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Abstract: Micro- and nanomechanical string resonators, which essentially are highly stressed
bridges, are of particular interest for micro- and nanomechanical sensing because they exhibit
resonant behavior with exceptionally high quality factors. Here, we fabricated and characterized
nanomechanical pyrolytic carbon resonators (strings and cantilevers) obtained through pyrolysis of
photoresist precursors. The developed fabrication process consists of only three processing steps:
photolithography, dry etching and pyrolysis. Two different fabrication strategies with two different
photoresists, namely SU-8 2005 (negative) and AZ 5214e (positive), were compared. The resonant
behavior of the pyrolytic resonators was characterized at room temperature and in high vacuum
using a laser Doppler vibrometer. The experimental data was used to estimate the Young’s modulus
of pyrolytic carbon and the tensile stress in the string resonators. The Young’s moduli were calculated
to be 74 ˘ 8 GPa with SU-8 and 115 ˘ 8 GPa with AZ 5214e as the precursor. The tensile stress in the
string resonators was 33 ˘ 7 MPa with AZ 5214e as the precursor. The string resonators displayed
maximal quality factor values of up to 3000 for 525-µm-long structures.

Keywords: MEMS; resonators; pyrolysis; pyrolytic carbon; microfabrication

1. Introduction

The dynamic development in the field of micro- and nanofabrication allowed the definition of a
class of ultrasensitive micro- and nanomechanical sensors capable of detecting various physical
variables [1]. The high sensitivity of these sensors is a great opportunity, in particular for
mass [2], force [3] and thermal [4] sensing for numerous applications such as mass spectrometry [5],
cell detection [6] and infra-red (IR) spectroscopy [7]. These devices typically consist of simple
micromechanical structures such as singly-clamped cantilever beams or doubly-clamped bridges
that exhibit resonant behavior. The principle of operation is generally based on the monitoring of the
shift of the resonance frequency of the beams due to external factors such as the addition of mass or a
change of temperature.

Micro- and nanomechanical resonators are typically fabricated from low-loss semiconductor
materials and ceramics, such as silicon, silicon nitride, silicon carbide or aluminum nitride. The
structuring of these materials requires a photolithography step and a chemical or physical etch. For
the realization of micro- and nanoelectromechanical systems, the micromechanical resonators should
preferentially be electrically conductive, which requires additional doping in the case of semiconductors
and metallization in the case of ceramics.
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In this work, we investigate pyrolytic carbon as a material for the fabrication of nanomechanical
resonators. Pyrolytic carbon is conductive and can be obtained directly from photoresist through
pyrolysis at elevated temperatures in inert atmosphere. The advantage of this fabrication method
is that the geometry of carbon micro- and nanostructures such as micropillar arrays [8], bridges [9]
and suspended nanowires [10] can be defined through simple photolithographic processes followed
by pyrolysis. A few different approaches to fabricate carbon-based doubly-clamped beams [11] and
cantilevers [12] were presented using soft lithography or multiple steps of photolithography. Here, our
goal was (i) to demonstrate a simple and reliable fabrication process for pyrolytic carbon strings and
cantilevers in only three processing steps consisting of photolithography, dry etching and pyrolysis
and (ii) to explore the mechanical properties of the resulting structures in order to investigate the
influence of processing conditions.

Pyrolytic carbon is a highly amorphous material and considerable friction loss could be expected
compared to crystalline materials such as silicon. However, tensile stress can increase the quality
factor (Q) of resonating structures significantly, as it was shown for string resonators made of silicon
nitride [13,14] and SU-8 photoresist [15]. The tensile stress increases the energy stored in a resonator,
which in essence decreases the effect of energy loss on the resulting Q [16,17], and hence the effect is
known as damping dilution. During pyrolysis, considerable tensile stress is generated in pyrolytic
carbon microstructures due to shrinkage and mass loss of the photoresist [18]. Hence, it should
be possible to fabricate high-Q nanomechanical pyrolytic carbon string resonators based on the
stress-induced damping dilution effect.

