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Executive Danish summary
HOFOR A/S, Aarhus Vand A/S, VandCenter Syd A/S og Kalundborg Forsyning A/S har taget initiativ til at

styrke udviklingen af sensorer/sensorteknologier, der tillader fuldskala implementering af online

overvagning af mikrobiel drikkevandskvalitet. Pa vegne af forsyningerne har DTU Miljg udarbejdet et

state of the art overblik over sensorer i relation til mikrobiel vandkvalitet, der kan guide forsyningerne i

det videre arbejde.

Opgaven blev udfgrt ved:

Opsummering af erfaringer med sensorer til monitering af mikrobiel vandkvalitet fra danske
vandforsyninger

Spergeskemaer om driftserfaringer med sensorer til monitering af mikrobiel vandkvalitet blev
udsendt til udvalgte forsyninger, der betragtes som banebrydende inden for sensor omradet
og/eller som har haft stgrre forureningssager inden for de seneste artier.

Fokuseret internet s@gning

S¢geord relateret til online sensorer til monitering af mikrobiel vandkvalitet blev anvendt til at
identificere teknologier pa markedet og under udvikling, herunder ogsa nuvaerende manuelle
metoder med potentiale for automatisering.

Opggrelse af relevante forskningsprojekter

Relevante forskningsprojekter, hovedsageligt nationale og europaiske, blev identificeret i relevante
databaser og deres primare formal gennemgaet.

Dialog med sensorproducenter

Tekniske informationer om sensorer, deres anvendelse og drift samt (hvor muligt)
valideringsdokumentation blev indhentet igennem e-mail korrespondance eller korte
telefoninterviews med sensorproducenter.

Telefoninterviews med fagfolk

Rikke Hansen (3V), Pernille Ingildsen (Kalundborg Forsyning) og Jeppe Resen Amossen (Harper &
Vedel) blev interviewet pa anbefaling af forsyningerne til at give indblik i sensorudviklingen i
Danmark og for at opna yderligere information om udfordringer og gennembrud inden for omradet.
Gennemgang af den videnskabelige litteratur

Hovedfokus for litteraturgennemgangen var review-artikler om sensorer samt analysemetoder, der
potentielt vil kunne automatiseres i en sensor. Gennemgangen sigtede pa at identificere styrker og

svagheder ved de enkelte metoder.



Resultaterne blev evalueret med udgangspunkt i forsyningernes definition af ‘den ideelle sensor’, der
skal kunne:

e Installeres online eller at-line

e Detekter indikatororganismer (E. coli og total coliforme)

e Have hgj fglsomhed til detektion af lave koncentrationer af mikroorganismer i drikkevand

e Give hurtigt svar

e Kraeve lav vedligeholdelse

e Give lave forekomst af falske-positive

Resultaterne blev grupperet i tre kategorier:
e Teknologier pa markedet
e Teknologier under udvikling eller i dokumentationsfase

e Teknologier pa forskningsniveau

Resultater

Markedet for og udviklingen af sensorer til monitering af mikrobiel vandkvalitet er et ofte
ugennemskueligt omrade. Udviklingen styres bl.a. af tilgaengelige bevillinger, hvorved producenter og
udviklingsforlgb til stadighed starter op og lukker ned. Producenterne gnsker at saelge — enten deres
produkt eller naeste udviklingstrin - sa det er ngdvendigt kritisk at evaluere praesenterede data, da
producenterne kan vaere for ambitigse pa deres produkters vegne, bade med hensyn til
udviklingshorisont og formaen. Dette gaelder isaer, hvis driftserfaringer overfgres fra et miljg til et andet.
Drikkevand er karakteriseret ved et naeringsfattigt miljg, hvor bakterierne har lavt energiniveau.
Specifikke bakteriegrupper vil udggre en meget lille andel af baggrundsbakterieniveauet, der vil have
stor artsdiversitet. Det er derfor ikke altid muligt at anvende koncepter eller erfaringer fra andre miljger,
som fx fgdevareproduktion eller medicinalindustri, da disse ofte er karakteriseret ved hgje

neeringsniveauer og kraftig veekst af fa kulturer.

Udvikling af sensorer til monitering af mikrobiel vandkvalitet kraever tid og ressourcer. Udviklingsforlgb
vil ofte straekke sig over ar eller artier, og vil ofte involvere mange forskellige projektforlgb, da én

bevilling sjeeldent vil vaere tilstraekkeligt til at deekke alle udviklingstrin.

Der blev identificeret 12 sensorer pa markedet (jaevnfgr rapportens Tabel 1). Sensorerne kan opdeles i

tre kategorier:



e Sensorer, der detekterer indikatororganismerne E. coli og totale coliforme ved enzymatisk reaktion.
Disse sensorer kraever alle inkubationstid, hvilket giver forsinkelse pa svaret.

e Sensorer, der optisk detekterer totalt bakterieantal ved mikroskopering eller billedgenkendelse.
Disse sensorer har en kort svartid, men en forurening vil blive detekteret som en stigning i totalt
bakterieantal. Det er derfor ngdvendigt at evaluere resultatet imod en referenceperiode for at
kunne afggre, om en afvigelse skyldes en potential forurening eller driftsforhold (fx returskyl,
boringsskift, hydrauliske @ndringer). En forurening skal vaere tilstraekkelig stor til at give et udslag
over 'stgj’ -niveauet for at blive detekteret. Dermed er der en risiko for, at forureninger ikke
opdages, hvis de kun giver anledning til mindre sendringer i totalt bakterieantal.

e Sensorer, der detekterer totale bakterieniveauer malt som total bakterieaktivitet ved ATP.
Sensorerne giver hurtigt svar, men som for de optisk baserede sensorer kraeves en evaluering af

resultatet imod en referenceperiode.

| tillaeg til sensorer, der allerede er pa markedet, blev der identificeret fem sensorer under udvikling

(jeevnfer rapportens Tabel 2).

