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Abstract— The engineering design literature has provided guidance on how to identify and 

analyse design activities and their information dependencies. However, a systematic 

characterisation of process interfaces between engineering design activities is missing, and the 

impact of structural and compositional aspects of interfaces on process performance is 

unclear. To fill these gaps, we propose a new approach that characterises process interfaces as 

organisation networks consisting of people and their interactions when performing interfacing 

activities. Furthermore, we provide guidance on how to test and interpret the effect of those 

characteristics on interface problems. As a result, we show how structural and compositional 

aspects of the organisation networks between information-dependent activities provide 

valuable insights to better manage complex engineering design processes. The proposed 

approach is applied to the development of a power plant, analysing 79 process interfaces. The 

study reveals a relationship between the structure and composition of the process interfaces 

and reported interface problems. Implications of this approach include the integration of 

information about process and organisation architectures, the systematic identification of key 

performance metrics associated with interface problems, and improved support for 

engineering managers by means of a better overview of information flows between activities. 
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I. INTRODUCTION 

The engineering design process can be described as a system with three interdependent 

domains: the process domain (a network of activities), the organisation domain (a network of 

people) and the product domain (a network of components). The architecture of each domain 

describes the dependencies and actual interactions within its elements. Interfaces are what 

enable those interactions as well as what makes the integration of engineering design outputs 

possible (Clarkson and Eckert, 2005, p. viii; Eppinger and Browning, 2012; Rechtin, 1990). 

Depending on the domain, we can identify three types of interfaces: process interfaces, 

organisation interfaces and product interfaces. Problems at any of these interfaces may result 

in system failures or may add uncertainty to the design process (Felekoglu et al., 2013; Maier 

et al., 2009a). Consequently, understanding and active management of interfaces is essential 

for successful execution and for design process improvements, especially in the context of 

systems engineering (Jain et al., 2010; Sheard and Mostashari, 2009). This becomes 

particularly important in the design of large and complex engineering systems, where 

interdependent design activities covering different subsystems can be distributed across 

hundreds or thousands of engineers (Browning, 2009; de Weck et al., 2011; Madni and 

Sievers, 2014).  

Our focus in this paper is on process interfaces. The objective is to provide an improved 

conceptual understanding and analytical methods regarding process domain interfaces. 

Process interfaces enable information flow between activities. In other words, a process 

interface connects interdependent pairs of activities and allows for the fulfilment of 

information dependencies. We characterise these process interfaces as networks of 

interactions between people performing interfacing activities. 

Traditional network-based approaches to process planning and control, such as Critical Path 

Method (CPM) and Program Evaluation and Review Technique (PERT) (for a review see 

Elmaghraby (1995)), and more current approaches to model the process architecture (e.g. 

Browning (2009); Kreimeyer & Lindemann (2011); Eppinger & Browning (2012)), can 

describe if there is an information dependency between two activities, can map the intensity 

and importance of the information dependencies between activities, and can map the planned 

or the actual process sequence given activities’ information dependencies (Browning, 2002; 

Eppinger and Browning, 2012). However, what is not sufficiently covered by current activity-

based approaches modelling the process architecture is a conceptual and quantitative 
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characterisation of interfaces between interdependent activities. Consequently, we don’t fully 

understand how information dependencies between two interdependent activities are actually 

addressed through the network of individuals implementing the design process. This gap 

hinders our capacity to address common process interface problems, such as subsystem-level 

integration issues and delays due to process coordination problems.  

To address this gap, we propose a new approach to conceptualise and systematically 

quantify process interfaces in terms of their network structure and composition. We claim that 

such network characterisation and analysis of process interfaces not only helps to better 

understand the nature of complex system design processes, but also helps to better manage 

system engineering processes. This approach expands what is in activity-based approaches 

typically described only as an edge connecting two activities.  

With the objective of advancing the theory and practice of process interface management, 

we: 

1) Summarise related research and identify literature gaps (sections I and II). 

2) Offer a conceptual and quantitative characterisation of process interfaces (section III). 

3) Test our approach with a case study of the engineering design process of a biomass 

power plant. For this, we use real process data from 79 process interfaces as well as 

questionnaires and interviews (section IV). 

4) Discuss our empirical results and the impact of this approach for research and practice 

(section V). 

II. BACKGROUND: INTERFACES AND INTERFACE MANAGEMENT 

Interfaces 

In generic terms, an interface is where two elements meet and interact. Depending on the 

level of abstraction, an interface can be conceived as a concrete entity existing in the ‘real 

world’ or as an element in a description. Here we model and analyse interfaces as concrete 

entities, with quantitatively characterisable structures and compositions, but we also review 

the conceptual foundations of the proposed characterisation.  

In the systems engineering and engineering design literature, the nature of interfaces has 

been conceptualised in different ways according to the domain under study: 

- In the product domain we find components (grouped in subsystems if they exist) with 

interactions between them that can be material, spatial, of energy flow, of information flow, 
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etc. (Eppinger and Browning, 2012, chap. 3). A product interface therefore consists of the 

entity(ies) that allow for the interaction between two components. Such an interface can take 

the form of additional components, such as a set of cables and fixtures between two 

interacting subsystems, but can also include the physical space through which components 

interact. 

- In the organisation domain we find people and their interactions. In the context of the 

engineering design process, such interactions relate to communication and are often 

simplified as information exchanges (Allen, 1986; Steward, 1981; Yassine et al., 1999). An 

organisation interface therefore consists of the entity(ies) that allow for the interaction 

between two people or organisational groups. Such an interface can take the form of specific 

people mediating the communication between two groups, but can also include the technical 

means used to establish such communication. 

- Finally, in the process domain, we find engineering design activities with information 

dependencies addressed by information flows (Eppinger and Browning, 2012; Eppinger, 

2001). A process interface is what enables the information flow between activities, effectively 

connecting a pair of activities and fulfilling their information dependencies (Durugbo et al., 

2011; Morelli et al., 1995; Sosa et al., 2007). Our approach considers process interfaces as 

entities composed of a network of people working at the intersection of two interdependent 

activities – a network that exchanges and transforms information from one activity to the 

other. Section III further elaborates this definition and provides means to quantitatively 

characterise this type of interface. 

In contrast to interfaces in the product or organisation domains, a precise characterisation of 

what constitutes a process interface is more difficult, as: 1) the elements of process interfaces 

are not static. For example, people associated with the interface and their information 

exchanges may be in constant change. Also, activities have a beginning and an end during the 

lifetime of the project, can reoccur, and can last from a few hours up to weeks or months, 

making them comparatively more dynamic than components or people. 2) An activity cannot 

be observed in the same form that people or components can be, as it is not a tangible 

element. Rather, a design activity is a set of actions performed by a person or group to fulfil 

some design goal in a given period of time (Sim and Duffy, 2003). 
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Process domain: Interface problems and interface management 

If an interface is what connects, or should allow for the connection, of two distinct elements 

or groups (Morris, 1997), interface problems are instances where a lower than expected 

performance in this connection is identified and believed to hinder the interaction between 

two elements or groups. In the process domain, interface problems would therefore be the 

result of interaction issues between interdependent activities hindering the performance of at 

least one of the interfacing activities.  

