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Abstract 

Low temperature nitriding of austenitic stainless steel causes a surface zone of expanded austenite, which 

improves the wear resistance of the stainless steel while preserving the stainless behavior.  During nitriding 

huge residual stresses are introduced in the treated zone, arising from the volume expansion that accompanies 

the dissolution of high nitrogen contents in expanded austenite.  An intriguing phenomenon during low-

temperature nitriding, is that the residual stresses evoked by dissolution of nitrogen in the solid state, affect 

the thermodynamics and the diffusion kinetics of nitrogen dissolution. 

The present project is devoted to understanding the mutual interaction of stresses and phase transformations 

during thermochemical surface engineering by combining numerical modelling with experimental materials 

science.  

 The modelling was done by combining solid mechanics with thermodynamics and diffusion kinetics to simulate 

the evolution of composition-depth and stress-depth profiles resulting from nitriding of austenitic stainless 

steel.  The model takes into account a composition-dependent diffusion coefficient of nitrogen in expanded 

austenite, short range ordering (trapping) of nitrogen atoms by chromium atoms, and the effect of 

composition-induced stress on surface concentration and diffusive flux.  The effect of plasticity was also 

included. 

Temperature and concentration dependencies of mechanical and diffusion material properties were studied, 

and the effect of incorporation in the model examined. 

The effect of pre-stressing the sample was also tested, to investigate the effects of a residual stress-state that 

might be present from processing of the metal specimen. 

Controlled thermochemical treatment of austenitic stainless steel was investigated experimentally by in-

diffusion of nitrogen from a gaseous environment. Measurements of diffusion coefficient were conducted 

using thermogravimetry. 
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Resumé 

Nitrering af austenitisk rustfrit stål ved lav temperatur skaber en overfladezone af ekspanderet austenit, der 

forbedrer overfladens slidegenskaber uden at fjerne den rustfrie egenskab fra materialet. Under nitrering 

opstår der store kompressive spændinger i det behandlede lag på grund af den volumetriske udvidelse der sker 

ved opløsning af store mængder nitrogen i ekspanderet austenit. 

Et interessant fænomen under nitrering ved lav temperatur er, at de spændinger, der opstår på grund af 

opløsning af nitrogen i faststof, påvirker nitrogen opløsningens termodynamik og diffusions kinetik. 

Dette projekt fokuserer på at forstå interaktionen af spændinger og fasetransformation under nitrering ved at 

kombinere numerisk modellering med eksperimentel materialeteknologi. 

Modelleringen er lavet ved at kombinere fasstofmekanik med termodynamik og kinetik for at simulere 

udviklingen af de kompositions-dybde og spændings-dybde profiler der er et resultat af nitrering af austenitisk 

rustfrit stål. Modellen tager højde for en kompositionsafhængig diffusionskoefficient for nitrogen i ekspanderet 

austenit, interaktion mellem nitrogen og krom atomer, og effekten af kompositionsinducerede spændinger på 

overfladekoncentrationen og diffusionsfluxen. Effekten af plasticitet er også inkluderet i modellen. 

Temperatur- og koncentrations-afhængigheder af mekaniske og diffusive materialeegenskaber er blevet 

studeret, og derefter er effekten af at inkorporere disse i modellen undersøgt. 

Effekten af initielle spændinger er også testet, for at undersøge hvilken effekt residualspændinger fra 

foregående processer i produktion af metallet kan have. 

Kontrolleret termo-kemisk behandling af austenitisk rustfrit stål blev undersøgt eksperimentelt ved at indføre 

nitrogen ved diffusion fra gas. Målinger af diffusionskoefficienter er lavet ved brug af en termovægt. 
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Guidance to the reader 

In the present thesis the interactions of stresses and phase transformations during thermochemical treatment 

is investigated. The main purpose is the development of a model to predict composition- and stress-depth 

profiles during low temperature nitriding of stainless steel. The modelling activities are supplemented by 

experimental investigations. 

Chapter 1 introduces the subject and gives background information about thermochemical surface treatment. 

Chapter 2 gives an overview over literature on modelling composition-profile development during low 

temperature nitriding of stainless steel. 

In chapter 3 and 4 the basics behind the model are discussed, including topics such as kinetics and 

thermodynamics of the nitriding process. 

In the following chapters the model is gradually expanded. In each chapter the theoretical background for the 

expansions are explained, and the effect of each addition on the predicted profiles is discussed.  In chapter 5 

the effect of a composition-dependent diffusion coefficient and the effect of short-range ordering of nitrogen 

and chromium are evaluated.  In chapter 6 and 7 the interactions between stresses and composition are 

investigated while assuming purely elastic stresses, where chapter 6 introduces the evolution of composition 

induced stresses, and in chapter 7 the influence of the stresses on the development of the composition profiles 

is evaluated. In chapter 8 plasticity is included in the model and chapter 9 deals with the concentration 

dependency of mechanical properties.  

In chapter 10 the effects of a stress state present before nitriding is evaluated by subjecting the model with all 

expansions to a pre-stress. 

Chapter 11 and 12 deal with effects of temperature; in chapter 11 the temperature dependence of mechanical 

properties is explored and in chapter 12 effects of temperature variation from heating and cooling sequences is 

discussed. 

Chapter 13 is about experimental investigations of nitriding, including measurements of nitrogen solubility and 

diffusion coefficient. 

Finally; limitations of the model, conclusions to the work and outlook are given in chapters 14-16.  
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Symbol list 

Symbol Unit Description 

𝒂 m Lattice parameter 

𝒂𝑵  Nitrogen activity 

𝑪𝒑 J/(kg.K) Specific heat/ heat capacity at constant pressure 

𝒄 mol/m3 Concentration 

�̇� mol/m3 Concentration increment 

𝒄� mol/m3 Average concentration 

𝒄𝟎  mol/m3 Concentration at start time 

𝒄𝒔 mol/m3 Surface concentration 

𝒄𝑪𝑪  mol/m3 Chromium concentration 

𝒄𝑵  mol/m3 Nitrogen concentration 

𝒄𝑵
𝒆𝒆

 mol/m3 Equilibrium nitrogen concentration  

𝒄𝑪𝑪𝑪𝒆𝒔 mol/m3 Concentration of residual chromium (The amount of free chromium after 

trapping) 

𝒄𝑵𝑪𝒆𝒔 mol/m3 Concentration of residual nitrogen (The amount of free nitrogen after trapping) 

𝒄𝑵𝒕𝒕𝒕 mol/m3 Total concentration of nitrogen 

𝒄𝑪𝑪𝒕𝑪  mol/m3 Concentration of trapped chromium 

𝒄𝑵𝒕𝑪 mol/m3 Concentration of trapped nitrogen 

𝒄𝑺 mol/m3 Surface concentration 

𝒄𝑵𝒔  mol/m3 Nitrogen concentration at the surface 

𝑫 m2/s Diffusion coefficient 

𝑫�  m2/s Average diffusion coefficient 

𝑫𝑵 m2/s Diffusion coefficient of nitrogen 

𝑫𝑵
(𝒄) m2/s Concentration dependent diffusion coefficient of nitrogen 

𝑬 Pa Young’s modulus 

𝑬𝑻 Pa Tangent modulus 

Fo  Fourier number 

𝒇  Yield function 

�̇�  Yield function increment 
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𝑮  Gibbs energy 

𝑯  Enthalphy 

HV MPa Vickers Hardness 

𝒊  Element number, used for finite difference discretization 

𝑱 mol/m2 Flux 

𝑱𝒔𝒔𝑪𝒇 mol/m2 Flux through the surface 

𝑱𝑵 mol/m2 Nitrogen flux 

𝑱𝑵𝒔  mol/m2 Nitrogen flux through the surface 

𝑱𝑵
𝒔,𝒅𝒊𝒔𝒔 mol/m2 Flux of nitrogen atoms arriving at the surface from dissociation  

𝑱𝑵
𝒔,𝒅𝒊𝒇𝒇 mol/m2 Flux of nitrogen atoms leaving from the surface by diffusion 

𝑲𝑪𝑪𝑵𝒏  The solubility product of chromium and nitrogen  

𝑲𝒆  The thermodynamic solubility constant 

𝑲𝑵  Nitriding potential 

𝑲𝑵
𝒈𝒂𝒔  Nitriding potential in gas 

𝑲𝑻  Temperature and pressure dependent equilibrium constant for the reaction 

describing the dissolution of N into the solid phase  from the gas phase 

𝒌  Reaction rate constant of the slowest step in the ammonia dissociation 

𝒌 W/(K.m) Thermal conductivity 

𝑳 m Half the sample thickness 

𝑳𝒊𝒊𝒌𝒊  Incremental stiffness tensor 

𝑴(𝒕) mg Diffusing mass as function of time 

𝑴∞ mg Amount of diffusing species that that entered or left after infinitely long time 

