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Conductivity and structure of sub-micrometric SrTiO3 -YSZ composites 

E Ruiz-Trejo1, K. Thyden, N. Bonanos, M. B. Mogensen 

Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 

Frederiksborgvej 399, DK-4000  Roskilde, Denmark.  

Abstract 

Sub-micrometric composites of SrTiO3-YSZ (1:1 volume) and samples of SrTiO3 were prepared by 

high temperature consolidation of precursors obtained by precipitation with NaOH. The structure 

development and morphology of the precursors were studied by XRD and SEM. The perovskite and 

fluorite phases in the composites are clearly formed at 600 °C with no signs of reaction up to 1100 

°C; the nominally pure SrTiO3 can be formed at temperatures as low as 400 °C. Composites with sub-

micrometric grain sizes can be prepared successfully without reaction between the components, 

although a change in the cell parameter of the SrTiO3 is attributed to the presence of Na.  

The consolidated composites were studied by impedance spectroscopy between 200-400 °C and at a 

fixed temperature of 600 °C with a scan in the partial pressure of oxygen. The composites did not 

exhibit high levels of ionic conductivity in the grain boundary nor the bulk.  The conductivity of Na-

free composites shows lower levels of conductivity than pure YSZ, while samples with Na showed 

increased conductivity. The conductivity of SrTiO3 exhibited an enhancement attributed to p-type 

conductivity, although contributions from protons cannot be disregarded as some Na doping is 

present. 
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1. Introduction  

An unprecedented increase in oxygen ion conductivity in intercalated structures of 8% Y2O3 doped 

ZrO2 (YSZ) and SrTiO3 was reported a few years ago by Garcia-Barriocanal et al [1]. If the 

conductivity of one of these heterostructures is extrapolated to room temperature a difference of ca. 

8 orders of magnitude compared to standard YSZ is found. These findings were followed by serious 

criticism [2,3,4]: one of the main objections being that SrTiO3 can exhibit p-type conductivity. 

Conductivity enhancement has been reported before in heterolayers of CaF2/BaF2 very much in 

accord with space charge theory [5]. The possibility of conductivity enhancement in YSZ/Ln2O3 

interfaces has been discussed in [3] where the authors argue that the strain at the interface, dilative or 

compressive, can lead to enhancement or decrease of the oxygen mobility, respectively. On the other 

hand, other groups have found no indication of oxygen mobility in similar systems [6] or even 

indicated that the conductivity is dominated by SrTiO3 [7]. 

Despite the current disagreement on the nature of the conductivity in SrTiO3-YSZ interfaces there is 

further interest on composites of these two materials as they represent alternative anodes for fuel 

cells: SrTiO3 can exhibit high electronic conductivity achieved by suitable doping and high 

temperature reduction treatment (>1300oC) [8, 9, 10]. 

The objectives of this work are then: To present a novel fabrication method for composites of SrTiO3 

and YSZ and to study the electrical properties of samples with a large interfacial contact between the 

two phases. Should a large effect exist as reported in [1], then it might be possible to detect it in 3-

dimensional systems where a large number of SrTiO3-YSZ interfaces exist.  
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2. Experimental 

2.1 Synthesis of nanocrystalline SrTiO3 and YSZ 

A batch of SrTiO3 and several batches of SrTiO3/YSZ (1:1 volume unless otherwise indicated) were 

prepared. Stoichiometric amounts of Sr(NO3)2 (> 99.0% Aldrich) and Y(NO3)3.6H2O (99.8%) were 

dissolved in 20 ml of de-ionised water under constant stirring in nitrogen atmosphere. This was 

followed by addition of TiCl3 solution 10 w% in 30% HCl (Aldrich) and ZrOCl2 solution 30 w% in 

HCl (Aldrich). This mixture was added to a 2M solution of NaOH. The precipitation was immediate 

and a clear separation between liquid and solids occurs within 1 hour. The crystal clear liquid was 

removed with a pipette and the precipitate centrifuged. To avoid re-dissolution of Sr(OH)2, the 

precipitate was then washed with a mixture of concentrated NH4OH and absolute ethanol and 

centrifuged again; this rinsing process was repeated five times.  

