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KinMutRF: a random forest classifier of
sequence variants in the human protein
kinase superfamily
Tirso Pons1†, Miguel Vazquez1†, María Luisa Matey-Hernandez2, Søren Brunak2,3, Alfonso Valencia1

and Jose MG Izarzugaza2*

From VarI-SIG at ISMB 2015
Dublin, Ireland. 07 November 2015

Abstract

Background: The association between aberrant signal processing by protein kinases and human diseases such as
cancer was established long time ago. However, understanding the link between sequence variants in the protein
kinase superfamily and the mechanistic complex traits at the molecular level remains challenging: cells tolerate
most genomic alterations and only a minor fraction disrupt molecular function sufficiently and drive disease.

Results: KinMutRF is a novel random-forest method to automatically identify pathogenic variants in human kinases.
Twenty six decision trees implemented as a random forest ponder a battery of features that characterize the variants: a)
at the gene level, including membership to a Kinbase group and Gene Ontology terms; b) at the PFAM domain level; and
c) at the residue level, the types of amino acids involved, changes in biochemical properties, functional annotations from
UniProt, Phospho.ELM and FireDB. KinMutRF identifies disease-associated variants satisfactorily (Acc: 0.88, Prec:0.82, Rec:0.
75, F-score:0.78, MCC:0.68) when trained and cross-validated with the 3689 human kinase variants from UniProt that have
been annotated as neutral or pathogenic. All unclassified variants were excluded from the training set. Furthermore,
KinMutRF is discussed with respect to two independent kinase-specific sets of mutations no included in the training and
testing, Kin-Driver (643 variants) and Pon-BTK (1495 variants). Moreover, we provide predictions for the 848 protein kinase
variants in UniProt that remained unclassified.
A public implementation of KinMutRF, including documentation and examples, is available online (http://kinmut2.bioinfo.
cnio.es). The source code for local installation is released under a GPL version 3 license, and can be downloaded from
https://github.com/Rbbt-Workflows/KinMut2.

Conclusions: KinMutRF is capable of classifying kinase variation with good performance. Predictions by KinMutRF
compare favorably in a benchmark with other state-of-the-art methods (i.e. SIFT, Polyphen-2, MutationAssesor,
MutationTaster, LRT, CADD, FATHMM, and VEST). Kinase-specific features rank as the most elucidatory in terms of
information gain and are likely the improvement in prediction performance. This advocates for the development of
family-specific classifiers able to exploit the discriminatory power of features unique to individual protein families.
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Background
Only a minor fraction of the large number of variants
discovered with current high-throughput next generation
sequencing (NGS) methodologies are causally implicated
in disease onset [1–6]. The correct identification of the
causative variants remains a challenging effort [7]. For a
few examples there is sufficient experimental information
associating variants and human maladies, and for an even
smaller number of cases the underlying biochemical mech-
anism is known. However, for the vast majority of the
sequence variants identified, ~100,000 disease-associated
variants, the functional information is missing [8]. The
experimental characterization and functional annotation of
those novel variants would require humongous resources.
Nevertheless, this problem is very amenable to computa-
tional approaches [6]. Different methods to predict the
probability of a variant being causaly implicated in a disease
have been proposed during the last decade. A brief descrip-
tion of the most popular methods, along with relevant
URLs and references, are listed in Additional file 1: Table
S1. A first group of methods applied deterministic rules to
a reduced number of protein features to identify damaging
mutations. For example, the widely cited methods SIFT [9]
and MutationAssessor [10], MutPred [11], FATHMM [12],
Panther [13] and PROVEAN [14] rely on different interpre-
tations of signatures of evolutionary constraint to assess the
pathogenicity of variants. A second group of methods (e.g.
PMUT [15], SNAP [16], PolyPhen-2 [17], NetDiseaseSNP
[18], LS-SNP [19], PhD-SNP [20], MutationTaster [21],
VEST [22], SNPs&GO [23], SNPs3D [24], MuD [25], Can-
Predict [26], CADD [27], PON-P2 [28] and nsSNPAnalyzer
[29]) rely on advanced automatic machine learning ap-
proaches that integrate prior knowledge in the form of both
sequence-based and structure-based features, under the
assumption that pathogenic variants will disrupt normal
protein function and structural stability. After a training
process where the system is presented a set of previously
characterized damaging and neutral variants, new variants
can be classified based on the knowledge acquired. Each
method implements a different machine learning approach:
neural networks [15, 16, 18], Bayesian methods [17, 21],
support vector machines [19, 20, 23, 24, 27] or random for-
ests [22, 25, 26, 28, 29]. Recently, some meta-predictor have
been published, for instance, Meta-SNP [30] combines four
of the most widely employed computational methods for
prioritising missense single nucleotide variations, both
Condel [31] and PON-P [32] integrate five classifiers, and
PredictSNP [33] incorporates eight. Moreover, the
SPRING [34] method is based on six functional effect
scores calculated by existing methods (SIFT, Polyphen2,
LRT, MutationTaster, GERP and PhyloP) and five associ-
ation scores derived from a variety of genomic data
sources (Gene Ontology, protein protein interactions,
protein sequences, protein domain annotations and gene