𝑴𝟑𝟑𝟑 g/mol Molar mass of AISI 316 austenitic stainless steel 

𝑴𝑵 g/mol Molar mass of nitrogen 

𝑴𝑵 (mol.m2)/(J.s) Nitrogen mobility 

𝒎 g Mass 

𝑵𝒂𝒂 mol-1 Avogadro’s number 

𝒏  Hardening exponent for plasticity 

𝒏  Number of nitrogen atoms pr. chromium atoms for trapping 

𝒏  Number of atoms pr. unit-cell in the iron lattice 

𝒑 atm Pressure 
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𝒑𝑯𝟐 atm Partial pressure of hydrogen 

𝒑𝑵𝑯𝟑 atm Partial pressure of ammonia 

𝑹 J/(mol.K) Gas constant 

𝑺  Entropy 

𝒔𝒊𝒊 Pa Stress deviator tensor 

𝑻 K or °C Temperature 

�̇� K Temperature increment 

𝑻𝑪𝒆𝒇 K or °C Reference temperature 

𝒕 s Time 

𝑽 m3 volume 

𝑽(𝒄) m3 Concentration-dependent volume of (expanded) austenite per metal atom 

𝑽𝑪𝒆𝒇 m3 Reference volume of austenite per metal atom 

𝑽𝑵  Partial molar volume of nitrogen 

𝑽𝝋 m3 Unitcell volume 

𝒚𝑵   Nitrogen content expressed as the fractional occupancy of the nitrogen sublattice 

𝒛 m Depth  

𝜶 K-1 Thermal expansion coefficient 

𝜶  Thermal diffusivity 

𝜷  Plasticity parameter (equal to 1 for plasticity, equal to 0 for elasticity) 

∆𝑪𝑪𝒑  Reaction change of heat capacity at constant pressure 

∆𝑪𝑮  Change of Gibbs energy for the reaction r 

∆𝑪𝑯  Standard enthalphy change for the reaction r 

∆𝑪𝑺  Entropy change for the reaction r 

𝜹𝒊𝒊  Kronecker’s delta (equal to 1 if 𝑖 = 𝑗, equal to zero if 𝑖 ≠ 𝑗) 

𝜺𝒊𝒊  Strain 

𝜺𝒊𝒊𝒄𝒄  Chemical strain 

�̇�𝒊𝒊𝒄𝒄  Chemical strain increment 

𝜺𝒊𝒊𝒎𝒆𝒄𝒄  Mechanical strain 

�̇�𝒊𝒊𝒎𝒆𝒄𝒄  Mechanical strain increment 

�̇�𝒆
𝒑𝒊  Equivalent plastic strain increment 

�̇�𝒊𝒊
𝒑𝒊  Plastic strain increment 
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𝜺𝒊𝒊𝒕𝒄  Thermal strain 

�̇�𝒊𝒊𝒕𝒄  Thermal strain increment 

𝜺𝒊𝒊𝒕𝒕𝒕  Total strain 

�̇�𝒊𝒊𝒕𝒕𝒕  Total strain increment 

�̇�  Load parameter 

𝝁 J/mol Chemical potential 

𝝁𝟎  J/mol Reference chemical potential  

𝝁𝑵  J/mol Chemical potential of nitrogen 

𝝁𝒈𝒂𝒔 J/mol Chemical potential in gas 

𝝊  Poisson’s ratio 

𝝆 kg/m3 Density 

𝝈𝒆 Pa Von Mises equivalent stress 

�̇�𝒆  Pa Von Mises equivalent stress increment 

𝝈 Pa Stress 

𝝈𝒊𝒊 Pa Stress tensor 

�̇�𝒊𝒊 Pa Stress increment 

𝝈𝒊𝒊𝒆𝒊 Pa Elastic stress 

𝝈𝑯 Pa Hydrostatic stress 

𝝈𝒀 Pa Yield stress 

�̇�𝒀 Pa Incremental change of Yield stress 
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1. Introduction 
Austenitic stainless steels are widely applied in structural applications due to the corrosion resistance of the 

material, which is caused by a very stable passive layer mainly formed from the alloying element chromium and 

oxygen from the surroundings [1]. However, austenitic stainless steels have poor tribological and wear 

performance, which can be problematic in some applications, for example in the food industry.  

Low temperature thermochemical surface engineering by nitriding, carburizing and nitrocarburizing of stainless 

steel causes a surface zone of expanded austenite, which improves the wear resistance of the stainless steel 

while preserving the stainless behavior.  The treatment can even improve the resistance against localized 

corrosion, as pitting and crevice corrosion [1][2][3]. 

Expanded austenite, sometimes referred to as the S-phase, is a supersaturated solid solution of nitrogen or 

carbon in the austenite phase, where nitrogen/carbon is dissolved interstitially in the octahedral sites of the 

f.c.c. iron lattice [1][4].   

Dissolution of collosal amounts of carbon or nitrogen in solid solution is possible due to short range ordering 

with the alloying element chromium. For nitriding/carburizing at low temperatures, below 450°C, only short 

range ordering occurs, and nitrides/carbides are not formed due to limited substitutional mobility of the 

chromium and other metal atoms [5][6]. This means that the expanded austenite is metastable and will 

decompose with time.  Expanded austenite resulting from nitriding will with time develop CrN [7][8] and 

carbon-expanded austenite will form chromium and iron-based carbides such as the Hägg carbide, M5C2, or 

M7C3 [9][10][11].  

Christiansen and Somers [8] described the decomposition times for nitrogen expanded austenite, by an 

isothermal stability plot of nitrogen-expanded austenite of 316L and 304L stainless steels, shown in Figure 1, 

and they recommended an upper service temperature limit of 200-250°C for nitrogen-expanded austenite [1]. 
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Figure 1 - Isothermal stability plot of nitrogen-expanded austenite of 316L and 304L stainless steels, based on isocronal annealing 

data. The graph shows the time to reach 50% decomposition. Source [1][8] 

 

1.1 From history to state of the art 
Traditionally, thermochemical surface treatments are carried out at temperatures above 500°C, but for 

stainless steel this results in a significant loss of corrosion resistance, due to formation of Chromium-

nitrides/carbides [1].  See in this respect Figure 1; at 773K CrN develop within an hour. 

The first indications of expanded austenite were seen by Lebrun  in the 1970’s [2][12], but the possibility of 

making the thermochemical treatments at lower temperatures, creating expanded austenite at the surface and 

keeping the corrosion resistant properties, was first scientifically recognised in the 1980’s for plasma and ion 

based treatments by Zhang and Bell [13] and by Ichii [7]. They called the expanded austenite S-phase. Based on 

their works, and the work of Kolster [14], expanded austenite created by plasma and ion based treatments was 

investigated. 

In the 1980’s two commercial methods were developed; Kolsterizing by Kolster [14], which provided low 

temperature carburizing,  and the plasma-based low temperature nitriding method provided by the company 

Nitruvid formed by Lebrun [1].   
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Plasma and ion-based treatments cannot be controlled as well as a gas-based treatment, and thus a method 

for gaseous treatment was pursued. The obstacle was that to create expanded austenite by 

nitriding/carburizing by gaseous methods, the very stable chromium rich oxide passivating layer has to be 

overcome for diffusion of nitrogen/carbon to take place. 

The early attempts to overcome the passivating layer and making gas-based nitriding/carburising possible were 

done by trying to convert the passive film in to a permeable iron base oxide, as for example described by 

Gemma et al. [15], and later attempts involved removing the film with HCl and NF3 gases, as in the Swagelock 

SAT 12 process presented by Collins et al. [16][17][18] and the NV Pionite process presented by Aioki et al. 

[19][20] respectively.  

In the early 2000’s two methods to replace the passivating layer by catalytic metal films were discovered; 

Somers et al. presented nickel as a coating prior to nitriding or carburizing [21] and Marx and Williams 

presented iron as a coating prior to carburizing [22][23]. These methods had the advantage that the activation 

was done ex-situ with the possibility of selective activation [23], and that the nickel-coated specimens can be 

stored before the thermochemical treatments [1]. 

Today, the current state of the art for activation prior to gas-based thermochemical surface treatments is 

patented by the company Expanite A/S [24]  and involves the use of initially non-gaseous compounds, such as 

urea, that with the proper conditions will decompose and activate the surface and then create free 

nitrogen/carbon for the thermochemical treatment [1]. 
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1.2 Development of microstructure and composition during low temperature 

thermochemical surface treatments  
On low temperature thermochemical surface treatments expanded austenite is formed when nitrogen/carbon 

is dissolved in the lattice and forms a super-saturated solid solution of interstitials in the f.c.c lattice. 

Accordingly, no precipitation of a new phase occurs, but the austenitic f.c.c. iron lattice is preserved. During 

nitriding/ carburizing the nitrogen/carbon atoms diffuse into the material from the surface, resulting in a 

concentration gradient of nitrogen/carbon. The difference between the substrate austenite and the expanded 

austenite arises from a difference in composition, and the expanded austenite zone is seen in micrographs as a 

surface layer, as for example shown in Figure 2 for a nitrided austenitic steel sample. An example of glow 

discharge optical emission spectrometry measurements of nitrogen composition profiles resulting from 

thermochemical surface treatment are shown in Figure 3. 

