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Abstract

The line planning problem in rail is to select a number of lines from
a potential pool which provides sufficient passenger capacity and meets
operational requirements, with some objective measure of solution line
quality. We model the problem of minimizing the average passenger system
time, including frequency-dependent estimates for switching between lines,
working with the Danish rail operator DSB and data for Copenhagen com-
muters. We present a multi-commodity flow formulation for the problem
of freely routing passengers, coupled to discrete line-frequency decisions
selecting lines from a predefined pool. We show results directly applying
this model to a Copenhagen commuter rail problem.

1 S-tog problem description

The S-tog network in Copenhagen is a commuter rail network serving 84 stations
and between 30,000 and 40,000 passengers per hour at peak times. The S-tog
network is operated by the Danish state railway operator: DSB. The trains in the
network operate on published lines which each have an hourly frequency, and run
according to a published timetable. We consider the lines and the frequencies,
but not the exact timetable.

See Figure 1 for an example of the lines that may operate in the S-tog
network. Here each coloured path refers to a different line that is operated at
some frequency, and on each a train visits every station marked on the line in
each direction according to that frequency. An important feature of the network
is that a train may not necessarily stop at every station it passes; for example
the red and orange lines (C and H) run parallel to each other in the top left of
the figure, and to the same end station, but the red line stops at fewer stations
and is therefore faster between stations. This is of benefit to passengers travelling
past those stations, but passengers travelling to or from the skipped stations are
left with fewer options. For our purposes, the possibility of different stopping
patterns greatly increases the problem size.

Given the fact that lines may not stop at all stations, a route or path in the
network is not sufficient to define a line. We define a line here as a sequence of
tracks which a train passes, and the stations on those tracks that are stopped
at and not stopped at. We refer to the sequence of tracks as a line route, and
the stations stopped at and not stopped at are the line stopping pattern. Paired



Figure 1: An example of the lines operated in the S-tog network, showing different
lines in different colours. Each is identified by letter, and the presence of a dash
indicates a stop.

with every line (route and stopping pattern) is an hourly frequency, and the set
of lines with their frequencies defines the line plan.

Of the roughly 7,000 pairings of stations we consider non-zero demand for
passengers between just over 4,600 of the pairs, which is around 65% of the
possible demand pairings. As input we take a set of 174 valid lines, each with one
or more valid frequencies at which the line could run; in total 350 line-frequency
combinations are considered. Each line services between 11 and 39 stations
with an average of 23 stations served per line, and almost all lines can operate
at exactly two frequencies, while some very small number have more possible
frequencies. However we also experiment with more frequencies.

Our demand data is for a specific peak period of the day, where in reality
demand varies throughout the day. Real S-tog line plans have lines that operate
at different frequencies at different times during the day, and operate modified
line plans during the weekends. We make the following two assumptions, which
are true for the S-tog problem:

e a line plan created for a peak time is valid at other off peak times, possibly
operating at lower frequencys;

e a line operates in both directions at the same frequency.

For the second point, we model both directions of the line as having the same
frequency, where in practice it may be possible to operate each direction at a
different frequency, though balancing vehicle movements may be more compli-
cated.In practice current plans operate both directions of a line at the same
in frequency, and we model the problem in that way. However, for capacity
reasons the different directions of a line may not use the same rolling stock



unit type; here we do not model rolling stock units but instead take a fixed
capacity of the largest rolling stock unit type available. In practice there are
no other differences between units that are relevant for our purposes here (for
example plans are made for a fixed driving speed, not dependent on unit type)
and through discussions with the operator we are confident that assuming all
units are of the maximum size is a valid simplification. Assumptions on rolling
stock unit are necessary because the line planning problem is solved early in a
sequence of rail planning problems, usually followed by timetable creation and
then rolling stock planning, and exact rolling stock details are only known at
that stage. Without a timetable which itself depends on the line plan, we can
only make estimates or assumptions about those details.

The presence of mixed stopping pattern lines running on the same infrastruc-
ture lines has the potential to negatively impact the timetable due to the mixed
driving times of trains. This could be a source of a lack of robustness for the
timetable and line plan. However, we do not calculate a timetable to assess this
impact and make no estimate or derive any metrics for this particular feature.

The line planning problem we consider is that of selecting a set of lines from
a larger pool of lines, and for each selected line, determining an hourly frequency
at which the line should operate. A line is defined as a route in the infrastructure
network with a stopping pattern, and several lines may share the same route
but have different stopping patterns. The selected line plan must meet certain
criteria, such as provide a minimum hourly service at each station, not exceed
hourly limits on trains using certain track segments, visiting certain stations and
turning at certain stations. These criteria are required due to the traffic contract
between the operator DSB and the Danish Ministry for Transport

The line plan must also have sufficient capacity to transport all expected
passengers, providing all with a good path from their origin to destination. As
an objective measure we want to model the entire travel time of passengers,
and include a frequency-dependent cost component to penalize occurrences of
passengers switching to lines at low frequency, in favour of switching to lines at
high frequency.

We take the line pool as a fixed input, and this is a subset of every possible
route and stopping pattern. The lines in the pool are all assumed to be feasible
alone, and are a sensible restriction of the entire pool excluding lines that are
not considered to be appropriate or feasible. The pool is still sufficiently large to
ensure the presence of a large range of feasible line-plan solutions.

In this paper, we present a integer program formulation for the line planning
problem, formulated to allow a primary objective of total passenger travel time
defined as time travelling in train and time switching between lines. We present
a flow based formulation for routing passengers, and show that, despite being
large, we use the formulation directly for real-world instances without requiring
a path-based decomposition. However to reasonably solve the model, we present
some contractions of the flow graph, present how we can aggregate passengers
to reduce the problem size, and present additional constraints that improve the
lower bound.

We present our results for the Danish S-tog case study, where we show a range
of different line plans and how they can be compared with different metrics.



2 Related Research

what about Goossens et al. [2004]

There is much work in the literature on the line planning problem, with
different details and objective measures. Schébel [2012] gives an overview of line
planning in public transport, and classifies different problem instance character-
istics and models for addressing them.

In many line planing problems, the line and the route are interchangeable; if a
line follows a certain route, then every station on the route is serviced. Goossens
et al. [2006] however present several models for the train line planning problem
where a route may have different stopping patterns, with a cost focus rather
than a passenger focus. Other work at DSB for the S-tog problem [Rezanova,
2015] has used a version of one presented model to find low cost line plans.

There is a more recent focus on the passenger, and on minimizing the total
trip time for passengers (and so modelling their moving and switching times)
as we would like to do for the S-tog system. Schobel and Scholl [2006] present
a model with a station-line graph in which passengers are freely routed with
both travel times and switching penalties, with continuous frequency decision
variables for lines, and use a decomposition such that decisions are made in
terms of path selection for every pair of stations. Nachtigall and Jerosch [2008]
present a model where passengers are routed freely, measuring travel time with
fixed penalties for switching lines, and with an integer decision variable per
line. Borndorfer et al. [2007] similarly presents a formulation freely routing
passengers (though ignoring transfers) and also dynamically generating lines,
using continuous frequency decision variables. In contrast we wish to model the
switching cost with a frequency dependence. Also, the line frequencies in the
S-tog system are not so free that we can model them continuously as there are
only discrete frequencies that are considered valid. In addition to passenger travel
time, Borndorfer et al. [2007] use operator running cost and fixed line-setup
costs into account in their model.