We fabricated pyrolytic carbon strings and cantilevers with two different photoresist precursors:
SU-8 2005 (SU-8) and AZ 5214e (AZ). The resonant behavior of the microresonators was characterized
and the results were used to estimate the Young’s moduli of pyrolytic carbon and the tensile stress in
the string resonators.

2. Materials and Methods

2.1. Fabrication

The photolithographic mask design included singly- and doubly-clamped beams with different
lengths L = 100–1000 µm and widths w = 3–50 µm. The fabrication process consisted of the three
main steps: photolithography, dry etching and pyrolysis. Two different fabrication strategies
were investigated, where the last two process steps were carried out in inverse order. After the
photolithography either dry etching or pyrolysis was performed first followed by pyrolysis or dry
etching, respectively. The process conditions of photolithography, dry etching and pyrolysis were
identical regardless of the fabrication strategy.

The two fabrication strategies called “dry etch-pyrolysis” and “pyrolysis-dry etch” are schematically
illustrated in Figure 1. In both cases, the photolithography was performed with positive AZ 5214e
resist as well as negative epoxy SU-8 2005 resist.

Each process started with the spin-coating of a single layer of photoresist on the surface of
525-µm-thick 4 inch Si wafers. The wafers for AZ resist (AZ Electronic Materials, Somerville, NJ, USA)
were dipped in BHF for 60 s to remove the native oxide. Spin-coating for 30 s with an acceleration of
1000 rpm/s and a spin speed of 725 rpm was performed to obtain a resist thickness of 4.2 µm. The
photoresist was soft-baked at 90 ˝C for 60 s and patterned by UV exposure with a dose of 100 mJ/cm2.
This was followed by development in AZ 351B diluted 1:5 in water for 70 s, rinse with water for
3 min and drying in the spin rinse dryer for 90 s. For the SU-8 resist (MicroChem, Westborough, MA,
USA) a dehydration bake at 250 ˝C for 30 min was performed for the wafers prior to film deposition.
Spin coating for 30 s with an acceleration of 5000 rpm/s and a spin speed of 2000 rpm resulted in a
5.5 µm thick SU-8 film. After spin-coating the wafers were placed in a ventilated area for 2 h to partially
evaporate the solvent [19] followed by UV exposure with a dose of 200 mJ/cm2. The post exposure
bake of the SU-8 was done on a hotplate with a temperature ramp of 2 ˝C/min up to 50 ˝C. After
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60 min the hotplate was switched off and allowed to cool down to room temperature. The SU-8 was
developed in propylene glycol methyl ether acetate (PGMEA) for 2 ˆ 2 min, rinsed with 2-propanol
(IPA) and dried in air for 60 min.
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Figure 1. Two fabrication strategies for pyrolyzed photoresist microresonators. In the schematic grey is
the Si substrate, green is the photoresist and black is the carbon.

Releasing the microresonators by under-etching required highly isotropic etching of Si while
avoiding damage of the structures of interest. Hence, dry etching using a Deep Reactive Ion Etcher
(standard rate ASE, Surface Technology Systems, Newport, UK) was chosen. The plasma etching
generates heat and radiation, which potentially cause high intrinsic stress and large deformations in
the suspended structures and eventually affect the further usability of the devices. Therefore, a dry
etch recipe earlier optimized for the release of thin SU-8 cantilevers was applied [20]. The process was
conducted with a coil power of 1500 W, SF6 gas flow rate of 300 sccm to increase the chemical etching
of Si and without use of O2 gas to minimize the etching of photoresist. The chuck temperature was
kept at 0 ˝C to minimize thermal stress in the microresonators. In addition the platen was switched off
to enhance the isotropic etch. The etch time should be kept as short as possible to minimize etching
of the photoresist and prevent heating. Here, 5 min were enough to ensure that the majority of the
structures were successfully released. Only the widest resonators, with a width of 50 µm, were still
connected to the Si substrate after the process.