To essay the possible re-dissolution of Sr in the rinsate concentrated NaOH was added to confirm that 

no precipitate was formed; CO2 was also bubbled into the rinsate to check for SrCO3 precipitation. 

The precipitate was further processed by drying in nitrogen atmosphere in a hot plate to eliminate the 

excess water.  

The evolution of this precipitate was followed by thermogravimetry (TG) in air with a heating rate of 

5 °C min-1.  Several batches of the powder were annealed at different temperature (T = 400-1100 °C) 

for 1 hour and each sample was analysed by XRD (STOE Theta-Theta diffractometer) to observe the 

formation of the perovskite and the fluorite phases as well as to detect any possible reaction between 

them. The crystallite size was determined using Scherrer’s formula and the lattice parameter with the 
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embedded refinement in the Xwin XPOW software. The microstructure was studied with a scanning 

electron microscope (Zeiss, SUPRA 35 or LEO 1525).  

2.2 Consolidated samples 

The washed precipitate was calcined at 400 °C for 1 hour, uniaxially pelletised and then isostatically 

compressed (195 MPa) at room temperature. The pellets were then heated (300 °C h-1) in air up to 

1100 °C for 1 hour. The density of pellets was measured with the Archimedes’ method using de-

ionised water as the immersion fluid. The structure development and microstructure were followed 

as a function of temperature by XRD and SEM, respectively.  

A reference composite was prepared from commercial powders SrTiO3 (American Elements 99.9%, 

< 100 nm) and YSZ (Fuel Cell materials, 5-10 nm). The powders were milled overnight using zirconia 

balls and absolute ethanol. The dried powders were then treated exactly as the precipitated powders 

to obtain a consolidated body. 

2.3 Conductivity measurements 

An impedance analyser (Solartron 1260) was used to perform most of the measurements within the 

frequency range 0.1 Hz - 1 MHz.  Silver paint was applied on both faces of the pellets and baked at 

400 °C in air for 1 hour before the measurements. The first set of measurements took place between 

200 and 400 °C in air. 

A second set of measurements was taken on a dense sample at a fixed temperature of 600 °C at 

different partial pressures of oxygen. A mixture of H2O and H2 was used to control the low pO2 region 

while for the high pO2 region, a mixture of air, N2 and oxygen was used. All the gases were controlled 

with flow meters while the pH2O was controlled by bubbling the gases in de-ionised water at T = 14 
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oC. In most cases the partial pressure of oxygen was tested ex-situ with a zirconia sensor at T = 997 

oC.  

The impedance spectra were fitted using the routine embedded in the software ZsimpWin 3.21. The 

equivalent circuits selected are discussed in the corresponding section. 

3. Results and discussion 

  

3.1. Strontium titanate  

3.1.1 Microstructure 

Figure 1a shows the room temperature XRD patterns of powders and a pellet of SrTiO3 prepared by 

precipitation of metal hydroxides. SrTiO3 was obtained as a nanocrystalline phase at 400 °C; SrCO3 

traces were observed but these were eliminated completely after 800 °C.  No other phase was detected. 

The microstructure of SrTiO3 nano-powders annealed at 400 °C and at 800 °C for 1 hour is seen in 

Figures 1b and 1c, respectively. The powder in both cases consisted of spherical particles of ca. 200 

nm in diameter. The crystallite size of all the annealed samples stayed around 37 nm. At 800 °C the 

surface of the particles became smoother due to the decomposition of SrCO3, as observed comparing 

Figures 1b and 1c, detected in the XRD (Figure 1a) and determined by the weight change in the TG 

experiments.  

Figure 1d shows a micrograph of fractured pieces of SrTiO3 sintered at 1100 °C. The individual grains 

have a more faceted shape and did not undergo a large grain growth as can be seen by comparing the 

images in Figure 1. Na was observed by Energy-dispersive X-ray spectroscopy (EDS) to be 

distributed inhomogeneously with some regions reaching up to 3% in weight.  It can be assumed that 
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part of the excess Na substituted into the Sr sites, since their ionic radii are very similar: Sr2+, 12-

coordinated is 1.44 Å while Na+, 12-coordinated is 1.39 Å); Ti4+ is too small to be substituted by ions 

such as Na+. Na then constituted an acceptor dopant and also led to a contraction of the lattice 

parameter of SrTiO3.  