pathway annotations). Concomitantly, each predictor im-
plements a distinctive set of features with a different scope
and applicability. Some predictors are generally applicable
to any protein, while a recent group of methods include
properties that focus on a characteristic subset of variants
(eg. Cancer variants predicted by CanPredict [26], Can-
DrA [35] and CHASM [36]) or a protein family of interest
under the assumption that family-specific features bring
discriminative information that justifies the development
of specialized methods. An interesting example of the
latter are protein kinases [5, 37–40]. The protein kinase
superfamily is very amenable to this approach. Protein
kinases play a central role in the cell and consequently
they have been studied in detail. As a consequence, a
broad number of variants in members of the protein
kinase superfamily have been reported in the literature in
relation to disease [41], including some types of cancer
[42]. In previous publications, we demonstrated the pref-
erential distribution of both germline and somatic variants
[43, 44] around regions of functional and structural rele-
vance and how this information can be used to develop a
computational method [37] to predict the impact of vari-
ants on the function of protein kinases. The combination
of the predictions from the classifier with annotations
extracted from the literature and other sources, facilitates
the mechanistical interpretation of the consequences of
the variants [45].
Here, we introduce KinMutRF as a random forest-based

classifier to predict the pathogenicity of novel variants.
Although the core functionality builds up on our previous
work [37], in this new implementation we redefine the
sequence-derived features, using optimized ways to extract
the signals encoded at the protein, domain and residue
levels. To demonstrate the improved prediction capabilities
of the KinMutRF, approach we benchmark our random for-
est classifier with other state-of-the-art prediction methods
and we discuss the benefits and pitfalls of the development
of a family-specific predictor in the light of our findings.

Methods
Training datasets
Variants affecting members of the protein kinase superfam-
ily were downloaded from the UniProt/Swiss-Prot variant
pages (release 2014_08 of 03-Sept-2014) [46], which com-
pile variants in UniProtKB. The training datasets used in
this work have been included with the Supplementary
Materials.

Statistics to evaluate prediction performance
Accordig to best practices in the field [46–48], perfomances
was assesed in terms of Accuracy, Precision, Recall, F-score
and Mathew’s correlation coefficient (MCC).
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Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN

F−score ¼ 2

Precision−1 þ Recall−1

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

Where:
TP: True positives, correctly predicted pathogenic var-

iants; FP: False positives, neutral variants predicted as
disease prone; TN: True negatives, correctly predicted
neutral variants; and FN: False negatives, pathogenic var-
iants predicted as neutral.

Description of the classification features
Variants were characterized with a battery of 25 features at
the protein, domain and residue level (see details below).
The distribution of variants in the training sets respect the
classification features can be found in Fig. 1 (panels from c
to l). Classification features were computed as follows:

Membership to kinase groups
We used the taxonomy proposed by Manning [49] imple-
mented in UniProt to classify the protein kinases superfam-
ily. This taxonomy considers three levels of abstraction:
subfamilies, families and groups. The level of protein kinase
groups are stablished according to sequence similarity, the
presence of accessory domains, and by considering the
different modes of regulation. For a detailed description of
protein kinase groups in KinBase and the abbreviations
used in this work, see reference [50] and the supplementary
materials. A total of 15 protein kinase groups were consid-
ered in this analysis (Fig. 1, panels c and d) and the log odds
ratio of their contribution to disease was calculated accord-
ing to the following formula:

kinase group ¼ log2
diseasevar: inkinasegroupþ ξð Þ=diseasevar:
neutral var: inkinasegroupþ ξð Þ=neutral var:

Where “disease var.” and “neutral var.” refer to the total
number of variants in UniProt classified as disase or neu-
tral, respectively. The terms “disease var. in kinase group”
and “neutral var. in kinase group” are the number of vari-
ants in a specific kinase group for each category. Note that
a pseudo count of ξ = 10-20 is considered to resolve kinase
groups with no neutral variants.

