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Abstract

Revenue Management Systems (RMS) traditionally solve the seat allocation problem
separately from the overbooking problem. Overbooking is managed by inflating the autho-
rization levels obtained from seat allocation by various heuristics. This approach although
suboptimal, is necessitated because of the complexity and dimensionality of the Dynamic
Program (DP), which prohibits computation for realistic size problems.

We review several DP models developed for seat-allocation and overbooking over a time
span of 40 years, reflecting changed business environments. In this report we link these
models together by means of two transformations: The marginal revenue transformation of
Fiig et al. [2010] and the equivalence charging scheme of Subramanian et al. [1999]. These
transformations enable us to transform the joint seat allocation and overbooking problem for
fare family fare structures into an equivalent independent demand model, which is readily
solved. The resulting availability control can easily by implemented in existing RMS.

Keywords: Revenue Management Systems (RMS), overbooking, fare family fare struc-
tures

1 Introduction and Motivation

The introduction of Computer Reservation Systems (CRS) created the technology that enabled
the ability to segment customers and hence created the opportunity for airlines to manage their
seat inventory, which was the driver behind revenue management systems (RMS). The RMS were
designed to support the airline business model by optimizing the price of the airline seats. This
is still the case today although the RMS has undergone radical changes as the airline product
has evolved over the past 40 years: point-to-point network (1980s); hub and spoke network
(1990s); simplified fare structures (2000s); alliances, partnerships and mergers (2010s); to recent
fare family fare structures.

Consequently, the RM research in the recent years has focused on forecasting and optimiza-
tion for fare family structures, however no attention has been placed on overbooking. As it
stands today, all commercial RM systems that we are aware of, split the optimization problem
into two separate and consecutive steps: seat allocation and overbooking. This approach dates
back to the birth of RM some 40 years ago. Although suboptimal, it was chosen due to the
complexity and computational in-feasibility of solving the problems jointly. Thus, despite much
progress in RM research - the state of the art for overbooking has basically not evolved.

The current practice is deficient is several ways. The overbooking methodology is inconsistent
with the underlying fare structure. Overbooking models were built for fenced fare structures
(typically one fare product is considered), while the airlines’ fare structures have evolved into
fare families. Further the current overbooking models ignore important factors that affect the
overall overbooking level, such as: the demand level, the effects on class mix, the booking class
specific refund costs, and booking class specific cancellation rates.



The purpose of the current paper is to solve the joint seat allocation and overbooking problem
for fare families fare structures. Since this is largely an unexplored area we initially revisit the
dynamic programming (DP) models applied in the context of seat allocation and overbooking
with the purpose of extending and applying these models. We develop a general methodology
based on linking the DP models, together by means of two transformations: The marginal rev-
enue transformation (Fiig et al. [2010]) and the equivalence charging scheme (Subramanian et al.
[1999]). These transformations enable us to transform the joint seat allocation and overbooking
problem for fare family fare structures into an equivalent independent demand model, which
may be solved exactly in a straightforward manner. We believe this methodology will be of
great practical importance due to the prevalence of simplified fare structures.

In a later publication, we will share the results of our simulation studies were we compare
of solution of the joint seat-allocation and overbooking problem with current industry practice
and document significant revenue gain of 1% - 3% (Fiig et al. [2016]).

2 Literature review

The complete history on overbooking models since Rothstein and Stone [1967] will be too long
to repeat here. We would like to refer the readers to very readable review papers by Ratliff
[1998] and Rothstein [1985].

The evolution of revenue management over the last few decades as it relates to single leg seat
allocation and overbooking is illustrated in Figure 3. The figure divides the existing literature
according to two axes; Type of optimization model: seat-allocation only, overbooking only, or
joint seat-allocation and overbooking; Type of demand model: independent demand (appropriate
for fenced fare structures), and dependent demand (appropriate for fenceless- or fare-family fare
structures). For completeness we include a brief literature review of the seat-allocation models,
because some of these models and concepts will be applied in the current paper.

The optimization model are further categorized into static models and dynamic models. In
the static models, we assume that demand for the multiple fare products book in a sequential
order typically from low fare to high fare as we approach departure. In the dynamic models no
assumptions of the booking order among the fare products are made.
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Figure 1: Literature overview



Seat-allocation: Independent demand

Before airline deregulation, routes, schedules, and fares were regulated in a way that ensured that
the airlines earned a reasonable profit. Deregulation resulted in price volatility and a dramatic
increase in the number of fares, as well as the introduction of fare structures with complex fare
rules and restriction (among others min/max stay duration, advance purchase, Saturday/Sunday
night restrictions, cancellation/refund flexibility) that differentiated the fare products.

The traditional revenue management systems (RMS), were built assuming a business environ-
ment of strong product differentiation, that enabled a critical simplification - to assume demand
independence by fare product. This assumption was the foundation of RM systems built in the
1980s and 1990s that are still prevalent today even though the business environment has changed
in response to competition from both incumbent airlines and low-cost carriers (LCC), see below.