 

 
Figure 2 - Optical micrograph of nitrided AISI 316, from Christiansen and Somers [25]  
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Figure 3 - Glow discharge optical emission spectrometry measurements of nitrogen concentration-depth profiles of nitride AISI 316, 

from Christiansen and Somers [2] 

 

 The improvement of wear resistance of the expanded austenite as compared to the substrate austenite is due 

to an increase in hardness, arising from the solid solution strengthening. Experimental hardness profiles, as for 

example shown in Figure 4, display a significantly increased hardness in the region where expanded austenite 

has developed.  

 

Figure 4 – Hardness depth profiles of nitrided AISI 316, from Christiansen and Somers [2]  (see corresponding concentration depth 
profiles in Figure 3)  
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1.3 Process stresses 
Besides the hardness gradient found in the nitrided/carburized samples there is also a residual compressive 

stress gradient in the expanded austenite zone. The residual stresses are introduced because of the 

concentration profile. Dissolution of large amounts of nitrogen/carbon is accompanied by a large volume 

expansion, which introduces residual stresses of several GPa’s  in the expanded austenite zone [2][4][26]. 

Examples of measured concentration-depth profiles and corresponding measured stress-depth profiles are 

presented in Figure 5. 

Compressive stress levels of several GPa’s clearly exceed the yield strength of austenitic stainless steel, which is 

around 290MPa [27]. Plastic deformation has been observed experimentally in nitrogen expanded austenite, 

both by  lattice rotations and associated texture changes in expanded austenite and by enhanced surface 

roughness by grain push-out  [25][28][29][30].  For carburizing the occurrence of plastic accommodation of 

composition-induced stresses has so far not been observed. 

 

                    

           

Figure 5 - Concentration-depth profiles and corresponding stress-depth profiles for nitrided and carburized samples from 
Christiansen and Somers [2] 
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1.4 Scope 
The present work is concerned with the evolution of concentration-depth and residual stress-depth profiles in 

relation to the processing parameters of a thermochemical surface treatment of stainless steel: Low 

temperature nitriding. The aim of the work is to obtain a better understanding of the kinetics of the diffusion 

process and the effect of the resulting stresses, and to produce a model for the prediction of concentration- 

and stress-depth profiles.  

 Modelling of the concentration- and stress-depth profiles will be done based on the case of gaseous nitriding 

of austenitic stainless steels. 

In this work only gas-based low-temperature nitriding will be considered, effects arising specifically for plasma-

based processing, such as surface sputtering, will not be discussed. 

Even though the case investigated is specific for gaseous nitriding, the concepts of the mechanisms governing 

the evolution of composition and residual stress are claimed to be applicable to (nitro)carburizing and plasma-

assisted and liquid processing, as in Kolsterizing®, as well. 
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2. Literature review of composition profile modelling 
Classical textbooks, e.g. [31], predict concentration depth-profile from interstitial diffusion (as for example 

carbon into iron/steel) by applying Fick’s second law, and solving it, assuming an semi-infinite medium with a 

constant diffusion coefficient and constant surface concentration, using the complementary error function 

𝑐 = 𝑐𝑆 − (𝑐𝑆 − 𝑐0) ∙ erf �
𝑧

2√𝐷𝐷
� 

(1)  

where 𝑐𝑆 is the surface concentration, 𝐷 the diffusion coefficient, 𝐷 the time, 𝑧 the distance from the surface 

and 𝑐0 the initial concentration in the specimen  [31].  

Using the error function solution implies many assumptions which are not in reality correct for nitriding of 

stainless steel, for example; that the stress state does not affect the concentration, that the diffusion 

coefficient is constant and that the nitrogen concentration is constant at the surface. In reality there are many 

factors influencing the concentration profile. The error-function predicted profiles, as shown in Figure 6, is also 

far from reality where concentration-depth profiles developing during low temperature nitriding are 

characterized by the shape shown in Figure 7: an initially steep decrease in nitrogen content followed by a 

plateau and a steep decline at the case-core transition.  

 
Figure 6 - concentration depth profiles after a) 1h and b) 15h predicted using the error-function solution using a diffusion coefficient 
of 𝟑𝟎−𝟑𝟏𝐦𝟐/𝐬 
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Figure 7 - Measured nitrogen concentration-depth profiles after 15h at 430°C. Source [3] 

 

In the literature various approaches have been taken to predict and explain the composition-depth profile. 

Parascandola et al. [32] modelled the concentration-depth profile of nitrogen during ion implantation, 

assuming a constant diffusion coefficient, using trapping and detrapping of nitrogen at trapsites formed by 

local chromium.  This resulted in a satisfactory fitting to measured concentration-depth profiles. The same 

method was applied by Martinavicius et al. [33] to plasma-nitrided single crystals with various orientations. 

In constrast, Christiansen and Somers [34] experimentally found that the diffusion coefficient of nitrogen in 

expanded austenite is not constant, but depends on the nitrogen concentration as shown in Figure 8. The 

increase of diffusion coefficient until a certain nitrogen concentration, displayed in Figure 8, can be explained 

by the expansion of the austenite f.c.c. lattice that occurs with increasing levels of nitrogen, since the 

expansion of the lattice will lower the activation energy for nitrogen to move from one interstitial site to 

another.  However at some point the nitrogen concentration is so high that the falling probability of a 

unoccupied interstitial site that the nitrogen can jump to is no longer outweighed by faster diffusion, and that 

explains the lowering of diffusivity at higher nitrogen concentrations [1].  
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Figure 8 - Diffusion coefficient of nitrogen in austenite as function of nitrogen concentration measured by occupancy. Source [34] 

 

Christiansen and Somers demonstrated that the composition dependence of the diffusion coefficient of 

nitrogen in expanded austenite can in principle explain the shape of the nitrogen concentration-depth profile 

developing during nitriding (seen in Figure 7) by calculating the concentration profile from Fick’s 2nd law  

[34][35][36]. 

Another way of modeling the effect of short-range ordering with chromium is based on modeling of 

precipitation during nitriding by Sun and Bell [37] who looked at nitriding of iron. Their method was adapted by 

Christiansen and Somers in 2008 [34] to investigate the effect of trapping of nitrogen on the predicted 

concentration profile in stainless steel, combined with a concentration dependent diffusion coefficient and 

agreement with experimental results was found.  The effect of trapping was also investigated by 

Moskaliovienne and Galdikas in 2011 [38]. 

Larche and Cahn [39][40] discussed the coupling between composition-induced stresses and the effect of 

stresses on diffusion. Building on this, Chu and Lee [41] included the effect of hydrostatic stress on the 

concentration profile using a constant diffusion coefficient, and incorporated it by making use of an effective 

diffusion coefficient, and calculated elastic stresses from 
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𝜎 =
𝐸

1 − 𝑣
𝑉�
3

(𝑐 − 𝑐̅) (2)  

where 𝐸 is Youngs modulus, 𝑣 is Poisson’s ratio, 𝑉�  is the partial molal volume, 𝑐̅ the average concentration in 

the specimen and 𝑐 the current concentration for a specific depth. The approach from Chu and Lee was 

adopted by Christiansen and Somers [42], who showed that for a constant surface concentration the stress 

gradient arising from the concentration gradient causes a deeper penetration of the nitrogen. Yang [43] and 

Galdikas and Moskaliovienne [44][45][46] have also looked into the coupling between the stresses and 

diffusion inside the specimen,  using an unphysical linear relation between the hydrostatic stress and the 

concentration, that was originally proposed by Christiansen and Somers to estimate fictitious stresses in X-ray 

diffraction stress measurements [47]. Galdikas and Moskaliovienne evaluated the diffusion coefficient from the 

Einstein-Smoluchowski relation, instead of using experimentally determined diffusion coefficients for the 

system.  

Calculation of a surface flux, instead of using a constant surface concentration have been done by different 

approaches, one by Frieling and Somers [48][49] and another by Moskaliovienne and Galdikas [45][46]. The 

approach by Frieling and Somers will be applied in this work. 
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3. Process and kinetics of gaseous nitriding 
Nitriding occurs by adsorption, dissolution and diffusion of nitrogen in the solid specimen.  This process can be 

done by gaseous nitriding, where a gas mixture containing hydrogen and ammonia surrounds the specimen.  

The adsorption and dissolution of nitrogen from the gas and into the solid specimen can be described by the 

following reaction 

2𝑁𝐻3 ⇄ 2[𝑁]𝜑 + 3𝐻2 

where [𝑁]𝜑 represents nitrogen dissolved in the solid phase 𝜑 [49][50]. 

Dissolving of nitrogen takes place in steps. First ammonia is adsorbed at the surface of the specimen, then 

dissociation occurs, leading to adsorption of nitrogen at the surface and last there is dissolution of the 

adsorbed nitrogen in the solid phase.  

The gas mixtures used for nitriding are 𝑁𝐻3/𝐻2 mixtures, and decomposition of the ammonia will occur by the 

following reaction 

2𝑁𝐻3 ⇄ 𝑁2 + 3𝐻2 

giving nitrogen- and hydrogen gas [49],[50] . 