A simpler passenger-focused measure is using a direct-travellers objective,
maximizing the number of direct travellers the network may transport (i.e.
passengers who may travel with no transfers). Bussieck et al. [1997] present such
an approach while, like many authors, selecting lines from a pool (by selecting
for each line in the pool an integer frequency, which may be zero). A pool-based
approach is used by many authors, and is used in this work.

Robustness of subsequent plan Goerigk et al. [2013]

3 Lines Model

We take as input a set of valid lines, £, and for each line [ there is a predefined
set of discrete frequencies at which the line could operate: F;.

Ignoring passengers, we may simply find line plans (pairings of lines with
frequencies) which satisfy all operational limits, and consider how well they
serve passengers. In general such solutions do not even guarantee sufficient
capacity for all passengers, though often they are very close; the minimum
visits requirement per station in many areas provides more capacity than there
are passengers travelling to, from or passing by the station. However, even if

expand
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a solution does provide sufficient capacity, it is possibly a very poor quality
solution for passengers.

We decide which lines and frequencies we will select from the line pool L,
where each has valid frequencies F; (defined for each [ € £). We let the binary
decision variable y;; € {0,1} denote selecting line [ at frequency f.

Simply selecting a valid set of lines is not in itself trivial; the selected lines
must be compatible, must meet certain service levels, and must not exceed some
fixed operating budget. The service level requirements can all be expressed as a
minimum number of trains visiting a single station per hour, or operating on a
particular track sequence per hour. Similarly, the compatibility requirements can
be expressed as a maximum number of trains per hour visiting stations, turning
at stations, and operating on particular tracks. Selecting a line at frequency f
contributes f trains per hour towards the relevant service level constraints, and
so we can enforce such constraints by summing over every line frequency decision
with the frequency itself as the coefficient.

Every contractual requirement or operational limit can be expressed by
determining exactly those lines which contribute toward the requirement or limit
such as lines visiting the relevant station or using the relevant track sequences.
Consider such a set Z of lines. The contractual requirement or operational limit
for Z may have either a lower limit or an upper limit or both for the number of
trains per hour. For simplicity in definition we assume both; let these be a(Z)
and S(Z) for the lower and upper bounds, respectively. Now, let C be the set of
all such sets Z; every element of C is a set of lines Z with a lower (a(Z)) and
upper (S(Z)) hourly limit.

Additionally, certain sets of lines are inherently incompatible for various
reasons not explicitly related to the line plan but for other operational reasons.
Let Z be the set of all incompatible sets of lines, where any element of Z is a set
of lines from which only one line can appear in a valid line plan.

Finally, every line has a cost when operated at a particular frequency: ¢y,
and we impose a maximum budget for the line plan cpax. This generalized cost
may not necessarily scale with frequency; selecting a line at frequency 2f may
cost more or less than selecting the line at frequency f.

Now, the following constraints define a valid line plan, considering only the
lines themselves but ignoring passengers.

S up<i VieL (1)
feF

chlf'ylfécmax (2)
leL feF

YD us<t VZel (3)
leZ feF,

SN fup = a(2) VZecl (4)
leZ feF,

SN frur <B8(2) VZeC (5)
leZ feF,

yip €{0,1} Vie L, YfeF (6)

Constraints (1) ensure that a given line is chosen at most once disallowing
a single line at multiple frequencies (because, for example, some line might



be permitted at 3, 6, or 12 times per hour but not at 9 times per hour, so
combinations may not be permitted). Constraint (2) ensures that the total lines
cost is no greater than the given budget. Constraints (3) permit only one line for
each of the sets of incompatible lines. Similarly, constraints (4) provide minimum
service levels for the same visits, turnings or track usages. Constraints (5) provide
all operational constraints that can be expressed as a maximum number of trains
visiting or turning at a station, or using a specific sequence of track.

The formulation (1)—(6) defines a valid line plan. It completely ignores
passengers; some feasible solutions to the formulation will fail to provide sufficient
capacity for all passengers in the network, and those that do provide sufficient
capacity may nevertheless provide a poor solution for many passengers. However,
solving the formulation will find a line plan with some capacity that services
all stations, so it can be assessed to determine whether or not it does provide
sufficient capacity. If so, we can assess how well it serves passengers, and if not
we can identify where capacity is lacking.

4 Passengers

4.1 Graph

We model passenger travel as a movement in a graph, where the existence of
components of the graph depends on the presence of a line in the solution. We
could model each line-frequency pair as a completely distinct component of
the graph. However, this leads to a very large graph, especially if we want to
experiment with many frequencies for each line, and much of the information
depends on the line itself and not its frequency.

Consider Figure 2 showing the structure of a single line at a single frequency
visiting three stations. For each station (1, 2, 3) there are three vertices; a source
vertex, a sink vertex, and a platform vertex ( s}, s1, p! for station 1, respectively).
All passenger paths originate from some source vertex, and terminate at some
other sink vertex, travelling on dashed line travel edges or switching lines using a
platform vertex. To capture the information we want about frequency-dependent
aspects of the line, we could simply duplicate this structure for every frequency
at which the particular line operates. That is, we would have a parallel structure
to l1, la, ... vertices representing the same line with route and stopping pattern,
but operating at a different frequency. However, much of the information would
be redundant, and when experimenting with large numbers of frequencies per
line the graph becomes very large. Alternatively we could simply have one
such structure that represents every frequency, except that then the cost of a
particular path could have no dependence on frequency of lines used. In our
problem we want to penalise switching to low frequency lines more than high
frequency lines. However capacities of edges, though dependent on frequency,
can still be maintained even with a single structure by summing the capacities
of the frequency-line decisions that would contribute toward them. This suggests
that it is possible to partially aggregate the line-frequencies into simply lines,
being careful to accommodate the frequency-dependent switching cost between
lines.

The aggregated graph then contains three types of node:

e a source and sink for every station;



Figure 2: The structure for a single line at one frequency visiting multiple
stations.

e a platform for every station;
e a station-line for every station a line visits, for every line.
The graph also contains several types of edges:

e A travel edge between every adjacent pair of station-line edges for every
line, in each direction;

e A get-off edge from every station-line to every station sink;

A get-off edge from every station-line to every station platform;

A get-on edge from every station source to every station-line;

A get-on edge from every station platform to every station-line at every
frequency.

Note that this is an aggregation of the line/frequency combinations, though
without being able to aggregate those boarding frequency edges. It means the
capacity of an edge (the station-line to station-line edges) is dependent on a
summation over all frequency decisions for that line.

The graph structure is similar to the stop-and-go graph described by Schébel
and Scholl [2006]. See Figure 3 for the structure of the problem graph for
passengers. The figure shows a single station with its three nodes, and two
distinct lines which visit the station at two frequencies each. Here depicted
as a multi-graph, the graph can be made simple with auxiliary nodes and
edges. For each passenger, a path through the graph from their origin station
si vertex to their destination station s2 vertex must be found, which incurs
the travelling time (on dashed edges) and switching time costs (on red edges).
Differing from the Schébel and Scholl [2006] problem structure, in our case the
discrete frequencies a line may operate at are an important feature, and we
want to model different passenger time costs for switching to lines at different
frequencies, so our graph has additional station structure.

