please consider contributing at http: // cblib. zib. de .
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Abstract
We establish connections between the facial reduction algorithm of Borwein and Wolkowicz

and the self-dual homogeneous model of Goldman and Tucker when applied to conic optimiza-
tion problems. Specifically, we show the self-dual homogeneous model returns facial reduction
certificates when it fails to return a primal-dual optimal solution or a certificate of infeasibility.
Using this observation, we give algorithms, based on facial reduction, for solving the primal or
dual problem that, in principle, always succeed. These algorithms have the appealing prop-
erty that they only perform facial reduction when it is required, not when it is possible; e.g.
if a primal-dual optimal solution exists, it will be found in lieu of a facial reduction certifi-
cate even if Slater’s condition fails. We interpret this phenomenon geometrically by studying
the cone of solutions to the homogeneous model—an interesting object in its own right. For
the case of semidefinite programming, we show our method can be implemented using existing
central-path-following techniques.

1 Introduction
For A ∈ Rm×n, b ∈ Rm and c ∈ Rn, consider the following primal-dual pair of conic optimization
problems over the non-empty, closed, convex cone K ⊆ Rn and its dual cone K∗ ⊆ Rn:

minimize cTx
subject to Ax = b

x ∈ K

maximize bT y
subject to c−AT y = s

s ∈ K∗, y ∈ Rm,
(1)

where x ∈ Rn is the decision variable of the primal problem and (s, y) ∈ Rn × Rm is the decision
variable of the dual. The self-dual embedding technique, originally due to Goldman and Tucker
[8] and generalized in [12, 7, 13, 18], solves (1) by finding solutions to the following self-dual
homogeneous model:

Ax− bτ = 0,
−AT y − s+ cτ = 0,
bT y − cTx− κ = 0,

(x, s, y, τ, κ) ∈ K ×K∗ × Rm × R+ × R+,

(2)
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where any solution (x, s, y, τ, κ) of (2) satisfies the complementarity condition τκ = 0—an easy
consequence of weak duality. If τ > 0, then 1

τ (x, s, y) is a primal-dual optimal solution for (1)
with duality gap 1

τ2x
T s equal to zero; in other words, 1

τ (x, s, y) is a complementary solution for
(1). If κ > 0, then x and/or y are improving rays that certify dual and/or primal infeasibility. If
τ = κ = 0 holds for all solutions, then at least one problem—primal or dual—is ill-posed in the sense
of Renegar [21], and no point (x, s, y, τ, κ) yields an improving ray or a complementary solution1.
In addition, at least one problem—primal or dual—fails the Slater constraint qualification.

In this paper, we reexamine this latter case. Specifically, we show relative interior solutions of
(2) yield facial reduction certificates for (1) when τ = κ = 0 holds for all solutions. (Restricting to
the relative interior is inspired by the analysis of de Klerk et al. [7].) As we review, these certificates
allow one to regularize the primal or dual in the manner proposed by Borwein and Wolkowicz [5]
and resolve (2), repeating until a complementary solution or an improving ray is obtained. As we
show, this idea leads to simple algorithms that solve arbitrary instances of the primal or dual, where
solve means to find a finite certificate for the optimal value, and a solution if one exists. These
algorithms, of course, rely on a subroutine that produces relative interior solutions to (2). As we
show, such solutions are obtained from relative interior solutions to the extended-embedding of Ye
et al. [26], a strictly-feasible conic optimization problem with strictly-feasible dual. If the extended-
embedding is a semidefinite program (SDP), tracking its central path with an interior-point method
[14] produces one of its relative interior solutions (by strict feasibility and results of [9]). Hence,
implementations of our algorithms that solve arbitrary SDPs are conceptually simple, involving only
basic linear algebra (for regularization) and repeated calls to an interior-point method. Tracking
the central paths of extended-embeddings with sufficient accuracy, however, is likely a difficult
numerical task and is a topic we do not address here.

This paper also contributes to the facial reduction literature in a few ways. To explain these
contributions, we first review prior work. Executing the facial reduction algorithm of Borwein and
Wolkowicz [5], or the simplified versions of Pataki [15] and Waki and Muramatsu [25], requires one
obtain facial reduction certificates, which themselves are solutions to conic optimization problems
(so-called auxiliary problems). The recent papers of Cheung et al. [6] and Lourenço et al. [11]
propose methods for finding certificates, addressing issues of numerical robustness [6] and strict
feasibility of auxiliary problems [6, 11], whereas papers of the first author find certificates using
conservative approximations [16, 17]. In this paper, we show it is possible to find certificates only
when they are needed (complementary solutions and improving rays do not exist) as opposed to
when they exist (e.g., Slater’s condition fails for feasible problems). This is done by finding relative
interior solutions to (2) by solving, for instance, strictly-feasible extended-embeddings. In contrast,
the methods of [5, 15, 25, 6, 11] find a complete set of certificates for feasible problems and regularize
until Slater’s condition holds (which can be costly and unnecessary), and the approximation-based
methods of [16, 17] may fail to find needed certificates. We also show solutions to (2) automati-
cally identify which problem—primal or dual—needs regularization. In contrast, facial reduction
procedures often only regularize the problem one is interested in solving. This is insufficient, for
instance, to solve the primal problem if it has a finite unattained optimal value; in this case, dual
regularization, or equivalently, regularization in the sense of Abrams [1], is required. As we will
show, relative interior solutions to (2) always provide the necessary certificate for the required
regularization. Indeed, the certificates provided by (2) allow one to handle all pathologies (duality
gaps, unattainment, etc.) in a unified facial-reduction-based framework, where, in contrast, the
method of [11] for SDP uses a combination of techniques.

1If all solutions to (2) satisfy τ = κ = 0, the asymptotic behavior of central-path-following techniques may reveal
additional information about (1). See Luo et al. [12] and de Klerk et al. [7].
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Case Interpretation
τ > 0, κ = 0 Complementary solution
τ = 0, κ > 0 Improving ray(s)
τ = 0, κ = 0 Facial reduction certificate(s)

Table 1: Interpretation of a relative interior solution to the self-dual homogeneous model (2)
in terms of the conic optimization problem (1). The main observation of this paper, given by
Corollary 1, is summarized by the last row.

This paper is organized as follows. Section 2 introduces notation and reviews facial reduction.
Section 3 introduces the set H(C)—defined as the cone of solutions to the homogeneous model (2) if
K is replaced with some specified non-empty, closed, convex cone C. This section then characterizes
the relative interior of H(C), yielding the results reported in Table 1. The relative boundary of H(C)
is also studied, yielding interesting geometric interpretations of facial reduction certificates. We
then show how to find points in the relative interior of H(C) via extended-embeddings. Section 4
gives algorithms for solving the primal or dual problem using relative interior points in a sequence
of cones H(Ci), where Ci is computed from Ci−1 using facial reduction. Section 5 contains simple
illustrative examples.

2 Background on facial reduction
This section reviews the basic concepts underlying facial reduction algorithms [5, 15, 25]. These
algorithms take as input either the primal problem or the dual problem of (1) and replace K or
K∗ with a face containing the primal feasible set or the set of dual feasible slacks. After this
replacement, the new problem has optimal value equal to that of the input problem. Moreover, if
the input problem is feasible, the new problem satisfies Slater’s condition, and if the input problem
is infeasible, the new problem is strongly infeasible, meaning a strictly-separating hyperplane exists
proving infeasibility. For this reason, this replacement is called regularization.

These algorithms work by finding a finite sequence of hyperplanes that provably contain the
feasible set, where the normal vectors of these hyperplanes are called facial reduction certificates.
They terminate when facial reduction certificates no longer exist. The number of steps taken by
these algorithms depends on the facial reduction certificates used. The minimum number of steps
taken is called the singularity degree [24] and is intrinsic to the input problem. To explain these
ideas in detail, we first review properties of non-empty, closed, convex cones and their faces.

2.1 Cones and faces
A subset C of Rn is called a cone if it is closed under positive scaling, i.e. λx ∈ C for any λ > 0
when x ∈ C. A convex cone is a cone that is convex. The dual cone C∗ of any subset C of Rn is the
convex cone {z ∈ Rn : zTx ≥ 0, ∀x ∈ C}. In this paper, we are only concerned with convex cones
that are also closed and non-empty. Note if C is a non-empty, closed, convex cone, then C contains
the origin and C∗∗ = C.

Let C be a non-empty, closed, convex cone. A face F of C is a closed convex subset for which
a, b ∈ C and a+b

2 ∈ F implies a, b ∈ F . A face F of C is called a proper face if it is non-empty
and not equal to C. (Note this definition includes C ∩ (−C) as a proper face, which some authors
exclude.) Let z⊥ denote the hyperplane {x ∈ Rn : xT z = 0}. For z ∈ C∗, the set C ∩ z⊥ is easily

3



seen to be non-empty face, said to be exposed by z. It thus holds C ∩ z⊥ is a proper face if and
only if C ∩ z⊥ ⊆ C holds strictly. Hence, the set C ∩ z⊥ is a proper face if an only if z ∈ C∗ \ C⊥,
where C∗ \ C⊥ is the subset of C∗ not contained in the orthogonal complement of the span of C.
Since the dual cone C∗ and the proper faces of C are also nonempty, closed, convex cones, all of
these concepts translate if C is replaced with a proper face F , with the dual cone C∗, or with one
of the proper faces of the dual cone. For instance, z ∈ F∗ \ F⊥ exposes a proper face F ∩ z⊥ of F ,
just as z ∈ C \ (C∗)⊥ exposes a proper face C∗ ∩ z⊥ of C∗.

2.2 Primal and dual problems
To explain facial reduction, it is convenient to define primal and dual problems parametrized by
an arbitrary non-empty, closed, convex cone C:

Definition 1. For a non-empty, closed, convex cone C ⊆ Rn, and the problem data A ∈ Rm×n,
b ∈ Rm and c ∈ Rn of the conic optimization problem (1), let P(C) denote the primal optimization
problem

minimize cTx
subject to Ax = b

x ∈ C,

and let D(C) denote its dual optimization problem

maximize bT y
subject to c−AT y = s

s ∈ C∗, y ∈ Rm.

Note P(K) and D(K) denote the primal and dual of (1), respectively. We will call x ∈ C an
improving ray for P(C) if Ax = 0 and cTx < 0. Similarly, we call (−AT y, y) ∈ C∗ × Rm an
improving ray for D(C) if yT b > 0. A complementary solution (x, s, y) ∈ C ×C∗×Rm for P(C) and
D(C) is a primal-dual optimal solution with zero duality gap, i.e. it consists of a primal feasible
point x and dual feasible point (s, y) for which cTx = bT y, or equivalently, xT s = 0.

We also say P(C) satisfies Slater’s condition if there exists a feasible x ∈ relint C. Similar, D(C)
satisfies Slater’s condition if there is a feasible s ∈ relint C∗. Such x and s are called Slater points.
Finally, we call inf

{
cTx : Ax = b, x ∈ C} the optimal value of P(C) and sup

{
bT y : c − AT y ∈

C∗, y ∈ Rm
}
the optimal value of D(C).

2.3 Facial reduction certificates
A facial reduction certificate is the normal vector to a particular type of hyperplane. It is defined
in terms of a cone C ⊆ Rn and either the primal problem P(C) or dual problem D(C).

Definition 2. For a non-empty, closed, convex cone C ⊆ Rn, and the problem data A ∈ Rm×n,
b ∈ Rm and c ∈ Rn of (1), define facial reduction certificates as follows:

• Call s ∈ C∗ a facial reduction certificate for P(C) if the hyperplane s⊥ contains the affine set
{x ∈ Rn : Ax = b} and C ∩ s⊥ ⊆ C holds strictly.

• Call x ∈ C a facial reduction certificate for D(C) if the hyperplane x⊥ contains the affine set
{c−AT y : y ∈ Rm} and C∗ ∩ x⊥ ⊆ C∗ holds strictly.
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A facial reduction certificate for P(C) exposes a proper face of C containing the feasible set of
P(C). Similarly, a facial reduction certificate for D(C) exposes a proper face of C∗ containing the
set of dual feasible slacks for D(C). Hence, existence of these certificates imply failure of Slater’s
condition for P(C) or D(C). For feasible problems, the converse is also true: a facial reduction
certificate exists if Slater’s condition fails. Specifically, the following is well-known.

Proposition 1. Let C ⊆ Rn be a non-empty, closed, convex cone. The following statements hold.

• Suppose the primal problem P(C) is feasible. A facial reduction certificate for P(C) exists if
and only if the set of Slater points relint C ∩ {x ∈ Rn : Ax = b} is empty.

• Suppose the dual problem D(C) is feasible. A facial reduction certificate for D(C) exists if
and only if the set of Slater points relint C∗ ∩ {c−AT y : y ∈ Rm} is empty.

(See, e.g., Lemma 2 of [17] for a proof, and Theorem 7.1 of [5], Lemma 12.6 of [6], or Lemma 1 of
[15] for closely-related statements.)

Facial reduction certificates are also solutions to conic feasibility problems (so-called auxiliary
problems). Indeed, a hyperplane contains a non-empty affine set if and only if it has a normal
vector satisfying certain linear equations. Hence, the set of facial reduction certificates for P(C) or
D(C) is defined by particular linear and conic constraints:

Proposition 2. Let C ⊆ Rn be a non-empty, closed, convex cone. The following statements hold.

• s ∈ Rn is a facial reduction certificate for the primal problem P(C) if there exists y ∈ Rm for
which

bT y = 0, s = −AT y, s ∈ C∗ \ C⊥,

and all facial reduction certificates are of this form if {x ∈ Rn : Ax = b} is non-empty.

• x ∈ Rn is a facial reduction certificate for the dual problem D(C) if

cTx = 0, Ax = 0, x ∈ C \ (C∗)⊥,

and all facial reduction certificates are of this form (since {c−AT y : y ∈ Rm} is non-empty).

Note the constraint x ∈ C \ (C∗)⊥ is satisfied if and only if x ∈ C and x has non-zero inner-product
with any point in relint C∗, and similarly for s ∈ C∗ \ C⊥.

Optimal facial reduction certificates. Faces exposed by facial reduction certificates are partially-
ordered by set inclusion. Thus, there is a natural notion of optimality for certificates. Formally:

Definition 3. Let C ⊆ Rn be a non-empty, closed, convex cone. Let Zp ⊆ Rn denote the set of
facial reduction certificates for P(C) and Zd ⊆ Rn denote the set of facial reduction certificates for
D(C).

• s ∈ Zp is an optimal facial reduction certificate for P(C) if C ∩ s⊥ satisfies

C ∩ s⊥ ⊆ C ∩ ŝ⊥ for all ŝ ∈ Zp.

• x ∈ Zd is an optimal facial reduction certificate for D(C) if C∗ ∩ x⊥ satisfies

C∗ ∩ x⊥ ⊆ C∗ ∩ x̂⊥ for all x̂ ∈ Zd.
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If facial reduction certificates exist, then so do optimal ones. Since facial reduction certificates are
closed under addition, this follows easily from the following identities

C ∩ (s1 + s2)⊥ = C ∩ s⊥1 ∩ s⊥2 , C∗ ∩ (x1 + x2)⊥ = C∗ ∩ x⊥1 ∩ x⊥2 ,

which hold for any s1, s2 ∈ C∗ and x1, x2 ∈ C. Hence, the sum of a maximal set of linearly
independent certificates for P(C) is an optimal certificate for P(C), and similarly for D(C).

2.4 Facial reduction algorithms
A facial reduction algorithm regularizes the primal problem P(K) of (1) by finding a sequence of
facial reduction certificates for P(Fi), where each Fi is a face of K. Similarly, it regularizes the dual
problem D(K) using a sequence of facial reduction certificates for dual problems defined by faces
of K∗. We explain the basic idea using the primal problem, and then summarize how it extends to
the dual. Additional details can be found in [5, 15, 25].

Facial reduction of the primal problem. Suppose we had a facial reduction certificate z ∈ K∗
for P(K). Replacing K with the face K ∩ z⊥ yields a new primal-dual pair

minimize cTx
subject to Ax = b

x ∈ K ∩ z⊥

maximize bT y
subject to c−AT y = s

s ∈ (K ∩ z⊥)∗, y ∈ Rm,
(3)

where the primal problem P(K ∩ z⊥) and the original P(K) have the same feasible set and equal
optimal values (since, by Definition 2, the hyperplane z⊥ contains all solutions to Ax = b). We
can, of course, repeat this process. For an integer dP > 0, consider the recursion

F0 = K, Fi = Fi−1 ∩ z⊥i i ∈ {1, . . . , dP },

where zi ∈ F∗i−1 is a facial reduction certificate for P(Fi−1). If C is replaced with any face Fi in
this recursion, the primal problem P(Fi) and the original P(K) also have the same feasible set
and equal optimal values, given that each hyperplane z⊥i contains all solutions to Ax = b. We call
replacement of K with one of these faces primal regularization.

Facial reduction algorithms compute the recursion Fi = Fi−1 ∩ z⊥i and terminate when a facial
reduction certificate for P(Fi) does not exist. If optimal certificates zi are used, the length dP of
the sequence F0, . . . ,FdP

is unique and does not depend on the specific certificates zi. This length
is called the singularity degree of P(K). If P(K) is feasible, the last face FdP

in the sequence is
called the minimal face of P(K). One can show if P(K) is feasible, the regularized problem P(FdP

)
satisfies Slater’s condition, and if P(K) is infeasible, the dual D(FdP

) of the regularized primal
problem has an improving ray.

Facial reduction of the dual problem. The dual problem D(K) of (1) is regularized in a
similar way. Given a facial reduction certificate z ∈ K for D(K), one can reformulate (1) as:

minimize cTx
subject to Ax = b

x ∈ (K∗ ∩ z⊥)∗

maximize bT y
subject to c−AT y = s

s ∈ K∗ ∩ z⊥, y ∈ Rm,
(4)

where K∗ has been replaced with the face K∗ ∩ z⊥. Since the hyperplane z⊥ contains all vectors of
the form c − AT y, the dual problem D

(
(K∗ ∩ z⊥)∗

)
and the original D(K) have the same feasible

set and equal optimal values.
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As with the primal problem, we can repeat this process. Specifically, we can identify a sequence
of faces of K∗ via the recursion Fi = Fi−1 ∩ z⊥i , where F0 := K∗ and zi ∈ F∗i−1 is a facial reduction
certificate for D(F∗i−1), terminating when facial reduction certificates no longer exist. We call
replacement of K∗ with one of the faces Fi dual regularization. As with the primal problem, if
optimal certificates zi are used, the length dD of the sequence F0, . . . ,FdD

is unique and does not
depend on the specific certificates zi. This length is called the singularity degree of D(K). Similarly,
the last face FdD

in the sequence is called the minimal face of D(K) when D(K) is feasible. One
can show if D(K) is feasible, the regularized problem D(F∗dD

) satisfies Slater’s condition, and if
D(K) is infeasible, the primal problem P(F∗dD

) has an improving ray.

2.5 Primal-dual facial reduction asymmetry
While a facial reduction algorithm leaves the feasible set of the input problem unchanged, the same
is not true for the corresponding Lagrangian dual problem—in other words, facial reduction is
asymmetric with respect to duality. Compare the primal-dual pair (1) with the primal-regularized
pair (3). While the primal feasible sets are the same, the dual feasible set of (3) is potentially
larger. An analogous statement holds when comparing (1) with the dual-regularized pair (4); while
the dual feasible sets are the same, the primal feasible set of (4) is potentially larger. Hence, by
solving (3) or (4), one won’t (generally) find solutions to both the primal P(K) and dual D(K) of
(1).

Of course, this should not always be viewed as a negative “side-effect” of facial reduction;
enlarging the primal or dual feasible set may be necessary to remove duality gaps and find improving
rays, which, in a sense, is the entire point of the technique. Nevertheless, a primal-dual solver that
also performs facial reduction needs more than just the problem data (A, b, c); it must also know
which problem—primal or dual—is of actual interest.