At the surface of the specimen, a similar reaction occurs, but now the nitrogen is adsorbed, giving the following 

reaction 

2𝑁𝐻3 ⇄ 2𝑁𝜑,𝑎𝑎 + 3𝐻2 

where 𝑁𝜑,𝑎𝑎 is nitrogen adsorbed at the surface of phase 𝜑 of the solid specimen [49][50]. 

The adsorbed nitrogen then either dissolves in to the solid or forms nitrogen gas by the following reactions 

[49],[50] 

𝑁𝜑,𝑎𝑎 ⇄ [𝑁]𝜑 

𝑁𝜑,𝑎𝑎 + 𝑁𝜑,𝑎𝑎 ⇄ 𝑁2 

as illustrated in Figure 9. 
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Figure 9 - Principle of gaseous nitriding [50] 

 

The nitriding rate depends thus on three things; how fast the ammonia is transported to the surface of the 

specimen, the rate of the dissociation, adsorption and dissolving reactions at the surface of the specimen  and 

the rate of solid state diffusion [48]. 

The first is usually disregarded, assuming that the transport of ammonia to the surface is fast enough not to be 

rate determining. However, under certain practical conditions, transport of ammonia (or desorption of N2) 

from the surface can become rate-determining. 

If the desorption of nitrogen from the surface is not considered, the flux of nitrogen through the surface 𝐽𝑠𝑠𝑠𝑠 

of the specimen is given by the following equation [48][51] 

𝐽𝑠𝑠𝑠𝑠 = 𝑘 ∙ �𝑐𝑁
𝑒𝑒 − 𝑐𝑁𝑠 � (3)  

where 𝑐𝑁𝑠  is the concentration of nitrogen just below the surface, 𝑐𝑁
𝑒𝑒 is nitrogen concentration in the solid 

phase at the surface if a state of equilibrium was obtained, corresponding with the chemical potential of 

nitrogen in the gas-phase,  and 𝑘 is the reaction rate constant of the slowest step in the ammonia dissociation 

[48]. 
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The ammonia dissociation, can be described by  

2𝑁𝐻3 ⇄ 2𝑁𝜑,𝑎𝑎 + 3𝐻2 

and takes place in the following steps: 

𝑁𝐻3 ⇄ 𝑁𝐻3(𝑎𝑎) 

𝑁𝐻3(𝑎𝑎) ⇄ 𝑁𝐻2(𝑎𝑎) +𝐻(𝑎𝑎) 

𝑁𝐻2(𝑎𝑎) ⇄ 𝑁𝐻(𝑎𝑎) + 𝐻(𝑎𝑎) 

𝑁𝐻(𝑎𝑎) ⇄ 𝑁(𝑎𝑎) + 𝐻(𝑎𝑎) 

𝐻(𝑎𝑎) + 𝐻(𝑎𝑎) ⇄ 𝐻2  

For high hydrogen pressures the rate limiting step is the removal of hydrogen from 𝑁𝐻2 [52] and the constant 

𝑘 is thus the forward reaction constant of the reaction 

𝑁𝐻2(𝑎𝑎) ⇄ 𝑁𝐻(𝑎𝑎) + 𝐻(𝑎𝑎)  

This constant is currently not known for nitriding of 316 stainless steel, but can be approached by using the 

value for Iron, which is calculated from [53] 

𝑘 = 𝑘0 ∙ 𝑝𝐻2 ∙ exp �
−𝑄1
𝑅𝑅

� (4)  

where 𝑝𝐻2  is the partial pressure of hydrogen in atm, 𝑅 is the gas constant and 𝑅 is the absolute temperature. 

𝑘0 and 𝑄1 are constants. For nitriding of 316 stainless steel the values of 𝑘0 and 𝑄1  are unknown, but the 

values for nitriding of α-iron are known. For example for temperatures in the range of 770-870K (≈500-600 °C) 

and hydrogen partial pressures between 0.7 and 1atm, [53]: 

𝑘0 = 9 ∙ 10−4 m/s ∙ atm 

𝑄1 = 64220  J mol⁄   
(5)  

Values for nitriding of α-iron have also been reported by Grabke [52], who reported two different ranges since 

the reaction rate constant depends on the rate controlling step.  
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For low partial hydrogen pressure the reaction step 

𝑁𝐻3(𝑎𝑎) ⇄ 𝑁𝐻2(𝑎𝑎) +𝐻(𝑎𝑎) 

is rate controlling, giving one set of constants, and for higher pressures the reaction step 

𝑁𝐻2(𝑎𝑎) ⇄ 𝑁𝐻(𝑎𝑎) + 𝐻(𝑎𝑎) 

is rate controlling. The boundary between the two rate controlling steps also depends on temperature [52]. 

The partial pressure of hydrogen can be found from the nitriding potential in the gas 𝐾𝑁
𝑔𝑎𝑠, which is defined as 

𝐾𝑁
𝑔𝑎𝑠 ≡

𝑝𝑁𝐻3
𝑝𝐻23/2 

(6)  

where 𝑝𝑁𝐻3  and 𝑝𝐻2  are the partial pressure of ammonia and hydrogen respectively. 

Using Daltons law of partial pressures, assuming ideal gasses the total pressure, 𝑝, is the sum of the partial 

pressures 

𝑝 = 𝑝𝑁𝐻3 + 𝑝𝐻2  (7)  

and assuming the total pressure is atmospheric pressure, 1 atm, the following form of eq. 6 can be found 

𝐾𝑁
𝑔𝑎𝑠 =

1 − 𝑝𝐻2
𝑝𝐻23/2   (8)  

From where the partial pressure of hydrogen can be determined. 
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4. Basic diffusion equations for internal diffusion 
The diffusive flux of nitrogen atoms in the direction z, at constant temperature, under the influence of a 

chemical potential gradient in this species  ∂µ𝑁
∂z

 is defined [39] as  

𝐽 = −𝑀𝑁𝑐𝑁
𝜕𝜇𝑁
𝜕𝑧

 (9)  

where 𝑐𝑁 is the nitrogen concentration in mol.m-3, 𝜇𝑁 is the chemical potential of nitrogen in J.mol-1 and 𝑀𝑁 is 

the mobility of nitrogen in m2.s-1 given by [39] 

𝑀𝑁 =
𝐷𝑁
𝑅𝑅

 (10)  

where 𝐷𝑁 is the intrinsic diffusion coefficient of nitrogen in m2.s-1, 𝑅 is the gas constant in J.mol-1.K-1 and 𝑅 is 

the temperature in K. 

Generally, for constant temperature and pressure, the chemical potential, for an ideal solution, is assumed to 

depend on the concentration only 

𝜇(𝑐𝑁) = 𝜇0 + 𝑅𝑅ln(𝑐𝑁) (11)  

In which case eq. 9 reduces to Fick’s first law 

𝐽𝑁 = −𝐷𝑁
𝜕𝑐𝑁
𝜕𝑧

 (12)  

More generally, for non-ideal solutions, the chemical potential is a function of the activity of nitrogen, 𝑎𝑁, and 

the hydrostatic stress (pressure), 𝜎𝐻 , and the temperature 𝑅  [45][54]  

𝜇𝑁(𝑎𝑁,𝜎𝐻 ,𝑅) = 𝜇𝑁,0 + 𝑅𝑅𝑅𝑅(𝑎𝑁)− 𝑉𝑁𝜎𝐻 (13)  

where 𝜇𝑁,0 is the chemical potential of nitrogen in the reference state with respect to which 𝑎𝑁 is defined1, 𝑉𝑁 

is the partial molar volume of nitrogen. It is noted that in principle 𝑎𝑁, 𝑉𝑁 and 𝜎𝐻 depend on the temperature. 

The diffusive flux follows from inserting eq. 13 and eq. 10 into eq. 9, which results in 

                                                           
1 Usually, for nitrogen in solid solution the reference state is taken as nitrogen gas at 1 bar at the temperature under 
consideration. 
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𝐽𝑁 = −
𝐷𝑁𝑐𝑁
𝑅𝑅

�
𝜕𝜇𝑁
𝜕𝑐𝑁

𝜕𝑐𝑁
𝜕𝑧

+
𝜕𝜇𝑁
𝜕𝜎𝐻

𝜕𝜎𝐻
𝜕𝑧

� (14)  

In a Fe-N phase the activity is linearly proportional to the nitriding potential, 𝐾𝑁 =
𝑝𝑁𝑁3
𝑝𝑁2

3/2, by [55] 

𝑎 = 𝐾𝑇𝐾𝑁 (15)  

where 𝐾𝑇(𝑅,𝑝) is the temperature and pressure dependent equilibrium constant for the reaction describing 

the dissolution of N into the solid phase  from the gas phase containing NH3 and H2. 

