The Resolution Calculus for First-Order Logic

Schlichtkrull, Anders
Published in:
The Archive of Formal Proofs

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Schlichtkrull, A. (2016). The Resolution Calculus for First-Order Logic. The Archive of Formal Proofs , 1-69.

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

The Resolution Calculus for First-Order Logic

Anders Schlichtkrull

June 30, 2016

Abstract

This theory is a formalization of the resolution calculus for firstorder logic. It is proven sound and complete. The soundness proof uses the substitution lemma, which shows a correspondence between substitutions and updates to an environment. The completeness proof uses semantic trees, i.e. trees whose paths are partial Herbrand interpretations. It employs Herbrand's theorem in a formulation which states that an unsatisfiable set of clauses has a finite closed semantic tree. It also uses the lifting lemma which lifts resolution derivation steps from the ground world up to the first-order world. The theory is presented in a paper at the International Conference on Interactive Theorem Proving [7] and an earlier version in an MSc thesis [6]. It mostly follows textbooks by Ben-Ari [1], Chang and Lee [3], and Leitsch [4]. The theory is part of the IsaFoL project [2].

Contents

1 Terms and Literals

1.1 Ground . 3
1.2 Auxiliary . 3
1.3 Conversions . 4
1.3.1 Convertions - Terms and Herbrand Terms 4
1.3.2 Conversions - Literals and Herbrand Literals 5
1.3.3 Convertions - Atoms and Herbrand Atoms 5
1.4 Enumerations . 6
1.4.1 Enumerating Strings 6
1.4.2 Enumerating Herbrand Atoms 7
1.4.3 Enumerating Ground Atoms 8

2 Trees 9
2.1 Sizes . 9
2.2 Paths . 9
2.3 Branches . 11
2.4 Internal Paths . 13
2.5 Deleting Nodes . 15
3 Possibly Infinite Trees 22
3.1 Infinite Paths 23
4 König's Lemma 24
5 More Terms and Literals 25
6 Clauses 26
7 Semantics 27
7.1 Semantics of Ground Terms 28
8 Substitutions 28
8.1 The Empty Substitution 29
8.2 Substitutions and Ground Terms 30
8.3 Composition 31
8.4 Merging substitutions 33
8.5 Standardizing apart 35
9 Unifiers 36
9.1 Most General Unifiers 38
10 Resolution 39
11 Soundness 40
12 Herbrand Interpretations 43
13 Partial Interpretations 44
14 Semantic Trees 48
15 Herbrand's Theorem 48
16 Lifting Lemma 54
17 Completeness 55
18 Examples 63
1 Terms and Literals
theory TermsAndLiterals imports Main $\sim \sim /$ src/HOL/Library/Countable-Set begin
type-synonym var-sym $=$ string
type-synonym fun-sym $=$ string
type-synonym pred-sym $=$ string

```
datatype fterm =
    Fun fun-sym (get-sub-terms: fterm list)
| Var var-sym
datatype hterm \(=\) HFun fun-sym hterm list - Herbrand terms defined as in Berghofer's FOL-Fitting
```

```
type-synonym 't atom = pred-sym * 't list
datatype 't literal =
    sign: Pos (get-pred: pred-sym) (get-terms: 't list)
| Neg (get-pred: pred-sym) (get-terms: 't list)
fun get-atom :: 't literal }=>\mathrm{ 't atom where
    get-atom (Pos p ts) = (p,ts)
|gt-atom (Neg pts)=(p,ts)
```


1.1 Ground

fun ground $_{t}::$ fterm \Rightarrow bool where
ground $_{t}($ Var $x) \longleftrightarrow$ False
\mid ground $_{t}($ Fun $f t s) \longleftrightarrow\left(\forall t \in\right.$ set ts. ground $\left.{ }_{t} t\right)$
abbreviation ground $_{t s}::$ fterm list \Rightarrow bool where ground $_{t s} t s \equiv\left(\forall t \in\right.$ set ts. ground $\left.{ }_{t} t\right)$
abbreviation ground $_{l}::$ fterm literal \Rightarrow bool where ground $_{l} l \equiv$ ground $_{t s}($ get-terms $l)$
abbreviation ground $_{l s}::$ fterm literal set \Rightarrow bool where ground $_{l s} C \equiv\left(\forall l \in C\right.$. ground $\left._{l} l\right)$
definition ground-fatoms :: fterm atom set where ground-fatoms $\equiv\left\{a\right.$. ground $_{t s}($ snd $\left.a)\right\}$
lemma ground $_{l}$-ground-fatom: ground $_{l} l \Longrightarrow$ get-atom $l \in$ ground-fatoms unfolding ground-fatoms-def by (induction l) auto

1.2 Auxiliary

lemma infinity:
assumes $i n j: \forall n$:: nat. undiago (diago n) $=n$
assumes all-tree: $\forall n$:: nat. (diago n) $\in S$
shows \neg finite S
proof -
from inj all-tree have $\forall n$. $n=$ undiago (diago $n) \wedge($ diago $n) \in S$ by auto then have $\forall n . \exists d s . n=$ undiago $d s \wedge d s \in S$ by auto

```
    then have undiago ' }S=(UNIV :: nat set) by aut
    then show }\neg\mathrm{ finite S by (metis finite-imageI infinite-UNIV-nat)
qed
lemma inv-into-f-f:
    assumes bij-betw f A B
    assumes }a\in
    shows (inv-into A f) (f a)=a
using assms bij-betw-inv-into-left by metis
lemma f-inv-into-f:
    assumes bij-betw f A B
    assumes b\inB
    shows f((inv-into A f) b)=b
using assms bij-betw-inv-into-right by metis
```


1.3 Conversions

1.3.1 Convertions - Terms and Herbrand Terms

fun fterm-of-hterm :: hterm \Rightarrow fterm where
fterm-of-hterm (HFun pts) $=$ Fun p (map fterm-of-hterm ts)
definition fterms-of-hterms :: hterm list \Rightarrow fterm list where
fterms-of-hterms ts \equiv map fterm-of-hterm ts
fun hterm-of-fterm :: fterm \Rightarrow hterm where
hterm-of-fterm (Fun pts) $=$ HFun p (map hterm-of-fterm ts)
definition hterms-of-fterms :: fterm list \Rightarrow hterm list where
hterms-of-fterms ts \equiv map hterm-of-fterm ts
lemma $[$ simp $]$: hterm-of-fterm (fterm-of-hterm $t)=t$
by (induction t) (simp add: map-idI)
lemma $[$ simp $]$: hterms-of-fterms (fterms-of-hterms ts) $=t s$
unfolding hterms-of-fterms-def fterms-of-hterms-def by (simp add: map-idI)
lemma $[$ simp $]$: ground $_{t} t \Longrightarrow$ fterm-of-hterm (hterm-of-fterm $\left.t\right)=t$
by (induction t) (auto simp add: map-idI)
lemma $[$ simp $]:$ ground $_{t s}$ ts fterms-of-hterms (hterms-of-fterms ts) $=$ ts
unfolding fterms-of-hterms-def hterms-of-fterms-def by (simp add: map-idI)
lemma ground-fterm-of-hterm: ground $_{t}$ (fterm-of-hterm t)
by (induction t) (auto simp add: map-idI)
lemma ground-fterms-of-hterms: ground ${ }_{t s}$ (fterms-of-hterms ts)
unfolding fterms-of-hterms-def using ground-fterm-of-hterm by auto

1.3.2 Conversions - Literals and Herbrand Literals

```
fun flit-of-hlit :: hterm literal }=>\mathrm{ fterm literal where
    flit-of-hlit (Pos p ts)=Pos p(fterms-of-hterms ts)
|flit-of-hlit (Neg p ts) = Neg p(fterms-of-hterms ts)
fun hlit-of-flit :: fterm literal }=>\mathrm{ hterm literal where
    hlit-of-flit (Pos p ts) = Pos p (hterms-of-fterms ts)
| hlit-of-flit (Neg p ts)=Neg p(hterms-of-fterms ts)
lemma ground-flit-of-hlit: ground (flit-of-hlit l)
    by (induction l) (simp add: ground-fterms-of-hterms)+
theorem hlit-of-flit-flit-of-hlit [simp]: hlit-of-flit (flit-of-hlit l)}=l\mathrm{ by (cases l)
auto
theorem flit-of-hlit-hlit-of-flit [simp]: ground l l \Longrightarrow flit-of-hlit (hlit-of-flit l) = l
by (cases l) auto
lemma sign-flit-of-hlit: sign (flit-of-hlit l) = sign l by (cases l) auto
lemma hlit-of-flit-bij: bij-betw hlit-of-flit {l. ground l l} UNIV
    unfolding bij-betw-def
proof
    show inj-on hlit-of-flit {l. ground l l} using inj-on-inverseI flit-of-hlit-hlit-of-flit
        by (metis (mono-tags,lifting) mem-Collect-eq)
next
    have }\foralll.\exists\mp@subsup{l}{}{\prime}.\mp@subsup{ground l}{l}{\prime}\mp@subsup{l}{}{\prime}\wedgel=hlit-of-flit l'
        using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis
    then show hlit-of-flit' {l. ground ll l} =UNIV by auto
qed
lemma flit-of-hlit-bij: bij-betw flit-of-hlit UNIV {l. ground d l}
    unfolding bij-betw-def inj-on-def
proof
    show }\forallx\inUNIV.\forally\inUNIV. flit-of-hlit x= flit-of-hlit y \longrightarrowx=
        using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis
next
    have \foralll. ground d l \longrightarrow (l= flit-of-hlit (hlit-of-flit l)) using hlit-of-flit-flit-of-hlit
by auto
    then have {l. ground l l} \subseteq flit-of-hlit'UNIV by blast
    moreover
    have }\foralll.\mp@subsup{.ground ( (flit-of-hlit l) using ground-flit-of-hlit by auto}{}{\prime
    ultimately show flit-of-hlit 'UNIV ={l. ground l l} using hlit-of-flit-flit-of-hlit
ground-flit-of-hlit by auto
qed
```


1.3.3 Convertions - Atoms and Herbrand Atoms

```
fun fatom-of-hatom :: hterm atom }=>\mathrm{ fterm atom where
```

```
    fatom-of-hatom ( }p,ts)=(p,fterms-of-hterms ts
fun hatom-of-fatom :: fterm atom }=>\mathrm{ hterm atom where
    hatom-of-fatom ( }p,ts)=(p,hterms-of-fterms ts
lemma ground-fatom-of-hatom: ground ts (snd (fatom-of-hatom a))
    by (induction a) (simp add: ground-fterms-of-hterms)+
theorem hatom-of-fatom-fatom-of-hatom [simp]: hatom-of-fatom (fatom-of-hatom
l)}=l\mathrm{ by (cases l) auto
theorem fatom-of-hatom-hatom-of-fatom [simp]: ground ts (snd l)\Longrightarrowfatom-of-hatom
(hatom-of-fatom l)=l by (cases l) auto
lemma hatom-of-fatom-bij: bij-betw hatom-of-fatom ground-fatoms UNIV
    unfolding bij-betw-def
proof
    show inj-on hatom-of-fatom ground-fatoms using inj-on-inverseI fatom-of-hatom-hatom-of-fatom
unfolding ground-fatoms-def
    by (metis (mono-tags, lifting) mem-Collect-eq)
next
    have }\foralla.\exists\mp@subsup{a}{}{\prime}.\mp@subsup{ground}{ts}{}(\mathrm{ snd a')}\wedgea=hatom-of-fatom a'
    using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis
    then show hatom-of-fatom'ground-fatoms = UNIV unfolding ground-fatoms-def
by blast
qed
lemma fatom-of-hatom-bij: bij-betw fatom-of-hatom UNIV ground-fatoms
    unfolding bij-betw-def inj-on-def
proof
    show }\forallx\inUNIV.\forally\inUNIV. fatom-of-hatom x = fatom-of-hatom y \longrightarrowx = y
        using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis
next
    have }\foralla.\mp@subsup{ground ts }{\mathrm{ grd a })\longrightarrow(a=\mathrm{ fatom-of-hatom (hatom-of-fatom a)) using}}{
hatom-of-fatom-fatom-of-hatom by auto
    then have ground-fatoms \subseteqfatom-of-hatom'UNIV unfolding ground-fatoms-def
by blast
    moreover
    have }\foralll.\mp@subsup{ground ts (snd (fatom-of-hatom l)) using ground-fatom-of-hatom by}{}{\prime
auto
    ultimately show fatom-of-hatom'UNIV = ground-fatoms
        using hatom-of-fatom-fatom-of-hatom ground-fatom-of-hatom unfolding ground-fatoms-def
by auto
qed
```


1.4 Enumerations

1.4.1 Enumerating Strings

definition nat-from-string:: string \Rightarrow nat where

```
    nat-from-string \equiv(SOME f.bij f)
definition string-from-nat:: nat }=>\mathrm{ string where
    string-from-nat \equivinv nat-from-string
lemma nat-from-string-bij: bij nat-from-string
    proof -
    have countable (UNIV::string set) by auto
    moreover
    have infinite (UNIV::string set) using infinite-UNIV-listI by auto
    ultimately
    obtain x where bij (x:: string => nat) using countableE-infinite[of UNIV] by
blast
    then show ?thesis unfolding nat-from-string-def using someI by metis
qed
lemma string-from-nat-bij: bij string-from-nat unfolding string-from-nat-def us-
ing nat-from-string-bij bij-betw-inv-into by auto
lemma nat-from-string-string-from-nat[simp]: nat-from-string (string-from-nat n)
= n
    unfolding string-from-nat-def
    using nat-from-string-bij f-inv-into-f[of nat-from-string] by simp
lemma string-from-nat-nat-from-string[simp]: string-from-nat (nat-from-string n)
= n
    unfolding string-from-nat-def
    using nat-from-string-bij inv-into-f-f[of nat-from-string] by simp
```


1.4.2 Enumerating Herbrand Atoms

```
definition nat-from-hatom:: hterm atom \(\Rightarrow\) nat where nat-from-hatom \(\equiv(S O M E f\). bij \(f)\)
definition hatom-from-nat:: nat \(\Rightarrow\) hterm atom where hatom-from-nat \(\equiv\) inv nat-from-hatom
instantiation hterm :: countable begin
instance by countable-datatype
end
lemma infinite-hatoms: infinite (UNIV :: (pred-sym * 't list) set)
proof -
let ?diago \(=\lambda n .(\) string-from-nat \(n,[])\)
let ?undiago \(=\lambda a\). nat-from-string \((f\) st \(a)\)
have \(\forall n\). ?undiago (?diago \(n\) ) \(=n\) using nat-from-string-string-from-nat by auto
moreover
have \(\forall n\). ?diago \(n \in U N I V\) by auto
```

ultimately show infinite (UNIV :: (pred-sym * 't list) set) using infinity[of ?undiago ?diago UNIV] by simp
qed
lemma nat-from-hatom-bij: bij nat-from-hatom
proof -
let $? S=U N I V::($ pred-sym $*(' t::$ countable $)$ list $)$ set
have countable? S by auto
moreover
have infinite ?S using infinite-hatoms by auto
ultimately
obtain x where bij ($x::$ hterm atom \Rightarrow nat) using countableE-infinite[of ?S] by blast
then have bij nat-from-hatom unfolding nat-from-hatom-def using someI by metis
then show ?thesis unfolding bij-betw-def inj-on-def unfolding nat-from-hatom-def by simp
qed
lemma hatom-from-nat-bij: bij hatom-from-nat unfolding hatom-from-nat-def using nat-from-hatom-bij bij-betw-inv-into by auto
lemma nat-from-hatom-hatom-from-nat[simp]: nat-from-hatom (hatom-from-nat $n)=n$
unfolding hatom-from-nat-def
using nat-from-hatom-bij f-inv-into-f[of nat-from-hatom] by simp
lemma hatom-from-nat-nat-from-hatom[simp]: hatom-from-nat (nat-from-hatom $l)=l$
unfolding hatom-from-nat-def
using nat-from-hatom-bij inv-into-f-f[of nat-from-hatom - UNIV] by simp

1.4.3 Enumerating Ground Atoms

definition fatom-from-nat :: nat \Rightarrow fterm atom where
fatom-from-nat $=(\lambda n$. fatom-of-hatom (hatom-from-nat $n))$
definition nat-from-fatom :: fterm atom \Rightarrow nat where nat-from-fatom $=(\lambda t$. nat-from-hatom (hatom-of-fatom $t))$
theorem diag-undiag-fatom [simp]: ground ${ }_{t s}$ ts \Longrightarrow fatom-from-nat (nat-from-fatom $(p, t s))=(p, t s)$
unfolding fatom-from-nat-def nat-from-fatom-def by auto
theorem undiag-diag-fatom[simp]: nat-from-fatom (fatom-from-nat n) $=n$ un-
folding fatom-from-nat-def nat-from-fatom-def by auto
lemma fatom-from-nat-bij: bij-betw fatom-from-nat UNIV ground-fatoms using hatom-from-nat-bij bij-betw-trans fatom-of-hatom-bij hatom-from-nat-bij
unfolding fatom-from-nat-def comp-def by blast
lemma ground-fatom-from-nat: ground ts $($ snd (fatom-from-nat $x)$) unfolding fatom-from-nat-def using ground-fatom-of-hatom by auto
lemma nat-from-fatom-bij: bij-betw nat-from-fatom ground-fatoms UNIV
using nat-from-hatom-bij bij-betw-trans hatom-of-fatom-bij hatom-from-nat-bij unfolding nat-from-fatom-def comp-def by blast
end

2 Trees

theory Tree imports Main begin
Sometimes it is nice to think of bools as directions in a binary tree

```
hide-const (open) Left Right
type-synonym dir = bool
definition Left :: bool where Left = True
definition Right :: bool where Right = False
declare Left-def [simp]
declare Right-def [simp]
datatype tree =
    Leaf
| Branching (ltree: tree) (rtree: tree)
```


2.1 Sizes

fun treesize :: tree \Rightarrow nat where
treesize Leaf $=0$
| treesize (Branching lr)=1+treesize $l+$ treesize r
lemma treesize-Leaf: treesize $T=0 \Longrightarrow T=$ Leaf by (cases T) auto
lemma treesize-Branching: treesize $T=S u c n \Longrightarrow \exists l r . T=$ Branching $l r$ by (cases T) auto

2.2 Paths

```
fun path :: dir list \(\Rightarrow\) tree \(\Rightarrow\) bool where
    path [] \(T \longleftrightarrow\) True
\(\mid\) path \((d \# d s)(\) Branching T1 T2) \(\longleftrightarrow\) (if d then path ds T1 else path ds T2)
| path -- \(\longleftrightarrow\) False
```

lemma path-inv-Leaf: path p Leaf $\longleftrightarrow p=[]$
by (induction p) auto

```
lemma path-inv-Cons: path \((a \# d s) T \longrightarrow(\exists l r . T=\) Branching \(l r)\)
```

 by (cases \(T\)) (auto simp add: path-inv-Leaf)
 lemma path-inv-Branching-Left: path (Left\#p) (Branching l r) \longleftrightarrow path pl
using Left-def Right-def path.cases by (induction p) auto
lemma path-inv-Branching-Right: path (Right\#p) (Branching lr) \longleftrightarrow path $p r$
using Left-def Right-def path.cases by (induction p) auto
lemma path-inv-Branching:
path $p($ Branching $l r) \longleftrightarrow\left(p=[] \vee\left(\exists a p^{\prime} . p=a \# p^{\prime} \wedge\left(a \longrightarrow\right.\right.\right.$ path $\left.p^{\prime} l\right) \wedge(\neg a$
\longrightarrow path $\left.\left.p^{\prime} r\right)\right)($ is ? $L \longleftrightarrow ? R)$
proof
assume ? L then show ? R by (induction p) auto
next
assume r : ? R
then show ? L
proof
assume $p=[]$ then show ?L by auto
next
assume $\exists a p^{\prime} . p=a \# p^{\prime} \wedge\left(a \longrightarrow\right.$ path $\left.p^{\prime} l\right) \wedge\left(\neg a \longrightarrow\right.$ path $\left.p^{\prime} r\right)$
then obtain $a p^{\prime}$ where $p=a \# p^{\prime} \wedge\left(a \longrightarrow\right.$ path $\left.p^{\prime} l\right) \wedge\left(\neg a \longrightarrow\right.$ path $\left.p^{\prime} r\right)$
by auto
then show ?L by (cases a) auto
qed
qed
lemma path-prefix: path (ds1@ds2) $T \Longrightarrow$ path ds1 T
proof (induction ds1 arbitrary: T)
case (Cons a ds1)
then have $\exists l r$. $T=$ Branching $l r$ using path-inv-Leaf by (cases T) auto
then obtain $l r$ where $p-l r: T=$ Branching $l r$ by auto
show ?case
proof (cases a)
assume atrue: a
then have path ((ds1) @ ds2) lusing p-lr Cons(2) path-inv-Branching by
auto
then have path ds1 l using $\operatorname{Cons}(1)$ by auto
then show path $(a \# d s 1) T$ using p-lr atrue by auto
next
assume afalse: $\neg a$
then have path ((ds1) @ ds2) r using p-lr Cons(2) path-inv-Branching by
auto
then have path ds1 r using $\operatorname{Cons(1)~by~auto~}$
then show path ($a \# d s 1$) T using p-lr afalse by auto
qed
next

```
    case (Nil) then show ?case by auto
qed
```


2.3 Branches

fun branch :: dir list \Rightarrow tree \Rightarrow bool where
branch [] Leaf \longleftrightarrow True
\mid branch $(d \# d s)($ Branching $l r) \longleftrightarrow$ (if d then branch ds lelse branch ds r)
| branch -- \longleftrightarrow False
lemma has-branch: $\exists b$. branch b T
proof (induction T)
case (Leaf)
have branch [] Leaf by auto
then show? case by blast
next
case (Branching $T_{1} T_{2}$)
then obtain b where branch $b T_{1}$ by auto
then have branch (Left\#b) (Branching $T_{1} T_{2}$) by auto
then show? case by blast
qed
lemma branch-inv-Leaf: branch b Leaf $\longleftrightarrow b=[]$
by (cases b) auto
lemma branch-inv-Branching-Left:
branch (Left\#b) (Branching l r) \longleftrightarrow branch bl
by auto
lemma branch-inv-Branching-Right:
branch (Right\#b) (Branching l r) \longleftrightarrow branch br
by auto
lemma branch-inv-Branching:
branch b (Branching lr) \longleftrightarrow $\left(\exists a b^{\prime} . b=a \# b^{\prime} \wedge\left(a \longrightarrow\right.\right.$ branch $\left.b^{\prime} l\right) \wedge\left(\neg a \longrightarrow\right.$ branch $\left.\left.b^{\prime} r\right)\right)$
by (induction b) auto

lemma branch-inv-Leaf2:

$T=$ Leaf $\longleftrightarrow(\forall b$. branch $b T \longrightarrow b=[])$

```
proof -
```

