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ABSTRACT

In radiotherapy treatment planning that is only based on magnetic resonance imaging (MRI), the electron density
information usually obtained from computed tomography (CT) must be derived from the MRI by synthesizing
a so-called pseudo CT (pCT). This is a non-trivial task since MRI intensities are neither uniquely nor quantita-
tively related to electron density. Typical approaches involve either a classification or regression model requiring
specialized MRI sequences to solve intensity ambiguities, or an atlas-based model necessitating multiple regis-
trations between atlases and subject scans. In this work, we explore a machine learning approach for creating
a pCT of the pelvic region from conventional MRI sequences without using atlases. We use a random forest
provided with information about local texture, edges and spatial features derived from the MRI. This helps to
solve intensity ambiguities. Furthermore, we use the concept of auto-context by sequentially training a number
of classification forests to create and improve context features, which are finally used to train a regression forest
for pCT prediction. We evaluate the pCT quality in terms of the voxel-wise error and the radiologic accuracy as
measured by water-equivalent path lengths. We compare the performance of our method against two baseline
pCT strategies, which either set all MRI voxels in the subject equal to the CT value of water, or in addition
transfer the bone volume from the real CT. We show an improved performance compared to both baseline pCTs
suggesting that our method may be useful for MRI-only radiotherapy.
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1. INTRODUCTION

In recent years, the interest in eliminating the planning computed tomography (CT) from the workflow in
external beam radiotherapy (RT) has increased.1–4 Instead, the entire workflow would be based on magnetic
resonance imaging (MRI), thus eliminating systematic registration uncertainties between the MRI and CT5,6

and simplifying the treatment chain. It is a difficult task to exclude the CT, since MRI does not contain
information on electron density which is needed for dose calculations. Furthermore, the signal from compact
bone in conventional MRI is weak or missing due to the majority of short T2 components.7 This prohibits
2D-based patient setup using bone anatomy. By synthesizing a so-called pseudo CT (pCT) from the MRI scan,
the above issues would be solved, making an MRI-only workflow feasible.

Several approaches for CT synthesis have been proposed and in general, the methods can be split into two
categories: 1) voxel-based and 2) atlas-based. With the former, a classification or regression model is trained
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based on individual voxel intensities of pre-acquired MRI/CT pairs from a number of patients.2,8–10 Other
variants in this category include unsupervised methods based on MRI physics knowledge.11,12 The voxel-based
methods generally require specialized ultra short echo time MRI sequences for acquiring the bone signal, or
manual delineations to overcome the bone/air intensity-ambiguity. This either prolongs the patient scan time or
puts additional workload on the personnel. In recent publications, many variants of methods from the atlas-based
category have been proposed.13–19 Here, pre-acquired and co-registered MRI/CT pairs are used as atlases that
describe the relation between MRI and CT. To predict a pCT, the atlas MRIs are first deformably registered with
the patient MRI. The estimated deformations are then applied to the atlas CTs and finally the deformed CTs
are fused to provide the pCT estimate. These methods rely on conventional MRI sequences and the accuracy
is generally high. One difficulty, however, is that the use of deformable registrations can be slow, especially
with multiple atlases, and may fail if the subjects are very dissimilar. Using pattern recognition based on patch
similarities can remove some of the dependency on an accurate deformable registration13 and a faster affine
registration can even be used instead.20 Still, the registration is a computationally demanding step, which must
be performed for each atlas every time a pCT is predicted. Especially since the trend seems to go towards adding
more atlases to the database, i.e., 15-38 patients16,17,19 this can become a time-consuming task.

Methods using a random forest21 (RF) have previously been proposed for predicting one MRI contrast from
another.22,23 This task differs somewhat from CT synthesis because the bone/air ambiguity does not need to
be solved; the prediction model only needs to identify and predict the lack of signal in these regions, but is
not required to distinguish whether it is caused by bone or air. In this work, we use RF models to predict
pCTs based on conventional T1-weighted MRI scans without registrations during pCT synthesis. We overcome
intensity-ambiguities by using local texture descriptors, spatial features and edge information. Furthermore,
inspired by recent works in tumor and organ segmentation,24,25 we use the concept of auto-context (AC)26 to
iteratively learn and improve context features. We use a combination of classification RFs for learning context
features and a regression RF to ultimately predict a pCT.

By far most work in CT synthesis has been on generating pCTs of the brain, although a few publications
have focused on the pelvis.8,14,16,17 This region is theoretically more challenging due to the greater inter-patient
anatomical variability and because of between-scan non-rigid organ movement. We apply our method in this
challenging region, and evaluate and compare the resulting pCTs to baseline pCT approaches both in terms of
the voxel-wise prediction accuracy and the radiologic error.