Consistent with the view of design as a social process of information transformation 

(Bucciarelli, 1984; Hubka et al., 1988; Simon, 1996), we concentrate our attention on process 

interface problems that are the result of inadequate information exchanges and/or 

unsatisfactory information transformation processes between pairs of information-dependent 

activities. Such problems have been associated with product-system integration difficulties 

that can lead to considerable negative impacts on time, budget and quality (Browning and 

Eppinger, 2002). These process interface problems can become manifest in issues such as 

costly difficulties in the integration of technical subsystems due to missing information 

between interdependent activities, delays due to coordination problems across activities, and 

quality issues due to misunderstandings about interdependent technical parameters that are 

inputs and/or outputs across two or more activities. 

Interface management can be broadly defined as the management of interactions across a 

common boundary (the interface) that happens between and/or within interdependent 

elements of the organisation, product or process domain. One key objective of interface 

management is preventing interface problems. Most interface management examples refer to 

interfaces in the product domain (e.g. Bruun et al., 2013; Lindemann et al., 2009; Rahmani 

and Thomson, 2011) and in the organisation domain (e.g. Eckert, 2001; Maier et al., 2009b; 

Sosa et al., 2007). In comparison, interface management specifically applied to the process 

domain has not had the same level of attention. 

As identified in Browning et al. (2006); Browning & Ramasesh (2007); and Browning 

(2009), an issue affecting the management of interfaces in the process domain is that process 

models, especially the ones based on activity networks, emphasise design activities and their 

overall network of dependencies. However, these process models do not pay enough attention 

to the flow and transformation of information that occurs between each pair of interdependent 

activities. Furthermore, most process models only consider information dependencies 
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between activities, not the actual information flow or how work is performed at these 

interfaces. This limited characterisation of process interfaces is likely to be the result of two 

aspects. One, the level of analysis typically applied by current process models, where the 

attention is focused at the level of the whole activity network, and not at the level of 

individual interfaces. And two, in industry, project managers generally focus on overall 

project timing, resources and budget, overlooking more detailed interface management until 

something goes wrong. For these reasons, new approaches are required to provide appropriate 

support for project managers of complex engineering design projects and to better understand 

the potential sources of interface problems. 

The management of process interfaces becomes considerably more challenging in larger 

engineering design projects (de Weck et al., 2011). In such projects, complexity increases due 

to the rapid growth of potential and actual interactions between and within the many people 

and activities found in the process (Braha and Bar-Yam, 2007). To deal with this complexity, 

network analysis has proved to be a useful approach to model and systematically analyse 

large projects (e.g. Braha and Bar-Yam, 2004; Eppinger and Browning, 2012; Parraguez and 

Maier, 2016). In addition, previous studies of the architectures of products, organisations and 

processes have identified links between the architecture of networks in those domains and 

performance measures (e.g. Gokpinar et al., 2010; Sosa et al., 2004). Such links can be used 

to elaborate on the potential relationship between the network architecture of a process 

interface and interface problems. 

Network architecture 

Process interfaces have previously not been modelled as organisation networks, therefore 

there is no direct evidence in the literature for a relationship between the architecture of 

process interfaces and interface performance or problems. However, previous studies in the 

context of engineering design, new product development, and innovation management have 

shown the existence of relationships between the networks that characterise the overall 

architectures of products, organisations, and processes and the different measures of project 

performance (for example see Cummings and Cross, (2003); Gloor et al., (2008); Kratzer et 

al., (2011)). As a result, we can use those relationships, and related network metrics, as 

starting points to examine systematically potential relationships between the organisation 

network of process interfaces and interface problems. 
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The architecture of any network can be analysed in terms of its structural and 

compositional aspects (Borgatti et al., 2013; Wasserman and Faust, 1994). Both aspects have 

been reported to affect the performance of systems. Structural aspects describe the 

topological characteristics of a network’s architecture. These aspects can be quantified 

through metrics such as network size (number of elements), density (connectivity between the 

elements), centralisation (the extent to which a few nodes centralise connections) and 

clustering coefficient (degree of grouping) (Wasserman and Faust, 1994). Previous studies of 

network structure in organisations and engineering projects have identified a number of 

relationships between network structure and performance. In contrast, compositional aspects 

describe the type and variety of elements (nodes) found in the studied network; this includes 

aspects such as group diversity (measured for example by the heterogeneity of functional 

areas represented in the group), the diversity of demographic characteristics in a group, or the 

variety of any other feature represented in a network. 

Although relationships between network architecture and performance have been widely 

studied in a number of organisational settings (e.g. Borgatti and Foster, 2003), due to the lack 

of a model and method to characterise process interfaces as organisation networks, these 

relationships have previously not been tested at the level of each interface. Section III 

provides the foundations for such an analysis. 

III. CHARACTERISING DESIGN PROCESS INTERFACES AS ORGANISATION NETWORKS 

We characterise process interfaces as organisation networks between information-

dependent activities. These organisation networks are comprised of the set of information-

driven interactions between those who work at interdependent activities. For people to be 

considered as part of an interface they need to: 1) perform work directly associated with two 

information-dependent activities and/or 2) perform work at one activity and exchange 

information with a counterpart who performs work associated with the other, interdependent, 

activity. 

In our proposed characterisation, process interfaces combine elements from both the 

process and organisation domain. The process architecture maps information dependencies 

between activities, allowing to identify the pairs of activities for which an interface is 

expected. The organisation architecture maps information exchanges between people, 

allowing to identify information flows in the organisation; and the intersection between the 

architectures of the organisation and the process domain maps activities to people, allowing to 
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identify the groups of people associated with each activity. Figure 1 shows the relationship 

between the architectures of these domains in schematic form and provides a simplified 

graphic representation of a process interface between activities A6 and A7. 

 

As illustrated in figure 1, and inspired by work combining elements from the process and 

organisation domains (e.g. Gokpinar et al., 2010; Morelli et al., 1995; Sosa, 2008; Sosa et al., 

2007), in the proposed characterisation, each process interface is described as a bi-modal 

network of activities and people. These (often small) networks comprise two information 

dependent activities, two or more people interconnected via information-driven interactions, 

and the mapping of each person to either one or both activities at each side of the interface. 

To facilitate the analysis and interpretation, and to enable hierarchical process 

decomposition, activities can be grouped into cohesive work packages based on each of the 

subsystems being designed. Subsequently, each activity group can be associated with one of 

three categories: integrative work activities (activities that support, manage, and coordinate 

design work), integrative subsystem activities (activities that integrate two or more modular 

subsystems) and modular subsystem activities (design activities related to specific modules or 

subsystems under development) (Parraguez et al., 2015; Sosa et al., 2003). With this and the 

computation of structural network metrics for each process interface, it is possible to provide 

a structural characterisation for each process interface network. In turn, attributes such as the 

affiliation of each person with a functional group and the type of activity at each side of the 

interface provides the information required to characterise each interface’s network at the 

compositional level (Borgatti et al., 2013; Wasserman and Faust, 1994). 
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and process architectures; D) shows the process interface as a combination of (A), (B), and (C).
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Figure 2. Information inputs for the analysis of process interfaces (generic example): (i) shows the direction of the information dependency
between activities A1 and A2; (ii) shows the organization DSM matrix for people P1 to P5; (iii) shows the person-activity affiliation matrix; (iv)
shows the process interface graph generated as a result of combining (i), (ii), and (iii).