The optimization of airline seat inventory to maximize revenue given multiple fare products
on a single flight leg can be traced back to Littlewood [1972], who solved the fare class mix
problem for two nested fare classes. Belobaba [1989] extended the nested seat allocation problem
to multiple fare classes with the development of the Expected Marginal Seat Revenue (EMSR)
heuristic. Curry [1990] later described optimal solutions for multiple nested fare classes.

Dynamic programming models were later applied by Lee and Hersh [1993] and Lautenbacher
and Stidham [1999]. A fundamental result from these papers were that the optimal booking
policy can be represented by a bid-price (BP), that depends only on a one-dimensional state
variable (inventory, that is available seats), and time remaining to departure. Further the BP
has the desirable properties: Inventory monotonicity (BP increases with less inventory), and
time monotonicity (BP decreases with less time remaining to departure).

Seat-allocation: Dependent demand

In the 2000s, simplified fare structures started to emerge. The drivers came primarily from the
competition from low cost carriers and the transparency in airline prices brought by the internet.
The simplified fare structures invalidated the independent demand assumption, and caused the
RM system to spiral down to the lowest booking class leading to tremendous loss of revenue,
see Cooper et al. [2006].

Talluri and van Ryzin [2004] formulated a Dynamic Programming model for the case when
consumer behavior is described by a general discrete choice model, and showed that only strate-
gies on the efficient frontier are relevant in the optimization.

The development of the fare-adjustment theory Fiig et al. [2010], provided a theoretical basis
for optimizing dependent demand, and has now become industry standard. The main result
of the paper was to provide a marginal revenue transformation, that transforms an dependent
demand model into an equivalent independent demand model (with adjusted fares and demands),
that enable the continued use of the optimization methods and inventory controls developed for
the traditional RMS.

Overbooking: General

As with the seat-allocation problem, we distinguish between static and dynamic models. In the
static models, the time period is split into two stages a booking period, followed by a service
period (following the terminology of Talluri and van Ryzin [2006]). In the booking period we
accepted bookings up to given authorization levels, assuming demand is sufficient to exceed
the authorization levels. In the service period the cancellations are realized considering its
stochastic nature, and the surviving customers are serviced (assigned to the appropriate airline
cabins, upgraded, down-graded) or denied boarded.

Typically only one fare class is considered in the static models, which represents the average
fare used as empty seat cost.

The dynamic models, that we review later allows for more realism by considering booking
events as well and in the case of joint seat-allocation and overbooking models also multiple fare
products. The down-side is the in-tractability of these models.

The optimal overbooking level for both types of models is determined by balancing the risk
and associated costs of empty seats and denied boardings respectively. Different optimization



criteria, can be applied. The most common are given below:
i Maximize the economic profit (ticket revenue minus cost of denied boardings);
ii Max. allowed probability of a denied boarding;
ili Max. allowed proportion (service level) of denied boardings per number of flown passengers;

iv Min. total cost from spoilage + denied boardings.

Overbooking: Static models

Rothstein and Stone [1967] were among the first to model overbooking and apply their methodol-
ogy in American Airlines (AA). They developed a static model to calculate the optimal booking
level applying the max. probability criterion (ii) above. Their model was complicated by the
fact that the industry practice at that time, allowed in addition to passengers with ordinary
reservations; also teletype bookings, that arrived after reservations were closed and that had to
be accepted due to interline agreements; as well as go-shows passengers, without a reservation,
that arrive at departure with a valid ticket. Today these latter passenger types play a minor
role and will not be considered in this paper.

Shlifer and Vardi [1975] considered three different extensions to the Rothstein and Stone
model. The extensions regarded: 1) The single leg single class model, but applying different
optimization criteria max. profit (i) and service level (iii). 2) The single leg but carrying two
types of passengers with different cancellation rates. 3) Two leg network, three passenger types
corresponding to the segments (two locals and a connection) with different cancellation rates. It
is important to note that even in these simple generalizations (cases 2+3) compared to real-life
airline networks with multiple fare classes, the optimal overbooking limits are quite complex
accept/reject regions of the inventory state variables with limited practical applicability.

Bodily and Pfeifer [1992] extends the results of Shlifer and Vardi [1975] by relaxing the as-
sumption of a constant survival rate to an assumption that allow time to departure dependent
survival rates. The resulting decision rule remain unchanged applying the updated mean and
standard deviation of the survival rates based on bookings in hand. Further they also consid-
ered an extension to allow for conditioning events (for example weather conditions) that cause
cancellations of separate bookings to become correlated.