 \{
 assume \(T=\) Leaf
 then have \(\forall b\). branch \(b T \longrightarrow b=[]\) using branch-inv-Leaf by auto
 \}
 moreover
 \{
 assume \(\forall b\). branch \(b T \longrightarrow b=[]\)
 then have \(\forall b\). branch \(b T \longrightarrow \neg\left(\exists a b^{\prime} . b=a \# b^{\prime}\right)\) by auto
    ```
        then have }\forallb\mathrm{ . branch b T }\longrightarrow\neg(\existslr.branch b (Branching l r))
            using branch-inv-Branching by auto
        then have T=Leaf using has-branch[of T] by (metis branch.elims(2))
    }
    ultimately show }T=\mathrm{ Leaf }\longleftrightarrow(\forallb.branch b T \longrightarrow b = []) by aut
qed
lemma branch-is-path:
    branch ds T\Longrightarrow path ds T
proof (induction T arbitrary: ds)
    case Leaf
    then have ds=[] using branch-inv-Leaf by auto
    then show ?case by auto
next
    case (Branching T T T T )
    then obtain ab where ds-p:ds=a#b\wedge(a\longrightarrowbranch b T T ) ^( }\nega\longrightarrow
branch b T T2) using branch-inv-Branching[of ds] by blast
    then have (a\longrightarrow path b T T ) ^(\nega\longrightarrow path b T T ) using Branching by auto
    then show ?case using ds-p by (cases a) auto
qed
lemma Branching-Leaf-Leaf-Tree:T = Branching T1 T2 \Longrightarrow(\existsB.branch (B@[True])
T ^branch (B@[False]) T)
proof (induction T arbitrary: T1 T2)
    case Leaf then show ?case by auto
next
    case (Branching T1' T2')
    {
        assume T1'=Leaf ^ T2'=Leaf
        then have branch ([] @ [True]) (Branching T1' T2') ^ branch ([] @ [False])
(Branching T1' T2') by auto
    then have ?case by metis
    }
    moreover
    {
    fix T11 T12
    assume T1' = Branching T11 T12
    then obtain B where branch (B @ [True])T1'
                            ^branch (B @ [False])T1'using Branching by blast
    then have branch (([True] @ B) @ [True]) (Branching T1'T2')
                    ^ branch (([True] @ B) @ [False]) (Branching T1' T2') by auto
    then have ?case by blast
}
    moreover
    {
    fix T11 T12
    assume T2' = Branching T11 T12
    then obtain B where branch (B @ [True]) T2'
                    ^ branch (B @ [False])T2' using Branching by blast
```

```
    then have branch (([False] @ B) @ [True]) (Branching T1' T2')
            ^ branch(([False]@ B)@ [False]) (Branching T1'T2') by auto
        then have ?case by blast
    }
    ultimately show ?case using tree.exhaust by blast
qed
```


2.4 Internal Paths

fun internal $::$ dir list \Rightarrow tree \Rightarrow bool where
internal [] (Branching lr) \longleftrightarrow True
\mid internal $(d \# d s)(B r a n c h i n g l r) \longleftrightarrow($ if d then internal ds l else internal ds r)
| internal -- False
lemma internal-inv-Leaf: \neg internal b Leaf using internal.simps by blast
lemma internal-inv-Branching-Left:
internal (Left\#b) (Branching l r) \longleftrightarrow internal bl by auto
lemma internal-inv-Branching-Right:
internal (Right\#b) (Branching l r) \longleftrightarrow internal br
by auto
lemma internal-inv-Branching:
internal $p($ Branching $l r) \longleftrightarrow\left(p=[] \vee\left(\exists a p^{\prime} . p=a \# p^{\prime} \wedge\left(a \longrightarrow\right.\right.\right.$ internal $\left.p^{\prime} l\right)$
$\wedge\left(\neg a \longrightarrow\right.$ internal $\left.\left.p^{\prime} r\right)\right)$) (is ? $L \longleftrightarrow$? R)
proof
assume ?L then show ?R by (metis internal.simps(2) neq-Nil-conv)
next
assume r :? R
then show? L
proof
assume $p=[]$ then show $? L$ by auto
next
assume $\exists a p^{\prime} . p=a \# p^{\prime} \wedge\left(a \longrightarrow\right.$ internal $\left.p^{\prime} l\right) \wedge\left(\neg a \longrightarrow\right.$ internal $\left.p^{\prime} r\right)$
then obtain $a p^{\prime}$ where $p=a \# p^{\prime} \wedge\left(a \longrightarrow\right.$ internal $\left.p^{\prime} l\right) \wedge(\neg a \longrightarrow$ internal
$p^{\prime} r$) by auto then show ? L by (cases a) auto qed
qed
lemma internal-is-path:
internal ds $T \Longrightarrow$ path ds T
proof (induction T arbitrary: ds)
case Leaf
then have False using internal-inv-Leaf by auto
then show ?case by auto
next
case (Branching $T_{1} T_{2}$)
then obtain $a b$ where $d s-p: d s=[] \vee d s=a \# b \wedge\left(a \longrightarrow\right.$ internal $\left.b T_{1}\right) \wedge$ ($\neg a \longrightarrow$ internal $b T_{2}$) using internal-inv-Branching by blast
then have $d s=[] \vee\left(a \longrightarrow\right.$ path $\left.b T_{1}\right) \wedge\left(\neg a \longrightarrow\right.$ path $\left.b T_{2}\right)$ using Branching by auto
then show ? case using ds-p by (cases a) auto
qed
lemma internal-prefix: internal (ds1@ds2@ $[d]) T \Longrightarrow$ internal ds1 T
proof (induction ds1 arbitrary: T)
case (Cons a ds1)
then have $\exists l r$. $T=$ Branching $l r$ using internal-inv-Leaf by (cases T) auto
then obtain $l r$ where p-lr: $T=$ Branching $l r$ by auto
show ?case
proof (cases a)
assume atrue: a
then have internal ((ds1) @ ds2 @[d]) lusing p-lr Cons(2) internal-inv-Branching

by auto

then have internal ds1 l using $\operatorname{Cons}(1)$ by auto
then show internal ($a \# d s 1$) T using p-lr atrue by auto
next
assume afalse: \sim_{a}
then have internal ((ds1) @ds2 @[d])r using p-lr Cons(2) internal-inv-Branching by auto
then have internal ds1 r using Cons(1) by auto
then show internal ($a \# d s 1$) T using p-lr afalse by auto
qed
next
case (Nil)
then have $\exists l r . T=$ Branching $l r$ using internal-inv-Leaf by (cases T) auto
then show? case by auto
qed

```
lemma internal-branch: branch (ds1@ds2@[d]) \(T \Longrightarrow\) internal ds1 \(T\)
proof (induction ds1 arbitrary: T)
    case (Cons a ds1)
    then have \(\exists l r\). \(T=\) Branching \(l r\) using branch-inv-Leaf by (cases \(T\) ) auto
    then obtain \(l r\) where \(p-l r: T=\) Branching \(l r\) by auto
    show ? case
    proof (cases a)
            assume atrue: a
    then have branch (ds1 @ ds2 @ [d]) lusing p-lr Cons(2) branch-inv-Branching
by auto
            then have internal ds1 \(l\) using Cons(1) by auto
            then show internal ( \(a \not \# d s 1\) ) \(T\) using \(p\)-lr atrue by auto
    next
            assume afalse: \({ }^{\sim} a\)
    then have branch ((ds1) @ ds2 @[d])r using p-lr Cons(2) branch-inv-Branching
by auto
```

```
        then have internal ds1 r using Cons(1) by auto
        then show internal ( a # ds1) T using p-lr afalse by auto
    qed
next
    case (Nil)
    then have }\existslr.T=Branching lr using branch-inv-Leaf by (cases T) aut
    then show ?case by auto
qed
```

fun parent $::$ dir list \Rightarrow dir list where
parent $d s=t l d s$

2.5 Deleting Nodes

```
fun delete :: dir list \(\Rightarrow\) tree \(\Rightarrow\) tree where
    delete [] \(T=\) Leaf
| delete (True\#ds) (Branching \(T_{1} T_{2}\) ) = Branching (delete ds \(T_{1}\) ) \(T_{2}\)
|delete (False\#ds) (Branching \(\left.T_{1} T_{2}\right)=\) Branching \(T_{1}\left(\right.\) delete ds \(\left.T_{2}\right)\)
| delete \((a \# d s)\) Leaf \(=\) Leaf
lemma delete-Leaf: delete T Leaf \(=\) Leaf by (cases \(T\) ) auto
lemma path-delete: path \(p\) (delete ds \(T) \Longrightarrow\) path \(p T\)
proof (induction p arbitrary: \(T\) ds)
    case Nil
    then show?case by simp
next
    case (Cons a p)
    then obtain \(b d s^{\prime}\) where \(b d s^{\prime}-p: d s=b \# d s^{\prime}\) by (cases \(d s\) ) auto
    have \(\exists d T 1 d T 2\). delete ds \(T=\) Branching dT1 dT2 using Cons path-inv-Cons
by auto
    then obtain \(d T 1 d T 2\) where delete \(d s T=\) Branching \(d T 1 d T 2\) by auto
    then have \(\exists\) T1 T2. T=Branching T1 T2
            by (cases \(T\); cases ds) auto
    then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto
    \{
        assume \(a-p: a\)
        assume \(b-p: \neg b\)
        have path ( \(a\) \# p) (delete ds \(T\) ) using Cons by -
        then have path ( \(a \# p\) ) (Branching (T1) (delete \(\left.d s^{\prime} T 2\right)\) ) using \(b-p b d s^{\prime}-p\)
T1T2-p by auto
    then have path \(p\) T1 using \(a-p\) by auto
    then have ?case using T1T2-p a-p by auto
    \}
    moreover
```

```
{
    assume a-p:\nega
    assume b-p:b
    have path (a#p) (delete ds T) using Cons by -
    then have path (a# p) (Branching (delete ds' T1) T2) using b-p bds'-p
T1T2-p by auto
    then have path p T2 using a-p by auto
    then have ?case using T1T2-p a-p by auto
    }
    moreover
    {
    assume a-p:a
        assume b-p:b
        have path (a#p) (delete ds T) using Cons by -
        then have path (a # p) (Branching (delete ds' T1) T2) using b-p bds'-p
T1T2-p by auto
        then have path p (delete ds' T1) using a-p by auto
        then have path p T1 using Cons by auto
        then have ?case using T1T2-p a-p by auto
    }
    moreover
    {
        assume a-p:\nega
        assume b-p:\negb
        have path (a#p) (delete ds T) using Cons by -
        then have path (a#p) (Branching T1 (delete ds' T2)) using b-p bds'-p
T1T2-p by auto
        then have path p (delete ds' T2) using a-p by auto
        then have path p T2 using Cons by auto
        then have ?case using T1T2-p a-p by auto
    }
    ultimately show ?case by blast
qed
lemma branch-delete: branch p (delete ds T) \Longrightarrow branch p T\vee p=ds
proof (induction p arbitrary:T ds)
    case Nil
    then have delete ds T= Leaf by (cases delete ds T) auto
    then have ds=[]\veeT= Leaf using delete.elims by blast
    then show ?case by auto
next
    case (Cons a p)
    then obtain b ds' where bds'-p:ds=b#ds' by (cases ds) auto
    have \existsdT1 dT2. delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
branch-is-path by blast
    then obtain dT1 dT2 where delete ds T= Branching dT1 dT2 by auto
    then have \existsT1 T2. T= Branching T1 T2
```

by (cases T; cases ds) auto
then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto

```
{
    assume a-p:a
    assume b-p:\negb
    have branch (a#p) (delete ds T) using Cons by -
    then have branch (a # p) (Branching (T1) (delete ds' T2)) using b-p bds'-p
T1T2-p by auto
    then have branch p T1 using a-p by auto
    then have ?case using T1T2-p a-p by auto
}
moreover
{
    assume a-p:\nega
    assume b-p:b
    have branch (a # p) (delete ds T) using Cons by -
    then have branch (a#p) (Branching (delete ds' T1) T2) using b-p bds''p
T1T2-p by auto
    then have branch p T2 using a-p by auto
    then have ?case using T1T2-p a-p by auto
}
moreover
{
    assume a-p:a
    assume b-p:b
    have branch (a # p) (delete ds T) using Cons by -
    then have branch (a#p) (Branching (delete ds' T1) T2) using b-p bds'-p
T1T2-p by auto
    then have branch p (delete ds' T1) using a-p by auto
    then have branch p T1 \vee p=ds' using Cons by metis
    then have ?case using T1T2-p a-p using bds''p a-p b-p by auto
}
moreover
{
    assume a-p:\nega
    assume b-p:\negb
    have branch (a # p) (delete ds T) using Cons by -
    then have branch (a#p) (Branching T1 (delete ds' T2)) using b-p bds'-p
T1T2-p by auto
    then have branch p (delete ds' T2) using a-p by auto
    then have branch p T2 \vee p=ds' using Cons by metis
    then have ?case using T1T2-p a-p using bds'-p a-p b-p by auto
}
ultimately show ?case by blast
qed
```

lemma branch-delete-postfix: path $p($ delete $d s T) \Longrightarrow \neg(\exists c c s . p=d s @ c \# c s)$

```
proof (induction p arbitrary: T ds)
    case Nil then show ?case by simp
next
    case (Cons a p)
    then obtain bds' where bds'-p:ds=b#ds' by (cases ds) auto
    have \existsdT1 dT2. delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
by auto
    then obtain dT1 dT2 where delete ds T = Branching dT1 dT2 by auto
    then have \exists T1 T2. T=Branching T1 T2
        by (cases T; cases ds) auto
    then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto
    {
        assume a-p:a
        assume b-p:\negb
        then have ?case using T1T2-p a-p b-p bds'-p by auto
    }
    moreover
    {
        assume a-p: \nega
        assume b-p:b
        then have ?case using T1T2-p a-p b-p bds'-p by auto
    }
    moreover
    {
        assume a-p:a
        assume b-p:b
        have path (a#p) (delete ds T) using Cons by -
            then have path (a # p) (Branching (delete ds' T1) T2) using b-p bds'-p
T1T2-p by auto
        then have path p (delete ds' T1) using a-p by auto
        then have }\neg(\existsccs.p=d\mp@subsup{s}{}{\prime}@c#cs)\mathrm{ using Cons by auto
        then have ?case using T1T2-p a-p b-p bds'-p by auto
    }
    moreover
    {
        assume a-p:\nega
        assume b-p:\negb
        have path (a#p) (delete ds T) using Cons by -
            then have path (a # p) (Branching T1 (delete ds' T2)) using b-p bds'-p
T1T2-p by auto
            then have path p (delete ds' T2) using a-p by auto
            then have }\neg(\existsccs.p=d\mp@subsup{s}{}{\prime}@c#cs)\mathrm{ using Cons by auto
            then have ?case using T1T2-p a-p b-p bds''-p by auto
    }
    ultimately show ?case by blast
qed
```

```
lemma treezise-delete: internal p T\Longrightarrow treesize (delete p T)< treesize T
proof (induction p arbitrary:T)
    case (Nil)
    then have \exists T1 T2. T = Branching T1 T2 by (cases T) auto
    then obtain T1 T2 where T1T2-p: T = Branching T1 T2 by auto
    then show ?case by auto
next
    case (Cons a p)
    then have \exists T1 T2. T = Branching T1 T2 using path-inv-Cons internal-is-path
by blast
    then obtain T1 T2 where T1T2-p: T = Branching T1 T2 by auto
    show ?case
    proof (cases a)
            assume a-p:a
                from a-p have delete (a#p) T = (Branching (delete p T1) T2) using
T1T2-p by auto
            moreover
            from a-p have internal p T1 using T1T2-p Cons by auto
            then have treesize (delete p T1) < treesize T1 using Cons by auto
            ultimately
            show ?thesis using T1T2-p by auto
    next
                assume a-p:\nega
                            from a-p have delete (a#p)T=(Branching T1 (delete p T2)) using T1T2-p
by auto
                moreover
            from a-p have internal p T2 using T1T2-p Cons by auto
            then have treesize (delete p T2) < treesize T2 using Cons by auto
            ultimately
            show ?thesis using T1T2-p by auto
    qed
qed
```

fun cutoff :: (dir list \Rightarrow bool $) \Rightarrow$ dir list \Rightarrow tree \Rightarrow tree where
cutoff red ds (Branching $T_{1} T_{2}$) $=$
(if red ds then Leaf else Branching (cutoff red (ds@[Left]) T_{1}) (cutoff red
$(d s @[$ Right $\left.\left.]) T_{2}\right)\right)$
\mid cutoff red ds Leaf $=$ Leaf

Initially you should call cutoff with $d s=[]$. If all branches are red, then cutoff gives a subtree. If all branches are red, then so are the ones in cutoff. The internal paths of cutoff are not red.

```
lemma treesize-cutoff: treesize (cutoff red ds T) \leq treesize T
proof (induction T arbitrary:ds)
    case Leaf then show ?case by auto
next
    case (Branching T1 T2)
```

then have treesize (cutoff red (ds@[Left]) T1) + treesize (cutoff red (ds@[Right]) T2) \leq treesize T1 + treesize T2 using add-mono by blast
then show? case by auto
qed
abbreviation anypath $::$ tree $\Rightarrow($ dir list \Rightarrow bool $) \Rightarrow$ bool where
anypath $T P \equiv \forall p$. path $p T \longrightarrow P p$
abbreviation anybranch $::$ tree $\Rightarrow($ dir list \Rightarrow bool $) \Rightarrow$ bool where anybranch $T P \equiv \forall p$. branch $p T \longrightarrow P p$
abbreviation anyinternal $::$ tree \Rightarrow (dir list \Rightarrow bool $) \Rightarrow$ bool where anyinternal $T P \equiv \forall p$. internal $p T \longrightarrow P p$
lemma cutoff-branch':
anybranch $T(\lambda b . \operatorname{red}(d s @ b)) \Longrightarrow$ anybranch $($ cutoff red ds $T)(\lambda b . \operatorname{red}(d s @ b))$
proof (induction T arbitrary: ds)
case (Leaf)
let ? $T=$ cutoff red ds Leaf
\{
fix b
assume branch b?T
then have branch b Leaf by auto
then have $r e d(d s @ b)$ using Leaf by auto
\}
then show? case by simp
next
case (Branching $T_{1} T_{2}$)
let ? $T=$ cutoff red ds (Branching $T_{1} T_{2}$)
from Branching have $\forall p$. branch $($ Left $\# p)\left(\right.$ Branching $\left.T_{1} T_{2}\right) \longrightarrow$ red (ds @ (Left\#p)) by blast
then have $\forall p$. branch $p T_{1} \longrightarrow$ red $(d s @($ Left $\# p))$ by auto
then have anybranch $T_{1}(\lambda p$. red $((d s @[$ Left $]) @ p))$ by auto
then have aa: anybranch (cutoff red (ds @ [Left]) T_{1}) (λ p. red ((ds @ [Left]) @ p)
using Branching by blast
from Branching have \forall p. branch $($ Right $\# p)\left(\right.$ Branching $\left.T_{1} T_{2}\right) \longrightarrow$ red $(d s @$ (Right\#p)) by blast
then have $\forall p$. branch $p T_{2} \longrightarrow$ red (ds @ (Right\#p)) by auto
then have anybranch $T_{2}(\lambda p . r e d((d s$ @ $[$ Right $]) @ p))$ by auto
then have bb: anybranch (cutoff red (ds @ [Right]) $\left.T_{2}\right)(\lambda p$. red $((d s @[R i g h t])$
@ p)
using Branching by blast
\{
fix b
assume $b-p$: branch b ?T
have red $d s \vee \neg$ red $d s$ by auto
then have $\operatorname{red}(d s @ b)$

```
        proof
            assume ds-p: red ds
            then have ?T = Leaf by auto
            then have b = [] using b-p branch-inv-Leaf by auto
            then show red(ds@b) using ds-p by auto
        next
            assume ds-p: \negred ds
            let ? }\mp@subsup{T}{1}{\prime}\mp@subsup{}{}{\prime}=\mathrm{ cutoff red (ds@[Left]) T
            let ?T }\mp@subsup{T}{2}{\prime}=\mathrm{ cutoff red (ds@[Right]) T}\mp@subsup{T}{2}{
            from ds-p have ?T = Branching ? T T ' ' ? T T ' by auto
            from this b-p obtain a b' where b=a# b'^(a\longrightarrowbranch b' ?T T ' )}
                (\nega\longrightarrowbranch b' ? T T ' ') using branch-inv-Branching[of b ?T}\mp@subsup{T}{1}{\prime}\mp@subsup{}{}{\prime}?\mp@subsup{T}{2}{}\mp@subsup{}{}{\prime}]\mathrm{ by auto
            then show red(ds@b) using aa bb by (cases a) auto
        qed
    }
    then show ?case by blast
qed
lemma cutoff-branch: anybranch T ( }\lambda\mathrm{ p. red p) > anybranch (cutoff red [] T)
(\lambdap. red p)
    using cutoff-branch'[of T red []] by auto
lemma cutoff-internal':
    anybranch T (\lambdab.red (ds@b)) \Longrightarrow anyinternal (cutoff red ds T) (\lambdab. \negred(ds@b))
proof (induction T arbitrary:ds)
    case (Leaf) then show ?case using internal-inv-Leaf by simp
next
    case (Branching T}\mp@subsup{T}{1}{}\mp@subsup{T}{2}{}\mathrm{ )
    let ?T = cutoff red ds (Branching T}\mp@subsup{T}{1}{}\mp@subsup{T}{2}{}\mathrm{ )
    from Branching have }\forallp\mathrm{ . branch (Left#p) (Branching T1 T T ) }\longrightarrow\mathrm{ red (ds@
(Left#p)) by blast
    then have }\forallp\mathrm{ . branch p T1 }\longrightarrow\mathrm{ red (ds@ (Left#p)) by auto
    then have anybranch T}\mp@subsup{T}{1}{(}\lambdap.red ((ds@ [Left])@ p)) by aut
    then have aa: anyinternal (cutoff red (ds@ [Left]) T T ) (\lambdap.\neg red ((ds@ [Left])
@ p)) using Branching by blast
```



```
(Right#p)) by blast
    then have }\forallp.branch p T T \longrightarrow red (ds@ (Right#p)) by aut
    then have anybranch T}\mp@subsup{T}{2}{}(\lambdap.red ((ds @ [Right]) @ p)) by aut
    then have bb: anyinternal (cutoff red (ds @ [Right]) T2 ) (\lambdap.\neg red ((ds @
[Right]) @ p)) using Branching by blast
    {
        fix p
        assume b-p: internal p ?T
        then have ds-p:\negred ds using internal-inv-Leaf by auto
        have }p=[]\veep\not=[] by aut
        then have }\neg\operatorname{red}(ds@p
            proof
```

```
            assume p=[] then show }\neg\operatorname{red}(ds@p)\mathrm{ using ds-p by auto
        next
            let ? }\mp@subsup{T}{1}{\prime}\mp@subsup{}{}{\prime}=\mathrm{ cutoff red (ds@[Left]) T
            let ?T }\mp@subsup{T}{2}{\prime}\mp@subsup{}{}{\prime}=\mathrm{ cutoff red (ds@[Right]) T
            assume p}p=[
            moreover
            have ?T = Branching ? T}\mp@subsup{T}{1}{\prime}?\mp@subsup{T}{2}{\prime}'\mathrm{ using ds-p by auto
            ultimately
            obtain a p' where b-p: p=a# p
                (a\longrightarrow internal p' (cutoff red (ds @ [Left]) T T ) ) ^
                (\nega\longrightarrow internal p' (cutoff red (ds@ [Right]) T T2))
            using b-p internal-inv-Branching[of p ? T T ' ? TT ' '] by auto
            then have }\neg\textrm{red}(ds@[a]@ @ ') using aa bb by (cases a) aut
            then show }\neg\operatorname{red}(ds@p)\mathrm{ using b-p by simp
        qed
    }
    then show ?case by blast
qed
lemma cutoff-internal: anybranch T red \Longrightarrow anyinternal (cutoff red [] T) (\lambdap.
\negred p)
    using cutoff-internal'[of T red []] by auto
lemma cutoff-branch-internal':
    anybranch T red \Longrightarrowanyinternal (cutoff red [] T) ( }\lambdap\mathrm{ . ᄀred p) ^ anybranch
(cutoff red [] T) ( }\lambdap\mathrm{ . red p)
    using cutoff-internal[of T] cutoff-branch[of T] by blast
lemma cutoff-branch-internal:
    anybranch T red \Longrightarrow\exists 质. anyinternal T'}(\lambdap.\negred p)\wedge anybranch T' ( \lambdap. red
p)
    using cutoff-branch-internal' by blast
```


3 Possibly Infinite Trees

Possibly infinite trees are of type dir list set.
abbreviation $w f$-tree :: dir list set \Rightarrow bool where $w f$-tree $T \equiv(\forall d s d .(d s @ d) \in T \longrightarrow d s \in T)$

The subtree in with root r
fun subtree $::$ dir list set \Rightarrow dir list \Rightarrow dir list set where subtree $T r=\left\{d s \in T . \exists d s^{\prime} . d s=r @ d s^{\prime}\right\}$

A subtree of a tree is either in the left branch, the right branch, or is the tree itself

lemma subtree-pos:

subtree $T d s \subseteq$ subtree $T(d s$ @ $[$ Left $]) \cup$ subtree $T(d s @[$ Right $]) \cup\{d s\}$