Using eq. 13 the following expressions for the change of chemical potential with temperature and stress are 

obtained 

𝜕𝜇𝑁
𝜕𝑅

= 𝑅ln(𝑎) = 𝑅ln(𝐾𝑇𝐾𝑁) (16)  

𝜕𝜇𝑁
𝜕𝜎𝐻

= 𝑉𝑁  (17)  

 

Since the activity depends on the concentration  

𝜕𝜇𝑁
𝜕𝑐𝑁

= 𝑅𝑅
𝜕ln𝑎
𝜕𝑐𝑁

=
𝑅𝑅
𝑐𝑁

𝜕ln(𝑎𝑁)
𝜕ln(𝑐𝑁) =

𝑅𝑅
𝑐𝑁

𝜕ln(𝐾𝑇𝐾𝑁)
𝜕ln(𝑐𝑁)   (18)  

Realizing that 𝐾𝑇 only depends on pressure and temperature and not on nitrogen concentration, it is obtained 

𝜕𝜇𝑁
𝜕𝑐𝑁

=
𝑅𝑅
𝐾𝑁

𝜕𝐾𝑁
𝜕𝑐𝑁

  
(19)  

Inserting eq. 16, eq. 17, and eq. 19 in eq. 14 the following generalized form of Fick’s 1st law is obtained 

𝐽𝑁 = −
𝐷𝑁𝑐𝑁
𝑅𝑅

�
𝑅𝑅
𝐾𝑁

𝜕𝐾𝑁
𝜕𝑐𝑁

𝜕𝑐𝑁
𝜕𝑧

− 𝑉𝑁
𝜕𝜎𝐻
𝜕𝑧

�  
(20)  

Accordingly, the generalized form of Fick’s 2nd law is 
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𝜕𝑐𝑁
𝜕𝐷

= −
𝜕
𝜕𝑧
�−𝐷𝑁

(𝑐).
𝜕𝑐𝑁
𝜕𝑧

+
𝐷𝑁. 𝑐𝑁
𝑅𝑅

.𝑉𝑁.
𝜕𝜎𝐻
𝜕𝑧

� 
(21)  

where 𝐷𝑁
(𝑐) represents the concentration dependence of the diffusion coefficient of nitrogen, including the 

thermodynamic factor �𝑐𝑁
𝐾𝑁

𝜕𝐾𝑁
𝜕𝑐𝑁

�. When 𝐷𝑁
(𝑐) is a known explicit function of the concentration the equation can 

be rewritten to 

𝜕𝑐𝑁
𝜕𝐷

= −
𝜕
𝜕𝑧�

−𝐷𝑁
(𝑐).

𝜕𝑐𝑁
𝜕𝑧

+
𝐷𝑁

(𝑐)

𝜕𝐾𝑁
𝜕𝑐𝑁

.
𝐾𝑁
𝑅𝑅

.𝑉𝑁.
𝜕𝜎𝐻
𝜕𝑧 �

 

(22)  

and then the differentiation gives 

𝜕𝑐𝑁
𝜕𝐷

=
𝜕𝐷𝑁

(𝑐)

𝜕𝑐𝑁
∙ �
𝜕𝑐𝑁
𝜕𝑧

�
2

+ 𝐷𝑁
(𝑐) ∙

𝜕2𝑐𝑁
𝜕𝑧2

−
𝜕
𝜕𝑧�

𝐷𝑁
(𝑐) ∙

𝐾𝑁
𝜕𝐾𝑁
𝜕𝑐𝑁

� ∙
𝑉𝑁
𝑅𝑅

𝜕𝜎𝐻
𝜕𝑧

− 𝐷𝑁
(𝑐) ∙ �

𝐾𝑁
𝜕𝐾𝑁
𝜕𝑐𝑁

𝑉𝑁
𝑅𝑅

𝜕2𝜎𝐻
𝜕𝑧2 �

 

(23)  

At the surface the concentration can then be found from the continuity equation for balancing the arriving and 

leaving nitrogen fluxes: 

𝜕𝑐𝑁𝑠

𝜕𝐷
= −

𝜕𝐽𝑁𝑠

𝜕𝑧
= −�

𝜕𝐽𝑁
𝑠,𝑎𝑑𝑠𝑠

𝜕𝑧
−
𝜕𝐽𝑁

𝑠,𝑎𝑑𝑠𝑠

𝜕𝑧
� (24)  

where  𝐽𝑁
𝑠,𝑎𝑑𝑠𝑠 and 𝐽𝑁

𝑠,𝑎𝑑𝑠𝑠 are the fluxes of nitrogen atoms arriving at the surface from dissociation and leaving 

from the surface by diffusion, respectively. Note that here the flux of nitrogen, from the surface by desorption 

of N2, is omitted.  

Combining eq. 24 with the expression for 𝐽𝑠𝑠𝑠𝑠, given in eq. 3 and the expression for the flux,  eq. 20 the 

nitrogen concentration in the surface cell follows from 

𝜕𝑐𝑁𝑠

𝜕𝐷
=

𝜕
𝜕𝑧 �

𝐷𝑁
(𝑐).

𝜕𝑐𝑁
𝜕𝑧

−
𝐷𝑁

(𝑐)

𝜕𝐾𝑁
𝜕𝑐𝑁

.
𝐾𝑁
𝑅𝑅

.𝑉𝑁.
𝜕𝜎𝐻
𝜕𝑧 �

+
𝜕
𝜕𝑧
�𝑘 ∙ �𝑐𝑁

𝑒𝑒 − 𝑐𝑁𝑠 �� (25)  

which can be discretized using finite difference as 
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𝑐𝑑𝑡+∆𝑡 − 𝑐𝑑𝑡

∆𝐷
= 𝐷∗

𝑑
𝑡 𝑐𝑑+1

𝑡 − 𝑐𝑑𝑡

∆𝑧𝑑2
− 𝐷∗

𝑑
𝑡 ∙

𝐾𝑁
𝜕𝐾𝑁
𝜕𝑐

1
𝑅𝑅𝑑𝑡

𝑉𝑁
𝜎𝐻𝑑+1

𝑡 − 𝜎𝐻𝑑
𝑡

∆𝑧𝑑2
+

𝑘
∆𝑧𝑑

∙ �𝑐𝑁
𝑒𝑒 − 𝑐𝑑𝑡� 

(26)  

where 𝑖 denotes the element number. Expressions for 𝑉𝑁, 𝐾𝑇 and the relation between the nitriding potential 

𝐾𝑁 and the concentration, for the case examined in this work, nitriding of AISI 316 austenitic stainless steel, are 

derived in Appendix A. 
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5. Modelling of concentration depth-profiles using trapping 

and concentration dependent diffusion coefficient 

5.1 Computational modelling of concentration profiles with constant temperature 

and no stress influence 
Assuming constant temperature and no stress influence the diffusion equation, eq. 23, reduces to 

𝜕𝑐𝑁
𝜕𝐷

=
𝜕𝐷𝑁

(𝑐)

𝜕𝑐𝑁
∙ �
𝜕𝑐𝑁
𝜕𝑧

�
2

+ 𝐷𝑁
(𝑐) ∙

𝜕2𝑐𝑁
𝜕𝑧2

  
(27)  

For computations discretizing is done using central finite difference method 

𝑐𝑑𝑡+∆𝑡 − 𝑐𝑑𝑡

∆𝐷
=
𝜕𝐷𝑁

(𝑐𝑖
𝑡)

𝜕𝑐 �
𝑐𝑑+1𝑡 − 𝑐𝑑−1𝑡

2∆𝑧 �
2

+ 𝐷𝑁
(𝑐𝑖
𝑡) ∙

𝑐𝑑+1𝑡 − 2𝑐𝑑𝑡 + 𝑐𝑑−1𝑡

∆𝑧2
 

(28)  

where 𝐷𝑁
(𝑐𝑖
𝑡) is a known explicit function of the concentration, giving the possibility of calculating  𝜕𝜕

𝜕𝑐
 for a 

known concentration 𝑐𝑑𝑡. 

The continuity equation at the surface to balance the fluxes of nitrogen atoms arriving at and leaving from the 

surface cell to calculate the actual surface concentration of nitrogen, described by eq. 24, can be discretized as 

𝑐𝑑𝑡+∆𝑡 − 𝑐𝑑𝑡

∆𝐷
= −

𝐽𝑑→𝑑+1 − 𝐽𝑠𝑠𝑠𝑠
∆𝑧

 
(29)  

Combining eq. 29 with the expression for 𝐽𝑠𝑠𝑠𝑠, given in eq. 3 and the expression for the flux, (see eq. 20 and 

21) the nitrogen concentration in the surface cell follows from 

𝑐𝑑𝑡+∆𝑡 − 𝑐𝑑𝑡

∆𝐷
= 𝐷𝑁

(𝑐𝑖
𝑡) 𝑐𝑑+1𝑡 − 𝑐𝑑𝑡

∆𝑧𝑑2
+

𝑘
∆𝑧𝑑

∙ �𝑐𝑒𝑒 − 𝑐𝑑𝑡�  
(30)  

Verification of program calculations for calculations with constant diffusion coefficient and with concentration 

dependent diffusion coefficient are given in Appendix C.3 and C.4 respectively. 
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5.2 Trapping 
The short-range ordering of nitrogen atoms by chromium is referred to as trapping and is mathematically 

treated analogously to nitrogen precipitation as in [34][37][56]. It is assumed that trapping first occurs above a 

certain threshold probability for finding a Cr-N pair of atoms. Analogous to the solubility product of nitrogen 

and chromium contents above which CrN precipitation occurs, the thermodynamic solubility constant, 𝐾𝑒, is 

introduced to describe the solubility product of nitrogen and chromium contents above which trapping of 

nitrogen atoms occurs. Suppression of the actual precipitation of chromium nitride through sluggish diffusion 

kinetics of chromium diffusion is the very essence of supersaturated, metastable expanded austenite during 

low temperature nitriding (and/or carburizing) of stainless steel. Prolonged nitriding or subsequent ageing will 

eventually lead to the unintentional but unavoidable precipitation of CrN. 