For pyrolysis, the wafers were loaded into a PEO-601 furnace (ATV Technologie GmbH,
Vaterstetten, Germany) with a N2 gas flow rate of 24 L/min and first heated from room temperature to
200 ˝C. Maintaining this temperature for 30 min supports elimination of solvents from the photoresist
and residual O2 from the furnace. Then the temperature was increased to 900 ˝C and kept constant for
60 min to complete the carbonization. Finally the oven was cooled down to room temperature. The
ramp rate for all temperature changes was 2 ˝C/min.

2.2. Determination of Pyrolyzed Photoresist Density and Thickness

Unpatterned photoresist films were processed on 4 inch Si wafers with identical fabrication
parameters as described above for photolithography and pyrolysis. The samples were weighed on
a microbalance before spin-coating and after pyrolysis of the polymer films to determine the mass
of the pyrolyzed photoresist. The carbon layer was mechanically removed at several points across
the wafer and the film thickness was determined using a contact profilometer. The data was used to
obtain the average thickness of the pyrolytic carbon. The uncertainties were evaluated based on the
standard deviation of the mean assuming a t-distribution for a confidence interval of 95%. The film
thickness was hSU8-C = 1.00 ˘ 0.02 µm for SU-8 based carbon (SU8-C) and hAZ-C = 550 ˘ 16 nm for
pyrolyzed AZ 5214e (AZ-C) which is in good agreement with reported values of vertical shrinkage
during pyrolysis [18,21]. By knowing the mass and the volume of pyrolyzed photoresists, the density
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was calculated to be ρSU8-C = 1.52 ˘ 0.06 g/cm3 for pyrolyzed SU-8 and ρAZ-C = 1.42 ˘ 0.06 g/cm3 for
pyrolyzed AZ which is similar to values reported previously [11,12].

2.3. Resonance Frequency Measurements

The experiments were conducted at room temperature in high vacuum at a pressure below
10´5 mbar where air damping is negligible [22]. The chips were glued directly onto a piezoelectric
actuator. The resonance frequency of the out-of-plane vibration was read-out by a laser Doppler
vibrometer (MSA-500 from Polytec GmbH, Waldbronn, Germany). The laser power was kept at the
minimum level at all times to minimize heating of the microstructures.

3. Results and Discussion

3.1. Fabrication with “Dry Etch-Pyrolysis” Process

Figure 2 summarizes the fabrication results for the “dry etch-pyrolysis” processing
strategy. All cantilevers and doubly-clamped structures except the 50-µm-wide resonators were
successfully released.
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Figure 2b,c,f,g show doubly-clamped SU8-C and AZ-C strings. After pyrolysis, the deformed 
doubly-clamped resist strings were transformed into straight and well-defined suspended doubly-
clamped pyrolytic carbon structures. This straightening was caused by a considerable shrinkage of 
the photoresist during pyrolysis. The isotropic Si dry etching resulted in an under-etch of 23 µm at 
the clamping of the beams. After pyrolysis, the width of the overhanging area decreased to around 
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Figure 2. SEM pictures of the fabrication output of the “dry etch-pyrolysis” strategy. (a) SU-8 photoresist
resonators (L = 500 µm, w = 14 µm) collapsed after dry etch; (b) Suspended SU8-C (L = 200 µm,
w = 30 µm); and (c) (L = 500 µm, w = 30 µm) resonators; (d) SU8-C cantilever (L = 100 µm, w = 30 µm)
with high initial bending; (e) AZ photoresist resonators (L = 500 µm, w = 6 µm) with severely distorted
structure due to high local temperature during dry etch; (f) Short AZ-C (L = 200 µm, w = 14 µm); and
long (g) (L = 500 µm, w = 14 µm (left) and w = 6 µm (right)) resonators. All dimensions are nominal
mask dimensions.

Figure 2a,e show doubly-clamped SU-8 and AZ strings after the dry etch but before pyrolysis.
Although the dry etch recipe was optimized to reduce intrinsic and extrinsic stress in released polymer
microstructures [20], doubly-clamped photoresist strings experienced structural changes during dry
etching, which resulted in a contorted and undefined shape, in particular at increased distance from
the clamping (see Figure 2e).