```
proof (rule subsetI; rule Set.UnCI)
    let ?subtree = subtree T
    fix }
    assume asm: x \in?subtree ds
    assume }x\not\in{ds
    then have }x\not=ds\mathrm{ by simp
    then have \existsed.x=ds@ [d]@ e using asm list.exhaust by auto
    then have (\existse.x=ds@ [Left] @ e) \vee (\existse.x=ds @ [Right] @ e)using
bool.exhaust by auto
    then show }x\in\mathrm{ ?subtree (ds @ [Left]) U ?subtree (ds @ [Right]) using asm by
auto
qed
```


3.1 Infinite Paths

abbreviation wf-infpath $::($ nat \Rightarrow 'a list $) \Rightarrow$ bool where
wf-infpath $f \equiv(f 0=[]) \wedge(\forall n . \exists a . f($ Suc $n)=(f n) @[a])$
lemma infpath-length: wf-infpath $f \Longrightarrow$ length $(f n)=n$
proof (induction n)
case 0 then show ?case by auto
next
case (Suc n) then show ?case by (metis length-append-singleton)
qed
lemma chain-prefix: wf-infpath $f \Longrightarrow n_{1} \leq n_{2} \Longrightarrow \exists a .\left(f n_{1}\right) @ a=\left(f n_{2}\right)$
proof (induction n_{2})
case (Suc n_{2})
then have $n_{1} \leq n_{2} \vee n_{1}=S u c n_{2}$ by auto
then show ?case
proof
assume $n_{1} \leq n_{2}$
then obtain a where $a: f n_{1} @ a=f n_{2}$ using Suc by auto
have $b: \exists b$. $f\left(\right.$ Suc $\left.n_{2}\right)=f n_{2} @[b]$ using Suc by auto
from $a b$ have $\exists b$.f $n_{1} @(a @[b])=f\left(S u c n_{2}\right)$ by auto
then show $\exists c . f n_{1} @ c=f\left(\right.$ Suc $\left.n_{2}\right)$ by blast
next
assume $n_{1}=$ Suc n_{2}
then have $f n_{1} @[]=f\left(\right.$ Suc $\left.n_{2}\right)$ by auto
then show $\exists a . f n_{1} @ a=f\left(S u c n_{2}\right)$ by auto
qed
qed auto

If we make a lookup in a list, then looking up in an extension gives us the same value.
lemma ith-in-extension:
assumes chain: wf-infpath f
assumes smalli: $i<$ length $\left(f n_{1}\right)$
assumes $n_{1} n_{2}$: $n_{1} \leq n_{2}$

```
    shows f n | ! i = f n n ! i
proof -
    from chain n}\mp@subsup{n}{1}{}\mp@subsup{n}{2}{}\mathrm{ have }\existsa.f\mp@subsup{n}{1}{}@a=f\mp@subsup{n}{2}{}\mathrm{ @ using chain-prefix by blast
    then obtain a where a-p:f n}\mp@subsup{n}{1}{@ a}=f\mp@subsup{n}{2}{}\mathrm{ by auto
    have (f n @ @ a)!i=f n
    then show ?thesis using a-p by auto
qed
```


4 König's Lemma

lemma inf-subs:
assumes inf: \neg finite (subtree T ds)
shows \neg finite $($ subtree $T(d s @[$ Left $])) \vee \neg$ finite $($ subtree $T(d s @[$ Right $]))$
proof -
let ? subtree $=$ subtree T
\{
assume asms: finite(?subtree(ds @ [Left]))
finite(?subtree(ds @ [Right]))
have ?subtree $d s \subseteq$?subtree $(d s$ @ $[$ Left $]) \cup$?subtree $(d s @[$ Right $]) \cup\{d s\}$
using subtree-pos by auto
then have finite(?subtree ($d s$)) using asms by (simp add: finite-subset)
\}
then show \neg finite(?subtree (ds @ [Left])) V \neg finite(?subtree (ds @ [Right]))
using inf by auto
qed
fun buildchain $::$ (dir list \Rightarrow dir list) \Rightarrow nat \Rightarrow dir list where
buildchain next $0=[]$
\mid buildchain next (Suc $n)=$ next (buildchain next $n)$
lemma konig:
assumes inf: \neg finite T
assumes wellformed: wf-tree T
shows $\exists c$. wf-infpath $c \wedge(\forall n .(c n) \in T)$
proof
let ? subtree $=$ subtree T
let ?nextnode $=\lambda d s$. if \neg finite $($?subtree $(d s$ @ $[$ Left $])$ then $d s$ @ $[$ Left $]$ else ds
@ $[$ Right $]$)
let ?c $=$ buildchain ?nextnode
have is-chain: wf-infpath ?c by auto
from wellformed have prefix: $\bigwedge d s d .(d s @ d) \in T \Longrightarrow d s \in T$ by blast
\{
fix n
have (?c n) $\in T \wedge$ ᄀfinite (?subtree (?c n)) proof (induction n)

```
            case 0
            have }\existsds.ds\inT using inf by (simp add: not-finite-existsD
            then obtain ds where ds\inT by auto
            then have ([]@ds)\inT by auto
            then have [] \inT using prefix[of []] by auto
            then show ?case using inf by auto
                next
            case (Suc n)
            from Suc have next-in: (?c n) \inT by auto
            from Suc have next-inf: \negfinite (?subtree (?c n)) by auto
            from next-inf have next-next-inf:
                \checkmark \text { नinite (?subtree (?nextnode (?c n)))}
                using inf-subs by auto
            then have }\existsds.ds\in\mathrm{ ?subtree (?nextnode (?c n))
                by (simp add: not-finite-existsD)
                    then obtain ds where dss:ds \in ?subtree (?nextnode (?c n)) by auto
                    then have ds \inT \existssuf.ds = (?nextnode (?c n)) @ suf by auto
            then obtain suf where ds\inT}\wedgeds=(?nextnode (?c n)) @ suf by aut
            then have (?nextnode (?c n)) \inT
                using prefix[of ?nextnode (?c n) suf] by auto
            then have (?c (Suc n)) \inT by auto
            then show ?case using next-next-inf by auto
                qed
    }
    then show wf-infpath ?c }\wedge(\foralln.(?c n)\inT) using is-chain by aut
qed
end
```


5 More Terms and Literals

```
theory Resolution imports TermsAndLiterals Tree begin
fun complement \(::\) 't literal \(\Rightarrow\) 't literal \(\left(\_^{c}[300] 300\right)\) where
\((\text { Pos } P t s)^{c}=N e g P t s\)
\(\mid(\operatorname{Neg} P t s)^{c}=\operatorname{Pos} P t s\)
lemma cancel-comp1: \(\left(l^{c}\right)^{c}=l\) by (cases \(l\) ) auto
lemma cancel-comp2:
assumes asm: \(l_{1}{ }^{c}=l_{2}{ }^{c}\)
shows \(l_{1}=l_{2}\)
proof -
from asm have \(\left(l_{1}^{c}\right)^{c}=\left(l_{2}^{c}\right)^{c}\) by auto
then have \(l_{1}=\left(l_{2}{ }^{c}\right)^{c}\) using cancel-comp1[of \(\left.l_{1}\right]\) by auto
then show ?thesis using cancel-comp \(1\left[\right.\) of \(\left.l_{2}\right]\) by auto
qed
```

```
lemma comp-exi1: \(\exists l^{\prime} . l^{\prime}=l^{c}\) by (cases \(l\) ) auto
lemma comp-exi2: \(\exists l . l^{\prime}=l^{c}\)
proof
    show \(l^{\prime}=\left(l^{\prime c}\right)^{c}\) using cancel-comp1[of l] by auto
qed
lemma comp-swap: \(l_{1}{ }^{c}=l_{2} \longleftrightarrow l_{1}=l_{2}{ }^{c}\)
proof -
    have \(l_{1}{ }^{c}=l_{2} \Longrightarrow l_{1}=l_{2}{ }^{c}\) using cancel-comp1[of \(\left.l_{1}\right]\) by auto
    moreover
    have \(l_{1}=l_{2}{ }^{c} \Longrightarrow l_{1}{ }^{c}=l_{2}\) using cancel-comp1 by auto
    ultimately
    show ?thesis by auto
qed
```

lemma sign-comp: sign $l_{1} \neq$ sign $l_{2} \wedge$ get-pred $l_{1}=$ get-pred $l_{2} \wedge$ get-terms $l_{1}=$ get-terms $l_{2} \longleftrightarrow l_{2}=l_{1}{ }^{c}$
by (cases l_{1}; cases l_{2}) auto
lemma sign-comp-atom: sign $l_{1} \neq$ sign $l_{2} \wedge$ get-atom $l_{1}=$ get-atom $l_{2} \longleftrightarrow l_{2}=$ $l_{1}{ }^{c}$
by (cases $l_{1} ;$ cases l_{2}) auto

6 Clauses

type-synonym 't clause $=$ ' t literal set
abbreviation complementls :: 't literal set \Rightarrow^{\prime} 't literal set (_' [300] 300) where $L^{C} \equiv$ complement ' L
lemma cancel-compls1: $\left(L^{C}\right)^{C}=L$
apply (auto simp add: cancel-comp1)
apply (metis imageI cancel-comp1)
done
lemma cancel-compls2:
assumes asm: $L_{1}{ }^{C}=L_{2}{ }^{C}$
shows $L_{1}=L_{2}$
proof -
from asm have $\left(L_{1}{ }^{C}\right)^{C}=\left(L_{2}{ }^{C}\right)^{C}$ by auto
then show ?thesis using cancel-compls1[of $\left.L_{1}\right]$ cancel-compls1[of $\left.L_{2}\right]$ by simp qed
fun vars $_{t}::$ fterm \Rightarrow var-sym set where vars $_{t}(\operatorname{Var} x)=\{x\}$
$\mid \operatorname{vars}_{t}($ Fun $f t s)=(\bigcup t \in$ set ts. vars $t)$
abbreviation vars $_{t s}::$ fterm list \Rightarrow var-sym set where vars $_{t s} t s \equiv\left(\bigcup t \in\right.$ set ts. vars $\left.{ }_{t} t\right)$
definition vars $_{l}::$ fterm literal \Rightarrow var-sym set where vars $_{l} l=$ vars $_{t s}($ get-terms $l)$
definition vars $_{l_{s}}::$ fterm literal set \Rightarrow var-sym set where vars $_{l s} L \equiv \bigcup l \in L$. vars $_{l} l$
lemma ground-vars ${ }_{t}:$ ground $_{t} t \Longrightarrow$ vars $_{t} t=\{ \}$
by (induction t) auto
lemma ground $_{t s}$-vars ${ }_{t s}$: ground $_{t s}$ ts \Longrightarrow vars $_{t s} t s=\{ \}$
using ground-varst by auto
lemma ground $_{l}$-vars ${ }_{l}$: ground $_{l} l \Longrightarrow$ vars $_{l} l=\{ \}$ unfolding vars $_{l}$-def using ground-vars ${ }_{t}$ by auto
lemma ground $_{l s}$-vars ${ }_{l s}:$ ground $_{l s} L \Longrightarrow$ vars $_{l s} L=\{ \}$ unfolding vars $_{l s}$-def using ground $_{l}$-vars ${ }_{l}$ by auto
lemma ground-comp: ground $d_{l}\left(l^{c}\right) \longleftrightarrow$ ground $_{l} l$ by (cases l) auto
lemma ground-compls: ground $_{l s}\left(L^{C}\right) \longleftrightarrow$ ground $_{l s} L$ using ground-comp by auto

$7 \quad$ Semantics

type-synonym 'u fun-denot $=$ fun-sym \Rightarrow 'u list \Rightarrow ' u
type-synonym 'u pred-denot $=$ pred-sym \Rightarrow 'u list \Rightarrow bool
type-synonym 'u var-denot $=$ var-sym \Rightarrow 'u
fun eval ${ }_{t}::$ 'u var-denot \Rightarrow 'u fun-denot \Rightarrow fterm \Rightarrow ' u where
eval $_{t} E F($ Var $x)=E x$
$\mid e v a l_{t} E F($ Fun fts $)=F f\left(\right.$ map $\left.\left(e v a l_{t} E F\right) t s\right)$
abbreviation eval ${ }_{t s}::$ ' u var-denot \Rightarrow 'u fun-denot \Rightarrow fterm list \Rightarrow ' u list where $e v a l_{t s} E F t s \equiv \operatorname{map}\left(e v a l_{t} E F\right) t s$
fun eval $_{l}::$ ' u var-denot \Rightarrow 'u fun-denot \Rightarrow 'u pred-denot \Rightarrow fterm literal \Rightarrow bool where
eval $_{l} E F G($ Pos $p t s) \longleftrightarrow G p\left(\right.$ eval $\left._{t s} E F t s\right)$
$\mid e v a l_{l} E F G(N e g p t s) \longleftrightarrow \neg G p\left(e v a l_{t s} E F t s\right)$
definition eval ${ }_{c}::$ ' u fun-denot \Rightarrow 'u pred-denot \Rightarrow fterm clause \Rightarrow bool where eval $_{c} F G C \longleftrightarrow\left(\forall E . \exists l \in C . e^{2}\right.$ eval $\left.E F G l\right)$
definition evalcs $::$ 'u fun-denot \Rightarrow ' u pred-denot \Rightarrow fterm clause set \Rightarrow bool where

$$
\text { eval }_{c s} F G C s \longleftrightarrow\left(\forall C \in C s . \text { eval }_{c} F G C\right)
$$

7.1 Semantics of Ground Terms

```
lemma ground-var-denott: ground \(_{t} t \Longrightarrow\left(\right.\) eval \(_{t} E F t=\) eval \(\left._{t} E^{\prime} F t\right)\)
proof (induction \(t\) )
    case (Var \(x\) )
    then have False by auto
    then show? case by auto
next
    case (Fun fts)
    then have \(\forall t \in\) set ts. ground \({ }_{t} t\) by auto
    then have \(\forall t \in\) set ts. eval \({ }_{t} E F t=\) eval \(_{t} E^{\prime} F t\) using Fun by auto
    then have eval \(l_{t s} E\) ts \(=e v a l_{t s} E^{\prime} F\) ts by auto
    then have \(F f\left(\right.\) map \(\left.\left(e v a l_{t} E F\right) t s\right)=F f\left(\right.\) map \(\left.\left.^{\left(e v a l_{t}\right.} E^{\prime} F\right) t s\right)\) by metis
    then show? case by simp
qed
lemma ground-var-denotts: ground \({ }_{t s} t s \Longrightarrow\left(e^{\prime}\right.\) eval \(_{t s} E F t s=e v a l_{t s} E^{\prime} F\) ts \()\)
    using ground-var-denott by (metis map-eq-conv)
lemma ground-var-denot: ground \(_{l} l \Longrightarrow\left(\right.\) eval \(\left._{l} E F G l=e v a l_{l} E^{\prime} F G l\right)\)
proof (induction l)
    case Pos then show ?case using ground-var-denotts by (metis eval. \(\operatorname{simps}(1)\)
literal.sel(3))
next
    case Neg then show ?case using ground-var-denotts by (metis evall.simps(2)
literal.sel(4))
qed
```


8 Substitutions

```
type-synonym substitution \(=\) var-sym \(\Rightarrow\) fterm
```

fun sub :: fterm \Rightarrow substitution \Rightarrow fterm (infixl $\cdot t$ 55) where
$($ Var $x) \cdot{ }_{t} \sigma=\sigma x$
$\mid($ Fun $f t s) \cdot t \sigma=\operatorname{Fun} f\left(\operatorname{map}\left(\lambda t . t \cdot{ }_{t} \sigma\right) t s\right)$
abbreviation subs :: fterm list \Rightarrow substitution \Rightarrow fterm list (infixl $\cdot_{t s} 55$) where $t s \cdot_{t s} \sigma \equiv\left(\operatorname{map}\left(\lambda t . t \cdot{ }_{t} \sigma\right) t s\right)$
fun subl $::$ fterm literal \Rightarrow substitution \Rightarrow fterm literal (infixl ${ }^{l}$ 55) where
$($ Pos $p t s) \cdot{ }_{l} \sigma=\operatorname{Pos} p\left(t s \cdot{ }_{t s} \sigma\right)$
$\mid(\operatorname{Neg} p t s) \cdot l \sigma=\operatorname{Neg} p(t s \cdot t s \sigma)$
abbreviation subls :: fterm literal set \Rightarrow substitution \Rightarrow fterm literal set (infixl $\cdot l s 55)$ where
$L \cdot{ }_{l s} \sigma \equiv\left(\lambda l . l \cdot{ }_{l} \sigma\right){ }^{\prime} L$
lemma subls-def2: $L \cdot{ }_{l s} \sigma=\left\{l \cdot{ }_{l} \sigma \mid l . l \in L\right\}$ by auto
definition instance-of $_{t}::$ fterm \Rightarrow fterm \Rightarrow bool where

$$
\text { instance-of }_{t} t_{1} t_{2} \longleftrightarrow\left(\exists \sigma . t_{1}=t_{2} \cdot{ }_{t} \sigma\right)
$$

definition instance-of ts $::$ fterm list \Rightarrow fterm list \Rightarrow bool where instance-of ts $t s_{1} t s_{2} \longleftrightarrow\left(\exists \sigma . t s_{1}=t s_{2} \cdot t s \sigma\right)$
definition instance-of $f_{l}::$ fterm literal \Rightarrow fterm literal \Rightarrow bool where instance-of $l_{l} l_{2} \longleftrightarrow\left(\exists \sigma . l_{1}=l_{2} \cdot{ }_{l} \sigma\right)$
definition instance-of $f_{l s}::$ fterm clause \Rightarrow fterm clause \Rightarrow bool where instance-of $l_{l s} C_{1} C_{2} \longleftrightarrow\left(\exists \sigma . C_{1}=C_{2} \cdot{ }_{l s} \sigma\right)$
lemma comp-sub: $\left(l^{c}\right) \cdot{ }_{l} \sigma=\left(l \cdot{ }_{l} \sigma\right)^{c}$
by (cases l) auto
lemma compls-subls: $\left(L^{C}\right) \cdot{ }_{l s} \sigma=\left(L \cdot{ }_{l s} \sigma\right)^{C}$
using comp-sub apply auto
apply (metis image-eqI)
done
lemma subls-union: $\left(L_{1} \cup L_{2}\right) \cdot l s \sigma=\left(L_{1} \cdot l s \sigma\right) \cup\left(L_{2} \cdot l s \sigma\right)$ by auto
definition var-renaming-of :: fterm clause \Rightarrow fterm clause \Rightarrow bool where var-renaming-of $C_{1} C_{2} \longleftrightarrow$ instance-of $l_{l s} C_{1} C_{2} \wedge$ instance-of $_{l s} C_{2} C_{1}$

8.1 The Empty Substitution

abbreviation ε :: substitution where

$$
\varepsilon \equiv \operatorname{Var}
$$

lemma empty-subt: $(t::$ fterm $) \cdot{ }_{t} \varepsilon=t$
by (induction t) (auto simp add: map-idI)
lemma empty-subts: ts $\cdot_{t s} \varepsilon=t s$ using empty-subt by auto
lemma empty-subl: $l \cdot{ }_{l} \varepsilon=l$
using empty-subts by (cases l) auto
lemma empty-subls: $L \cdot{ }_{l s} \varepsilon=L$
using empty-subl by auto
lemma instance-of f_{t}-self: instance-of ${ }_{t} t t$
unfolding instance-of $_{t}$-def
proof


```
qed
lemma instance-of ts-self: instance-of ts ts ts
unfolding instance-of ts-def
proof
    show ts = ts \cdotts & using empty-subts by auto
qed
lemma instance-of l-self: instance-of l l l
unfolding instance-of l-def
proof
    show l = l 䏒\varepsilon using empty-subl by auto
qed
lemma instance-of ls-self: instance-of }\mp@subsup{f}{ls}{}L
unfolding instance-of ls-def
proof
    show L}=L\cdot\mp@subsup{|}{ls}{}\varepsilon\mathrm{ using empty-subls by auto
qed
```


8.2 Substitutions and Ground Terms

lemma ground-sub: ground ${ }_{t} t \Longrightarrow t \cdot_{t} \sigma=t$ by (induction t) (auto simp add: map-idI)
lemma ground-subs: ground ${ }_{t s} t s \Longrightarrow t s{ }^{\prime}{ }_{t s} \sigma=t s$ using ground-sub by (simp add: map-idI)
lemma ground $_{l}$-subs: ground $_{l} l \Longrightarrow l \cdot{ }_{l} \sigma=l$ using ground-subs by (cases l) auto
lemma ground $_{l s}$-subls:
assumes ground: ground $_{l s} L$
shows $L \cdot{ }_{l s} \sigma=L$
proof -
\{
fix l
assume $l-L: l \in L$
then have ground $_{l} l$ using ground by auto then have $l=l \cdot l \sigma$ using ground $_{l}$-subs by auto moreover
then have $l \cdot l \sigma \in L \cdot{ }_{l s} \sigma$ using $l-L$ by auto ultimately
have $l \in L \cdot{ }_{l s} \sigma$ by auto
\}
moreover
\{
fix l

```
        assume l-L:l\inL l ls}
        then obtain l' where l'-p: l' 
        then have \mp@subsup{l}{}{\prime}=l}\mathrm{ using ground ground }\mp@subsup{l}{l}{}\mathrm{ -subs by auto
        from l-L l'-p this have l\inL by auto
    }
    ultimately show ?thesis by auto
qed
```


8.3 Composition

definition composition $::$ substitution \Rightarrow substitution \Rightarrow substitution (infixl $\cdot 55$) where

$$
\left(\sigma_{1} \cdot \sigma_{2}\right) x=\left(\sigma_{1} x\right) \cdot t \sigma_{2}
$$

lemma composition-conseq2t: $\left(t \cdot{ }_{t} \sigma_{1}\right) \cdot t \sigma_{2}=t \cdot t\left(\sigma_{1} \cdot \sigma_{2}\right)$
proof (induction t)
case (Var x)
have $\left((\operatorname{Var} x) \cdot t \sigma_{1}\right) \cdot t \sigma_{2}=\left(\sigma_{1} x\right) \cdot t \sigma_{2}$ by simp
also have $\ldots=\left(\sigma_{1} \cdot \sigma_{2}\right) x$ unfolding composition-def by simp
finally show ?case by auto
next
case (Fun t ts)
then show ?case unfolding composition-def by auto
qed
lemma composition-conseq2ts: $\left(t s{ }^{\prime} \cdot{ }_{t s} \sigma_{1}\right) \cdot{ }_{t s} \sigma_{2}=t s \cdot t s\left(\sigma_{1} \cdot \sigma_{2}\right)$
using composition-conseq2t by auto
lemma composition-conseq2l: $\left(l \cdot{ }_{l} \sigma_{1}\right) \cdot{ }_{l} \sigma_{2}=l \cdot{ }_{l}\left(\sigma_{1} \cdot \sigma_{2}\right)$
using composition-conseq2t by (cases l) auto
lemma composition-conseq2ls: $\left(L \cdot l_{s} \sigma_{1}\right) \cdot l_{s} \sigma_{2}=L \cdot l s\left(\sigma_{1} \cdot \sigma_{2}\right)$
using composition-conseq2l apply auto
apply (metis imageI)
done
lemma composition-assoc: $\sigma_{1} \cdot\left(\sigma_{2} \cdot \sigma_{3}\right)=\left(\sigma_{1} \cdot \sigma_{2}\right) \cdot \sigma_{3}$
proof
fix x
show $\left(\sigma_{1} \cdot\left(\sigma_{2} \cdot \sigma_{3}\right)\right) x=\left(\left(\sigma_{1} \cdot \sigma_{2}\right) \cdot \sigma_{3}\right) x$ unfolding composition-def using composition-conseq2t by simp
qed
lemma empty-comp1: $(\sigma \cdot \varepsilon)=\sigma$
proof
fix x
show $(\sigma \cdot \varepsilon) x=\sigma x$ unfolding composition-def using empty-subt by auto qed