relationships provide the basis to examine the potential effect
of the architecture of process interfaces on performance.
Previous studies have shown relationships between the

network architecture of organizations or engineering projects
and the performance of those organizations or projects (see
Table II for examples). Based on the evidence of those
studies, it seems plausible that a relationship also exists
between the structure and composition of a process interface
and interface problems. For example, a U-shaped relationship
can be hypothesized between network size and interface
problems: Interfaces involving a larger number of participants
are more likely to be affected by higher coordination costs,
that is, the costs of organizing the work of the participants

[Becker, 1992]. In turn, interfaces with a small number of
participants are more likely to be under-resourced [Chen and
Gable, 2013]. Likewise, a U-shaped relationship can also be
expected between network density and interface problems,
whereby sparsely connected networks of interactions
(low density) are more likely to be inefficient in terms
of information exchanges due to the higher number of
intermediaries required to exchange information [Burt,
1992]. In turn, dense networks, although theoretically more
efficient to exchange information, might lead to or be an
indicator of group-think and limit the diversity of ideas [Janis,
1982; Burt, 1992; Easley and Kleinberg, 2010]. In terms of
compositional diversity and interface problems, while high

Systems Engineering DOI 10.1002/sys
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Figure 2 illustrates how this conceptual model of a process interface would apply to 

hypothetical activities A1 and A2. The key characteristics of this interface are: 

i. Activity A2 requires information from activity A1. 

ii. There are five people (Px) involved in this interface and their information exchange 

interactions are described in the organisation interaction matrix. 

iii. P1 and P2 are only affiliated with A1. P3 and P4 are affiliated with both activities. P5 is only 

affiliated with A2. This information is obtained from the person-activity affiliation matrix. 

iv. In terms of composition, P2, P4 and P5 are from the functional group ‘Engineering’ (E), P1 

is from the functional group ‘Quality Assurance’ (Q) and P3 is from the functional group 

‘Project Management’ (M). 

 

Table I shows a simplified quantitative characterisation of the interface A1àA2. This table 

includes the full set of structural and compositional aspects used in this study to characterise 

each process interface.  
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Table II for examples). Based on the evidence of those
studies, it seems plausible that a relationship also exists
between the structure and composition of a process interface
and interface problems. For example, a U-shaped relationship
can be hypothesized between network size and interface
problems: Interfaces involving a larger number of participants
are more likely to be affected by higher coordination costs,
that is, the costs of organizing the work of the participants

[Becker, 1992]. In turn, interfaces with a small number of
participants are more likely to be under-resourced [Chen and
Gable, 2013]. Likewise, a U-shaped relationship can also be
expected between network density and interface problems,
whereby sparsely connected networks of interactions
(low density) are more likely to be inefficient in terms
of information exchanges due to the higher number of
intermediaries required to exchange information [Burt,
1992]. In turn, dense networks, although theoretically more
efficient to exchange information, might lead to or be an
indicator of group-think and limit the diversity of ideas [Janis,
1982; Burt, 1992; Easley and Kleinberg, 2010]. In terms of
compositional diversity and interface problems, while high
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The simple set of metrics presented in table I, when analysed in the context of all process 

interfaces in a project, helps us to describe each interface and can be used as an input to 

compare the characteristics of all process interfaces and identify sources of potential 

problems. While the means for modelling structure and composition used here include design 

structure matrices and domain mapping matrices, the architecture of the process interface can 

be modelled using other means, including edge lists, network graphs, or any other method that 

allows capturing structure and attributes of a network. 
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Table I: Structural and compositional characterisation of a process interface, based on the 
characteristics of interface process network in figure 2. The value for compositional diversity is 

calculated using the Index of Qualitative Variation (IQV) 
 

 Structural Compositional 

 Size Ties Density 
(Size/Ties) Compositional diversity 

Explanation Number of 
people 

Number of 
reported 

interactions 
between 
people 

Ties divided 
by number 
of possible 
ties: 5/10 

1 participant from Quality Assurance 
3 participants from Engineering 

1 participant from Project Management 

Result 5 5 0.5 0.84 (measured through IQV) 

 
 

 



Parraguez, P., Eppinger, S. and Maier, A. (2016), Characterizing Design Process Interfaces as Organization Networks: Insights for 
Engineering Systems Management. Systems Engineering., 19: 158–173. doi:10.1002/sys.21345 

This is the pre-peer reviewed version of the article, which has been published in final form at 
http://onlinelibrary.wiley.com/doi/10.1002/sys.21345/full  

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. 

The relationship between process interface architecture and performance 

Table II provides a summary of relationships found in the literature between network 

architecture and performance. These relationships provide the basis to examine the potential 

effect of the architecture of process interfaces on performance. 

 

Previous studies have shown relationships between the network architecture of 

organisations or engineering projects and the performance of those organisations or projects 

(see table II for examples). Based on the evidence of those studies, it seems plausible that a 

relationship also exists between the structure and composition of a process interface and 

interface problems. For example, a U-shaped relationship can be hypothesised between 

network size and interface problems: Interfaces involving a larger number of participants are 

more likely to be affected by higher coordination costs, i.e. the costs of organising the work of 

the participants (Becker, 1992). In turn, interfaces with a small number of participants are 

more likely to be under-resourced (Chen and Gable, 2013). Likewise, a U-shaped relationship 

can also be expected between network density and interface problems, whereby sparsely 

connected networks of interactions (low density) are more likely to be inefficient in terms of 

information exchanges due to the higher number of intermediaries required to exchange 

information (Burt, 1992). In turn, dense networks, although theoretically more efficient to 

exchange information, might lead to or be an indicator of group-think and limit the diversity 

of ideas (Burt, 1992; Easley and Kleinberg, 2010; Janis, 1982). In terms of compositional 

diversity and interface problems, while high diversity may provide a wider range of inputs 

and make integration across subsystems more likely to succeed (e.g. Rodan and Galunic, 

 

 

Table II: Examples of reported relationships between network architecture and performance 
 

 Structural aspects Compositional aspects 

Relationship 
between 

architecture 
and 

performance 

- Chen and Gable (2013) and Tsai (2001) found a 
mostly inverted U-shaped effect between network 
size and job performance. 

- Burt, (1992), Easley and Kleinberg (2010) and 
Pullen et al. (2012) found that high social network 
density increases information flow efficiency but 
reduces diversity of ideas. 

- Collins et al., (2009) showed how metrics of 
information flow based on network structure, such 
as centrality, can be used to identify activities 
constraining the product development execution. 

- High group heterogeneity provides access to a 
more diverse pool of knowledge, which can 
facilitate the development of more innovative and 
systemic design solutions (Jansen et al., 2006; 
Rodan and Galunic, 2004; Tsai, 2001). 

- High heterogeneity generates communicational 
challenges derived from the dissimilar knowledge 
base of the participants and their different 
perceptions of the design problem (Kleinsmann et 
al., 2007; Tushman et al., 1980). 

 

 

Table III: Overall summary of gathered data 

 

 

Data Description Relational information Main source 

People 

A total of 77 project members from 15 functional 
groups performed work related to engineering 

design. They are divided in 49 core project 
members and 28 non-core project members. All 

49 core project members completed the electronic 
questionnaire. 

Reported work-related 
interactions between people (756 

dyads). 

Electronic 
questionnaire 

Activities 148 activities grouped in 13 activity groups and 
divided into 3 activity categories (see below). 

Mapping of people to activities 
(185 dyads, average of 3.7 

activities per person). 

Company activity 
logs and 

interviews 
Process 

interfaces 
and interface 

problems 

79 process interfaces. 15 of them as reported 
interface problems. 