2.6 Connections with our approach
In this paper, we show optimal facial reduction certificates are obtained from the homogeneous
model when complementary solutions or improving rays do not exist. This allows us to perform
primal or dual regularization and resolve the homogeneous model, repeating until a complementary
solution or improving ray is obtained. In addition, complementary solutions and improving rays
will always be obtained when they exist, even if facial reduction certificates exist as well. As a
consequence, we can find complementary solutions without having to first identify the minimal
face—i.e., we do not have to regularize until Slater’s condition holds. Towards making these
statements precise, we now study homogeneous models in more detail.

3 Solutions to homogeneous models
In this section, we examine the solution sets of homogeneous models and present our main theo-
retical results. The main object of interest is the convex cone H(C), defined as follows:

Definition 4. For a non-empty, closed, convex cone C ⊆ Rn, and the problem data A ∈ Rm×n,
b ∈ Rm and c ∈ Rn of (1), define H(C) as the convex cone of solutions (x, s, y, τ, κ) to the system:

Ax− bτ = 0,
−AT y − s+ cτ = 0,
bT y − cTx− κ = 0,

(x, s, y, τ, κ) ∈ C × C∗ × Rm × R+ × R+.
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Note if C = K, then H(C) equals the solution set of the homogeneous model (2). (Allowing C to
differ from K is convenient for stating algorithms in the next section.)

We will study both the relative interior and relative boundary of H(C). Our study of the
relative interior is inspired by [7], which considers ‘maximally-complementary’ solutions of self-
dual embeddings for semidefinite programs. Our main result (Theorem 1) classifies the relative
interior of H(C) and implies results of Table 1 as a corollary—specifically, it implies all relative
interior solutions of H(C) yield complementary solutions, improving rays or optimal facial reduction
certificates. Our study of the relative boundary yields a geometric interpretation of the non-
necessity of Slater’s condition: in most cases, facial reduction certificates correspond only to relative
boundary points when complementary solutions or improving rays exist. We also show all sub-
optimal facial reduction certificates are contained in the relative boundary. Finally, we show relative
interior solutions to extended-embeddings, which are found by central-path-following techniques in
the case of semidefinite programming, yield points in relint H(C).

3.1 The relative interior
The following theorem classifies (x, s, y, τ, κ) ∈ relint H(C) by the values of τ and κ. A corollary
follows restating key statements in terms of complementary solutions, improving rays and facial
reduction certificates for the primal-dual pair given by P(C) and D(C).

Theorem 1. Let C ⊆ Rn be a non-empty, closed, convex cone. For (x, s, y, τ, κ) ∈ relint H(C), the
following statements hold:

1. If τ > 0, then 1
τ (Ax) = b and 1

τ (AT y + s) = c, and bT y = cTx.

2. If κ > 0, then Ax = 0, AT y + s = 0 and bT y > cTx.

3. If τ = κ = 0, then τ and κ vanish for all points in H(C). In addition, letting Fp := C ∩ s⊥,
Fd := C∗ ∩ x⊥, Ap := {x ∈ Rn : Ax = b} and Ad := {c−AT y : y ∈ Rm},

(a) The hyperplane s⊥ contains Ap;
(b) The hyperplane x⊥ contains Ad;
(c) The face Fp is proper if and only if relint C ∩ Ap is empty;
(d) The face Fd is proper if and only if relint C∗ ∩ Ad is empty;
(e) At least one of the faces Fp or Fd is proper;
(f) The inclusion Fp ⊆ C ∩ ŝ⊥ holds for all ŝ ∈ C∗ satisfying Ap ⊆ ŝ⊥;
(g) The inclusion Fd ⊆ C∗ ∩ x̂⊥ holds for all x̂ ∈ C satisfying Ad ⊆ x̂⊥.

Proof. Statements one and two are immediate by showing τκ = 0 for any solution (x, s, y, τ, κ) in
H(C). In particular, it holds that

0 ≤ xT s = xT (cτ −AT y) = τ(cTx− bT y) = −τκ ≤ 0.

Hence, if τ > 0, then κ = 0, showing the first statement. If κ > 0, then τ = 0, showing the second
statement.

We now prove the third statement where τ = κ = 0. We let w := (x, s, y, τ, κ). To begin, since
w ∈ relint H(C), there can be no point ŵ := (x̂, ŝ, ŷ, τ̂ , κ̂) ∈ H(C) with κ̂ 6= 0 or τ̂ 6= 0. Otherwise,
we’d have w − αŵ 6∈ H(C) for every α > 0, contradicting the fact w ∈ relint H(C). This shows the
first part of the third statement. This also implies cTx = bT y = 0 when τ = κ = 0. To see this,
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note if w := (x, s, y, τ, κ) ∈ relint H(C) for τ = κ = 0, then cTx = bT y. Since at least one of the
points—(0, s, y, 0, bT y) or (x, 0, 0, 0,−cTx)—is in H(C), it must hold that cTx = bT y = 0. We now
use this fact to show statements (3a)-(3b).

To see that statements (3a)-(3b) hold, note that x̂T s = −x̂TAT y = −bT y = 0 for all solutions x̂
of Ax = b. Hence, the solution set {x ∈ Rn : Ax = b} is contained in the hyperplane s⊥. Likewise,
xT ŝ = cTx = 0 for all ŝ ∈ {c−AT y : y ∈ Rm}, hence x⊥ contains {c−AT y : y ∈ Rm}.

We now show (3d). One direction is trivial; if Ad is contained in a proper face of C∗, then
relint C∗ ∩Ad must be empty. For the converse direction, suppose relint C∗ ∩ {c−AT y : y ∈ Rm} is
empty. The main separation theorem (Theorem 11.3) of [22] states that a hyperplane exists properly
separating these sets. Using Theorem 11.7 of [22], we can additionally assume this hyperplane passes
through the origin since C∗ is a cone. In other words, there exists x̂ ∈ C, satisfying x̂T z ≥ 0 for all
z ∈ C∗ (by definition), for which

x̂T (c−AT y) ≤ 0, ∀y ∈ Rm,
x̂T z 6= 0 for some z ∈ {c−AT y : y ∈ Rm} ∪ C∗.

It follows that cT x̂ ≤ yTAx̂ for arbitrary y ∈ Rm, which implies Ax̂ = 0 and cT x̂ ≤ 0. But cT x̂ = 0,
otherwise x̂ is an improving ray for P(C), and (x̂, 0, 0, 0,−cT x̂) ∈ H(C) with κ > 0. Hence, the
hyperplane x̂⊥ contains {c − AT y : y ∈ Rm} implying x̂T z 6= 0 for some z ∈ C∗ given proper
separation of the sets. That is, x̂ exposes a proper face of C∗, but we have yet to show that x
exposes a proper face of C∗ as claimed. Clearly, ŵ := (x̂, 0, 0, 0, 0) ∈ H(C). Since w is in the relative
interior of H(C), it holds that w ± αŵ ∈ H(C), and thus x ± αx̂ ∈ C, for some α > 0. Hence, for
any u ∈ C∗, the inequality uT (x± αx̂) ≥ 0 holds, which in turn implies uT x̂ = 0 when uTx = 0. In
other words, C∗ ∩ x⊥ is contained in a proper face, i.e.,

C∗ ∩ x⊥ ⊆ C∗ ∩ x̂⊥, (5)

and is hence proper.
Applying the argument of the previous paragraph to the set relint C ∩ Ap shows (3c).
Statement (3e) follows if at least one of the sets—relint C ∩ {x ∈ Rn : Ax = b} or relint C∗ ∩

{c−AT y : y ∈ Rm}—is empty. Suppose this weren’t the case. Then, Slater’s condition is satisfied
for both P(C) and D(C) showing existence of an optimal primal-dual solution with zero duality
gap (see [4]; Section 7.2.2). Hence, there exists a point in H(C) with τ > 0, contradicting the
assumption that (x, s, y, τ, κ) is in the relative interior of H(C).

The same argument that shows the containment (5) shows (3f) and (3g).

The following corollary arises simply from definitions. Variants of the first two statements (and
their converses) are well-known and given in [7] for semidefinite programming. The third statement
is the main observation of this paper. Note taking C = K yields Table 1.

Corollary 1. Let C ⊆ Rn be a non-empty, closed, convex cone, and suppose (x, s, y, τ, κ) ∈
relint H(C). The following statements hold for the primal-dual pair P(C) and D(C).

1. If τ > 0, then 1
τ (x, s, y) is a complementary solution for P(C) and D(C).

2. If κ > 0, then x is an improving ray for P(C) and/or (s, y) is an improving ray for D(C).

3. If τ = κ = 0, then x and/or s are optimal facial reduction certificates in the sense of Defini-
tion 3.

Moreover, converses of the first two statements hold: if P(C) and D(C) have a complementary
solution, then τ > 0; if P(C) and/or D(C) have an improving ray, then κ > 0.
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Facial reduction certificates and improving rays for both problems. Statements two and
three of Corollary 1 are subtle. In particular, statement three does not guarantee s and x are
both facial reduction certificates when such certificates exist for both primal and dual problems.
Similarly, statement two does not guarantee s and x are both improving rays when such rays exist
for both problems. Using (3c) and (3d) of Theorem 1 we can strengthen statement three to make
this guarantee for facial reduction certificates:
Corollary 2. Let C ⊆ Rn be a non-empty, closed, convex cone, and suppose (x, s, y, τ, κ) ∈
relint H(C) with τ = κ = 0. The following statements hold:
• If relint C ∩ {x ∈ Rn : Ax = b} is empty, then s is an optimal facial reduction certificate for

P(C).
• If relint C∗ ∩ {c − AT y : y ∈ Rm} is empty, then x is an optimal facial reduction certificate
for D(C).

Statement two of Corollary 1, on the other hand, cannot be strengthened—in the κ > 0 case, there
are instances for which relative interior points do not yield improving rays for both problems, even
if these rays exist. This is a known shortcoming of the homogeneous self-dual model that occurs
even in the linear programming case (see, e.g., [26]). The following illustrates this shortcoming:
Example 1. Consider the following primal-dual pair of linear programs

minimize −x1
subject to x1 − x2 = 0

−(x1 − x2) = 1
x ∈ R2

+

maximize y2

subject to
(−1

0
)−

(
y1−y2
−(y1−y2)

)
= s

s ∈ R2
+,

where both the primal and dual problem are infeasible. Indeed, the point (x̂, ŝ, ŷ, τ̂ , κ̂) ∈ relint H(R2
+)

yields an improving ray x̂ for the primal and an improving ray ŷ for the dual, where

x̂ = (1, 1), ŝ = (0, 0), ŷ = (1, 1), τ̂ = 0, κ̂ = 2.

Nevertheless, the entire family of points:

x̃ = (r, r), s̃ = (0, 0), ỹ = (t, t), τ̃ = 0, κ̃ = r + t, for r > −t ≥ 0,

are also in the relative interior of solutions to the homogeneous model, and only give improving
rays for the primal problem.
In Example 1, any point from the family (x̃, s̃, ỹ, τ̃ , κ̃) leaves the status of the primal problem
unknown; from such point, we can only conclude the primal problem is infeasible or unbounded.
To resolve this ambiguity, one can set the objective function cTx of the primal problem to zero and
solve the resulting feasibility problem:

minimize 0
subject to x1 − x2 = 0

−(x1 − x2) = 1
x ∈ R2

+

maximize y2

subject to ( 0
0 )−

(
y1−y2
−(y1−y2)

)
= s

s ∈ R2
+.

Since dual improving rays exists, but there can be no primal improving rays by construction, all
points in relint H(R2

+), such as the point

x̂ = (1, 1), ŝ = (0, 0), ŷ = (1, 1), τ̂ = 0, κ̂ = 2,

satisfy κ > 0 and certify primal infeasibility. A general algorithm resolving ambiguity in this way
is given in Section 4.1.2.
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Finding Slater points. Suppose the primal problem P(C) is strictly feasible. Now consider the
problem of finding a strictly feasible point (i.e., a Slater point) for P(C). Not surprisingly, such
points are found from points in relint H(C) if one sets the cost vector c ∈ Rn to zero. Similar
statements hold for D(C). Formally:

Theorem 2. Let C ⊆ Rn be a non-empty, closed, convex cone, let Ap := {x ∈ Rn : Ax = b} and
let Ad := {c−AT y : y ∈ Rm}. For (x, s, y, τ, κ) ∈ relint H(C), the following statements hold.

1. If c = 0 and Ap ∩ relint C is non-empty, then τ > 0 and 1
τ x ∈ Ap ∩ relint C.

2. If b = 0 and Ad ∩ relint C∗ is non-empty, then τ > 0 and 1
τ s ∈ Ad ∩ relint C∗.

Proof. We only prove statement one, given proof of statement two follows by similar reasoning.
To begin, note by assumption there exists x0 ∈ Ap ∩ relint C, where (x0, 0, 0) ∈ C × C∗ × Rm is a
complementary solution for P(C) and D(C) given that c = 0. By Corollary 1, we conclude τ > 0.
Letting w = (x, s, y, τ, κ), we note 1

τw ∈ relint H(C), as the relative interior of the cone H(C) is
itself a cone (Corollary 6.6.1 of [22]). For some α > 0, it thus holds that

1
τ
w + α

(1
τ
w − (x0, 0, 0, 1, 0)T

)
∈ H(C), and hence 1

τ
x+ α

(1
τ
x− x0

)
∈ Ap ∩ C.

Hence, by convexity, Ap ∩ C contains the line segment from x0 to 1
τ x + α

(
1
τ x− x0

)
, where 1

τ x is
in the relative interior of this line segment. By Corollary 6.5.1 of [22], we also have that

Ap ∩ relint C = relint (Ap ∩ C) . (6)

Hence, x0 ∈ relint (Ap ∩ C), which, by the Line Segment Principle (Proposition 1.3.1 of [3]) implies
1
τ x ∈ relint (Ap ∩ C) as well. By (6), we conclude 1

τ x ∈ Ap ∩ relint C, as desired.

Theorem 2 will be used in Section 4.1.3, which describes generalized certificates for the optimal
value of P(C) that, in some cases, consists of a Slater point.

3.2 The relative boundary
We now study the relative boundary of H(C). The relative boundary ∂H(C) is the subset of H(C)
not contained in the relative interior of H(C); in other words, ∂H(C) := H(C) \ relint H(C). This
set has interesting interpretations in terms of Slater’s condition and facial reduction certificates
failing the optimality criterion of Definition 3.

Non-necessity of Slater’s condition. Suppose the primal and dual of (1) satisfy Slater’s con-
dition, i.e., suppose there exists a primal feasible point in the relative interior of C and a dual
feasible slack in the relative interior of C∗. Standard results from conic duality theory (e.g. [4],
Section 7.2.2) imply a complementary solution (x̂, ŷ, ŝ) ∈ C × C∗ × Rm exists solving P(C) and
D(C). Slater’s condition, of course, is only a sufficient condition for existence of (x̂, ŷ, ŝ); in partic-
ular, complementary solutions and facial reduction certificates can co-exist. The next proposition
describes these certificates geometrically, showing they correspond to relative boundary points of
H(C) in most situations:

Proposition 3. Let C ⊆ Rn be a non-empty, closed, convex cone and let (x̂, ŝ, ŷ) ∈ C ×C∗×Rm be
a complementary solution for the primal-dual pair P(C) and D(C). The following statements hold,
where facial reduction certificates are in the sense of Definition 2:
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1. If D(C) fails Slater’s condition, there exists (x, s, y, τ, κ) ∈ ∂H(C) satisfying (x, s, y, τ, κ) =
(x, 0, 0, 0, 0), where x ∈ C is a facial reduction certificate for D(C).

2. If P(C) fails Slater’s condition, there exists (x, s, y, τ, κ) ∈ ∂H(C) satisfying (x, s, y, τ, κ) =
(0, s, y, 0, 0), where s ∈ C∗ is a facial reduction certificate for P(C).

3. Let (x, s, y, τ, κ) ∈ relint H(C). If x is a facial reduction certificate for D(C), then x is an
optimal solution of P(C), b = 0 and cTx = cT x̂ = 0. If s is a facial reduction certificate for
P(C) and s = −AT y, then (s, y) is an optimal solution of D(C), c = 0 and bT y = bT ŷ = 0.

Proof. Facial reduction certificates exist in statements one and two because, for feasible problems,
existence is a strong alternative to Slater’s condition as stated in Proposition 1. That these certifi-
cates cannot correspond to points in relint H(C) follows because τ > 0 for all points in relint H(C)
given a complementary solution exists by assumption. If x is a facial reduction certificate, then x
is orthogonal to the affine set {c− AT y : y ∈ Rm}. Hence, Ax = 0 and cTx = 0 by Proposition 2.
Since τ > 0 and Ax = τb holds for solutions of H(C) by Definition 4, it follows that b = 0 which
implies x is primal feasible. In addition, cT x̂ = bT ŷ = 0 = cTx, which shows optimality x. Likewise,
if s = −AT y is a facial reduction certificate, then by definition s is orthogonal to all solutions to
Ax = b. We conclude x̂T s = −x̂TAT y = −bT y = 0. Since τ > 0 and AT y + s = τc, we also
conclude that c = 0, which shows dual feasibility of (s, y). Since bT ŷ = cT x̂ = 0 = bT y, optimality
of (s, y) follows.

The following example illustrates aspects of Proposition 3.
Example 2. For the quadratic cone Q3 := {(x1, x2, x3) : ∑3

i=1 x
2
i ≤ x2

1}, consider the primal-dual
pair

minimize 2x1 + x2 + x3
subject to x1 − x2 = 0

x ∈ Q3

maximize 0
subject to

( 2
1
1

)
−
( y
−y
0

)
= s

s ∈ Q3.

(7)

Here, the primal P(Q3) fails Slater’s condition but a complementary solution exists. Indeed, the
point (x̂, ŝ, ŷ, τ̂ , κ̂) ∈ relint H(Q3) given by

x̂ = (0, 0, 0), ŝ = (2, 1, 1), ŷ = 0, τ̂ = 1, κ̂ = 0

yields a complementary solution (x̂, ŝ, ŷ). On the other hand, the point (x̃, s̃, ỹ, τ̃ , κ̃) ∈ ∂H(Q3)
given by

x̃ = (0, 0, 0), s̃ = (1,−1, 0), ỹ = −1, τ̃ = κ̃ = 0
yields a facial reduction certificate s̃.

Sub-optimal facial reduction certificates. Definition 3 defined an optimal facial reduction
certificate as one exposing a face as small as possible. Here, we consider sub-optimal certificates,
and find they appear in the relative boundary:
Proposition 4. Let C ⊆ Rn be a non-empty, closed, convex cone. Suppose x is a facial reduction
certificate for D(C) and, for y ∈ Rm satisfying bT y = 0, suppose s := −AT y is a facial reduction
certificate for P(C). If s and x are not optimal in the sense of Definition 3, then (x, s, y, 0, 0) ∈
∂H(C).

Proof. This follows directly from statements (3f)-(3g) of Theorem 1, which imply certificates in the
relative interior of H(C) are optimal.
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3.3 Finding relative interior points via extended-embeddings
We now address a practical question: how can one find points in relint H(C)? To provide an answer,
we show points in relint H(C) are obtained from points in the relative interior of the set of optimal
solutions to the extended-embedding of Ye et al. [26]:

minimize µθ
subject to Ax− bτ = rpθ

−AT y − s+ cτ = rdθ
bT y − cTx− κ = rgθ

rTp y + rTd x+ rgτ = −µ,

(8)

where (x, s, y, τ, κ, θ) ∈ C × C∗ × Rm × R+ × R+ × R is the decision variable. The parameters are
defined by a chosen point (x̂, ŝ, ŷ, τ̂ , κ̂) in the relative interior of C × C∗ × Rm × R+ × R+ via:

rp = Ax̂− bτ̂ , rd = −AT ŷ − ŝ+ cτ̂ , rg = bT ŷ − cT x̂− κ̂, µ = x̂T ŝ+ τ̂ κ̂,

which implies (x̂, ŝ, ŷ, τ̂ , κ̂, 1) is a strictly feasible point. The embedding (8) is also self-dual, mean-
ing the dual problem is to maximize −µθ̄ over dual variables (x̄, s̄, ȳ, τ̄ , κ̄, θ̄) satisfying identical
constraints. Since a dual optimal point can be identified with a primal optimal point, and since
strong duality holds by strict feasibility of both primal and dual problems, we conclude −µθ = µθ
at optimality (which implies θ = 0 at optimality.) Hence, by inspection, projecting away the θ
coordinate from any optimal solution produces a point in H(C). This projection also maps rela-
tive interior optimal solutions to relative interior points in H(C). To show this, we first need the
following technical result:

Lemma 1. Let C ⊆ Rn be a non-empty, closed, convex cone and suppose w := (x, s, y, τ, κ) ∈
relint H(C). Then, there exists β > 0 such that (βw, 0) is an optimal solution to (8).