```
lemma empty-comp2: }(\varepsilon\cdot\sigma)=
proof
    fix }
    show (\varepsilon\cdot\sigma)x=\sigmax unfolding composition-def by simp
qed
lemma instance-of f
    assumes }\mp@subsup{t}{12}{}\mathrm{ : instance-of t t t }\mp@subsup{t}{2}{
    assumes t23: instance-of t t t }\mp@subsup{t}{3}{
    shows instance-of t t t }\mp@subsup{t}{3}{
proof -
```



```
        unfolding instance-of f}\mp@subsup{t}{}{-def by auto
    moreover
```



```
        unfolding instance-of t}\mp@subsup{t}{}{-def by auto
    ultimately
    have t}\mp@subsup{t}{1}{}=(\mp@subsup{t}{3}{}\cdott\mp@subsup{\sigma}{23}{})\cdot\mp@subsup{}{t}{}\mp@subsup{\sigma}{12}{}\mathrm{ by auto
    then have t}\mp@subsup{t}{1}{}=\mp@subsup{t}{3}{}\cdott(\mp@subsup{\sigma}{23}{}\cdot\mp@subsup{\sigma}{12}{})\mathrm{ using composition-conseq2t by simp
    then show ?thesis unfolding instance-of t-def by auto
qed
lemma instance-of ts-trans :
    assumes ts (22: instance-of ts ts ts ts
    assumes ts 23: instance-of ts ts ts ts 
    shows instance-of ts ts ts ts3
proof -
```



```
        unfolding instance-of ts-def by auto
    moreover
```



```
        unfolding instance-of fs-def by auto
    ultimately
    have ts
    then have ts = ts 的刦 ( }\mp@subsup{\sigma}{23}{}\cdot\mp@subsup{\sigma}{12}{})\mathrm{ using composition-conseq2ts by simp
    then show ?thesis unfolding instance-of fs-def by auto
qed
lemma instance-of l-trans :
    assumes }\mp@subsup{l}{12}{}\mathrm{ : instance-of l}\mp@subsup{l}{1}{}\mp@subsup{l}{2}{
    assumes l}\mp@subsup{l}{23}{}\mathrm{ : instance-of l}\mp@subsup{l}{2}{}\mp@subsup{l}{3}{
    shows instance-of fl l}\mp@subsup{l}{1}{}\mp@subsup{l}{3}{
proof -
    from l l12 obtain }\mp@subsup{\sigma}{12}{}\mathrm{ where }\mp@subsup{l}{1}{}=\mp@subsup{l}{2}{}\cdotl/\mp@subsup{\sigma}{12}{
        unfolding instance-of --def by auto
    moreover
    from l l23}\mathrm{ obtain }\mp@subsup{\sigma}{23}{}\mathrm{ where }\mp@subsup{l}{2}{}=\mp@subsup{l}{3}{}\cdotl/\mp@subsup{\sigma}{23}{
        unfolding instance-of fldef by auto
```

```
    ultimately
    have}\mp@subsup{l}{1}{}=(\mp@subsup{l}{3}{}\cdotl\mp@subsup{\sigma}{23}{})\cdotl\mp@subsup{\sigma}{12}{}\mathrm{ by auto
    then have l}\mp@subsup{l}{1}{}=\mp@subsup{l}{3}{}\cdotl(\mp@subsup{\sigma}{23}{}\cdot\mp@subsup{\sigma}{12}{})\mathrm{ using composition-conseq2l by simp
    then show ?thesis unfolding instance-of l-def by auto
qed
lemma instance-of ls-trans :
    assumes }\mp@subsup{L}{12}{}\mathrm{ : instance-of fs }\mp@subsup{L}{1}{}\mp@subsup{L}{2}{
    assumes L23: instance-of ls }\mp@subsup{L}{2}{}\mp@subsup{L}{3}{
    shows instance-of ls }\mp@subsup{L}{1}{}\mp@subsup{L}{3}{
proof -
    from }\mp@subsup{L}{12}{}\mathrm{ obtain }\mp@subsup{\sigma}{12}{}\mathrm{ where }\mp@subsup{L}{1}{}=\mp@subsup{L}{2}{}\cdot\mp@subsup{l}{s}{}\mp@subsup{\sigma}{12}{
        unfolding instance-of ls-def by auto
    moreover
    from }\mp@subsup{L}{23}{}\mathrm{ obtain }\mp@subsup{\sigma}{23}{}\mathrm{ where }\mp@subsup{L}{2}{}=\mp@subsup{L}{3}{}\cdot\mp@subsup{l}{s}{}\mp@subsup{\sigma}{23}{
        unfolding instance-of ls-def by auto
    ultimately
    have }\mp@subsup{L}{1}{}=(\mp@subsup{L}{3}{}\cdotls\mp@subsup{\sigma}{23}{})\cdot\mp@subsup{|}{s}{}\mp@subsup{\sigma}{12}{}\mathrm{ by auto
    then have L}\mp@subsup{L}{1}{}=\mp@subsup{L}{3}{}\cdot\mp@subsup{l}{s}{}(\mp@subsup{\sigma}{23}{}\cdot\mp@subsup{\sigma}{12}{})\mathrm{ using composition-conseq2ls by simp
    then show ?thesis unfolding instance-of fls-def by auto
qed
```


8.4 Merging substitutions

```
lemma project-sub:
assumes inst- \(C: C \cdot l_{s} l m b d=C^{\prime}\)
assumes \(L^{\prime}\) sub: \(L^{\prime} \subseteq C^{\prime}\)
shows \(\exists L \subseteq C . L \cdot l_{s} l m b d=L^{\prime} \wedge(C-L) \cdot l_{s} l m b d=C^{\prime}-L^{\prime}\)
proof -
let \(? L=\left\{l \in C . \exists l^{\prime} \in L^{\prime} . l \cdot l \cdot l m b d=l^{\prime}\right\}\)
have ? \(L \subseteq C\) by auto
moreover
have ? \(L \cdot{ }_{l s} l m b d=L^{\prime}\)
proof (rule Orderings.order-antisym; rule Set.subsetI)
fix \(l^{\prime}\)
assume \(l^{\prime} L: l^{\prime} \in L^{\prime}\)
from inst- \(C\) have \(\{l \cdot l\) lmbd|l. \(l \in C\}=C^{\prime}\) unfolding subls-def2 by -
then have \(\exists l . l^{\prime}=l \cdot{ }_{l} l m b d \wedge l \in C \wedge l \cdot{ }_{l} l m b d \in L^{\prime}\) using \(L^{\prime} s u b l^{\prime} L\) by
auto
then have \(l^{\prime} \in\left\{l \in C . l \cdot{ }_{l} l m b d \in L^{\prime}\right\} \cdot{ }_{l s} l m b d\) by auto
then show \(l^{\prime} \in\left\{l \in C . \exists l^{\prime} \in L^{\prime} . l \cdot{ }_{l} l m b d=l^{\prime}\right\} \cdot l_{s} l m b d\) by auto qed auto
moreover
have \((C-\) ? \(L) \cdot{ }_{l s}\) lmbd \(=C^{\prime}-L^{\prime}\) using inst- \(C\) by auto
moreover
ultimately show ?thesis by auto
qed
lemma relevant-vars-subt:
```

```
    \forallx\in vars}\mp@subsup{t}{t.}{
proof (induction t)
    case (Fun fts)
    have f: \t.t set ts \Longrightarrow vars
    have }\forallt\in\mathrm{ set ts. }t\cdott\mp@subsup{\sigma}{1}{}=t\cdott\mp@subsup{\sigma}{2}{
        proof
            fix }
            assume tints:t\in set ts
            then have }\forallx\in\mp@subsup{vars}{t}{\prime}t.\mp@subsup{\sigma}{1}{}x=\mp@subsup{\sigma}{2}{}x\mathrm{ using f Fun(2) by auto
```



```
        qed
    then have ts \cdotts 的 = ts 'ts 抆 by auto
    then show ?case by auto
qed auto
lemma relevant-vars-subts:
    assumes asm: }\forallx\in\mp@subsup{varsts ts. }{\mathrm{ v}}{1
    shows ts 'ts 的 = ts 'ts 攼
proof -
    have f: \t. t\in set ts \Longrightarrow varst t\subseteq varsts ts by (induction ts) auto
    have }\forallt\in\mathrm{ set ts. }t\cdott\mp@subsup{\sigma}{1}{}=t\cdott\mp@subsup{\sigma}{2}{
        proof
            fix }
        assume tints:t\in set ts
        then have }\forallx\in\mp@subsup{vars}{t}{}t.\mp@subsup{\sigma}{1}{}x=\mp@subsup{\sigma}{2}{}x\mathrm{ using f asm by auto
        then show t t}\mp@subsup{}{t}{}\mp@subsup{\sigma}{1}{}=t\cdott\mp@subsup{\sigma}{2}{}\mathrm{ using relevant-vars-subt tints by auto
        qed
    then show ?thesis by auto
qed
lemma relevant-vars-subl:
```



```
proof (induction l)
    case (Pos p ts)
    then show ?case using relevant-vars-subts unfolding varsl-def by auto
next
    case (Neg p ts)
    then show ?case using relevant-vars-subts unfolding varsl-def by auto
qed
lemma relevant-vars-subls:
    assumes asm: }\forallx\in\mp@subsup{vars}{ls}{L}L.\mp@subsup{\sigma}{1}{}x=\mp@subsup{\sigma}{2}{}
    shows L}\mp@subsup{|}{ls}{}\mp@subsup{\sigma}{1}{}=L\cdotls\mp@subsup{\sigma}{2}{
proof -
    have f: \l.l\inL\Longrightarrow varsl l\subseteq varsls L unfolding varsls-def by auto
    have }\foralll\inL.l\cdot\mp@subsup{}{l}{}\mp@subsup{\sigma}{1}{}=l\cdotl\cdotl \mp@subsup{\sigma}{2}{
        proof
            fix l
            assume linls:l\inL
```

```
        then have }\forallx\in\mp@subsup{varsl}{l}{l.}\mp@subsup{\sigma}{1}{}x=\mp@subsup{\sigma}{2}{}x\mathrm{ using f asm by auto
```



```
    qed
    then show ?thesis by (meson image-cong)
qed
lemma merge-sub:
    assumes dist: vars}\mp@subsup{l}{ls}{}C\cap\mp@subsup{vars}{ls}{}D={
    assumes CC':C}\cdot\mp@code{ls}lmbd=\mp@subsup{C}{}{\prime
    assumes }D\mp@subsup{D}{}{\prime}:D\cdot|s \mu=\mp@subsup{D}{}{\prime
    shows }\exists\eta.C\cdot\mp@subsup{l}{s}{}\eta=\mp@subsup{C}{}{\prime}\wedgeD\cdot\mp@subsup{l}{s}{}\eta=\mp@subsup{D}{}{\prime
proof -
    let ? }\eta=\lambdax\mathrm{ . if }x\in\mp@subsup{\mathrm{ varsls}}{ls}{C}\mathrm{ then lmbd x else }\mu
    have }\forallx\in\mp@subsup{vars}{ls}{}C.?\etax=lmbd x by aut
    then have C }\cdotls ? \eta = C \cdotls lmbd using relevant-vars-subls[of C ? \eta lmbd] by
auto
    then have C \cdotls ? }\eta=\mp@subsup{C}{}{\prime}\mathrm{ using CC' by auto
    moreover
    have }\forallx\in\mp@subsup{varsls}{ls}{D}.? ? \etax=\mux\mathrm{ using dist by auto
```



```
    then have D \cdotls ? }\eta=\mp@subsup{D}{}{\prime}\mathrm{ using }D\mp@subsup{D}{}{\prime}\mathrm{ by auto
    ultimately
    show ?thesis by auto
qed
```


8.5 Standardizing apart

```
abbreviation \(s t d_{1}::\) fterm clause \(\Rightarrow\) fterm clause where \(\operatorname{std}_{1} C \equiv C \cdot{ }_{l s}\left(\lambda x . \operatorname{Var}\left({ }^{\prime \prime} 1{ }^{\prime \prime} @ x\right)\right)\)
abbreviation \(s t d_{2}::\) fterm clause \(\Rightarrow\) fterm clause where
\[
\operatorname{std}_{2} C \equiv C \cdot \iota_{s}\left(\lambda x . \operatorname{Var}\left({ }^{\prime \prime} 2^{\prime \prime} @ x\right)\right)
\]
lemma std-apart-apart \({ }^{\prime \prime}\) :
\(x \in \operatorname{vars}_{t}\left(t \cdot{ }_{t}(\lambda x::\right.\) char list. Var \(\left.(y @ x))\right) \Longrightarrow \exists x^{\prime} \cdot x=y @ x^{\prime}\)
by (induction \(t\) ) auto
lemma std-apart-apart': \(x \in \operatorname{vars}_{l}(l \cdot l(\lambda x . \operatorname{Var}(y @ x))) \Longrightarrow \exists x^{\prime} . x=y @ x^{\prime}\) unfolding vars \(_{l}\)-def using std-apart-apart' by (cases l) auto
```

```
lemma std-apart-apart: vars ls (std}1\mp@subsup{C}{1}{})\cap\mp@subsup{vars}{ls}{}(std\mp@subsup{d}{2}{}\mp@subsup{C}{2}{})={
```

lemma std-apart-apart: vars ls (std}1\mp@subsup{C}{1}{})\cap\mp@subsup{vars}{ls}{}(std\mp@subsup{d}{2}{}\mp@subsup{C}{2}{})={
proof -
{
fix }
assume xin: x }\in\mp@subsup{vars}{ls}{}(\mp@subsup{std}{1}{}\mp@subsup{C}{1}{})\cap\mp@subsup{vars}{ls}{}(\mp@subsup{std}{2}{}\mp@subsup{C}{2}{}
from xin have x\in varsls (std (C C) by auto
then have }\exists\mp@subsup{x}{}{\prime}.x=\mp@subsup{=}{}{\prime\prime}1" @ x
using std-apart-apart'[of x - ''1'\eta unfolding vars ls-def by auto

```
```

 moreover
 from xin have x\in varsls (std}\mp@subsup{|}{2}{}\mp@subsup{C}{2}{})\mathrm{ by auto
 then have \existsx'. x= "'2" @ x'
 using std-apart-apart'[of x - ''2'\ unfolding vars ls-def by auto
 ultimately have False by auto
 then have }x\in{}\mathrm{ by auto
 }
 then show ?thesis by auto
 qed
lemma std-apart-instance-of ls 1: instance-of ls }\mp@subsup{C}{1}{}(\mp@subsup{std}{1}{}\mp@subsup{C}{1}{}
proof -
have empty: (}\lambdax\mathrm{ . Var ("1'"@x)) . (}\lambdax.\operatorname{Var}(tlx))=\varepsilon\mathrm{ using composition-def
by auto
have }\mp@subsup{C}{1}{}\cdot\mp@subsup{l}{s}{}\varepsilon=\mp@subsup{C}{1}{}\mathrm{ using empty-subls by auto
then have C C |ls}((\lambdax.\operatorname{Var}(\mp@subsup{}{}{\prime\prime}1'@x))\cdot(\lambdax.\operatorname{Var}(tlx)))=\mp@subsup{C}{1}{\prime}\mathrm{ using empty by
auto

```

```

by auto
then have C}\mp@subsup{C}{1}{}=(std\mp@subsup{d}{1}{}\mp@subsup{C}{1}{})\cdot\mp@subsup{l}{s}{}(\lambdax.\operatorname{Var}(tl x)) by aut
then show instance-of ls C C (std l C C) unfolding instance-of ls-def by auto
qed
lemma std-apart-instance-of ls 2: instance-of ls C2 (std 2 C2)
proof -
have empty: (}\lambdax\mathrm{ . Var ('I'''@ 名)) (}\lambdax.\operatorname{Var}(tlx))=\varepsilon\mathrm{ using composition-def
by auto
have C2 . .ls }\varepsilon=C2\mathrm{ using empty-subls by auto
then have C2 .ls ((\lambdax. Var ('I2'@x)) · (\lambdax. Var (tl x))) = C2 using empty
by auto
then have (C2 \cdotls}(\lambdax.\operatorname{Var}(1/2'@x)))\cdotls (\lambdax. Var (tl x)) = C2 using composition-conseq2ls
by auto

```

```

 then show instance-of ls C2 (std 2 C2) unfolding instance-of ls-def by auto
 qed

```

\section*{9 Unifiers}
```

definition unifier $_{t s}::$ substitution \Rightarrow fterm set \Rightarrow bool where unifier $_{t s} \sigma t s \longleftrightarrow\left(\exists t^{\prime} . \forall t \in t s . t \cdot{ }_{t} \sigma=t^{\prime}\right)$
definition unifier $_{l s}::$ substitution \Rightarrow fterm literal set \Rightarrow bool where

$$
\text { unifier }_{l s} \sigma L \longleftrightarrow\left(\exists l^{\prime} . \forall l \in L . l \cdot{ }_{l} \sigma=l^{\prime}\right)
$$

lemma unif-sub:
assumes unif: unifier $_{l s} \sigma L$
assumes nonempty: $L \neq\{ \}$

```
```

 shows }\existsl\mathrm{ l. subls L }\sigma={\mathrm{ subl l }\sigma
 proof -
from nonempty obtain l where l\inL by auto

```

```

 then show ?thesis by auto
 qed
lemma unifiert-def2:
assumes L-elem: ts }\not={
shows unifierts }\sigma\mathrm{ ts }\longleftrightarrow(\existsl.(\lambdat.sub t \sigma)'ts={l}
proof
assume unif: unifier
from L-elem obtain t where t\ints by auto
then have (\lambdat. sub t \sigma)'ts={t 't \sigma} using unif unfolding unifier }\mp@subsup{}{ts}{}-def b
auto
then show \existsl.(\lambdat. sub t \sigma)'ts={l} by auto
next
assume }\existsl.(\lambdat\mathrm{ . sub t }\sigma\mathrm{)'ts={l}
then obtain l where (\lambdat. sub t \sigma)'ts={l} by auto
then have }\forall\mp@subsup{l}{}{\prime}\ints.\mp@subsup{l}{}{\prime}\cdott\sigma=l\mathrm{ by auto
then show unifier ts }\sigma\mathrm{ ts unfolding unifier }\mp@subsup{\mathrm{ ts-def by auto}}{}{-d
qed
lemma unifierls-def2:
assumes L-elem: L\not={}
shows \mp@subsup{unifier }{ls}{}\sigmaL\longleftrightarrow(\existsl.L\cdot\mp@subsup{l}{s}{}\sigma={l})
proof
assume unif:\mp@subsup{unifier }{ls}{}\sigmaL
from L-elem obtain l where l\inL by auto

```

```

 then show }\existsl.L\cdot\mp@subsup{l}{s}{}\sigma={l}\mathrm{ by auto
 next
assume \existsl.L L ls \sigma ={l}

```

```

 then have }\forall\mp@subsup{l}{}{\prime}\inL.\mp@subsup{l}{}{\prime}\cdot\mp@subsup{}{l}{}\sigma=l\mathrm{ by auto
 then show unifiererls}\sigmaL\mathrm{ unfolding unifier }\mp@subsup{l}{\mp@subsup{l}{s}{}}{}-def by aut
 qed
lemma ground d
assumes ground ls: ground ds L
assumes unif:\mp@subsup{unifier }{ls}{}\mp@subsup{\sigma}{}{\prime}L
assumes empt: L\not={}
shows }\existsl.L={l
proof -
from unif empt have }\existsl.L\cdot\mp@subsup{l}{s}{}\mp@subsup{\sigma}{}{\prime}={l}\mathrm{ using unif-sub by auto
then show ?thesis using ground ds-subls ground d}\mp@subsup{l}{ls}{}\mathrm{ by auto
qed
definition unifiablets :: fterm set }=>\mathrm{ bool where

```
```

 unifiablets \(f s \longleftrightarrow\left(\exists \sigma\right.\). unifier \(\left._{t s} \sigma f s\right)\)
 definition unifiablels :: fterm literal set \Rightarrow bool where
unifiablels $L \longleftrightarrow\left(\exists \sigma\right.$. unifier $\left._{l s} \sigma L\right)$
lemma unifier-comp[simp]: unifier $_{l s} \sigma\left(L^{C}\right) \longleftrightarrow$ unifier $_{l s} \sigma L$
proof
assume unifier $_{l s} \sigma\left(L^{C}\right)$
then obtain $l^{\prime \prime}$ where $l^{\prime \prime}-p: \forall l \in L^{C} . l \cdot l \sigma=l^{\prime \prime}$
unfolding unifier $_{l s}$-def by auto
obtain l^{\prime} where $\left(l^{\prime}\right)^{c}=l^{\prime \prime}$ using comp-exi2[of $\left.l^{\prime \prime}\right]$ by auto
from this $l^{\prime \prime}-p$ have $l^{\prime}-p: \forall l \in L^{C} . l{ }_{l} \sigma=\left(l^{\prime}\right)^{c}$ by auto
have $\forall l \in L . l \cdot l \sigma=l^{\prime}$
proof
fix l
assume $l \in L$
then have $l^{c} \in L^{C}$ by auto
then have $\left(l^{c}\right) \cdot l \sigma=\left(l^{\prime}\right)^{c}$ using $l^{\prime}-p$ by auto
then have $(l \cdot l \sigma)^{c}=\left(l^{\prime}\right)^{c}$ by (cases l) auto
then show $l \cdot l \sigma=l^{\prime}$ using cancel-comp2 by blast
qed
then show unifier $_{l s} \sigma L$ unfolding unifier $_{l s}$-def by auto
next
assume unifier $_{l s} \sigma L$
then obtain l^{\prime} where $l^{\prime}-p: \forall l \in L . l \cdot{ }_{l} \sigma=l^{\prime}$ unfolding unifier $_{l s}$-def by auto
have $\forall l \in L^{C} \cdot l \cdot{ }_{l} \sigma=\left(l^{\prime}\right)^{c}$
proof
fix l
assume $l \in L^{C}$
then have $l^{c} \in L$ using cancel-comp1 by (metis image-iff)
then show $l \cdot l \sigma=\left(l^{\prime}\right)^{c}$ using $l^{\prime}-p$ comp-sub cancel-comp1 by metis
qed
then show unifier $_{l s} \sigma\left(L^{C}\right)$ unfolding unifier $_{l s}$-def by auto
qed
lemma unifier-sub1: unifier $_{l s} \sigma L \Longrightarrow L^{\prime} \subseteq L \Longrightarrow$ unifier $_{l s} \sigma L^{\prime}$
unfolding unifier $_{l s}-$ def by auto
lemma unifier-sub2:
assumes asm: unifier $_{l_{s}} \sigma\left(L_{1} \cup L_{2}\right)$
shows unifier $_{l s} \sigma L_{1} \wedge$ unifier $_{l s} \sigma L_{2}$
proof -
have $L_{1} \subseteq\left(L_{1} \cup L_{2}\right) \wedge L_{2} \subseteq\left(L_{1} \cup L_{2}\right)$ by simp
from this asm show ?thesis using unifier-sub1 by auto
qed

```

\subsection*{9.1 Most General Unifiers}
definition \(m g u_{t s}::\) substitution \(\Rightarrow\) fterm set \(\Rightarrow\) bool where
\[
\text { mgu }_{t s} \sigma t s \longleftrightarrow \text { unifier }_{t s} \sigma t s \wedge\left(\forall u . \text { unifier }_{t s} u t s \longrightarrow(\exists i . u=\sigma \cdot i)\right)
\]
definition \(m g u_{l_{s}}::\) substitution \(\Rightarrow\) fterm literal set \(\Rightarrow\) bool where
\(m g u_{l s} \sigma L \longleftrightarrow\) unifier \(_{l s} \sigma L \wedge\left(\forall u\right.\). unifier \(\left._{l s} u L \longrightarrow(\exists i . u=\sigma \cdot i)\right)\)