Figure 2b,c,f,g show doubly-clamped SU8-C and AZ-C strings. After pyrolysis, the
deformed doubly-clamped resist strings were transformed into straight and well-defined suspended
doubly-clamped pyrolytic carbon structures. This straightening was caused by a considerable
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shrinkage of the photoresist during pyrolysis. The isotropic Si dry etching resulted in an under-etch
of 23 µm at the clamping of the beams. After pyrolysis, the width of the overhanging area decreased
to around 11 µm, resulting in an elongation of the doubly-clamped resonators of around 25 µm
independent of the initial length of the beams. Furthermore, the width of the resonators was also
considerably reduced due to shrinkage. For example, suspended AZ resonators with a nominal width
of w = 14 µm before pyrolysis had a final width of only around 6 µm. The narrowest doubly-clamped
AZ strings with a nominal width of w = 3–6 µm and L > 500 µm ruptured. For doubly-clamped
pyrolytic carbon resonators obtained from SU-8 resist, buckling was generally observed as presented
in Figure 2c.

For both photoresist types, fabrication of singly-clamped beams with the “dry etch-pyrolysis”
processing strategy was unsuccessful due to large initial bending of the microstructures after pyrolysis
(see Figure 2d).

Finally, the comparison of the fabricated structures indicates a difference in behavior between
SU-8 and AZ photoresist during pyrolysis (Figure 2b,f). The doubly-clamped resonators obtained
with AZ as the precursor had a relatively well-defined clamping area with a sharp corner. In contrast,
the structures based on SU8-C showed a smooth transition between string and clamping edge. This
difference can be associated with different levels of lateral shrinkage and resist reflow of positive (AZ)
and negative (SU-8) photoresists during pyrolysis [9]. The geometry of the clamping area of the SU8-C
structures could contribute to increased radiation of vibrational energy into the substrate, which could
increase support loss.

In conclusion, the “dry etch-pyrolysis” process based on the AZ resist precursor yielded
doubly-clamped pyrolytic carbon string resonators with tensile stress.

3.2. Fabrication with “Pyrolysis-Dry Etch” Process

The fabrication results of the “pyrolysis-dry etch” process strategy are summarized in Figure 3.
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resonators with a width of 50 µm (Figure 3e, left) were completely released during dry etching. The 
singly-clamped cantilever beams obtained with this process showed no deformation at the clamping 

Figure 3. SEM pictures of the structures obtained with the “pyrolysis-dry etch” strategy. (a) Unreleased
SU8-C resonator (L = 100 µm, w = 14 µm) after pyrolysis; (b) Released SU8-C cantilever (L = 200 µm,
w = 14 µm); (c) Doubly-clamped SU8-C beam (L = 100 µm, w = 14 µm); (d) Curved sidewalls of the
cross-sectional profile of SU-8 cantilevers (w = 14 µm); (e) The widest pyrolyzed AZ cantilevers (left,
L = 500 µm, w = 50 µm) were not released compared to the more narrow ones (right, L = 500 µm,
w = 30 µm); (f) AZ-C doubly-clamped beams (L = 500 µm, w = 14 µm (left) and w = 6 µm (right));
(g) AZ-C cantilever (100 µm long, 14 µm wide) with a rounded profile due to the reflow of the
photoresist. All dimensions are nominal mask dimensions.
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Figure 3a shows a doubly-clamped SU-8 resist beam after pyrolysis but before dry etching. The
carbon structures were well defined and no significant dimensional change was observed. Apparently,
lateral shrinkage occurs mostly for features that are not in direct contact with the substrate such as the
ones obtained with the “dry etch-pyrolysis” process described above.

Figure 3b–g show pyrolytic carbon microstructures after dry etching. All microstructures except
resonators with a width of 50 µm (Figure 3e, left) were completely released during dry etching. The
singly-clamped cantilever beams obtained with this process showed no deformation at the clamping
and only slight curvature for both SU-8 and AZ resist precursors (Figure 3b,e), even for devices with a
length of 600 µm. However, doubly-clamped beams were clearly buckling after dry etching for both
SU8-C and AZ-C (Figure 3c,f).