The equilibrium constant of trapping nitrogen by chromium is described by: 

𝐾𝑒 =
1

𝑐𝐶𝑠 ∙ 𝑐𝑁𝑛
=

1
𝐾𝐶𝑠𝑁𝑛

→ 𝐾𝐶𝑠𝑁𝑛 = 𝑐𝐶𝑠 ∙ 𝑐𝑁𝑛 
(31)  

where jc is the concentration of the dissolved element j and 𝐾𝐶𝑠𝑁𝑛 is the solubility product of Cr and N with n 

the number of nitrogen atoms per chromium atom, which is about Cr:N=1:0.9 for strong binding of nitrogen by 

chromium in AISI 316L [25]. 

5.2.1 Computational implementation of trapping 

The amount of free nitrogen after trapping, i.e. concentration of residual nitrogen, 𝑐𝑁𝑠𝑒𝑠, can  be found using eq. 

31 from 

𝐾𝐶𝑠𝑁𝑛 = 𝑐𝐶𝑠𝑠𝑒𝑠 ∙ (𝑐𝑁𝑠𝑒𝑠)𝑛  (32)  

Computationally the calculation of the residual nitrogen and chromium is done sequentially by calculating the 

residual nitrogen assuming that residual chromium in the equation above is equal to the free chromium before 

trapping, so 

𝑐𝐶𝑠𝑠𝑒𝑠𝑏𝑒𝑠𝑏𝑠𝑒 𝑡𝑠𝑎𝑝𝑝𝑑𝑛𝑔 ∙
 �𝑐𝑁𝑠𝑒𝑠𝑎𝑠𝑡𝑒𝑠 𝑡𝑠𝑎𝑝𝑝𝑑𝑛𝑔�

𝑛
= 𝐾𝐶𝑠𝑁𝑛   (33)  
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The concentration of trapped nitrogen, 𝑐𝑁𝑡𝑠, is then found by 

𝑐𝑁𝑡𝑠 = 𝑐𝑁 (𝐷, 𝑧) − 𝑐𝑁𝑠𝑒𝑠 (34)  

and the trapped chromium, 𝑐𝐶𝑠𝑡𝑠 , by 

𝑐𝐶𝑠𝑡𝑠 =
𝑐𝑁𝑡𝑠

𝑅
  

(35)  

The concentration of residual chromium after trapping, 𝑐𝐶𝑠𝑠𝑒𝑠, is then found as 

𝑐𝐶𝑠𝑠𝑒𝑠 = 𝑐𝐶𝑠 (𝐷, 𝑧) − 𝑐𝐶𝑠𝑡𝑠   (36)  

It is noted that this sequential modeling induces a slight error, but for small time steps it is deemed negligible. 

On incorporating trapping in the model for diffusion of nitrogen it is noted that only residual nitrogen is 

considered to diffuse, while the surface flux depends on the total concentration of nitrogen in the surface. 

𝑐𝑁𝑡𝑏𝑡 = 𝑐𝑁𝑡𝑠 + 𝑐𝑁𝑠𝑒𝑠 (37)  

It should be noted that the diffusion coefficient depends on the total nitrogen concentration, because all 

nitrogen is in solid solution; no actual precipitation occurs. 
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5.3 Concentration dependence of diffusion coefficient 
Christiansen et al. [34] measured the diffusion coefficient of nitrogen in expanded austenite, as was shown in 

Figure 8. 

The following Lorentzian type expression for diffusion coefficient in m2/s as a function of nitrogen 

concentration for the specific temperature of 445°C was obtained using the data of Christiansen et. al [34] 

𝐷(𝑐𝑁)  = 3.16 ∙ 10−15 [m2/s] ∙
1
𝜋
∙

0.109
(𝑦𝑁(𝑐𝑁)− 0.4365)2 + 0.1092

 
(38)  

where 𝑦𝑁 is the nitrogen content expressed as the fractional occupancy of the nitrogen sublattice formed by 

the octahedral interstices, and 𝑐𝑁 is the concentration in mol/m3. 

The relation between 𝑐𝑁 and 𝑦𝑁 depends on the volume of the unit cell [57] 

𝑐𝑁 =
𝑅
𝑁𝑎𝑎

∙ 𝑦𝑁 ∙
1
𝑉𝜑

 
(39)  

where 𝑅 is the number of atoms pr. unit-cell in the iron lattice (equal to 4),  𝑁𝑎𝑎 is Avogadros number and 𝑉𝜑 is 

the volume of the unit cell in m3 at the given 𝑦𝑁. 

𝑐𝑁 =
4

6.022 ∙ 1023mol−1
∙ 𝑦𝑁 ∙

1
𝑉𝜑

 
(40)  

To find the volume of the unit cell as a function of the concentration for expanded austenite 𝑉(𝑐𝑁), data from 

Christiansen and Somers [2] of the lattice parameter, a, corresponding to concentrations 𝑦𝑁 was used. A plot 

showing the calculated volumes as function of the fractional occupancy are shown in Figure 10 below. Fitting a 

polynomium to the data gives a linear fit of  

𝑉𝜑(𝑦𝑁) = 2.8147 ∙ 10−29 ∙ 𝑦𝑁 + 4.7134 ∙ 10−29 (41)  
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Figure 10 - Unit cell volume as function of nitrogen concentration expressed as fractional occupancy 

Inserting the linear fit gives the following expression for calculating concentration in mol/m3 as function of 

fractional occupancy 

𝑐𝑁 =
4

6.022 ∙ 1023mol−1
∙

𝑦𝑁
2.8147 ∙ 10−29m3 ∙ 𝑦𝑁 + 4.7134 ∙ 10−29m3  (42)  

Isolation of 𝑦𝑁 and reducing gives the following expression for fractional occupancy as function of 

concentration 

𝑦𝑁 =
𝑐𝑁

140924mol/m3 − 𝑐𝑁 ∙ 0.59717
  (43)  

Note that inserting eq. 43 in the expression for volume as function of fractional occupancy, eq. 41, gives the 

unitcell volume as function of concentration 

𝑉𝜑(𝑐𝑁) = 2.8147 ∙ 10−29m3 ∙
𝑐𝑁

140924mol/m3 − 𝑐𝑁 ∙ 0.59717
+ 4.7134 ∙ 10−29m3 (44)  

and thus for 𝑐𝑁 = 0 the reference volume is 

 𝑉𝑠𝑒𝑠 = 4.7134 ∙ 10−29m3   (45)  
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5.4 Effects of trapping and concentration dependent diffusion coefficient on 

concentration depth profiles 
As described in section 5.2, trapping of nitrogen by chromium should be considered in the case of modelling 

diffusion of nitrogen during nitriding. The role of trapping on the developing concentration profile is thus 

investigated, while still considering  the effect of a composition-dependent diffusion coefficient of nitrogen. For 

this purpose modelling of nitriding at 718 K for 22 hours is done, using a surface reaction rate constant 

𝑘 = 5 ∙ 10−7 and a nitriding potential of KN = 1000 atm-1/2. For calculations with concentration dependent 

diffusion coefficient the expression for diffusion coefficient given in eq. 38 is applied, and for the calculations 

with a constant diffusion coefficient, the average value over the composition range is taken. 

The nitrogen concentration-depth profiles were calculated for the case of no trapping, 𝐾𝐶𝑠𝑁 = ∞, full trapping 

𝐾𝐶𝑠𝑁 = 0,  and intermediate trapping for solubility products 𝐾𝐶𝑠𝑁 = 107, 𝐾𝐶𝑠𝑁 = 108 and 𝐾𝐶𝑠𝑁 = 109. For 

these three cases of intermediate trapping, trapping occurs for nitrogen concentrations higher than 

approximately 700mol/m3, 4600mol/m3and 41600mol/m3, respectively. The concentration profiles were 

calculated under the assumption that no composition-induced stress develops in the case, and that the sample 

could be assumed to be infinitely thick, compared to the diffusion depth range, thus the model calculates 

diffusion into a semi-infinite solid. 