Overbooking: Dynamic models

Rothstein [1971] was the first to formulate a dynamic program for the overbooking problem. The
model used is formulated as a non-homogenous Markov process. The objective was to determine
the optimal booking policy that maximized the economic profit (criterion (i)). Although Roth-
steins formulation was quite general and allows for various cancellation as well as distributions
bookings eg. allowing group bookings or correlated cancellation events, the paper only considers
Poisson distributed bookings and Binomial distributed cancellation. Under these assumptions
the Rothstein model is equivalent to the model from Subramanian et al. [1999], which is much
simpler to analyze, see literature review below.

Klophaus and Polt [2006] extended the static Rothstein and Stone [1967] model by applying a
dynamic spoilage cost that better represents the different passengers willingness to pay (WTP)
across the booking horizon. They propose to use the lowest available fare level as a proxy for
the passengers WTP. Simulation studies on real Lufthansa data, testing all four optimization
criteria (i)-(iv) displayed minor incremental revenue gains over the static model.

Joint seat allocation and overbooking models Dynamic models

Alstrup and Boas [1984] formulated the joint allocation and overbooking problem for two pas-
senger types (business and leisure) as a Markovian non-homogenous sequential decision process,
that were solved using two-dimensional dynamic program for the optimal overbooking policy.
Their model can be considered as a generalization of the Rothstein [1971] to solve the problem
with two passenger types. The objective was to determine the optimal booking policy that
maximize the economic profit (criterion (i)).



Although the Boas and Alstrup formulation was quite general and allows for various booking
as well as cancellation distributions, the paper only considers Poisson distributed bookings and
Binomial distributed cancellation. The paper considers the complexity introduced by actual
aircraft configurations involving position of the cabin divider, up-gradings, downgradings. Sub-
ramanian et al. [1999], later considered a generalization of the Boas and Alstrup model to allow
for multiple fare classes. However ignoring the practical configuration complexities considered
by Alstrup and Boas [1984], and the extensions to include refund by Subramanian et al. [1999],
the two models are equivalent.

Chatwin [1996] formulated the joint seat allocation and overbooking problem using a con-
tinuous space, discrete time, dynamic programming model for multiple fare classes. Given the
assumptions that during each time-slice, bookings can only occur in one class, and the number
of cancellations are proportional to the number of reservations; he proved that a booking limit
policy is optimal. The booking limits for each fare class depends on the number of reservations
made in the other classes. For two fare classes specifically Chatwin [1996] proves the booking
limit monotonicity property.

It should be noted that in the limit where time slices become so thin, that at most one book-
ing event/cancellation event can occur, Poisson distributed demand and Binomial distributed
cancellations, satisfy the assumptions above.

Subramanian et al. [1999] consider the joint seat-allocation and overbooking (allowing for no-
show and refunds) problem for a single leg, single cabin with multiple fare classes. They extend
the results of Lee and Hersh [1993] for one class problem (or equivalently multiple fare classes,
where all classes having identical cancellation probabilities). Analogous to Chatwin they prove
that a booking limit policy is optimal and that the bidprice satisfy the monotonicity conditions:
inventory monotonicity and time monotonicity, see above.

3 Overview of models

The aim of this paper is to solve the seat allocation and overbooking problems jointly for sim-
plified fare structures. For this purpose, we shall first present an overview of selected existing
dynamic programming (DP) models for seat allocation and overbooking. Following this review,
we develop the general methodology for solving the seat allocation and overbooking problems
jointly for fare family fare structures.

In this section, we show how the models of Lee and Hersh [1993], Subramanian et al. [1999]
and Talluri and van Ryzin [2004] link neatly together, and in fact can be derived from each other
through application of the transformations of Subramanian et al. [1999] and Fiig et al. [2010].
The relationship between the selected models and transformations, as well as to the present
work, is depicted in Figure 2. Similar to Figure 3 in the literature review, the models in Figure
2 are grouped according to two axes: type of optimization model and type of demand model.
A number of basic properties are listed for each model: dimensionality of the state variable,
monotonicity properties of the bid-price and acceptance criteria. An arrow between two models
represents exact equivalence of the models through application of the transformation shown on
top of the arrow.

For consistency, the models are re-named according to type of demand model (D and I
for dependent and independent demand models respectively) and type of optimization model
(OB for joint seat allocation and overbooking models). In addition, joint seat allocation and
overbooking models are named according to how the cancellation cost is treated; as a total cost
(TC) of all simultaneous cancellations (paid at the time of refund) or as an expected unit cost
(UC) of cancellation for one incremental passenger (treated in the optimization at the time of
booking). The transformations are abbreviated to ECT (Equivalence Charging Transformation)
and MRT (Marginal Revenue Transformation).

In the following, we will describe and formulate the models chronologically and show how
they link together. Independent demand models will be considered first. We show how to extend
Model I to include cancellations and overbooking, and then prove equivalence of Model I4+0OB
(TC) and Model I4+OB (UC) by applying the Equivalence Charging Transformation. The ECT
transforms cancellation cost from being treated at the time of refund to the time of booking
by subtracting from the fare the expected unit cost of cancellation inflicted by the passenger
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Figure 2: Overview of DP models

requesting to book the fare. As we shall see, the advantage of treating cancellation costs up
front is that the dimensionality of the DP can be reduced.