Proof. We only need to verify existence of β > 0 such that (βw, 0) satisfies the last equality
constraint. Since µ > 0, it suffices to show rTd x+ rTp y + rgτ < 0:

rTp y + rTd x+ rgτ = (Ax̂− bτ̂)T y + (−AT ŷ − ŝ+ cτ̂)Tx+ (bT ŷ − cT x̂− κ̂)τ
= −x̂T (−AT y + cτ)− ŝTx− ŷT (Ax− bτ)− τ̂(bT y − cTx)− κ̂τ
= −x̂T s− xT ŝ− τ̂κ− τ κ̂

Since x̂T s + xT ŝ + τ̂κ + τ κ̂ is a sum of non-negative numbers, the claim follows if at least one
summand is non-zero. Suppose then that τ = κ = x̂T s = xT ŝ = 0. Since x̂ ∈ relint C, we have for
all x0 ∈ C a scalar ζ > 0 for which

0 ≤ (x̂± ζx0)T s = ±ζxT0 s.

Hence, s ∈ C⊥. A similar argument shows x ∈ (C∗)⊥. By Theorem 1, this cannot hold if w ∈
relint H(C), since x or s must expose a proper face when τ = κ = 0.

We now state our result:

Theorem 3. Let C ⊆ Rn be a non-empty, closed, convex cone and let Ω(C) denote the set of
optimal solutions to the extended-embedding (8). For any (x, s, y, τ, κ, θ) ∈ relint Ω(C), the point
(x, s, y, τ, κ) is in relint H(C).
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Proof. If (w, θ) ∈ Ω(C), then θ = 0 as argued. Hence, by inspection, Ω(C) = M ∩ (H(C)× {0}) for
the hyperplane M = {(x, s, y, τ, κ, θ) : rTp y + rTd x+ rgτ = −µ}, whereby the claim follows from

relint Ω(C) = M ∩ relint
(
H(C)× {0}) = M ∩ (relint H(C)× {0}) ⊆ relint H(C)× {0}.

The second equality follows from the definition of relative interior noting that affine hulls are
invariant to Cartesian products with the set {0}. The first equality follows from Corollary 6.5.1 of
[22], as M ∩ (relint H(C)×{0}), and hence M ∩ relint

(
H(C)×{0}), is non-empty by Lemma 1.

Note if the extended-embedding is a semidefinite program, then by strict feasibility and self-duality
the central path exists and converges to a point in the relative interior of the solution set [9].
Hence, for SDP, central-path-following techniques can produce a relative interior solution to the
extended-embedding and, by Theorem 3, a point in relint H(C).

4 Algorithms based on homogeneous models
In this section, we give an algorithm for solving the primal conic optimization problem P(K) and
then sketch an analogous algorithm for solving its dual D(K). (Different algorithms are needed
given that facial reduction of the primal/dual, as mentioned in Section 2.5, results in an inequivalent
dual/primal.) An instance of P(K) is solved (in a sense we soon make precise) by finding relative
interior solutions to a sequence of homogeneous models produced using facial reduction certificates.
This sequence terminates once an improving ray or complementary solution is obtained. If neces-
sary, another sequence of homogeneous models is solved (arising from a closely-related feasibility
problem) to distinguish between unboundedness and infeasibility.

4.1 Solving the primal problem
To formally state our notion of ‘solve,’ we need the following set of definitions:

Definition 5. Let C ⊆ Rn be a non-empty, closed, convex cone. For the conic optimization problem
P(C), define the following:

• A complementary solution is a triple (x, s, y) ∈ C × C∗ × Rm satisfying

Ax = b, s = c−AT y, xT s = 0.

• An unboundedness certificate is a tuple (x, xray) ∈ C × C satisfying

Ax = b, Axray = 0, cTxray < 0.

• An infeasibility certificate is a tuple (sray, yray) ∈ C∗ × Rm satisfying

sray = −AT yray, bT yray > 0.

Here, complementary solutions are defined as in Section 2, unboundedness certificates consist of a
feasible point and an improving ray, and infeasibility certificates are simply improving rays for the
dual problem D(C).

Since some instances of P(K) do not have complementary solutions, unboundedness certificates,
or infeasibility certificates, it is insufficient to say P(K) is solved if and only if one of these items
is found. We therefore introduce two more general notions of ‘solve’. The first follows:
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Definition 6. The primal problem P(K) is considered weakly solved if one finds a cone C ⊆ Rn
for which the optimal values of P(K) and P(C) are equal, and one of the following items for P(C):

1. A complementary solution,

2. An unboundedness certificate,

3. An infeasibility certificate.

While any instance of P(K) can be solved in the weak sense of Definition 6, only the optimal value
is necessarily obtained. In particular, the definition doesn’t require one of the items (1)-(3) for
P(K) when one exists, neither does it require a feasible point of P(K) attaining the optimal value
when such a point exists. Our second notion of solve addresses these issues:

Definition 7. The primal problem P(K) is considered strongly solved if it is solved in the weak
sense of Definition 6 and, in addition, the following conditions hold for P(K) and P(C):

1. They are equal, i.e., C = K, if one of the items (1)-(3) of Definition 6 exists for P(K).

2. Their feasible sets are equal if the optimal value of P(K) is finite and attained.

We now develop an algorithm for solving any instance of P(K) in the sense of Definition 7. Before
proceeding, we make a few remarks regarding finite certificates and use Definition 6-7 to compare
our algorithm to a two-staged approach that first executes a facial reduction algorithm.

Finite certificates. Definition 7 fails to address another weakness of Definition 6. Specifically,
it doesn’t require a finite certificate that proves P(K) and P(C) have equal optimal values. We
introduce (and show how to find) such a certificate in Section 4.1.3. Discussion of this certificate
is postponed to simplify presentation.

Comparison with two-staged approach. Consider a two-staged approach for solving P(K),
where one first identifies the minimal face Fmin of P(K) using a facial reduction algorithm [5, 15, 25]
and then solves the regularized problem P(Fmin). This two-staged approach does not always solve
P(K) in the strong sense of Definition 7. In particular, a complementary solution for P(K) may exist
even though Slater’s condition fails, implying Fmin 6= K. (These remarks also apply to the recent
method of Lourenço et al. [11].) Our algorithm, on the other hand, avoids this issue by regularizing
only when improving rays or complementary solutions do not exist (exploiting Corollary 1). The
mentioned two-staged approach also fails to solve P(K) even in the weaker sense of Definition 6 if
the primal optimal value is finite and unattained (e.g., Section 5.1) or if the primal is unbounded
but has no improving ray (e.g., Section 5.5). Our algorithm avoids this issue by regularizing the
dual problem when needed, using the certificates described by Corollary 2.

4.1.1 Finding a complementary solution, infeasibility certificate or improving ray

Our method for solving P(K) is built upon the following procedure (Algorithm 1), which finds a cone
C such that the primal problems P(K) and P(C) have equal optimal values, and a complementary
solution, infeasibility certificate, or improving ray for P(C). The procedure exits with C = K if a
complementary solution, infeasibility certificate, or improving ray exists for P(K). Otherwise, it
finds C using facial reduction, using, potentially, both primal and dual regularization. Theorem 4
summarizes its basic properties. Note if P(C) has an infeasibility certificate and an improving
ray, the infeasibility certificate may not be found. Also note an improving ray is not a complete
certificate of unboundedness. We will address these issues in Section 4.1.2.
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Algorithm 1: Finds a cone C such the primal problems P(K) and P(C) have equal optimal
values, and a complementary solution, infeasibility certificate or improving ray for P(C).
C ← K
repeat

Find (x, s, y, τ, κ) in the relative interior of H(C)
if τ = κ = 0 then

if s /∈ C⊥ then
C ← C ∩ s⊥

else
C ← (C∗ ∩ x⊥)∗

end
else

return
(
(x, s, y, τ, κ), C)

end
until algorithm returns;

Theorem 4. Algorithm 1 has the following basic properties, where A ∈ Rm×n, b ∈ Rm and c ∈ Rn
are the problem data of the primal problem P(K).

1. Algorithm 1 terminates in finitely-many iterations.

2. Algorithm 1 terminates after one iteration, with C = K, if and only if a complementary
solution, infeasibility certificate or improving ray exists for P(K).

3. The dual regularization step C ← (C∗ ∩ x⊥)∗ executes if and only if one of the following
statements hold:

(a) The optimal value of P(K) is finite and unattained;
(b) The optimal value of P(K) is unbounded below and the set of improving rays {x ∈ K :

Ax = 0, cTx < 0} is empty.

4. Suppose the dual regularization step C ← (C∗ ∩x⊥)∗ executes, and let C′ and C′′ denote C just
before and after execution. The following statements hold:

(a) The primal problems P(C′) and P(C′′) are feasible and satisfy Slater’s condition;
(b) The primal regularization step C ← C ∩ s⊥ is not executed at any following iteration.

In addition, the following statements hold about the output
(
(x, s, y, τ, κ), C) of Algorithm 1, where

Ap := {x ∈ Rn : Ax = b}.

5. If τ > 0, then 1
τ (x, s, y) is a complementary solution for P(C).

6. If κ > 0, then (s, y) is an infeasibility certificate for P(C) and/or x is an improving ray for
P(C). The former holds if bT y > 0 and the latter if cTx < 0.

7. The optimal values of the primal problem P(K) and the regularized problem P(C) are equal,
i.e.,

inf
{
cTx : x ∈ Ap ∩ K

}
= inf

{
cTx : x ∈ Ap ∩ C

}
.

16



8. Ap ∩ K ⊆ Ap ∩ C, and with strict inclusion only if (3a) or (3b) holds.

Proof. In arguments below, we call C ← C ∩ s⊥ the primal regularization step, and C ← (C∗ ∩ x⊥)∗
the dual regularization step. When one of these steps executes, we let C′ and C′′ denote the cone C
before and after execution, respectively.

Statement 3. We will show P(C′) satisfies (3a) or (3b) when a dual regularization step executes.
Using this, we then show P(K) also satisfies (3a) or (3b). We use the following facts from Theorem 1:
when the dual regularization step executes, all points in H(C′) satisfy τ = κ = 0; and, when the
dual regularization step executes, no facial reduction certificate exists for P(C′) (since s ∈ C′⊥).

To begin, we first show P(C′) is feasible, and hence has finite optimal value or is unbounded
below. Suppose P(C′) is infeasible. If {x ∈ Rn : Ax = b} is empty, then there exists ŷ for which
bT ŷ = 1 and AT ŷ = 0. Hence (0, 0, ŷ, 0, bT ŷ) is a point in H(C′) with κ > 0, which is a contradiction.
On the other hand, if {x ∈ Rn : Ax = b} is non-empty, there exists a hyperplane properly seperating
Ap := {x ∈ Rn : Ax = b} from the relative interior of C′. That is, there exists ŝ ∈ C′∗ for which

ŝTx ≤ 0, ∀x ∈ x0 + nullA,
ŝT z 6= 0 for some z ∈ (x0 + nullA) ∪ C′,

where x0 ∈ Ap and Ap = x0 + nullA. This implies ŝ ∈ (nullA)⊥ = rangeAT . Hence, ŝ = −AT ŷ for
some ŷ, where, evidently, ŝTx = −bT ŷ ≤ 0 for all x ∈ Ap. If bT ŷ = 0, then ŝT z 6= 0 for some z ∈ C′
by proper separation of the sets. Hence, ŝ is a facial reduction certificate which, as mentioned
above, cannot exist. On the other hand, if bT ŷ > 0, then (0,−AT ŷ, ŷ, 0, bT ŷ) is a point in H(C′)
with κ > 0, which is a contradiction. Hence, P(C′) must be feasible and either has finite optimal
value or an optimal value that is unbounded below.

We have established that P(C′) is feasible and that no facial reduction certificate for P(C′)
exists. Hence, by Proposition 1, P(C′) is strictly feasible. Now suppose that P(C′) has a finite
optimal value. Then, by Slater’s condition, the dual D(C′) of P(C′) has equal optimal value that
is attained. Hence, if P(C′) attains its optimal value, P(C′) has a complementary solution (x, s, y)
where (x, s, y, 1, 0) is a point in H(C′) with τ > 0; a contradiction. Suppose next the optimal value
equals −∞. If an improving ray x̂ray exists, then (x̂ray, 0, 0, 0,−cT x̂ray) is a point in H(C′) with
κ > 0; a contradiction. Hence, P(C′) satisfies (3a) or (3b).

Now consider the first time the dual regularization step executes. Since the feasible sets of P(C′)
and P(K) are equal, it trivially follows that P(K) satisfies (3a) if P(C′) does. If P(C′) satisfies (3b),
then P(K) is clearly unbounded. Suppose then P(K) has an improving ray xray. Then, for any
feasible point x0 and facial reduction certificate s used by the primal regularization step,

0 = sT (x0 + xray) = sTxray.

Hence, xray ∈ C′ and is therefore an improving ray for P(C′), a contradiction.
For the converse direction, we will argue τ = κ = 0 holds at each iteration unless the dual

regularization step executes. Since the primal regularization step can execute only finitely many
times (since K is finite-dimensional), the converse direction therefore follows. To begin, suppose
the optimal value of P(K) is finite and unattained, i.e., suppose (3a) holds. Then τ = κ = 0
for all (x, s, y, τ, κ) ∈ relint H(K); otherwise, either an infeasibility certificate/improving ray would
exist for P(K), contradicting finiteness, or a complementary solution would exist, contradicting
unattainment. Since the feasible sets of P(C′) and P(K) are equal unless the dual regularization
step executes, repeating this argument shows τ = κ = 0 unless the dual regularization step executes.
A similar argument shows the claim assuming (3b).
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Case # prim. steps # dual steps
#1 0 0
#2 d∗P n

#3 d∗P 0

Table 2: Upper bounds on primal and dual regularization steps in three cases. In the first, P(K)
has a complementary solution, infeasibility certificate, or improving ray (denoted Case #1). In
the second, P(K) has a finite-unattained optimal value or is unbounded but has no improving ray
(denoted Case #2). The third is simply all other possibilities (denoted Case #3).

Statement 4a. Strict feasibility of P(C′) was established in the proof of statement 3. This
implies P(C′′) is strictly feasible given that

Ap ∩ relint C′ ⊆ Ap ∩ relint(C′ + span x) = Ap ∩ relint(C′∗ ∩ x⊥)∗ = Ap ∩ relint C′′.
Statement 4b. By (4a), if dual regularization is performed, then P(C′) satisfies Slater’s condition,

and continues to satisfy Slater’s condition at each ensuing iteration. Hence, a facial reduction
certificate s cannot exist at any ensuing iteration by Proposition 2.

Statement 1. Since K is finite dimensional, it trivially follows, using (4b), that both regulariza-
tion steps can execute only finitely many times. Hence, the algorithm must terminate.

Statement 2 and 5-6. Immediate from Corollary 1.
Statement 7. The optimal values of P(C′) and P(C′′) are equal when the primal regularization

step executes. Similarly, the optimal values of D(C′) and D(C′′) are equal when the dual regular-
ization step executes. Moreover, (4a) and Slater’s condition imply the optimal values of P(C′) and
D(C′) are equal when the dual regularization step executes. Combining these facts with (4b) shows
the optimal values of P(K) and P(C) are the same at termination.

Statement 8. When the primal regularization step executes, P(C′) and P(C′′) have equal feasible
sets since s is a facial reduction certificate for P(C′). When the dual regularization step executes,
the feasible set Ap ∩ C′ of P(C′) and the feasible set Ap ∩ C′′ of P(C′′) satisfy

Ap ∩ C′ ⊆ Ap ∩ C′ + span x = Ap ∩ (C′∗ ∩ x⊥)∗ = Ap ∩ C′′.
Combining these facts with (4b) shows Ap ∩K ⊆ Ap ∩ C. Since dual regularization is performed if
and only if (3a) or (3b) hold, the claim follows.

Iteration bounds. Immediate from Theorem 4 and Corollary 1 are a set of upper bounds on
regularization steps executed by Algorithm 1. Table 2 summarizes these bounds, where d∗P denotes
the singularity degree of the primal problem P(K)—the maximum number of primal regularization
steps possible if optimal facial reduction certificates are used (Section 2.4). The upper bounds equal
to d∗P hold since the facial reduction certificates used by Algorithm 1 are optimal (Corollary 1).
Note the singularity degree d∗D of the dual D(K) is not used in any of the bounds. We conjecture the
trivial dimension bound n (where K ⊆ Rn) can be improved to d∗D, but could not find a simple proof
since the dual problem—and potentially its singularity degree—changes with primal regularization
(Section 2.5).

4.1.2 The complete algorithm

We now give a complete algorithm for solving the primal problem P(K) using one or two calls to
Algorithm 1. Two calls may be needed for the following reasons:
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• A certificate of unboundedness requires both a feasible point and an improving ray, which
cannot be simultaneously obtained from a single call to Algorithm 1.

• If both P(K) and its dual are infeasible, the output
(
(x, s, y, τ, κ), C) of Algorithm 1 doesn’t

necessarily produce an infeasibility certificate (s, y) for P(C). In particular, bT y ≤ 0 may hold
if cTx > 0. This problem was illustrated by Example 1.

Both of these issues are resolved by re-executing Algorithm 1 with the cost vector c set to zero.
This either produces a feasible point (completing the unboundedness certificate) or an infeasibility
certificate (since cTx > 0 can no longer hold). The complete method for solving P(K) performs
this re-execution when needed and appears in Algorithm 2.

Algorithm 2: Solves the primal problem P(K) in the strong sense of Definition 7.
Execute Algorithm 1 and let

(
(x, s, y, τ, κ), C) denote the output

if κ > 0 and bT y ≤ 0 then
xray ← x
Re-execute Algorithm 1 with c = 0 and let

(
(x, s, y, τ, κ), Cfeas

)
denote the output.

return
{
Unboundedness certificate

(
( 1
τ x, xray), C

)
, if τ > 0,

Infeasibility certificate
(
(s, y), Cfeas

)
, otherwise.

else

return
{
Complementary solution

( 1
τ (x, s, y), C), if τ > 0,

Infeasibility certificate
(
(s, y), C), otherwise.

end

As stated by Theorem 5, Algorithm 2 solves any instance of P(K) in the strong sense. When
Algorithm 1 does not re-execute, this is a relatively straight-forward consequence of Theorem 4.
To show it in the general case, we need the following intermediate result:

Lemma 2. Let
(
(x, s, y, τ, κ), Cfeas

)
denote the tuple obtained by re-execution of Algorithm 1 with

c = 0. The following statements hold.

1. If τ > 0, then 1
τ x is a feasible point of P(K).

2. If κ > 0, then P(K) and P(Cfeas) are both infeasible, and (s, y) is an infeasibility certificate
for P(Cfeas)

Proof. Algorithm 1 terminates with a complementary solution if τ > 0, or an infeasibility certificate
if κ > 0 as no improving ray can exist with c = 0. As dual regularization will not occur (Theorem 4,
statement 3), the feasible sets and optimal values of P(K) and P(Cfeas) are equal, proving both
statements.

Theorem 5. Algorithm 2 solves the primal problem P(K) in the strong sense of Definition 7.

Proof. We first show the primal problem is solved in the weak sense of Definition 6 by establishing
outputs are complementary solutions, infeasibility certificates, or unboundedness certificates for a
primal problem, P(C) or P(Cfeas), with optimal value equal to P(K).