2. METHODS

2.1 Data Collection and Pre-processing

MRI and CT scans of 10 prostate RT patients were retrospectively obtained from a Philips 1 T open MR
scanner using a body coil and from a Philips Brilliance Big Bore CT scanner. T1-weighted scans were acquired
with a gradient echo sequence (TE/TR = 10/623 ms) and a voxel resolution of 0.8 × 0.8 × 4.4 mm for an in-
plane matrix between 528 × 528 and 640 × 640 voxels and 16 − 24 slices. The CT scans were acquired using a
standard protocol for pelvic scans (120 kVp, 232-503 mAs) with a voxel resolution between 0.78× 0.78× 2 mm
and 1.4× 1.4× 2 mm, for an in-plane matrix of 512× 512 voxels and 129-199 slices. The patients were fixed in
treatment position during both the MRI and CT scanning. The T1-weighted scans were bias field corrected using
the N4 algorithm27 after which the intensities were normalized to a common range using a histogram matching
approach.28 To generate a ground truth relationship between the MRI and CT scans, which accounts for body
outline and organ deformations between the scans, the MRI scans were deformably registered and resampled to
their corresponding CT using Elastix.29 For this purpose, a multi-resolution B-spline transformation model and
normalized mutual information was used. Note that this registration is carried out before training the RFs and
is not a part of the pCT prediction step. Finally, in order to remove noise without severely blurring edges, a
simple 2D median filter was applied slice-wise to the MRI scans.

2.2 Initial Feature Extraction

Using the MRI intensity information directly to train a prediction model may limit its general applicability
because the absolute MRI intensities are irreproducible and varies between patients, scans and scanners. For
this reason, we use features that to some degree are independent of linear gray-scale changes. We use Local



Binary Pattern (LBP) features30 to capture textural information. For each voxel, we do a relational comparison
of the mean value of a cuboidal region centered on that voxel with mean values of 26 cuboidal regions positioned
on a sphere around that voxel. This results in a 26 digit binary number which is converted to a decimal texture
feature (dubbed LBPµ). We also incorporate a variant of the LBP where the standard deviation of the regions
is compared instead (dubbed LBPσ). We use three LBPµ and two LBPσ features with differing region size (RS),
33 - 53 voxels, and sphere radius (SR), 5 - 13 voxels, to capture information at different scales. As a simple edge
detector, we use the standard deviation of a 3× 3× 3 neighborhood around each voxel. As spatial features, we
use the (x, y) position of each voxel relative to the center of mass of the patient and the body outline. Figure 1
shows examples of the initial features.

(1, 1)

(a)

(b) (c)

(d) (e)

Figure 1. Features are extracted from the T1-weighted MRI shown in (a). (b) and (c) shows examples of the LBPµ

(SR/RS = 11/53 voxels) and LBPσ (SR/RS = 7/53 voxels), respectively. (d) shows the standard deviation feature. (e)
shows the coordinate system used to derive the spatial features; the origin is positioned in the center of mass of the patient
and the axes are scaled relative to the outer contour of the patient.

2.3 Initial Classification RF Training

In the initial step of our approach, we train a classification RF to segment an MRI scan into air, fat, soft tissue and
bone classes based on the features described above. We carry out all model training in a leave-one-out manner
using nine patients as training data and applying the model on the tenth. The training target segmentations
are generated by thresholding the CT scans using the following criteria: air = [−1000,−200] HU, fat = ]−200, 0[
HU, soft tissue = [0, 150], bone = ]150,∞[ HU. For each training patient, we then sample our features at 6× 105

and 105 random positions within the body outline and within the bone volume, respectively. This defines our
training set for the classification RF. We use an RF with 500 trees and a minimum terminal leaf size of 50
voxels. Because the bone class is relatively small compared to the others, we use a stratified sampling scheme,
meaning that an equal amount of cases from each class were chosen at random during training of each tree. This
is achieved by sub-sampling the bigger classes. The parameter settings were chosen as they resulted in a good
compromise between the out-of-bag error rate and training time.

2.4 Auto-context Features

In the next step of our approach, we use the initial RF to create a variant of auto-context (AC) features26 for all
training patients, which are then used in combination with the initial features to train an improved classification
RF. This process is repeated three times, each time using the most recently trained RF to improve the AC
features. The AC features are calculated based on the three probability maps of a voxel belonging to the fat,
soft tissue or bone classes. For each voxel, the feature extracts the mean probability of belonging to each class
in a small region centered on that voxel, along with the same mean probabilities of six regions chosen at a fixed



distance from it in the posterior/anterior, superior/inferior and lateral directions. The AC feature extraction is
illustrated in Figure 2. In this way, we encode the approximate locations and relations of the tissue classes. The
AC RFs consist of 150 trees and otherwise the same parameter settings as the initial forest. For each RF at this
stage, we sample the training data randomly in the same fashion as the first RF. This means that each forest
is not trained on exactly the same training data as in the iteration before. Note however, that we sample with
replacement so overlap can occur.