4.2 Flow decisions

The problem can be represented as a multi-commodity flow problem, with one
commodity per OD pair, with additional constraints linking flows to line presence
and capacity. However, with the roughly 4,600 OD pairings in our regular problem



Figure 3: The graph structure for two lines at a station. Each station has three
vertices, s; and s,, which representing either entering or exiting the system at
this station, and p, which represents switching lines at the platform. Vertices [y
and [5 represent the two lines visiting the station. The solid black edges have
zero cost, while the dashed black edges cost the travel time to the next station
along a line. The thick red edges represent the costly switching from one line
to another, and depend on the frequency of the boarded line (one edge per
frequency the line may operate at).

instance and the relatively large graph we describe above, the problem would
be very large. Let us refer to such a model, which we do not formulate here, as
a per-OD arc flow model, where for every OD we would select a proportion of
passengers who use every edge in the graph such that every OD has one path
from origin to destination, and those edges used correspond to selected lines and
frequencies. We have tested the per-OD arc flow model for small instances (such
as with only the lines of a known feasible solution, but unspecified frequency
still to be determined) and, though solvable, the model is very large and would
not scale to having very many lines.

The proposed per-OD arc flow model would have one flow variable for every
OD combination, for every edge in the graph, and we would require one path with
capacity sufficient for that OD demand for every OD combination, respecting
every other OD path. As an aggregation, we can combine flows that have the
same origin (or alternatively the same destination), and instead have one type
of flow for every origin. The number of flow decisions is then lower by a factor of
|O|. Instead of requiring one path per OD, we will require the aggregation of
those paths scaled by passenger counts; that is, we will require a network flow
from each origin which supplies the sum of passengers from the origin to every
destination, and each destination from that origin consumes just the passenger
demand from the origin to that destination. The flow variables are ¢ > 0; the
number of passengers from origin o using edge e. Note that we do not require
integer flows, and we do not require a single path between every origin and
destination. In fact we see for currently used plans that it is infeasible for every
OD pair to use a single path, as there is insufficient capacity. Instead some
proportion of passengers on some OD trips are forced to take less favourable
paths than the best available due to limited capacity on their most attractive
path. Here, we note that the capacity we take for an operating line is assuming
the largest possible rolling stock unit is operating the line, while in reality DSB



operates different units with different capacities. In discussions with DSB we
determined that this simplification was appropriate and, while it potentially
over-estimates the true capacity achievable for a line plan (as DSB has too few
of the largest units to use them everywhere), we do not see solutions where this
capacity is required on every line simultaneously.

In the graph described in Section 4.1, let V be the the set of vertices and
& be the set of edges. For every vertex in the graph, we define a demand for
passengers for every origin station in the network. Let the demand for passengers
at vertex v who originate from station s be aj.

dsy s, if vertex v is a sink vertex for station so
s1_ e .
ayt = ¢ =1 >, dss, ifvisthe source vertex for station s;
0 otherwise

We also require constraints that link the flow variables to the line decision
variables v, ensuring both that if any flow uses a line, then the line is present,
and that every connection of the line has sufficient capacity for all flows which
use it. Further, we will require that the edges corresponding to the frequency-
dependent boarding of a line are only used if the line is present at the correct
frequency. Constraints linking the flow variables to the capacity of the selected
lines are in fact sufficient, and it is not necessary to impose additional constraints
to link simply a usage of a line to a line decision variable. To do this, let &£
be the set of all edges in the graph that depend on the presence of line [ at
undetermined frequency. Let & ch be the set of all edges in the graph that depend
on the presence of line [ at exactly frequency f.

We impose the following constraints:

Sooal = N 2l =af VseO YweV (7)
(u,w)€E (v,w)e&
> b <> Pryy VieLVeec&  (8)
0€O feF
>l < Pryy VieLNfeFpVecE (9)
0€0

Constraints (7) ensure that flow is conserved in the graph, for every origin
defining a network flow moving the required number of passengers from each
origin to every destination. Constraints (8) ensure that for every edge on a line
(&), the edge provides sufficient capacity for all flows using it. The constant
Py is the capacity of any line at frequency f, which we take as a constant.
An obvious simple extension is to have a line-specific capacity, but that is not
present in our data. Finally, constraints (9) ensure that for those boarding edges
from a platform that are frequency dependent (edges 5} for line [ at frequency
f), again sufficient capacity must be present. In effect, the difference between
constraints (8) and (9) is that (8) are for the aggregated frequency edges and
therefore we sum the y;7 variables for all frequencies.

These constraints (7)—(9) define the flows and link them to the line decision
variables. The full formulation then is constraints (1)—(6), and (7)—(9).



5 Objective functions

There are a number of possible objective functions we could use, either related to
passengers, to the operator, or to some combination. Above with constraints (1)-
(6) we gave the operator cost as a constraint with a fixed budget, and our primary
goal is to minimize a passenger-based objective. However, other measures are
possible. Here we give our primary measure and some other alternative measures
we use.

5.1 Passenger travel time

As already stated, we are interested in penalising switching time for passengers
with emphasis on discouraging switching to lines operating at low frequency.
As we do not know the timetable in advance, we can’t know the exact time
required for a switch. In the ideal case, for every switching occurrence, both trains
would arrive at a station at the same time and the station layout would permit
passengers to switch from either train to the other, losing no time. However,
generally this is impossible in the S-tog system. The best case at most stations
is that one train arrives shortly before another, in such a way that passengers
may switch from the earlier train to the later time with minimal waiting time,
but then passengers switching in the opposite direction have almost a worst-case
wait time for their next train.

Overall, we consider passenger travel time to be the most appropriate measure.
In tests, if we ignore switching time and minimize only moving travel time, we
find solutions with many undesirable switches required. Conversely if we ignore
travel time and consider only minimizing some measure of switch cost, we find
solutions which do not use “fast” lines appropriately and have higher overall
average total travel time. Travel time therefore includes both the moving travel
time on train lines and an additional estimate of the wait time. However, in
addition to this we include a separate expression for the “unpleasantness” of
switching lines which we express as a time, in effect calculating a weighted sum
of estimated travel time and the number of switches.

For every edge in the graph, we assign some cost to the passenger. Let ¢,
be the time cost to one passenger for using edge e. For every travel edge on a
line (the dashed lines in Figure 3), the edge time cost is the exact, known, travel
time for trains between the two stations. However, for the frequency-dependent
switching edges (the red edges on Figure 3), the edge time cost includes an
estimate of the waiting time and the penalized fixed cost of switching. For such
edges e at frequency f, let t, = payeq + )\%, where X € [0, 1]. That is, the time
cost is a fixed term with a fraction of the worst case wait time (where for example
in the worst case, a line operating twice per hour has a worst case switch time of
% an hour). We take, as a parameter, a fixed penalty of six minutes and A = 0.5,
or an average case wait time estimate. For any other edges let t. = 0. Now, we
can define our objective function as simply:

Z Z tex? (10)

ecf ocO
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5.2 Minimum lines cost objective

We are not only interested in line plans which have minimal passenger cost, but
also those that have low operating cost while still providing a good passenger
service. An operating cost objective can easily be used with the formulation
(2)—(6), iteratively finding many low cost solutions and assessing their passenger
cost. However it is likely that such plans are not feasible; minimal line cost
solutions likely provide low passenger capacity. We can use the following as our
objective function, which expresses operating line cost:

Z Z Cif ~Yif < Cmax (11)

leL feF

We observe that there are many similar cost solutions with the same lines but
with different frequencies, where the aggregated sum of frequencies is the same
(or similar). If we iteratively find solutions and forbid them (which we can do
with constraints described in a later section), we see many similar solutions. Also,
we observe that if a low-cost solution of lines with some frequencies is infeasible
for passengers, then a different low-cost solution with the same lines at different
frequencies is also likely to be infeasible for passengers. However there is also
likely to be other solutions with the same lines at different frequencies that are
feasible, but not low-cost. We can also find these similar solutions by taking a
limited line pool consisting only of the lines present in a low cost solution, but
at any frequency, and solve a problem with passenger cost as the objective. A
feasible solution is guaranteed to be present as every line and frequency of the
provided solution is present, but we may find there are better feasible solutions
with respect to the passenger objective.