Subsequently, we consider the dependent demand models and show equivalence of Model
D and Model I by applying the Marginal Revenue Transformation. The MRT transforms a
dependent demand model into an equivalent independent demand model by calculating a fare
modifier to be subtracted from the original fare. This transformation enables the continued
use of traditional RMS for fare structures with dependent demand by making it possible to use
Model I even on fare structures assuming dependent demand.

Finally, we develop a methodology to transform Model D with any type of demand and fare
structure into Model I+OB (UC) by extending the ECT to dependent demand models, realizing
that the MRT also applies to cost and applying the two extended transformations in sequence.
We thereby show equivalence of Model D+OB (TC) and Model I+OB (UC).

Throughout the rest of the paper, notation will be an adapted form of the notation used in
Subramanian et al. [1999].

Notation for fenced and fenceless fare structures

Assume we have m fare classes and a state variable x = (z1,...,%,) in m dimensions to keep
track of the number of bookings in each fare class. The pure seat allocation models also assume
m fare classes, but only need a one-dimensional state variable x = Z:’ll x; to keep track of the
total number of bookings. Fares are denoted by f; for fare class 7, and are listed in decreasing
fare order: f; > fiz1,i=1,...,m—1.

For the sake of simplicity, we develop the dynamic programming models for a single leg,
single cabin flight with capacity C'. The booking horizon is sliced into 7"+ 1 stages, numbered
in reverse chronological order, t =T,7T — 1,...,1,0 with departure occurring at ¢ = 0. In each
stage, we make the assumption of exactly one event occurring (booking request, cancellation or
no event), and ensure it is satisfied by choosing 7" to be sufficiently large.

A policy p is a set of open fare classes. We denote demand for fare class i given that policy
p is offered in stage t by d; ¢, where d; ,, = 0if i ¢ p or p is the null set where no fare classes
are offered. The probability of a request in policy p in stage ¢ is given by Ziep dip+ and the
probability of no request by 1 — ZiEp dips. Aggregated demand for policy p is denoted by
Dyt = e, dipt- When policies and fare classes are identical, we remove the policy index and
let d;; denote demand for fare class ¢ in stage ¢ and assume it is independent of the current
number of bookings in any fare class. We denote the cancellation rate by ¢; ; and associate with
it a refund of ¢; for fare class 7 in stage t.



We will present model-specific assumptions as they are introduced.

Review of Model I: Lee and Hersh [1993]

Assumptions: Seat allocation DP with 1-dim state variable, demand independence by fare prod-
uct, and no cancellations

Lee and Hersh considered a traditional fenced fare structure and independent product-oriented
demand without cancellations in Lee and Hersh [1993]. They considered a single flight leg and
a single cabin, and developed a DP model to solve the seat allocation problem.

The DP model is solved for all stage-state combinations, with the objective to maximize
expected remaining revenue of operating the system over the booking horizon from ¢t = T to
t = 0. Let TR;(z) denote the expected remaining revenue in state x from stage ¢ to 0. Note that
the state variable is one-dimensional although there are m fare classes (as long as cancellations
are not considered). The boundary conditions are TR;(C) = 0 (no further obtainable revenue
when capacity is reached) and TRy(x) = 0 (no further revenue or cost at time of departure).

An accept/reject decision in stage ¢ has to be made whenever a booking request arrives.
The value of the request is the fare f;, and we accept it if f; + TRi—1(z + 1) > TRi—1(x),
i.e. if the expected remaining revenue associated with accepting the booking is larger than the
expected remaining revenue of rejecting it. The first term in the model represents the sum
over all independent revenue streams and the associated accept/reject decisions. If we accept
a request, we continue with z + 1 bookings in the next stage, while a reject decision leaves the
number of bookings unaltered. The second term in the model represents the expected remaining
revenue when there is no booking request, in which case x is also left unaltered. The Bellman
equation can be formulated as

TRt(ZL') = zm:di’t . max{fi + TRt,1($ + 1),TRt,1(£L')} + (1 - idi’t> TRtfl(l')

i=1 i=1

where we can simplify somewhat by subtracting >, d; ;- T'Ry—1(x +1) inside the maximization
and adding it back outside. This yields Model T

TRi(z) =Y diy-max{f; — BPi_1(x),0} + TR () (1)

=1

where BP,_1(x) = TRy—1(x) — TRi—1(z + 1) denotes the bid-price. We accept a booking if
fi = BP,_1(z) > 0 and reject it otherwise.