En raekke analysemetoder vil potentielt pa sigt kunne integreres i et sensorformat (jaevnfgr rapportens
Tabel 3), men det vil kraeve et betydeligt forsknings- og udviklingsarbejde:

e Immunoassays

e PCR (polymerase kaedereaktion)

e FISH (fluorescens in situ hybridisering)

e Elektrisk detektion

e Flowcytometri

e Raman spektroskopi

e ’'Microfluidic’ systemer som platform

En raekke igangveerende projekter blev identificeret inden for omradet (jeevnfer rapportens Tabel 4),
som kan pavirke den fremtidige sensorudvikling (bevillingsgiver i parentes):

e Future Water (VTUF/MUDP)

e Detektion af E. coli DNA i lednings-vand (VTUF)

e Real-time vandkvalitetsmaling i vandsektoren ved elektrisk detektering (VTUF/MUDP)

e AQUAWARN (EU, FP7-SME-2013)

e SMARTWATER4EUROPE (EU, FP7-CP)

e Aquavalens (EU, FP7)



e AquaSHIELD (EU, H2020)

e AQUAVIR (EU, FP7-CP)

Der findes i dag ikke en sensor, der opfylder alle kriterierne for ‘den ideelle sensor’. Den optimale
Igsning er muligvis heller ikke én sensor til alle formal. Det bgr i de enkelte situationer fastleegges, hvad
man gnsker at monitere for, og herefter definere hvordan dette bedst opnas. En kombination af
sensorer (herunder ogsa sensorer til monitering af fysisk-kemiske parametre) kan vise sig at veere den
bedste Igsning. Det kan ogsa overvejes at fastlaegge moniteringsstrategi og sensorvalg individuelt for
separate dele af forsyningssystemet eller ud fra konkrete scenarier, da det kan veaere forskellige
analyseparametre (fx specifikke organismer eller totalt bakterietal), der passer bedst til forskellige
moniteringsformal. Dette sammenkaader sensorvalg og moniteringsstrategi med forsyningernes

identificerede risici i egne systemer, hvilket er en opgave teet knyttet til forsyningernes DDS-arbejde.



Preface
The utilities HOFOR A/S, Aarhus Vand A/S, VandCenter Syd A/S and Kalundborg Forsyning A/S have

taken the initiative to boost the development of sensors for monitoring of microbial drinking water
quality. This report is the result of a collaboration between the utilities and DTU Environment, and aims
to provide a state of the art overview within the field of microbial sensors to guide utilities in decisions
on future monitoring investments. The utilities were represented by Anne Esbjgrn (VandCenter Syd A/S),
Ann-Katrin Pedersen (HOFOR A/S), Jgorn-Ole Andreasen (Aarhus Vand A/S) and Pernille Ingildsen

(Kalundborg Forsyning A/S).



1 Introduction
Monitoring of drinking water quality is essential to document that the distributed water fulfils the

required quality standards and is safe for human consumption. Contamination risks can be identified
throughout the water supply system, from well to the waterworks, but most risks are associated with
the distribution system®. Traditionally, water quality is monitored by grab sampling and laboratory
analysis which holds the disadvantage that the information is delayed and temporal changes are not
detected. To timely react on quality changes and thereby prevent risks to public health during a

contamination case, continuous online monitoring with (close to) real-time results is needed.

Online sensors for monitoring physical and chemical parameters such as pressure, flow, temperature,
pH, conductivity, dissolved oxygen and turbidity have been implemented by Danish utilities during the
last decades to improve understanding of the distribution system dynamics’. Although these parameters
can sometimes indirectly identify severe microbial contamination events, the demand for sensors that

can directly detect microbial parameters is increasing.

The main challenge of developing microbial water quality sensors is to shorten the days-long incubation
time required by the traditional culture based methods to provide results. These methods identify the
presence of indicator microorganisms such as E. coli and total coliforms that indicates contamination. It
is important to note that the typical concentration of naturally occurring bacteria in drinking water
ranges between 10* and 10° cell/mL, meaning that sensors need to detect either the presence of
indicators within this background or an increase in the total bacteria concentration caused by
contamination. Several microbial sensor technologies have emerged on the market and others are in the
validation or research stage, but further development and documentation are still needed before their

use as routine monitoring methods is established.

The aim of this report was to provide a state of the art overview within the field of microbial sensors,
presented in three categories: 1) Technologies currently available on the market 2) Technologies in the

development and documentation phase 3) Technologies at the research level.



2 Methodology

The state of the art within the field of sensors for microbial drinking water quality monitoring was

established by:

Summarizing the experiences of Danish utilities with microbial sensors

Utilities considered as first movers and/or having experienced larger contamination cases within
the last decades were invited to complete a questionnaire regarding their experiences with
microbial water quality sensors.

Focused internet search

Search terms associated with online microbial sensors were used to identify existing
technologies and technologies under development, including methods that currently require
manual handling but have the potential to become automated.

Compiling a list of relevant research projects

Research projects, primarily at the national and European level were identified in relevant
databases and the main goals were reviewed.

Dialog with sensor producers

E-mail correspondence or short phone interviews were used to compile technical information
about the reviewed technologies, their implementation and, where possible, validation
documentation was obtained.

Phone interviews with professionals recommended by the utilities

Rikke Hansen (3V), Pernille Ingildsen (Kalundborg Forsyning) and Jeppe Resen Amossen (Harper
& Vedel) were interviewed to provide insight on the current status of sensor development in
Denmark, and to obtain additional information on the challenges or the breakthroughs in the
field.

Scientific literature study

The main focus was on review articles on sensors and research methods that have the potential
to be implemented in future sensor technologies. The literature search aimed to identify

strengths and weaknesses of each of the methods.

The utilities described the ‘ideal sensor’ as fulfilling the following points:

Online and at-line installation

Detection of indicator microorganisms (E. coli and total coliforms)

High sensitivity to detect very low concentrations of indicator microorganisms in drinking water
Rapid response

Low maintenance requirements



Low false alarm occurrence

Results are presented and discussed in three categories:

Technologies currently available on the market

The currently available technologies are presented and their strengths and weakness are
discussed including experiences from utilities responding to questionnaires.