5.3 Direct travellers objective

In model (2)—(6) we can instead use a (pseudo) direct travellers objective, seeking
to maximize the number of direct travellers. This will not be entirely correct as
it will count the number of passengers who have a direct path in the line plan,
but without the guarantee that all such passengers may take their direct path
(due to limited capacity).

To measure the direct travellers we introduce a new binary variable: let
Zod € {0, 1} denote whether the line plan provides a direct connection between
stations o and d. Then, let L£,4 be the set of lines which provide a direct connection
between stations o and d, which can easily be precomputed. We then maximize

the objective function:
Z dod * Zod (12)

(0,d)eO

where d,q is the demand between stations o and d.
We require the following additional constraints:

Zod < Z Z ylf(o, d) cO (13)

leLog fEF

That is, z,q may have value 1 if there is one line providing a direct connection
between o and d in the line plan.
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As mentioned in the previous section, we may iteratively find solutions by
forbidding those we do discover with appropriate constraints. We then assess the
feasibility and travel time cost of the line plans. The results are remarkably poor;
the direct traveller objective is not a good approximation of our true travel time
estimate objective. For the S-tog problem we assessed the first three thousand
solutions; all had very high line operating cost, and almost all had high travel
time cost as well. None was a noteworthy solution; all discovered solutions are
dominated by other solutions, even (some of) those found with minimal operator
cost in the previous section.

Examining the discovered solutions, there are two explanations for the poor
quality of the solutions favouring direct travellers. Firstly, lines that skip stations
in our network provide a small travel time benefit to potentially many passengers,
but provide fewer direct connections than lines with the same route stopping at
all stations. If measuring only direct travellers then these faster “skipping” lines
are less valued, and almost none appear in any solutions we discover. Secondly,
the solutions have a very wide selection of lines, with more lines being present
overall and those lines that are present all terminate at extreme end stations of
the network, not intermediate end stations. This then has the problem that the
line frequencies must all be low to accommodate many lines turning at each of
the extreme end stations, and then by our travel time estimate, those passengers
that do mot have a direct connection are then required to switch onto lines
operating at low frequency, incurring higher cost. We see that, indeed, fewer
passengers are required to make connections (roughly 30% fewer connections in
total than plans targeting total travel time), but that is still then a large number
of passengers and most are switching to low frequency lines.

The direct travellers objective is used by other authors, and in fact has been
noted as being a source of a lack of delay robustness for a timetable [Goerigk
et al., 2013]. However that is attributed by the authors to the presence of very
long lines in the solution which provide many direct connections. In the S-tog
network there is not the possiblity for particularly long lines, although a direct
traveller objective does discourage using the “intermediate” end stations on the
fingers and instead using the end depots at greater capacity. However a direct
travellers objective in the S-tog case discourages skipped stations which leads to
more homogeneity in driving speed, which might be expected to provide better
delay robustness.

6 Other modeling considerations

6.1 Additional linking constraints

In the previous section we defined a formulation where the linkage between edge
flows and line presence is imposed only by the capacity of a line and the sum of
all usages of every element of the line.

In general, in our problem, the demand between some particular pair of
stations is lower than the capacity of a line operating at only the lowest frequency.
In a non-integer solution only a small fractional line decision variable (y;¢) is
required to provide capacity for some OD pair to make use of the line, if no
other OD pair uses that line. Suppose for an OD based arc flow model there
are variables ¢, deciding the flow on edge e for flow from o to d. In addition
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to summing all such flows for every OD pair for the usage of the line y;; which
contains e to constrain the capacity of the edge, the following constraint could

be used:
Tog < dog - Z Uit
feF
where d,q is the demand for pair (o, d). This would provide a tighter linkage
between the flow variables and the line variables, at the expense of requiring
very many constraints, though it is not necessarily required that such constraints
are included for every edge of a line.

Unfortunately, we do not have individual flow variables z{, as we have
aggregated the variables by origin; we have only z¢. Unlike previously, where
the maximum flow on any edge for one (o, d) flow was dyq, now the maximum
demand of flow on any edge from one origin is ), doq, which is not in general
significantly smaller than the capacity provided by one line; in fact it can often
be that any one line capacity is less than the aggregated demand. The analogous
constraint is much weaker:

Ty < Z ylf'zdod

feF; d

In general, the flow originating from an origin has much higher edge usage
than any single d,q, and close to the origin itself it may in fact be as high as
>4 doa- However the flow from that origin terminates at many destinations and
at those destinations the flow is much lower; exactly d,q flow terminates at a
particular destination from some origin, and that corresponds to usage of an edge
in our graph that belongs to a specific line and is only used by flow terminating
at that destination. That can be seen on Figure 3, where edges to s, can each be
associated with a single line, and where there are no edges out of s,. Therefore,
for every such specific edge e we can include the following constraint:

25 <doa- > iy
fer

Let t;4 be the terminating edge of line [ at destination station d (if there is
destination d on line 1). Then, we impose the following for every line and for
every (o, d):

oht <doa- Y yig (14)
feF

Given our tight operational constraints, as well as the budget constraint
(constraints (2) and (5)), such constraints improve the bound given by solving
the LP relaxation of the model, as in general the forcing of some line variables
to have higher value must cause a decrease in others, and then some passengers
must use less favourable lines. However this comes with the addition of many
new constraints; one for every OD pair, for every line that visits the destination
of the pair (up to |[£ x O x O] constraints).

The formulation is constraints (1)—(6), (7)—(9) and (14).

Figure 4 shows how the LP lower bound differs with and without con-
straints (14). Here the problem itself is the S-tog problem, and more precise
details are given later. The effect differs with the budget limit: without the
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constraints only a very strict budget limit has any effect on the LP bound, while
with the constraints the bound is affected more with a wider range of budget
limit levels. The difference between the two bounds is most pronounced at lower
budget limits than higher, but in all cases is less than half way from the worse
lower bound to a best IP solution (though the IP solutions were only obtained
with a time limit of 1 hour and so not all are optimal). Note that for the IP
solutions, the actual lines cost may not correspond exactly to one of the cost
constraints applied, as with the applied constraint the best solution found may
have a lower lines cost.

T I
owithout (14)
1,360 - o with (14) ||
best IP
1,340 |- |
g
21320/ © |
% .
°
%
1,300 |- 0.... |
e} L [} °
o)
1,280 | 0000000 o o o o o
| | | |
6 7 8 9
Budget constraint -10°

Figure 4: The LP relaxation lower bound found for different cost constraints
with (blue open circle) and without (red filled circle) constraints (14). Green
cross-marks show some best integer solutions found with a one hour time limit
for a range of cost constraints.