Figure 3d,g illustrate the beam profiles at the free-standing tip of the cantilever beams of SU8-C and
AZ-C, respectively. The curved sidewalls of the obtained resonators are a consequence of non-uniform
lateral shrinkage of the photoresist during pyrolysis. Shrinkage at the bottom was smaller than at the
top surface of the structures of interest because it was restrained by interaction with the substrate [23].
This was most evident for the SU-8 structures (Figure 3d) [24], whereas for AZ, apparently, the reflow
of the photoresist was possible and the cross-sectional profiles of the beams were more rounded
(Figure 3g) [9].

In conclusion, the “pyrolysis-dry etch” process based on SU-8 and AZ resist precursors yielded
singly-clamped pyrolytic carbon cantilevers.

3.3. Resonant Behavior of Cantilevers

The cantilevers fabricated with the “pyrolysis-dry etch” processing strategy with a nominal width
of 30 µm, thicknesses of 1 µm and 550 nm for the SU-8 and AZ resists, respectively, and different
lengths from 100 to 625 µm were used in these experiments. Figure 4 presents the measured resonance
frequency and Q values as a function of the cantilever length.
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Figure 4. Relation between length and (a) resonance frequency of the fundamental bending mode
and (b) Q of the carbon cantilevers fabricated with the “pyrolysis-dry etch” scheme using SU-8 and AZ
photoresist precursors. Error bars represent a 95% confidence interval. Measurements were done on
five cantilevers and then averaged.

The resonance frequencies are proportional to the inverse of the length squared, as given by the
fundamental eigenfrequency of a singly-clamped Euler-Bernoulli beam with a rectangular cross-section
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h
L2

d

E
ρ
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with the Young’s modulus E.
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The measured Q values show no significant dependence on the cantilever length, which suggests
that intrinsic losses dominate over support losses. Indeed, with a wafer thickness of hsub = 525 µm,
support loss can be estimated by Qsupport

´1 – (w/L)ˆ (h2/hsub
2) [25], which for the shortest cantilevers

gives Qsupport – 106. This is four orders of magnitude higher than the measured Qs and hence support
losses can be neglected.

Pyrolytic carbon has a distorted lattice structure with graphite-like areas [21]. Therefore, the
dominant energy loss that limits Q is believed to be a result of internal material damping, such as
friction between carbon layers. According to the measurements, cantilevers fabricated with pyrolyzed
AZ photoresist exhibited higher Qs than the ones based on SU-8.

Employing Equation (1) and the measured fundamental mode resonance frequency values, the
Young’s modulus E was calculated (see Table 1). The Young’s modulus values are higher than values
reported for pyrolytic carbon in the literature [11,12]. The results demonstrate that the properties of
the pyrolytic carbon strongly depend on the type of precursor used and the pyrolysis conditions. The
AZ-C shows a higher Young’s modulus than the SU8-C. This indicates that the AZ resist precursor
results in pyrolytic carbon of higher quality, which also is reflected in the higher Qs measured for AZ-C
(see Figure 4b). It should be noted that the non-rectangular cross-section along with the unknown
residual stress distribution may to some extent influence the applicability of the simple singly-clamped
beam model and eventually the calculation results. The calculated Young’s modulus values are more or
less identical for cantilevers with a length L ě 300 µm. The values obtained for 100- and 200-µm-long
cantilevers are lower due to the influence of the under-etched clamping, which is more important for
shorter beams [26]. Therefore, data for the two shortest cantilevers was excluded from the calculation
of the average values, which are 74 ˘ 8 GPa for SU8-C and 115 ˘ 8 GPa for AZ-C.

Table 1. Values of Young’s modulus of cantilevers with different length. Errors represent a 95%
confidence interval.

