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Abstract 

The real energy performance of buildings depends both upon deterministic aspects (building's 

physics and engineering systems) and probabilistic aspects such as weather and occupant 

behavior. Occupant behavior is usually not directly considered when calculating the expected 

energy performance of buildings. In fact, field test studies all over the world have shown 

discrepancies between expectation and real energy performances of buildings. This gap could 

be bridged, by embedding stochastic occupants’ behavior models within buildings’ energy 

performances simulation software. Within this work, an established method to analyze the 

probability of a state change of the windows, based on logistic regression, was applied to 

monitored data (measured each minute) from two refurbished residential buildings. The weather 

as well as the five rooms of each of the 60 apartments located in the buildings were monitored 

in terms of indoor environmental quality and window operation for four years. The aim of this 

work is the investigation of the drivers leading occupants to open and close windows. 

The evaluation of the 300 windows showed: the two most common drivers leading to the 

opening action were the time of the day and the carbon dioxide concentration in the room. The 

two most common drivers leading to the closing action were: the daily average outdoor 

temperature, and the time of the day.  

Occupant behavior, Logistic regression, Natural ventilation, Buildings’ energy performance, 

Case study. 

1. Introduction

Buildings are responsible for 40 % of the total primary energy consumption in the 
European Union [1]. The ambitious goal of the EU on the reduction of the primary 
energy consumption (Energy Roadmap 2050) can only be reached, retrofitting the 
existing building stock. However field test studies [2–7] show higher observed 
consumption than expected. Reasons for this discrepancy are technical issues and the 
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missing integration of realistic occupant behavior models, when calculating expected 
energy figures. Understanding occupant behavior is the first step towards a realistic 
model of occupant behavior. Occupants influence the energy performance of buildings 
in many ways, e.g. changing set points of the heating system, modifying the position of 
sun-blinds, opening and closing windows.  

This work focuses on the evaluation of the drivers [8] leading occupants to open 
and close windows. In particular, this work aims to analyze the drivers related to 
thermal comfort (room air temperature, room air relative humidity) indoor air quality 
(carbon dioxide concentration) and weather (Outdoor temperature, outdoor relative 
humidity and wind speed). 

2. Description of the field test

Measurements of the following variables were monitored every minute in each 
room of 60 apartments in two refurbished buildings (Figure 1):  

1. Air temperature [°C]
2. Relative humidity [%]
3. CO2 concentration [ppm]
4. Volatile organic compounds (VOC) [-],
5. Light on the ceiling [Lux],
6. Infrared / visible light ratio [-],
7. Window opening position (open/closed).

Figure 1. Façade of one refurbished building. 

The buildings have 60 geometrically identical apartments (the floor space of the 
apartments is shown in Figure 2). Each entrance of the building has an own retrofit 
layout. Within this work, the following nomenclature was used: “B” for building, e.g. 
“B2” refers to the group of the 30 apartments in building 2, E for entrance, e.g. B2E1 
indicated the 10 apartments located in building 2 and accessible through entrance 1. 
Various engineering system components, building’s insulation materials and windows 
were selected and combined, to generate seven different retrofit layouts for three 
buildings (only building 2 and building 3 are considered in this evaluation). Building 2 
is connected to a district heating network, while building 3 is heated through different 



types of heat pumps (HP). Depending upon the entrance, radiators (Rad), ceiling 
heating (CH), floor heating (FH) and ventilation heating (VH) are installed to deliver 
the heating energy to the rooms. The six retrofit layouts of building 2 and building 3 are 
schematically described in Table 1. More information about the buildings and the 
retrofit layout can be found in [10,11].  

 

Figure 2. Floor space of the apartments. 

Table 1. Description of each retrofit layout in each of the 3 entrances in the two buildings: The HVAC 

system is supplied by either district heating (DH) or heat pump (HP). The ventilation is: exhaust air 

ventilation (EAV) or ventilation with heat recovery (HR). The apartments are heated through radiators 

(Rad), floor heating (FH), warm air heating (VH) or ceiling heating (CH). Domestic hot water is produced 

through central heat exchanger (HX) or fresh water heat exchanger stations (FWHX). 

  Insulation Windows U-Value HVAC 

B2E1 

 

16 cm 0.021 W/(m²K) 1.3 W/(m²K) DH, EAV, window 

frame HR, Rad 

B2E2 

 

16 cm 0.021 W/(m²K) 0.8 W/(m²K) DH, EAV, Rad 

B2E3 

 

16 cm 0.021 W/(m²K) 1.3 W/(m²K) DH, EAV, FH 

B3E1 

 

Vacuum: 

4 cm 0.008 W/(m²K)  

4 cm 0.021 W/(m²K) 

0.8 W/(m²K) CO2-Probe HP, HR 

central ventilation, 

FH 

B3E2 

 

Vacuum: 

4 cm 0.008 W/(m²K) 

4 cm 0.021 W/(m²K) 

0.8 W/(m²K) CO2-Probe master HP 

+ slave HP, apart. 

