The wave plus current flow over vortex ripples at an arbitrary angle - DTU Orbit (09/11/2017)

The wave plus current flow over vortex ripples at an arbitrary angle

This work concerns the wave plus current flow over a sand bed covered by vortex ripples, with the current and the waves coming from different angles. Experiments were performed in a basin, where current and waves were perpendicular, in order to determine the conditions (current strength) leading to a regular ripple pattern formation. Numerical simulations were conducted changing the direction between the waves and the current from 0degrees to 90degrees and the ratio between the current strength and the wave orbital velocity from 0.2 to 1.5 . Close to the bed, the current aligns parallel to the ripple crests, leading to a veering current profile with the vertical coordinate. The current-related friction coefficient was calculated. It was found that it decreases as the angle approaches 90degrees, while it increases for decreasing values of the current with a trend that can be described by a power law. (C) 2002 Elsevier Science B.V. All rights reserved.

General information

State: Published
Organisations: Department of Mechanical Engineering, National Institute of Aquatic Resources, Centre for Ocean Life, University of Catania
Authors: Andersen, K. H. (Intern), Faraci, C. (Ekstern)
Pages: 431-441
Publication date: 2003
Main Research Area: Technical/natural sciences
Publication information
Journal: Coastal Engineering
Volume: 47
Issue number: 4
ISSN (Print): 0378-3839
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.44 SJR 1.98 SNIP 2.252
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.925 SNIP 2.097 CiteScore 2.9
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.785 SNIP 2.123 CiteScore 2.55
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.727 SNIP 2.264 CiteScore 2.58
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.912 SNIP 2.226 CiteScore 2.21
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 1.616 SNIP 2.502 CiteScore 2.43
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.898 SNIP 2.332
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.067 SNIP 2.454
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.189 SNIP 2.166
Web of Science (2008): Indexed yes

Scopus rating (2007): SJR 1.642 SNIP 2.164
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.249 SNIP 2.2
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.22 SNIP 1.966
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.143 SNIP 2.273
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.997 SNIP 1.873
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.729 SNIP 1.104
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.864 SNIP 1.127
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.832 SNIP 1.273
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.534 SNIP 1.096
Original language: English
Ocean Engineering, Environmental Engineering, Current, Friction, Wave, Computer simulation, Ocean currents, Sand, Vortex flow, Power law, Coastal engineering, current, friction, numerical model, vortex, wave-seafloor interaction, ENGINEERING,, BOTTOM, BED, wave, T, X
DOIs:
10.1016/S0378-3839(02)00158-8

Source: Findlt
Source-ID: 11111310
Publication: Research - peer-review > Journal article - Annual report year: 2003