 

3.1.2  Conductivity 

Figure 2a shows the impedance spectrum of a SrTiO3 pellet at 300 °C. One clear semicircle was 

visible and fitted to a single Resistance-Constant Phase Element (R-CPE) parallel circuit 

corresponding to the bulk. The spectrum for SrTiO3 was similar to that reported for nanocrystalline 

un-doped SrTiO3 [11]. The conductivity σ was thermally activated with an Arrhenius behaviour 

described by  

σ T = 1.17 x 107 exp ( -0.95eV / kbT ) S cm-1 K     Eq. 1 

Where T is temperature in Kelvin, and kb is the Boltzmann constant. The increased conductivity found 

in SrTiO3 in comparison with un-doped SrTiO3 must be related to the excess Na doping and the 

subsequent creation of oxygen vacancies, electron holes, or protons as compensating defects. These 

generation can be written respectively as: 

𝑁𝑁𝑁𝑁2𝑂𝑂
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3�⎯⎯⎯� 2𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆′ + 𝑉𝑉𝑂𝑂∙∙ + 𝑂𝑂𝑂𝑂𝑥𝑥        Eq. 2 

𝐻𝐻2𝑂𝑂 + 𝑉𝑉𝑂𝑂∙∙ +𝑂𝑂𝑂𝑂𝑥𝑥 ↔ 2𝑂𝑂𝑂𝑂𝑂𝑂∙         Eq. 3 

𝑉𝑉𝑂𝑂∙∙ + 𝑂𝑂22
1 ↔ 𝑂𝑂𝑂𝑂𝑥𝑥 + 2ℎ∙         Eq. 4 

The conductivity of SrTiO3 can be greatly modified by small amounts of doping [12]. Protons are 

potential charge carriers due to the hydrophilic nature of Na [13] and the known capability of the 
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SrTiO3 perovskite to incorporate water into its lattice [14, 15, 16, 17]. Hole conductivity or oxygen 

ions are also expected to transport charge in SrTiO3 [12,18,19].  

3.2 Composites 

3.2.1 Microstructure 

XRD patterns of the composite SrTiO3/YSZ powders annealed at different temperatures are shown 

in Figure 3a. Three main observations are:  

1.- The dry precipitate obtained from the synthesis was mainly amorphous as seen at 400 °C. The first 

compound to crystallise was SrCO3 but it disappeared completely at 800 °C according to TG and 

XRD.   

2.- Complete crystallisation of the fluorite YSZ and the perovskite SrTiO3 took place between 500 

°C and 600 °C. No reaction between YSZ and SrTiO3 was observed up to 1100 oC. This was also 

confirmed by the XRD of the reference sample i.e., the mixture of commercial powders, and seems 

in accord with the literature [8, 9, 10].  

3.- The lattice parameters of SrTiO3 and of YSZ change slightly in the presence of Na. See table 1. 

As observed by EDS there was Na in this batch, most likely incorporated into the SrTiO3 lattice at 

high temperature. Due to ionic radius mismatch in the sites of Y3+ (1.019 Å, 8-coordinated), Ti4+ 

(0.605 Å, six-coordinated) and Zr4+ (0.84 Å, 8-coordinated), other doping sites were not considered, 

although Ti4+ can be incorporated into the Zr site in YSZ. Na+ ionic radii are 1.19 Å for 8-coordination 

and 1.02 Å for 6-coordination.  

Table 1 shows the crystallite sizes, cell parameters, and relative densities of the different composites 

prepared here. The data of the IPDF files are included as a reference as well as the reference sample 

prepared from commercial nanopowders.  
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No extra peaks were observed in the XRD pattern as seen in Figure 3a but according to the EDS some 

regions had up to 3% weight in Na. The effect of the excess Na was observed in the XRD pattern as 

a change in the lattice parameter of SrTiO3 and not as a secondary phase. Samples with Na levels 

below the detection level of the EDS were prepared but did not achieve a good density. 