If Algorithm 1 is only called once, this follows from Theorem 4. (Specifically, a complementary
solution is returned if τ > 0 and an infeasibility certificate is returned otherwise.) Now suppose
Algorithm 1 re-executes with c = 0 and produces the point

(
(x, s, y, τ, κ), Cfeas

)
. If τ > 0, the
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algorithm returns
(
( 1
τ x, xray), C

)
containing an unboundedness certificate for P(C); specifically,

xray is an improving ray for P(C) and 1
τ x is a feasible point of P(K), by Lemma 2, and hence

also of P(C), by Theorem 4, statement 8. Moreover, P(C) and P(K) have equal optimal values by
Theorem 4. If κ > 0, the algorithm returns

(
(s, y), Cfeas

)
, where (s, y) is an infeasibility certificate

for P(Cfeas) by Lemma 2. That P(K) and P(Cfeas) have equal optimal values also follows from
Lemma 2.

Finally, that the outputs solve P(K) in the strong sense of Definition 7 follows from statement 2
and 8 of Theorem 4.

4.1.3 The regularization certificate

We now introduce a finite certificate, called a regularization certificate, that proves P(K) and
P(C) have equal optimal values. Using this certificate, one can independently verify Algorithm 2
solves P(K) in the weak sense of Definition 6. In particular, augmenting this certificate with an
infeasibility certificate, complementary solution, or unboundedness certificate for P(C) provides a
finite certificate for the optimal value of P(K).

The regularization certificate consists of facial reduction certificates (see Definition 2) and,
potentially, a Slater point (see Section 2.2). It has the following definition.

Definition 8. Let K, C ⊆ Rn be non-empty, closed, convex cones. A regularization certificate for
P(K) and P(C) is a triple (ZP , ZD, x0) consisting of sequences ZP and ZD of length dP ≥ 0 and
dD ≥ 0, respectively, and a point x0 for which:

1. ZP = s1, . . . , sdP
, where si is a facial reduction certificate for P(Fi−1) and Fi is defined by

the recursion:
F0 = K, Fi = Fi−1 ∩ s⊥i i ∈ {1, . . . , dP }.

2. ZD = x1, . . . , xdD
, where xi is a facial reduction certificate for D(F̂∗i−1) and F̂i is defined by

the recursion:

F̂0 = (FdP
)∗, F̂i = F̂i−1 ∩ x⊥i i ∈ {1, . . . , dD}, F̂dD

= C∗.

3. x0 is a Slater point of P(FdP
) if dD ≥ 1.

Combining this definition with Slater’s condition and the definition of facial reduction certificates
immediately yields the following:

Proposition 5. Suppose a regularization certificate exists for P(K) and P(C) in the sense of
Definition 8. The following statements hold.

1. The problems are equal, i.e., C = K, if dP = dD = 0.

2. The feasible sets and optimal values of P(K) and P(C) are equal if dD = 0.

3. The feasible sets and optimal values of D(K) and D(C) are equal if dP = 0.

4. The optimal values of P(K) and P(C) are equal in all cases (given P(FdP
) and D(FdP

) have
equal optimal values by Slater’s condition when dD ≥ 1).
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Constructing the certificate. A regularization certificate can be constructed with simple mod-
ifications to Algorithm 1. The first changes are mainly book keeping, that is, every time the primal
regularization step C ← C ∩ s⊥ executes, one should append the facial reduction certificate s to
ZP . Similarly, every time the dual regularization step C ← (C∗ ∩x⊥)∗ executes, one should append
the facial reduction certificate x to ZD. Since the algorithm can only switch from primal to dual
regularization once (by Statement 4b of Theorem 4), the constructed sequences ZP and ZD match
Definition 8.

If dual regularization is used, the regularization certificate also requires a Slater point to certify
that Slater’s condition holds for P(FdP

). By Theorem 2 and strict feasibility of P(FdP
) (which

holds by Theorem 4, statement 4a), a Slater point for P(FdP
) can be found by solving an extra

feasibility problem just before Algorithm 1 executes its first dual regularization step.

Relationship with other certificates. We remark, finally, that the basic idea of augmenting
improving rays and complementary solutions with regularization certificates is not new. As ex-
plained in [20], a simpler regularization certificate (consisting of only one sequence and no Slater
point) augmented with an optimal solution or an improving ray solves Ramana [19]’s exact dual for
semidefinite programs. Solutions to the extended-duals of Pataki [15] have similar interpretations.
Infeasibility certificates of this type also appear in a recent paper of Liu and Pataki [10]. Note
these simpler regularization certificates correspond to only primal regularization; hence, they do
not certify optimal values that are finite and unattained (shown in Section 5.1), nor optimal values
for problems that are unbounded but have no improving ray (shown in Section 5.5).

4.2 Solving the dual problem
To solve the dual problem D(K) in a sense analogous to Definition 7, one must modify Algorithm 1
by swapping the order of primal and dual regularization steps. Algorithm 3 makes this modification
explicit. A general procedure, analogous to Algorithm 2, would solve D(K) by calling Algorithm 3
first with D(K) as input. If necessary, it would then re-execute Algorithm 3 with the cost vector b
set to zero, to certify unboundedness or infeasibility. We forgo making this explicit.

Algorithm 3: Finds cone C such the dual problems D(K) and D(C) have equal optimal
values, and a complementary solution, infeasibility certificate or improving ray for D(C).
C ← K
repeat

Find (x, s, y, τ, κ) in the relative interior of H(C)
if τ = κ = 0 then

if x /∈ (C∗)⊥ then
C ← (C∗ ∩ x⊥)∗

else
C ← C ∩ s⊥

end
else

return
(
(x, s, y, τ, κ), C)

end
until algorithm returns;
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5 Examples
We now analyze relative interior solutions of the homogeneous model for simple conic optimization
problems. We consider SOCPs over the quadratic cone Q1+k = {(r, x) ∈ R1

+ ×Rk | r2 ≥ xTx} and
the rotated quadratic cone Q2+k

r = {(r, x) ∈ R2
+ × Rk | 2r1r2 ≥ xTx}. Since these cones and their

Cartesian products are closed and convex (and, indeed, self-dual), the developed theory applies.
The primal-dual pairs (10) and (11) are taken from [2].

5.1 Unattained, finite optimal values
Consider the primal-dual pair over a rotated quadratic cone:

minimize x2
subject to x3 =

√
2

x ∈ Q3
r

maximize
√

2y
subject to

( 0
1
0

)
−
( 0

0
y

)
= s

s ∈ Q3
r .

(9)

It is easy to verify the optimal value of the primal is unattained and equals inf{1/x1 : x1 ∈ R+} = 0,
and that the dual problem is feasible.

Solutions to the homogeneous model. Since the primal and dual problem are both feasible,
but the primal problem has an unattained optimal value, all relative interior solutions to the self-
dual homogeneous model (2) must satisfy τ = κ = 0 and yield facial reduction certificates. Because
(10, 10,

√
2) ∈ relintQ3

r ∩ {x ∈ R3 : x3 =
√

2} is a strictly feasible point of the primal, we also
conclude relative interior solutions to (2) yield only dual facial reduction certificates (Theorem 1,
(3c) and (3e)). As an example, the solution

x̂ = (1, 0, 0), ŝ = (0, 0, 0), ŷ = τ̂ = κ̂ = 0,

yields the dual facial reduction certificate x̂.

Facial reduction of the dual. Using x̂, we can regularize the dual to obtain a new primal-dual
pair. To perform this regularization, we replace Q3

r with Q3
r ∩ x̂⊥ = {0} × R+ × {0} in the dual

problem and Q3
r with (Q3

r ∩ x̂⊥)∗ = R× R+ × R in the primal problem. That is:

minimize x2
subject to x3 =

√
2

x ∈ R× R+ × R

maximize
√

2y
subject to

( 0
1
0

)
−
( 0

0
y

)
= s

s ∈ {0} × R+ × {0}.

Taking x = (0, 0,
√

2), s = (0, 1, 0) and y = 0 yields a primal-dual optimal solution with optimal
value equal to zero. Note (s, y) solves the dual problem of (9) and certifies the unattained optimal
value of the primal problem of (9).

5.2 Weak infeasibility when one problem is feasible
Consider the following primal-dual pair:

minimize x3
subject to x1 − x2 = 0

x ∈ Q3

maximize 0
subject to

( 0
0
1

)
−
( y
−y
0

)
= s

s ∈ Q3.

(10)
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Here, the dual problem is weakly infeasible, meaning there exists s ∈ Q3 that solve the equation
system with arbitrarily small positive error, but no s ∈ Q3 that solves it exactly. The primal
problem is feasible and has optimal value zero, but becomes unbounded if the equation x1−x2 = 0
is replaced with x1 − x2 = ε for any ε > 0.

Solutions to the homogeneous model. For this problem, no relative interior solution to the
self-dual homogeneous model (2) can satisfy τ > 0 or κ > 0. On the other hand, there is a solution
given by

x̂ = (1, 1, 0), ŝ = (1,−1, 0), ŷ = −1, τ̂ = κ̂ = 0,

where x̂ is a facial reduction certificate for the dual, and (ŝ, ŷ) is a facial reduction certificate for
the primal.

Facial reduction of the primal. Using ŝ, we regularize the primal problem and formulate a
new primal-dual pair. To perform this regularization, we replace Q3 with Q3 ∩ ŝ⊥ = ( 1

1 )R+ × {0}
in the primal problem, where ( 1

1 )R+ denotes the cone generated by ( 1
1 ). We then replace Q3 with

(Q3 ∩ ŝ⊥)∗ = {( 1
1 )}∗×R in the dual problem, where {( 1

1 )}∗ denotes the dual cone of the singleton
{( 1

1 )}. That is:

minimize x3
subject to x1 − x2 = 0

x ∈ ( 1
1 )R+ × {0}

maximize 0
subject to

( 0
0
1

)
−
( y
−y
0

)
= s

s ∈ {( 1
1 )}∗ × R.

Taking x = (0, 0, 0), s = (0, 0, 1) and y = 0 yields a primal-dual optimal solution pair with optimal
value equal to zero.

Facial reduction of the dual. Using x̂, we can also regularize the dual to obtain a new primal-
dual pair. Here, Q3 is replaced by (Q3 ∩ x̂⊥)∗ in the primal problem, and by Q3 ∩ x̂⊥ in the dual.
That is:

minimize x3
subject to x1 − x2 = 0

x ∈ {( 1
−1
)}∗ × R

maximize 0
subject to

( 0
0
1

)
−
( y
−y
0

)
= s

s ∈ ( 1
−1
)
R+ × {0}.

The improving ray x = (0, 0,−1) in the primal problem certifies dual infeasibility.

5.3 Finite but nonzero duality gap
The following primal-dual pair of problems are both feasible, but the optimal values of the two
problems are different:

minimize x3
subject to x1 + x2 + x4 + x5 = 0

−x3 + x4 = 1
x ∈ Q3 ×Q2

maximize y2

subject to
( 0

0
1
0
0

)
−



y1
y1
−y2
y1+y2
y1


 = s

s ∈ Q3 ×Q2.

(11)

Given their membership in Q3 ×Q2, primal feasible points satisfy the inequalities x1 + x2 ≥ 0 and
x4 + x5 ≥ 0. From the equation x1 + x2 + x4 + x5 = 0, we conclude that x1 + x2 = 0; combining
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this with the conic constraint (x1, x2, x3) ∈ Q3 shows x3 = 0 for all primal feasible points. On the
other hand, dual feasible points satisfy s1 = s2, which in turn implies that s3 = 0. This shows that
y2 = −1 for all dual feasible points. Hence, the primal optimal value is zero and the dual optimal
value is −1.

Solutions to the homogeneous model. For this problem, no relative interior solution to the
self-dual homogeneous model (2) can satisfy τ > 0 because the optimal values of the primal and
dual problem differ. Nor can it satisfy κ > 0 as both problems are feasible. Hence, all relative
interior solutions yield facial reduction certificates. Consider

x̂ = (1,−1, 0, 0, 0), ŝ = (1, 1, 0, 1, 1), ŷ = (−1, 0), τ̂ = κ̂ = 0,

where x̂ and (ŝ, ŷ) are dual and primal facial reduction certificates, respectively.

Facial reduction of the primal. Using ŝ, we regularize the primal problem to obtain a new
primal-dual pair. Here, we replace Q3 × Q2 with (Q3 ∩ ŝ⊥1:3) × (Q2 ∩ ŝ⊥4:5) in the primal problem
and replace Q3 ×Q2 with (Q3 ∩ ŝ⊥1:3)∗ × (Q2 ∩ ŝ⊥4:5)∗ in the dual. That is:

minimize x3
subject to x1 + x2 + x4 + x5 = 0

−x3 + x4 = 1
x ∈ ( 1

−1
)
R+ × {0} ×

( 1
−1
)
R+

maximize y2

subject to
( 0

0
1
0
0

)
−



y1
y1
−y2
y1+y2
y1


 = s

s ∈ {( 1
−1
)}∗ × R× {( 1

−1
)}∗

.

Taking x = (0, 0, 0, 1,−1), s = (0, 0, 1, 0, 0) and y = (0, 0) yields a primal-dual optimal solution
pair with optimal value equal to zero.

Facial reduction of the dual. Using x̂, we can also regularize the dual problem to obtain a
new primal-dual pair. Here, we replace Q3×Q2 with (Q3 ∩ x̂⊥1:3)× (Q2 ∩ x̂⊥4:5) in the dual problem
and Q3 ×Q2 with (Q3 ∩ x̂⊥1:3)∗ × (Q2 ∩ x̂⊥4:5)∗ in the primal problem. That is:

minimize x3
subject to x1 + x2 + x4 + x5 = 0

−x3 + x4 = 1
x ∈ {( 1

1 )}∗ × R×Q2

maximize y2

subject to
( 0

0
1
0
0

)
−



y1
y1
−y2
y1+y2
y1


 = s

s ∈ ( 1
1 )R+ × {0} × Q2.

Taking x = (0, 0,−1, 0, 0), s = (0, 0, 0, 1, 0) and y = (0,−1) yields a primal-dual optimal solution
pair with optimal value equal to −1.

5.4 Weak infeasibility when both problems are infeasible
Consider the following primal-dual pair:

minimize −x2
subject to x1 = 0

x3 = 1
x4 = 1
x ∈ Q3

r × R+

maximize y2 + y3

subject to
( 0
−1
0
0

)
−
( y1

0
y2
y3

)
= s

s ∈ Q3
r × R+,

(12)
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where both the primal and dual problem are infeasible. Any relative interior solution to the
homogeneous model will yield a primal improving ray such as x̂ = (0, 1, 0, 0) to certify that the
dual problem is infeasible, but cannot yield a dual improving ray. This is because all dual rays
satisfy s2 = 0 (implying s3 = −y2 = 0) and y3 ≤ 0, showing the objective value to be nonpositive.
In response to the unknown primal feasibility status, we follow the same procedure as in Example 1,
and construct the primal feasibility problem:

minimize 0
subject to x1 = 0

x3 = 1
x4 = 1
x ∈ Q3

r × R+

maximize y2 + y3

subject to
( 0

0
0
0

)
−
( y1

0
y2
y3

)
= s

s ∈ Q3
r × R+,

(13)

All dual rays of (12) are now dual solutions of (13), and thus satisfy s2 = 0 (implying s3 = −y2 = 0)
and y3 ≤ 0 as derived.

Solutions to the homogeneous model. The primal problem of (13) is infeasible, but there
is no dual improving ray. Hence, all relative interior solutions to the homogeneous model satisfy
τ = κ = 0. Moreover, since cTx = 0, the equation bT y − cTx − κ = 0 implies bT y = 0 and thus
y3 = 0. One example of relative interior solution is given by:

x̂ = (0, 1, 0, 0), ŝ = (1, 0, 0, 0), ŷ = (−1, 0, 0), τ̂ = κ̂ = 0,

where x̂ is a dual facial reduction certificate and ŝ is a primal facial reduction certificate. We
highlight the subtlety that ŷ3 = 0 for all points in the relative interior of the homogeneous model,
even though all relative interior feasible points (s, y) of the dual problem of (13) satisfy y3 < 0.

Facial reduction of the primal. Using ŝ, we regularize the primal problem of (13) and formulate
a new primal-dual pair. That is:

minimize 0
subject to x1 = 0

x3 = 1
x4 = 1
x ∈ {0} × R+ × {0} × R+

maximize y2 + y3

subject to
( 0

0
0
0

)
−
( y1

0
y2
y3

)
= s

s ∈ R× R+ × R× R+.

The improving ray y = (0, 1, 0) and s = (0, 0,−1, 0) in the dual problem certifies primal infeasibility.
Hence, the primal problem of (12) is also infeasible.

5.5 Unboundedness with no improving ray
Consider the following primal-dual pair:

minimize x3
subject to x1 = 1

x ∈ Q3
r

maximize y

subject to
( 0

0
1

)
−
( y

0
0

)
= s

s ∈ Q3
r ,

(14)

where the primal problem is unbounded and the dual problem is infeasible. Though unbounded,
the primal problem has no improving ray, since all primal rays satisfy x1 = 0 (implying x3 = 0).
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Solutions to the homogeneous model. For this problem, all relative interior solutions to (2)
satisfy τ = κ = 0. Hence, since all primal rays satisfy x3 = 0, the equation bT y − cTx − κ = 0
implies y = 0. A relative interior solution is thus given by:

x̂ = (0, 1, 0), ŝ = (0, 0, 0), ŷ = 0, τ̂ = κ̂ = 0,

where x̂ is a facial reduction certificate for the dual problem. By Theorem 4, the absence of a facial
reduction certificate for the primal implies the primal is unbounded with no improving ray or has
a finite optimal value that is unattained. This fact, along with Theorem 1-(3c), also implies it is
strictly feasible. Hence, the duality gap between the primal-dual pair of (14) is zero.

Facial reduction of the dual. Using x̂, we can regularize the dual problem to obtain a new
primal-dual pair, where both the primal and dual problems have optimal values equal to the primal
problem of (14):

minimize x3
subject to x1 = 1

x ∈ R+ × R2

maximize y

subject to
( 0

0
1

)
−
( y

0
0

)
= s

s ∈ R+ × {0}2.
(15)

For this primal-dual pair, relative interior solutions of the homogeneous model find the primal
improving ray x = (0, 0,−1). Since we have already established primal feasibility, we can con-
clude the primal of (15) is unbounded. Nevertheless, to complete the unboundedness certificate of
Definition 6, we need a feasible point. To find this, we solve a primal feasibility problem.

The primal feasibility problem. Fixing the primal objective of (14) to zero gives:

minimize 0
subject to x1 = 1

x ∈ Q3
r

maximize y

subject to
( 0

0
0

)
−
( y

0
0

)
= s

s ∈ Q3
r .

Taking x = (0, 1, 0), s = (0, 0, 0) and y = 0 yields a primal-dual optimal solution, and a feasible
point x to both the primal of (14) and (15). This completes the unboundedness certificate for the
primal of (15).

6 Conclusions
We have unified the facial reduction algorithm of Borwein and Wolkowicz with the self-dual em-
bedding technique of Goldman and Tucker, bringing together both techniques to, in principle, solve
arbitrary conic optimization problems over non-empty, closed, convex cones. Our method assumes
one can produce relative interior solutions to homogeneous models. Such points are found from
relative interior solutions to extended embeddings which, in the case of semidefinite programming,
are produced by central-path-following techniques. Indeed, for SDP, implementing our method
involves only conceptually-simple modifications to solvers such as SeDuMi [23], and these modifi-
cations only affect solver execution when both complementary solutions and improving rays do not
exist. Addressing practical issues of numerical accuracy is a topic for future research, as is formal
complexity analysis.

26



References
[1] R. A. Abrams. Projections of convex programs with unattained infima. SIAM Journal on

Control, 13(3):706–718, 1975.

[2] E. Andersen, C. Roos, and T. Terlaky. Notes on Duality in Second Order and p-Order Cone
Optimization. Optimization, 51(4):627–643, 2002.

[3] D. P. Bertsekas. Convex optimization theory. Athena Scientific Belmont, MA, 2009.

[4] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex analysis and optimization. Athena
Scientific Belmont, 2003.

[5] J. Borwein and H. Wolkowicz. Regularizing the abstract convex program. Journal of Mathe-
matical Analysis and Applications, 83(2):495–530, 1981.

[6] Y.-L. Cheung, S. Schurr, and H. Wolkowicz. Preprocessing and regularization for degener-
ate semidefinite programs. In Computational and Analytical Mathematics, pages 251–303.
Springer, 2013.