Technologies in the development and documentation phase

Technologies in the development and documentation phase are discussed, including how close
they are to be launched on the market and the challenges that are yet to be resolved.
Technologies at the research level

The aims and expected outcomes of ongoing research projects in the field are presented to

signal the future direction in sensor development.



3 Results

3.1 Technologies currently available on the market
The sensor market is extremely fast-changing, with new technologies being released and manufacturing

companies closing down or being taken over by larger ones. This means that market overviews tend to

outdate after a very short time as e.g. the reviews of Storey et al 2011% and Lopez-Roldan et al 2013*.

By creating an overview of the 2015 market, 12 rapid microbial water quality monitoring technologies
were identified (Table 1). The technologies were grouped according to target and principle: 1) specific
indicator organisms by enzymatic activity 2) total bacteria concentrations 3) total bacteria activity by
ATP (Adenosine TriPhosphate). The main challenge of performing this screening has been the lack of
transparency in the information provided by the manufacturing companies, as their main interest is to
promote their products. Often, detailed validation information or technical details are not disclosed due
to commercialization interests. Therefore the information provided by the manufacturing companies
should be interpreted with care, especially when conclusions are drawn from arbitrary validation tests
and when satisfactory performance in other fields is assumed to apply also for drinking water. Some of
the reviewed technologies were developed and are mostly used in other fields e.g. the ‘Coliminder’ for
wastewater monitoring, the ‘Desktop microscope’ for medical research and the ‘Biocounter’ for the
beverage industry. These technologies are however included in this section because they have the

potential or are currently being validated for use in drinking water.

3.1.1 Detection of specific indicator microorganisms by enzymatic activity

Sensors to monitor microbial water quality target either specific indicator microorganisms, such as E.
coli and total coliforms, or measure total bacterial activity or concentration e.g. by ATP or direct cell
counts. A large share of the available technologies are automated versions of the widely used ‘Colilert’
(Idexx) test kit, and measure E. coli and total coliforms by fluorescence/colour detection of enzymatic
activityzg. This includes the ‘ALARM’, ‘CALM’, ‘Coliguard’, ‘aquaBio’, ‘TECTA’ and ‘Coliminder’
technologies (Table 1). In brief, coliform bacteria use the enzymes B-glucuronidase to metabolise the
substrate (colour reaction) and E. coli uses B-galactosidase (fluorescence)®®. However, some studies
have shown that other bacteria may cause false positives if they are present at high concentrations>**?,
but this is typically not the case for drinking water systems. The challenge of implementing this method
into an automated at-line system is to detect indicator organisms at the low concentration range
relevant for drinking water. These low concentration levels require incubation time that allows
multiplication of cells in order to be detected. Thus, sensors using this measuring principle can only
provide results with hours delay (Table 1). The result is usually expressed as enzymatic activity and

although several correlations have been proposed*>®, conversion to cell numbers is not

straightforward™.
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Among the sensors based on enzymatic activities, the ‘ALARM’, ‘CALM’ ‘Coliguard’ and ‘aquaBio’ need
reagent refill at specific time intervals of weeks to months, depending on sampling frequency®® ** 378,
These technologies need also yearly or twice-a-year maintenance service. The ‘TECTA’ is not a fully
automated technology, but requires manual sample loading’. The technology is included in this section
because it can be combined with an automated sampler from the same manufacturer’. No information

was available about the maintenance requirement of the ‘Coliminder’.

Well documented validation is essential to ensure that the technologies are reliable and suitable for
drinking water monitoring. The ‘ALARM’ and ‘TECTA’ technologies have received an ETV (Environmental
Technology Verification) from the US EPA® ™, which is a recognised validation process. The ‘Coliguard’
technology was tested by continuous monitoring of two groundwater sites for two years'?, while the
‘CALM’ technology has been validated as part of a the EU project DEMOWATERCOLI®. No information
was available for validation of the ‘aquaBio’ technology in drinking water. In all cases, it is important
that these technologies are validated in a systematic and unbiased way in drinking water systems. End-
users should be critical when evaluating the validation material and the results presented by the

manufacturing companies, especially if the technology is new and has no references of in situ use.

All the enzyme activity based sensors, except from the ‘Coliminder’ and the ‘aquaBio’, have been
applied at the participating utilities. The ‘ALARM’ sensor has been used at HOFOR A/S to measure total
coliforms or E. coli **. The sensor samples and provides data every 24 hours (response time 6 - 15 hours)
and is only used for water quality monitoring outside normal working hours®. The utility considers the
monitoring of either total coliforms or E. coli (not for both at the same time) and the presence/absence
output a disadvantage®. On the positive side, the utility believes that the operation is quite stable and
without excessive maintenance needs™>. Trondheim utility, supplying about 180,000-200,000 people,
has used the ‘ALARM’ sensor continuously for 3-4 years®®. The facility treats infiltrated surface water and
the sensor is installed at the raw water intake to monitor for contamination from the surrounding
agricultural area®. Sampling and analysis is performed every 24 hours, while manual sampling and
traditional culture based analysis are done once a week®®. Several occurrences of manure contamination
or sewage leakage in the area has been detected by the ‘ALARM’ and correlated roughly with the results
of grab sampling and culture based analysis, even though samples were not collected at the same
locations and time®. Overall, Trondheim utility believes that the sensor is a good contamination
indicator implemented in a user friendly system that only requires a short training course for the
operators®®. They are currently planning to install one more ‘ALARM’ at the lake water intake point®®.
Rogaland (Stavanger) utility serves about 300,000 people and is currently using two ‘ALARM’ sensors
and two ‘CALM’ sensors®’. The ‘CALM’ sensors are installed at the two surface water intake points and

monitor for E. coli every 4 hours. Contamination cases have been detected and correlated roughly with
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weekly grab samples and traditional culture based analyses, although also in these cases samples were
taken at different points and times®’. Their overall experience is positive and the only expressed concern
is the high initial and analysis cost, especially of the ‘CALM’ sensor®’. They are however planning to

continue using them?’.