Gene ontology terms (sumGOlor)
Gene Ontology (GO) annotations were used as a proxy
for the functional relevance of protein kinases. Starting
from the terms that annotate each kinase in UniProt the
three subontologies (i. e. molecular function, biological
process and cellular compartment) were followed to their
roots to consider all parent nodes. The probabilities of
observing each of these GO terms together with neutral
and disease variants were compared with log-odds ratio
(Fig. 1, panel l). Protein kinase are characterised by the
sum of the individual contributions of their GO terms.

sumGOlor ¼
Xn

i¼1

log2
diseasevar: annotatedwith GOiþ ξð Þ=diseasevar:
neutral var: annotatedwith GOiþ ξð Þ=neutral var:

Where “disease var.” and “neutral var.” refer to the total
number of variants in UniProt classified as disase or neu-
tral, respectively. The terms “disease var. annotated with
GOi” and “neutral var. annotated with GOi” are the num-
ber of variants annoatated with a particular gene ontology
term for each category, disease-associated or neutral. Note
that a pseudo count of ξ = 10-20 is considered to resolve
cases where no neutral variants where annotated with GOi.

PFAM domains
For each of the 80 different domains defined by UniProt
as found in the protein kinase superfamily, a log-odds
ratio (details in Fig. 1, panels e and f) of the frequency
with which they harbour disease and neutral variants
has been computed according to the following formula:

sumPFAMlor ¼
Xn

i¼1

log2
disease var: inPFAMiþξð Þ=diseasevar:
neutral var: inPFAMiþξð Þ=neutral var:

Where “disease var.” and “neutral var.” refer to the total
number of variants in UniProt classified as disase or neu-
tral, respectively. The terms “disease var. in PFAMi” and
“neutral var. in PFAMi” are the number of variants in a
specific kinase PFAM domain for each category. Note that
a pseudo count of ξ = 10-20 is considered to resolve cases
where no neutral variants where annotated with PFAMi.

Amino acid and their biochemical properties
The physic-chemical properties of the amino acids involved
in variation often determine the propensity to disease. Our
prediction features consider the native amino acid, the
newly observed one, and the derived changes in some
crucial biochemical properties. These include changes
volume, Kyte-Doolittle hydrophobicity, Cbeta branching and
formal charge represented as differences in the nominal
values (Fig. 1, panels g, j and k).

Residue conservation: SIFT
Variants are described with the precomputed SIFT [51]
scores downloaded from dbNSFP [52] as a proxy for amino
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Fig. 1 (See legend on next page.)
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acid conservation at the position of interest (Fig. 1, panel i).
Conservation within a set of related sequences has trad-
itionally been the strongest and most widely implemented
features for the classification of variants.

Functional annotations in UniProt, FireDB and Phospho.ELM
The activity of protein kinases is affected by the alter-
ation of functionally relevant residues involved, for
example, in catalysis or phosphorilation. In the imple-
mentation of KinMutRF, residue annotations in UniProt
[53] define functionally relevant amino acids. The resi-
due annoations include the following categories: active
sites (act_site), general (binding) or specialised binding
(carbohyd, metal, np_bind), disulfid bonding, experi-
mentally modified residues (mod_res), repeat regions
(repeat), signal peptides (signal), transmembrane re-
gions (transmem) and zinc fingers (zn_fing), among
others broadly defined sites. An additional categories
(any_uniprot) account for the residues being annotated
with at least one of the previous categories. Similarly,
phosphorilation sites from Phospho.ELM [54] and for
the prediction of the catalytic and ligand-binding sites
according to FireDB [55] are included (Fig. 1, panel h).