[7] E. de Klerk, C. Roos, and T. Terlaky. Infeasible-start semidefinite programming algorithms
via self-dual embeddings. Fields Institute Communications, 18:215–236, 1998.

[8] A. J. Goldman and A. W. Tucker. Theory of linear programming. Linear inequalities and
related systems, 38:53–97, 1956.

[9] M. Halická, E. de Klerk, and C. Roos. On the convergence of the central path in semidefinite
optimization. SIAM Journal on Optimization, 12(4):1090–1099, 2002.

[10] M. Liu and G. Pataki. Exact duals and short certificates of infeasibility and weak infeasibility
in conic linear programming. 2015.

[11] B. F. Lourenço, M. Muramatsu, and T. Tsuchiya. Solving SDP completely with an interior
point oracle. 2015.

[12] Z.-Q. Luo, J. F. Sturm, and S. Zhang. Duality and self-duality for conic convex programming.
Technical Report 9620/A, Econometric Institute, Erasmus University Rotterdam, 1996.

[13] Y. Nesterov. Infeasible start interior-point primal-dual methods in nonlinear programming.
CORE Discussion Papers 1995067, Université catholique de Louvain, Center for Operations
Research and Econometrics (CORE), 1995.

[14] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming. Society for Industrial and Applied Mathematics, 1994.

[15] G. Pataki. Strong duality in conic linear programming: facial reduction and extended duals.
Computational and Analytical Mathematics, pages 613–634, 2013.

[16] F. Permenter and P. A. Parrilo. Basis selection for SOS programs via facial reduction and
polyhedral approximations. In Proceedings of the IEEE Conference on Decision and Control,
2014.

[17] F. Permenter and P. A. Parrilo. Partial facial reduction: simplified, equivalent SDPs via inner
approximations of the PSD cone. http://arxiv.org/abs/1408.4685, 2014.

27



[18] F. A. Potra and R. Sheng. On homogeneous interrior-point algorithms for semidefinite pro-
gramming. Optimization Methods and Software, 9(1-3):161–184, 1998.

[19] M. V. Ramana. An exact duality theory for semidefinite programming and its complexity
implications. Mathematical Programming, 77(1):129–162, 1997.

[20] M. V. Ramana, L. Tunçel, and H. Wolkowicz. Strong duality for semidefinite programming.
SIAM Journal on Optimization, 7(3):641–662, 1997.

[21] J. Renegar. Incorporating Condition Measures into the Complexity Theory of Linear Pro-
gramming. SIAM Journal on Optimization, 5(3):506–524, 1995. ISSN 1052-6234. doi:
10.1137/0805026.

[22] R. T. Rockafellar. Convex analysis, volume 28. Princeton University Press, 1997.

[23] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization methods and software, 11(1-4):625–653, 1999.

[24] J. F. Sturm. Error bounds for linear matrix inequalities. SIAM Journal on Optimization, 10
(4):1228–1248, 2000.

[25] H. Waki and M. Muramatsu. Facial reduction algorithms for conic optimization problems.
Journal of Optimization Theory and Applications, pages 1–28.

[26] Y. Ye, M. J. Todd, and S. Mizuno. An O(
√
nL)-iteration homogeneous and self-dual linear

programming algorithm. Mathematics of Operations Research, 19(1):53–67, 1994.

28



Appendix D

[Friberg 38]
A relaxed-certificate facial reduction algo-
rithm based on subspace intersection



A relaxed-certificate facial reduction algorithm based on subspace intersection

Henrik A. Friberga,b

aDepartment of Wind Energy, Technical University of Denmark, DK-4000 Roskilde, Denmark.
bMOSEK ApS, Fruebjergvej 3, DK-2100 Copenhagen O, Denmark.

Abstract

A “facial reduction”-like regularization algorithm is established for conic optimization problems by relaxing requirements
on the reduction certificates. It requires only a linear number of reduction certificates from a constant time-solvable
auxiliary problem, but is challenged by representational issues of the exposed reductions. A condition for representability
is presented, analyzed for Cartesian product cones, and shown satisfiable for all exposed reductions of a single second-
order cone. Should the representational condition fail at any iteration, a partially regularized problem is still obtained.
Work on representing the exposed reductions, i.e., subspace intersections of conic sets, is ongoing.

Keywords: Facial reduction, subspace intersection, conic optimization, second-order cones.

1. Introduction

For A ∈ Rm×n, b ∈ Rm and c ∈ Rn, consider the
following primal-dual pair of conic optimization problems
over the non-empty, closed, convex cone K ⊆ Rn and its
dual cone K∗ ⊆ Rn:

θP = infimum cTx
subject to Ax = b,

x ∈ K,
(P)

θD = supremum bT y
subject to c−AT y = s,

s ∈ K∗, y ∈ Rm,
(D)

where θP , θD ∈ R∪{−∞,+∞} is the (possibly unattained)
optimal values of (P) and (D) respectively. In contrast
to linear optimization, valid reformulations of (P) may
change the feasible set and optimal value of (D), and vice
versa. This is manifested by the fact that whenever strong
duality fails (i.e., θP > θD), it is possible to reformulate
(P) (resp. (D)) such that its dual changes to establish
strong duality. Such a reformulation is revealed by the
facial reduction algorithms of [2, 8, 10].

Facial reduction algorithms progress iteratively driven
by facial reduction certificates which are solutions of conic
auxiliary problems [3, 6]. Alternatives to these certificates
can also be used however. A remark in [3] notes that, by
restricting the certificate definition, only a single certifi-
cate is needed for regularization albeit this being difficult
to compute. In contrast, this paper relax the certificate
definition to obtain a trivially solvable auxiliary problem
from which a linear number of certificates is needed for
regularization.

Email address: metronware@gmail.com (Henrik A. Friberg)

This relaxed-certificate facial reduction algorithm is
presented in Section 3. Executing it on the primal prob-
lem (P), gives an equivalent problem with K replaced by
the subspace intersected conic set

K ∩ span(z1, . . . , zk)⊥ = K ∩ z⊥1 ∩ . . . ∩ z⊥k , (1)

where k is the number of iterations. This is like any other
facial reduction algorithm except that subspace intersected
conic set may not be a face of K. Hence, to utilize this algo-
rithm, classic representational results (e.g., [4] for faces of
the semidefinite cone) have to be extended to non-facially
exposing subspace intersections. Section 4 formalizes a
representational condition for (1) to be supported by stan-
dard optimization software, and analyses its extendability
from a single cone to Cartesian products. The condition is
then satisfied by characterizing all subspace intersections
of a second-order cone in Section 5. Note that cones for
which all subspace intersections have not been character-
ized still allow for partial regularization by excluding all
problematic exposing vectors zi from (1).

2. Preliminaries

The image of a set under a function, i.e., f(C) :=
{f(x) : x ∈ C}, is used heavily. A subset C ⊆ Rn is
thus a cone if λC = C for any λ > 0, and the dual cone of
C is denoted and defined by C∗ := {y ∈ Rn : yTC ⊆ R+}.
This paper is limited to non-empty, closed, convex cones,
whereby C equals (C∗)∗ and contains the origin [9].

A face F of C, denoted F E C, is a subset for which
any line segment in C, with a midpoint in F , has both
endpoints in F [9]. This generalizes extreme points and
other faces of polyhedra. A proper face of C is a face which
is non-empty and not equal to C.

Preprint submitted to Elsevier January 11, 2016



A subspace intersection of C is the intersection of a
linear subspace and C. Let z⊥ := {x ∈ Rn : xT z = 0}. For
z ∈ C∗, the subspace intersection C∩z⊥ contains the origin
and is a face of C as it maximizes −zTx over x ∈ C [9].
Hence, if z ∈ C∗ \ C⊥, then C ∩ z⊥ is a proper face of C.

A facial reduction of K in (P), is a proper face-revealing
subspace intersection K ∩ z⊥ for which zTx = 0 is valid
in (P). Similarly, a facial reduction of K∗ in (D), is a
proper face-revealing subspace intersection K∗ ∩ z⊥ for
which zT s = 0 is valid in (D). Note, if these equations
zTx = 0 (resp. zT s = 0) is implied by Ax = b in (P) (resp.
c−AT y = s in (D)), then z is called a facial reduction cer-
tificate. Namely, taking (D) as example, zT s = 0 is implied
by c − AT y = s if and only if z⊥ ⊇ {c − AT y : y ∈ Rm}
(i.e., z⊥ is a relaxation of the feasible set of s), if and only
if cT z = 0 and AT z = 0, in agreement with [3, 6].

3. Primal regularization in O(m) time

Clearly, any equation of the form zTx = 0, valid in (P)
for some z ∈ Rn \ {0}, justify reformulation from cone K
to the subspace intersected cone K ∩ z⊥. This is hence
denoted a valid subspace intersection of K exposed by z,
although validity is only with respect to the considered
problem (P) and may change its dual. The task of find-
ing such exposing vectors is the auxiliary problem of (P)
for the relaxed-certificate facial reduction algorithm, and
turns out to be trivially solvable.

Proposition 1 (Solving the auxiliary problem). Consider
the m rows of Ax = b from (P). An equation of the form
zTx = 0 is found by zT := ωTA for the row weighting

(ω1, ω2, ω3:m) =





(1, 0, 0) if b1 = 0,
(0, 1, 0) if b2 = 0,
(b−1

1 ,−b−1
2 , 0) otherwise,

chosen to satisfy ωT b = 0. If z = ωTA = 0, then a linear
dependent row is found in Ax = b and removing it leads to
another row weighting. Otherwise, z is the exposing vector
of a valid subspace intersection in (P) by definition.

With slight abuse of notation, Proposition 1 only fails
to solve the auxiliary problem for (P) if m = 0 or m = 1
and b1 6= 0. In these cases there can be no facial reduction
certificates for (P) by definition, implying the problem is
regularized in the usual facial reduction sense. Conversely,
when it succeeds, an exposing vector z is returned where
zTx = 0 is implied by Ax = b. The reformulation from
K to K ∩ z⊥ is thus valid and acts to enforce zTx = 0
implicitly. That is, any one of the rows with ωi 6= 0 is
made redundant. Removing it and repeating, leads to
Algorithm 1. After k iterations, k rows is removed and
the subspace intersected cone has been reformulated to
K∩ z⊥1 ∩ . . .∩ z⊥k = K∩ span(z1, . . . , zk)⊥. The algorithm
terminates when Proposition 1 fails to solve the auxiliary
problem, that is, in O(m) iterations.

Algorithm 1: Primal regularization through the use
of valid subspace intersections.

1 Let k ← 1
2 repeat
3 Let zk ← ATω be the solution to the auxiliary

problem obtained from of Proposition 1.
4 Remove the i’th row of Ax = b for some ωi 6= 0.
5 Increment k ← k + 1.
6 until a solution zk is not found by Proposition 1;
7 K ← K ∩ span(z1, . . . , zk)⊥.

A similar procedure can be made to regularize (D) at a
slightly higher computation cost. In particular, Gaussian
elimination can be carried out on the matrix ( c, −AT ) in
order to systematically find weightings z of rows from this
matrix that cancel out. That it, weightings z of rows from
c−AT y = s of the form zT s = 0.

What remains to be shown is that the rapidly obtained
subspace intersected cones are useful in practice. This,
however, remains obstructed by representational issues.

4. Representational issues

To solve the primal-dual pair (P) and (D) efficiently, a
certain amount of information is needed about the cones
K and K∗. Good barrier functions are for example needed
to deploy a primal-dual interior-point method [7]. Hence,
when applying valid subspace intersections to the cones of
a problem, it is important to ensure that optimization can
also take place over the reduced cones.

The following definition materialize this property by
giving a sufficient condition for the intersection K ∩ z⊥ to
be representable within the same class of cones as K. This
class, formally denoted Ω, is arbitrary but could be the
symmetric cones for which optimization is efficient.

Definition 1. Let z ∈ Rn and suppose (P) and (D) has
cones K and K∗ of class Ω. For some cones K̂ and K̂∗ of
class Ω, and a matrix H ∈ Rn×r for 1 ≤ r ≤ n, a subspace
intersection in (P) is said to be Ω-representable if

K ∩ z⊥ = HK̂; (2)

and a subspace intersection in (D) is Ωn-representable if

s ∈ K∗ ∩ z⊥ ⇔ HT s ∈ K̂∗. (3)

These conditions allow subspace intersections without
leaving the chosen class of cones as claimed.

Proposition 2. When the representational requirement of
(2) or (3) is satisfied in Definition 1, the reduced problem
can be represented by the primal-dual pair:

θ̂P = inf
x̂
{(HT c)T x̂ : (AH)x̂ = b, x̂ ∈ K̂}, (P̂ )

θ̂D = sup
ŝ,ŷ
{bT ŷ : (HT c)− (AH)T ŷ = ŝ, ŝ ∈ K̂∗}. (D̂)
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Moreover, if the subspace intersection is a valid for the
considered problem, the following statements hold:

1. If (2) is satisfied, the problems (P) and (P̂ ) have
equal optimal values and equivalent feasible sets re-
lated by x = Hx̂;

2. If (3) is satisfied, the problems (D) and (D̂) have
equal optimal values and equivalent feasible sets re-
lated by y = ŷ and s = c−AT ŷ.

Proof. (P̂ ) and (D̂) forms a primal-dual pair. Hence, the
claims follow since (2) leads to (P̂ ) as seen by

θP = inf
x
{cTx : Ax = b, x ∈ K ∩ z⊥},

= inf
x
{cTx : Ax = b, x ∈ HK̂},

= inf
x
{cT (Hx̂) : A(Hx̂) = b, x̂ ∈ K̂},

and (3) leads to (D̂) as seen by

θD = sup
s,y
{bT y : c−AT y = s, s ∈ K∗ ∩ z⊥},

= sup
s,y
{bT y : c−AT y = s, HT s ∈ K̂∗},

= sup
s,y
{bT y : HT (c−AT y) = ŝ, ŝ ∈ K̂∗}.

Suppose the conditions of Definition 1 can be satis-
fied for all subspace intersections of two cones, K1 and
K2, respectively. Even then, only a subset of all subspace
intersections of K1×K2 may necessarily satisfy the condi-
tions. This is a corollary (generalizing [10, Lemma 2.9] to
non-facially exposing vectors) of the following proposition
applied later, concerning the split of certificates.

Proposition 3. Suppose z =
∑k
j=1 zj ∈ Rn is an exposing

vector for a valid subspace intersection of K ⊆ Rn. Then
K can be reduced by each addend independently,

K ∩ z⊥ = K ∩ z⊥1 ∩ . . . ∩ z⊥k ,

if and only if one of the following conditions hold:

1. K ∩ z⊥j EK for all addends where either

zj ∈ K∗, for all j ∈ {1, . . . , k}, or
zj ∈ −K∗, for all j ∈ {1, . . . , k},

such that K ∩ z⊥ = K ∩ (−z)⊥ EK;

2. K ∩ z⊥j = K for all but one addend. That is,

zj ∈ K⊥, for all j ∈ {1, . . . , k} \ {i},

where i ∈ {1, . . . , k}.
Proof. For any z ∈ Rn, the subspace intersection contains
the addend-wise subspace intersection. That is,

K ∩ z⊥ = {x ∈ K : xT z = 0},
⊇ {x ∈ K : xT zj = 0 for j = 1, . . . , k},
= K ∩ z⊥1 ∩ . . . ∩ z⊥k .

Equality holds if and only if xT z = 0 implies xT zj = 0
for all j ∈ {1, . . . , k} over the set x ∈ K. As xT z =∑k
j=1 x

T zj , this requires all terms xT zj to have the same
sign (statement 1), or that only a single term xT zj can
take nonzero values (statement 2).

Corollary 1. Suppose z = (z1, . . . , zk) ∈ Rn is an ex-
posing vector for a valid subspace intersection of K =
K1 × · · · × Kk ⊆ Rn. Then K can be reduced in each
Cartesian factor independently,

K ∩ z⊥ =
(
K1 ∩ (z1)⊥

)
× · · · ×

(
Kk ∩ (zk)⊥

)
,

if and only if K ∩ z⊥ E K or Kj ∩ (zj)⊥ = Kj for all but
one Cartesian factor of K.

Proof. Define zTj = (0, . . . , 0, (zj)T , 0, . . . , 0), nonzero only
on the support of Kj , and use Proposition 3.

The consequences of Corollary 1 is a setback for gen-
eral purpose usage of Algorithm 1. In particular, it leaves
all non-facially exposing subspace intersections of K1×K2,
properly reducing both cones at the same time, to be char-
acterized separately from those of K1 and K2. Whether
this result can be improved for any particular class of cones
is left open. Instead, a characterization of all subspace
intersections of a second-order cone is now derived and
formalized in Theorem 1. This is followed by an efficient
subspace intersection shortcut in Theorem 2.

5. Subspace intersections of a second-order cone

The quadratic cone Qn and rotated quadratic cone Qnr
(see, e.g., [1]) is defined and closely related by

Qn =
{
x ∈ Rn : x2

1 ≥
∑n
j=2 x

2
j , and x1 ≥ 0

}
,

= WQnr for W =
( 1√

2
1√
2

0
1√
2
−1√

2
0

0 0 I

)
.

This relation means that the subspace intersections of one
leads to the subspace intersections of the other.
Proposition 4. The representational conditions for Qn
from Definition 1, implies the conditions for Qnr :

1. Qnr ∩ z⊥ = W (Qn ∩ (Wz)⊥);

2. s ∈ Qnr ∩ z⊥ ⇔ Ws ∈ Qn ∩ (Wz)⊥.
Proof. The matrix W is orthogonal. Hence, f(x) = Wx
is injective such that f(X ∩ Y ) = f(X)∩ f(Y ) for all sets
X and Y . Moreover, WQnr = Qn and Wz⊥ = (W−T z)⊥
= (Wz)⊥. Finally, WW = I by symmetry.

In the following derivation of subspace intersections for
the quadratic cone Qn, many results follow by definition.
Note that x1 in this definition is sometimes called the ra-
dius entry, and } = x2:n the hyperball entries, since the
quadratic cone correspond to an (n − 1)-dimensional hy-
perball with radius x1 centered around the origin. First,
the elimination of zero-valued entries is formalized.
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Proposition 5. Consider (x1, }) ∈ Qn.

1. Given }i = 0, the membership is equivalent to
(

x1
}1:(i−1)
}(i+1):n

)
∈ Qn−1.

2. Given x1 = 0, the membership is equivalent to

} ∈ {0}n−1.

Next, the elimination of scaled duplicates is formalized by
describing an aggregation of squares in the definition of
Qn. In particular, scaled hyperball-hyperball duplicates
are eliminated by aggregating a sum of two squares, while
scaled radiues-hyperball duplicates are eliminated by ag-
gregating a difference of two squares.

Proposition 6. Consider (x1, }) ∈ Qn.

1. Given }i = α}j, where j < i is assumed without loss
of generality, the membership is equivalent to




x1
}1:(j−1)√
1+α2}j

}(j+1):(i−1)
}(i+1):n


 ∈ Qn−1.

2. Given }i = αx1, the aggregation depends on α2 and
further allows use of Proposition 5.2 when α2 ≥ 1.

(a) For α2 < 1, the membership is equivalent to
(√

1−α2x1
}1:(i−1)
}(i+1):n

)
∈ Qn−1.

(b) For α2 = 1, the membership is equivalent to
( }1:(i−1)

}(i+1):n

)
∈ {0}n−1 and x1 ≥ 0.

(c) For α2 > 1, the membership is equivalent to
( }1:(i−1)√

α2−1 x1
}(i+1):n

)
∈ {0}n−1,

where x1 ≥ 0 is redundant.

The applicability of these eliminations are greatly widened
by the fact that the hyperball entries can be modified by
orthogonal transformations [11].

Proposition 7. The hyperball entries are invariant to or-
thogonal transformations. That is, given H = H−T , then

( 1 0
0 H )Qn = Qn.

The Householder matrix defines a particularly useful or-
thogonal transformation matrix able to rotate any nonzero
vector to the main axis e1 = (1, 0, . . . , 0)T ∈ Rn. This fol-
lows from the results of [5].