The ‘Coliguard’ sensor has been used at Nordvand A/S and HOFOR A/S to measure E. coli and total
coliforms'®*. The sensor samples four times a day and has a low detection limit**. However, the utilities

report high maintenance needs and consider it an expensive technology'® **.

The ‘TECTA’ sensor has been used by Nordvand A/S, HOFOR A/S and Svendborg Vand A/S in its manual

version, i.e. without the incorporated auto-sampler*® 3%

. The utilities’ experience with the sensor is
rather positive, as they find it to be user-friendly and the response time of 2-18 hours is shorter than the
traditional culture based methods, yet giving accurate results. However, the measurements are only
partly quantitative. The sensor is mainly used during holidays, when the laboratory personnel is not at

work®.

Costs range from 135,000 to 300,000 DKK for the technologies that provided exact pricing information
(Table 1). This only includes the initial capital cost, and the operational cost related e.g. to reagent refill
etc. needs to be added. Service is also needed once or twice a year, adding accordingly to the overall

costs of the sensors.

3.1.2 Measurement of total bacteria concentrations by optical methods

The ‘BACMON’, ‘Desktop microscope’ and ‘7000 RMS’ technologies use optical methods to detect
microbial cells in water and thus do not require any incubation time. These technologies aim to

recognise bacteria from particles or even specific indicator bacteria by image analysis®® %%, Th

e
‘BACMON’ sensor provides a measure of total particles and bacterial cells present in the water®?, aiming
to detect sudden changes from an established background level. The ‘Desktop microscope’ states to
recognise specific indicator bacteria based on multiple morphological parameters integrated in
algorithms that classify the detected objects into taxons®. The sensor however, may be seriously
challenged by the high diversity of bacteria and low concentration of indicator microorganisms in
drinking water. Distinction between the different bacteria is particularly challenging, and will normally
require several additional tests besides microscopic observation. The ‘7000 RMS’ sensor was originally
developed in the US under the name ‘RMS-ON9Q’. The initial manufacturing company Instant Bioscan

Inc. was recently acquired from Mettler Toledo A/S, and due to the ongoing training of the responsible

personnel very limited information was available at the time of the interview®.
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The ‘BACMON'’ sensor is fully automated, but requires change of the flow cell at regular time intervals
that may vary depending on the type of water®>. The ‘Desktop microscope’ needs external handling via a
computer that operates the microscope communication®®. This can be done remotely, but daily wiping
of the glass surface and flushing of the flow cell is required®®. No information about maintenance of the

‘7000 RMS’ sensor was available.

The ‘BACMON’ sensor has been validated during long term installation at Danish waterworks, although
the detailed data has not been published yet?. The sensor has been installed at HOFOR A/S, Aarhus
Vand A/S*? and TREFOR Vand A/S*. Among the positive features of the sensor, TREFOR Vand A/S
reports stable operation, good user interface and little maintenance required®. The disadvantage
mentioned by TREFOR A/S is the difficult result interpretation, but the utility plans to continue the use
of it*. HOFOR A/S uses ‘BACMON’ at points in the distribution system where the retention time is long
and may affect the microbial water quality®. No validation or user experience information was available

for the ‘Desktop microscope’ and ‘7000 RMS’ technologies.

Exact cost information was only available for the ‘Desktop microscope’ and is approximately 200,000

DKK plus 40,000 DKK for training®.

3.1.3 Measurement of total bacterial activity by ATP
ATP (Adenosine TriPhosphate) is the main energy carrier molecule in all living cells and hence measuring
the ATP concentration gives an indication of total bacterial activity. ATP measuring kits have been widely

used in the food and beverage industry**’

. The ‘EZ-ATP’ sensor is an automated ATP analyser
developed by Applitek, which can also be applied for drinking water monitoring?. No information on

maintenance, cost or user experience was available for the ‘EZ-ATP’ sensor.

3.2 Technologies under development or validation
An overview of five technologies in the development or validation stage is presented in Table 2. This

overview includes technologies developed at least at the prototype level, which currently are under
testing. Some of these technologies aim to become the automated version of already developed manual
methods, e.g. ‘Bactiline’ and ‘Minilab’. Technologies partly developed by closed-down companies are

not included in this section, but presented separately in Appendix I.

Compiling technical details about technologies under development is even more challenging than the
methods currently on the market, because companies are particularly reluctant to disclose any
information before they launch their product. Often, it is also difficult to realise how far these
technologies are in the development process, as manufacturing companies tend to be too optimistic

about their progress and the expected time of market release.
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Mycometer A/S is currently working on automation of their assay kit ‘Bactiquant’, which has been used
by several Danish utilities including Frederikshavn Forsyning A/S>°, Svendborg Vand A/S*, DIN Forsyning
A/S**, Nordvand A/S™ and Energiforsyningen A/S*%. The technology is based on enzymatic activity
fluorescence and states to detect several gram negative and positive bacteria, thus providing a measure
of total bacteria levels in the water™. Currently two prototypes of the automated version have been
developed and are tested under laboratory conditions>*. The next step is field testing of the prototype
that is scheduled for 2016 within the EU founded project SMARTWATER4AEUROPE>*. Among the positive
features of ‘Bactiquant’, utilities mention the rapid and quantitative response of the method'®*%>?, The
method requires establishment of a site-specific background level depending on bacteria composition,
meaning a higher reading on site A than on site B is not necessarily an indication of higher bacteria
numbers on site A. Direct comparison between readings for e.g. Aarhus and Copenhagen is thus not
possible, which the utilities consider a drawback®®. However, a utility has managed to formulate system
specific upper and lower boundary levels based on statistical processing of data from a reference
period™. Cases of increase in bacteria numbers detected by traditional culture based methods but not
detected by ‘Bactiquant’ readings have been experienced®’. Such deviations need explanations to

maintain the utilities’ trust in the method.