6.2 Forbidding a solution

Let S be a set of lines in a particular solution, and let f; be the frequency of
line [ in S. The following constraint forbids this exact solution:

Sy <181 -1 (15)

les
This has the potential problem that it does not forbid a solution containing
only some of the lines in S, or conversely that it does forbid solutions which
contain the lines of § and additional lines. As an alternative, a solution with
the given solution lines at any frequency can be forbidden with the following

constraint:
S5 we<isi -1 (16)

leS fe]-‘f

As before, this does not forbid a solution containing only some of the lines in
S, and does forbid solutions with additional lines. However, we find that to be
acceptable for our problems.
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Forbidding solutions in this way is used to remove solutions known to be
infeasible for later planning; and iteratively, to find a large pool of solutions by
repeatedly solving the model, forbidding the last found solution, and solving
again.

6.3 OD grouping

Stations can be grouped together if they are served similarly by all lines. Consider
two adjacent stations, s; and s, which lie on a track sequence, and all lines
in the line pool stop at either both s; and s, or neither sq nor s,. That is,
they are served identically by all lines. Then, if there is a third station s3 with
demand to both stations s; and sy we can treat the two demands as a single
combined demand to (say) s1. Any demand for travelling directly from s; to sa,
or vice versa, which would be discarded, can be reserved by requiring sufficient
aggregated extra capacity on the lines visiting both stations. This may under-
reserve capacity on the connection between s; and s, if s1 is closer to s3 than
S9 is, or over-reserve capacity if s; is further from s;. We optionally apply a
pessimistic grouping strategy which reduces the problem size (by reducing the
total number of OD pairs), but given the potential error in under-use or overuse
of some connections, we only consider low magnitude OD pairs and always assess
solutions found using all OD pairs.

With reference to Figure 1, the S-tog network has a central region and several
“fingers”. In the presented plan, on each finger, one line serves every station and
the other line serves only some stations, but this is not necessarily true for any
solution plan. However it is in the fingers where grouping is most relevant; for
example the final few stations on every finger may not be skipped by any line,
and are therefore visited identically by every line and may be grouped.

7 Instance size

The OD data is not necessarily well-suited to all applications in that the hourly
demand between many station pairs is non-integral (being the output of a
demand model). Table 1 shows the total passenger demand for different rounding
strategies of the individual OD demands between pairs of stations.

Table 1: Total OD demand for different roundings of individual OD demands

method passenger number
rounded up +6.52%
rounded down -6.53%
rounded -0.02%

Always rounding down results in a loss of over 6% of passengers, while
rounding up adds more than an additional 6% passengers in total. Some solutions
(including real solutions) are very tight in capacity in certain sections, and the
additional passengers in the round-up scenario can make such solutions infeasible.
Rounding down has a similar problem, in that solutions may be found which
have very limited capacity and insufficient capacity for the true total number
of passengers. We instead round all demands to the closest integer number of
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passengers which results in a total passenger demand very close to our raw input
data, and is less likely to have such capacity problems.

Now that all components of the problem are defined, we can more explicitly
define the standard S-tog instance size. Table 2 shows the size of various sets
defined earlier.

Table 2: Sizes of problem instance parameters, and some derived values.

parameter explanation size
|L] Number of lines 174
Y icr |F1l Number of line-frequency decisions 350
7| Number of marked incompatible lines 258
IC] Number of operational requirements 189
|OD| Number of (o, d) pairs 4645

Figure 5 shows the cumulative number of passengers for (o, d) pairs, when
sorted by the number of passengers demanding a route for each (o, d). A small
proportion of the (o, d) pairs account for the majority of the passengers. A
potential simplification may then be to simply ignore some proportion of (o,
d) pairs with small demands; however experiments solving reduced problems
and then assessing solution quality considering all ODs gave poor results, as
those low-demand ODs cover a diverse range of station pairings that are given
insufficient consideration.
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Figure 5: The cumulative proportion of passengers when considering (o, d) pairs
sorted in decreasing order by the size of their passenger demand.

8 Method

Primarily, we use the formulation as described, with a constraint on the operator
cost which we vary to find different results, and the total passenger time estimate
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as the objective function. Solving the resulting mixed integer program (MIP)
directly can often provide good quality solutions, but we propose two additional
methods for finding solutions.

In the following, we will refer to two real solutions: R1 and R2. These are
both real historic line plans and frequencies as operated by DSB.

All testing is implemented with Gurobi 5.6 as the MIP solver on a machine
with 8 GB of memory, and a four-core 2.5 GHz i7 processor.

8.1 Refining a given solution with a limited pool

From a given solution, we can create a limited pool of lines to use as the input to
the model, which may or may not contain all the lines of the given solution and
possibly also has the original solution as the optimal solution. The advantage of
using a limited pool is that if the pool is sufficiently small, the model is solvable
to optimality in reasonable time.

Suppose a solution is given, and let S be the set of lines present in the
solution, with unspecified frequency. A simple restricted instance is to solve
the model with only the lines S, but with the definition of F; for each line [
in § unchanged. This is then a very small line pool (with generally one or two
frequencies per line), but there is guaranteed to be at least one feasible solution
present and likely to be others. We see that solving this limited model for any
given solution can quickly find very similar but better solutions, especially in
the case of real past line plans which were generally not planned with the same
objective we use, and likely respect additional requirements. The similarity of
any solution found to a real past solution is potentially useful, avoiding solutions
that are significantly different to a plan that is not only feasible but known to
operate in practice, which we can not in general guarantee.

To determine a wider but limited line pool, consider a set of lines from the
entire line pool that are similar to a given line; let N(I) be a set of “neighbouring”
lines to line [ which only differ in some small way to [. Now, we may use the
following as a limited line pool:

U~
lesS
We assume that | € N(1), and therefore S is a subset of this limited line pool.

The definition of N(I) has a large effect on the problem size and solution
quality. For example if N(I) = {{} for all lines in S, then this limited line pool is
the same as simply taking the given solution lines. Alternatively, if N(I) is very
large then the resulting problem may have every line in the entire pool £, and
the line pool would not be “limited” at all.

Table 3 shows the problem sizes if we apply these two options, either taking
lines but unspecified frequencies, or expanding with neighbouring lines, to the two
real line plans R1 and R2. Here we indicate the solution with fixed frequencies
as R1, the problem with the lines of R1 but open frequencies as R1", and the
problem with all neighbouring lines to R1 as R1* (and the equivalent for R2). For
each, we report the number of considered line-frequency combinations, and for
the expanded problems report the solve time and the percentage improvement
in the moving time, train switching time, and line cost. Note that the line cost
is not considered in the objective, and as expected it increases, while we see
modest improvements in the components of the total travel time.
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Table 3: Solve times and objective improvements for different limited line pools.
Cost improvements are the improvement in total moving time and switching
time, and the improvement in operator line cost (which in fact becomes worse
as operator cost may increase if it below the budget constraint).

Lines Cost improvements
Problem L] ) ,..[Fi| Solve time (s) Moving Switching  Line
R1 9 9 - - - -
R1t 9 19 1 0.1% 9.7% -3.3%
R1* 29 59 395 0.1% 9.7% -3.3%
R2 8 8 - - - -
R2* 8 17 1 0.2% 55% -2.4%
R2* 25 52 175 1.5% 4.5% -5.3%

Solve times for the R1* and R2* instances are much greater than the R17 and
R21 instances, and in the case of R1* no improvement is seen over R1". However,
we can see that we can relatively quickly find line plans that “neighbour” a
given plan, and here we can improve over these real line plans with very similar
line plans (in the case of R1T and R2T the found solutions modify only the
line frequencies). We can see here that there is more scope for improvement in
switching time than travel time, given these reduced problems. Note, however,
that here we report the percentage improvement for each individually, but
the magnitude of those changes is very different, and in our problem a small
relative improvement in travel time can be more significant than a large relative
improvement in switching time.