Classification with level 1 AC features Classification with level 2 AC features Classification with level 3 AC features

(a) (b) (c) (d)

Figure 2. Examples of the output probability maps of the bone class for a test patient after sending the data through
(a) the first classification RF and (b)-(d) the subsequent classification RFs with improving AC features. The AC feature
for a voxel consists of the mean probability of a small region (shown in black) around the voxel along with the mean
probability of 6 small regions at a fixed distance in the posterior/anterior, superior/inferior and lateral directions (shown
in white for the posterior/anterior and lateral directions).

2.5 Regression Forest Training

As a final step, we train a regression RF based on the initial features and the last level of AC features. We use
the non-thresholded CT scans as target values and sample our features from each training patient at 1.3 × 106

and 105 random positions within the body outline and bone volume, respectively. The regression forest consists
of 30 trees and a minimum terminal leaf size of 70 voxels.

2.6 Benchmark Methods

As simple benchmark methods, we generate pCTs by assigning all voxels within the body outline of the MRI a
bulk density value of 0 Hounsfield units (HU) corresponding to water (MRIw). Furthermore, we generate a pCT
which in addition contains the bone volume transferred from the real CT and assigned a bulk density of the
mean HU in that volume (MRIwb). This mimics a method where the bone has been manually (and perfectly)
delineated on the MRI.

2.7 Evaluation

Similar to our previous work,20 we calculate the voxel-wise mean absolute error (MAEvox) defined as:

MAEvox =
1

N

N∑
i=1

|CTi − pCTi|, (1)

where N is the number of voxels inside the body outline, CT(i) and pCT(i) are the HU value at voxel i inside
the body outline of the real CT or pCT, respectively. Similarly, we calculate the mean error, MEvox. To provide
a radiologic error measure that takes into account the attenuation properties of the tissue,31 we also calculate
the mean absolute error in water-equivalent path lengths (MAEWEPL). This is calculated along radial spokes
from the center of mass of the patient to the body surface. The WEPL, l′, of a spoke is calculated as:

l′ =
∑
i

∆li × ρi, (2)



with ∆li being the physical path length traveled by a photon in voxel i and ρi its electron density relative to
water. The value of ρi is found from the voxel HU value using a verified standard lookup table in the treatment
planning system (Eclipse v11.0, Varian Medical Systems Inc., Palo Alto, CA). We calculate l′ in 800 radial spokes
towards the body outline in both the real CT and pCT. The MAEWEPL is then defined as:

MAEWEPL =
1

L

L∑
j=1

|l′CTj − l′pCTj |, (3)

where L is the number of spokes and l′j is the WEPL of the jth spoke in either the CT or the pCT. Similarly
we calculate the mean error in WEPL, MEWEPL. We perform paired t-tests to test for significant differences in
the error metrics between the proposed and the baseline methods. p < 0.05 is considered significant.

3. RESULTS

In Figure 3, a visual comparison of the different pCTs and the real CT is shown for a representative transverse
slice of one patient. The proposed method is able to capture the challenging bone region but parts of the dense
bone is still underestimated as seen in the difference map (Figure 3(f)).

Figure 3. Transverse slices of the real CT and pCTs for one patient. (a) and (e) show the real CT and corresponding
T1-weighted MRI. (b)-(d) show the pCT generated with our method, the MRIwb and the MRIw, respectively. (f)-(g)
show the difference in HU between the real CT and the pCTs in (b), (c) and (d), respectively. No colorbar is shown for
the MRI image.

Table 1 shows the results of the voxel-wise and radiologic evaluation. The proposed method performs well
in comparison to the baseline methods with significantly lower voxel-wise and radiologic absolute errors. The
MEvox reveals an overall tendency of the proposed method to overestimate the HU value. There is also an
average overestimation of the WEPL, revealed by the negative MEWEPL.