Lee & Hersh proved monotonicity of the bid-price in inventory and time in Lee and Hersh
[1993]. The bid-price is non-decreasing in = (non-increasing in remaining inventory) for constant
t, i.e. BP;(r) < BPi(xz 4+ 1) (bid-price increases with more bookings / decreases with more
remaining capacity), and non-decreasing in ¢ for constant x, i.e. BP;_1(z) < BP;(x) (bid-price
decreases towards departure). The property of inventory monotonicity guarantees the existence
of an optimal booking limit for each fare class ¢ in each stage t, since there will be a maximum
a for which the acceptance criteria f; — BP;—1(z) > 0 is satisfied (if f; — BP;_1(0) < 0 then the
optimal booking limit is to close fare class ¢ completely in stage t). Likewise, the property of
time monotonicity guarantees the existence of an optimal time for when to close each fare class
i for a given state x.

Review of Model I4+OB (TC): Subramanian et al. [1999]

Assumptions: Joint seat allocation and overbooking DP with m-dimensional state variable, de-
mand independence by fare product, cancellations and overbooking, and refund considered at time
of cancellation

Subramanian et al. [1999] extended Model I to include cancellations, no-shows, refunds and
overbooking (in this paper, we exclude no-shows for the sake of notational simplicity, but without
loss of generality). The basic assumptions are the same as in Lee and Hersh [1993] — they assume



a traditional fenced fare structure and independent product-oriented demand on a single flight
leg served by a single-cabin aircraft.

In order to have class-dependent cancellation rates and refunds, the DP model is extended
to m dimensions to keep track of the number of bookings in each fare class through the m-
dimensional state vector x = (x1,...,2,,). In the general case of the model, demand and
cancellation rates are allowed to depend on the full state vector x through the functions d; ;(x)
and ¢; ;(x). However, this generality adds little additional value in practical applications, so we
derive the model with less general assumptions. Demand d; ; is assumed to depend on fare class
and time, but not on bookings in hand. Similarly, cancellation rates g; ; are assumed to depend
on fare class and time. In addition, the number of cancellations in each fare class is assumed
to be proportional to the number of bookings in hand, i.e. we expect ¢; ;x; cancellations in fare
class i in stage t (as a consequence each passenger cancels independently of each other).

The acceptance criteria for a new booking request in fare class i is f; — BP;;—1(x) > 0 in
stage t, where BP, ;_1(x) = TR;_1(x)—TRi—1(x+e;) is now the 7’th component of the bid-price
in m dimensions (e; is the unit vector of all zeroes and a one at index 7). Model I+-OB (TC) is
structured in the same way as Model I, with the first term representing the sum of accept/reject
decisions for all independent revenue streams in the event of a booking request and the last term
representing the expected remaining revenue when no event occurs (booking or cancellation).
In addition, we now need a term to handle the expected cancellations in each fare class. In the
event of a cancellation in fare class ¢, which has the probability g; ;x; of occurring, we continue
with x — e; bookings and refund the amount ¢;. The Bellman equation for Model I+0B (TC),
including cancellations, refunds and overbooking, is

TRi(x)= Y dis -max{f;— BPi; 1(x),0} + > qiswi(—ci + TRi_1(x — ;) +
1=1 =1

N - (2)
<1 - Z%‘,t%) TR 1(x)

i=1

Since overbooking is allowed, denied boardings also have to be considered. Denote the
overbooking penalty function by 7(-) where 7 is convex and non-decreasing function describing
the denied boarding cost. The boundary condition for Model I+OB (TC) is TRy(x) = —7 (z).

In the general case of Model I4+OB (TC) with the m fare classes having different cancellation
rates, the bid-price satisfies inventory monotonicity but not time monotonicity.

Model I4+0B (TC) solves the seat allocation and overbooking problems jointly, and is an
important improvement over Model I since it includes cancellations, no-shows, refunds and over-
booking. However, the Bellman equation is m-dimensional in order to handle class-dependent
cancellation rates, which for all practical purposes is infeasible to solve in real time for realistic
airline problems with a large m. Model I4+OB (TC) can be reduced to one dimension provided
the cancellation rates and refunds being independent of fare class. In practice this is unlikely to
be true.

Review of Equivalence Charging Transformation (ECT): Subramanian et al. [1999]

Transformation of cancellation cost

To overcome the computational complexity of having m dimensions, Subramanian et al. [1999]
developed a clever method to reformulate the problem, that allowed a reduction to a one-
dimensional state variable with less restrictive assumptions. In Model I+-OB (TC), the refund
cost is treated when the cancellation event occurs. The Equivalence Charging Transformation
(ECT) transforms the Bellman equation into an equivalent equation, in which the expected can-
cellation cost is instead assessed at time of booking. The total expected cost of cancellation in
hand from ¢ to departure is denoted by T'Cy(x) and defined as a recursion formula. If a cancel-
lation in fare class i occurs in stage t, the amount ¢; is refunded and the number of bookings
in hand will be x — e; going in to stage ¢t — 1. If no cancellation occurs in stage ¢, the expected
remaining cancellation cost is given by T'C;_1(x). We will assume (as also done in Subramanian
et al. [1999]) that