\section*{10 Resolution}
definition applicable :: fterm clause \(\Rightarrow\) fterm clause
\[
\Rightarrow \text { fterm literal set } \Rightarrow \text { fterm literal set }
\]
\(\Rightarrow\) substitution \(\Rightarrow\) bool where
applicable \(C_{1} C_{2} L_{1} L_{2} \sigma \longleftrightarrow\)
\[
\begin{aligned}
& C_{1} \neq\{ \} \wedge C_{2} \neq\{ \} \wedge L_{1} \neq\{ \} \wedge L_{2} \neq\{ \} \\
\wedge & \text { vars }_{l s} C_{1} \cap \text { vars }_{l s} C_{2}=\{ \} \\
\wedge & L_{1} \subseteq C_{1} \wedge L_{2} \subseteq C_{2} \\
\wedge & m g u_{l s} \sigma\left(L_{1} \cup L_{2} C\right)
\end{aligned}
\]
definition mresolution :: fterm clause \(\Rightarrow\) fterm clause
\(\Rightarrow\) fterm literal set \(\Rightarrow\) fterm literal set
\(\Rightarrow\) substitution \(\Rightarrow\) fterm clause where
mresolution \(C_{1} C_{2} L_{1} L_{2} \sigma=\left(\left(C_{1} \cdot l_{s} \sigma\right)-\left(L_{1} \cdot l s \sigma\right)\right) \cup\left(\left(C_{2} \cdot l_{s} \sigma\right)-\left(L_{2} \cdot l_{s}\right.\right.\) \(\sigma)\) )
definition resolution :: fterm clause \(\Rightarrow\) fterm clause
\(\Rightarrow\) fterm literal set \(\Rightarrow\) fterm literal set
\(\Rightarrow\) substitution \(\Rightarrow\) fterm clause where
resolution \(C_{1} C_{2} L_{1} L_{2} \sigma=\left(\left(C_{1}-L_{1}\right) \cup\left(C_{2}-L_{2}\right)\right) \cdot{ }_{l s} \sigma\)
inductive mresolution-step :: fterm clause set \(\Rightarrow\) fterm clause set \(\Rightarrow\) bool where mresolution-rule:
\(C_{1} \in C s \Longrightarrow C_{2} \in C s \Longrightarrow\) applicable \(C_{1} C_{2} L_{1} L_{2} \sigma \Longrightarrow\)
mresolution-step Cs (Cs \(\cup\left\{\right.\) mresolution \(\left.\left.C_{1} C_{2} L_{1} L_{2} \sigma\right\}\right)\)
| standardize-apart:
\(C \in C s \Longrightarrow\) var-renaming-of \(C C^{\prime} \Longrightarrow\) mresolution-step \(C s\left(C s \cup\left\{C^{\prime}\right\}\right)\)
inductive resolution-step :: fterm clause set \(\Rightarrow\) fterm clause set \(\Rightarrow\) bool where resolution-rule:
\(C_{1} \in C s \Longrightarrow C_{2} \in C s \Longrightarrow\) applicable \(C_{1} C_{2} L_{1} L_{2} \sigma \Longrightarrow\)
resolution-step \(C s\left(C s \cup\left\{\right.\right.\) resolution \(\left.\left.C_{1} C_{2} L_{1} L_{2} \sigma\right\}\right)\)
| standardize-apart:
\(C \in C s \Longrightarrow\) var-renaming-of \(C C^{\prime} \Longrightarrow\) resolution-step \(C s\left(C s \cup\left\{C^{\prime}\right\}\right)\)
definition mresolution-deriv :: fterm clause set \(\Rightarrow\) fterm clause set \(\Rightarrow\) bool where mresolution-deriv \(=\) rtranclp mresolution-step
definition resolution-deriv :: fterm clause set \(\Rightarrow\) fterm clause set \(\Rightarrow\) bool where resolution-deriv \(=\) rtranclp resolution-step

\section*{11 Soundness}
definition evalsub \(::\) 'u var-denot \(\Rightarrow\) ' \(u\) fun-denot \(\Rightarrow\) substitution \(\Rightarrow\) 'u var-denot where
\[
\text { evalsub } E F \sigma=e^{2} \operatorname{eval}_{t} E F \circ \sigma
\]
lemma substitutiont: eval \(E F(t \cdot t \sigma)=e_{t}\) eval \(_{t}(\) evalsub \(E F \sigma) F t\) apply (induction t)
unfolding evalsub-def apply auto
apply (metis (mono-tags, lifting) comp-apply map-cong)
done
lemma substitutionts: eval \({ }_{t s} E F\left(t s \cdot_{t s} \sigma\right)=e v a l_{t s}(e v a l s u b E F \sigma) F t s\) using substitutiont by auto
lemma substitution: eval \(l_{l} E F\left(l \cdot{ }_{l} \sigma\right) \longleftrightarrow\) eval \(_{l}(\) evalsub \(E F \sigma) F G l\) apply (induction l)
using substitutionts apply (metis eval \(l_{l} . \operatorname{simps}(1)\) subl.simps(1))
using substitutionts apply (metis eval \(\operatorname{l}\). \(\operatorname{simps}(\) (2) subl.simps(2))
done
lemma subst-sound:
assumes asm: eval \({ }_{c} F G C\)
shows \(e v a l_{c} F G\left(C \cdot{ }_{l s} \sigma\right)\)
proof -
have \(\forall E . \exists l \in C \cdot{ }_{l s} \sigma . e v a l_{l} E F G l\)
proof
fix \(E\)
from asm have \(\forall E . \exists l \in C\). eval \(_{l} E F G l\) unfolding \(e v a l_{c}\)-def by auto
then have \(\exists l \in C\). eval \(l_{l}\) (evalsub \(E F \sigma\) ) \(F G l\) by auto
then show \(\exists l \in C \cdot l s \sigma\). eval \(l_{l} E F G l\) using substitution by blast
qed
then show eval \(_{c} F G\left(C \cdot l_{s} \sigma\right)\) unfolding eval \(_{c}\)-def by auto
qed
lemma simple-resolution-sound:
assumes \(C_{1}\) sat: eval \(_{c} F G C_{1}\)
assumes \(C_{2}\) sat: eval \({ }_{c} F G C_{2}\)
assumes \(l_{1}\) inc \(_{1}: l_{1} \in C_{1}\)
assumes \(l_{2} i n c_{2}: l_{2} \in C_{2}\)
assumes comp: \(l_{1}{ }^{c}=l_{2}\)
shows evalc \(F G\left(\left(C_{1}-\left\{l_{1}\right\}\right) \cup\left(C_{2}-\left\{l_{2}\right\}\right)\right)\)
proof -
have \(\forall E . \exists l \in\left(\left(\left(C_{1}-\left\{l_{1}\right\}\right) \cup\left(C_{2}-\left\{l_{2}\right\}\right)\right)\right)\). eval \(l_{l} E F G l\) proof
fix \(E\)
have eval \(E F G l_{1} \vee\) eval \(_{l} E F G l_{2}\) using comp by (cases \(l_{1}\) ) auto then show \(\exists l \in\left(\left(\left(C_{1}-\left\{l_{1}\right\}\right) \cup\left(C_{2}-\left\{l_{2}\right\}\right)\right)\right)\). eval \(E F G l\) proof
assume eval \(_{l} E F G l_{1}\)
then have \(\neg e v a l_{l} E F G l_{2}\) using comp by (cases \(l_{1}\) ) auto
then have \(\exists l_{2}{ }^{\prime} \in C_{2} . l_{2}{ }^{\prime} \neq l_{2} \wedge\) eval \(_{l} E F G l_{2}{ }^{\prime}\) using \(l_{2} i n c_{2} C_{2}\) sat unfolding eval \({ }_{c}\)-def by auto
then show \(\exists l \in\left(C_{1}-\left\{l_{1}\right\}\right) \cup\left(C_{2}-\left\{l_{2}\right\}\right)\). eval \(l_{l} E F G l\) by auto next
assume eval \(_{l} E F G l_{2}\)
then have \(\neg e v a l_{l} E F G l_{1}\) using comp by (cases \(l_{1}\) ) auto
then have \(\exists l_{1}{ }^{\prime} \in C_{1} . l_{1}{ }^{\prime} \neq l_{1} \wedge\) eval \(_{l} E F G l_{1}{ }^{\prime}\) using \(l_{1}\) inc \(_{1} C_{1}\) sat
unfolding eval \({ }_{c}\)-def by auto
then show \(\exists l \in\left(C_{1}-\left\{l_{1}\right\}\right) \cup\left(C_{2}-\left\{l_{2}\right\}\right)\). eval \(l_{l} E F G l\) by auto qed
qed
then show ?thesis unfolding eval \({ }_{c}\)-def by simp qed
lemma mresolution-sound:
assumes sat \({ }_{1}\) : eval \({ }_{c} F G C_{1}\)
assumes sat \({ }_{2}\) : eval \({ }_{c} F G C_{2}\)
assumes appl: applicable \(C_{1} C_{2} L_{1} L_{2} \sigma\)
shows eval \(F G\) (mresolution \(\left.C_{1} C_{2} L_{1} L_{2} \sigma\right)\)
proof -
from sat \({ }_{1}\) have \(s a t_{1} \sigma\) : eval \(_{c} F G\left(C_{1} \cdot l s \sigma\right)\) using subst-sound by blast
from sat \({ }_{2}\) have \(s a t_{2} \sigma\) : eval \(c_{c} F\left(C_{2} \cdot l s \sigma\right)\) using subst-sound by blast
from appl obtain \(l_{1}\) where \(l_{1}-p: l_{1} \in L_{1}\) unfolding applicable-def by auto
from \(l_{1}-p\) appl have \(l_{1} \in C_{1}\) unfolding applicable-def by auto
then have inc \(c_{1} \sigma: l_{1} \cdot{ }_{l} \sigma \in C_{1} \cdot{ }_{l s} \sigma\) by auto
from \(l_{1}-p\) have unified \(_{1}: l_{1} \in\left(L_{1} \cup\left(L_{2}^{C}\right)\right)\) by auto
from \(l_{1}-p\) appl have \(l_{1} \sigma i s l_{1} \sigma:\left\{l_{1} \cdot l \sigma\right\}=L_{1} \cdot l s \sigma\)
unfolding mgu \(_{l s}\)-def unifier \({ }_{l s}\)-def applicable-def by auto
from appl obtain \(l_{2}\) where \(l_{2}-p: l_{2} \in L_{2}\) unfolding applicable-def by auto
from \(l_{2}-p\) appl have \(l_{2} \in C_{2}\) unfolding applicable-def by auto
then have \(i n c_{2} \sigma: l_{2} \cdot l \sigma \in C_{2} \cdot l s \sigma\) by auto
from \(l_{2}-p\) have unified \(_{2}: l_{2}{ }^{c} \in\left(L_{1} \cup\left(L_{2}{ }^{C}\right)\right)\) by auto
from unified \(_{1}\) unified \(_{2}\) appl have \(l_{1} \cdot l \sigma=\left(l_{2}{ }^{c}\right) \cdot l \sigma\)
unfolding \(\mathrm{mgu}_{l_{s}}\)-def unifier \({ }_{l_{s}}\)-def applicable-def by auto
then have comp: \(\left(l_{1} \cdot{ }_{l} \sigma\right)^{c}=l_{2} \cdot l \sigma\) using comp-sub comp-swap by auto
from appl have unifier \({ }_{l s} \sigma\left(L_{2}{ }^{C}\right)\)
using unifier-sub2 unfolding \(m^{2} u_{l s}\)-def applicable-def by blast
then have unifier \(_{l s} \sigma L_{2}\) by auto
from this \(l_{2}-p\) have \(l_{2} \sigma i s l_{2} \sigma:\left\{l_{2} \cdot{ }_{l} \sigma\right\}=L_{2} \cdot l_{s} \sigma\) unfolding unifier \(_{l_{s}}-\) def by auto
from sat \(_{1} \sigma\) sat \(_{2} \sigma\) inc \(_{1} \sigma\) inc \(_{2} \sigma\) comp have eval \(_{c} F G\left(\left(C_{1} \cdot l_{s} \sigma\right)-\left\{l_{1} \cdot{ }_{l} \sigma\right\} \cup\right.\) \(\left.\left(\left(C_{2} \cdot l s \sigma\right)-\left\{l_{2} \cdot l \sigma\right\}\right)\right)\) using simple-resolution-sound \(\left[\right.\) of \(F G C_{1} \cdot l s \quad \sigma C_{2} \cdot l s \sigma\) \(\left.l_{1} \cdot l \sigma \quad l_{2} \cdot l \sigma\right]\)
by auto
from this \(l_{1} \sigma i s l_{1} \sigma l_{2} \sigma i s l_{2} \sigma\) show ?thesis unfolding mresolution-def by auto qed
lemma resolution-superset: mresolution \(C_{1} C_{2} L_{1} L_{2} \sigma \subseteq\) resolution \(C_{1} C_{2} L_{1}\) \(L_{2} \sigma\) unfolding mresolution-def resolution-def by auto
lemma superset-sound:
assumes sup: \(C \subseteq C^{\prime}\)
assumes sat: eval \({ }_{c} F G C\)
shows eval \(_{c} F G C^{\prime}\)
proof -
have \(\forall E . \exists l \in C^{\prime}\). eval \(_{l} E F G l\)
proof
fix \(E\)
from sat have \(\forall E . \exists l \in C\). eval \(_{l} E F G l\) unfolding \(e v a l_{c}\)-def by -
then have \(\exists l \in C\). eval \(_{l} E F G l\) by auto
then show \(\exists l \in C^{\prime}\). eval \(l_{l} E F G l\) using sup by auto
qed
then show evalc \(F G C^{\prime}\) unfolding eval \({ }_{c}\)-def by auto
qed
lemma resolution-sound:
assumes sat \(_{1}\) : eval \(_{c} F G C_{1}\)
assumes sat \(_{2}\) : eval \({ }_{c} F G C_{2}\)
assumes appl: applicable \(C_{1} C_{2} L_{1} L_{2} \sigma\)
shows eval \({ }_{c} F G\left(\right.\) resolution \(\left.C_{1} C_{2} L_{1} L_{2} \sigma\right)\)
proof -
from sat sat \(_{2}\) appl have eval \(F\) (mresolution \(C_{1} C_{2} L_{1} L_{2} \sigma\) ) using mresolution-sound by blast
then show ?thesis using superset-sound resolution-superset by metis
qed
lemma sound-step: mresolution-step \(C s C s^{\prime} \Longrightarrow\) eval \(_{c s} F G C s \Longrightarrow e v a l_{c s} F G\) \(C s^{\prime}\)
proof (induction rule: mresolution-step.induct)
case (mresolution-rule \(C_{1} C s C_{2} l_{1} l_{2} \sigma\) )
then have evalc \(F G C_{1} \wedge \operatorname{eval}_{c} F G C_{2}\) unfolding eval \({ }_{c s}\)-def by auto
then have eval \(F G\) (mresolution \(C_{1} C_{2} l_{1} l_{2} \sigma\) )
using mresolution-sound mresolution-rule by auto
then show ?case using mresolution-rule unfolding evalcs-def by auto
```

next
case (standardize-apart C Cs C')
then have evalc F G C unfolding evalcs-def by auto
then have evalc}F\mp@code{F C' using subst-sound standardize-apart unfolding var-renaming-of-def
instance-of ls-def by metis
then show ?case using standardize-apart unfolding eval cs-def by auto
qed
lemma lsound-step: resolution-step Cs Cs' \Longrightarrow eval cs F GCs\Longrightarrowevalcs F GCs'
proof (induction rule: resolution-step.induct)
case (resolution-rule C C Cs C C l l l l l \sigma)
then have evalc}F|G\mp@subsup{C}{1}{}\wedge evalcl F G C < unfolding evalcs-def by aut
then have evalc}F|\mp@code{(resolution C}\mp@subsup{C}{1}{}\mp@subsup{C}{2}{}\mp@subsup{l}{1}{}\mp@subsup{l}{2}{}\sigma
using resolution-sound resolution-rule by auto
then show ?case using resolution-rule unfolding evalcs-def by auto
next
case (standardize-apart C Cs C')
then have evalc}F\mp@code{G C unfolding eval cs-def by auto
then have evalc}FG\mp@subsup{C}{}{\prime}\mathrm{ using subst-sound standardize-apart unfolding var-renaming-of-def
instance-of ls-def by metis
then show ?case using standardize-apart unfolding evalcs-def by auto
qed
lemma sound-derivation:
mresolution-deriv Cs Cs'}\Longrightarrow\mp@subsup{eval cs F G Cs \Longrightarrowevalcs F G Cs'}{}{\prime
unfolding mresolution-deriv-def
proof (induction rule: rtranclp.induct)
case rtrancl-refl then show ?case by auto
next
case (rtrancl-into-rtrancl Cs1 Cs 2 Cs) then show ?case using sound-step by
auto
qed
lemma lsound-derivation:
resolution-deriv Cs Cs'}\Longrightarrow\mp@subsup{eval}{cs}{\prime}FGCs\Longrightarrowevalcs F GCs'
unfolding resolution-deriv-def
proof (induction rule: rtranclp.induct)
case rtrancl-refl then show ?case by auto
next
case (rtrancl-into-rtrancl Cs }\mp@subsup{\mp@code{Cs}}{2}{}C\mp@subsup{s}{3}{}\mathrm{) then show ?case using lsound-step by
auto
qed

```

\section*{12 Herbrand Interpretations}

HFun is the Herbrand function denotation in which terms are mapped to themselves.
term HFun
```

lemma eval-ground }\mp@subsup{|}{t}{}\mathrm{ : ground }\mp@subsup{|}{t}{}\Longrightarrow(\mp@subsup{\mathrm{ eval }}{t}{}E HFun t)=hterm-of-fterm t
by (induction t) auto
lemma eval-ground }\mp@subsup{|}{s}{}:\mp@subsup{\mathrm{ ground }}{ts}{}ts\Longrightarrow(\mp@subsup{eval ls }{ts HFun ts)= hterms-of-fterms ts}{
unfolding hterms-of-fterms-def using eval-ground }\mp@subsup{|}{t}{}\mathrm{ by (induction ts) auto
lemma evall-ground
assumes asm: ground ts ts
shows evall E HFun G (Pos P ts)\longleftrightarrowGP (hterms-of-fterms ts)
proof -
have evall E HFun G (Pos P ts) =G P (eval ts E HFun ts) by auto
also have ... =GP (hterms-of-fterms ts) using asm eval-ground ts by simp
finally show ?thesis by auto
qed

```

\section*{13 Partial Interpretations}
```

type-synonym partial-pred-denot $=$ bool list
definition falsifies $_{l}::$ partial-pred-denot \Rightarrow fterm literal \Rightarrow bool where
falsifies $_{l} G l \longleftrightarrow$
ground $_{l} l$
$\wedge($ let $i=$ nat-from-fatom (get-atom $l)$ in
$i<$ length $G \wedge G!i=(\neg \operatorname{sign} l)$
)

```

A ground clause is falsified if it is actually ground and all its literals are falsified.
abbreviation falsifies \(_{g}::\) partial-pred-denot \(\Rightarrow\) fterm clause \(\Rightarrow\) bool where
falsifies \(_{g} G C \equiv\) ground \(_{l s} C \wedge\left(\forall l \in C\right.\). falsifies \(\left._{l} G l\right)\)
```

abbreviation \mp@subsup{\mathrm{ falsifies }}{c}{}:: partial-pred-denot }=>\mathrm{ fterm clause }=>\mathrm{ bool where

```
    falsifies \(_{c} G C \equiv\left(\exists C^{\prime}\right.\). instance-of \({ }_{l s} C^{\prime} C \wedge\) falsifies \(\left._{g} G C^{\prime}\right)\)
abbreviation falsifies \(_{c s}::\) partial-pred-denot \(\Rightarrow\) fterm clause set \(\Rightarrow\) bool where
    falsifies \(_{c s} G C s \equiv\left(\exists C \in C s\right.\). falsifies \(\left._{c} G C\right)\)
abbreviation extend \(::(\) nat \(\Rightarrow\) partial-pred-denot \() \Rightarrow\) hterm pred-denot where
extend \(f P\) ts \(\equiv(\)
    let \(n=\) nat-from-hatom \((P, t s)\) in
        \(f(\) Suc \(n)!n\)
    )
fun sub-of-denot :: hterm var-denot \(\Rightarrow\) substitution where
    sub-of-denot \(E=\) fterm-of-hterm \(\circ E\)
lemma ground-sub-of-denott: ground \({ }_{t}(t \cdot t(\) sub-of-denot \(E))\)
```

by (induction t) (auto simp add: ground-fterm-of-hterm)
lemma ground-sub-of-denotts: ground ts (ts 'ts sub-of-denot E)
using ground-sub-of-denott by simp
lemma ground-sub-of-denotl: ground }\mp@subsup{l}{l}{(l\cdotl}\mathrm{ sub-of-denot E)
proof -
have ground ts (subs (get-terms l) (sub-of-denot E))
using ground-sub-of-denotts by auto
then show ?thesis by (cases l) auto
qed
lemma sub-of-denot-equivx: eval }\mp@subsup{|}{t}{E HFun(sub-of-denot E x) = E x
proof -
have ground
then
have eval. E HFun (sub-of-denot E x) = hterm-of-fterm (sub-of-denot E x)
using \mp@subsup{eval-ground}{t}{(1) by auto}
also have ... = hterm-of-fterm (fterm-of-hterm (Ex)) by auto
also have ... = E x by auto
finally show ?thesis by auto
qed
lemma sub-of-denot-equivt:
evalt E HFun (t 't (sub-of-denot E)) = evalt E HFun t
using sub-of-denot-equivx by (induction t) auto
lemma sub-of-denot-equivts: eval ts E HFun (ts \cdotts (sub-of-denot E)) = eval ts E
HFun ts
using sub-of-denot-equivt by simp
lemma sub-of-denot-equivl: evall E HFun G (l \cdotl sub-of-denot E) \longleftrightarrow evall E
HFun G l
proof (induction l)
case (Pos p ts)
have evall E HFun G ((Pos p ts) \cdotl sub-of-denot E) \longleftrightarrowGp (eval ls E HFun
(ts 'ts (sub-of-denot E))) by auto
also have ...\longleftrightarrowG p(eval ts E HFun ts) using sub-of-denot-equivts[of E ts]
by metis
also have ...\longleftrightarrow evall E HFun G(Pos p ts) by simp
finally
show ?case by blast
next
case (Neg p ts)
have evall E HFun G ((Neg p ts) `l sub-of-denot E) \longleftrightarrow)
(ts \cdotts (sub-of-denot E))) by auto
also have ... \longleftrightarrow\negGp(eval ls E HFun ts) using sub-of-denot-equivts[of E ts]