 Figure 11 a) and b) displays the results of the calculations for constant diffusivity and concentration-dependent 

diffusivity, respectively. For the constant diffusion coefficient depicted in Figure 11a, the effect of trapping is 

easily seen, since full trapping leads to an abrupt transition to zero nitrogen concentration, whereas no 

trapping yields the usual complementary error-function profile, with a concentration gradient that decreases 

gradually with depth.  Intermediate trapping results in a smoothening of the abrupt transition from high to low 

nitrogen concentration seen for full trapping. This is most clearly reflected by the profile for 𝐾𝑐𝑠𝑁 = 107. Not 

having the abrupt transition to zero concentration as the full trapping, the intermediate trapping curves shows 

a tail to the concentration profile beyond the depth where the solubility product is reached. The arrows in 

Figure 11a indicate the position of the discontinuity in the slope to the concentration profile occurs, that marks 

the concentration and depth below which no trapping occurs. The effect of a concentration-dependent 

diffusion coefficient that increases with nitrogen content, reaches a maximum and thereafter decreases with 

nitrogen content (see Figure 8) is reflected in Figure 11b. Analogous to the observations in Figure 11a a 

discontinuity in the slope is observed (marked by arrows) for the concentration and depth below which no 

trapping occurs.  
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Figure 11 - Concentration-depth profiles calculated assuming a) constant diffusion coefficient and b) concentration dependent 
diffusion coefficient, for no trapping, 𝑲𝑪𝑪𝑵 = ∞, full trapping 𝑲𝑪𝑪𝑵 = 𝟎,  and intermediate trapping for solubility products 

𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟕, 𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟖 and 𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟗 of diffusing nitrogen atoms by chromium atoms. The arrows mark the discontinuity in 
the slope, at the depth below which no trapping occur. 

 

 

  

a) 

b) 
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5.6 The role of the surface reaction on evolution of composition-depth profiles 
The competition of the fluxes of nitrogen arriving at and leaving from the surface is now evaluated, by 

including the surface reaction as described in eq. 3, which describes the flux of nitrogen through the surface.  

The evolution of the composition profile with time during nitriding at KN= 1000 at 718 K was again considered 

using a concentration-dependent diffusivity, intermediate trapping 𝐾𝐶𝑠𝑁 = 107 and 𝐾𝐶𝑠𝑁 = 109 (cf. Figure 

11b), and different values of the reaction-rate constant k in eq. 3 is now examined. The evolution of the 

concentration-depth profile with time is shown for k= 5 ∙ 10−7  in Figure 12a, and for k= 5 ∙ 10−10 in Figure 

12b. As above, the role of composition-induced residual stress is omitted.  

 

 

Figure 12 - Evolution of the concentration-depth profile with time for a) 𝒌 = 𝟏 ∙ 𝟑𝟎−𝟕 and b) 𝒌 = 𝟏 ∙ 𝟑𝟎−𝟑𝟎, for nitriding 

with a nitriding potential of 1000 

 

  

b) a) 
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The evolution of the concentration profile with time in Figure 12a shows that when the reaction rate constant 

of the surface reaction is k=5 10-7, the same surface concentration is obtained for all times investigated. This 

indicates that local equilibrium of nitrogen in the gas phase and nitrogen in the solid phase is achieved at the 

surface.  For the lower value of the reaction rate constant k=5 10-10, shown in Figure 12b, the surface 

concentration increases gradually with nitriding time. In Figure 13 the concentration profiles obtained after 

nitriding for 22 h at 718 K are shown for various combinations of 𝐾𝐶𝑠𝑁 and k. Examining the profiles in Figure 

13 it is clearly seen that the surface concentration of nitrogen obtained after 22h decreases with a reduction of 

the reaction rate constant of the surface reaction. It is also observed that the incorporation of trapping and the 

value of 𝐾𝐶𝑠𝑁 have an important influence on the total amount of nitrogen incorporated in the material. 

Stronger trapping leads to a lower amount of incorporated nitrogen and a steeper case-core transition. 

 

Figure 13 - Evolution of the surface concentration for various values of k, for 𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟕 (thin lines) and 𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟗 

(thick lines) for nitriding of 22h at 718K. 
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6. Concentration-induced stresses 

6.1 Calculation of concentration-induced stresses, assuming elasticity 
The concentration induced stresses can be found from the chemical strain using mechanical equilibrium 

considerations as elaborated below. 

6.1.1 Calculation of chemical strain 

The strain arising from the expansion of the austenite lattice as caused by the dissolution of interstitial 

nitrogen, i.e. the chemical-induced strain, 𝜀𝑑𝑖𝑐ℎ , is defined as  

 
𝑓𝑓𝑓 𝑖 = 𝑗:    𝜀𝑑𝑖𝑐ℎ(𝑐) =

𝑉(𝑐) 
1
3� − 𝑉𝑠𝑒𝑠

1
3�

𝑉𝑠𝑒𝑠
1
3�

 

𝑓𝑓𝑓 𝑖 ≠ 𝑗:    𝜀𝑑𝑖𝑐ℎ = 0 

(46)  

where 𝑉(𝑐) is the concentration-dependent volume of (expanded) austenite per unitcell in m3 and 𝑉𝑠𝑒𝑠 

indicates the  volume per unitcell of the interstitial-free lattice of austenite.  A mathematical function of 𝑉(𝑐) 

was given in eq. 44 and a value for Vref in eq. 45. 

6.1.2 Calculation of stresses from strains 

The total strain, 𝜀𝑑𝑖𝑡𝑏𝑡, is given by [58] 

 𝜀𝑑𝑖𝑡𝑏𝑡 = 𝜀𝑑𝑖𝑚𝑒𝑐ℎ + 𝜀𝑑𝑖𝑐ℎ + 𝜀𝑑𝑖𝑡ℎ (47)  

where  𝜀𝑑𝑖𝑡ℎ is the thermal strain and 𝜀𝑑𝑖𝑚𝑒𝑐ℎ is the mechanical strain which is the sum of the elastic and plastic 

strain. 

A simple description of the stress state in the surface can be found by applying a method equivalent to that of 

Hattel and Hansen [58] [59], with the following assumptions:  

- The surface of the sample is homogeneous and can move freely: 𝜎33 = 0 (𝜎33 is the stress normal to 

the surface). 

- The stress state in the surface is rotationally symmetric, hence the normal stresses in the surface plane 

are equal 𝜎11 = 𝜎22 



52 
 
 

- The specimen does not bend, hence uniform expansion at all depths: 𝜀11𝑡𝑏𝑡 = 𝜀22𝑡𝑏𝑡  and 𝜀12𝑡𝑏𝑡 = 𝜀13𝑡𝑏𝑡 =

𝜀23𝑡𝑏𝑡 = 0, and thus 𝜎12 = 𝜎13 = 𝜎23 = 0 

- There are no temperature gradients in the sample, and no thermal strains. 

 

For purely elastic stresses an equivalent to Hooke’s generalized law where the chemical strain is added can be 

used  

 𝜎𝑑𝑖 =
𝐸

1 + 𝜈
�𝜀𝑑𝑖 +

𝜈
1 − 2𝜈

𝛿𝑑𝑖𝜀𝑘𝑘� −
𝐸

1 − 2𝜈 �
𝜀𝑑𝑖𝑡ℎ + 𝜀𝑑𝑖𝑐ℎ�   (48)  

where 𝐸 is Youngs modulus and 𝜈 is Poisson’s ratio. The expression for 𝜎33 becomes 

 
𝜎33 =

𝐸
1 + 𝜈 �

𝜀33𝑡𝑏𝑡 +
𝜈

1 − 2𝜈
(𝜀11𝑡𝑏𝑡 + 𝜀22𝑡𝑏𝑡 + 𝜀33𝑡𝑏𝑡)� −

𝐸
1 − 2𝜈 �

𝜀33𝑡ℎ + 𝜀33𝑐ℎ�   (49)  

With the assumptions 𝜎33 = 0 and 𝜀22𝑡𝑏𝑡 = 𝜀11𝑡𝑏𝑡 this gives 

 
0 =

𝐸
1 + 𝜈 �

𝜀33𝑡𝑏𝑡 +
𝜈

1 − 2𝜈
(𝜀33𝑡𝑏𝑡 + 2𝜀22𝑡𝑏𝑡)� −

𝐸
1 − 2𝜈 �

𝜀33𝑡ℎ + 𝜀33𝑐ℎ�  (50)  

Isolating 𝜀33 gives 

 𝜀33𝑡𝑏𝑡 =
1 + 𝜈
1 − 𝜈 �

𝜀33𝑡ℎ + 𝜀33𝑐ℎ� −
2𝜈

1 − 𝜈
𝜀22𝑡𝑏𝑡  (51)  

𝜎22 = 𝜎11 can now be found as 

 
𝜎22 =

𝐸
1 + 𝜈 �

𝜀22𝑡𝑏𝑡 +
𝜈

1 − 2𝜈
(𝜀11𝑡𝑏𝑡 + 𝜀22𝑡𝑏𝑡 + 𝜀33𝑡𝑏𝑡)� −

𝐸
1 − 2𝜈 �

𝜀22𝑡ℎ + 𝜀22𝑐ℎ� (52)  

applying 𝜀22𝑡𝑏𝑡 = 𝜀11𝑡𝑏𝑡  it can be reduced to 

 𝜎22 =
𝐸

(1 + 𝜈)(1 − 2𝜈) �𝜈𝜀33
𝑡𝑏𝑡 + 𝜀22𝑡𝑏𝑡 − (1 + 𝜈)�𝜀22𝑡ℎ + 𝜀22𝑐ℎ�� (53)  
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Inserting the expression for 𝜀33𝑡𝑏𝑡 (eq. 51) gives 