HR, VH 

B3E3 

 

Vacuum: 

4 cm 0.008 W/(m²K) 

4 cm 0.021 W/(m²K) 

1.3 W/(m²K) Air HP + exhaust air 

HP, CH 



To evaluate the energy performances of the refurbished buildings and the 
occupants’ behavior, a comprehensive high time resolution monitoring system was 
designed and installed ([12]).  

All variables were monitored through a room monitoring unit developed at the 
University of Applied Science Karlsruhe. The monitoring started during 2010 (The 
buildings have been completely occupied since spring 2011), the measurements were 
collected each 60 s, and the data was stored in HDF5 files.  

3. Method 

As an established method to analyze and model binary dependent variables (such 
as the state of a window, closed or open, or the change of state of a window), logistic 
regression analyses (LRA) was chosen to evaluate the occupant behavior related to the 
changes of state of windows. The here explained method was successfully used in [9].  

LRA is based on the logistic function as expressed in (1), where p(x) expresses the 
probability function for a certain event (e.g. a window changes its state), and, by 
definition, P(x) ϵ [0,1]  ∀ x. Equation (1) can be rewritten as in (2). 

𝑝 =  
1

1+𝑒𝑥𝑝(𝛼+𝛽𝑥)
     (1)  

𝑙𝑛 (
𝑝

1−𝑝
) =  𝛼 + 𝛽𝑥    (2)    

Where: P(x) (or simply p) is the probability function,  is the intercept,  is a 
coefficient, x is the explanatory variable. 

Equation (2) describes the probability of an event depending on one explanatory 
variable, and is therefore used for simple linear regression analysis. For regression 
analysis with “n” explanatory variables, the probability function p can be expressed as 
in (3). Finally, (4) includes the interaction terms, as suggested in [9]:  

𝑙𝑛 (
𝑝

1−𝑝
) =  𝛼 + 𝛽0𝑥0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛     (3) 

𝑙𝑛 (
𝑝

1−𝑝
) =  𝛼 + 𝛽0𝑥0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝛾1,2𝑥1𝑥2 + ⋯ + 𝛾1,𝑛𝑥1𝑥𝑛 + ⋯ + 𝛾𝑛−1,𝑛𝑥𝑛−1𝑥𝑛 (4) 

To evaluate the data, the LRA was executed on each window singularly. In 
addition, the "forward and backwards" selection of the variables for the regression 
models was executed, based on the Akaike information criterion (AIC), as already done 
e.g. in [9]. In this way, the selection of a "best model", containing only the most 
important explanatory variables (the variables which have a consistent impact on the 
probability function), is possible.  

In practice, the process for the selection of the best model with n explanatory 
variables is described as follows: 

1. each variable was fitted by the regression model (in a single-variable model), 
and the AIC calculated for each fit; 



2. the variable with the lowest AIC was selected, and the model was fitted n-1 
times with the selected variable and each of the n-1 remaining variables; 

3. the model based on two variables with the lowest AIC was selected and the 
AIC of this model compared to the best single-variable model (the single-variable 
model with the lowest AIC); Then: 

a. If the new model (two-variables model) had a consistently lower AIC, the 
process went further to step 4,  

b. otherwise the single-variable model was selected; 
4. The yet excluded n-2 variables were used to fit the model together with the 

two variables of the “two variables model” with the lowest AIC, in a “three variables 
model” (this is the "forward selection"). Further, from each of the three-variables 
models, three two-variables models, obtained by dropping each of the variables 
recursively, were fitted (this is the "backward selection"). Then:  

a. If none of the three-variable or "new generated" two-variable models had a 
consistently lower AIC than the two-variables model with the lowest AIC from step 3, 
the model with the lowest AIC from step 3 was selected, 

b. Otherwise, the process went further with the same criteria, up to n-variables 
models. 

Further, a k-fold cross validation (with K=10) was executed on the top of the 
described selection process: Therefore, each data sample was partitioned in ten sub-
samples. Nine sub-samples were used for the training of the models, while one sub-
sample was used to test the model. This was realized by using the measured input 
variables of the 10th subsample (the one which was not used for the training) as input to 
the model, and comparing the model output with the monitored window position. The 
operation was executed 10 times: each subsample was used once as a test subsample, 
while the remaining nine sub-samples were used as training samples. 

4. Evaluation of the drivers 

The results of the regression analysis applied at room (window) level are illustrated 
in this section. The method explained in the previous section was applied to the 300 
windows located in the buildings. The only categorical variable which was used is 
“Time range”, which distinguishes in low, medium and high probability of a state 
change of a window, and is grouped as follows: 

1. Night: Low probability of action; 
2. Morning: High probability of action; 
3. Rest of the day: Medium probability of action; 
In addition, the following continuous variables, measured each minute, were used: 
1. Room air temperature; 
2. Room carbon dioxide concentration (CO2), transformed through the reciprocal 

function to obtain a more suitable distribution for the use in the regression 
analysis; 

3. Room relative humidity; 
4. Daily average outdoor temperature; 
5. Wind speed; 



6. Outdoor relative humidity. 
By the selection of the variables used for the LRA, variables which could correlate 

were avoided. For example, the carbon dioxide concentration was preferred to the 
volatile organic compounds (VOC) as indicator for the air quality (this choice was 
justified by the fact that VOC could not be used to discern between good and bad odors, 
while the CO2 concentration was a good indicator for human bioeffluents). The daily 
average outdoor temperature was preferred to the instant value of this, to prevent 
correlation issues with the indoor air temperature.  