When we solved both R1T and R2%, the moving time improved even though
we had exactly the same lines and can alter only frequencies. This may seem
impossible, as the travel time between any pair of stations is unchanged. However
the reason that we see small improvement is that either some passengers did not
take their quickest (moving time) route due to a costly low frequency connection,
or because some passengers could not take their fastest (moving time) route due
to a lack of capacity, but with higher frequency (and therefore capacity) can
now take that route.

8.2 LP heuristic

We propose the following as a simple heuristic for finding solutions. Initially, we
solve the LP relaxation of the model and consider exactly those ;s variables
that have non-zero value. Then, we restrict the problem to only those lines
present but find the optimal integer solution with the restricted problem. We
compare the value of the optimal integer solution to the initial lower bound
to the LP that we had, and, if we wish, we can re-introduce the missing line-
frequency decision variables and allow the solver to tighten that lower bound
and potentially discover better integer solutions. The advantage we see is that it
is much faster to solve to optimality when there is a restricted pool of lines, and
so we can relatively quickly find good solutions. In fact, in some experiments
the solutions are optimal or near optimal. We hope that the smaller resulting
problems have acceptable solve times but still have solutions of good quality.
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Also, as a possibility, we can expand the lines in the LP solution using the ideas
from Section 8.1.

We compare four different formulations, summarized in Table 4. The formu-
lations differ in the presence of the additional constraints (14), and in whether
or not the grouping of ODs from Section 6.3 is applied.

Table 4: Four different formulations, differing in the presence of additional
constraints and their grouping of OD pairs.

Without cons. (14) With cons. (14)

No grouping M1 M3
Grouping M2 M4

We try solving the problem with the LP heuristic for each of the four methods.
The solve times are summarized in Table 5, referring to firstly the solve time for
the LP, and then the additional solve time to reach (potentially) the optimal
solution. However it can be seen that only formulation M4 can solve both the
LP and the subsequent IP to optimality in reasonable time. The others can
all provide the LP solution but none can prove optimality for a solution in
reasonable time. We allowed 5000 seconds for attempting to solve the resulting
reduced IP for each model. After this time, neither M1 nor M2 both had an
incumbent solution, whereas M3 had nearly found and proven an optimal solution.
In fact, the line-frequencies solution provided by M3 was exactly the same as
that provided by M4.

Table 5: LP and IP solve times for different formulations for an LP non-zero
heuristic, where the IP is solved only considering non-zero variables in the LP
solution. Termination with no incumbent marked 1; termination with a 0.8%
gap marked 2.

Times (s)
Formulation LP 1P
M1 325  5000!
M2 42 5000!
M3 4728 50002
M4 178 1086

We see that M1 and M2 do not solve to optimality or even find any feasible
solutions in reasonable time. However, the comparison is potentially misleading
because each is solved using the lines and frequencies found to be non-zero at LP
optimality, and as we might expect (due to M1 and M2 lacking the additional
constraints (14)) their LP solutions potentially have more non-zeros than the
LP solutions for M1 and M2.

Consider Table 6 where we show the number of line-frequency combinations
in the LP solutions to M1 and M3, and then consider expanding those as we did
with integer solutions in Section 8.1.

From the table, it can be seen that the additional constraints (14) reduce the
number of non-zero variables in an LP solution significantly. Also, in contrast
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Table 6: The problem size in line-frequency combinations given by taking non-
zero elements of an LP, or expanding that with additional frequencies (denoted
T), or with neighbouring lines (denoted *)

Problem ), . |Fi|

M1 LP 172
M1 LP* 324
M1 LP* 350
M3 LP 99
M3 LP* 62
M3 LP* 156

to the LP solution without constraints (14), the solution with the constraints
features the majority of lines at every valid frequency (due to there being only an
increase from 59 to 62 line-frequency variables when the missing frequencies are
included). Without the constraints, however, lines tend to occur at only a single
frequency but a far greater variety of lines is present. For M1 the expansions of
the problem are unlikely to give the benefit we would like; rather than resulting
in a still small problem, it is expanded to almost every line, and so we would
gain little over attempting to solve the entire problem.

As can be seen from the table, the LP solution when using M1 has many
more non-zero elements than the LP solution of M3. The same relative difference
occurs comparing M2 and M4. As the heuristic method was to then take only
those non-zero elements, it is perhaps not surprising that it was difficult to
solve M1 with the 172 line-frequency combinations to IP optimality, as it was
to solve M4 to IP optimality with its 59 line-frequency decisions. However, as
a further experiment, we instead solved M2 to LP optimality, discarded the
non-zero line-frequency elements of the problem not in the LP solution, and then
added constraints (14). In this case, with a 5000 second time limit, we were able
to solve the model to within 1.3% of optimal. This solution was in fact 2.8%
worse than the solution found with the 59 non-zero line-frequencies of the M3
LP solution. This reveals a weakness of the LP heuristic method, in that it may
be possible that there are no good integer solutions given the restricted problem,
and possibly no feasible integer solutions at all.

Finally, we simply attempted to solved M4 as a MIP with all lines and
frequencies, which, given 5000 seconds found a solution 1.7% worse than the
solution provided by M4 with the LP heuristic. Allowing significantly more time,
the solver can show that the M4 LP heuristic solution is within 1% of optimal,
and it finds the exact same solution itself, but not better solutions.

9 Results

Though we assess line plans with total passenger travel time and by line cost to
the operator, there are other metrics we may use to distinguish between different
line plans. We note that to be implemented in practice a real line plan must meet
other requirements we have not captured, such as facilitating good timetables.
We see that with our formulation of line plan requirements, examples of real
line plans are not optimal for either passenger travel time or lines operator cost,
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or for any weighted sum of those measures. However, we might expect that a
usable line plan is one which has an appropriate trade-off between those two
measures and falls within certain bounds for many other metrics.

Here, we consider the following metrics for line plans described in Table 7.

Table 7: The metrics used for line plan comparisons

Metric Description

Line cost The estimated cost to the operator, per hour,
for running the line plan.

Hourly turn time The minimum time per hour spent by trains
dwelling/turning in end stations.

Hourly run time The total moving time of trains in the line plan,
per hour.

Hourly skipped stations The number of stops that see a train pass by
but not stop, per hour, in the line plan.

Unit requirement The minimum number of units that would be
required to operate the line plan (calculated
using the minimum circulation time for a unit
operating on the line).

Mean station visits The average number of trains that visit a sta-
tion every hour (or the total number of hourly
station visits in the line plan divided by the
number of stations).

Low-service stations The number of stations which see no more than
some threshold number of trains per hour. Here
we use a threshold of 6.

Direct trips The number of direct connection trips possi-
ble in the network, or the number of pairs of
stations which feature together on at least one
line.

Passenger cost The total cost to the passenger, where cost is
travel time with switching estimate and switch-
ing penalty.