Results and discussion
Construction of the training datasets
Variants affecting members of the protein kinase super-
family were extracted from the UniProt/Swiss-Prot
variant pages [46], the compilation of variation available
in UniProtKB. Every variant in this set is given a classifi-
cation as neutral or pathogenic. In the few cases were
the same variant was described by several instances, a
single record was considered, selecting a pathogenic
instance if ambiguous. Note that no additional reclassifi-
cation attending to disease types or information from
other sources was applied. After the filtering process,
1021 unique variants in 84 protein kinases form the
disease dataset and 2668 variants in 450 proteins con-
form its neutral counterpart. In total, there were variants
described and classified for 459 out of the 507 protein
kinases described in UniProt, and 75 kinases span both
categories of variants. The disease and neutral variant
sets were used for training and evaluation of the ma-
chine learning classifier. The 848 variants affecting 299

kinases that are listed as unclassified in UniProt were left
out from this analysis.
The training of the random forest-based classification

kernel of KinMutRF followed a 10-fold cross-validation
approach. As suggested by the best practices in the field
[16, 46], the 459 protein kinases for which classified
variation data exists were distributed randomly in 10
different bins. All variants corresponding to an individ-
ual protein were assigned to the same bin. We incorpo-
rated this rule to avoid overestimating the performance
of the classification; the contrary would constitute a cir-
cularity type 2 bias [47, 56]. This bias might originate
from similarities at the protein level (i.e. different
variants from the same protein) between the training
and evaluation sets. To ensure reproducibility of our re-
sults and to facilitate of other methods to be developed
in the future, these training bins have been included
with the Supplementary Materials (Additional file 2:
Supplementary File S1). Then, each bin was iteratively
used as evaluation set whereas the remaining nine were
used as training instances. Results are accumulated
until all bins had been used in the evaluation step. Fol-
lowing current standard practice in the field [47–49],
we assessed the performance of the clasiffier with five
different statistics: accuracy, precision, recall, f-score
and Mathew’s correlation coefficient (MCC) according
to the formulas described in Methods.

Optimization of the prediction method
A machine learning classifier was trained to predict the
pathogenicity of variants affecting the human kinome.
In particular, a Random Forest kernel was selected after
exploration of the many methods implemented in the
Weka (v.3.6.11) package. To optimise the paramet-
rization of the random forest classifier, we explored an
increasing number of decision trees, ranging from 4 to
30 elements. Our results (Fig. 1, panels a and b) show
that all performance statistics reach a steady plateau
after an expected initial overhead and suggest that
prediciton performance is not afffected by moderate
alterations in the size of the forest. Subsequent analyses
implement a configuration with 26 trees given the
slightly better f-score in average in our preliminary
analyses.

(See figure on previous page.)
Fig. 1 Performance and classification features. a Performance of the classifier respect to the number of trees in the random forest; b idem, close-up on
the region around the performance values; c Number of variants in each kinase group; d log odds-ratio of the number of variants in each kinase group;
e Number of variants in each kinase domain; f log odds-ratio of the number of variants in each kinase domain; g changes in Cbeta-branching caused
by pathogenic and neutral variants; h number of pathogenic and neutral variants affecting catalytic sites as defined by UniProt, FireDB and Phospho.ELM.
i Distribution of SIFT scores; j Changes in volume caused by disease-associated and neutral variants; k Changes in hydrophobicity caused
by disease-associated and neutral variants; l Accumulated Gene Ontology (GO) log odds-ratio. Note that, where relevant, disease-associated variants
were represented in dark red whereas ochre was used for their neutral counterparts
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Evaluation of classification performance in the training set
In a previous section we described the construction of the
training datasets and how these were used in 10-fold cross-
validation experiment to assess the prediction capabilities
of the KinMutRF classifier according to five common statis-
tics. Accuracy accounts for the fraction of variants correctly
predicted in function of the total number of variants. Due
to the innate inbalance in the constitution of the datasets,
with 1021 neutral variants and 2668 disease-associated vari-
ants respectively, a naïve classifier predicting every variant
as the majority class would achieve a basal 72.32 % accur-
acy. Consequently, the evaluation of the classification
should refer to the prediction of the positive class. In the
case of a predictor of pathogenicity, this corresponds to the
pathogenic mutations. Precision accounts for the propor-
tion of correctly predicted disease-associated variants with
respect to all the variants predicted as positive by the classi-
fier. Recall, often referred as sensitivity, accounts for the
proportion of correctly predicted disease-associated vari-
ants respect to all positive variants present in the dataset.
These two statistics combine into a single one, the f-score,
which is convenient for evaluation purposes. Finally, we
considered the Mathew’s correlation coefficient (MCC)
accounts for the performance of both the disease and the
neutral prediction. Despite accuracy, this statistic is robust
even in cases with dispair class sizes. KinMutRF yields
accurate results when both classes are considered (accur-
acy: 88.45 %, MCC: 0.68). Performance is also satisfactory
when only the pathogenic set is considered. KinMutRF
achieves a precision of 81.62 % and a recall of 75.22 %, that
combined produce an f-score of 78.29 %. The implementa-
tion of KinMutRF overcomes our previous KinMut results
implementing a support vector machine (SVM) kernel and
a different set of prediction features [37, 51] (Acc: 83.29 %,
Prec: 60.03 %, Recall: 75.17 %, f-score: 66.7 % and MCC:
0.6). The improvement is particularly significant in terms of
precision, the ability to predict correctly in the pathogenic
variants, while a similar recall is maintained.