1. Cancellations in one fare class being independent of number of bookings in other fare
classes.

2. Cancellations are independent of each other.

The recursion formula becomes:

TCy(x) = Z Gixi(ci + TC—1(x —€;)) + (1 - Z Qi,t$i> TCy—1(x) (3)

i=1 i=1

where T'Cy(x) = 0. Note that TCy(x) is positive by convention. By adding it back to T R:(x),
from which cancellation cost is subtracted in the form of ¢;, we can calculate the gross revenue
(i.e. revenue before subtracting cancellation costs) of operating the system from ¢ to departure
by means of the equation T'B;(x) = TR;(x) + TCy(x). By inserting T'B;(x) — T'C}(x) in place
of TR:(x) in (2) we obtain:

TBy(x) = Z di-max {f; — [TC;_1(x + ;) — TCy_1(x)] — BP;;_1(x),0}

+ Z Qi TBi—1(x —€;) + (1 - Z Qi7txi> TB;-1(x) (4)

i=1 i=1

where BPz'7t_1(X) = TBt_l(X) - TBt_l(X + ei).

Applying the assumptions above allows us to calculate (3) as a sum of independent expected
remaining cancellation costs for each fare class; TCy(x) = >_" | T'C; ¢(2;), where T'C; 4(x;) is
given as the i’th component of the recursion above

TC; (x:) = gipxi(ci + TC; p—1(xs — 1)) + (1 — gigxi) - TCsp—1 ()

where T'C; o(z;) = 0 for all 5. From this one-dimensional recursion formula we can define the
expected unit cost of cancellation attributable to one incremental booking in fare class i as
UCi(z;) =TC;—1(z; +1) = TC; 4—1(x;). It follows that each of the functions UC; ¢(x;) satisfy
the recursion

UCi(z:) = gip—1¢i + (1 — gip—1) - UCip—1(x;) + qii—12i - (UC; 1—1(x; — 1) = UC; 1—1(24))

for ¢ > 2 and with UC} 1(x;) = 0. Note that the time indices are moved by one in the definition
of UC; 4(x;) since a cancellation happens no earlier than the stage immediate after the booking
is made. We now apply assumption (ii) of independence of cancellations to see that UC; ;1 (z; —
1) =UC; 1—1(x;), i.e. that the expected unit cost of cancellation from one incremental booking
in fare class 7 in stage t is identical for x; and x; — 1 bookings in hand. Not surprisingly,
the consequence of assuming independent cancellations is that we can eliminate x; from the
recursion. Hence, the expected unit cost of cancellation becomes:

UCit=¢qit—16+ (1 —qis—1) - UCi (5)

for t > 2 and with UC;; = 0. Finally we replace each component of the vector TCy_1(x +
e;) — T'Ci_1(x) in (4) with the unit cost UC; ; to obtain Model I+OB (UC), see the following
paragraph.

The ECT in itself does no more than transform the Bellman equation of Model I+OB (TC)
into the equivalent Model I+OB (UC), see below. below). However, the impact of the ECT
is significant, since it will allow reduction of the Bellman equation to one dimension with less
restrictive assumptions.

Review of Model I+OB (UC): Subramanian et al. [1999]

Assumptions: Joint seat allocation and overbooking DP with m-dimensional state variable.
Fenced fare structures. Demand independence by fare product, cancellations, overbooking, and
refund cost considered at time of booking



Models I+OB (TC) and I+0OB (UC) are equivalent. The only difference being how cancellation
costs are treated - at the time of booking vs. at the time of cancellation. Treating cancellation
costs at the time of booking result in the value of the booking being assessed as the fare f;
minus the expected unit cost UC;; of cancellation. When making the accept/reject decision,
this value is compared to the bid-price BP;;_1(x), and the acceptance criteria becomes f; —
UC;+ — BP; ;_1(x) > 0. Treating cancellation cost up front also means that the refund ¢; is no
longer included in the Bellman equation. The Bellman equation for Model I+OB (UC) becomes:

TBt(X) = Z di,t - max {fz — UC’M — BPZ‘7t_1(X), 0} —+ Z qiytzi . TBt_l(X — e,-)+

i=1 i=1

. (6)
(1 - Z qz‘,txz) TBy_1(x)

i=1

where BP; ;_1(x) = TB;_1(x) — TB;_1(x + €;). Denied boardings are considered through the
boundary condition T By(x) = —7 (x), as before.

The ECT preserves monotonicity properties, so the bid-price in Model I+OB (UC) still
satisfies inventory monotonicity but not time monotonicity.