Proposition 8. The Householder matrix solving Hλ =
‖λ‖2e1 for nonzero λ ∈ Rn is given by

H = ( λ/‖λ‖2, V ) =
(
λT /‖λ‖2,

V T

)
= I− 2uuT ,

u =
{

λ/‖λ‖2−e1
‖λ/‖λ‖2−e1‖2

if λ/‖λ‖2 6= e1,

0 otherwise,

where H is symmetric and orthogonal by definition.

Finally, all results are in position to fully characterize the
subspace intersections of the quadratic cone.

Theorem 1. Suppose z = (z1, λ
T )T ∈ Rn is nonzero.

Further, when λ 6= 0, consider α = −z1/‖λ‖2 and the sub-
matrix V of H from Proposition 8 solving Hλ = ‖λ‖2e1.
The conditions of Definition 1 is satisfied for (P) by:

1. Qn ∩ z⊥ = {0}n, for z2
1 > ‖λ‖2

2;

2. Qn ∩ z⊥ =
( 1
αλ/‖λ‖2

)
R+, for 0 6= z2

1 = ‖λ‖2
2;

3. Qn ∩ z⊥ =
( 1√

1−α2 0
α√

1−α2 λ/‖λ‖2 V

)
Qn−1, for z2

1 < ‖λ‖2
2,

and for (D) by:

4. x ∈ Qn ∩ z⊥ ⇔ x ∈ {0}n, for z2
1 > ‖λ‖2

2;

5. x ∈ Qn ∩ z⊥ ⇔
(

1 0
0 V T

−α λT /‖λ‖2

)
x ∈ R+×{0}n−1,

for 0 6= z2
1 = ‖λ‖2

2;

6. x ∈ Qn∩z⊥ ⇔
(√

1−α2 0
0 V T

−α λT /‖λ‖2
2

)
x ∈ Qn−1×{0},
for z2

1 < ‖λ‖2
2.

Proof. If λ = 0 (a subcase of statement 1), the claim fol-
lows from Proposition 5-(2). Otherwise λ 6= 0, and the
subspace intersections of Qn are characterized by

Qn ∩ z⊥ = W
(
(WQn) ∩ (Wz)⊥

)
,

= W
(
Qn ∩

( z1
‖λ‖2e1

)⊥)
,

for the symmetric and orthogonal matrixW = ( 1 0
0 H ). This

follows firstly by arguments for the proof of Proposition 4,
and secondly by Proposition 7 and the definition of H.
The set Qn ∩

( z1
‖λ‖2e1

)⊥ = {x ∈ Qn : z1x1 + ‖λ‖2x2 = 0}
is characterized below, and the claims follow from left-
multiplication by W . If z1 = 0 (a subcase of statement 3),
the claim hence follows from Proposition 5-(1) as

Qn ∩
( z1
|λ‖2e1

)⊥ = {x ∈ Rn : ( x1
x3:n ) ∈ Qn−1, x2 = 0},

=
( 1 0

0 0
0 I

)
Qn−1.

Otherwise z1 6= 0, and Proposition 6-(2) is used to elim-
inate the dependency x2 = αx1 where α = −z1/‖λ‖2. If
α2 > 1 (the last of statement 1), the claim follows by

Qn ∩
( z1
‖λ‖2e1

)⊥

= {x ∈ Rn :
(√

α2−1 x1
x3:n

)
∈ {0}n−1, x2 = αx1},

= {0}n.
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If α2 = 1 (statement 2), the claim follows by

Qn ∩
( z1
‖λ‖2e1

)⊥
= {x ∈ Rn : x3:n ∈ {0}m−2, x1 ≥ 0, x2 = αx1},
=
(

1
α

{0}m−2

)
R+.

If α2 < 1 (the last of statement 3), the claim follows by

Qn ∩
( z1
|λ‖2e1

)⊥

= {x ∈ Rn :
(√

1−α2 x1
x3:n

)
∈ Qn−1, x2 = αx1},

=
( 1√

1−α2 0
α√

1−α2 0

0 I

)
Qn−1.

The dual statements 4-6, are characterized from the above
derivations using that x ∈ Qn ∩ z⊥ is equivalent to

PWx ∈ PW (Qn ∩ z⊥) = P
(
(WQn) ∩ (Wz)⊥

)
,

= P
(
Qn ∩

( z1
‖λ‖2e1

)⊥)
,

for full rank matrices P and W = ( 1 0
0 H ) as above. The

statements are obtained using P = I for statement 1,
P =

( 1 0 0
0 0 I
−α 1 0

)
for statement 2, and P =

(√
1−α2 0 0

0 0 I
−α 1 0

)

for statement 3.

5.1. Efficient higher-dimensional subspace intersections
Consider the subspace intersection

Qn ∩ span(z1, z2, . . .)⊥ = Qn ∩ z⊥1 ∩ . . . ∩ z⊥k .

One may safely ignore any zj ∈ (Qn)⊥ = {0} and use
Proposition 3 to aggregate, by summation, the subset of
facially exposing vectors zj ∈ (Qn)∗ = Qn. Another tech-
nique, specific to the quadratic cone, allows several sub-
space intersections to be computed in a single step.

Theorem 2. Let Z = span(z1, . . . , zk) ⊆ Rn for nonzero
zj = (0, λTj )T ∈ Rn, and consider the QR-decomposition
with pivoting (Q1, Q2)

(
R1
0
)

= (λ1, . . . , λk)P for full row
rank R1 ∈ Rr×k. The conditions of Definition 1 is satisfied
for (P) by:

1. Qn ∩ Z⊥ =
( 1 0

0 Q2

)
Qn−r,

and for (D) by:

2. x ∈ Qn ∩ Z⊥ ⇔
( 1 0

0 QT2
0 QT1

)
x ∈ Qn−r × {0}r.

Proof. The subspace reduction of Qn is characterized by

Qn ∩ Z⊥ = WT
(
Qn ∩ (WZ)⊥

)
,

for nonsymmetric but orthogonal W =
( 1 0

0 QT2
0 QT1

)
, following

arguments for the proof of Proposition 4. Moreover, in
terms of the column space operator C(·), then

WZ = WC
(

0, ..., 0
λ1, ..., λk

)
= WC

( 0
Q1

)
= C

( 0
( 0

I )
)
,

by definition, where QT1 Q1 = I ∈ Rr×r is the identity
matrix. Hence, by Proposition 5-(1),

Qn ∩ (WZ)⊥ = Qn−r × {0}r,

showing statement 1 after left-multiplication byWT . State-
ment 2 is shown from the above derivation using that
x ∈ Qn ∩ Z⊥ is equivalent to Wx ∈ Qn ∩ (WZ)⊥.

6. Final comments

The relaxed-certificate facial reduction algorithm shows
a potential for rapid regularization. Nevertheless, it is
likely doomed to partial regularization for all interesting
applications unless the representational conditions of Defi-
nition 1 can be weakened. This is due to the consequences
of Corollary 1. Finally, it remains unknown to what extend
subspace intersections of other cones, such as the semidef-
inite cone, can be characterized. The reader is pointed to
[4, Corollary 2.2.15] for a similar characterization of the
facially exposing intersections of the semidefinite cone.
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Abstract

Facial reduction heuristics are developed in the interest of added performance and reliability
in methods for mixed-integer conic optimization. Specifically, the process of branch-and-bound
is shown to spawn subproblems for which the conic relaxations are difficult to solve, and the
objective bounds of linear relaxations are arbitrarily weak. While facial reduction algorithms
already exist to deal with these issues, heuristic variants represent a very potent supplement due
to their inherent speed and accuracy. The paper covers a family of heuristics based on linear
optimization, subgradient matching, single-cone analysis, and cone factorization.

1 Introduction
For A ∈ Rm×n, b ∈ Rm and c ∈ Rn, consider the following primal-dual pair of conic optimization
problems over the nonempty, closed, convex cone K ⊆ Rn and its dual cone K∗ ⊆ Rn:

(P ) : θP = inf
x
{cTx : Ax = b, x ∈ K}, (D) : θD = sup

s,y
{bT y : c−AT y = s, s ∈ K∗}. (1)

By careful construction, the primal-dual pair can always be formulated such that the problem of
interest, (P ) or (D), is either strongly feasible1 or strongly infeasible2 [29, 41]. These properties
serve in the interest of a successful solve in both theory and practice (see, e.g., [40, 20, 42]), and
problems not satisfying either are denoted ill-posed following Renegar [35, 16].

Careful construction is unfortunately a false premise in many cases, such as when problem
formulations are the product of preprocessing, cut generation or other automated modifications.
As a result, ill-posed formulations may occur naturally in some of these cases (albeit perhaps
rarely), and optimization software needs robust countermeasures for dealing with them to function
reliably. This is the first reason for looking at the example of mixed-integer conic optimization,
namely because it serves as a particularly great motivation for these countermeasures. Specifically,
any solver would potentially fail from time to time if neglecting them, due to the ill-posed conic
relaxations constructed by its own branch-and-bound procedure, as elaborated in Section 2.

Facial reduction algorithms [8, 32, 41] automate the process of careful construction by iteratively
∗H. A. Friberg is employed at MOSEK ApS and affiliated with the Department of Wind Energy, Technical

University of Denmark, DK-4000 Roskilde, Denmark. E-mail: metronware@gmail.com.
1Existence of a feasible point in the relative interior of all non-polyhedral cones (i.e., the generalized Slater’s

condition) qualifying use of the usual KKT-type optimality conditions [9].
2Existence of a dual improving ray qualifying use of the usual Farkas-type theorem of alternatives [29]; if this

property is not satisfied for an infeasible problem, the infimum distance to feasibility is zero!
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applying reformulations until either strong feasibility or strong infeasibility is satisfied. At every
iteration until this happens, there exist so-called facial reduction certificates to verify and drive the
process of these reformulations [41]. At termination, the problem is said to be regularized. Even so,
the algorithm can still be continued in dual space as one way of dealing with unattainment [34, 28].
In any case, and for any of this to work in practice, core decisions have to be made regarding the
generation of the facial reduction certificates.

First of all, the immediate conic formulation of the feasible set of certificates may itself be ill-
posed and hence problematic to solve. Alternatives are given in [13] and [28], where the feasible set
is lifted (for strong feasibility) by a nonnegative artificial variable which is then minimized. More
recently, [34] shows that the self-dual embedding of (1) also contains the feasible set of certificates.
Specifically, these certificates make up the optimal set if and only if (1) has no primal-dual optimal
solutions or improving rays. Regularization and optimization can thus be interleaved with expected
computational advantages (yet to be verified in practice), and the appealing property that facial
reduction-induced reformulation is used only as needed.

This leads to the second point. If the certificates are generated by solving the conic optimization
problems described above (from [13], [28] or [34]) using floating-point-based algorithms, the applied
reformulations are only approximately valid. In fact, given the property of backwards stability
shown in [13], this corresponds to reformulating a perturbed primal-dual pair (1). Given that there
are many sources of inaccuracy in conic optimization software (see, e.g., [45, 4]), it may occur that
the perturbation becomes too big for a continuation of the facial reduction algorithm to make sense.
The very process of solving conic optimization problems—the size of the original problem—in each
iteration of the facial reduction algorithm can, of course, also be very time consuming.

These concerns may to some extent be resolved by facial reduction heuristics attempting to
construct accurate facial reduction certificates (or even exact, in rational arithmetic) within a short
period of time. Specifically, with the right choice of heuristics (e.g., inspired by the application-
specific reduction techniques of [14, 27, 11, 5, 47, 43]), heuristics alone may turn out to be sufficient
in many cases. Partial regularization can also be useful, however, as shown by the example of mixed-
integer conic optimization. Specifically, as elaborated in Section 2, objective bounds computed
from linear relaxations can be arbitrarily weak if the conic relaxation is ill-posed, and only rapid
regularization techniques make sense to include in such simple bound computations.

This paper introduces the relevance of facial reduction in mixed-integer conic optimization, and
extends upon previous work on facial reduction heuristics. A family of heuristics based on linear
optimization, inspired by [33], is presented in Section 4, along with strengthened versions of
heuristics from [21, 13], denoted subgradient matching and cone factorization. This section also
introduces a new heuristic based on single-cone analysis, inspired by the ability to solve single
second-order cone problems analytically [19].

2 Motivational example: Mixed-integer conic optimization
Presolve, cut generation and branching are standard elements of mixed-integer optimization [1],
and all act to modify either the feasible set of a problem or its formulation. This poses a risk for
the procedure, as the conic relaxations solved in the nodes of the branch-and-bound search tree
may become ill-posed at any time during the branch-and-bound algorithm.

This sudden occurrence of ill-posedness is illustrated to occur in [23] for the conic representation
of the conditional constraint, x ≥ 4 if z = 0, where many solvers are shown to give the wrong answer
or produce errors. The conic relaxations in the search tree for this example are also unattained,
however, motivating the following somewhat “cleaner” example where primal and dual optimal
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[-2.5; -2.5]

[0; -2] [-1; -1]

x4 ≤ 0 x4 ≥ 1

Prune by optimality

[0; 0]

Prune by optimality

Facial reduction
in primal problem

Figure 1: The branch-and-bound search tree for the problem of Example 1. Each node shows the
range from the primal optimal value of the continuous relaxation to its dual optimal value.

values are attained throughout the search tree. The paper returns to analyze the conditional
constraint of [23] in Section 4.3.
Example 1. Consider the mixed-integer second-order cone optimization problem,

θMIP = inf
x

2x3 + 2x4 − x5

s.t. x1 + x2 − x4 ≤ 0,
4x4 − x5 ≥ 0,
x3 ≥ −1,
x5 ≤ 1,
x ∈ Q3 × R2

+
x4 ∈ Z,

(2)

where Qn := {x ∈ Rn : x1 ≥ ‖x2:n‖2} is the quadratic cone. Solving this problem gives θMIP = −1
with the branch-and-bound search tree of Figure 1. The solutions to the node relaxations of this
search tree can be found analytically as follows.

root node Assume the relaxation can be solved without the constraint x1 +x2−x4 ≤ 0. Omitting
it, two separate subproblems are obtained which can be solved by inspection, namely

inf
x1,x2,x3

2x3

s.t. x3 ≥ −1,
(x1, x2, x3) ∈ Q3,

and

inf
x4,x5

2x4 − x5

s.t. 4x4 − x5 ≥ 0,
x5 ≤ 1,
x4, x5 ≥ 0.

Solutions are, respectively, (x1, x2, x3) = (3,−2.75,−1) and (x4, x5) = (0.25, 1). Given that the
omitted constraint is not violated by these values, the assumption was correct, and an optimal
solution of the root node relaxation is given by x = (x1, x2, x3, x4, x5) with value −2.5. This is
also the dual optimal value, since strong feasibility is certified by the identified solution, noting
(x1, x2, x3) ∈ relintQ3, and implies zero duality gap [29].
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[x4 ≥ 1]-node The same analysis as before applies with (x4, x5) = (1, 1) being the new optimal
solution of the second subproblem. Hence, since the omitted constraint is not violated, an optimal
solution is given by x = (3,−2.75,−1, 1, 1) with value −1, and this is also the dual optimal value.

[x4 ≤ 0]-node The till now omitted constraint can no longer be satisfied by optimal solutions
of the separate subproblems. Instead, ocular inspection of (2) reveals the fixations x4 = x5 = 0,
whereby this node relaxation reduces to the analytically solvable primal-dual pair,

θP = inf
x1,x2,x3

2x3

s.t. x1 + x2 ≤ 0,
x3 ≥ −1,
(x1, x2, x3) ∈ Q3,

θD = sup
s,y

−y2

s.t. y1 = −s1,
y1 = −s2,
y2 − 2 = −s3,
y1 ≤ 0, y2 ≥ 0, s ∈ Q3.

(3)

Given x1 + x2 ≤ 0, let x2 = −x1− t for some t ≥ 0 such that the conic constraint (x1, x2, x3) ∈ Q3

becomes x2
1 ≥ (−x1 − t)2 + x2

3 for x1 ≥ 0. This shows that t = 0 and x3 = 0. Hence, the primal
optimal value is θP = 0 as attained, e.g., by (x1, x2, x3) = (0, 0, 0). Similarly, the conic constraint
s ∈ Q3 becomes y2

1 ≥ y2
1 + (y2 − 2)2 from which y2 = 2 follows. The dual optimal value is hence

θD = −2 as attained, e.g., by s = (0, 0, 0) and y = (0, 2).

The [x4 ≤ 0]-node relaxation has positive duality gap and is therefore ill-posed. This ill-posedness
is single-handedly caused by x1 + x2 ≤ 0, as shown by x1 + x2 ≥ 0 being a supporting halfspace [38]
of (x1, x2, x3) ∈ Q3 (compare to the unsatisfied definition of strong feasibility, requiring a feasible
relative interior point of the cone). Hence, the conic relaxation is problematic to optimize without
regularization and the method of facial reduction is now exemplified.

[x4 ≤ 0]-node using facial reduction The previous analysis of this node concluded x4 = x5 = 0,
as well as x1 + x2 = t = 0 and x3 = 0 for the primal-dual pair (3). We can regularize the primal
problem of (3) using either one of the latter two equations, albeit only the first one corresponds to
a facial reduction. Indeed, taking x1 + x2 = 0 as example, it is possible to reformulate the conic
constraint

( x1
x2
x3

)
∈ Q3 as

( x1
x2
x3

)
∈ Q3 ∩

( 1
1
0

)⊥
, (4)

because
( x1
x2
x3

)
∈
( 1

1
0

)⊥
is just another way of writing

( 1
1
0

)T ( x1
x2
x3

)
= x1 + x2 = 0. In turn, given

Q3 ∩
( 1

1
0

)⊥
=
( 1
−1
0

)
R+ (see [17]), this reformulation actually changes the conic constraint into the

linear constraints x1 ≥ 0, x2 = −x1 and x3 = 0. That is, the regularized conic relaxation becomes
a linear relaxation for which strong duality always holds, in this case at value θP = 0.

Example 1 shows that branching operations can cause ill-posed relaxations to occur in the search
tree of a branch-and-bound algorithm. In particular, by branching, the property of strong feasibility
was lost when the feasible set was reduced in a way that kept the relaxation feasible without
intersecting the relative interior of non-polyhedral cones. This specific type of reduction could as
well have been caused by presolving or cut generation. Moreover, it is not even necessary for the
non-polyhedral cone in question to be part of the original problem formulation, as it could be added
later on as a conic cut [6, 25].

The implications of not being able to solve a relaxation is, in general, that there is a part of the
search tree which cannot be pruned and hence prevent conclusions such as infeasibility or optimality
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for the mixed-integer problem. This fact motivates the integration of facial reduction techniques
in the solution process of conic relaxations. Of course, turning attention to linear relaxations,
these will not require regularization for solvability given that they can be solved symbolically
assuming rational coefficients [26]. It will now be shown, however, that linear relaxations may need
regularization for another reason, namely to strengthen the objective bounds they compute.

2.1 Objective bounds from linear relaxations
Cutting plane methods iteratively refining and resolving a linear relaxation of (P ), formed by
outer approximation of the non-polyhedral cones (e.g., [31]), converge with refinement towards the
optimal value of (D)—not (P )!—and vice versa. That is, unless strong duality fails for the linear
relaxation. Formally:
Proposition 1. Let θP , θD ∈ R ∪ {−∞,+∞} be the respective (and possibly unattained) optimal
values of the primal-dual pair (1), denoted (P ) and (D). Suppose C ⊆ Rn is a polyhedral set
replacing K in (P ) and consider the new primal-dual pair:

θ̂P = inf
x
{cTx : Ax = b, x ∈ C}, θ̂D = sup

s,y
{bT y : c−AT y = s, s ∈ C∗}. (5)

Strong duality either fails for the primal-dual pair (5), or the following statements hold:
1. If C ⊇ K, then θP ≥ θD ≥ θ̂D = θ̂P ;

2. If C∗ ⊇ K∗, then θ̂D = θ̂P ≥ θP ≥ θD,
Proof. If strong duality holds for the linear relaxation (θ̂P = θ̂D), the statements follow by
weak duality in conic optimization (θP ≥ θD). In particular, restricting the dual feasible set
in Statement 1 (i.e., C∗ ⊆ K∗) implies θD ≥ θ̂D, contra restricting the primal feasible set in
Statement 2 which implies θ̂P ≥ θP .