Most relevant features for classification
The contribution of individual features for the classifica-
tion of the classes was assesed using the InfoGainAttri-
buteEval module in Weka (v.3.6.11). Features are ranked
according to the information gain resulting from the in-
clusion of individual features. The ranking of the classifi-
cation features of KinMutRF is summarised in Table 1.
One would expect that a family-specific predictor would
benefit from the use of the information encoded by fea-
tures that pertain only to the family of interest. Our
ranking of features follows this intuition as the highest
information gain (0.491) corresponds to the implementa-
tion of Gene Ontology terms that describe the function
of each protein kinase and the fequency with which it
has been reported in relation with disease and neutral

variants (sumGOlor). This observation is coherent with
Fig. 1 (panel l), where a clear separation between the
accummulated GO log odds ratio of the two classes of
variations (disease-associated and neutral). The evolution-
ary conservation of the residues, measured with SIFT,
follows in the ranking. with an information gain of 0.179.
In spite of not being a kinase-specific feature, this observa-
tion is coherent with the widespread use of SIFT as part of
a full body of other classifiers and with the observations in
Fig. 1 (panel i). Third and fourth position in this ranking
are also occupied by kinase-specific features, namely the
membership to a kinase group and the relevance of the
kinase domains, produce information gains of 0.120 and
0.112 respectively. It is clear from the observaton of Fig. 1
(panels c, d, e and f) that there is a preferential
distribution of disease-associated mutations respect to cer-
tain protein kinases and domains. One could argue that
the inclusion of features that rely on existing knowledge
(e.g. protein and domain specific features) might inher-
ently bias the classification of variants. Albeit partially true
from a benchmark perspective, the ability to derive correct
predictions from related proteins is the ultimate goal of
family-specific methods as the one under consideration
here. A different reasoning is that genetic aberrations
affecting uncharted regions of the variation-space – i.e.
less characterised protein kinases – might result difficult
to characterise as predictions would be hindered by lack of
data, or on a worst case scenario by the strong contribu-
tion of the few exisiting examples. We expect that the
wealth of data coming from current sequencing efforts
would quickly bridge this knowledge gap and that all ele-
ments of the human kinome would present a comparable
amount of information. This is also true for the develop-
ment of family-specific methods outside the protein kinase
superfamily, currently limited by lack of sufficient variation
information. The ranking of features is continued by other
commonly used features. However, their contribution to
the information gain is an order of magnitude smaller.
These include recurrently implemented by methods that
focus on alteration of protein stability (Additional file 1:
Supplementary Table S1) such as the nature of the wild-
type (0.044) and mutant (0.037) amino acids or the associ-
ated change in hydrophobicity (0.037). Last in the ranking
appear features that assess the relevance of the residue in
terms of catalysis and phosphorylation propensity. Their
position in the ranking might be determined by their
limited abundance. Nevertheless, these observations are
coherent with previous observations that determined that
disease-associated variants, independently of their somatic
or germline character, did not allocated necessarily on
catalytic sites but on the close proximity of these, under
the hypothesis that the structural neighbourhood of the
functional sites is also determinant for correct protein
function [43, 44, 57].
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Benchmark of the classifier respect to other methods
The capability of KinMutRF to correctly identify pathogenic
variants was benchmarked to that of another eight state-of-
the-art approaches (Table 2). Evaluation was studied ac-
cording to the five performance measures described in
Methods, KinMutRF yields very satisfactory predictions
when the other methods are interrogated about the patho-
genicity of the 3689 kinase variants for which UniProt pro-
vides a characterization. In fact, our methodology achieves
the best accuracy (0.88) and precision (0.82) among the
evaluated methods, indicative that the prediction of both
neutral and pathogenic mutations is sufficiently reliable.
This observation is supported by a Matthew’s correlation
coefficient (MCC) of 0.68, comparable to that achieved by
the the best in this category, VEST [22]. Our f-score (0.78)