Average travel time The average per-person traveling component
of the passenger cost, excluding switching.
Average switch cost The average per-passenger switching cost con-

sisting of the switching estimate and the switch-
ing fixed cost penalty.

Average switching wait  The average per-passenger time spent switching
trains in the line plan.

Average switch penalty The average per-passenger fixed switching
penalty in the line plan.

Total transfers The number of passengers who must transfer
trains in the line plan.

To explore the range of values we might see for these metrics, we generate
a set of solutions that we assess as being “interesting” due to either their
acceptable trade-off between the costs to the operator or the passenger, or for
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being particularly good for some other measure. These are primarily generated
iteratively, by solving the problem with different operator cost constraints and
with a passenger cost objective, and storing incumbent solutions found by the
solver. Good solutions were also refined as described in Section 8.1. For some
solutions, also tighten some operational limit constraints (Constraints (5)) to
find solutions that are more conservative but might be more likely to be operated
by DSB as true line plans. Figure 6 shows every solution we consider, plotted by
their cost to the operator and to the passenger. The majority of the considered
solutions sit close to the frontier of solutions that are optimal for some weighted
sum of these two measures, while a small number appear to be poor for both
measures but are optimal or close to optimal for some other measure. These
unusual solutions were found with a primary objective maximizing the number
of direction travellers, as in Section 5.3. A real S-tog solution, R1, is marked with
an open circle, showing that it is neither optimal for operator cost nor passenger
cost, and there are solutions that are better for both measures. In reality, there
are additional concerns we do not model that may mean real solutions are more
favourable, or extra requirements that may invalidate the “better” solutions.
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Figure 6: The passenger cost and operator cost for the considered set of note-
worthy solutions. The open circle indicates real line plan R1.

On Figure 6, the optimal solutions considering only operator cost or only
passenger cost can be seen. Due to the competing nature of the two measures, the
solution providing the best value for one measure is poor for the other, though
the best solution for the operator is not the worst solution for the passenger, and
vice versa. Let us refer to these extreme solutions as SO, the operator-optimal
solution; and SP, the passenger-optimal solution. Finally, we will refer to one of
the solutions that dominates R1 for both line cost and passenger cost as SM
(in fact four solutions strictly dominate R1 in this solution set).
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Table 8 shows the minimum, maximum, and mean values for the different
measures for all solutions in the set we discuss here. The table also shows the
metric values for four solutions: true solution R1, solution SO that is best for
line cost, passenger-optimal solution SP, and the fourth SM that is better than
R1 for both line cost and passenger cost.

Figure 7 shows normalized boxplots for all of the metrics, with the values for
four noteworthy solutions marked on each. The real line plan R1 is marked on
Figure 6 with an open circle, and we can see it is below average for line cost
and above average for passenger cost. Noteworthy observations are that it has
a rather low unit requirement (which is a component of the total line cost),
but has a particularly high number of total transfering passengers compared
with most other solutions, and an above average passenger (moving) travel
time. In contrast, the solution SO (optimal for line cost) also has the lowest
unit requirement of all presented solutions, but has the highest number of low-
service stations. It also has a higher total cost to the passenger compared to
solution R1 although it has fewer overall transfer passengers, and surprisingly
it provides a very similar number of direct trips as SO. Solution SP, the
passenger-optimal solution, has, perhaps unexpectedly, a very large number of
hourly skipped stations, which corresponds to many passengers saving travel
time. However this is not completely at the expense of those passengers at those
skipped stations being required to transfer as the solution has a below-average
(but not exceptionally low) number of transferring passengers. Finally, we mark
a fourth solution which is better than R1 for both line cost and passenger
cost (with an open square). We observe that it is similar to solution R1 for
some metrics but surprisingly different for others; for example, it provides more
direct trips and has fewer transferring passengers than R1, but is greater for
metric average switching wait. The interpretation of that is that while there
are fewer overall passengers transferring, those that do transfer are transferring
to lines with greater headway and therefore are estimated to wait longer. The
hourly skipped stations is indicative of a lack of homogeneity in trains;
with zero hourly skipped stations all trans stop at every station while if
this value is high, many stations are bypassed. Bypassed stations must still be
served, and so there must be parallel lines running on the same infrastructure
stopping at the stations, therefore stopping more and running slower. This
could have implications for the robustness of the subsequent timetable; some
authors [Vromans et al., 2006, for example] equate high robustness with high
homogeneity in running speed. We can see that the real line plan R1 has lower
hourly skipped stations that the other marked plans, but substantially lower
values are present in other plans. The measure hourly turn time could also be
relevant for a robustness perspective, as the measure indicates the total minimum
hourly utilization of turning facilities at stations, either on-platform turning or
using dedicated turning track. A higher value indicates greater utilization of
turning capacity and likely therefore less buffer between turning events, and
subsequently less robustness for absorbing delay.

It may be expected that a solution with many direct trips would also be a
solution with low passenger cost, due to the limiting of the line-switching cost
in the total passenger cost. However, that does not take into account the fact that
solutions with more direct trips tend to have fewer missed stops, resulting in
longer travel times for some passengers, and that not all line switching is equally
penalised as we estimate the wait time by the line frequency. Figure 8 shows
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Figure 7: Normalized distributions of values for the performance indicators. The
real line plan R1 is marked in each row with an open circle. The asterisk and
the closed circle indicators indicate the optimal line cost and passenger cost
solutions, respectively (SO and SP). The open square indicates a solution which
dominates the real solution for those two measures.

passenger cost and the number of direct trips for the range of solutions.
Surprisingly, there is a set of solutions that have many direct trips but are also
high in passenger cost. Excluding those, there may be some negative correlation
between passenger cost and the number of direct trips, but this is not strong.
The real solution R1 is marked, and is not particularly extraordinary for either
measure. We see from the figure that simply maximizing the number of direct
travellers, a measure used by some other work in the field (for example Bussieck
et al. [1997]), is not appropriate for this particular problem, as those solutions
with the highest number of direct travellers are particularly bad for the passenger.

We may consider the proportion of the total cost to the passenger that is
attributable to travel time, and to switching lines. Further, we can consider the
components of the cost of switching lines. That is, we consider as a fraction of
the per-person passenger cost, the cost attributed to moving (average travel
time) and the cost attributed to waiting to transfer (average switch cost). Of
the waiting time cost, there is the estimate of the waiting time itself (average
switching wait) and fixed penalty (average switch penalty). Table 9 shows
a summary of the percentage of passenger cost that can be attributed to the
different constitutive components. For these solutions the vast majority of the
total passenger cost is attributable to actual moving time in trains. All passengers
spend time travelling while only some must switch trains, and for many journeys
with a switch, the actual travel time is greater than the switching time estimate
and penalty combined, so it is unsurprising that travelling time is greater overall.
We see that, for all considered solutions here, at least 85.81% of passenger cost
is attributable to actual travelling in a train, while up to 14.09% is due to the
cost of switching trains.
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Figure 8: The total passenger cost and the number of direct trips for the set of
solutions. The real line plan R1 is marked with an open circle.

Table 9: Summary of the percentage of total passenger cost attributable to
passenger travel time, switching cost, and the components of switching cost.