Based on identified information 
dependencies between activity 

group pairs (see figure 4). 

Workflow 
diagrams and 

interviews 

Activity categories (A, B, C) and activity groups (A1-A3, B1-B4, and C1-C6) 

 
A: Integrative work activities 
A1: Overall project management 
A2: Procurement 
A3: On-site coordination 

B: Integrative subsystem activities 
B1: Design of steel structures 
B2: Load plan and layout 
B3: Process flow diagram (PFD) + piping 
and instrumentation diagram (P&ID) 
B4: COMOS (database related work) 

C: Modular subsystem activities 
C1: Boiler and equipment design 
C2: External piping design 
C3: Pressure parts design 
C4: Air and flue gas design 
C5: Combustion system design 
C6: Electrical, control and instrument 
design 
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2004; Tsai, 2001), the same diversity may lead to communication problems that hinder 

collaboration (e.g. Kleinsmann et al., 2007) 

Interaction effects between structural and compositional network aspects, i.e. density, size 

and compositional diversity, are also worth considering. For example, the higher coordination 

costs found in larger networks can decrease if the network also has a combination of moderate 

to high density and low compositional diversity. In turn, an interface simultaneously 

involving a large number of people, with a low density and high compositional diversity can 

amplify coordination problems, lowering even further the information flow between the two 

activities and increasing the chances for misunderstandings. 

While advanced network metrics can be computed and provide information about relevant 

network properties, caution needs to be exercised when using advanced network metrics that 

are substantially constrained by fundamental topological network characteristics (Faust, 

2006). Moreover, focusing on size and density not only helps to avoid the problem of high 

multicollinearity, but also facilitates the analysis and interpretation of results, as there is 

clearer evidence in the literature about the effect of size and density on project performance. 

The multiple possible configurations that the architectures of process interfaces can adopt, 

the different directions in which the same architectural characteristics can affect performance, 

and the highly contingent nature of design activities, together make it hard to anticipate the 

effect that a given process interface architecture will have on performance. For this reason, 

instead of aiming at developing general prescriptive guidance, we follow an alternative 

approach where we characterise each process interface of a design process and then analyse 

the relationship between sets of architectural features and the amount of interface problems in 

each set. 

Interface problems as a dependent performance variable 

In our proposed approach, the architecture of process interfaces is treated as an independent 

variable that we claim affects the performance of process interfaces. Considering that detailed 

performance measures for each process interface are often unavailable and hard to quantify 

with early and incomplete design process outputs, we use the existence of reported interface 

problems as a proxy for performance.  

Although interface process problems can accumulate and propagate downstream to one or 

more activities and interfaces (making it difficult to identify a unique root cause), we rely on 
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the estimation provided by the company to distinguish between the problems that appear to be 

mostly related to the inner workings of a design activity and the ones that appear to be mostly 

related to the interface between activities. To help with the identification of the source and 

location of the interface problem, the approach proposed here can be combined with 

approaches that use the whole process architecture to examine aspects such as change 

propagation e.g. (Giffin et al., 2009; Pasqual and de Weck, 2011; Wynn et al., 2014), 

providing in this way a more robust identification of interface problems. 

From interface characterisation to analysis and interpretation 

To advance from an overall process interface characterisation to a systematic analysis and 

interpretation, we need a method to quantify compositional diversity and analyse interfaces in 

the context of the whole design process in which they are embedded. Here two steps are 

proposed: the use of the Index of Qualitative Variation (IQV) for compositional diversity, and 

a combination of two-step clustering and one-way ANOVA to systematically analyse process 

interfaces based on their structural and compositional characteristics. 

A robust and transparent method to quantify compositional diversity is found in the Index 

of Qualitative Variation (IQV) (Agresti and Agresti, 1977). IQV has been used in studies 

ranging from ecological diversity to social network analysis with the objective of calculating 

the relative heterogeneity of a network in terms of the variety of attributes found in the 

network’s population (Halgin and Borgatti, 2012). This index is a normalised and continuous 

measure that goes from 0 to 1. Zero means no heterogeneity (all people involved come from 

the same functional group) and one means maximum heterogeneity (each participating person 

comes from a different functional group). The IQV index is calculated as follows: 

IQV =
K(1002 − Pct2∑ )
1002(K −1)

     where, 

K = The number of categories (for example the total number of functional groups) 

Pct2∑ = The sum of all square percentages in the distribution (as an integer number) 

For example, the IQV index of a network of four members, where only four functional 

groups exist and each network member represents a different group (maximum heterogeneity) 

would be: 
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IQV =
4(1002 − (252 + 252 + 252 + 252 )

1002(4−1)
=1  

While IQV is not a metric that we found in previous engineering design studies, we believe 

that given its computational transparency, ease of interpretation, and flexibility to account for 

unlimited sample sizes and groups, it is a suitable way to quantify compositional diversity. 

Alternative and compatible approaches to measure compositional diversity are described in 

detail by Magurran (1988). 

To analyse and interpret the results of our interface characterisation, we need to evaluate 

each interface against all other process interfaces. One way to do this is to cluster interfaces 

based on their structural and compositional network characteristics. If inside each cluster we 

find that the interfaces not only share structural and compositional characteristics, but also 

distinct features in aspects such as their likelihood for interface problems, we can use the 

clusters to analyse in additional detail the link between structure, composition, and 

performance issues. This approach enables a contextualised analysis of what otherwise would 

only be a set of individual interface characteristics without means for comparison. 

Additionally, clustering also helps in reducing complexity as the analysis and interpretation of 

the results can be performed at the level of clusters instead of at the level of each individual 

interface (Burns and Burns, 2008, pp. 552–558). This is particularly relevant because a large 

project can have hundreds or thousands of interfaces. 

One method to find clusters in a set of interface cases is the two-step cluster analysis (IBM 

Corp, 2001). Although there are a number of other clustering methods available (Tan, 2006), 

we found this one to be the best suited for this kind of application. For example, unlike other 

clustering approaches, it can simultaneously deal with categorical and continuous variables, it 

is easily scalable, and it allows for manual and automatic selection of the number of clusters 

(IBM Corp, 2001). Using this method, each interface is assigned to one cluster based on the 

structural and compositional characteristics of its organisation network. The algorithm 

combines standard hierarchical and k means clustering techniques. To determine the number 

of clusters the Bayesian information criterion (BIC) (Schwarz, 1978) is calculated for each 

number of possible clusters. The model with the lowest BIC is the one used to determine the 

number of clusters. While in our analyses we chose the two-step clustering as our preferred 

clustering method, alternatives such as hierarchical clustering and k means clustering can also 

be used without significantly changing the results of the overall approach. 
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Once the clusters have been identified, the question is whether those clusters have some 

meaningful relationship with interface problems or other aspects with implications for 

interface management. However, even if interface problems have not been reported yet, or 

their information is incomplete, we can still analyse the relative differences in key structural 

and compositional characteristics between the clusters and inform their interpretation based 

on previous studies linking organisational networks and performance. In addition, if we have 

at least some indication of actual interface problems, we can analyse if such problems tend to 

be concentrated in a few clusters or are randomly distributed. Differences in interface 

problems between clusters can be examined by performing a one-way ANOVA to test if any 

empirical difference is statistically significant (Burns and Burns, 2008, p. 284). If problems 

are indeed concentrated in one or only a few clusters, we can identify the particular 

combination of network characteristics that is associated with more interface problems, and 

use this information as an input to inform interface management. 