Figure 3b shows a micrograph of a precipitate treated at 800 °C for 1 hour. The powder consisted of 

spherical particles of up to 200 nm in size. All particles seemed to show the same shape, topography, 

and contrast; at this stage there was no clear distinction between the fluorite and the perovskite phases.   

Figure 3c and 3d show the structure of a composite with 88 % of the theoretical density, the highest 

achieved for the composite pellets annealed at 1100 °C.  There was a clear microstructural 

characteristic:  particles of ca. 0.7-0.8   µm in diameter and small particles < 50 nm. Considering the 

low grain growth exhibited by SrTiO3 (see Figure 1d) and the calculation of the crystallite size (Table 

1), the large particles can be assigned to YSZ and the small particles to SrTiO3.  A relevant 

observation is the very good contact that exists between the grains and the consequent large interfaces 

between the YSZ and the SrTiO3, despite the presence of pores. Due to our interest in the interfacial 

transport, the conductivity of this sample was further studied in this work.  

3.2.2 Conductivity 

A typical impedance spectrum for a tested composite in air at 300 °C is shown in Figure 2b. It 

consisted of two signals with the highest frequency semicircle clearly defined. The symmetric 

Bruggeman model for inter-percolating phases in a composite was used to model the bulk 

conductivity [20]. The conductivity of the composite Ψm is   

𝛹𝛹𝑚𝑚 = 1
4
�𝑞𝑞 +  (𝑞𝑞2 + 8𝛹𝛹1𝛹𝛹2)

1
2�      Eq. 5 

where  
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𝑞𝑞 =  (3𝑥𝑥1 − 1)𝛹𝛹1 + (3𝑥𝑥2 − 1)𝛹𝛹2      Eq. 6 

And x is the volume fraction and the subindices indicate the phase. 

A good fit to the experimental data is obtained only if the conductivity of each phase is smaller in the 

composite: a value of  σ = 5 x 10-7 S cm-1 was used for  YSZ, as it decreases by ca. an order of magnitude 

when doped with Ti [21,22,23] and for a lightly acceptor doped SrTiO3, σ = 1 x 10-7 Scm-1 was used 

[24]. 

The bulk conductivities obtained from the high frequency semicircle for different samples are shown 

in Figure 4 as an Arrhenius plot. The results can be summarised as: 

1.- The reference composite presented lower bulk conductivity than YSZ and high activation energy 

(Ea), too high to be due to YSZ. There was no evidence of improved conductivity although the 

conductivity may be low because the sample was not very dense or YSZ was doped with Ti.  

2.- The Na-doped composite presented a higher conductivity than the reference composite, a 

phenomenon associated with defect formation and transport (see Eq. 2-4).   

3.- SrTiO3 showed the highest conductivity and could be clearly associated with Na doping. Since 

the Na in SrTiO3 is hygroscopic [13], this might suggest proton conduction. Proton conduction has 

been reported in Sc-doped SrTiO3 [14-17].  

Figure 5a shows an impedance plot of a tested composite in air at 600 °C. At this temperature a scan 

of partial pressures of oxygen was performed; all the spectra were fairly similar. Three CPE-R 

elements were used to fit the spectra as shown in Figure 5a. The impedance of a CPE element is given 

by 

𝑍𝑍 = 1
𝑌𝑌0(𝑗𝑗𝑗𝑗)𝑛𝑛           Eq. 7 
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Where Y0 is the admittance and n the exponential value obtained from the fitting of the CPE element 

[25]. To help in the assignation of the three signals observed, the equivalent capacitance C was 

estimated using 

𝐶𝐶 = (𝑅𝑅0𝑌𝑌0)1 𝑛𝑛�

𝑅𝑅0
           Eq. 8 

Some information on the grain boundary can be obtained from the spectra measured at a fixed 

temperature of 600 °C and as a function of partial pressure of oxygen. The equivalent capacitances 

obtained from the three elements observed at 600 °C for all atmospheres are displayed in Figure 5b. 

The estimated equivalent capacitances can be used to identify the different elements in the impedance 

plots, namely bulk (ca 10-11 C F-1), grain boundary, (ca 10-8 and 10-9 C F-1) and electrode (ca 10-7 C 

F-1). 