```

\section*{by metis}
also have \(\ldots=e v a l_{l} E\) HFun \(G(N e g p t s)\) by simp
finally
show ?case by blast
qed
Under an Herbrand interpretation, an environment is equivalent to a substitution.
lemma sub-of-denot-equiv-ground':
eval \(_{l} E\) HFun \(G l=\) eval \(_{l} E\) HFun \(G(l \cdot l\) sub-of-denot \(E) \wedge\) ground \(_{l}\left(l \cdot{ }_{l}\right.\) sub-of-denot E)
using sub-of-denot-equivl ground-sub-of-denotl by auto
Under an Herbrand interpretation, an environment is similar to a substitution - also for partial interpretations.
lemma partial-equiv-subst:
assumes falsifies \(_{c} G\left(C \cdot{ }_{l s} \tau\right)\)
shows falsifies \(_{c} G C\)
proof -
from assms obtain \(C^{\prime}\) where \(C^{\prime}-p\) : instance-of \(l_{l s} C^{\prime}\left(C{ }_{l_{s}} \tau\right) \wedge\) falsifies \(_{g} G\)
\(C^{\prime}\) by auto
then have instance-of \(f_{l s}\left(C \cdot{ }_{l_{s}} \tau\right) C\) unfolding instance-of \(f_{l s}\)-def by auto
then have instance-of \(f_{l s} C^{\prime} C\) using \(C^{\prime}-p\) instance-of \(f_{l s}\)-trans by auto
then show ?thesis using \(C^{\prime}-p\) by auto
qed
Under an Herbrand interpretation, an environment is equivalent to a substitution.
lemma sub-of-denot-equiv-ground:
\(\left(\left(\exists l \in C\right.\right.\). eval \(_{l} E\) HFun \(\left.G l\right) \longleftrightarrow\left(\exists l \in C \cdot l_{s}\right.\) sub-of-denot E. eval \({ }_{l} E\) HFun \(G\)
l))
\(\wedge\) ground \(_{l_{s}}\left(C \cdot \cdot_{s}\right.\) sub-of-denot \(\left.E\right)\)
using sub-of-denot-equiv-ground' by auto
lemma std \(_{1}\)-falsifies: falsifies \({ }_{c} G C_{1} \longleftrightarrow\) falsifies \(_{c} G\left(\right.\) std \(\left._{1} C_{1}\right)\)
proof
assume asm: falsifies \(_{c} G C_{1}\)
then obtain \(C g\) where instance-of \({ }_{l s} C g C_{1} \wedge\) falsifies \(_{g} G C g\) by auto moreover
then have instance-of \(f_{l s} C g\left(s t d_{1} C_{1}\right)\) using std-apart-instance-of \(f_{l s} 1\) instance-of \(_{l s}\)-trans
asm by blast
ultimately
show falsifies \(_{c} G\left(\operatorname{std}_{1} C_{1}\right)\) by auto
next
assume asm: falsifies \(_{c} G\left(\right.\) std \(\left._{1} C_{1}\right)\)
then have inst: instance-of \(l_{l s}\left(s_{1} d_{1} C_{1}\right) C_{1}\) unfolding instance-of \(l_{l s}\)-def by auto
```

 from asm obtain Cg where instance-of ls Cg(std}\mp@subsup{|}{1}{}\mp@subsup{C}{1}{})\wedge\mp@subsup{falsifiesg}{g}{}GCg\mathrm{ by
 auto
moreover
then have instance-of ls Cg C C using inst instance-of ls-trans assms by blast
ultimately
show falsifies}\mp@subsup{c}{c}{}G\mp@subsup{C}{1}{}\mathrm{ by auto
qed
lemma std 2-falsifies: falsifies c}\mp@subsup{}{c}{}G\mp@subsup{C}{2}{}\longleftrightarrow\mp@subsup{\mathrm{ falsifies }}{c}{}G(\mp@subsup{\mathrm{ std}}{2}{}\mp@subsup{C}{2}{}
proof
assume asm: falsifiesc}\mp@subsup{c}{c}{}G\mp@subsup{C}{2}{
then obtain Cg where instance-of fls}Cg\mp@subsup{C}{2}{}\wedge\mp@subsup{\mathrm{ falsifiesg}}{g}{}GCg\mathrm{ by auto
moreover
then have instance-of ls Cg (std 2 C C) using std-apart-instance-of lls 2 instance-of los-trans
asm by blast
ultimately
show falsifiesc}\mp@subsup{c}{c}{}G(st\mp@subsup{d}{2}{}\mp@subsup{C}{2}{})\mathrm{ by auto
next
assume asm: falsifiesc}\mp@subsup{c}{c}{}G(st\mp@subsup{d}{2}{}\mp@subsup{C}{2}{}
then have inst: instance-of ls (std 2 C C) C C unfolding instance-of ls-def by
auto
from asm obtain Cg where instance-of fs Cg (std 2 C C) \ falsifiesgg G Cg by
auto
moreover
then have instance-of ls Cg C C using inst instance-of ls-trans assms by blast
ultimately
show falsifiesc}\mp@subsup{c}{c}{G C C by auto
qed
lemma std 1-renames: var-renaming-of C C (std 1 C C
proof -
have instance-of ls }\mp@subsup{C}{1}{}(\mp@subsup{std}{1}{\prime}\mp@subsup{C}{1}{})\mathrm{ using std-apart-instance-of ls 1 assms by auto
moreover have instance-of fls}(st\mp@subsup{d}{1}{}\mp@subsup{C}{1}{})\mp@subsup{C}{1}{}\mathrm{ using assms unfolding instance-of ls-def
by auto
ultimately show var-renaming-of C}\mp@subsup{C}{1}{}(st\mp@subsup{d}{1}{}\mp@subsup{C}{1}{})\mathrm{ unfolding var-renaming-of-def
by auto
qed
lemma std 2-renames: var-renaming-of C C (std 2 C C)
proof -
have instance-of fs C C (std 2 C C) using std-apart-instance-of ls\mathcal{L assms by auto}
moreover have instance-of ls (std 2 C C) C C using assms unfolding instance-of fls
by auto
ultimately show var-renaming-of C}\mp@subsup{C}{2}{(std}\mp@subsup{|}{2}{}\mp@subsup{C}{2}{})\mathrm{ unfolding var-renaming-of-def
by auto
qed

```

\section*{14 Semantic Trees}
abbreviation closed-branch :: partial-pred-denot \(\Rightarrow\) tree \(\Rightarrow\) fterm clause set \(\Rightarrow\) bool where
closed-branch \(G T C s \equiv\) branch \(G T \wedge\) falsifies \(_{c s} G C s\)
abbreviation(input) open-branch :: partial-pred-denot \(\Rightarrow\) tree \(\Rightarrow\) fterm clause set \(\Rightarrow\) bool where
open-branch \(G T C s \equiv\) branch \(G T \wedge \neg\) falsifies \(_{c s} G C s\)
definition closed-tree :: tree \(\Rightarrow\) fterm clause set \(\Rightarrow\) bool where
closed-tree \(T C s \longleftrightarrow\) anybranch \(T(\lambda b\). closed-branch b T Cs)
\(\wedge\) anyinternal \(T\left(\lambda p\right.\). falsifies \(\left._{c s} p C s\right)\)

\section*{15 Herbrand's Theorem}
```

lemma maximum:
assumes asm: finite C
shows \existsn :: nat. }\foralll\inC.fl\leq
proof
from asm show }\foralll\inC.fl\leq(Max (f'C)) by aut
qed
lemma extend-preserves-model:
assumes f-infpath: wf-infpath (f :: nat => partial-pred-denot)
assumes C-ground: ground ls }
assumes C-sat: }\neg\mp@subsup{\mathrm{ falsifies }}{c}{}(f(Suc n))
assumes n-max:}\foralll\inC.nat-from-fatom (get-atom l)\leq
shows evalc HFun (extend f)C
proof -
let ?F = HFun
let ?G= extend f
{
fix }
from C-sat have }\forall\mp@subsup{C}{}{\prime}.(\neg\mp@subsup{\mathrm{ instance-of }}{ls}{}\mp@subsup{C}{}{\prime}C\vee\neg\mp@subsup{\mathrm{ falsifies }}{g}{}(f(Suc n)) C') by
auto
then have }\neg\mp@subsup{\mathrm{ falsifies }}{g}{}(f(Suc n))C using instance-of ls-self by aut
then obtain l where l-p:l\inC ^\negfalsifiesl (f (Suc n)) l using C-ground by
blast
let ?i = nat-from-fatom (get-atom l)
from l-p have i-n: ?i }\leqn\mathrm{ using n-max by auto
then have j-n: ?i < length (f (Suc n)) using f-infpath infpath-length[of f] by
auto
have evall E HFun (extend f) l
proof (cases l)
case (Pos P ts)
from Pos l-p C-ground have ts-ground: ground ts ts by auto

```
```

 have }\neg\mp@subsup{\mathrm{ falsifies }}{l}{}(f(Sucn))l\mathrm{ using l-p by auto
 then have f(Suc n)!?i= True
 using j-n Pos ts-ground empty-subts[of ts] unfolding falsifies}\mp@subsup{l}{l}{}\mathrm{ -def by auto
 moreover have f(Suc ?i)!?i=f(Suc n)!?i
 using f-infpath i-n j-n infpath-length[of f] ith-in-extension[of f] by simp
 ultimately
 have f (Suc ?i)!?i= True using Pos by auto
 then have ?G P (hterms-of-fterms ts) using Pos by (simp add: nat-from-fatom-def)
 then show ?thesis using evall}\mp@subsup{\mathrm{ -ground}}{ts}{}[of ts - ?G P] ts-ground Pos by
 auto
next
case (Neg Pts)
from Neg l-p C-ground have ts-ground: ground ts ts by auto
have }\neg\mp@subsup{\mathrm{ falsifies }}{l}{}(f(Suc n))l using l-p by aut
then have f (Suc n)!?i = False
using j-n Neg ts-ground empty-subts[of ts] unfolding falsifiesl-def by auto
moreover have f(Suc ?i)!?i=f(Suc n)!?i
using f-infpath i-n j-n infpath-length[of f] ith-in-extension[of f] by simp
ultimately
have f (Suc ?i)! ?i = False using Neg by auto
then have }\neg\mathrm{ ? G P (hterms-of-ftermsts) using Neg by (simp add: nat-from-fatom-def)
then show ?thesis using Neg eval l-ground ts [of ts - ?G P] ts-ground by
auto
qed
then have }\existsl\inC.\mp@subsup{eval}{l}{}E HFun (extend f) l using l-p by aut
}
then have evalc HFun (extend f) C unfolding evalc-def by auto
then show ?thesis using instance-of ls-self by auto
qed
lemma extend-preserves-model2:
assumes f-infpath:wf-infpath (f :: nat }=>\mathrm{ partial-pred-denot)
assumes C-ground: ground ds C
assumes fin-c: finite C
assumes model-C: }\foralln.\neg\mp@subsup{\mathrm{ falsifies }}{c}{}(fn)
shows C-false: evalc HFun (extend f) C
proof -
- Since C is finite, C has a largest index of a literal.
obtain n where largest: }\foralll\inC\mathrm{ . nat-from-fatom (get-atom l)}\leqn\mathrm{ using fin-c
maximum[of C \lambdal. nat-from-fatom (get-atom l)] by blast
moreover
then have }\neg\mp@subsup{\mathrm{ falsifies }}{c}{}(f(Suc n))C using model-C by auto
ultimately show ?thesis using model-C f-infpath C-ground extend-preserves-model[of
fCn] by blast
qed

```
```

lemma extend-infpath:
assumes f-infpath:wf-infpath (f :: nat }=>\mathrm{ partial-pred-denot)
assumes model-c: }\foralln.\neg\mp@subsup{\mathrm{ falsifies }}{c}{}(fn)
assumes fin-c: finite C
shows evalc HFun (extend f)C
unfolding evalc
fix }
let ?G = extend f
let ? }\sigma=\mathrm{ sub-of-denot E

```
    from fin-c have fin-c \(\sigma\) : finite \((C \cdot l s\) sub-of-denot \(E\) ) by auto
    have groundco: ground \(l_{l s}\left(C \cdot{ }_{l s}\right.\) sub-of-denot \(\left.E\right)\) using sub-of-denot-equiv-ground
by auto
- Here starts the proof
- We go from syntactic FO world to syntactic ground world:
from model-c have \(\forall n\). \(\neg\) falsifies \(_{c}(f n)\left(C \cdot l_{s}\right.\) ? \(\left.\sigma\right)\) using partial-equiv-subst by blast
- Then from syntactic ground world to semantic ground world:
then have eval \(_{c} H F\) un ? \(G\left(C \cdot l_{s}\right.\) ? \(\sigma\) ) using groundc \(\sigma\) f-infpath fin-c \(\sigma\) extend-preserves-model2[of \(f C \cdot l_{s}\) ? \(\left.\sigma\right]\) by blast
- Then from semantic ground world to semantic FO world:
then have \(\forall E . \exists l \in\left(C \cdot_{l_{s}}\right.\) ? \(\left.\sigma\right)\). eval \(E\) HFun ? \(G l\) unfolding \(e_{l} v_{c}\)-def by auto
then have \(\exists l \in(C \cdot l s\) ? \(\sigma)\). eval \(l_{l} E H F u n\) ? \(G l\) by auto
then show \(\exists l \in C\). eval \(l_{l} E H F u n\) ? \(G l\) using sub-of-denot-equiv-ground \([\) of \(C E\) extend \(f\) ] by blast
qed
If we have a infpath of partial models, then we have a model.
```

lemma infpath-model:
assumes f-infpath: wf-infpath (f :: nat \Rightarrow partial-pred-denot)
assumes model-cs: $\forall n . \neg$ falsifies $_{c s}(f n) C s$
assumes fin-cs: finite Cs
assumes fin-c: $\forall C \in C$. finite C
shows eval ${ }_{c s}$ HFun (extend f) Cs
proof -
let ? $F=H F u n$
have $\forall C \in C$. eval ${ }_{c}$? $F($ extend $f) C$
proof (rule balli)
fix C
assume asm: $C \in C s$
then have $\forall n$. \neg falsifies $_{c}(f n) C$ using model-cs by auto
then show eval ${ }_{c}$?F (extend f) C using fin-c asm f-infpath extend-infpath[of
$f C]$ by auto
qed
then show evalcs $? F$ (extend f) Cs unfolding eval ${ }_{c s}$-def by auto

```
```

qed
fun deeptree :: nat }=>\mathrm{ tree where
deeptree 0 = Leaf
| deeptree (Suc n) = Branching (deeptree n) (deeptree n)
lemma branch-length: branch b (deeptree n) \Longrightarrowlength b=n
proof (induction n arbitrary: b)
case 0 then show ?case using branch-inv-Leaf by auto
next
case (Suc n)
then have branch b (Branching (deeptree n) (deeptree n)) by auto
then obtain }a\mp@subsup{b}{}{\prime}\mathrm{ where p:b=a\#b'^ branch b'(deeptree n) using branch-inv-Branching[of
b] by blast
then have length b}\mp@subsup{b}{}{\prime}=n\mathrm{ using Suc by auto
then show ?case using p by auto
qed
lemma infinity:
assumes inj: }\foralln :: nat. undiago (diago n)=
assumes all-tree: }\foralln:: nat. (diago n)\in tree
shows \negfinite tree
proof -
from inj all-tree have }\foralln.n=\mathrm{ undiago (diago n) ^(diago n) }\in\mathrm{ tree by auto
then have }\foralln.\existsds.n=\mathrm{ undiago ds ^ds E tree by auto
then have undiago 'tree = (UNIV :: nat set) by auto
then have \negfinite treeby (metis finite-imageI infinite-UNIV-nat)
then show ?thesis by auto
qed
lemma longer-falsifiesl:
assumes falsifiesl ds l
shows falsifiesl}\mp@subsup{l}{l}{(ds@d)l
proof -
let ?i = nat-from-fatom (get-atom l)
from assms have i-p:\mp@subsup{ground}{l}{}l\wedge? ? < length ds \wedgeds!?i = (\negsign l) unfolding
falsifiesl-def by meson
moreover
from i-p have ?i < length (ds@d) by auto
moreover
from i-p have (ds@d)!?i=(\negsign l) by (simp add: nth-append)
ultimately
show ?thesis unfolding falsifiesl-def by simp
qed
lemma longer-falsifiesg:
assumes \mp@subsup{\mathrm{ falsifies g}}{g}{}dsC
shows falsifiesg
proof -

```
```

 {
 fix l
 assume l\inC
 then have falsifies (ds @ d) l using assms longer-falsifiesl}\mp@subsup{l}{l}{}\mathrm{ by auto
 } then show ?thesis using assms by auto
 qed
lemma longer-falsifiesc}\mp@subsup{}{c}{
assumes falsifiesc}\mp@subsup{c}{c}{}ds
shows falsifiesc
proof -
from assms obtain C' where instance-of fls}\mp@subsup{C}{}{\prime}C^\mp@subsup{|}{}{\prime}Calsifiesggds C' by aut
moreover
then have falsifiesg
ultimately show ?thesis by auto
qed

```

We use this so that we can apply König's lemma.
lemma longer-falsifies:
assumes falsifies \(_{c s} d s\) Cs
shows falsifies \(_{c s}(d s @ d) C s\)
proof -
from assms obtain \(C\) where \(C \in C s \wedge\) falsifies \(_{c} d s C\) by auto
moreover
then have falsifies \(_{c}(d s @ d) C\) using longer-falsifies \({ }_{c}[o f C l s d]\) by blast
ultimately
show ?thesis by auto
qed
If all finite semantic trees have an open branch, then the set of clauses has a model.
theorem herbrand':
assumes openb: \(\forall T . \exists G\). open-branch \(G T\) Cs
assumes finite-cs: finite Cs \(\forall C \in C\). finite \(C\)
shows \(\exists G\). eval \(l_{c s}\) HFun \(G\) Cs
proof -
- Show T infinite:
let ?tree \(=\left\{G\right.\). \(\neg\) falsifies \(\left._{c s} G C s\right\}\)
let ?undiag \(=\) length
let ?diag \(=(\lambda l\). SOME b. open-branch b \((\) deeptree \(l) C s)::\) nat \(\Rightarrow\) partial-pred-denot
from openb have diag-open: \(\forall l\). open-branch (?diag l) (deeptree l) Cs
using someI-ex \([\) of \(\lambda b\). open-branch \(b\) (deeptree -) Cs] by auto
then have \(\forall n\). ?undiag (?diag \(n\) ) \(=n\) using branch-length by auto
moreover
have \(\forall n\). (?diag \(n) \in\) ?tree using diag-open by auto
ultimately
have \(\neg\) finite ?tree using infinity \([o f-\lambda n\). SOME b. open-branch \(b(-n) C s]\) by simp
- Get infinite path:
moreover
have \(\forall d s d\). \(\neg\) falsifies \(_{c s}(d s\) @ \(d) C s \longrightarrow \neg\) falsifies \(_{c s} d s C s\) using longer-falsifies[of Cs] by blast
then have \((\forall d s d . d s\) @ \(d \in\) ?tree \(\longrightarrow d s \in\) ?tree) by auto ultimately
have \(\exists c\). wf-infpath \(c \wedge(\forall n . c n \in\) ?tree) using konig[of ?tree] by blast then have \(\exists G\). wf-infpath \(G \wedge\left(\forall n\right.\). \(\neg\) falsifies \(\left._{c s}(G n) C s\right)\) by auto
- Apply above infpath lemma:
then show \(\exists G\). eval cs \(^{\text {HFun } G}\) Cs using infpath-model finite-cs by auto qed
lemma shorter-falsifies \({ }_{l}\) :
assumes falsifies \(_{l}(d s @ d) l\)
assumes nat-from-fatom (get-atom l) < length ds
shows falsifies \({ }_{l}\) ds l
proof -
let \(? i=\) nat-from-fatom (get-atom \(l\) )
from assms have \(i\) - \(p:\) ground \(d_{l} l \wedge ? i<l e n g t h ~(d s @ d) \wedge(d s @ d)!? i=(\neg\) sign
\(l\) ) unfolding falsifies \(_{l}-\) def by meson
moreover
then have ? \(i<l e n g t h ~ d s ~ u s i n g ~ a s s m s ~ b y ~ a u t o ~\)
moreover
then have \(d s!? i=(\neg \operatorname{sign} l)\) using \(i-p\) nth-append \([\) of \(d s d ? i]\) by auto
ultimately show ?thesis using assms unfolding falsifies \({ }_{l}\)-def by simp qed
theorem herbrand'-contra:
assumes finite-cs: finite \(C s \forall C \in C\). finite \(C\)
assumes unsat: \(\forall G\). eval \(_{\text {cs }}\) HFun \(G\) Cs
shows \(\exists T . \forall G\). branch \(G T \longrightarrow\) closed-branch \(G T C s\)
proof -
from finite-cs unsat have \(\forall T . \exists G\). open-branch \(G T C s \Longrightarrow \exists G\). eval \({ }_{c s}\) HFun \(G C s\) using herbrand' by blast
then show ?thesis using unsat by blast
qed
theorem herbrand:
assumes unsat: \(\forall G\). \(\neg e v a l_{c s} H F u n ~ G ~ C s ~\)
assumes finite-cs: finite \(C s \forall C \in C s\). finite \(C\)
shows \(\exists T\). closed-tree \(T C s\)
proof -
from unsat finite-cs obtain \(T\) where anybranch \(T(\lambda b\). closed-branch b \(T\) Cs) using herbrand'-contra[of Cs] by blast
then have \(\exists T\). anybranch \(T\left(\lambda p\right.\). falsifies \(\left._{c s} p C s\right) \wedge\) anyinternal \(T(\lambda p\). \(\neg\) falsifies \(_{c s} p\) (s)
using cutoff-branch-internal[of \(T \lambda\). falsifies \(\left.{ }_{c s} p C s\right]\) by blast
then show ?thesis unfolding closed-tree-def by auto
qed
end