An alternative to analyse the effect of process interface characteristics on performance is 

regression analysis. This method uses the architectural features of the interfaces as 

independent variables and available measures of performance as dependent variables. The 

advantage of this method is that it allows the modelling of a function for the relationship 

between the variables, and if there is a statistically significant relationship, the obtained 

function can be used as a predictor for the relationship between the variables. The 

disadvantage is that regression analysis on its own is not suitable for the identification of 

groups (clusters) of architectural features that affect performance in a non-linear form. Due to 

the expected interaction effects between the independent variables and the expected non-

linearity of their effects on performance (observed in related studies), the combination of 

clustering and one-way analysis of variance to test for statistical differences among the 

clusters, provides a more suitable approach that can be complemented by regression-type 

analyses to gain additional insights. 
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Figure 3 shows a graphical summary of our methodological approach for process interface 

characterisation and analysis. 

 

 

IV. CASE STUDY 

We applied our process interface model to a large engineering design project. The project 

consisted of the complete engineering work of a biomass power plant developed mostly in the 

period between 2010 and 2013. Our objective was to better understand a wide set of issues 

that the company commonly identified as ‘interface problems’ but for which causes remained 

unclear. Although the company had not identified the root causes or clear patterns behind 

their interface problems, the belief was that the majority of problems were a combination of 

process and organisation architecture issues. In other words, a combination of factors related 

to information dependencies between activities and how people interacted to address those 

information dependencies. Our approach, which explicitly integrates the process and 

organisation domains, was therefore considered appropriate to reveal patterns and provide 

insights into the possible sources of the problems and potential solutions. 

Access to the project data was gained through the company in charge of the engineering 

design of the plant. The same company coordinated the work with the construction partner 

and component suppliers. Key contact points during this study were the VP of Operations, the 

VP of Engineering, the Project Manager, and the Quality Assurance team, who were all 

interviewed to document the process architecture and to identify interface problems.  

DESIGN PROCESS INTERFACES AS ORGANISATION NETWORKS 165
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Figure 3. Summary of our approach to analyze process interfaces.

expected nonlinearity of their effects on performance (ob-
served in related studies), the combination of clustering and
one-way analysis of variance to test for statistical differences
among the clusters, provides a more suitable approach that
can be complemented by regression-type analyses to gain
additional insights.

Figure 3 shows a graphical summary of our method-
ological approach for process interface characterization and
analysis.

4. CASE STUDY

We applied our process interface model to a large engineering
design project. The project consisted of the complete engi-
neering work of a biomass power plant developed mostly
in the period between 2010 and 2013. Our objective was
to better understand a wide set of issues that the company
commonly identified as ‘interface problems’ but for which
causes remained unclear. Although the company had not iden-
tified the root causes or clear patterns behind their interface
problems, the belief was that the majority of problems were a
combination of process and organization architecture issues.
In other words, a combination of factors related to information
dependencies between activities and how people interacted
to address those information dependencies. Our approach,
which explicitly integrates the process and organization do-
mains, was therefore considered appropriate to reveal patterns
and provide insights into the possible sources of the problems
and potential solutions.

Access to the project data was gained through the company
in charge of the engineering design of the plant. The same
company coordinated the work with the construction partner
and component suppliers. Key contact points during this study
were the VP of Operations, the VP of Engineering, the Project
Manager, and the Quality Assurance team, who were all inter-

viewed to document the process architecture and to identify
interface problems.

Data concerning interactions between the project members
were obtained through an online questionnaire applied to-
wards the end of the project. The questionnaire was completed
by all 49 core project members (see also Table III). They re-
ported interactions for a total of 77 (core and noncore) project
members. The question asked to elicit the overall organization
architecture reads: Please select who you have interacted
with inside the company in the context of the power plant
design - An interaction here is defined as work-related direct
information exchanges necessary to do one or more project
activities (This includes emails, work conversations and other
forms of work communications). For each reported interac-
tion there was a follow-up question to rank on a three-point
scale both the impact (low, medium, high) and frequency
(daily, weekly, monthly) of the interactions. Information ob-
tained through the questionnaire was cross-validated against
an email database with over 15,000 filtered project emails
covering the entirety of the project life. The result of this
cross-validation showed that 58% of the reported interactions
had a near complete correspondence with email communica-
tion, while 68% had a frequency-weighted correspondence of
70% or more. As a result of this cross-validation, we con-
sider the responses obtained through the questionnaire a good
proxy for actual organizational interactions.

Information dependencies between the activities were ob-
tained through company documentation, including detailed
workflow diagrams, and subsequently refined through inter-
views to complete a process-type DSM. The mapping of
people to activities was obtained through information re-
ported directly by each of the 49 core members in the
same questionnaire applied to obtain the interactions between
project members. This people-activity mapping was subse-
quently validated and refined through company records in
the form of activity logs (used by the company as a way

Systems Engineering DOI 10.1002/sys
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Data concerning interactions between the project members were obtained through an online 

questionnaire applied towards the end of the project. The questionnaire was completed by all 

49 core project members (see also table III). They reported interactions for a total of 77 (core 

and non-core) project members. The question asked to elicit the overall organisation 

architecture reads: Please select who you have interacted with inside the company in the 

context of the power plant design - An interaction here is defined as work-related direct 

information exchanges necessary to do one or more project activities (This includes emails, 

work conversations and other forms of work communications). For each reported interaction 

there was a follow-up question to rank on a three-point scale both the impact (low, medium, 

high) and frequency (daily, weekly, monthly) of the interactions. Information obtained 

through the questionnaire was cross-validated against an email database with over 15.000 

filtered project emails covering the entirety of the project life. The result of this cross-

validation showed that 58% of the reported interactions had a near complete correspondence 

with email communication, while 68% had a frequency-weighted correspondence of 70% or 

more. As a result of this cross-validation, we consider the responses obtained through the 

questionnaire a good proxy for actual organisational interactions. 

Information dependencies between the activities were obtained through company 

documentation, including detailed workflow diagrams, and subsequently refined through 

interviews to complete a process-type DSM. The mapping of people to activities was obtained 

through information reported directly by each of the 49 core members in the same 

questionnaire applied to obtain the interactions between project members. This people-

activity mapping was subsequently validated and refined through company records in the 

form of activity logs (used by the company as a way of keeping track on engineering hours 

spent on the project). Finally, interface problems were obtained through interviews with all of 

our key contact points at the company and cross-checked against company internal records of 

non-conformity reports. More details about the data gathered in this case study are provided 

in table III. 
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Interface problems 

Issues identified during the interviews as ‘interface problems’ were mapped to the acquired 

process architecture and associated with specific process interfaces (see figure 4). Only 

interface problems associated with the engineering design process were elicited. Therefore, 

the assumption is that each interface problem emerges and can be traced back to design 

process issues between activities belonging to different subsystems. The most common 

interface problems were related to one or more of the following aspects: 

• Information regarding technical specifications or procurement requirements, which should 

have been transferred between specific design activities, was missing. For example, in the 

interface problem ‘Pressure parts design à Procurement’, the purchase order for an 

important part was late, affecting the process schedule.  

• Required interfaces between components of different subsystems were not aligned or fully 

compatible due to technical specification issues. For example, in the interface ‘Air and 

flue gas à Design of steel structures’, a problem was detected in the specifications for the 

steel supporting the air and flue gas subsystem. 