Component Minimum Mean Maximum
Average travel time 85.91 89.33 91.88
Average switch cost 8.12  10.65 14.09
Average switching wait 3.92 5.79 8.77
Average switch penalty 3.40 4.86 6.16
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10 Solving only lines model

Solutions are a valid line plan if they satisfy constraints (2)—(6), operationally and
contractually, though these do not guarantee sufficient capacity for all passengers.
However, the minimum-visit requirements at many stations do mean that most
line plans satisfying (2)—(6) have close to sufficient capacity, or sufficient capacity,
for passengers. To determine the passenger-feasibility of a solution, and the cost
to the passenger, we can construct the graph described in Section 4.1 for only
those lines in the given solution, and solve just the passenger flow problem.
Alternatively, as in Section 8.1, we may take the lines but not their frequencies
from a given solution, or construct a neighbourhood of lines, and then solve (1)—
(6), and (7)—(9) to, with greater likelihood, find a feasible solution for passengers
similar to the line plan given. It is possible to forbid specific solutions, either
by specific line-frequency (constraint (15)), or by just line at any frequency
(constraint (16)), as described in Section 6.2. A potential method for finding
solutions is to iteratively solve the MIP (2)-(6) to optimality with some objective,
apply a constraint ((15) or (16)), and repeat the process. The found solutions
can be assessed in terms of passenger quality by solving the passenger flow
problem, if frequencies are known, or a limited line model if the frequencies
are still to be determined. It is possible that with a well-chosen objective for
the reduced problem, good solutions can be found. As the limited problem
of finding solutions is small (even with hundreds or thousands of additional
solution-forbidding constraints), many solutions can be discovered quickly. The
passenger flow problem is also relatively fast to solve for a fixed solution and so
such solutions can be quickly assessed for quality and feasibility for passengers.

Of the metrics introduced in Section 9, the following do not depend on
passenger flows:

e Line cost

e Hourly turn time

e Hourly run time

e Hourly skipped stations
e Unit requirement

e Low-service stations

e Mean station visits

e Direct trips

As we describe in Section 5.2 and Section 5.3, we can use other objective
functions (line cost or direct trips, respectively). In fact we could use all of the
metrics here, some more readily than others, as an objective function. However
we observe that none is a good substitute for the total passenger cost objective
we primarily use, and none gives solutions that are either particularly good for
the passenger or that are similar to real DSB solutions. As already seen, the
real DSB solutions are not extraordinary for any of the metrics we define, and
so using any one metric as an objective function does not give similar solutions.
Furthermore, although we can quickly find, qualify and forbid solutions and
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therefore assess a large number in reasonable time, we also see that there is a
very large number of possible solutions to the problem. Such an approach, with
the wrong objective, tends to find many solutions that are not of particular
interest. An exception is when using the line cost objective; instead we see many
infeasible solutions (for the ignored passengers), but the few that are feasible are
interesting for having minimal line cost. However we note that when ignoring
passengers, the first feasible solution is number 1305 discovered (i.e. 1304 other
solutions were discovered with better line cost that were not feasible for the
passenger). Subsequent feasible solutions occurred as solution numbers 2018,
2251, 2155 and 2274 in the first 2500 solutions discovered.

11 Conclusions

Here we use an arc-flow formulation to attempt to solve a line planning problem
for the S-tog network, focusing on passengers. The integer programme we formu-
late can generally not be solved to optimality for our instances, but we can find
relatively good solutions in reasonable time with an LP based heuristic method.
Given more time the full formulation itself can also find good quality solutions
but not generally prove optimality (without excessive additional time). We also
show we can find good solutions quickly when we restrict ourselves to lines that
are similar to currently-operated lines, and this is perhaps a natural restriction
as it is unlikely that the operator would change all lines at once.

The passenger focus means that the lines are of good quality for the passenger
and tend to be at the upper limit of whatever cost limit we enforce. By reducing
the cost limit to be lower than real operated plans, we can show that there
are plans which are both better for the average passenger and cheaper in line
cost (though our line cost does not necessarily reflect all components of the true
operating cost or other important measures). Considering some other measures,
but not including them as constraints or objectives for the optimization, we can
compare solutions by more than just one or two objectives, and see that there
are significant differences between apparently similar solutions

We show that for this problem, the arc-flow model, though large, can be
directly applied and solved to find solutions of reasonable quality, and we show
a simple LP based heuristic approach to find good solutions more quickly. In
our experiments we have found that the model is also applicable to the same
problem but with many more frequencies per line, without becoming unsolvable.
However, given that the operational requirements are created considering the
given frequency options, there are fewer interesting solutions with additional
frequencies.

One limitation of the model is that, while we try to minimize switching
time, we can only estimate this time as we have no timetable. In fact, the lines
constraints (constraints (1)—(6)) do not capture everything necessary to ensure
that a timetable can be created for the line plan at all; it may be that our
proposed line plans are infeasible. However, assuming that a valid timetable does
exist, we can still only estimate the wait time.

Another limitation is that we penalise the cost of switching to one specific
line. However, for many trips, when boarding a subsequent line on a trip, a
passenger can have several similar options in some line plans. For example, a
passenger may begin on line /; and exit at some station to wait for a train
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to their destination, and there are two lines lo and I3 stopping at both their
intermediate and destination stations, and a real passenger would likely board
the first of those to arrive (even if the first train provided longer travel time).
Therefore if the two lines operate at a low frequency, our long estimated wait
time is pessimistic because the combined frequency of the lines is not low.

Finally, we restrict ourselves to a predetermined line pool which is not an
exhaustive set of every feasible line. However the more limited number of lines
ensures a reasonably sized problem, and also provides more certainty that every
line in the pool is feasible (alone) because they may all be explicitly checked by
an expert.

12 Future work and extensions

As we have said, we restrict ourselves to a predetermined line pool of 174 lines
for the S-tog problem. For some different problems not expanded upon here,
but, for example, finding a night-time line plan, we use a different pool of lines
due to the different rules defining a feasible line and line plan. All such limited
pools can be viewed as being subsets of the set of any possible line, which, due
to the possibility of arbitrary stopping patterns, is very large. However, we have
experimented with expanding our limited pool by considering new lines not
in the original pool but with some similarity to pool lines. By fixing some of
the lines in a solution, but for the non-fixed part introducing a large variety of
new, out-of-pool lines, we can find line plans with some different lines relatively
quickly. By performing such moves within a heuristic framework, there seems to
be potential to explore all possible lines in a reasonable way that is not possible
with the MIP formulation we present.

The line plan solutions we find may possibly, but not necessarily, be operated
in practice by DSB. Despite meeting all operational and contractual requirements,
and not containing any explicitly forbidden line pairs which cause problems for
creating a timetable, it can still be the case that it is not possible to create a
feasible timetable for a line plan. Even if there are feasible timetables for a line
plan, there may be no good timetables for the line plan; the measures used to
compare timetables are not necessarily the same as those we estimate for the
line plans (operator cost and passenger cost) and may include other measures
such as minimal headways. On the other hand, our estimated operator cost
and estimated passenger waiting times can be more precisely assessed when the
timetable is determined. One direction for future work is more closely integrating
the creation of a line plan with the subsequent timetable problem that takes a
line plan as input. This would avoid the risk of finding infeasible line plans (from
the point of view of timetable creation), and could allow more precise operator
cost and waiting time estimates. Looking further in the planning process, the
timetable itself may not facilitate the creation of good or even feasible rolling
stock plans. Closer integration of all planning stages of rail is obviously desirable
to achieve overall optimality of plans, but the complexities of each problem alone
prove to be a challenge, and so complete integration of every problem stage is
unlikely.
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