SU8-C AZ-C

L [µm] E [GPa]

100 58 ˘ 12 82 ˘ 11
200 65 ˘ 12 105 ˘ 15
300 72 ˘ 15 114 ˘ 16
400 77 ˘ 16 110 ˘ 15
500 74 ˘ 15 113 ˘ 16
625 74 ˘ 15 124 ˘ 17

3.4. Resonant Behavior of Strings

Figure 5 shows the resonance frequency and Qs of AZ-C strings fabricated by the “dry
etch-pyrolysis” process strategy as a function of length. The eigenfrequency of a string is given by

fn “
n

2L

c

σ

ρ
(2)

where the tensile stress is σ, and the mode number is n.
A ratio between the fundamental resonance frequency mode (n = 1) and higher resonance modes

of 2.02 ˘ 0.03 for the second harmonic (n = 2) to the fundamental mode and 3.1 ˘ 0.1 for the third
harmonic (n = 3) to the fundamental mode were measured for 425-µm-long AZ-C string resonators,
clearly confirming string-like behavior. The fundamental resonance frequency presented in Figure 5a
was to a good approximation proportional to the inverse of the length, as predicted by Equation (2).



Sensors 2016, 16, 1097 8 of 11

Sensors 2016, 16, 1097 7 of 10 

 

Employing Equation (1) and the measured fundamental mode resonance frequency values, the 
Young’s modulus E was calculated (see Table 1). The Young’s modulus values are higher than values 
reported for pyrolytic carbon in the literature [11,12]. The results demonstrate that the properties of 
the pyrolytic carbon strongly depend on the type of precursor used and the pyrolysis conditions. The 
AZ-C shows a higher Young’s modulus than the SU8-C. This indicates that the AZ resist precursor 
results in pyrolytic carbon of higher quality, which also is reflected in the higher Qs measured for 
AZ-C (see Figure 4b). It should be noted that the non-rectangular cross-section along with the 
unknown residual stress distribution may to some extent influence the applicability of the simple 
singly-clamped beam model and eventually the calculation results. The calculated Young’s modulus 
values are more or less identical for cantilevers with a length L ≥ 300 µm. The values obtained for 100- 
and 200-µm-long cantilevers are lower due to the influence of the under-etched clamping, which is 
more important for shorter beams [26]. Therefore, data for the two shortest cantilevers was excluded 
from the calculation of the average values, which are 74 ± 8 GPa for SU8-C and 115 ± 8 GPa for  
AZ-C. 

Table 1. Values of Young’s modulus of cantilevers with different length. Errors represent a 95% 
confidence interval. 

 SU8-C AZ-C
L [µm] E [GPa]

100 58 ± 12 82 ± 11 
200 65 ± 12 105 ± 15 
300 72 ± 15 114 ± 16 
400 77 ± 16 110 ± 15 
500 74 ± 15 113 ± 16 
625 74 ± 15 124 ± 17 

3.4. Resonant Behavior of Strings 

Figure 5 shows the resonance frequency and Qs of AZ-C strings fabricated by the  
“dry etch-pyrolysis” process strategy as a function of length. The eigenfrequency of a string is given 
by  

௡݂ = ܮ2݊ ඨ(2) ߩߪ 

where the tensile stress is ߪ, and the mode number is n. 

(a) (b)

Figure 5. Relation between length, (a) resonance frequency (fit to Equation (2) included) and (b) Qs 
of the carbon strings fabricated with “dry etch-pyrolysis” strategy (red) and calculated values for 
resonators without tensile stress (blue). Error bars represent a 95% confidence interval. 
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the carbon strings fabricated with “dry etch-pyrolysis” strategy (red) and calculated values for resonators
without tensile stress (blue). Error bars represent a 95% confidence interval.

The measured resonance frequency values were used to calculate the tensile stress in the strings
using Equation (2) and the results are listed in Table 2. Higher tensile stress was observed in shorter
strings. This variation in stress could be the consequence of a different shrinkage of short strings during
pyrolysis compared to longer ones. The resonance frequency values of 325-, 425- and 525-µm-long
strings were fitted to Equation (2) and the calculated tensile stress was 33 ˘ 7 MPa.

Table 2. Values of tensile stress of strings with different lengths (nominal lengths defined in
photolithography were 100, 200, 300, 400 and 500 µm). Error bars represent a 95% confidence interval.