• Spatial clashes existed between parts or components belonging to different subsystems 

under development. For example, in the interface problem ‘Boiler and equipment design 

 

 

Table II: Examples of reported relationships between network architecture and performance 
 

 Structural aspects Compositional aspects 

Relationship 
between 

architecture 
and 

performance 

- Chen and Gable (2013) and Tsai (2001) found a 
mostly inverted U-shaped effect between network 
size and job performance. 

- Burt, (1992), Easley and Kleinberg (2010) and 
Pullen et al. (2012) found that high social network 
density increases information flow efficiency but 
reduces diversity of ideas. 

- Collins et al., (2009) showed how metrics of 
information flow based on network structure, such 
as centrality, can be used to identify activities 
constraining the product development execution. 

- High group heterogeneity provides access to a 
more diverse pool of knowledge, which can 
facilitate the development of more innovative and 
systemic design solutions (Jansen et al., 2006; 
Rodan and Galunic, 2004; Tsai, 2001). 

- High heterogeneity generates communicational 
challenges derived from the dissimilar knowledge 
base of the participants and their different 
perceptions of the design problem (Kleinsmann et 
al., 2007; Tushman et al., 1980). 

 

 

Table III: Overall summary of gathered data 

 

 

Data Description Relational information Main source 

People 

A total of 77 project members from 15 functional 
groups performed work related to engineering 

design. They are divided in 49 core project 
members and 28 non-core project members. All 

49 core project members completed the electronic 
questionnaire. 

Reported work-related 
interactions between people (756 

dyads). 

Electronic 
questionnaire 

Activities 148 activities grouped in 13 activity groups and 
divided into 3 activity categories (see below). 

Mapping of people to activities 
(185 dyads, average of 3.7 

activities per person). 

Company activity 
logs and 

interviews 
Process 

interfaces 
and interface 

problems 

79 process interfaces. 15 of them as reported 
interface problems. 

Based on identified information 
dependencies between activity 

group pairs (see figure 4). 

Workflow 
diagrams and 

interviews 

Activity categories (A, B, C) and activity groups (A1-A3, B1-B4, and C1-C6) 

 
A: Integrative work activities 
A1: Overall project management 
A2: Procurement 
A3: On-site coordination 

B: Integrative subsystem activities 
B1: Design of steel structures 
B2: Load plan and layout 
B3: Process flow diagram (PFD) + piping 
and instrumentation diagram (P&ID) 
B4: COMOS (database related work) 

C: Modular subsystem activities 
C1: Boiler and equipment design 
C2: External piping design 
C3: Pressure parts design 
C4: Air and flue gas design 
C5: Combustion system design 
C6: Electrical, control and instrument 
design 
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à Pressure parts design’, spatial clashes were identified between grill tubes, pipes, and 

boiler equipment. 

• Other general misunderstandings or coordination issues were identified between specific 

design activities that hindered the perceived performance of one activity at the interface. 

Figure 4 shows all 79 process interfaces considered in this case, as well as the distribution of 

interfaces with or without problems (a total of 15 problems out of 79 interfaces). The process 

architecture was built as a binary process-type DSM using the convention of inputs in 

columns (Eppinger and Browning, 2012, p. 5) and allowing interfaces and interface problems 

to exist in one or both directions; that is, the matrix represents a directed graph. 

 

Characterisation of Process Interfaces 

Figure 5 provides a graph-based characterisation for three of the 79 process interfaces, which 

were selected to illustrate various combinations of size, density, and IQV. Following our 

proposed approach, interfaces are represented as organisation networks between two activities 

and coloured to indicate their affiliation to functional groups.  
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Figure 4. Process design structure matrix: interfaces and interface problems. The matrix shows all 79 process interfaces identified using the
convention of inputs in columns (for example, “Design of Steel Structures” require information from “Air and Flue Gas”). Problem interfaces
are marked with an X, those with no problem have a checkmark.

of keeping track on engineering hours spent on the project).
Finally, interface problems were obtained through interviews
with all of our key contact points at the company and cross-
checked against company internal records of nonconformity
reports. More details about the data gathered in this case study
are provided in Table III.

4.1. Interface Problems

Issues identified during the interviews as ‘interface problems’
were mapped to the acquired process architecture and associ-
ated with specific process interfaces (see Fig. 4). Only inter-
face problems associated with the engineering design process
were elicited. Therefore, the assumption is that each interface
problem emerges and can be traced back to design process
issues between activities belonging to different subsystems.
The most common interface problems were related to one or
more of the following aspects:

• Information regarding technical specifications or pro-
curement requirements, which should have been trans-
ferred between specific design activities, was missing.
For example, in the interface problem “Pressure parts
design → Procurement,” the purchase order for an im-
portant part was late, affecting the process schedule.

• Required interfaces between components of different
subsystems were not aligned or fully compatible due to
technical specification issues. For example, in the inter-
face “Air and flue gas → Design of steel structures,” a
problem was detected in the specifications for the steel
supporting the air and flue gas subsystem.

• Spatial clashes existed between parts or components be-
longing to different subsystems under development. For
example, in the interface problem “Boiler and equipment
design → Pressure parts design,” spatial clashes were
identified between grill tubes, pipes, and boiler equip-
ment.

• Other general misunderstandings or coordination issues
were identified between specific design activities that
hindered the perceived performance of one activity at the
interface.

Figure 4 shows all 79 process interfaces considered in this
case, as well as the distribution of interfaces with or with-
out problems (a total of 15 problems out of 79 interfaces).
The process architecture was built as a binary process-type
DSM using the convention of inputs in columns [Eppinger
and Browning, 2012: 5] and allowing interfaces and interface
problems to exist in one or both directions; that is, the matrix
represents a directed graph.

4.2. Characterization of Process Interfaces

Figure 5 provides a graph-based characterization for three of
the 79 process interfaces, which were selected to illustrate
various combinations of size, density, and IQV. Following our
proposed approach, interfaces are represented as organization
networks between two activities and colored to indicate their
affiliation to functional groups.
Through an inspection of the three examples we can see

some of the following architectural features:

Systems Engineering DOI 10.1002/sys
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Through an inspection of the three examples we can see some of the following architectural 

features: 

• Process interface A): Electrical Control and Instrumentation ⇔ Comos Data (bi-directional 

dependency, no interface problem) shows a relatively small, dense network with low 

diversity. Only one cohesive group is distinguishable.  

• Process interface B): External Piping ⇒ Design of Steel Structures (uni-directional 

dependency, interface problem) is a larger, slightly sparser network. One cohesive group 

is still distinguishable; however, members from the same functional group tend to group 

together.  
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 Electrical Control and Instrumentation Comos Data
No interface problem 

Size: 15 Density: 76% - IQV: 0.583

 External Piping Design of Steel Structures
Interface problem has been reported
Size: 27 Density: 68% - IQV: 0.625 

 Overall Project Management  Load Plan and Layout
No interface problem

Size: 25 Density: 62% - IQV: 0.722

E x t e r n al  P iping
D e s ig n  of St ee l  Str uc tur e s

E le c t r i c a l  C ontr ol  an d Ins tr um en tation C o m o s Data

O v e r a l l  P r oje ct Man agem e nt L o a d  Plan  an d Layou t

A

B

C

Figure 5. Three graphical examples of actual process interface characterizations. The graph layout is weighted and force-directed to represent
different intensities of information exchanges. Edges map people to activities and people–people interactions. Project members are colored
according to their functional affiliation to a group. The far right and far left nodes represent the activities.