Proposed MRIwb p-value MRIw p-value

MAEvox [HU] 58 (σ = 9) 90 (σ = 11) < 10−6 105 (σ = 12) < 10−7

MEvox [HU] −10 (σ = 10) −41 (σ = 12) < 10−5 −16 (σ = 11) 0.06

MAEWEPL [mm] 1.3 (σ = 0.4) 2.0 (σ = 0.3) < 10−3 2.5 (σ = 0.3) < 10−6

MEWEPL [mm] −0.7 (σ = 0.6) −0.4 (σ = 0.5) 0.05 0.6 (σ = 0.6) < 10−4

Table 1. The voxel-wise MAEvox and MEvox in HU and the MAEWEPL and MEWEPL of the water equivalent path lengths
(in mm). Average value and standard deviation (σ) for the 10 patients are shown for the different methods along with
the p-value from a paired t-test on the difference between the proposed method and each baseline method.



4. DISCUSSION

In this work, we explored a machine learning approach for creating a pCT of the pelvic region based on T1-
weighted MRI. The method required no specialized MRI sequences or atlases to overcome intensity ambiguities
in bone/air regions of the MRI. Instead, we extracted simple textural, edge and spatial features from the MRI
and trained an RF for tissue classification. As shown in Figure 2(a), the initial classification provides a rough
estimate of the positions of each tissue class but some uncertainty and wrong predictions remain. The iterative
refinement provided by the AC features in the next levels of RFs converges the classification towards a more
correct solution. In Figure 3(b), the visual quality of the pCT comes close to the real CT. There seems to be
a blurring effect in the pCT, which might be caused by the LBP and AC features only capturing information
at scales larger than the voxels, i.e., from small regions. The blurring causes the bone region to smear into the
soft tissue region, which might explain the average overestimation of the HU. Incorporating more features at the
voxel scale could potentially remove some of the blurring effect.

The MRIwb method should have a high accuracy in the bone region due to its exact geometry. However,
assigning the mean HU value to the whole region means that parts of it are overestimated. On average, 65%
of the voxels within the bone region are below the mean bone HU value, which illustrates the difficulties in
assigning a single bulk density to segmented regions. Since, in addition, the fat voxels are not accounted for, the
MEvox shows an overall tendency for overestimating the HU value.

The proposed method had an average MAEvox of 58 HU, which was significantly lower than the baseline
methods. Other recently published methods in the multi-atlas category16,17 reported average MAEvox and
MEvox in the pelvic region of 36.5−40.5 and 0.6−1.9 HU, respectively. They further showed a high dosimetric
accuracy of their pCTs. These methods use MRI/CT atlases from up to 38 patients and deformable registration
to create pCTs. In contrast, our approach requires no atlases and no registrations at run-time, yielding a less
computationally demanding method that is easier to distribute.

We have previously seen that comparing pCT methods based only on simple voxel-wise and radiologic error
metrics may not be sufficient.20 Instead an additional dosimetric evaluation should be carried out, which can
highlight if the prediction fails in dosimetrically important regions or in less relevant regions. A dosimetric
evaluation remains part of our future work.

Parallel to our work, another group has published a method for CT synthesis with many similarities to
ours.32 Our method differs slightly in the features used and the way auto-context is implemented. Furthermore,
their method is still dependent on rigid registrations during pCT prediction to bring their training subjects in
alignment with the test patient. They use a so-called structured RF to predict full CT patches instead of just
voxels and report an average MAEvox of 48.1 HU for the pelvis of 22 subjects. This is better than our method,
but whether it is due to a more advanced RF model or simply because of more training data is hard to say.

There are still multiple potential ways of improving the proposed method. A range of different features could
be tested for improving the classification. Furthermore, the LBP and AC features used here were pre-defined
in terms of the region sizes and distances between the regions. An often used strategy would be to let the RF
randomly pick and learn these parameters. For efficiency, a supervoxel-based strategy could also be employed.25

In the current work, we used features that could make the method broadly applicable on data from different
scanners. Still, the features that depend on e.g., the standard deviation may describe a specific noise level in the
training scans, which may be different in other scanners. Furthermore, with the rather limited amount of data
available to train our models, there is a risk of overfitting to the data from our scanner, especially as more levels
of auto-context are used. Testing the method’s robustness using data from various scanners as well as training
models based on more data remains part of our future work.

5. CONCLUSION

We presented a method for creating synthetic CT scans from MRI using random forests and textural, spatial
and edge information. Furthermore, we iteratively learned auto-context features to improve the predictive
performance of our models. The method worked on conventional T1-weighted MRI scans and required no
registrations at run-time. Our results indicate an improved performance compared to simple bulk density assigned
pCTs but further evaluations and comparisons with more advanced methods are still needed.
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from mri intensity values within and outside of bone segment for mri-based radiotherapy treatment planning
of prostate cancer,” Medical Physics 41(1), – (2014).

[9] Johansson, A., Karlsson, M., and Nyholm, T., “CT Substitute Derived from MR Sequences with Ultrashort
Echo Time,” Medical Physics 38(5), 2708–2714 (2011).
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