5. Results from the LRA 

In this section, the results of all the windows are presented. The results are 
organized in graphics, showing the explanatory variables, selected with the procedure 
explained in section 3, and the number of LRA equations (models) using each of them. 
Figure 3 shows the explanatory variables selected for the opening of window. The only 
used categorical variable, "time range", was included in more than 70 % of the 
windows. Moreover, the interaction terms with the variable "time" were used by less 
than 10 % of the models: this means that the variable “time” influences commonly the 
intercept, but not the coefficients of the continuous explanatory variables. The most 
common continuous explanatory variable was the CO2 concentration, present in more 
than 50 % of the models. Room temperature, relative humidity of the room, daily 
average outdoor temperature, and outdoor relative humidity were used by more than 
40 % of the models. The wind speed turned out to be mostly irrelevant for the opening 
action. For some of the windows no drivers were found (“None” indicates that no 
explanatory variables were found for the fitting of the model). 

Figure 4 and Figure 5 show the drivers which directly (positively) and inversely 
(negatively) influenced the probability of the action “window opening” respectively. 
For example, an increase in carbon dioxide concentration lead to an increase of the 
probability of window opening for more than 50% of the models; however, contrary to 
this, the carbon dioxide concentration negatively influenced the probability of an 
opening action for approximately 6% of the models; this is not necessarily a 
contradiction, and could be related to the occupancy patterns (which was not included 
in the models since presence of occupants was not monitored) and window opening 
behavior upon arrival.  

The probability of opening windows increased with increasing indoor air 
temperatures (over 40 % of the models), and by increasing room relative humidity and 
daily average outdoor temperature. The only remarkable explanatory variable which 
negatively influenced the opening of windows (over 30 % of the windows) was the 
outdoor relative humidity. 

Figure 6 shows the explanatory variables of the logistic regression models of 
closing action. Figure 7 and Figure 8 show the drivers which positively and negatively 
influenced the window opening action respectively. The daily average outdoor 
temperature was the most common driver (in almost 70 % of the models); in particular, 
as it can be seen in Figure 7 the probability of closing windows increased with 



decreasing daily average outdoor temperature. The variable time was present in more 
than 50 % of the models.  

 

Figure 3 Drivers for opening the window and the number of rooms/models with the driver used as 
explanatory variable. 

 

Figure 4 Drivers for opening the window and number of rooms/models with a positive correlation between 

the variable and the probability of opening. 

 

Figure 5 Drivers for opening the window and number of rooms/models with a negative correlation between 

the driver and the probability of opening. 

Further, an increase in the carbon dioxide concentration was associated with 
increasing probability of the closing action. This may be an effect of correlations 
between carbon dioxide concentration and presence of occupants, since the presence of 
occupants is a necessary condition, for the window to be closed. In almost 40 % of the 
models, a decrease of the room temperature corresponded to an increase of the 
probability of closing the window. 



 

Figure 6 Drivers for closing the window and number of apartments/models with the driver used as 
explanatory variable. 

 

Figure 7 Drivers for closing the window and number of rooms/models with a positive correlation between 

the variable and the probability of closing. 

 

Figure 8 Drivers for closing the window and number of rooms/models with a negative correlation between 

the driver and the probability of closing. 

Conclusion and outlook 

The results from the LRA identified the drivers of opening and closing of windows 
for 300 windows located in 60 apartments, in two refurbished buildings. The most 
common drivers for the opening action of windows were: the time of the day (for more 
than 70 % of the modeled windows), and the indoor carbon dioxide concentration (for 
over 50 % of the modeled windows). The most common drivers for the closing action 
of windows were: the daily average outdoor temperature (for almost 70 % of the 
modeled windows) and the time of the day (for more than 50 % of the modeled 
windows). These results are in agreement with the tendency of the results published by 
Andersen et al. and Fabi et al. based on the evaluation of Danish dwellings [9,14]. 
These results could help researchers to model occupants’ window opening behavior.  



In a further work based on the presented data, the dependency of the occupant 
behavior on the engineering system (or in general the retrofit layout) could be 
investigated. Beside the evaluation of the drivers, the LRA generated two models for 
each window, one for the opening action, one for the closing action. Those models 
could be used in dynamic building energy performance simulation software in order to 
integrate occupant behavior in the simulations. However, the number of models is very 
high, and there is not yet valid criterion for the choice of one model rather than another. 
For modeling purposes, the technique of the mixed effect modelling, as proposed in 
[13], seem to be a better way forward. 
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