\section*{16 Lifting Lemma}
theory Completeness imports Resolution begin
locale unification \(=\)
assumes unification: \(\wedge \sigma L\). finite \(L \Longrightarrow\) unifier \(_{l s} \sigma L \Longrightarrow \exists \vartheta . m g u_{l s} \vartheta L\)
begin
A proof of this assumption is available [5] in the IsaFoL project [2]. It uses a similar theorem from the IsaFoR [8] project.
lemma lifting:
assumes fin: finite \(C \wedge\) finite \(D\)
assumes apart: vars \(_{l_{s}} C \cap\) vars \(_{l s} D=\{ \}\)
assumes inst \(_{1}\) : instance-of \(l_{l s} C^{\prime} C\)
assumes inst \(_{2}\) : instance-of \(l_{l s} D^{\prime} D\)
assumes appl: applicable \(C^{\prime} D^{\prime} L^{\prime} M^{\prime} \sigma\)
shows \(\exists L M \tau\). applicable \(C D L M \tau \wedge\)
instance-of \(f_{l s}\left(\right.\) resolution \(\left.C^{\prime} D^{\prime} L^{\prime} M^{\prime} \sigma\right)(\) resolution \(C D L M \tau)\)
proof -
let ? \(C^{\prime}{ }_{1}=C^{\prime}-L^{\prime}\)
let \(? D^{\prime}{ }_{1}=D^{\prime}-M^{\prime}\)
from inst \(_{1}\) obtain \(l m b d\) where \(l m b d-p: C \cdot{ }_{l s} l m b d=C^{\prime}\) unfolding instance-of \({ }_{l s}\)-def by auto
from inst \(_{2}\) obtain \(\mu\) where \(\mu-p: D \cdot{ }_{l s} \mu=D^{\prime}\) unfolding instance-of \(l_{l s}\)-def by auto
from \(\mu-p l m b d-p\) apart obtain \(\eta\) where \(\eta-p: C \cdot l_{s} \eta=C^{\prime} \wedge D \cdot l_{s} \eta=D^{\prime}\) using merge-sub by force
from \(\eta\) - \(p\) have \(\exists L \subseteq C . L \cdot{ }_{l s} \eta=L^{\prime} \wedge(C-L) \cdot{ }_{l s} \eta=? C^{\prime}{ }_{1}\) using appl project-sub[of \(\left.\eta C C^{\prime} L^{\prime}\right]\) unfolding applicable-def by auto
then obtain \(L\) where \(L-p: L \subseteq C \wedge L \cdot l s \eta=L^{\prime} \wedge(C-L) \cdot l_{s} \eta=? C^{\prime}{ }_{1}\) by auto
let ? \(C_{1}=C-L\)
from \(\eta\)-p have \(\exists M \subseteq D . M \cdot{ }_{l s} \eta=M^{\prime} \wedge(D-M) \cdot{ }_{l s} \eta=? D^{\prime}{ }_{1}\) using appl project-sub[of \(\eta D D^{\prime} M^{\prime}\) ] unfolding applicable-def by auto
then obtain \(M\) where \(M-p: M \subseteq D \wedge M \cdot l_{s} \eta=M^{\prime} \wedge(D-M) \cdot l s \eta=? D^{\prime}{ }_{1}\) by auto
let ? \(D_{1}=D-M\)
from appl have mguls \(\sigma\left(L^{\prime} \cup M^{\prime C}\right)\) unfolding applicable-def by auto
then have \(m g u_{l s} \sigma\left(\left(L \cdot l_{s} \eta\right) \cup\left(M \cdot l_{s} \eta\right)^{C}\right)\) using \(L-p M-p\) by auto
then have \(m g u_{l s} \sigma\left(\left(L \cup M^{C}\right) \cdot l s \eta\right)\) using compls-subls subls-union by auto
then have unifier \(_{l s} \sigma\left(\left(L \cup M^{C}\right) \cdot l_{s} \eta\right)\) unfolding \(m g u_{l s}\)-def by auto
then have \(\eta \sigma\) uni: unifier \(_{l s}(\eta \cdot \sigma)\left(L \cup M^{C}\right)\)
unfolding unifier \(_{l s}\)-def using composition-conseq2l by auto
then obtain \(\tau\) where \(\tau-p\) : mgu \(u_{l s} \tau\left(L \cup M^{C}\right.\) ) using unification fin by (meson L-p M-p finite-UnI finite-imageI rev-finite-subset)
then obtain \(\varphi\) where \(\varphi-p: \tau \cdot \varphi=\eta \cdot \sigma\) using \(\eta \sigma u n i\) unfolding \(m g u_{l s}-\) def by auto
- Showing that we have the desired resolvent:
let \(? E=((C-L) \cup(D-M)) \cdot l_{s} \tau\)
have ? \(E \cdot{ }_{l s} \varphi=\left(? C_{1} \cup ? D_{1}\right) \cdot l_{s}(\tau \cdot \varphi)\) using subls-union composition-conseq2ls
by auto
also have \(\ldots=\left(? C_{1} \cup ? D_{1}\right) \cdot l_{s}(\eta \cdot \sigma)\) using \(\varphi-p\) by auto
also have \(\ldots=\left(\left(? C_{1} \cdot l_{s} \eta\right) \cup\left(? D_{1} \cdot l_{s} \eta\right)\right) \cdot l_{s} \sigma\) using subls-union composition-conseq2ls
by auto
also have \(\ldots=\left(? C^{\prime}{ }_{1} \cup ? D^{\prime}{ }_{1}\right) \cdot l_{s} \sigma\) using \(\eta-p L-p M-p\) by auto
finally have ? \(E \cdot{ }_{l s} \varphi=\left(\left(C^{\prime}-L^{\prime}\right) \cup\left(D^{\prime}-M^{\prime}\right)\right) \cdot{ }_{l s} \sigma\) by auto
then have inst: instance-of \({ }_{l s}\) (resolution \(C^{\prime} D^{\prime} L^{\prime} M^{\prime} \sigma\) ) (resolution C D L M
\(\tau)\)
unfolding resolution-def instance-of \(l_{l s}\)-def by blast
- Showing that the resolution is applicable:
\(\{\)
have \(C^{\prime} \neq\{ \}\) using appl unfolding applicable-def by auto then have \(C \neq\{ \}\) using \(\eta-p\) by auto
\} moreover \{
have \(D^{\prime} \neq\{ \}\) using appl unfolding applicable-def by auto then have \(D \neq\{ \}\) using \(\eta-p\) by auto
\} moreover \{
have \(L^{\prime} \neq\{ \}\) using appl unfolding applicable-def by auto
then have \(L \neq\{ \}\) using \(L\) - \(p\) by auto
\} moreover \{
have \(M^{\prime} \neq\{ \}\) using appl unfolding applicable-def by auto then have \(M \neq\{ \}\) using \(M-p\) by auto
\}
ultimately have appll: applicable C D L M \(\tau\)
using apart \(L-p\) M-p \(\tau-p\) unfolding applicable-def by auto
from inst appll show ?thesis by auto qed

\section*{17 Completeness}
```

lemma falsifiesg-empty:
assumes falsifiesg [] C
shows C={}
proof -
have }\foralll\inC\mathrm{ . False
proof
fix l

```
```

 assume l\inC
 then have falsifies [[] l using assms by auto
 then show False unfolding falsifiesl-def by (cases l) auto
 qed
 then show ?thesis by auto
 qed
lemma falsifies cs-empty:
assumes falsifiesc}\mp@subsup{c}{c}{[]}
shows C={}
proof -
from assms obtain C' where C'-p: instance-of fls }\mp@subsup{C}{}{\prime}C\wedge\mp@subsup{\mathrm{ falsifiesgg [] C ' by}}{}{\prime
auto
then have }\mp@subsup{C}{}{\prime}={}\mathrm{ using falsifies }\mp@subsup{\mp@code{g}}{g}{-empty by auto
then show C}={}\mathrm{ using C'-p unfolding instance-of }\mp@subsup{l}{ls}{}\mathrm{ -def by auto
qed
lemma complements-do-not-falsify':
assumes l1C1': l}\mp@subsup{l}{1}{}\in\mp@subsup{C}{1}{\prime}\mp@subsup{}{}{\prime
assumes l}\mp@subsup{l}{2}{C1':}\mp@subsup{l}{2}{}\in\mp@subsup{C}{1}{\prime}\mp@subsup{}{}{\prime
assumes comp: l}\mp@subsup{l}{1}{}=\mp@subsup{l}{2}{}\mp@subsup{}{}{c
assumes falsif: falsifiesg G C C }\mp@subsup{}{}{\prime
shows False
proof (cases ll}\mp@subsup{l}{1}{
case (Pos p ts)
let ?i1 = nat-from-fatom (}p,ts
from assms have gr: ground l}\mp@subsup{l}{1}{}\mathrm{ unfolding falsifiesl-def by auto
then have Neg: l}\mp@subsup{l}{2}{}=Neg p ts using comp Pos by (cases l l) aut
from falsif have falsifiesl}G\mp@subsup{l}{1}{}\mathrm{ using l1C1' by auto
then have G! ?i1 = False using l1C1' Pos unfolding falsifiesl-def by (induction
Pos p ts) auto
moreover
let ?i2 = nat-from-fatom (get-atom l l)
from falsif have falsifiesl G l }\mp@subsup{l}{2}{}\mathrm{ using l l2 C1' by auto
then have G!?i2 = (\negsign l l) unfolding falsifiesl-def by meson
then have G! ?i1 = (\negsign l l) using Pos Neg comp by simp
then have G!?i1 = True using Neg by auto
ultimately show ?thesis by auto
next
case (Neg pts)
let ?i1 = nat-from-fatom (}p,ts
from assms have gr: ground l}\mp@subsup{l}{1}{}\mathrm{ unfolding falsifiesl}\mp@subsup{l}{-}{-def by auto
then have Pos: ll = Pos p ts using comp Neg by (cases l l) auto
from falsif have falsifiesl G l l using l1C1' by auto
then have G!?i1 = True using l1C1' Neg unfolding falsifiesl-def by (metis

```
```

get-atom.simps(2) literal.disc(2))
moreover
let ?i2 = nat-from-fatom (get-atom l }\mp@subsup{l}{2}{}
from falsif have falsifiesl G l l using l }\mp@subsup{l}{2}{}C1' by aut
then have G! ?i2 = (\negsign l l) unfolding falsifiesl
then have G! ?i1 = (\negsign l l) using Pos Neg comp by simp
then have G!?i1 = False using Pos using literal.disc(1) by blast
ultimately show ?thesis by auto
qed
lemma complements-do-not-falsify:
assumes l1C1': l}\mp@subsup{l}{1}{}\in\mp@subsup{C}{1}{\prime
assumes l}\mp@subsup{l}{2}{C1':}\mp@subsup{l}{2}{}\in\mp@subsup{C}{1}{\prime
assumes fals: falsifiesg}\mp@subsup{g}{}{\prime}\mp@subsup{C}{1}{\prime}\mp@subsup{}{}{\prime
shows l}\mp@subsup{l}{1}{}\not=\mp@subsup{l}{2}{}\mp@subsup{}{}{c
using assms complements-do-not-falsify' by blast
lemma other-falsified:
assumes C1'-p: ground ds }\mp@subsup{C}{1}{\prime}\mp@subsup{}{}{\prime}\wedge\mp@subsup{\mathrm{ falsifies }}{g}{}(B@[d])\mp@subsup{C}{1}{\prime
assumes l-p:l\inC C1' nat-from-fatom (get-atom l) = length B
assumes other: lo \in C C1' lo }\not=
shows falsifiesl B lo
proof -
let ?i = nat-from-fatom (get-atom lo)
have ground-l}\mp@subsup{l}{2}{}:\mp@subsup{\mathrm{ ground}}{l}{}l\mathrm{ using l-p C1'-p by auto
- They are, of course, also ground:
have ground-lo: ground}\mp@subsup{l}{l}{lo using C1'-p other by auto
from C1'-p have falsifiesg}(B@[d])(\mp@subsup{C}{1}{\prime}-{l})\mathrm{ by auto
- And indeed, falsified by B @ [d]:
then have lo\mp@subsup{B}{2}{}:\mathrm{ falsifies (}(B@[d])\mathrm{ lo using other by auto}
then have ?i < length (B @ [d]) unfolding falsifiesl-def by meson
- And they have numbers in the range of B@ [d], i.e. less than length B + 1:
then have nat-from-fatom (get-atom lo) < length B + 1 using undiag-diag-fatom
by (cases lo) auto
moreover
have l-lo:l\not=lo using other by auto
- The are not the complement of l, since then the clause could not be falsified:
have lc-lo:lo f l c using C1'-p l-p other complements-do-not-falsify[of lo C C1'l
(B@[d])] by auto
from l-lo lc-lo have get-atom l = get-atom lo using sign-comp-atom by metis
then have nat-from-fatom (get-atom lo) }\not=\mathrm{ nat-from-fatom (get-atom l)
using nat-from-fatom-bij ground-lo ground-l l2 ground d}\mp@subsup{l}{l}{}\mathrm{ -ground-fatom
unfolding bij-betw-def inj-on-def by metis
- Therefore they have different numbers:
then have nat-from-fatom (get-atom lo) \# length B using l-p by auto
ultimately
- So their numbers are in the range of B:
have nat-from-fatom (get-atom lo) < length B by auto
- So we did not need the last index of B @ [d] to falsify them, i.e. B suffices:

```
then show falsifies \({ }_{l} B\) lo using lo \(_{2}\) shorter-falsifies \(_{l}\) by blast qed
theorem completeness':
shows closed-tree \(T C s \Longrightarrow \forall C \in C\) s. finite \(C \Longrightarrow \exists C s^{\prime}\). resolution-deriv \(C s{ }^{\prime}{ }^{\prime}\)
\(\wedge\left\} \in C s^{\prime}\right.\)
proof (induction \(T\) arbitrary: Cs rule: measure-induct-rule[of treesize])
fix \(T\) ::tree
fix \(C s\) :: fterm clause set
assume ih: \(\left(\bigwedge T^{\prime}\right.\) Cs. treesize \(T^{\prime}<\) treesize \(T \Longrightarrow\) closed-tree \(T^{\prime} C s \Longrightarrow \forall C \in C s\).
finite \(C \Longrightarrow\)
\(\exists C s^{\prime}\). resolution-deriv \(\left.C s C s^{\prime} \wedge\{ \} \in C s^{\prime}\right)\)
assume clo: closed-tree TCs
assume finite-Cs: \(\forall C \in C s\). finite \(C\)
\{ - Base case:
assume treesize \(T=0\)
then have \(T=\) Leaf using treesize-Leaf by auto
then have closed-branch [] Leaf Cs using branch-inv-Leaf clo unfolding closed-tree-def by auto
then have falsifies \(_{c s}\) [] Cs by auto
then have \(\left\} \in C s\right.\) using falsifies \(_{c s}\)-empty by auto
then have \(\exists C s^{\prime}\). resolution-deriv Cs \(C s^{\prime} \wedge\{ \} \in C s^{\prime}\) unfolding resolution-deriv-def by auto \}
moreover
\{ - Induction case:
assume treesize \(T>0\)
then have \(\exists l r\). \(T=\) Branching \(l r\) by (cases \(T\) ) auto
- Finding sibling branches and their corresponding clauses:
then obtain \(B\) where \(b\)-p: internal \(B T \wedge\) branch \((B @[T r u e]) T \wedge\) branch (B@[False]) T
using internal-branch[of - [] - T] Branching-Leaf-Leaf-Tree by fastforce
let ? \(B_{1}=B @[\) True \(]\)
let ? \(B_{2}=B @[\) False \(]\)
obtain \(C_{1} o\) where \(C_{1} o-p: C_{1} o \in C s \wedge\) falsifies \(_{c}\) ? \(B_{1} C_{1} o\) using b-p clo unfolding closed-tree-def by metis
obtain \(C_{2} o\) where \(C_{2} o-p: C_{2} o \in C s \wedge\) falsifies \(_{c} ?_{2} B_{2} C_{2} o\) using b-p clo unfolding closed-tree-def by metis
- Standardizing the clauses apart:
let ? \(C_{1}=s t d_{1} C_{1} o\)
let ? \(C_{2}=s t d_{2} C_{2} o\)
have \(C_{1}-p\) : falsifies \({ }_{c}\) ? \(B_{1}\) ? \(C_{1}\) using \(s_{1} d_{1}\)-falsifies \(C_{1} o-p\) by auto
have \(C_{2}-p\) : falsifies \({ }_{c}\) ? \(B_{2}\) ? \(C_{2}\) using std \(_{2}\)-falsifies \(C_{2} o-p\) by auto
have fin: finite ? \(C_{1} \wedge\) finite ? \(C_{2}\) using \(C_{1} o-p C_{2} o-p\) finite- \(C s\) by auto
- We go down to the ground world.
— Finding the falsifying ground instance \(C_{1}{ }^{\prime}\) of \(C_{1} o \cdot_{l s}\left(\lambda x . \varepsilon\left({ }^{\prime \prime} 1^{\prime \prime} @ x\right)\right)\), and proving properties about it:
\(-C_{1}{ }^{\prime}\) is falsified by \(B\) @ [True]:
from \(C_{1}-p\) obtain \(C_{1}{ }^{\prime}\) where \(C_{1}{ }^{\prime}-p\) : ground \(l_{l s} C_{1}{ }^{\prime} \wedge\) instance-of \({ }_{l s} C_{1}{ }^{\prime}{ }^{?}{ }^{\prime} C_{1}\) \(\wedge\) falsifies \(_{g}\) ? \(B_{1} C_{1}{ }^{\prime}\) by metis
have \(\neg\) falsifies \(_{c} B C_{1} o\) using \(C_{1} o-p b-p\) clo unfolding closed-tree-def by metis
then have \(\neg\) falsifies \(_{c} B\) ? \(C_{1}\) using std \({ }_{1}\)-falsifies using prod.exhaust-sel by blast
\(-C_{1}{ }^{\prime}\) is not falsified by \(B\) :
then have \(l\) - \(B\) : \(\neg\) falsifies \(_{g} B C_{1}{ }^{\prime}\) using \(C_{1}{ }^{\prime}\)-p by auto
\(-C_{1}{ }^{\prime}\) contains a literal \(l_{1}\) that is falsified by \(B\) @ [True], but not \(B\) :
from \(C_{1}{ }^{\prime}-p l-B\) obtain \(l_{1}\) where \(l_{1}-p: l_{1} \in C_{1}{ }^{\prime} \wedge\) falsifies \(_{l}(B @[\) True \(]) l_{1} \wedge\) \(\neg\left(\right.\) falsifies \(\left._{l} B l_{1}\right)\) by auto
let \(? i=\) nat-from-fatom \(\left(\right.\) get-atom \(\left.l_{1}\right)\)
- \(l_{1}\) is of course ground:
have ground- \(l_{1}\) : ground \(l_{l} l_{1}\) using \(C_{1}{ }^{\prime}-p l_{1}-p\) by auto
from \(l_{1}-p\) have \(\neg\left(? i<\right.\) length \(B \wedge B!? i=\left(\neg\right.\) sign \(\left.\left.l_{1}\right)\right)\) using ground \(l_{1}\) unfolding falsifies \(_{l}\)-def by meson
then have \(\neg\left(? i<\right.\) length \(B \wedge(B @[\) True \(])!? i=\left(\neg\right.\) sign \(\left.\left.l_{1}\right)\right)\) by (metis \(n t h-a p p e n d)\) - Not falsified by \(B\).
moreover
from \(l_{1}-p\) have \(? i<\) length \((B\) @ \([\) True \(]) \wedge(B @[\) True \(])!? i=\left(\neg \operatorname{sign} l_{1}\right)\) unfolding falsifies \({ }_{l}\)-def by meson
ultimately
have \(l_{1}\)-sign-no: \(? i=\) length \(B \wedge(B @[\) True \(])!? i=\left(\neg \operatorname{sign} l_{1}\right)\) by auto
- \(l_{1}\) is negative:
from \(l_{1}\)-sign-no have \(l_{1}\)-sign: sign \(l_{1}=\) False by auto
from \(l_{1}\)-sign-no have \(l_{1}\)-no: nat-from-fatom (get-atom \(\left.l_{1}\right)=\) length \(B\) by auto
- All the other literals in \(C_{1}{ }^{\prime}\) must be falsified by B , since they are falsified by \(B @[\) True \(]\), but not \(l_{1}\).
from \(C_{1}{ }^{\prime}-p l_{1}\)-no \(l_{1}-p\) have \(B-C_{1}{ }^{\prime} l_{1}\) : falsifies \({ }_{g} B\left(C_{1}{ }^{\prime}-\left\{l_{1}\right\}\right)\)
using other-falsified by blast
— We do the same exercise for \(C_{2} o \cdot l s\left(\lambda x \cdot \varepsilon\left({ }^{\prime \prime} 2^{\prime \prime} @ x\right)\right), C_{2}{ }^{\prime}, B\) @ False], \(l_{2}\) :
from \(C_{2}-p\) obtain \(C_{2}{ }^{\prime}\) where \(C_{2}{ }^{\prime}-p\) : ground \(_{l s} C_{2}{ }^{\prime} \wedge\) instance-of \({ }_{l s} C_{2}{ }^{\prime}{ }^{?} C_{2}\) \(\wedge\) falsifies \(_{g}\) ? \(B_{2} C_{2}{ }^{\prime}\) by metis
have \(\neg\) falsifies \(_{c} B C_{2} o\) using \(C_{2} o-p\) b-p clo unfolding closed-tree-def by metis
then have \(\neg\) falsifies \(_{c} B ?_{2} C_{2}\) using std \({ }_{2}\)-falsifies using prod.exhaust-sel by blast
then have l-B: \(\neg\) falsifies \(_{g} B C_{2}{ }^{\prime}\) using \(C_{2}{ }^{\prime}-p\) by auto
\(-C_{2}{ }^{\prime}\) contains a literal \(l_{2}\) that is falsified by \(B\) @ [False], but not B:
from \(C_{2}{ }^{\prime}-p l-B\) obtain \(l_{2}\) where \(l_{2}-p: l_{2} \in C_{2}{ }^{\prime} \wedge\) falsifies \(_{l}(B @[\) False \(]) l_{2} \wedge\) \(\neg\) falsifies \(_{l} B l_{2}\) by auto
let \(? i=\) nat-from-fatom \(\left(\right.\) get-atom \(\left.l_{2}\right)\)
have ground- \(l_{2}\) : ground \(l_{l} l_{2}\) using \(C_{2}{ }^{\prime}-p l_{2}-p\) by auto
from \(l_{2}-p\) have \(\neg\left(? i<\right.\) length \(B \wedge B!? i=\left(\neg\right.\) sign \(\left.\left.l_{2}\right)\right)\) using ground- \(l_{2}\) unfolding falsifies \(_{l}\)-def by meson
then have \(\neg\left(? i<\right.\) length \(B \wedge(B @[\) False \(])!? i=\left(\neg\right.\) sign \(\left.\left.l_{2}\right)\right)\) by (metis nth-append) - Not falsified by \(B\).
moreover
from \(l_{2}-p\) have \(? i<\) length \((B @[F a l s e]) \wedge(B @[F a l s e])!? i=\left(\neg \operatorname{sign} l_{2}\right)\) unfolding falsifies \({ }_{l}\)-def by meson
ultimately
have \(l_{2}\)-sign-no: ? \(i=\) length \(B \wedge(B @[F a l s e])!? i=\left(\neg\right.\) sign \(\left.l_{2}\right)\) by auto
- \(l_{2}\) is negative:
from \(l_{2}\)-sign-no have \(l_{2}\)-sign: sign \(l_{2}=T r u e\) by auto
from \(l_{2}\)-sign-no have \(l_{2}\)-no: nat-from-fatom (get-atom \(l_{2}\) ) length \(B\) by auto
- All the other literals in \(C_{2}{ }^{\prime}\) must be falsified by B, since they are falsified by \(B @[\) False \(]\), but not \(l_{2}\).
from \(C_{2}{ }^{\prime}-p l_{2}-n o l_{2}-p\) have \(B-C_{2}{ }^{\prime} l_{2}\) : falsifies \(g\left(C_{2}{ }^{\prime}-\left\{l_{2}\right\}\right)\)
using other-falsified by blast
- Proving some properties about \(C_{1}{ }^{\prime}\) and \(C_{2}{ }^{\prime}, l_{1}\) and \(l_{2}\), as well as the resolvent of \(C_{1}{ }^{\prime}\) and \(C_{2}{ }^{\prime}\) :
have \(l_{2}\) cis \(_{1}: l_{2}{ }^{c}=l_{1}\)
proof -
from \(l_{1}\)-no \(l_{2}\)-no ground- \(l_{1}\) ground- \(l_{2}\) have get-atom \(l_{1}=\) get-atom \(l_{2}\) using nat-from-fatom-bij ground \(d_{l}\)-ground-fatom unfolding bij-betw-def inj-on-def by metis
then show \(l_{2}{ }^{c}=l_{1}\) using \(l_{1}\)-sign \(l_{2}\)-sign using sign-comp-atom by metis qed
have applicable \(C_{1}{ }^{\prime} C_{2}{ }^{\prime}\left\{l_{1}\right\}\left\{l_{2}\right\}\) Resolution. \(\varepsilon\) unfolding applicable-def
using \(l_{1}-p l_{2}-p C_{1}^{\prime}-p\) ground \(_{l s}\)-vars \(l_{l s} l_{2}\) cisl \(_{1}\) empty-comp2 unfolding \(m g u_{l s}\)-def unifier \(_{l s}\)-def by auto
— Lifting to get a resolvent of \(C_{1} o \cdot l_{s}\left(\lambda x . \varepsilon\left({ }^{\prime \prime} 1^{\prime \prime} @ x\right)\right)\) and \(C_{2} o \cdot l_{s}(\lambda x . \varepsilon\) ( \({ }^{\prime \prime}\) 2' \(\left.^{\prime \prime} @ x\right)\) ):
then obtain \(L_{1} L_{2} \tau\) where \(L_{1} L_{2} \tau-p\) : applicable ? \(C_{1} ?_{2} C_{2} L_{1} L_{2} \tau \wedge\) instance-of \({ }_{l s}\) (resolution \(C_{1}{ }^{\prime} C_{2}{ }^{\prime}\left\{l_{1}\right\}\left\{l_{2}\right\}\) Resolution. \(\varepsilon\) ) (resolution? \(C_{1}\) ? \(C_{2} L_{1}\) \(\left.L_{2} \tau\right)\)
using std-apart-apart \(C_{1}{ }^{\prime}-p C_{2}^{\prime}\)-p lifting[of ? \(C_{1}\) ? \(C_{2} C_{1}^{\prime \prime} C_{2}^{\prime}\) \{ \(\left\{l_{1}\right\}\left\{l_{2}\right\}\)
- Defining the clause to be derived, the new clausal form and the new tree:
- We name the resolvent \(C\).
obtain \(C\) where \(C\) - \(p: C=\) resolution ? \(C_{1}{ }^{?}{ }^{?} C_{2} L_{1} L_{2} \tau\) by auto
obtain CsNext where CsNext-p: CsNext \(=C s \cup\left\{? C_{1}, ? C_{2}, C\right\}\) by auto obtain \(T^{\prime \prime}\) where \(T^{\prime \prime}-p: T^{\prime \prime}=\) delete \(B T\) by auto
- Here we delete the two branch children \(B\) @ [True] and \(B\) @ [False] of \(B\).
- Our new clause is falsified by the branch \(B\) of our new tree:
have falsifies \(_{g} B\left(\left(C_{1}{ }^{\prime}-\left\{l_{1}\right\}\right) \cup\left(C_{2}{ }^{\prime}-\left\{l_{2}\right\}\right)\right)\) using \(B-C_{1}{ }^{\prime} l_{1} B-C_{2}{ }^{\prime} l_{2}\) by cases auto
then have falsifies \({ }_{g} B\) (resolution \(C_{1}{ }^{\prime} C_{2}{ }^{\prime}\left\{l_{1}\right\}\left\{l_{2}\right\}\) Resolution. \(\varepsilon\) ) unfolding resolution-def empty-subls by auto
then have falsifies- \(C\) : falsifies \(_{c} B C\) using \(C-p L_{1} L_{2} \tau-p\) by auto
have \(T^{\prime \prime}\)-smaller: treesize \(T^{\prime \prime}<\) treesize \(T\) using treezise-delete \(T^{\prime \prime}-p b-p\) by auto
have \(T^{\prime \prime}\)-bran: anybranch \(T^{\prime \prime}\left(\lambda\right.\) b. closed-branch b \(T^{\prime \prime}\) CsNext)
proof (rule allI; rule impI)
fix \(b\)
assume br: branch \(b T^{\prime \prime}\)
from \(b r\) have \(b=B \vee\) branch \(b T\) using branch-delete \(T^{\prime \prime}{ }^{-} p\) by auto then show closed-branch b \(T^{\prime \prime}\) CsNext proof
assume \(b=B\)
then show closed-branch b \(T^{\prime \prime}\) CsNext using falsifies-C br CsNext-p by auto next
assume branch \(b T\)
then show closed-branch b \(T^{\prime \prime}\) CsNext using clo br \(T^{\prime \prime}-p\) CsNext-p unfolding closed-tree-def by auto qed
qed
then have \(T^{\prime \prime}\)-bran2: anybranch \(T^{\prime \prime}\left(\lambda b\right.\). falsifies \({ }_{c s} b\) CsNext) by auto
- We cut the tree even smaller to ensure only the branches are falsified, i.e. it is a closed tree:
obtain \(T^{\prime}\) where \(T^{\prime}-p: T^{\prime}=\) cutoff \(^{\prime}\left(\lambda G\right.\). falsifies \(_{c s} G\) CsNext) []\(T^{\prime \prime}\) by auto
have \(T^{\prime}\)-smaller: treesize \(T^{\prime}<\) treesize \(T\) using treesize-cutoff [of \(\lambda G\). falsifies \({ }_{c s}\) \(G\) CsNext [] \(\left.T^{\prime \prime}\right] T^{\prime \prime}\)-smaller unfolding \(T^{\prime}-p\) by auto
from \(T^{\prime \prime}\)-bran2 have anybranch \(T^{\prime}\left(\lambda\right.\) b \(^{\prime}\) falsifies \(_{c s} b\) CsNext \()\) using cutoff-branch \([\) of \(T^{\prime \prime} \lambda b\). falsifies \(_{c s} b\) CsNext \(] T^{\prime}-p\) by auto
then have \(T^{\prime}\)-bran: anybranch \(T^{\prime}\left(\lambda b\right.\). closed-branch \(\left.b T^{\prime} C s N e x t\right)\) by auto
have \(T^{\prime}\)-intr: anyinternal \(T^{\prime}\left(\lambda p\right.\). \(\neg\) falsifies \(_{c s} p\) CsNext) using \(T^{\prime}-p\) cutoff-internal \([o f\) \(T^{\prime \prime} \lambda b\). falsifies \(_{c s} b\) CsNext] \(T^{\prime \prime}\)-bran2 by blast
have \(T^{\prime}\)-closed: closed-tree \(T^{\prime}\) CsNext using \(T^{\prime}\)-bran \(T^{\prime}\)-intr unfolding using finite-Cs fin by auto
- By induction hypothesis we get a resolution derivation of \(\}\) from our new clausal form:
from \(T^{\prime}\)-smaller \(T^{\prime}\)-closed have \(\exists C s^{\prime \prime}\). resolution-deriv CsNext Cs \({ }^{\prime \prime} \wedge\{ \} \in\) Cs" using ih[of \(T^{\prime}\) CsNext] finite-CsNext by blast
then obtain \(C s^{\prime \prime}\) where \(C s^{\prime \prime}-p\) : resolution-deriv CsNext \(C s^{\prime \prime} \wedge\{ \} \in C s^{\prime \prime}\) by auto