SBT Aqua ApS is developing a microfluidic device intended to measure total bacterial levels in drinking
water based on impedance flow cytometry®. Impedance flow cytometry is a technique used mainly in
medical research, that essentially detects cells through their dielectric properties®®. The main advantage
of this method is that no specific markers or reagents are needed®. Implementation of this method in
the microfluidic scale has to deal with several challenges, such as clogging of the channels and high
sensitivity needed to detect small changes of impedance from the established background level. Also,
the method aims to detect total bacteria levels and not specific indicator microorganisms. At the
moment, a prototype installed at Vilstrup Waterworks (Verdo Vand A/S) was operational for two
months, although only its functionality was tested and no measurements were done®’. Measurements
have so far been done only under laboratory conditions, and next tests include measurements with

wastewater dilutions and in situ measurements at the waterworks®’.

The MinilLab technology is already fully developed by Optiqua, even though the current version requires
manual sampling loading®. The technology was initially developed to determine the concentration of
low molecular weight contaminants and for affinity or binding studies of biomolecules*®. Detection is
based on an optical method that measures the refractive index by Mach-Zehnder interferometry®®. In
brief, the interferometer is integrated in a chip and measures changes in refractive index (bending of
light in different media) between a sensing branch, where specific antibodies are immobilised, and a

reference branch®®. The sensing cartridge can be reused and needs regeneration every 100-500 tests,
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depending on the concentration of the targeted compound or bacteria strain®’. The company is
currently developing a version targeting specific bacteria in drinking water and aims to automate the
method within the scope of the aquaSHIELD EU project®. Again, the main expected challenge this
method will face, is the much higher sensitivity needed to detect bacteria in drinking water compared to

other compounds and biomolecules in contaminated samples.

Nwater is currently developing the MicrolLab technology, also aiming to detect bacteria in drinking water
based on microscopic sensing®. Because of their current commercialization negotiations with a project

partner, no further information was disclosed at this point®®.

Blusense Diagnostics is a newly founded company that has developed a microfluidic sensor to measure
protein and bacteria concentrations in urine and blood. The aim is to apply the same principle for
detection of specific bacteria in drinking water®®. The method combines DNA amplification and binding
of targeted nucleotide sequences on detection probes fixed on magnetic nanoparticles in a microfluidic
system’®’%. The project is currently funded by Vandsektorens Teknologiudviklingsfond (VTUF) with
Kalundborg Forsyning A/S as one of the project partners, and the expected completion date is by the
end of 2016°***. The expected advantage of this method is the rapid detection of specific
microorganisms without the need for a growth incubation time. However, the high bacteria diversity
and low bacteria concentrations in drinking water may challenge the contact chances between the

extracted DNA from these microorganisms and the matching probes.

Development of the above technologies indicates that the field of microbial sensors is rapidly advancing.
Although these technologies appear promising, the challenges current market methods experience such
as the high sensitivity required, rapid response and low maintenance requirements need to be
overcome. According to the manufacturers, release of the above technologies is expected within the

next couple of years, if the final development is not subject to major delays.
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3.3 Technologies at the research level

3.3.1 Methods with potential for sensor application

In addition to the methods discussed in section 3.1 and 3.2 which are already implemented in prototype
systems, other methods are currently being investigated for their potential to be integrated in a sensor.
Table 3 presents an overview of the six most promising methods, along with their main advantages and
disadvantages. None of methods provides a practical and simple operational unit in their current version

or they are limited to research use.

Immunoassays are commonly used to capture target microorganisms, as they selectively bind to the
corresponding anti-bodies”. Specific antibodies are commercially available for most indicators, such as
E. coli, enterococci and Salmonella’. Immunoassays are therefore often used as a separation or pre-
concentration step to be combined with other detection methods’*. Immunoassays can be automated

#7475 Non-targeted microorganisms may be captured as well,

and integrated in lab-on-a-chip systems
giving false positive results®. Another significant issue is the very small fraction of the target
microorganisms in drinking water, so pre-concentration of large water samples may be required to
provide contact opportunity between the antibody and the antigen, necessary to capture the targeted
cells. Immunoassays have up to now been used in combination with ATP analyses in water and food”®®,
and in combination with other electrical” #*® and optical” ® detection methods. Sensitivity of these
combined methods may vary a lot, depending on both the efficiency of the immunoassay step and the
sensitivity of the detection step, but has in some studies reached as low as of 20 CFU/100 mL in in-situ

freshwater samples®®®®.

Polymerase chain reaction (PCR) is a commonly used laboratory molecular method to amplify targeted
DNA sequences in a sample to enable subsequent detection and quantification®. The amplified DNA
sequences are specified by the chosen primers, which essentially are short nucleotide sequences that
match the end of the interest region®. Primers for a wide variety of microorganisms are currently
available, making PCR a powerful detection and quantification tool*. Recent research has identified
specific primers for E. coli and for a broad range of coliforms, making the method suitable for detection
of traditionally used indicator organism®*. The main disadvantage of the method is that is quite complex,
although significant research effort is currently focusing on microfluidic method implementation’*¥’.
Microfluidic PCR has the advantage of being faster and potentially less expensive than the traditional
laboratory protocol due to the small volumes of expensive reagents used”’. A commercial
implementation of on-chip PCR is already available by Rheonix® and has been reported to detect

Cryptosporidium in water samples’®, while more systems are expected to emerge at the market in the

near future.
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Fluorescence in situ hybridization (FISH) is another molecular method using fluorescent RNA probes
binding to complementary sequences®. The typical protocol includes cell treatment with appropriate
chemical fixatives, followed by hybridization under stringent conditions with specific probes®. Stained
cells are detected by epifluorescence microscopy”. The advantage of targeting RNA instead of DNA is
that detection is more sensitive due to the higher number of copies available and that only viable cells
are included®. FISH has been integrated in a microfluidic device followed by flow cytometry to detect E.
coli in pure cultures®™. The main disadvantage is that due to the low concentrations in drinking water,

pre-concentration may be needed”.