Remarkably, the subtlety of Proposition 1 is real as strong duality may fail for the primal-dual
pair (5) even if it satisfied for the primal-dual pair (1). This is seen, e.g., by [34, Example 1] when
the domain x ∈ R2

+ is taken to be an outer approximation of x ∈ {0}2. Just as remarkable is the
opposite case when strong duality holds for the linear relaxation. In particular, independently from
the level of refinement used to construct the linear relaxation, the approximation error (as measured
in terms of the optimal value) remains bounded by the duality gap of the conic relaxation.
Corollary 1. Consider the primal-dual pairs (1) and (5) and suppose strong duality holds for (5).
The following statements hold:

1. If C ⊇ K, then θP − θ̂P ≥ θP − θD;
2. If C∗ ⊇ K∗, then θ̂D − θD ≥ θP − θD,

where θP − θD ≥ 0 is the duality gap of the primal-dual pair (1).
As the duality gap can be arbitrarily large for ill-posed conic relaxations (see, e.g., [40]), the
objective bounds computed from linear relaxations can be arbitrarily weak. For branch-and-bound
algorithms guided solely by the value of linear relaxations, this may cause a far greater number
of nodes to be explored than actually needed. One remedy is to strengthen the objective bounds
by using facial reduction algorithms. The expense alone, however, of checking for ill-posedness
(by solving the conic optimization problems from [13], [28] or [34]), totally ruins the advantage of
the linear relaxations which can be solved efficiently. This motivates the use of facial reduction
heuristics to heuristically detect and fix ill-posedness and therethrough strengthen the objective
bounds computed from linear relaxations.
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3 Background
3.1 Cones, faces and facial reduction
Cones are subsets C ⊆ Rn closed under positive scaling, i.e., λx ∈ C holds for any λ > 0 and x ∈ C.
One such cone is the dual cone of any subset C ⊆ Rn, defined as C∗ := {y ∈ Rn : yTx ≥ 0, ∀x ∈ C}.
This paper only concerns nonempty, closed, convex cones C. In this case, the dual cone C∗ is also
a nonempty, closed, convex cone, C equals (C∗)∗ and the origin is contained [36].

The conical hull of any set S ⊆ Rn, denoted cone(S), is defined as the union of the origin and all
finite conical combinations, λ1s1 + . . .+ λksk for λ ∈ Rk++, of points s1, . . . , sk ∈ S. By definition,
it is a nonempty, convex cone [36].

Polyhedral cones are conical hulls, cone(S), of any finite set of extreme rays S. By definition,
it is a nonempty, closed, convex cone [36, Theorem 19.1].

Proper cones are nonempty, closed and convex, besides being solid and pointed [10]. Specifically,
solid cones have nonempty interior, int C 6= ∅, or, equivalently, are full-dimensional in the sense
that span C = Rn and C⊥ = (span C)⊥ = {0}n. Pointed cones, on the other hand, contain no lines,
i.e., C ∩ (−C) = {0}n.

Self-dual cones satisfy C = C∗. The self-dual and proper cones used in the examples of this paper
are given by the nonnegative orthant Rn+, the quadratic cone Qn := {x ∈ Rn : x1 ≥ ‖x2:n‖2}, the
rotated quadratic cone Qnr := {(x1, x2, x3:n) ∈ R2

+ × Rn−2 | 2x1x2 ≥ ‖x3:n‖22}, and the semidefinite
cone SN+ :=

{
V V T : V ∈ RN×N

}
(see, e.g., [44] for more properties).

Faces of a set S ⊆ RN are subsets F ⊆ S for which any line segment in S, with a midpoint in
F , has both endpoints in F [36]. A proper face of S is a face which is nonempty and not equal
to S. These definitions generalize extreme points and other faces from polyhedra, and will now be
related to the nonempty, closed, convex cones C.

Let z⊥ := {x ∈ Rn : xT z = 0}. For z ∈ C∗, the intersection C ∩ z⊥ contains the origin and is
a face of C as it maximizes −zTx over x ∈ C [36]. Hence, if z ∈ C∗ \ C⊥, the intersection C ∩ z⊥
cannot equal C and hence represent a proper face of C.

In these terms, a facial reduction can finally be defined as a valid problem reformulation in
which a cone C is replaced by one of its proper faces, e.g., C ∩ z⊥ for some z ∈ C∗ \ C⊥.

3.2 Facial reduction certificates
Consider again the primal-dual pair (1), restated here for the convenience of the reader:

(P ) : θP = inf
x
{cTx : Ax = b, x ∈ K}, (D) : θD = sup

s,y
{bT y : c−AT y = s, s ∈ K∗}.

where K,K∗ ⊆ Rn are nonempty, closed, convex cones. Any equation of the form zTx = 0, valid in
(P ) for some z ∈ K∗ \ K⊥, justifies the facial reduction from cone K to its proper face K ∩ z⊥. If
the equation is implied by the equation system Ax = b, formally denoted z⊥ ⊇ {x ∈ Rn : Ax = b},
the exposing vector z is called a facial reduction certificate for (P ) [34]. Similarly, the exposing
vector z ∈ K \ (K∗)⊥ of a facial reduction in (D), is called a facial reduction certificate for (D) if
the required equation zT s = 0 is implied by the equation system c − AT y = s. The immediate
conic formulation of the feasible set of facial reduction certificates for (P ) and (D), respectively,
can thus be stated as follows.

Proposition 2 ([34]). The following statements hold:
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1. z ∈ Rn is a facial reduction certificate for (P ) if the exists a ω ∈ Rm for which

bTω = 0, z = −ATω, z ∈ K∗ \ K⊥,

and all facial reduction certificates are of this form if {x ∈ Rn : Ax = b} 6= ∅.

2. z ∈ Rn is a facial reduction certificate for (D) if and only if

cT z = 0, Az = 0, z ∈ K \ (K∗)⊥.

The conic formulations in statement 1 and 2 of Proposition 2 are called auxiliary problems of the
primal-dual pair (1). Note that a constraint of the form x ∈ C \ (C∗)⊥ is satisfied if and only if
x ∈ C and x has nonzero inner-product with any point in relint C∗. Hence, x ∈ C \ (C∗)⊥ can be
reformulated as x ∈ C and p̂Tx = 1 for p̂ ∈ relint C∗ in the statements of Proposition 2, thereby
normalizing the solutions to the homogeneous auxiliary problems.

3.3 Subgradient-based outer approximation
Let C ⊆ Rn be a nonempty, closed, convex cone with membership indicator function

χC(x) =
{

0 if x ∈ C,
+∞ otherwise.

The indicator function is convex, since the set C is convex [36], and offers the useful description
C = {x ∈ Rn : χC(x) ≤ 0}. In particular, valid inequalities of {x ∈ Rn : χC(x) ≤ 0} are readily
provided by the subgradient inequality

χC(x̂) + ξ
T (x− x̂) ≤ 0, (6)

holding for any x̂ ∈ Rn, and all subgradients ξ of the corresponding subdifferential set ∂χC(x̂) ⊆ Rn.
This is a direct consequence of the inequality χC(x) ≤ 0, combined with the fact that subgradients
ξ ∈ ∂χC(x̂) are defined (e.g., in [36]) as solutions to

χC(x̂) + ξ
T (x− x̂) ≤ χC(x) for all x ∈ Rn. (7)

For the subset of points x̂ /∈ C, the system (7) has no solution as χC(x̂) = +∞. For all other points,
x̂ ∈ C, the system is solved by ξ ∈ −C∗ ∩ x̂⊥ [36, Corollary 23.5.4]. This allows us to characterize
the family of subgradient inequalities (6) in a much simpler way.

Theorem 1. For nonempty, closed, convex cones C ⊆ Rn, the set obtained by intersecting all
subgradient inequalities of the form (6), is concisely described by

ξTx ≥ 0, for ξ ∈ Ω,

where Ω ⊆ Rn is any set satisfying cone(Ω) = C∗.

Proof. The subdifferential set is the solutions to (7) given by

∂χC(x̂) =
{
∅ if x̂ /∈ C,
−C∗ ∩ x̂⊥ otherwise,
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as argued. Hence, to satisfy ξ ∈ ∂χC(x̂) as needed in (6), both χC(x̂) = 0 and ξT x̂ = 0 is required.
This simplifies (6) to ξTx ≤ 0, holding for any x̂ ∈ C and all ξ ∈ −C∗ ∩ x̂⊥. The claim is hence
shown for Ω = ∪x̂∈C(C∗ ∩ x̂⊥) = C∗ (noting that C contains the origin), in terms of the negated
subgradient ξ = −ξ. Finally, if cone(Ω) = C∗, then any ξ ∈ C∗ has a finite conical factorization
ξ = ∑k

j=1 λjξ
T
j for λ ∈ Rk++ and ξj ∈ Ω. This shows ξTx = λ1ξT1 x+. . .+λkξTk x ≥ 0 to be redundant

given ξTj x ≥ 0 for j = 1, . . . , k.

Needless to say, an outer approximation of C is obtained by Theorem 1 from any finite subset of
Ω ⊆ Rn, or less pedantic, from any finite subset of C∗.

Corollary 2. A subgradient-based outer approximation of a nonempty, closed, convex cone C ⊆ Rn
is given by Ω̂∗ = {x : ξTx ≥ 0 for ξ ∈ Ω̂}, that is Ω̂∗ ⊇ C, for any finite subset Ω̂ ⊆ C∗.

The rather trivial corollary above does not exploit the distinction between Ω and C∗ in Theorem 1,
and may hence lead to formulations with redundancies. What Theorem 1 actually suggests is that
Ω can be chosen as any minimal set of conically independent points generating C∗ in the sense that
cone(Ω) = C∗. This notion can be clarified in case C∗ is a pointed, nonempty, closed, convex cone
not equal to {0}n. Specifically, in this case, a necessary and sufficient condition for cone(Ω) = C∗ is
that Ω contains a relative interior point from all one-dimensional faces of C∗. This follows by [36,
Corollary 18.5.2.], noting that extreme rays are used to denote the set of half-line faces, i.e., the set
of one-dimensional faces for pointed, nonempty, closed, convex cones. This leads to the following
stricter definition of an outer approximation obtained by Theorem 1.

Corollary 3. Suppose Ω is any minimal set of conically independent points generating C∗ in the
sense that cone(Ω) = C∗. A subgradient-based outer approximation of a nonempty, closed, convex
cone C ⊆ Rn is then given by Ω̂∗ = {x : ξTx ≥ 0 for ξ ∈ Ω̂} for any finite subset Ω̂ ⊆ Ω.

Outer approximations on the form of Corollary 3 appears for second-order cones in [7], and for
semidefinite cones in [30, 33]. These outer approximations are constructed either statically as in
[33], or dynamically as in [7, 30] by iteratively separating violated points. This indicates that the
implications of Theorem 1 are folklore, although never formalized to the author’s knowledge. The
paper returns to show the static outer approximations of [33] in the context of facial reduction
heuristics in Section 4.1.

4 Facial reduction heuristics
The auxiliary problems of Proposition 2 describe the feasible set of facial reduction certificates for
(P ) and (D), respectively. Solving simplifications of these sets are hence a straightforward way
to design facial reduction heuristics. This is done for the family of heuristics based on linear
optimization in Section 4.1, and for the heuristics based on cone factorization in Section 4.4.
Alternatively, one may search for equations of the form zTx = 0 in (P ) (or zT s = 0 in (D))
and detect whenever the exposing vector z ∈ Rn exposes a proper face of the respective cone.
This is done in the subgradient matching heuristic of Section 4.2 and in the single-cone analysis of
Section 4.3.

4.1 A family of heuristics based on linear optimization
This family of facial reduction heuristics have in common that they solve the auxiliary problems
of Proposition 2 using linear inner approximations of the conic variable domains. This allows the

8



partially represented set of facial reduction certificates to be explored fairly efficient and to high
accuracy using simplex methods. In fact, the use of simplex methods allow exact certificates in
rational arithmetic to be computed for this family of heuristics, within reasonable computational
efforts [26]. This motivates the use of heuristics based on linear optimization.

To begin, note that a partial set of facial reduction certificates is clearly obtained through inner
approximation of the auxiliary problems in Proposition 2. One example of this is given in [33],
where inner approximations of the conic variable domain are obtained from span-invariant outer
approximations of the cone considered for facial reduction. Taking the auxiliary problem of
Proposition 2-(1) as example, an inner approximation of the conic variable domain,

C∗ \ C⊥ ⊆ K∗ \ K⊥,

clearly holds if C∗ ⊆ K∗ and C⊥ ⊇ K⊥ is satisfied. The former containment shows C to be an
outer approximation of K by its contrapositive, C ⊇ K, and the latter containment establish span-
invariance. In particular, the latter containment and its contrapositive, span C ⊆ spanK, must hold
with equality given C ⊇ K. This characterization leads to the following family of inner approximated
auxiliary problems.

Proposition 3. A partial set of facial reduction certificates, z ∈ Rn, is obtained from any span-
invariant outer approximation of the cone from the considered problem. Specifically:

1. Given K ⊆ C ⊆ Rn where spanK = span C, a partial description of the facial reduction
certificates for (P ) is given by

bTω = 0, z = −ATω, z ∈ C∗ \ C⊥.

2. Given K∗ ⊆ C∗ ⊆ Rn where spanK∗ = span C∗, a partial description of the facial reduction
certificates for (D) is given by

cT z = 0, Az = 0, z ∈ C \ (C∗)⊥.

Restricting attention to primal-dual pairs (1) where the cone considered for facial reduction is solid,
the span-invariance of Proposition 3 is automatically satisfied. This makes it possible to apply the
subgradient-based outer approximation of Corollary 2 directly. A partial description of the facial
reduction certificates for (P ) is thus obtained from Proposition 3-(1), using

C = C1 × · · · × Ck, where Cj = {x ∈ Rn : ξTx ≥ 0, ∀ξ ∈ Ω̂j}, (8)

given any finite subset of negated subgradients, Ω̂j ⊆ K∗j , for all factors of the Cartesian product
K = K1 × · · · × Kk. It is worth noting that Cj = Ω̂∗j by definition and hence C∗j = cone(Ω̂j) by
the bipolar theorem [36]. Two examples of this inner approximation are now given, satisfying the
stricter requirements of Corollary 3 on the selection of Ω̂j .

Example 2. The semidefinite cone SN+ is outer approximated in accordance with Corollary 3, by
a finite subset Ω̂ of rank-one matrices of the form ωωT for ω ∈ RN , representing the set of extreme
rays for SN+ [24]. Two examples from [33] are given by:

1. The non-negative diagonal approximation chooses ω as any permutation of (1, 0, . . . , 0)T .
Hence, C = {X ∈ Sn : Xii ≥ 0} and C∗ = {X ∈ Sn : Xii ≥ 0, Xij = 0 for i 6= j}.
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2. The diagonally-dominant approximation chooses ω as any permutation of either (1, 0, . . . , 0)T ,
(1, 1, 0, . . . , 0)T or (1,−1, 0, . . . , 0)T . Hence, C = {X ∈ Sn : Xii ≥ 0, Xii +Xjj ≥ 2|Xij |} and
C∗ = {X ∈ Sn : Xii ≥

∑
j 6=i |Xij |}.

These realizations of C give rise to inner approximated auxiliary problems through Proposition 3,
that are shown effective in [33] for a wide range of ill-posed semidefinite optimization instances.

With the right choice of Ω̂j in Corollary 2, any facial reduction certificate can be found using the
subgradient-based inner approximated auxiliary problems of Proposition 3. The only catch is that
the right choice of Ω̂j literally have to guess which facial reductions are possible, in order for this
family of heuristics to recognize them.

Proposition 4. Let z = (z1, . . . , zk) be a facial reduction certificate for (P ), where K = K1×· · ·×Kk
is a solid cone. Suppose further that this z is feasible in the auxiliary problem of Proposition 3-(1)
for a cone C = C1×· · ·×Ck defined as in (8). Then C∗ = cone(Ω̂1)×· · ·×cone(Ω̂k) for finite subsets
Ω̂j ⊆ K∗j , giving rise to finite conical factorizations z = (∑p1

i=1 λ
i
1ξ
i
1, . . . ,

∑pk
i=1 λ

i
kξ
i
k) for λij > 0 and

nonzero ξij ∈ Ω̂j. It now follows that the reformulation from Kj to Kj ∩ (ξij)⊥ is a valid facial
reduction in (P ) for all j = 1, . . . , k and i = 1, . . . , pj.

Proof. A facial reduction certificate for (P ) satisfy z ∈ K∗ by Proposition 2. Hence,

K ∩ z⊥ = (K1 ∩ z⊥1 )× · · · × (Kk ∩ z⊥k )

as seen, e.g., by [17, Corollary 1]. In turn, each Cartesian factor can be rewritten as

Kj ∩ z⊥j = Kj ∩ (∑pj

i=1 λ
i
jξ
i
j)⊥ = Kj

⋂pj

i=1(λijξij)⊥ = Kj
⋂pj

i=1(ξij)⊥,

where the first equality follows by definition. The second equality is a consequence of [17, Proposi-
tion 3], given λijξij ∈ K∗j as implied by λij > 0 and ξij ∈ Ω̂j ⊆ K∗j . The last equality is from invariance
of the orthogonal complement to positive scaling. The claim hence follows from Kj ∩ (ξij)⊥ being a
relaxation of K∩z⊥, and from noting that Kj ∩ (ξij)⊥ defines a proper face of the solid cone Kj .

The equivalent statement for the subgradient-based inner approximated auxiliary problem of Propo-
sition 3-(2) is shown similarly. There is another and possibly more intuitive way to think of this.
In particular, note that the partial set of certificates for the primal-dual pair (1), is the complete
set of certificates for the linear primal-dual pair:

θ̂P = inf
x
{cTx : Ax = b, x ∈ C}, θ̂D = sup

s,y
{bT y : c−AT y = s, s ∈ C∗}, (9)

as seen by comparing Proposition 2 with Proposition 3. Hence, you have to guess the facial
reductions in order to find them in (9), since all facial reductions of linear problems are inequalities
holding as implied equalities [13] and the only inequalities of (9) are those with normal vectors from
Ω̂j . As example, if C is defined by the non-negative diagonal approximation of Example 2-(1), the
only facial reductions that can be found are from diagonal entries fixed to zero. Simpler variable
bound analysis may also yield these conclusions and hence might enjoy much of the success reported
for the non-negative diagonal approximation in [33]. This motivates subgradient matching.
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4.2 Subgradient matching
In contrast to the previous family of heuristics that require one to solve an optimization problem,
albeit linear, the subgradient matching technique integrates with domain propagation to provide
a faster facial reduction heuristic. This integration has synergistic effects too, even when no facial
reductions are identified, as subgradient matching acts to strengthen the variable and constraint
activity bounds derived through domain propagation as will be shown.

Consider the activity bounds of an affine expression aTx for some a ∈ Rn, given by

Lmin =
∑

j:aj>0
ajlj +

∑

j:aj<0
ajuj and Lmax =

∑

j:aj>0
ajuj +

∑

j:aj<0
ajlj , (10)

where l, u ∈ (R ∪ {−∞,+∞})n holds the domain propagated lower and upper variable bounds.
These are called the simplest, but also the weakest, activity bounds by Savelsbergh [37]. A simple
advancement of these bounds is to include subgradient information from the conic variable domain
x ∈ K as shown in Algorithm 1. The correctness of this algorithm is proven in Proposition 5.

Algorithm 1: Computing activity bounds of aTx using subgradient matching.
Data: Suppose x = (x1, . . . , xk) ∈ K1 × · · · × Kk, dictating similar partitioning of

a = (a1, . . . , ak), l = (l1, . . . , lk) and u = (u1, . . . , uk).
1 for all i ∈ {1, . . . , k} do
2 Compute the simple activity bounds of (ai)Txi:

Limin ←
∑

j:ai
j>0

aijl
i
j +

∑

j:ai
j<0

aiju
i
j and Limax ←

∑

j:ai
j>0

aiju
i
j +

∑

j:ai
j<0

aijl
i
j .