(b) Examining interface problem differences across clus-
ters through the one-way ANOVA test.

We used a one-way ANOVA test to understand if there
were statistically significant differences in the proportion of
interface problems between the clusters. The results indicated
a highly significant (p < 0.01) difference in the proportion
of problems between the clusters, confirming the finding that
the network characteristics of cluster 1 were associated with
a greater likelihood of interface problems. Therefore, for
this case study, interface problems were more likely to arise

among interfaces with a larger number of participants and
whose interactions had a relatively low density.

In addition to the clustering and one-way ANOVA analysis,
a logistic regression was performed to estimate the effects of
network size, density, and IQV on the likelihood of an in-
terface experiencing problems. The logistic regression model
was statistically significant only for size, with p < 0.005
(0.22 coefficient), and explained 28.0% (Nagelkerke R2) of
the variance in interface problems. This revealed that network
size was associated with an increased likelihood of exhibit-
ing interface problems, however, unlike two-step clustering,

Systems Engineering DOI 10.1002/sys
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• In contrast to the other two examples, process interface C): Overall Project Management 

⇔ Load Plan and Layout (bi-directional dependency, no interface problem) is noticeable 

fragmented, with one cohesive and relatively homogeneous group (to the right of the 

graph) and a second sparse, cross-functional group to the left. 

To move from a descriptive characterisation of interface to a systematic analysis we applied 

(a) a two-step clustering analysis in which similar interfaces were grouped, and (b) a one-way 

ANOVA test to identify significance of the amount of interface problems across the identified 

clusters. 

Process Interface Analysis  

a) Two-step clustering analysis 

For the cluster analysis (results in figure 6), the ‘distance measure’ used was log-likelihood, 

and the number of clusters was set to be determined automatically based on the Schwarz’s 

Bayesian information criterion (BIC). Three distinct groups with a ‘silhouette measure of 

cohesion and separation’ of 0.6 were obtained, which indicates good cluster quality (Tan, 

2006).	 

 

The analysis revealed the following characteristics for the three clusters identified:  

• Cluster 1 contains 16% of all interfaces. Interfaces in this cluster are characterised by a 

large number of people, low density, and medium heterogeneity. This cluster was 

composed mainly of interfaces between the design activity of ‘pressure parts design’ and 

other modular as well as integrative subsystem design activities. Despite the few 
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Figure 6. Graphical characterization for the three identified clusters. The size, density, and diversity of the interfaces’ organization networks
were utilized as clustering variables. For each cluster, the relative distributions of clustering variables are shown as plots.

logistic regression was unable to account for the effects of
density and IQV.

4.4. Interpretation of the Case Study Results and
Implications

To move from understanding to data-driven support and tar-
geted interventions, the characterization and analysis previ-
ously performed is insufficient on its own to support project
management. Fortunately, organizational and social network
studies have provided prescriptions that can be used as a guide
for dealing with the different types of network architectures
found in each cluster:

• Cluster 1: The analysis indicates that interfaces found
in this cluster, with interface networks higher in size
and lower in density, are significantly more likely to
have problems. From previous research [Burt, 1992;
Tsai, 2001; Chen and Gable, 2013], we can infer that
interfaces in this cluster were exposed to higher coor-
dination costs, which could constrain information flows
between activities. Strategies to mitigate these problems
include: (1) increasing the organizational connectivity
by enabling more direct contact between the members
of this interface, (2) allocating more resources to peo-
ple who mediate interactions, as information brokerage
roles such as the one described by Gould and Fernandez
[1989] can increase efficiency of information exchanges,
and (3) reducing the number of interfaces which couple
multiple activities to create more focused interfaces with
fewer people each, which has been found to be an effec-
tive way to manage complexity and improve modularity
[Steward, 1981; Eppinger and Browning, 2012: 146].

• Cluster 2: Although reported interface problems are not
high in this cluster, the main challenge is how to han-
dle the interface networks’ relatively high heterogeneity.
Previous studies have shown that high functional group

diversity increases the likelihood of miscommunication
and misalignment of objectives [Tushman, Katz, and
Ralph, 1980; Kleinsmann et al., 2007]. To mitigate these
potential problems and benefit from the knowledge di-
versity inherent in heterogeneity, efforts should be made
to ensure there are enough well-connected individuals at
the center of the interface. These individuals should be
able to bridge and translate different knowledge bases
and align objectives, building capabilities to work across
boundaries. In addition, as Maier et al. [2009b] sug-
gested, more reflective communication and overview
that explicates each party’s informational needs could be
particularly helpful when dealingwith cross-disciplinary
interfaces.

• Cluster 3: Based on the relatively low number of reported
problems, small size, high density, and low heterogene-
ity of the interfaces in this cluster, interface manage-
ment here should be comparatively simpler. Neverthe-
less, these characteristics also may lead to groupthink
and a lack of systemic perspective because of the nar-
rower knowledge pool available in this cluster [Janis,
1982; Burt, 1992; Easley and Kleinberg, 2010]. As a
result, additional, more diverse resources to increase het-
erogeneity could be beneficial, especially for interfaces
dealing with central activities in the process that require
a systemic perspective, or for interfaces that have the
objective of producing innovative results.

5. DISCUSSION AND CONCLUSIONS

By characterizing process interfaces as organization networks
we have provided a more detailed understanding of how in-
formation dependencies between design activities are actually
executed and managed. The proposed approach models each
process interface as a socio-technical network of people and
activities, connecting activity-basedmodels of the design pro-
cess with engineering design theory that describes design as
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interfaces assigned to cluster 1 (16% of the total), a majority of the interfaces in this 

cluster (62%) experienced problems (8 out of 13). 

• Cluster 2 contains 48% of all interfaces. Interfaces in this cluster are characterised by a 

medium number of people, medium to low density, and high heterogeneity. This cluster is 

composed mainly of interfaces between integrative work (project management and 

procurement) and modular subsystem design activities. This cluster contains only 4 

interfaces with problems (out of 38). 

• Cluster 3 contains 35% of all interfaces. Interfaces in this cluster are characterised by a 

low number of people, high density, and low heterogeneity. This cluster is composed 

mainly of interfaces between modular and subsystem design activities and has only 3 

interfaces with problems (out of 28).  

b) Examining interface problem differences across clusters through the one-way ANOVA 

test. 

We used a one-way ANOVA test to understand if there were statistically significant 

differences in the proportion of interface problems between the clusters. The results indicated 

a highly significant (p<0.01) difference in the proportion of problems between the clusters, 

confirming the finding that the network characteristics of cluster 1 were associated with a 

greater likelihood of interface problems. Therefore, for this case study, interface problems 

were more likely to arise among interfaces with a larger number of participants and whose 

interactions had a relatively low density. 