Electrical detection of microbial cells may be based on electrochemical methods® ”> *°

, On measurement
of electrical impedance®™ or on piezoelectric biosensing®™. The common principle of these methods is
measurement of electrical conductance or charge by an electrode. Specifically, electrochemical
methods measure the light emitted by labels when they are stimulated electrochemically at the
electrode”. These labels are typically attached to biological binding reagents and are used for solid-
phase binding assays e.g. nucleic-acid hybridization assays of sandwich immunoassays®. In principle
these assays involve two nucleic acid fragments, one immobilised on a surface and another suitably
labelled for use as a hybridization probe®. When both fragments are mixed with a sample containing
the target sequence, they hybridize and form a complex that becomes attached to the solid support®.
The advantage of this method is that the sample nucleic acid does not need to be immobilised®.
Electrical impedance biosensors measure microbial metabolism via an increase in both conductance
and capacitance causing a decrease in impedance™. Lastly, piezoelectric biosensors use typically
immobilised antibodies to coat the sensor surface by the bound bacteria so that the mass of the crystal
changes and the resonance frequency of oscillation decreases proportionally®®. The main advantage of
these methods is the high potential for online and microfluidic implementation’*”> *°. However, only

few studies have demonstrated the application of electrical methods to detect microorganisms in

drinking water systems’”.

Flow cytometry is a method to quantify cells in suspension by letting a flow stream of single cells pass
through a laser beam and record the forward-scattered light and side-scattered light, as well as
fluorescence signals resulting from the beam disturbance®. The method has been established for more
than 30 years in medical and cancer research, and has been extensively applied in laboratories to
quantify bacteria, yeast cells, algae and protozoa during the last two decades®. The main advantages of
the method is that it is rapid, sensitive and compatible with various staining and labelling methods®.
Flow cytometry has been implemented in an automated laboratory system measuring bacteria in
drinking water within a concentration range of 10° to 10° cell/mL®". An additional advantage of the

method is that it can be implemented in a microfluidic system as demonstrated in previous studies®**>.
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A drawback is that result interpretation, especially at the low concentration levels relevant for drinking
water systems, can be very subjective and proper standardization of the counting process is essential®.
Raman spectroscopy is a method that measures inelastic scattering of monochromatic light following
excitation® . Biological molecules including nucleic acids, proteins, lipids and carbohydrates generate
specific Raman spectra that provide biochemical information on the composition and structure of the
cells, so that single microorganisms can be identified from the whole cell spectra® ®. High sensitivity for
identification of single bacterial cells and the possibility to obtain molecular information without using
expensive reagents are the main advantages of the method® ®* . Also the method has potential for
microfluidic implementation®. Raman spectroscopy is however a detection method that needs to be
combined with physical or chemical immobilization of the cells®®, which is possible either with optical

tweezers or on an antibody coated surface® ®.

Microfluidic systems are an potential platform for developing laboratory methods into new sensors.
Besides the compact design, microfluidic systems are preferred for their low production cost and small
reagent volume requirements, which decrease operational cost. Microfluidic systems are not yet
established for use in drinking water systems as a number of challenges still need to be resolved. These
include clogging of the microfluidic channels by particles, lime scale or even biofilms after a short time
of continuous operation. These risks can be partly reduced by a preceding filtration step, even though it
increases system complexity. These filters also need to be cleaned or replaced at regular times. Clogging
may actually not be a major issue if the microfluidic cartridge is easily replaceable and cheap, but can
still become a considerable maintenance requirement. The main concern with microfluidic systems is
the reliability of results, since the very small volume of water sampled may not include organisms only
present in low concentrations. Integrated concentration steps are a possible solution to increase the

sampled water volume, but they add complexity and maintenance requirements to the system.

Concentration of bacteria from the water can be a way to increase sensitivity in relation to many of the
described methods, both for sensors currently available on the market as well as for sensors under
development. Several versions of concentration equipment are available, e.g. the ‘Dggnprgvetager’
(volume sampler) developed by HOFOR A/S*, and ‘Pansi1000’ and ‘Alonda 1000’ from Amphi-bac®®,

which are all based on different filtration techniques.
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3.3.2 Ongoing research

Sensor development and implementation has been the topic of numerous research projects (see
examples of concluded projects in appendix Il). Currently three large projects are funded at the national
level and five large projects are funded at the European level (Table 4). Overall these projects aim either
to develop new sensors, or to further validate and optimise already prototyped sensors. Information
about these projects and their specific aims is available online, but as the projects are ongoing,
publications or outcomes are not yet publically available. Some large European projects e.g. the
SMARTWATER4EUROPE and the Aquavalens have midterm deliverables that are kept confidential, and
only short summaries are publically available, not disclosing any progress details. Therefore it is not

possible to establish the current status and achievements of these projects.

At the national level, the Vandsektorens Teknologiudviklingsfond and the Danish Ministry of the
Environment have (partly) funded 3 projects in the sensor field (Table 4). Among them, the ‘Future
water’ project is by far the largest, with a total budget of 20,904,000 DKK*°. The project aims to resolve

99-100

several challenges within the drinking water sector and is organised in eight work packages . One of

the work packages aims to provide a critical analysis of commercial and near-commercial technologies
and to develop a system composed of individual alarm, auto-sampling and characterization units'®.
Partners involved in this work package, which is completed by the end of 2015, are Ringkgbing-Skjern
Forsyning A/S, VIA University College, Amphi-Bac ApS, Alectia A/S, Minus 10dB ApS . Data from the
project was not available at the time of finalising the present report. Another approach to water quality
monitoring was taken in work package 2% by Kriiger A/S, Aarhus Vand A/S and VandCenter Syd, who

aimed at developing algorithms to process large amount of data generated by online sensors. The aim

was to apply the software in day-to-day operations, system optimization and fault finding.

Blusense diagnostics ApS is also currently involved in a project partly funded by VTUF and with a total
budget of 4,124,000 DKK®**. The aim is to test an already developed prototype that detects proteins and
bacteria in urine and blood (described in section 3.2) for detection of E. coli in drinking water®. The

project ends March 1% 2016°*.

Lastly, SBT Aqua ApS was also granted a fund from VTUF in the project ‘Real-time water quality
monitoring by electrical detection’, with a total budget of 2,642,000 DKK*’. The project aims to validate
the technology described in section 3.2 by long term installation and monitoring at the waterworks®.