is also comparable with the one achieved by VEST, that
compensated the lack precison with increased recall. The
difference in prediction performance might be bigger in
practical terms, as the results of KinMutRF competitors
correspond to an optimistic interpretation that might be
boosted by a circularity type 1 bias [56]; the set used in the
benchmark might include variants already presented to the
classifiers during their own training phase [52]. This effect
was taxatively avoided in the evaluation of KinMutRF.

Comparison to Kin-Driver manually curated kinase variants
To understand the prediction performance of KinMutRF
beyond the training datasets, we evaluated the agreement
with an independent source, Kin-Driver [58]. The resource
present two quantitative adjantages: First, it includes
variants that have not been presented to KinMutRF during
its training phase. Second, variants are manually classified
according to their consequence on protein activity into acti-
vating and deactivating, which allows further understanding
of the strengths and weakenesses of our model. KinMutRF
correctly predicted 65 out of the 159 (40.88 %) pathogenic
variants included in Kin-Driver that were not included in
the set used for training our predictor. The drop in per-
formance might be explained by the nature of the conse-
quence of the variants. The random forest correctly
identified 21 out of 34 (61.76 %) loss-of-function variants
whereas only 44 out of the 125 (35.20 %) gain-of-function
variants were classified correctly. This analysis is coherent
with previous observations [54, 57] that advocate for the
further development of methods to predict the conse-
quences of activating variants as most of the methodologies
focus on the disruption of protein function.

Table 1 Relevance of prediction features ranked according to the information gain with respect to the class

Rank Gain Feature Rank Gain Feature

1 0.4914 Gene Ontology 14 4.79e-3 Binding (UniProt)

2 0.1787 SIFT 15 4.43e-3 Np_bind (UniProt)

3 0.1197 Kinase group 16 3.38e-3 Repeat (UniProt)

4 0.1121 PFAM domain 17 2.47e-3 Phospho.ELM

5 0.0438 Wild type amino ac. 18 2.37e-3 Zn finger (UniProt)

6 0.0373 Hydrophobicity 19 1.82e-3 Modified res. (UniProt)

7 0.0368 Alternative amino ac. 20 1.51e-3 Metal binding (UniProt)

8 0.0353 Volume change 21 9.4e-4 Signal peptide (UniProt)

9 0.0239 FireDB residue 22 7.71e-4 Active site (UniProt)

10 8.94e-3 Any uniprot 23 6.86e-4 Carbohyd (UniProt)

11 7.70e-3 Formal charge 24 5.02e-4 Site (UniProt)

12 6.80e-3 Cbeta Branching 25 5.33e-5 Transmembrane (UniProt)

13 6.02e-3 Disulfid (UniProt)

Ranking calculated with the InfoGainAttributeEval function in Weka. Features that are specifically related to the protein kinase superfamily rank among the most
informative ones

