Time-resolved terahertz spectroscopy of charge carrier dynamics in the chalcogenide glass As30Se30Te40 [Invited] - DTU Orbit (09/11/2017)

Time-resolved terahertz spectroscopy of charge carrier dynamics in the chalcogenide glass As30Se30Te40 [Invited]

Broadband (1.6-18 THz) terahertz time-domain spectroscopy (THz-TDS) and time-resolved terahertz spectroscopy (TRTS) were performed on a 54 mu m thick chalcogenide glass (As30Se30Te40) sample with a two-color laser-induced air plasma THz system in transmission and reflection modes, respectively. Two absorption bands at 2-3 and 5-8 THz were observed. TRTS reveals an ultrafast relaxation process of the photoinduced carrier response, well described by a rate equation model with a finite concentration of mid-bandgap trap states for self-trapped excitons. The photoinduced conductivity can be well described by the Drude-Smith conductivity model with a carrier scattering time of 12-17 fs, and we observe significant carrier localization effects. A fast refractive index change was observed 100 fs before the conductivity reached its maximum, with 2 orders of magnitude larger amplitude than expected for the optically induced THz Kerr effect, indicating that free carriers are responsible for the transient index change. (C) 2016 Chinese Laser Press

General information

State: Published

Organisations: Department of Photonics Engineering, Plasmonics and Metamaterials, Saratov State University, University of Nottingham

Authors: Wang, T. (Intern), Romanova, E. A. (Ekstern), Abdel-Moneim, N. (Ekstern), Furniss, D. (Ekstern), Loth, A. (Ekstern), Tang, Z. (Ekstern), Seddon, A. (Ekstern), Benson, T. (Ekstern), Lavrinenko, A. (Intern), Jepsen, P. U. (Intern) Pages: A22-A28 Publication date: 2016

Main Research Area: Technical/natural sciences

Publication information

Journal: Photonics Research Volume: 4 Issue number: 3 ISSN (Print): 2327-9125 Ratings:

Web of Science (2017): Indexed Yes

Scopus rating (2016): SJR 1.913 SNIP 1.984 CiteScore 4.36

Web of Science (2016): Indexed yes

Scopus rating (2015): SNIP 2.664 SJR 1.852 CiteScore 3.64

Scopus rating (2014): SNIP 3.562 SJR 2.439

Original language: English Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials, OPTICS, DOMAIN SPECTROSCOPY, OPTICAL-PROPERTIES, LASER-PULSES, BAND-GAP, GENERATION, AIR, SEMICONDUCTORS, RELAXATION, PARAMETERS, NACL DOIs:

10.1364/PRJ.4.000A22 Source: FindIt Source-ID: 2304590616 Publication: Research - peer-review > Journal article – Annual report year: 2016