In addition to the clustering and one-way ANOVA analysis, a logistic regression was 

performed to estimate the effects of network size, density, and IQV on the likelihood of an 

interface experiencing problems. The logistic regression model was statistically significant 

only for size, with p < .005 (0.22 coefficient), and explained 28.0% (Nagelkerke R2) of the 

variance in interface problems. This revealed that network size was associated with an 

increased likelihood of exhibiting interface problems, however, unlike two-step clustering, 

logistic regression was unable to account for the effects of density and IQV. 
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Interpretation of the case study results and implications 

To move from understanding to data-driven support and targeted interventions, the 

characterisation and analysis previously performed is insufficient on its own to support 

project management. Fortunately, organisational and social network studies have provided 

prescriptions that can be used as a guide for dealing with the different types of network 

architectures found in each cluster: 

• Cluster 1: The analysis indicates that interfaces found in this cluster, with interface 

networks higher in size and lower in density, are significantly more likely to have 

problems. From previous research (Burt, 1992; Chen and Gable, 2013; Tsai, 2001), we 

can infer that interfaces in this cluster were exposed to higher coordination costs, which 

could constrain information flows between activities. Strategies to mitigate these 

problems include: 1) increasing the organisational connectivity by enabling more direct 

contact between the members of this interface, 2) allocating more resources to people who 

mediate interactions, as information brokerage roles such as the one described by Gould 

and Fernandez (1989) can increase efficiency of information exchanges, and 3) reducing 

the number of interfaces which couple multiple activities to create more focused interfaces 

with fewer people each, which has been found to be an effective way to manage 

complexity and improve modularity (Eppinger and Browning, 2012, p. 146; Steward, 

1981). 

• Cluster 2: Although reported interface problems are not high in this cluster, the main 

challenge is how to handle the interface networks’ relatively high heterogeneity. Previous 

studies have shown that high functional group diversity increases the likelihood of 

miscommunication and misalignment of objectives (Kleinsmann et al., 2007; Tushman et 

al., 1980). To mitigate these potential problems and benefit from the knowledge diversity 

inherent in heterogeneity, efforts should be made to ensure there are enough well 

connected individuals at the centre of the interface. These individuals should be able to 

bridge and translate different knowledge bases and align objectives, building capabilities 

to work across boundaries. In addition, as Maier, Kreimeyer, et al. (2009) suggested, more 

reflective communication and overview that explicates each party’s informational needs 

could be particularly helpful when dealing with cross-disciplinary interfaces. 

• Cluster 3: Based on the relatively low number of reported problems, small size, high 

density, and low heterogeneity of the interfaces in this cluster, interface management here 
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should be comparatively simpler. Nevertheless, these characteristics also may lead to 

groupthink and a lack of systemic perspective because of the narrower knowledge pool 

available in this cluster (Burt, 1992; Easley and Kleinberg, 2010; Janis, 1982). As a result, 

additional, more diverse resources to increase heterogeneity could be beneficial, 

especially for interfaces dealing with central activities in the process that require a 

systemic perspective, or for interfaces that have the objective of producing innovative 

results. 

V. DISCUSSION AND CONCLUSIONS 

By characterising process interfaces as organisation networks we have provided a more 

detailed understanding of how information dependencies between design activities are 

actually executed and managed. The proposed approach models each process interface as a 

socio-technical network of activities and people, connecting activity-based models of the 

design process with engineering design theory that describes design as a social process. This 

characterisation generates a platform for further research and analysis of the actual design 

process, enabling the comparison of the actual process with planned or idealised process 

models. In addition, through the application of the proposed approach in an industrial setting 

we provided a pilot study that serves as a test of the feasibility and usefulness of such an 

approach in the context of systems engineering.  

Managerial implications include the provision of new tools to facilitate the work and 

decision-making processes of project and interface managers. The application of our approach 

in the company resulted in 1) an improved overview of process interfaces based on 

quantitative characteristics and identifiable clusters, 2) allowed to narrow down support 

efforts on the cluster of interfaces that concentrated most of the problems, 3) contributed to 

the creation of a new job position (‘interface lead’), and 4) allowed to map and actively 

manage process interfaces using customised evidence-driven support strategies for each 

interface cluster. 

Research implications include advancing the understanding of what constitutes a process 

interface, bridging the architectures of process and organisation domains, and characterising 

process interfaces for the first time as organisation networks. This directly contributes to 

addressing the need raised by (Browning and Ramasesh, 2007; Browning, 2009; Browning et 

al., 2006) for going beyond only stating information dependencies and advancing towards a 

more detailed understanding of the design process that also includes how the information is 
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delivered and transformed between each pair of activities. We also found statistically 

significant evidence suggesting a positive correlation between interface problems and process 

interfaces that are characterised by high network size, low network density and medium 

compositional diversity. This finding and the set of basic network metrics proposed to 

characterise the structure and composition of process interfaces can be used and expanded in 

future studies.  

A relevant consideration that can affect the implementation and results obtained from our 

approach relates to the hierarchical decomposition used when listing the activities and its non-

unique nature (multiple decompositions are possible) (e.g. Li 2011). A more detailed 

hierarchical decomposition will lead to a longer list of activities. This translates into more and 

smaller process interfaces and, as an extreme result, process interfaces with only one or two 

participants. A more aggregated decomposition will lead to fewer activities, more 

encompassing process interfaces and, as an extreme result, process interfaces containing large 

parts of the organisational network. Either of these extremes would lead to the loss of 

important information about the design context and can hinder our possibility to identify 

statistical relationships between network characteristics and interface problems. Therefore, 

the activity list should be as detailed as feasible given time and cost considerations. 

Afterwards, with a detailed list, activities can be aggregated to a level that appropriately fits 

the analytical needs and also better matches the hierarchical decomposition applied in the 

product and the organisation domain. 

A limitation of the presented approach (in its current form) is that, as is often the case with 

network and complexity studies, it cannot identify causality but only association between the 

variables under study (Kreimeyer and Lindemann, 2011; Wasserman and Faust, 1994). The 

real causes of interface problems and their directionality can be studied complementing this 

approach with carefully designed controlled interventions in companies. Another limitation is 

that although each process interface is modelled as an individual network, in reality, each of 

these networks is embedded in the overall process architecture. This means that each 

organisation network describing a process interface is not independent and that the members 

of one process interface might also be part of other interfaces. The approach we follow to deal 

with this issue is analogous to the one applied in ego-network analyses of social and technical 

networks, in which the interdependency is acknowledged, but is only addressed at the whole 

network level (Wasserman and Faust, 1994, p. 41). In our analysis, the ‘ego’ network is the 

edge between interdependent activities (the interface) instead of the node (the activity). The 
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analysis and interpretation at the interface level can therefore be performed independently, 

provided that the conclusions remain at the same level. For complementary analyses at the 

activity and whole process levels see (Parraguez and Maier, 2015; Parraguez, 2015; Parraguez 

et al., 2015). 

In addition to network size, density and IQV, other network metrics can be computed and 

provide information about relevant network properties and their effect on performance. 

However, as Faust (2006) points out, caution needs to be exercised when using advanced 

network metrics that are substantially constrained by fundamental topological network 

characteristics. Moreover, focusing first on size and density not only helps to avoid the 

problem of high multicollinearity in network studies, but also facilitates the analysis and 

interpretation of results as there is clearer evidence in the literature about their effect on 

project performance. 

Further studies can continue developing the proposed approach through the inclusion of 

more and specifically tailored network and non-network metrics to quantify the structural and 

compositional characteristics of each interface. The architectural metrics of size, density and 

compositional diversity are hence only starting points in terms of possible analyses. Also, 

additional case studies covering different industries and contexts would allow identifying if 

there is a set of interface characteristics that consistently correlate with interface problems and 

that could therefore be generalised. 
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