\section*{moreover}
\{ - Proving that we can actually derive the new clausal form:
have resolution-step \(C s\left(C s \cup\left\{? C_{1}\right\}\right)\) using std \({ }_{1}\)-renames standardize-apart \(C_{1} o-p\) by (metis Un-insert-right)
moreover
have resolution-step \(\left(C s \cup\left\{? C_{1}\right\}\right)\left(C s \cup\left\{? C_{1}\right\} \cup\left\{? C_{2}\right\}\right)\) using std \({ }_{2}\)-renames \([o f\) \(C_{2} o\) ] standardize-apart \(\left[o f C_{2} o-? C_{2}\right] C_{2} o-p\) by auto
then have resolution-step \(\left(C s \cup\left\{? C_{1}\right\}\right)\left(C s \cup\left\{? C_{1}, ? C_{2}\right\}\right)\) by (simp add: insert-commute)
moreover
then have resolution-step \(\left(C s \cup\left\{? C_{1}, ? C_{2}\right\}\right)\left(C s \cup\left\{? C_{1}, ? C_{2}\right\} \cup\{C\}\right)\)
using \(L_{1} L_{2} \tau-p\) resolution-rule \(\left[o f ? C_{1} C s \cup\left\{? C_{1}, ? C_{2}\right\} ? C_{2} L_{1} L_{2} \tau\right]\) using \(C-p\) by auto
then have resolution-step ( \(C s \cup\left\{\right.\) ? \(\left.C_{1}, ? C_{2}\right\}\) ) CsNext using CsNext-p by (simp add: Un-commute)
ultimately
have resolution-deriv Cs CsNext unfolding resolution-deriv-def by auto

\section*{\}}
- Combining the two derivations, we get the desired derivation from Cs of \(\}\) :
ultimately have resolution-deriv \(C s C s^{\prime \prime}\) unfolding resolution-deriv-def by auto
then have \(\exists C s^{\prime}\). resolution-deriv \(C s C s^{\prime} \wedge\{ \} \in C s^{\prime}\) using \(C s^{\prime \prime}-p\) by auto \}
ultimately show \(\exists C s^{\prime}\). resolution-deriv \(C s C s^{\prime} \wedge\{ \} \in C s^{\prime}\) by auto qed
theorem completeness:
assumes finite-cs: finite Cs \(\forall C \in C s\). finite \(C\)
assumes unsat: \(\forall(F:: h t e r m\) fun-denot \()\left(G:: h t e r m\right.\) pred-denot) . \(\neg\) eval \({ }_{c s} F G C s\) shows \(\exists C s^{\prime}\). resolution-deriv \(C s C s^{\prime} \wedge\{ \} \in C s^{\prime}\)
proof -
from unsat have \(\forall(G::\) hterm pred-denot \()\). \(\neg\) eval \(_{\text {cs }} H F u n G\) Cs by auto
then obtain \(T\) where closed-tree \(T C s\) using herbrand assms by blast
then show \(\exists C s^{\prime}\). resolution-deriv \(C s C s^{\prime} \wedge\{ \} \in C s^{\prime}\) using completeness' assms by auto
qed
end - unification locale
end

\section*{18 Examples}
theory Examples imports Resolution begin
```

value Var " x "
value Fun "one" []
value Fun "mul" [Var " $y^{\prime \prime}$, Var $\left.{ }^{\prime \prime} y^{\prime \prime}\right]$
value Fun "add" [Fun "mul" [Var "y", Var " ${ }^{\prime \prime}$ '], Fun "one" []]
value Pos " greater" [Var " x ", Var " $y^{\prime \prime}$]
value Neg "less" [Var " ${ }^{\prime \prime}$ ", Var " $y^{\prime \prime}$]
value Pos "less" [Var "x", Var " $y^{\prime \prime}$]
value Pos "equals"
[Fun "add'"[Fun "mul'[${ }^{\prime \prime}$ Var ${ }^{\prime \prime} y^{\prime \prime}$, Var " $\left.y^{\prime \prime}\right]$, Fun "one $\left.{ }^{\prime \prime}[]\right]$, Var " $\left.x^{\prime \prime}\right]$
fun $F_{\text {nat }}::$ nat fun-denot where
$F_{n a t} f[n, m]=$
(if $f={ }^{\prime \prime}$ add" then $n+m$ else
if $f={ }^{\prime \prime}$ mul" then $n * m$ else 0)
| $F_{\text {nat }} f[]=$
(if $f=$ "one" then 1 else
if $f=$ "zero" then 0 else 0)
| $F_{\text {nat }} f u s=0$
fun $G_{\text {nat }}::$ nat pred-denot where
$G_{\text {nat }} p[x, y]=$
(if $p=$ "less" $\wedge x<y$ then True else
if $p=$ "greater" $\wedge x>y$ then True else
if $p={ }^{\prime \prime}$ equals" $\wedge x=y$ then True else False)
| $G_{\text {nat }} p$ us $=$ False
fun $E_{\text {nat }}::$ nat var-denot where
$E_{\text {nat }} x=$
(if $x={ }^{\prime \prime} x^{\prime \prime}$ then 26 else
if $x={ }^{\prime \prime} y$ " then 5 else 0)
lemma evalt $E_{\text {nat }} F_{\text {nat }}\left(\operatorname{Var}^{\prime \prime} x^{\prime \prime}\right)=26$
by auto
lemma eval $_{t} E_{\text {nat }} F_{\text {nat }}($ Fun "'one" []$)=1$
by auto
lemma eval $E_{\text {nat }} F_{\text {nat }}\left(\right.$ Fun $^{\prime \prime} \mathrm{mul}^{\prime \prime}\left[\right.$ Var $^{\prime \prime} y^{\prime \prime}$, Var $\left.\left.{ }^{\prime \prime} y^{\prime \prime}\right]\right)=25$
by auto
lemma
eval $E_{\text {nat }} F_{n a t}\left(\right.$ Fun "add" $\left[\right.$ Fun "mul" $\left[\right.$ Var " $y^{\prime \prime}$, Var " $\left.y^{\prime \prime}\right]$, Fun "one" []$\left.]\right)=$
26
by auto

```
```

lemma evall $E_{\text {nat }} F_{\text {nat }} G_{\text {nat }}\left(\right.$ Pos "greater" $\left[\right.$ Var " $x^{\prime \prime}$, Var " $\left.y^{\prime \prime}\right]$) $=$ True
by auto
lemma evall $E_{\text {nat }} F_{\text {nat }} G_{\text {nat }}\left(\right.$ Neg "less" $\left[\right.$ Var " $x^{\prime \prime}$, Var " $\left.\left.y^{\prime \prime}\right]\right)=$ True
by auto
lemma evall $E_{\text {nat }} F_{\text {nat }} G_{\text {nat }}\left(\right.$ Pos "less" $^{\prime}\left[\right.$ Var " $^{\prime \prime} x^{\prime \prime}$, Var " $\left.\left.y^{\prime}\right]\right)=$ False
by auto
lemma eval $_{l} E_{\text {nat }} F_{\text {nat }} G_{\text {nat }}$
(Pos "equals"
[Fun "add" [Fun "mul" [Var ' ${ }^{\prime \prime}$ ", Var '" $\left.y^{\prime \prime}\right]$, Fun "one" []
, Var " x ']
) $=$ True
by auto
definition $P P$:: fterm literal where
$P P=$ Pos ${ }^{\prime \prime} P^{\prime \prime}\left[\right.$ Fun " $\left.c^{\prime \prime}[]\right]$
definition $P Q$:: fterm literal where
$P Q=$ Pos ${ }^{\prime \prime} Q^{\prime \prime}\left[\right.$ Fun " ${ }^{\prime \prime} d^{\prime \prime}[]$
definition $N P$:: fterm literal where
$N P=N e g{ }^{\prime \prime} P^{\prime \prime}\left[\right.$ Fun $\left.{ }^{\prime \prime} c^{\prime \prime}[]\right]$
definition $N Q$:: fterm literal where
$N Q=N e g{ }^{\prime \prime} Q^{\prime \prime}\left[F u n{ }^{\prime \prime} d^{\prime \prime}[]\right]$
theorem empty-mgu: unifier $_{l s} \varepsilon L \Longrightarrow m g u_{l s} \varepsilon L$
unfolding unifier $_{l s}$-def $\mathrm{mgu}_{l s}$-def apply auto
apply (rule-tac $x=u$ in exI)
using empty-comp1 empty-comp2 apply auto
done
theorem unifier-single: unifier $_{l s} \sigma\{l\}$
unfolding unifier $_{l s}-$ def by auto
theorem resolution-rule':
$C_{1} \in C s \Longrightarrow C_{2} \in C s \Longrightarrow$ applicable $C_{1} C_{2} L_{1} L_{2} \sigma$
$\Longrightarrow C=\left\{\right.$ resolution $\left.C_{1} C_{2} L_{1} L_{2} \sigma\right\}$
\Longrightarrow resolution-step Cs $(C s \cup C)$
using resolution-rule by auto
lemma resolution-example1:
resolution-deriv $\{\{N P, P Q\},\{N Q\},\{P P, P Q\}\}$
$\{\{N P, P Q\},\{N Q\},\{P P, P Q\},\{N P\},\{P P\},\{ \}\}$
proof -
have resolution-step
$\{\{N P, P Q\},\{N Q\},\{P P, P Q\}\}$
$(\{\{N P, P Q\},\{N Q\},\{P P, P Q\}\} \cup\{\{N P\}\})$
apply (rule resolution-rule (of $\{N P, P Q\}-\{N Q\}\{P Q\}\{N Q\} \varepsilon]$)
unfolding applicable-def vars $_{l_{s}-\text { def }}$ vars $_{l}$-def

```
\(N Q\)-def NP-def PQ-def PP-def resolution-def using unifier-single empty-mgu using empty-subls apply auto
done
then have resolution-step
\(\{\{N P, P Q\},\{N Q\},\{P P, P Q\}\}\)
\((\{\{N P, P Q\},\{N Q\},\{P P, P Q\},\{N P\}\})\)
by (simp add: insert-commute)

\section*{moreover}
have resolution-step
\[
\{\{N P, P Q\},\{N Q\},\{P P, P Q\},\{N P\}\}
\]
\((\{\{N P, P Q\},\{N Q\},\{P P, P Q\},\{N P\}\} \cup\{\{P P\}\})\)
apply (rule resolution-rule' \([o f(\{N Q\}-\{P P, P Q\}\{N Q\}\{P Q\} \varepsilon])\) unfolding applicable-def vars \(_{l s}\)-def vars \(_{l}\)-def \(N Q\)-def \(N P\)-def \(P Q\)-def \(P P\)-def resolution-def using unifier-single empty-mgu empty-subls apply auto done
then have resolution-step
\(\{\{N P, P Q\},\{N Q\},\{P P, P Q\},\{N P\}\}\)
(\{\{NP,PQ\},\{NQ\},\{PP,PQ\},\{NP\},\{PP\}\})
by (simp add: insert-commute)

\section*{moreover}
have resolution-step
\(\{\{N P, P Q\},\{N Q\},\{P P, P Q\},\{N P\},\{P P\}\}\)
\((\{\{N P, P Q\},\{N Q\},\{P P, P Q\},\{N P\},\{P P\}\} \cup\{\}\})\)
apply (rule resolution-rule' \([\) of \(\{N P\}-\{P P\}\{N P\}\{P P\} \varepsilon]\) )
unfolding applicable-def vars \(_{l-}\)-def vars \(_{l}\)-def
\(N Q\)-def \(N P\)-def \(P Q\)-def \(P P\)-def resolution-def using unifier-single empty-mgu apply auto
done
then have resolution-step
\[
\begin{gathered}
\{\{N P, P Q\},\{N Q\},\{P P, P Q\},\{N P\},\{P P\}\} \\
(\{\{N P, P Q\},\{N Q\},\{P P, P Q\},\{N P\},\{P P\},\{ \}\})
\end{gathered}
\]
by (simp add: insert-commute)
ultimately
have resolution-deriv \(\{\{N P, P Q\},\{N Q\},\{P P, P Q\}\}\)
\[
\{\{N P, P Q\},\{N Q\},\{P P, P Q\},\{N P\},\{P P\},\{ \}\}
\]
unfolding resolution-deriv-def by auto
then show ?thesis by auto
qed
definition \(P a\) :: fterm literal where
\(P a=\operatorname{Pos}^{\prime \prime} a^{\prime \prime}[]\)
definition \(N a\) :: fterm literal where
\(N a=N e g{ }^{\prime \prime} a^{\prime \prime}[]\)
definition \(P b\) :: fterm literal where \(P b=P o s{ }^{\prime \prime} b^{\prime \prime}[]\)
```

definition Nb :: fterm literal where
Nb = Neg ''b" []
definition Paa :: fterm literal where
Paa = Pos "'a" [Fun ''a" []]
definition Naa :: fterm literal where
Naa=Neg '" a" [Fun '" a' []]
definition Pax :: fterm literal where
Pax = Pos "'a" [Var '' ' ']
definition Nax :: fterm literal where
Nax = Neg '" a'"[Var '' }\mp@subsup{x}{}{\prime\prime}
definition mguPaaPax :: substitution where
mguPaaPax = (}\lambdax\mathrm{ . if }x=\mp@subsup{}{}{\prime\prime}\mp@subsup{x}{}{\prime\prime}\mathrm{ then Fun "'a"' [] else Var }x
lemma mguPaaPax-mgu: mgu ls mguPaaPax {Paa,Pax}
proof -
let ? }\sigma=\lambdax\mathrm{ . if }x=\mp@subsup{}{}{\prime\prime}\mp@subsup{x}{}{\prime\prime}\mathrm{ then Fun " a" [] else Var x
have a: unifier ls (}\lambdax\mathrm{ . if }x=\mp@subsup{}{}{\prime\prime}\mp@subsup{x}{}{\prime\prime}\mathrm{ then Fun " }a"|[] else Var x) {Paa,Pax} un
folding Paa-def Pax-def unifierls-def by auto
have b: \forallu. unifierls }u{Paa,Pax}\longrightarrow(\existsi.u=?\sigma\cdoti
proof (rule;rule)
fix u
assume unifierls u {Paa,Pax}

```

```

by auto
have ? }\sigma\cdotu=
proof
fix }
{
assume }x=\mp@subsup{=}{}{\prime\prime}\mp@subsup{x}{}{\prime\prime
moreover
have (?\sigma\cdotu) '' }\mp@subsup{x}{}{\prime\prime}= Fun '" a" [] unfolding composition-def by aut
ultimately have (? \sigma | u) x = ux using uuu by auto
}
moreover
{
assume }x\not=\mp@subsup{}{}{\prime\prime}\mp@subsup{x}{}{\prime\prime

```

```

 then have (? }\sigma\cdotu)x=ux\mathrm{ by auto
 }
 ultimately show (?\sigma\cdotu) x = ux by auto
 qed
 then have }\existsi.??\sigma\cdoti=u\mathrm{ by auto
 then show }\existsi.u=? ? \sigma\cdoti by aut
    ```
qed
from \(a b\) show ?thesis unfolding \(m g u_{l s}\)-def unfolding mguPaaPax-def by auto
qed
lemma resolution-example2:
resolution-deriv \(\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\}\}\)
\(\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\},\{N a\},\{ \}\}\)
proof -
have resolution-step
\(\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\}\}\)
\((\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\}\} \cup\{\{N a, P b\}\})\)
apply (rule resolution-rule \([\) of \(\{P a x\}-\{N a, P b, N a a\}\{P a x\}\{N a a\}\) mguPaaPax ])
using mguPaaPax-mgu unfolding applicable-def vars \(_{l s}\)-def vars \(_{l}\)-def Nb-def Na-def Pax-def Pa-def Pb-def Naa-def Paa-def mguPaaPax-def
resolution-def
apply auto
apply (rule-tac \(x=N a\) in image-eqI)
unfolding \(N a\)-def apply auto
apply (rule-tac \(x=P b\) in image-eqI)
unfolding Pb -def apply auto
done
then have resolution-step
\[
\begin{aligned}
& \{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\}\} \\
& (\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\}\})
\end{aligned}
\]
by (simp add: insert-commute)
moreover
have resolution-step
\(\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\}\}\)
\((\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\}\} \cup\{\{N a\}\})\)
apply (rule resolution-rule \([\) of \(\{N b, N a\}-\{N a, P b\}\{N b\}\{P b\} \varepsilon])\)
unfolding applicable-def vars \(_{l s}-\) def \(^{\text {vars }} l_{l}\)-def

using unifier-single empty-mgu apply auto
done
then have resolution-step
\(\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\}\}\)
\((\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\},\{N a\}\})\)
by (simp add: insert-commute)
moreover
have resolution-step
\[
\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\},\{N a\}\}
\]
\((\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\},\{N a\}\} \cup\{\}\})\)
apply (rule resolution-rule \([\) of \(\{N a\}-\{P a\}\{N a\}\{P a\} \varepsilon])\)
unfolding applicable-def vars \(_{l s}\)-def vars \(_{l}\)-def
Pa-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply auto
done
then have resolution-step
\(\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\},\{N a\}\}\)
\((\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\},\{N a\},\{ \}\})\)
by (simp add: insert-commute) ultimately
have resolution-deriv \(\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\}\}\) \(\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\},\{N a, P b\},\{N a\},\{ \}\}\)
unfolding resolution-deriv-def by auto
then show ?thesis by auto
qed
lemma ref-sound:
assumes deriv: resolution-deriv Cs \(C s^{\prime} \wedge\{ \} \in C s^{\prime}\)
shows \(\neg e v a l_{c s} F G C s\)
proof -
from deriv have eval \({ }_{c s} F G C s \Longrightarrow\) eval \(_{c s} F G C s^{\prime}\) using lsound-derivation by auto
moreover
from deriv have eval \(l_{c s} F G C s^{\prime} \Longrightarrow \operatorname{eval}_{c} F G\{ \}\) unfolding eval \(l_{c s}\)-def by auto
moreover
then have eval \(_{c} F G\{ \} \Longrightarrow\) False unfolding eval \(_{c}\)-def by auto
ultimately show ?thesis by auto
qed
lemma resolution-example1-sem: eval \(_{c s} F G\{\{N P, P Q\},\{N Q\},\{P P, P Q\}\}\)
using resolution-example1 ref-sound by auto
lemma resolution-example2-sem: \(\neg e v a l_{c s} F G\{\{N b, N a\},\{P a x\},\{P a\},\{N a, P b, N a a\}\}\)
using resolution-example2 ref-sound by auto
end

\section*{References}
[1] M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 3rd edition, 2012.
[2] J. C. Blanchette, M. Fleury, A. Schlichtkrull, and D. Traytel. IsaFoL: Isabelle Formalization of Logic. https://bitbucket.org/jasmin_blanchette/ isafol.
[3] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press, Inc., Orlando, FL, USA, 1st edition, 1973.
[4] A. Leitsch. The Resolution Calculus. Texts in theoretical computer science. Springer, 1997.
[5] A. Schlichtkrull. Formalization of first-order unordered resolution. https://bitbucket.org/jasmin_blanchette/isafol/src/master/ Unordered_Resolution/.
[6] A. Schlichtkrull. Formalization of resolution calculus in Isabelle. Msc thesis, Technical University of Denmark, 2015. https://people.compute. dtu.dk/andschl/Thesis.pdf.
[7] A. Schlichtkrull. Formalization of the resolution calculus for first-order logic. In ITP 2016, volume 9807 of LNCS. Springer, 2016.
[8] C. Sternagel and R. Thiemann. An Isabelle/HOL formalization of rewriting for certified termination analysis. http://cl-informatik.uibk.ac.at/ software/ceta/.```