Table 2 Benchmark of KinMutRF respect to other methods

Method Accuracy Precision Recall F-score MCC

MutationTaster 0.56 0.38 0.96 0.55 0.36

SIFT 0.68 0.45 0.81 0.58 0.39

Polyphen2:HDIV 0.66 0.44 0.90 0.59 0.42

LRT 0.65 0.45 0.87 0.59 0.39

MutationAssessor 0.76 0.55 0.66 0.60 0.43

CADD 0.76 0.54 0.77 0.64 0.48

Polyphen2:HVAR 0.64 0.53 0.85 0.65 0.50

FATHMM 0.82 0.69 0.63 0.66 0.54

VEST 0.87 0.74 0.82 0.78 0.69

KinMutRF 0.88 0.82 0.75 0.78 0.68

Prediction performance in a 10-fold cross-validation experiment on the 3689
kinase variants for which UniProt provides a characterization of pathogenicity.
In bold, the best score for each performance measure
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Assessment of KinMutRF with Bruton
agammaglobulinaemia tyrosine kinase (BTK) variants
We detailed the KinMutRF prediction results on a
well-studied tyrosine kinase domain and compare the
predictions with those obtained by PON-BTK [59], a
kinase-specific pathogenicity predictor. A total of 158
disease-related variants in 91 residues from the Bruton
agammaglobulinaemia tyrosine kinase domain (BTK_HU-
MAN:402-655) are documented in BTKbase version 8.53.
These are freely available at http://structure.bmc.lu.se/
idbase/BTKbase/. The predictions by both KinMutRF and
PON-BTK for the 1495 possible nonsynonymous variants
in the BTK protein kinase domain are summarized in
Table 3. KinMutRF prediction results for the BTK are
provided in Additional file 3: Supplementary File S3. Data
in Table 3 reveals a significant agreement in the prediction
of pathogenic variants (967 variants) between KinMutRF
and PON-BTK. The disagreement in the prediction of
pathogenic variants between these methods is very low;
only 36 variants predicted as pathogenic by PON-BTK
were predicted as neutral by KinMutRF. Väliaho and
colleagues [59] described PON-BTK predictions for two
variants: one false negative (p.M587L) and one false posi-
tive (p.L460F). The p.L460F variant is predicted as neutral
by the two methods, PON-BTK and KinMutRF, while
p.M587L is predicted as pathogenic only by KinMutRF.
Remarkably, neighbor residues to p.L460F, V458 and T474
are ANP ligand-binding according to FireDB (54), and
G462 accomodates two X-linked agammaglobulinemia var-
iants (G462D (VAR_008316) and G462V (VAR_008317)).
On the other hand, 4 out of 8 additional methods predicts
p.L460F as pathogenic variant. These observations indicates
that in certain cases with not conclusive results, Web-Lab
experiments should be done. The KinMutRF prediction for
p.M587L supported by annotations extracted with the
Structure-PPi module [60]: 1) neighbor residues E589 and
S592 accommodates cancer-related variants (E589A in
malignant melanoma, and S592Y in ovary carcinoma and
malignant melanoma); and 2) six residues in the close
vicinity contains variants associated to X-linked agamma-
globulinemia (OMIM: 300755) (C502F (VAR_006245),
C502W (VAR_006246), F583S (VAR_008327), E589D
(VAR_008328), E589G (VAR_006265), E589K (VAR_008

965), S592P (VAR_006267), V626G (VAR_008333), M630I
(VAR_006274), M630K (VAR_006275), and M630T (VAR
_008334)). Altogether, these evidences suggested a key
role for this BTK region in human diseases.

Predicting the pathogenicity of unclassfied variants,
recorded in UniProtKB/Swiss-Prot
In a previous section we discussed the preparation of
a training set from the variation in UniProtKB/Swiss-
Prot variant pages. In this process, we excluded 848
variants in 299 kinases for which a classification of
“Disease” and/or “Polymorphism” was not available.
We propose that KinMutRF can bridge this gap in
knowledge and suggest whether these are most likely
pathogenic or neutral. KinMutRF predicted 185
(21.81 %) of these variants as pathogenic (Fig. 2,
panel b). The full list of predictions, as well as the
prediction features that originated them, can be found
with the Supplementary Materials (Additional file 4:
Supplementary File S2). One could argue that the
prediction features used in this analysis rely exces-
sively on existing knowledge. Should this be the case,
predictions for all the variants in a particular kinase
group, protein kinase or PFAM domain would follow
the same character, being all either neutral or patho-
genic. Most of the 53 protein kinases that harbored
variants predicted as disease-associated also presented
neutral variation (Fig. 2, panel a). The same is also
true for kinase groups and PFAM domains (Fig. 2,
panels c, d and e). These results support our selection
of features, most importantly, the highly informative
accumulative log odds ratio of Gene Ontology terms
as a proxy for protein function (Fig. 2, panel f ). In
spite of being distributed satisfactorily, the results
from KinMutRF highlight the functional relevance of
previously reported domains such as the protein kin-
ase domain or the PI3K/PI4K and certain
taxonomical kinase groups characterised by them,
namely Tyr, atypical PI3/PI4 kinase, CAMK and TKL.