As we have seen, allowing cancellation rates and refunds to be class-dependent results in
the Bellman equation being m-dimensional, which is infeasible to solve for real sized problems.
With realistic assumptions of passengers cancelling independently of each other, the ECT made
it possible to evaluate the expected net revenue of accepting a booking request up front instead
of waiting for the passenger to cancel to see the refund cost in the model. By further assuming
¢it = q¢ Vi, Subramanian et al. [1999] were able to reduce the DP to one dimension.

Review of Model D: Talluri and van Ryzin [2004]

Assumptions: Seat allocation DP with one-dimensional state variable. General fare structure.
Demand dependence by fare product, and no cancellations.

Talluri & van Ryzin formulated a DP model for a general discrete choice model in Talluri and van
Ryzin [2004], in which demand depends on the policy offered expressed as a general choice model.
The objective of the DP model is again to maximize expected remaining revenue of operating the
system from ¢ to departure, but the control problem is different from the independent demand
problem. The general DP model has to maximize the expected remaining revenue T R;(x) over
all policies. The probability of a request in policy p in stage ¢ is given by Ziep d;p¢ and the
probability of no request by 1 — Ziep dip:. Any request for an open fare class is accepted,
and will generate the revenue of f; + TR;_1(x + 1), since we will have one more booking when
entering stage ¢t — 1. In case of no requests for open fare classes, z is left unaltered. The Bellman
equation for Model D can therefore be stated as

TRt(l') = mgx Z di,p,t (f1 + TRtfl(SU + 1)) + 1-— Z di,p,t TRt,1($)

i€EP iEP
= d; i — BP;_ TR 7
max Z (i = BPoa(w) ¢ + TRy () (7)

where we again find the bid-price BP;_1(x) = TRy—1(x) — TR;—1(z + 1). Similar to Model I,
the boundary conditions are TR;(C) = 0 and T'Ry(x) = 0 since cancellations and overbooking
are not considered.

Talluri and van Ryzin prove identical monotonicity properties for Model D as Lee and Hersh
proved for Model I. The bid-price is non-decreasing in x for constant ¢, i.e. BP(z) < BP;(z+1),
and non-decreasing in ¢ for constant x, i.e. BP;_j(x) < BP;(z). These properties guarantee
existence of an optimal solution to the problem, which takes form as a policy of which fare classes
to open at a certain stage t given x bookings in hand.
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Review of Marginal Revenue Transformation (MRT): Fiig et al. [2010]

Transformation of dependent demand model into an equivalent independent demand model.

Fiig et al. [2010] demonstrate how to transform a dependent demand model into an equivalent
independent demand model. Since we shall need the MRT later, we will review the method here.
The significance of the MRT is two-fold. The theoretical significance is that it shows solution
equivalence of Model D and Model I. And the practical application is that it provides a basis
for optimizing dependent demand in models assuming independent demand, thus enabling the
continued use of the optimization methods developed for traditional airline RMS.

In the dependent model, optimization is performed over all policies. Revenue and demand
depend on the policy being offered. In stage ¢, demand for policy p is D, = Ziep dip: and
revenue is R, ; = Ziep dip+fi. In order to find the optimal policy, we can plot Dy ¢, R, in a
scatterplot for all policies. This will trace out an efficient frontier. We only have to consider
policies on the efficient frontier (all points falling below the efficient frontier provides less revenue
for the same capacity consumption and are clearly inefficient).

Efficient frontier

TR

TR,

b=

Figure 3: Marginal Revenue Transformation

The brilliant idea of Fiig et al. [2010] was to create an equivalent efficient frontier consisting
of transformed fare classes with independent demand. This is achieved by a two-step approach.
The first step is to create a virtual policy with independent demand for each policy on the
efficient frontier. Independent demand for the virtual policies is set equal to the marginal
demand M D, ; obtained by opening the next policy with dependent demand on the efficient
frontier. The adjusted fare for the virtual policy is likewise set equal to the marginal revenue
MR, ;. The marginal demand and marginal revenue of opening policy p instead of p — 1 is

MDp’t = -Dp,t - Dpfl’t

MRy, = (Rpt — Rp—14)/(Dp,t — Dp—1.1)- (8)

where p = 1,...,k denotes the k policies along the efficient frontier. By definition, the policies
trace out an efficient frontier equivalent to the one traced out by the dependent demand policies.

The second step of the MRT is to map the policies back to the original m fare classes. As
noted in Fiig et al. [2010], this is only possible if the policies along the efficient frontier are
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nested. In that case, the policies can be mapped to fare classes by assigning to each fare class
opening for the first time M R, ; as an adjusted fare M R; + = f; — F'M, ; and M D,, ; as demand.
Here we for convenience have introduced the fare modifier F'M;; as the fare adjustment. By
definition, this procedure generates an equivalent fare structure, now constituted by transformed
fare classes with independent demand.

The transformation will allow us to solve the optimization problem defined by Model D using
Model I by applying transformed demand and fares.