The project ends September 1% 2016%.
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At the European level, the project ‘AQUAWARN’ has been granted a 1,294,659 EUR total budget and
ends November 30" 2015. This project aim was to develop an integrated deployable device for the
detection of contamination in water using microfluidic technology®. The ‘AQUAWARN’ device aims to
be used for monitoring of selected water quality parameters in wastewater and environmental
waters'®, although no specifications are given about the targeted parameters or the measurement
principles. The envisioned device will be low-cost and transportable, and will be linked to a process
control device and an auto-sampler. The data or an eventual alarm will be sent to a mobile phone or a

laptop'®®

. The project is coordinated by T. E. LABORATORIES LIMITED, an Irish environmental laboratory
and chemical manufacturing company, and includes three other private companies, the Dublin City

University and the UK Natural Environment Research Council'®.

‘SMARTWATER4EUROPE’ is a larger EU project, granted 10,043,233 EUR for a three-year period ending
December 2017, The project overall aims to demonstrate integrated solutions for water supply and is
organised in 12 work packages, of which one specifically aims to further develop sensor technologies

and to validate their use at selected demonstration sites'®

. The ‘Bactiline’ technology developed by
Mycometer A/S will be tested at Vitens utility, which is the largest water supply company in The
Netherlands®*. The project consortium consists of 12 small-medium enterprises (SMEs), three water

utilities, three research institutes, one company and two platform organisations™”’.

‘Aquavalens’ is another large EU project relevant for water quality sensors, with a total budget of
11,909,166 EUR'®. The project runs for five years and ends January 31° 2018'®. The overall aim is to
develop methods and practices to detect pathogens in drinking water and in water used for food

104-105

preparation . The project is organised in 15 work packages grouped in four clusters or main

development phases'®

. Within these, DTU Environment is involved in a work package that aims to
develop an automated platform for detection, based on ATP concentration measurements. DTU
Environment is also involved in another work package that aims to test the developed method in large
scale water supplies'®. The project overall involves 18 academic and non-profit organizations and 21

SMEs across Europe'®.

The ‘aquaSHIELD’ project has been granted 1,123,136 EUR to further develop an integrated sensor
solution developed by the Dutch company Optiqua®’. Specifically, the aim of the project is to combine
two already developed sensor components for online monitoring, which monitor chlorine residual, and
performs rapid screening of a set of high priority threat substances®. The project involves only Optiqua

and ends January 1°2017%.

Lastly, the ‘AQUAVIR’ project has been granted 5,246,429 EUR for three years, and ends October 31*

2016'%. The project aims to develop a portable, on-site microfluidic system to detect viruses in different
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freshwater water bodies . The virus particles will be concentrated and detected by electrical read-

102

out in the microfluidic cartridge . Viruses in focus are norovirus, Hepatitis A and rotavirus and the

102

target detection limit is 0.01-1 virus/L". The project is coordinated by DTU Nanotech and involves 13

more partnersm.

Overall, research projects have set ambitious goals towards the development of optimised sensor
systems. Apart from the ‘aquaSHIELD’ project, the above projects are collaborations between academic
partners and private companies. Such collaborations ensure that the work is scientific founded and at

the same time focuses on the development of market technologies for full-scale application.
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4 Discussion

4.1 Where are we today?

Sensors for monitoring of microbial drinking water quality have seen great development in the recent
years, but still the ‘ideal sensor’ as defined by the utilities (with total coliforms and E. coli in focus) is not
yet available. Development of new sensors is a time consuming and complicated process, and it is
important to realise that there is a long way from an initial conceptual idea to successful development
of a new microbial sensor. The process generally stretches over years or decades and requires
substantial funding as demonstrated by the list of current projects (Table 4). It is fairly common that a
new technology is developed and validated within several research projects, as one funding source
typically is not sufficient to cover all development stages. Insufficient funding can be a contributing
factor to why concepts of the past have not managed to become fully developed into new technologies.
Another contributing factor can be that the principle of the concept is not suited for application in
drinking water. Drinking water is characterised by a large number of bacteria with high diversity living in
an oligotrophic environment, thus being constantly starved with a low energy turnover. It is therefore
not always possible to transfer a technology developed for other fields e.g. food industry or medical
diagnostics, as these environments are often characterised by high nutrients levels and growth of single

or few bacterial strains.

With the current state of the art, microbial sensors can be divided into two main categories, sensors

targeting specific microorganisms and sensors targeting total bacteria levels.

4.2 Sensors targeting specific microorganisms

The primary reason to monitor microbial drinking water quality is to prevent pathogenic organisms from
reaching the consumers through the water. It is problematic to detect specific pathogenic organisms,
due to low numbers of pathogens, high background levels of bacteria and complicated and/or time
consuming analysis methods. Therefore monitoring is instead based on indicator organisms i.e.
organisms present in large numbers together with the pathogens, which are more simpel to detect.
Historically, total coliforms and E. coli have been used as indicators for contamination (E. coli specifically
for faecal contamination). The indicators are not necessary pathogenic themselves, in fact only few E.

coli strains are pathogenic'™.

The utilities have long time experience with monitoring of total coliforms and E. coli, and there thus
exist extensive historical reference material. Monitoring of total coliforms and E. coli is part of the
Danish regulation of microbial water quality, with a guideline value of less than one coliform or E. coli

per 100 mL of water® (the same as the detection limit of the current guideline method). The indicator
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monitoring is comparable to looking for a needle in a haystack, meaning that a method with high

sensitivity is required.

Today, most sensors targeting indicator microorganisms are based on enzymatic activity measurements
and are essentially automated versions of the Colilert test kit (Table 1). These methods need an
incubation time to reach sufficiently high cell numbers for detection of a colour reaction, and thus real-

time detection is not possible.

Close to real-time detection of indicator organisms might be possible in the future by sensors based on
molecular methods e. g. hybridization and PCR. However, these methods need yet to overcome
significant challenges before becoming implemented in a sensor context, e.g. successfully bringing the
target microorganisms in contact with the coated surface so the specific binding can take place.
Additionally, due to the low concentrations of the indicators in drinking water, a pre-concentration step

is likely to be needed, which is an additional challenge for integration in an automated system.