3 if Limin ≤ 0 and ai ∈ K∗i then
4 Update Limin ← 0.
5 end
6 if Limax ≥ 0 and ai ∈ −K∗i then
7 Update Limax ← 0.
8 end
9 end

10 return Lmin ←
∑k
i=1 L

i
min and Lmax ←

∑k
i=1 L

i
max.

Proposition 5. The activity bounds computed by Algorithm 1 are valid and stronger than those
computed by (10).

Proof. If line 4 (resp. line 7) of Algorithm 1 never executes, then Lmin (resp. Lmax) equals the
value computed by (10). Otherwise, when line 4 executes, then (ai)Txi ≥ 0 holds by definition of
dual cones and strengthens the current lower bound if Limin < 0. Similarly, when line 7 executes,
then (ai)Txi ≤ 0 holds and strengthens the current upper bound if Limax > 0.

The attentive reader may question the use of non-strict inequalities on line 4 and 7 of Algorithm 1,
as the updating of Limin and Limax is needless if they are already zero. This is done intentionally,
however, to stress that one should pay attention to all cases in which the subgradient matching
bound is the tightest bound computed. In particular, whenever this holds, valid facial reductions
can be identified from forcing constraints on the affine expression aTx.
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Definition 1. Suppose ∑p
i=1 L

i = b. A constraint is considered forcing if

1. ∑p
i=1(ai)Txi ≤ b for lower bounded terms (ai)Txi ≥ Li for all i ∈ {1, . . . , p};

2. ∑p
i=1(ai)Txi ≥ b for upper bounded terms (ai)Txi ≤ Li for all i ∈ {1, . . . , p};

3. ∑p
i=1(ai)Txi = b for lower bounded terms (resp. upper bounded terms) as above,

whereby (ai)Txi = Li for all i ∈ {1, . . . , p} is implied.

Forcing constraints appear already in [3], but the idea that they may be used to identify valid facial
reductions is new. This idea is formalized in the following proposition.

Proposition 6. Consider a forcing constraint from Definition 1. If any of the implied equations
(ai)Txi = Li holds with Li = 0 and ai ∈ K∗ \ K⊥ for some i ∈ {1, . . . , p}, the facial reduction from
xi ∈ K to xi ∈ K ∩ (ai)⊥ is justified.

Comparing Proposition 6 to Algorithm 1, it can now be verified that line 4 and 7 captures the
sought conditions for a facial reduction whenever ai 6∈ K⊥i . Note that this is equivalent to ai 6= 0
for solid cones. In an attempt to evaluate the usefulness of subgradient matching without an
implementation, the reader is invited to verify that it is capable of regularizing the [x4 ≤ 0]-node
of Example 1. It can furthermore be shown to recognize all primal facial reductions of all examples
in [34], including the following less trivial reduction.

Example 3. Consider the primal-dual pair originating with [2], given by

inf
x

x3

s.t. x1 + x2 + x4 + x5 = 0,
−x3 + x4 = 1,
x ∈ Q3 ×Q2,

sup
s,y

y2

s.t.



0
0
1
0
0



−




y1
y1
−y2

y1 + y2
y1




= s,

s ∈ Q3 ×Q2.

(11)

Simple activity bounds for the equation x1 + x2 + x4 + x5 = 0 leads to Lmin = −∞ and Lmax =∞
since x2 and x5 are free variables. This equation is nevertheless forcing according to Definition 1,
as shown by the following partition into Cartesian factors,

aTx = (a1)Tx1 + (a2)Tx2 = (x1 + x2) + (x4 + x5) = 0,

where a1 = (1, 1, 0)T and a2 = (1, 1)T . In particular, subgradient matching finds L1
min = 0 since

a1 ∈ Q3, as well as L2
min = 0 since a2 ∈ Q2, to conclude Lmin = 0 which matches the value aTx

is constrained to take. Hence, x1 + x2 = 0 and x4 + x5 = 0 by Proposition 6, exposing two facial
reductions. That is, from x1 ∈ Q3 to x1 ∈ Q3 ∩ (a1)⊥ and from x2 ∈ Q2 to x2 ∈ Q2 ∩ (a2)⊥.

Finally, note that simpler forms of subgradient matching have already appeared in literature.
Gruber et al. [21] (and latter Cheung et al. [13]) notice that the existence of an equation aTx = 0
in the considered problem, for a semidefinite coefficient and variable a, x ∈ Sn+, implies validity of
the facial reduction from x ∈ Sn+ to x ∈ Sn+ ∩ a⊥. This special case of subgradient matching was
shown useful for the side chain positioning problem in [12].

Another far less apparent appearance of subgradient matching is given by the widely known
facial reduction made possible by diagonal entries of a semidefinite cone fixed to zero (see, e.g., [39,
page 535]). We elaborate on this specific usecase in the following paragraph.
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Subgradient matching on variable bounds For a conic variable domain xi ∈ K, consider the
set of variables selected by aTx for all permutations of a = (1, 0, . . . , 0) belonging to K∗ \K⊥ (resp.
to −K∗ \K⊥). The variables of this set all have lower (resp. upper) bounds of zero by definition of
dual cones. Suppose then that an upper bound xj ≤ 0 (resp. a lower bound xj ≥ 0) was derived
for a variable of this set, e.g., using domain propagation. This would then show that the variable
was forced to zero (as the execution of Algorithm 1 on this bound constraint would also reveal),
whereby the facial reduction of Proposition 6 can be used on the conic variable domain.

Subgradient matching with general conic constraints One may confirm that Definition 1
and Proposition 6 can be generalized from expressions ∑p

i=1(ai)Txi following the variable partition
x = (x1, . . . , xp), to any finite list of variable-overlapping expressions of the form ∑p

i=1(ai)Tx. As a
consequence, Algorithm 1 can be extended to include subgradient information from general conic
constraints, Dx− d ∈ K for some D ∈ Rp×n and b ∈ Rp, using the partitioning strategy

aTx = (a1)Tx+ (a2)Tx =
(
aTx− λT (Dx− d)

)
+ λT (Dx− d),

for any λ ∈ Rp. The term (a2)Tx = λT (Dx − d) is nonnegative and invariant to the computation
of Lmin if λ ∈ K∗, or nonpositive and invariant to the computation of Lmax if λ ∈ −K∗. Hence,
by restricting the domain of λ, one can disregard (a2)Tx in the respective bound computation
and actively choose λ to strengthen the Lmin (resp. Lmax) bound of (a1)Tx, e.g., by eliminating
unbounded variables. If the constraint on aTx is shown forcing, the expression (a2)Tx should of
course be used to check for facial reductions in Proposition 6. In particular, if λ ∈ K\ (K∗)⊥ (resp.
λ ∈ −K \ (K∗)⊥) holds, then the facial reduction from Dx− d ∈ K to Dx− d ∈ K∩ λ⊥ is justified.
An exact strategy for subgradient matching with general conic constraints is left unexplored.

4.3 Single-cone analysis
As opposed to subgradient matching, which integrates information from conic constraints into the
analysis of a single linear constraint, single-cone analysis acts to integrate information from linear
constraints into the analysis of a single conic constraint. This is realized as a facial reduction
heuristic for the second-order cones in this section. In motivation of this heuristic, the following
example from [23] is now presented.

Example 4. The non-standard mixed-integer optimization problem,

inf
x,t

x2 + t

s.t. x− 4 ≥ 0 if t = 0,
x ∈ R+,
t ∈ {0, 1},

is solved by (x, t) = (0, 1) and representable as a conic optimization problem by

inf
x,t,ω,y,γ

ω + t

s.t. x− y − 4 ≥ 0,( 1/2
ω
x

)
∈ Q3

r ,

(
γ+t
γ−t
2y

)
∈ Q3,

x ∈ R+,
t ∈ {0, 1}.
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To give a feeling for this conic formulation, the first conic constraint models ω ≥ x2 to represent
the squared objective contribution. The second conic constraint models y = 0 if t = 0 and √γ ≥ |y|
if t = 1 (for unbounded γ) to represent the conditional constraint (see [23] for more details).

Branching on t = 0, the relaxation is ill-posed as there is no way to satisfy
(
γ+t
γ−t
2y

)
∈ relintQ3

as needed for strong feasibility. In this case, however, there is also a linear dependency exposed by
zT
(
γ+t
γ−t
2y

)
= 0 for z =

(
1
−1
0

)
. That is, the conic constraint

(
γ+t
γ−t
2y

)
∈ Q3 can be restated as

(
γ+t
γ−t
2y

)
∈ Q3 ∩

(
1
−1
0

)⊥
=
(

1
1
0

)
R+ (see [17]).

This simplifies to γ ≥ 0 and 2y = 0, and regularizes the relaxation as the reader may confirm by
verifying the property of strong feasibility.

In order to systematize the search, exemplified above, for linear dependencies between the entries
of conic constraints, let D ∈ Rp×n, d ∈ Rp and K ⊆ Rp and consider

Dx− d = (D, d ) ( x
−1 ) ∈ K.

Any linear dependency zT (D, d ) = 0, for nonzero z ∈ Rp, justifies reformulation to the subspace
intersected conic constraint Dx− d ∈ K ∩ z⊥. For z to expose a proper face of a K, as needed for
a facial reduction, we require a solution to the system

zT (D, d ) = 0, z ∈ K∗ \ K⊥,

which is comparable to Proposition 2-(2) and equivalent to the system

(D, d )T z = 0, p̂T z = 1, z ∈ K∗, (12)

for some relative interior point p̂ ∈ relintK [33]. Finally, if K∗ is the image under linear mapping
of another set, i.e., K∗ = HK̂∗, then (12) with z = Hẑ is equivalent to the system

(HTD, HT d )T ẑ = 0, (HT p̂)T ẑ = 1, ẑ ∈ K̂∗. (13)

These systems are now shown analytically solvable for the second-order cones. The first step in
this direction is to rewrite (12) as a least-norm optimization problem for the quadratic cone.

Proposition 7. Let D =
(
αT

A

)
∈ Rp×n and d =

(
β
b

)
∈ Rp. The system (12), with K = Qp and

the relative interior point p̂ = (1, 0, . . . , 0)T ∈ relintQp, is feasible if and only if θP ≤ 1 for the
least-norm optimization problem

θP = inf
λ
‖λ‖2

s.t. (A, b )T λ = − ( αβ ) ,
λ ∈ Rp−1.

(14)

Specifically, a feasible point of (12) is given by z = (1, λ̂T )T for any feasible point λ̂ of (14) with
an objective value less than or equal to one.

Proof. Let z ∈ Rp satisfy (12) such that p̂T z = z1 = 1. Then z = (1, λT )T for some λ ∈ Rp−1. The
claim follows by z ∈ Qp ⇐⇒ ‖λ‖2 ≤ 1 and zT (D d ) = ( αT β ) + λT (A b ).
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Algorithm 2: Single-cone analysis for a second-order cone.
Data: Let D ∈ Rp×n, b ∈ Rp and K ⊆ Rp, such that Dx− d ∈ K is a second-order cone

constraint (or variable domain) of the considered problem.
1 while Dx− d contains a singleton variable do
2 Substitute the singleton variable in Dx− d with its unique definition in the equation

system of the considered problem.
3 end
4 return a facial reduction certificate, if one is found following the instructions of Corollary 4.

The least-norm optimization problem of Proposition 7 is widely documented elsewhere and can,
although alternatives exists, be solved to a fair balance between speed and accuracy by means of
QR-decomposition [22]. For completeness, this approach is now established.

Proposition 8. Consider the least-norm optimization problem of Proposition 7, and the QR-
decomposition with pivoting (Q1, Q2)

(
R1
0

)
= (A, b )P for full row rank R1 ∈ Rr×p. Then λ =

Q
(
λ′
0
)
is a solution to (14) if and only if λ′ is a solution to

(R1)Tλ′ = −P T ( αβ ) , (15)

which can be determined by forward substitution.

Proof. The system (15) is equivalent to PRT
(
λ′
0
)

= P (R1)Tλ′ = − ( αβ ). Hence, by definition of λ
and QTQ = I, the system implies feasibility of λ in (14) as shown by PRTQTλ = (A, b)Tλ = − ( αβ ).
To show that λ is the unique optimal solution of (14), note that any other feasible point λ̂ of
(14) satisfy (λ̂ − λ)Tλ = (λ̂ − λ)TQ

(
λ′
0
)

= (λ̂ − λ)TQRP Tω = ((A, b)T λ̂ − (A, b)Tλ)Tω = 0
where R(P Tω) =

(
λ′
0
)
is solvable because R1 has full row rank. Thus, ‖λ̂‖22 = ‖λ̂ − λ + λ‖22 =

‖λ̂− λ‖22 + ‖λ‖22 + 2(λ̂− λ)Tλ = ‖λ̂− λ‖22 + ‖λ‖22 > ‖λ‖22 for λ 6= λ̂.

These results are finally be combined in Corollary 4 and realized in the facial reduction heuristic
of Algorithm 2, allowing heuristic regularization of the second-order cones in (P ) and (D).

Corollary 4. Let D ∈ Rp×n and b ∈ Rp such that Dx−d ∈ K is a second-order cone constraint. Any
linear dependency between the conic entries, exposing a facial reduction, can be found analytically.

1. If K = Qp, the system (12) can be solved using p̂ = (1, 0, . . . , 0)T ∈ relintQp as shown by
Proposition 7 and Proposition 8.

2. If K = Qpr, the system (13) can be solved as in statement 1, using H =
( 1√

2
1√
2 0

1√
2
−1√

2 0
0 0 I

)
, such that

(Qpr)∗ = H(Qp)∗, and p̂ = (
√

2
2 ,
√

2
2 , 0, . . . , 0)T ∈ relintQpr, such that HT p̂ = (1, 0, . . . , 0).

Note that the substitution mechanism of Algorithm 2 is rather unsophisticated, simply purging
singleton variables, and improvements could possibly be made in this direction. The merits of
additional substitutions are hard to quantify without executing the computations of Corollary 4
repeatedly, however, and the idea is hence left unexplored.
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4.4 Heuristics based on cone factorization
Heuristics based on cone factorization exploits the fact that the equations of the auxiliary problems
of Proposition 2 are homogeneous. In particular, if a cone can be put on product-form, then inner
approximations of the auxiliary problems are simply obtained by dropping factors of that product-
form. A simple analogy of this relation is that ax = 0 implies axy = 0 for variables x, y ∈ R.
Taking the semidefinite cone as example, this approach leads to the facial reduction heuristic from
[13, Algorithm 1.0.2].

Example 5. The semidefinite cone from Section 3.1 was defined in its product-form as

SN+ :=
{
V V T : V ∈ RN×N

}
⊆ RN×N . (16)

Substituting this definition into the auxiliary problem from Proposition 2-(2), and taking advantage
of V V T 6= 0⇐⇒ V 6= 0, one obtain in matrix notation

〈C, V V T 〉 = 〈CV, V 〉 = 0,



〈A1, V V T 〉

...
〈Am, V V T 〉


 =



〈A1V, V 〉

...
〈AmV, V 〉


 = 0, V ∈ RN×N \ {0},

where 〈X,Y 〉 = Tr(Y TX) is the trace inner product. An inner approximation is thus obtained by

CV = 0,



A1V
...

AmV


 = 0, V ∈ RN×N \ {0},

from which facial reduction certificates for (D) can be computed as V V T , for nonzero matrices V
composed of columns from the common nullspace of C and Ai for i = 1, . . . ,m.

More generally, one may consider all proper cones factorisable into a bilinear matrix-vector product
of the form

K = {L(v)v : v ∈ Rn} ⊆ Rn. (17)

The semidefinite cone from Example 5 is included in vectorized form by this characterization as
will become clear, and a facial reduction heuristic for (D), based on the auxiliary problem from
Proposition 2-(2), can similarly be derived.

Theorem 2. Consider the product-form (17) of a Cartesian product of proper cones,

K = K1 × · · · × Kk =
{
L(v)v =

(
L1(v1)

...
Lk(vk)

)( v1
...
vk

)
: v ∈ Rn = Rn1 × · · · × Rnk

}
⊆ Rn.

Substituting this definition into the auxiliary problem from Proposition 2-(2), an inner approxima-
tion can be obtained, as proven, by

cT
(
L1(v1)

...
Lk(vk)

)
= 0, A

(
L1(v1)

...
Lk(vk)

)
= 0, v ∈ Rn \ {0}.

Let cT = (cT1 , . . . , cTk ) and A = (A1, . . . , Ak) according to the Cartesian product. Facial reduction
certificates for (D) can then be computed as vectors z = L(v)v, for nonzero v = (v1, . . . , vk) ∈ Rn
satisfying cTi Li(vi) = 0 and AiLi(vi) = 0 for i = 1, . . . , k.
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Proof. The only difficult part is

K \ (K∗)⊥ = K \ {0} = {L(v)v : v ∈ Rn \ {0}} .

The first step holds since K∗ is solid, as shown by the closure of K being pointed [10]. The second
step holds since L(v)v = 0 only if v = 0, as can be shown by K being solid. In particular, assume
that L(v̂)v̂ = 0 for some v̂ 6= 0. Then L(λv̂)(λv̂) = λ2L(v̂)v̂ = 0 for all λ ∈ R by bilinearity. Hence,
spanK 6= Rn contradicting K being solid.

Heuristics for (D) based on the cone factorization approach of Theorem 2 can be realized for the
class of symmetric cones [44]. Formally:

Proposition 9. The product-form (17) is achieved by the following cones:

1. The nonnegative orthant R+, representable by L(v) = v;

2. The quadratic cone Qn, representable by L(v) =
(
v1 vT2:n
v2:n v1I

)
;

3. The semidefinite cone svec(SN+ ), representable by L(v) = I ⊗s smat(v), where v ∈ RN(N+1)/2;

4. The semidefinite cone vec(Sn+), representable by L(v) = I ⊗mat(v)T , where v ∈ RN2.

Proof. Statements 1-3 follow from the fact that all symmetric cones have the product-form,

K = {v ◦ v : v ∈ Rn} ⊆ Rn,

for some Euclidean Jordan algebra with associated Jordan product ’◦’. The Jordan product is
bilinear such that v ◦ w = L(v)w for some symmetric linear mapping L(v) : Rn → Sn×n, and the
definitions of L(v) for the cones above are well known [15, 44]. The symmetric Kronecker product
’⊗s’ as found, e.g., in [44], satisfies L(v)w = svec

(
smat(v)smat(w) + smat(w)smat(v)

)
/2.

Statement 4 follows from the product-form (16) and the Kronecker product ’⊗’ for which
L(v)w = vec(mat(v)Tmat(w)).

It is unclear whether Theorem 2 represents any advancement from the special case of Example 5.
First of all, Statement 1 is an idempotent as AiL(v)v = 0 ⇐⇒ AiL(v) = 0 in Theorem 2 for all
L(v) = λv where λ > 0. Secondly, Statement 2 and Statement 3 are restricted in usability by
symmetry of L(v), and Statement 4 leads to the characterization shown in Example 5. Finally,
the author was unable to use the product-form (17) to construct an inner approximation for
Proposition 2-(1) that was not trivially infeasible. Similar heuristics for (P ), based on cone
factorization, might thus not be possible.

5 Conclusion
Facial reduction is theoretically established as a useful countermeasure against ill-posedness in
mixed-integer optimization which affects both conic and linear relaxations. Speedy and/or accurate
facial reduction heuristics are further motivated by the slow and inaccurate alternative of having to
solve conic optimization problems in each iteration of the facial reduction algorithm. This led to the
development of the heuristics based on linear optimization, subgradient matching and single-cone
analysis, which were shown useful in various scenarios. A fourth type of heuristic based on cone
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factorization may also prove useful, although it seems to be limited in applicability to dual facial
reductions of semidefinite cones.

Further work is needed to test how these heuristics compare and performs in practice, such as
on the instances of CBLIB [18]. Also, it remains to be investigated how these heuristics should be
integrated with the brand-and-bound algorithm for greatest accuracy, greatest speed, or a balance
thereof. In this regard, it is likely that local information on branching decisions, presolve changes
and generated cuts can be used to guide the employment of heuristics. In a sense, subgradient
matching already achieves this by integrating with domain propagation to capture facial reductions
only from the changes propagated out.
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