4 Present work: Joint overbooking and seat allocation for
fare families

Model D+OB (TC): Joint overbooking and seat allocation for fare families

Assumptions: Joint seat allocation and overbooking DP with m-dimensional state variable. Fare
family fare structure. Demand dependence by fare product, cancellations, overbooking, and re-
fund at time of cancellation.

We derive the DP model for the general case with fare family fare structure, and therefore need
to formulate the maximization over policies. The demand for fare class ¢ given that policy p is
offered in stage t is again denoted by d; ,; and the probability of a request in policy p in stage ¢
can be computed by ;. dip¢. The number of cancellations in each fare class is assumed to be
proportional to the number of bookings in hand, i.e. we expect g; ;x; cancellations in fare class
1 in stage t.

The first term of the Bellman equation maximizes revenue over the policies, and is similar to
the maximization term of Model D. The second term considers a cancellation event in fare class
i, in which case the amount ¢; is refunded and we continue with x — e; bookings. Finally, the
third term considers the event of no booking or cancellation. The Bellman equation of Model
D+O0B (TC) is

TRi(x)= maxq > dipe(fi—BPi1(x) p+ > qiawi (—ci + TR 1(x — e;)) +
P 1€p i=1 (9)

(1 - i qz‘,t%‘) TRi-1(x)

i=1

where BP; ;_1(x) = TR;_1(x) — TR;—1(x + €;) and the boundary condition T Ry(x) = — (z)
is the overbooking penalty function.

Similar to the other m-dimensional models derived in this section, the bid-price in Model
D+O0B (TC) exhibits inventory monotonicity but not time monotonicity.

Model D+OB (UC): Joint overbooking and seat allocation for fare families

Assumptions: Joint seat allocation and overbooking DP with n-dimensional state variable. Fare
family fare structure. Demand dependence by fare product, cancellations, overbooking, and re-
fund at time of booking.

We use the same notation as above, but add an index j to denote the n fare families. We let
fi.p = min,c;icp { fi} denote the lowest offered fare from family j in policy p and UC},, ; denote
the expected unit cost of cancellation resulting from one additional booking in the lowest offered
fare class from family j in policy p at stage t. Demand for fare class 7 in stage ¢ given that
policy p is offered is denoted by d; , ., which is equal to zero if ¢ ¢ p. Aggregated demand for
fare family j in stage ¢t given that policy p is offered can be computed by D;,; = Ziej dipt.

For the general model, we assume cancellation rates g;; to depend on which fare family j the
booking is made in, and we therefore need the state vector to be n-dimensional to keep track of
the number of bookings in each fare family.
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First, we formulate the general fare family model for n fare families directly in the unit
cost based version, since performing the ECT on a fare family version of Model D+OB (TC) is
straightforward. The Bellman equation for the general fare family model (Case nE) is

T'Bi(x) = max > Djpi(fip—UCjpt — BPji1(x))

j=1

+ > g TBia(x—e) + [ 1= gjuw; | TBi1(x) (10)

j=1 j=1

where BP;;_1(x) = TB;_1(x) — TB;_1(x + €;). Note how we have leveraged the fundamental
property of fare families being unrestricted to formulate the general fare family model in the
exact same form as (77), by letting each policy consist of one (or none) fare class from each fare
family.

1 Dim. Approximation. Model D4+0OB (UC): Joint overbooking and seat allocation
for fare families

Assumptions: Joint seat allocation and overbooking DP with n-dimensional state variable. Fare
family fare structure. Demand dependence by fare product, cancellations, overbooking, and re-
fund at time of booking.

Finally we reduce dimensionality to one by assuming the cancellation rate ¢; to be identical
across all fare families in the capacity calculation. This will allow reduction of the state variable
to one dimension. Since (10) has the same form as (?7?), we can apply the MRT directly to get
the one-dimensional fare family model.

TBt(X) = ZMle - max {f7 — UCi,t — FMM — BPt_l(X), 0} =+ qiX - TBt_l(X — 1)+ (11)
i=1

(1 —qx)TB;—1(x)

5 Conclusion

In this paper we have solved the joint overbooking and seat allocation problem for fare families
by applying two transformations in succession. First the ECT, which transforms the refund cost
from time of cancellation to time of booking. This reduces dimensionality from m dimension to
n dimension (number of fare families). Subsequently the MRT, which transforms the dependent
demand DP model to an equivalent independent demand DP model. This latter transformation
provides an approximate 1-dimensional DP model, which is readily implemented in an RMS.
The current model overcomes several of the inadequates of current overbooking models, such
as dependence of Demand level, effects on class mix, effects of class specific refund costs, and
class specific cancellation rates. We have performed simulation studies, that are not part of this
technical report. The results will be published later as part of a journal paper. However initial
results document significant revenue gain of 1%-3% compared to current industry standard.
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