Figure 5c shows a plot of the resistance of bulk, grain boundary and electrodes as a function of pO2 

for the YSZ/SrTiO3 sample tested at 600 °C.  

In general, the bulk and grain boundary resistances did not seem to change dramatically with partial 

pressure of oxygen, although in the air-oxygen mixtures their values hinted at p-type behaviour at 

high pO2 and n-type at low pO2 as expected for SrTiO3 despite the scatter of data. The electrode 

response was clearly affected by the partial pressure of oxygen.  No remarkable enhancement in the 

conductivity is seen in any of the fitted elements. 

4. Conclusions 

 

A method for the manufacture of sub-micrometric composites of SrTiO3-YSZ (1:1 volume) and 

samples of SrTiO3 was presented. No reaction between the components was seen but a change in the 

cell parameter of the SrTiO3 is attributed to the presence of Na. There is good interfacial contact 
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between the phases in the consolidated composites SrTiO3-YSZ although they did not exhibit high 

levels of ionic conductivity in the grain boundary, nor in the bulk.  The conductivity of Na-free 

composites is lower than the conductivity of pure YSZ while the conductivity of Na-doped composite 

samples was higher than non-doped composites. The composites did not exhibit high levels of ionic 

conductivity in the grain boundary nor in the bulk. The conductivity of single phase SrTiO3 exhibited 

an enhancement caused by Na doping. Charge transport is likely to be p-type, but it may be protonic 

in nature as in Sc-doped SrTiO3 and due to the hygroscopic nature of Na in SrTiO3. 
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Table 1. Lattice parameters, crystallite size and percentage of theoretical densities. All composites 

were prepared at 1100 °C. 

 SrTiO3/Å Crystallite 

size / nm 

YSZ/Å Crystallite 

size / nm 

% theo. 

density 

IPDF file 3,905  5,1390   

Reference SrTiO3/YSZ  3,8979 40 5,1206 38 57 

SrTiO3/YSZ (up to 3%w Na) 3,973 11a 5,134 44 88 

SrTiO3 (up to 1%w Na) 3,8894 37 ----- ------ 66 

 

a The crystallite of SrTiO3 is unusually small. Apparent broadening of the peak may be due to the 

presence of two similar SrTiO3 phases with different levels of Na. 
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Figure captions 

 

Figure 1.a) XRD of SrTiO3 powders annealed at different temperatures. The sample at 1100 °C is a 
pellet. b). Micrograph of SrTiO3 powder annealed at 400 °C for 1 hour. The small grains observed 
on the surface of the spheres are SrCO3. c) Particles of SrTiO3 annealed at 800 °C. SrCO3 is not 
detectable by XRD.  A small amount of Na is observed by EDS. Note the smooth surface of the spheres 
and compare with those of b. d)  A crushed sintered pellet of SrTiO3 with 66 % of the theoretical 
density 

Figure 2.a) Impedance spectrum in air at 300 °C for SrTiO3. b) Impedance plot in air for a composite 
with 88% density at T = 300 °C. Included is the result of the simulation using the symmetric 
Bruggeman model for a composite with inter-percolating materials [20].  

Figure 3. a) XRD of SrTiO3/YSZ powders calcined for 1 hour at the temperature indicated. All 
samples were powders except sample at 1100 °C which is a pellet. b) Micrograph of a precipitate 
calcined at 800 °C.  c) SEM micrograph of a composite with 88% density. d). SEM Micrograph of 
the surface of a composite with excess Na (Some regions up to 3% according to the EDS but no extra 
peaks were observed in the XRD. 

Figure 4. Arrhenius plot for 2 different composites and Na-doped SrTiO3. The black line is the 
standard YSZ conductivity. Activation energy values: 1.19 eV for the composite with commercial 
powders, 0.95 for SrTiO3 and 1 eV for composite YSZ/SrTiO3. 

Figure 5. a) Impedance plot of composite at log (pO2/atm) = -27 at 600 °C b) Capacitances of the 
three different elements observed in the impedance spectra as a function of pO2. From small to large 
equivalent capacitance the elements most likely represented are bulk, grain boundary and electrode 
respectively. c). Resistances of the 3 different elements observed in the impedance spectra. 
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