If molecular methods are to be integrated in a sensor, it expands the possibilities of targeting specific
organisms and it should then be considered whether to monitor for specific pathogenic bacteria,
protozoa or viruses and not only for indicators. Enhanced detection of specific organisms may also open
up the discussion on whether total coliforms and E. coli are the optimal indicator organisms or if others

may be used.

4.3 Sensors targeting total bacteria levels
The alternative to sensors for monitoring specific microorganisms are sensors for monitoring total
bacteria levels, either by cell numbers or by ATP or enzymatic activity measurement. These sensor

technologies are rapid and give close to real-time response.

Sensors for total bacteria levels are used to identify changes from a background level. Therefore
establishment of background levels and variations under normal operating conditions for the specific

system and location is necessary. Variation can be identified at two levels:

1. Variations due to normal operating conditions e.g. hydraulic conditions, well combination, filter
backwashing etc.

2. Variation due to contaminations entering the system
Identifying a contamination as a deviation in the total bacteria level demands a good understanding of

and experience with the system. Optimisation of system operation can give a more stable and distinct

variation pattern, making it easier to identify variations. The use of algorithms referring to a defined
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reference period can be a necessary tool to correlate variations and operation conditions, and thereby
making it possible to identify variation, which might indicate contamination. An unexpected variation
can be caused by other factors than a contamination, but a variation which cannot immediately be

explained by normal operation conditions should lead to further investigations.

Since bacteria concentrations in drinking water are in the range of 10*-10° cells/ml it will be difficult to

detect a small contamination over the noise on the background level.

4.4 Combination of sensors

The ‘ideal sensor’ is ultimately a single sensor that combines several of the above advantages and
overcomes the shortcomings discussed previously. This might be an unrealistic and too ambitious goal,
and instead a combination of sensors may be the way ahead. Sensors for monitoring microbial quality
combined with sensors for monitoring physicochemical parameters (e.g. turbidity, oxygen, conductivity,
pH, temperature) can provide more information about a potential contamination. Sensors for
physicochemical parameters are fully developed and available from many technology providers in
different designs and set-ups. Multiple sensor set-ups are also available as e.g. the ‘Intellisonde’
technology developed by Intellitect Water Limited that combines monitoring of 11 physicochemical

parameters in a single sensor’.

Monitoring of several parameters simultaneously has the disadvantage of increasing the total cost, since
more sensors need to be purchased and maintained, potentially becoming unaffordable for smaller
utilities. An additional consideration is the large amount of data that needs to be evaluated. In depth
knowledge of the system is crucial when navigating through this increased data log to ensure
meaningful interpretation of variations. Algorithms specifically fitted for each system can be a necessary
tool to identify an unexpected variation that requires further action. This is currently approached in the

research project Future Water®.

4.5 Monitoring approach

Microbial monitoring has traditionally focused on identifying contaminations. An alternative monitoring
approach is to prevent the contaminations from occurring by monitoring of barrier efficiency and of high
risk points, such as valves. These monitoring schemes may differ significantly from utility to utility

depending on the system set-up and on the specific high risk points in each individual system.

Instead of planning for a universal monitoring strategy, it can be meaningful to design monitoring
strategies for specific sections of the system or for specific scenarios. This demands that each utility
performs a system analysis to identify potential risks for different sections of the system, and identifies

what kind of information would be most beneficial to acquire in each case. This is a process closely
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linked to the utilities” HACCP work (in Danish DDS) and scenario-based monitoring planning can be a tool

to optimise monitoring strategy and prepare for acute situations.
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Appendix

Technologies developed by closed down companies
Table | presents an overview of partly developed technologies from closed down companies. Limited

L.

information about these technologies is available online, and it is not known how far they actually got in

the development phase and why these companies closed down. Both Early Warning inc. and Heed

Diagnostics ApS worked on a molecular method that aimed to detect specific microorganisms by RNA

hybridization on surface. The ‘Biosentry’ method was based on optical recognition of specific bacteria

and protozoa, although no details on this method were available.
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II. Concluded research projects
Table Il presents an overview of concluded national and international projects relevant for microbial

sensor development. The ‘DEMOWATERCOLI’ EU project was granted 1,165,988 EUR to test and validate
the ‘CALM’ technology developed by Colifast'®. No publication or final report is available from this
project. Heed Diagnostics ApS was granted 2,492,000 DKK to test the 2 generation prototype for

measuring bacteria in drinking water based on RNA hybridization*®

. Within this project, the method was
further developed'*, although following, the project the company closed down. The project ‘AQUA
fingerprint’ aimed to demonstrate an online method based on fluorescence to identify faecal
contamination in drinking, surface, overflow and swimming pool water'"’. Project partners were DTU
Environment, DTU Aqua, TREFOR A/S and Kriiger A/S™®. The project concluded that the method was
robust with potential to be implemented in an online system that can be modified to target other
microorganisms of interest'"’. Lastly, Amphi-Bac ApS was granted 2,060,000 DKK for a project aiming to

develop a DNA kit to identify sources of microbial contamination**. According to the final report of the

project, the kit was partly developed, although not yet ready for commercializsation?°.
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III. Manual methods
Table Il presents an overview of manual methods for monitoring microbial drinking water quality, which

has a potential for automation. Within these methods, the ‘Microsnap’, ‘Colilert’ and ‘ScanVIT’ target
specific indicator microorganisms, while ‘Bactiquant’ measures bacterial activity level and ‘Cyflowcube’
measures total bacteria levels (Table Ill). ‘Colilert’ (the most commonly used test kit for total coliforms
and E. coli) and ‘Microsnap’ are based on measurement of enzymatic activity®®, as described in section
3.1.1. The same principle, also used by ‘ScanVIT’, is a method based on fluorescence microscopy that
detects E. coli and total coliforms within 3 hours™. ‘Bactiquant’ measures activity of several gram
positive and negative bacteria based on enzymatic activity and is currently being automated into the

‘Bactiline’ technology™*. ‘Cyflowcube’ measures total bacteria concentration by flow cytometry*?.
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