Conclusions
Here we presented a novel method for prioritization
of pathogenic variants in the human protein kinase
superfamily. KinMutRF implements a random forest
classifier that outperforms our previous implementa-
tion (KinMut) and other state-of-the-art methods with
a similar purpose. Our choice of features and datasets
makes the method especially relevant in the context
of kinase variantion and their intrinsic role in cancer
biology. The family-specific character of the Kin-
MutRF classifier allowed us to introduce features that
are unique to the protein kinase family. An analysis of
the individual information gain identified these kinase-
specific features among the most relevant for a correct

Table 3 Summary of the KinMutRF and PON-BTK prediction results

Pathogenic Neutral

Prediction Overlap Diff. Prediction Overlap Diff.

KinMutRF 1285 (85.9 %) 967 210 (14.1 %) 174

PON-BTK 1003 (67.1 %) 36 492 (32.9 %) 318

Prediction: indicates the total number of BTK variants predicted as pathogenic
and neutral. Numbers in parenthesis represent the percentage from a
maximum of 1495 possible nonsynonymous variants. Overlap: total number of
BTK variants predicted as pathogenic and neutral by KinMutRF and PON-BTK.
Diff.: total number of BTK variants with different predictions by KinMutRF
and PON-BTK
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classification. Namely, the functional characterization of
the kinase according to Gene Ontology terms, the mem-
bership to a particular kinase group or the occurrence of
the variants at relevant catalytic protein kinase domain
arise as important features that are unique to the protein
kinase superfamily. This is in full agreement with previous
observations and advocates for the urgent development of
family-specific classifiers where the abundance of variation
data permits.

Availability of supporting data
KinMutRF is publicly implemented as a component of
our pipeline for the identification, annotation and inter-
pretation of the consequences of kinase variants,
wKinMut-2 [61]. This resource is freely available at
http://kinmut2.bioinfo.cnio.es. The source code, docu-
mentation and examples for KinMutRF can be down-
loaded for local installation from https://github.com/
Rbbt-Workflows under a GPV version 3 licence. We are
also grateful to the two anonymous reviewers that re-
vised this manuscript for their very relevant comments.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Availability of data and materials
Training datasets used for 10-fold cross-validation experi-
ment provided as Additional file 2: Supplementary File S1.
Predictions for the unclassified variants in Uniprot and
the Bruton agammaglobulinemia tyrosine kinase domain
are available as Additional file 2: Supplementary Files S1
and Additional file 4: Supplementary Files S2 respectively.
The source code of KinMutRF is released under a GPL
version 3 license, and can be downloaded from https://
github.com/Rbbt-Workflows/KinMut2 whereas a web
implementation of KinMutRF is freely available at
http://kinmut2.bioinfo.cnio.es.

Fig. 2 Prediction of pathogenicity for variants uncharacterised in
UniProt. a Distribution of predictions of pathogenicity in the different
protein kinases; b Fraction of predictions as disease-associated and
neutral; c Distribution of predictions of pathogenicity in the different
groups in the taxonomy of protein kinases; d Distribution of predictions
of pathogenicity respect to PFAM domains; e Distribution of the PFAM
domain log odds-ratios for neutral and disease-associated variants;
f Distribution of the accummulated Gene Ontology log odds-ratios
(sumGOlor) for neutral and disease-associated variants
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Additional files

Additional file 1: Table S1. Description of the characteristics of other
state-of-the-art variant pathogenicity prediction methods and classifiers.
(DOCX 9 kb)

Additional file 2: Supplementary File S1. Training datasets used for 10-fold
cross-validation experiment. File formats include weka and plain text.
(ZIP 482 kb)

Additional file 3: Supplementary File S3. KinMutRF predictions on the
human Bruton agammaglobulinemia tyrosine kinase domain. (XLSX 141 kb)

Additional file 4: Supplementary File S2. KinMutRF predictions on the
unclassified variants in UniProt, including the prediction features that
describe each variant. (TXT 155 kb)
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