AZ-C

L [µm] σ [MPa]

125 54 ˘ 5
225 41 ˘ 4
325 31 ˘ 3
425 35 ˘ 3
525 34 ˘ 5

In Figure 5b, the Q increases linearly with the string length, as predicted by the analytic model for
damping dilution in strings [17]

Q «
?

3
c

σ

E
L
h

Qintr (3)

with the intrinsic Q of an unstressed beam (e.g., a cantilever) Qintr.
Qintr of pyrolytic carbon strings was obtained (see blue data points in Figure 5b) by inserting

the values of the Young’s modulus and tensile stress obtained from the experimental data (Tables 1
and 2) in Equation (3). Here, we assume that it is a reasonable approximation to use the Young’s
modulus values calculated using experimental data of structures fabricated with the “pyrolysis-dry
etch” strategy. This resulted in an average value of Qintr for AZ-C resonators of Qintr = 100 ˘ 7. The
intrinsic Q was relatively low and it was not significantly influenced by the string length. This suggests
that Qintr is dominated by internal material friction. This value can directly be compared to the
Qintr « 600 obtained for the cantilevers (see Figure 4b). The material damping in the AZ-C cantilevers
fabricated with the “pyrolysis-dry etch” process seems to be considerably lower than that of the AZ-C
strings fabricated with the “dry etch-pyrolysis” process. This could suggest that the unpyrolyzed resist
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is affected more by the dry etch step compared to the pyrolytic carbon, finally resulting in carbon of
lower quality.

4. Conclusions

The results of fabrication and characterization demonstrate that it is possible to obtain
nanomechanical pyrolytic carbon cantilever and string resonators. The fabrication process consists
of only three main steps: photolithography, dry etching and pyrolysis, which allows for shorter
fabrication time in comparison with common methods based on Si or SiN resonators. The order of the
two last process steps had a decisive influence on the fabrication output, as summarized in Table 3.

Table 3. Summary of the overall fabrication output for the two different process strategies with the
two precursor materials.

Cantilevers Strings

Photoresist precursor SU8-2005 AZ 5214e SU8-2005 AZ 5214e
dry etch-pyrolysis ˆ ˆ ˆ

‘

Pyrolysis-dry etch
‘ ‘

ˆ ˆ

For the “dry etch-pyrolysis” process strategy, dry etching resulted in structural deformation
of the photoresist and buckling of the doubly-clamped beams. However, during pyrolysis the
lateral shrinkage of the released photoresist effectively induced tensile stress in the suspended
doubly-clamped beams. Nevertheless, only pyrolyzed AZ 5214e strings could be used in further
experiments and displayed a string-like behavior. Singly-clamped cantilever beams could not be used
due to excessive bending in the clamping area.

For the “pyrolysis-dry etch” fabrication strategy, structures were first pyrolyzed and then released
by dry etching. No change of the lateral dimensions was observed except for a change of the beam
cross-section. The doubly-clamped structures were not stretched during pyrolysis and buckling was
observed. As a consequence, these devices could not be used as string resonators. However, the
singly-clamped cantilevers showed minimal bending and could be used for characterization of the
Young’s modulus of pyrolytic carbon.

Quality factors of up to 3000 were obtained with pyrolytic carbon strings, which is one order of
magnitude higher compared to the Qs obtained for the cantilevers. The relatively high Qs are the result
of damping dilution due to intrinsic stress in the strings. With the obtained Qs and Young’s moduli of
more than 100 GPa, pyrolytic carbon is a promising alternative material for the fabrication of micro-
and nanomechanical resonators, allowing for a direct photoresist-based fabrication. Pyrolytic carbon
has a density more than two times lower than SiN, which is an advantage in terms of, for instance, mass
sensitivity. Even though SiN has substantially higher tensile stress [14], SiN string resonators would
be just 50% more sensitive to attached mass. There is also plenty of room for improvement, especially
by the optimization of pyrolysis conditions and structure design. Additionally, the intrinsic electrical
conductivity allows for electrical integration for the development of novel carbon-MEMS/NEMS.
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