 
𝜎22 =

𝐸
(1 + 𝜈)(1 − 2𝜈)�𝜈 �

1 + 𝜈
1 − 𝜈 �

𝜀33𝑡ℎ + 𝜀33𝑐ℎ� −
2𝜈

1 − 𝜈
𝜀22𝑡𝑏𝑡� + 𝜀22𝑡𝑏𝑡

− (1 + 𝜈)�𝜀22𝑡ℎ + 𝜀22𝑐ℎ��   

(54)  

Using that 𝜀33𝑡ℎ = 𝜀22𝑡ℎ and 𝜀33𝑐ℎ = 𝜀22𝑐ℎ this can be reduced, as shown in Appendix B.1, to 

  𝜎22 =
𝐸

1 − 𝜈 �
𝜀22𝑡𝑏𝑡 − 𝜀22𝑡ℎ − 𝜀22𝑐ℎ�   (55)  

 

Assuming constant temperature and no thermal strains the expression reduces to 

 𝜎22𝑒𝑒 =
𝐸

1 − 𝜈 �
𝜀22𝑡𝑏𝑡 − 𝜀22𝑐ℎ� (56)  

The total strain, 𝜀22𝑡𝑏𝑡, can be found from considering mechanical equilibrium over the cross-section of the 

sample, which for the case that the stress state is mirror symmetrical with respect to the plane at half the 

sample thickness (total sample thickness is 2L) 

 
� 𝜎22𝑒𝑒𝑑𝑧
𝐿

0
= 0   (57)  

Inserting eq. 56 into eq. 57, and assuming that Young’s modulus, 𝐸, and the Poisson ratio, 𝜈, are independent 

of depth, yields 

 𝐸
1 − 𝜈

� �𝜀22𝑡𝑏𝑡 − 𝜀22𝑐ℎ�𝑑𝑧
𝐿

0
= 0   (58)  
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Since it was assumed that 𝜀22𝑡𝑏𝑡 = 𝜀11𝑡𝑏𝑡 is constant in space and varying in time this gives 

 
𝜀22𝑡𝑏𝑡 =

1
𝐿
� �𝜀22𝑐ℎ�𝑑𝑧
𝐿

0
   (59)  

It is noted that a similar method was applied in [34][49][60], albeit that the total strain was taken equal to zero. 

This is a reasonable assumption, provided that the depth range where chemical strains apply is infinitely thin as 

compared to the depth range of the sample. This assumption simplifies the mathematical equations, resulting 

in the following equation for calculating the stress 

 𝜎22𝑒𝑒 = −
𝐸

1 − 𝜈
𝜀22𝑐ℎ    (60)  

Tests to verify computational implementation of calculation for strains and stresses are shown in Appendix C.1 

and C.2. 

 

6.2 Composition induced stress profiles, calculated assuming elasticity 
As the composition changes, the lattice expands and composition-induced strains is a result of this expansion 

of the lattice. From the relation between unitcell volume and nitrogen concentration given in eq. 44, the 

volumetric expansion of the lattice can be calculated, and from this the composition-induced strains 

introduced into the lattice can be calculated with eq. 46. As a first approach these strains are now assumed to 

be purely elastic and the elastic constants were assumed to be independent of the composition of austenite. 

Assuming an infinitely thick substrate, i.e. a total strain equal to zero, the composition-induced stresses were 

calculated with eq. 56 and are shown in Figure 14, for the composition profiles displayed in Figure 12. 

Comparing Figure 12 and Figure 14 it is seen that the elastic composition-induced compressive stress-depth 

profiles reflect the composition-depth profiles from which they were calculated. It is noted that the values of 

the stresses are five times as high as found experimentally with X-ray diffraction stress analysis [61]. The 

calculated stress values, assuming a purely elastic response, are unrealistically high and could never possibly be 

supported by the austenitic stainless steels under consideration.  
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Experimental observations of grain rotation and stacking fault generation shows that plastic deformation 

occurs as a result of nitriding of austenitic stainless steel [25][28][29][30].  The above assumption of pure 

elasticity is thus not valid, and applying this assumption gives an overestimation of the composition-induced 

stress. 

 

 

Figure 14 - Compressive composition-induced stress for an infinitely thick substrate, elastic accommodation of the volume expansion 

and 𝑲𝑪𝑪𝑵=107 and k=5 10-7(a) and k=5 10-10 (b) for several diffusion times. The corresponding nitrogen concentration-depth profiles 

are given in Figs. 12a and 4b, respectively. 

  

a) b) 
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6.2.1 Effect of sample thickness on predicted stress depth profile 

Above semi-infinite samples were assumed, and the total strain was assumed to be equal to zero. This is 

however only a valid assumption if the depth range where the chemical strain apply, is infinitely thin compared 

to the depth range of the sample. Thus the effect of sample thickness is now addressed in this section. The 

effect of the sample thickness on the stress distribution as calculated with eqs. 56-57 is shown in Figure 15 for 

several sample thicknesses, 2L. Only for relatively thin samples are there substantial tensile stresses present in 

the core to compensate for the high compressive stresses in the case. So since the stresses in the case are 

hugely overestimated by the assumption of pure elasticity, these results indicate that for most practical 

situations the tensile stresses in the core can be neglected. 

 
Figure 15 - Effect of thickness of the sample on the predicted stress profile, for 22h nitriding with a nitriding potential of 1000, k= 

𝟏 ∙ 𝟑𝟎−𝟕 and no trapping 
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7. Interaction of elastic stresses and concentration 

7.1 Computational modelling of concentration profiles with stress influence at 

constant temperature 
Including influence of stress on concentration flux, but assuming constant temperature, the expression for the 

concentration flux given by eq. 20, becomes 

 𝐽𝑁 = −
𝐷𝑁𝑐𝑁
𝑅𝑅

�
𝑅𝑅
𝐾𝑁

𝜕𝐾𝑁
𝜕𝑐𝑁

𝜕𝑐𝑁
𝜕𝑧

− 𝑉𝑁
𝜕𝜎𝐻
𝜕𝑧

�  (61)  

Accordingly, the generalized form of Fick’s 2nd law is 

 𝜕𝑐𝑁
𝜕𝐷

= −
𝜕
𝜕𝑧
�−𝐷𝑁

(𝑐).
𝜕𝑐𝑁
𝜕𝑧

+
𝐷𝑁. 𝑐𝑁
𝑅𝑅

.𝑉𝑁.
𝜕𝜎𝐻
𝜕𝑧

� (62)  

where 𝐷𝑁
(𝑐) represents the concentration dependence of the diffusion coefficient of nitrogen, including the 

thermodynamic factor �𝑐𝑁
𝐾𝑁

𝜕𝐾𝑁
𝜕𝑐𝑁

�. When 𝐷𝑁
(𝑐) is a known explicit function of the concentration, eq. 62 can be 

rewritten to 

 
𝜕𝑐𝑁
𝜕𝐷

= −
𝜕
𝜕𝑧�

−𝐷𝑁
(𝑐).

𝜕𝑐𝑁
𝜕𝑧

+
𝐷𝑁

(𝑐)

𝜕𝐾𝑁
𝜕𝑐𝑁

.
𝐾𝑁
𝑅𝑅

.𝑉𝑁.
𝜕𝜎𝐻
𝜕𝑧 �

 (63)  

and then the differentiation gives 

 

𝜕𝑐𝑁
𝜕𝐷

=
𝜕𝐷𝑁

(𝑐)

𝜕𝑐𝑁
∙ �
𝜕𝑐𝑁
𝜕𝑧

�
2

+ 𝐷𝑁
(𝑐) ∙

𝜕2𝑐𝑁
𝜕𝑧2

−
𝜕
𝜕𝑧�

𝐷𝑁
(𝑐) ∙

𝐾𝑁
𝜕𝐾𝑁
𝜕𝑐𝑁

� ∙
𝑉𝑁
𝑅𝑅

𝜕𝜎𝐻
𝜕𝑧

− 𝐷𝑁
(𝑐)

∙ �
𝐾𝑁
𝜕𝐾𝑁
𝜕𝑐𝑁

𝑉𝑁
𝑅𝑅

𝜕2𝜎𝐻
𝜕𝑧2 �

 

(64)  

 

Discretizing done using the central explicit finite difference method gives 
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𝑐𝑑𝑡+∆𝑡 − 𝑐𝑑𝑡

∆𝐷
=
𝜕𝐷𝑁

(𝑐𝑖
𝑡)

𝜕𝑐 �
𝑐𝑑+1𝑡 − 𝑐𝑑−1𝑡

2∆𝑧 �
2

+ 𝐷𝑁
(𝑐𝑖
𝑡) ∙

𝑐𝑑+1𝑡 − 2𝑐𝑑𝑡 + 𝑐𝑑−1𝑡

∆𝑧2

−

�𝐷𝑁
(𝑐𝑖+1
𝑡 ) ∙

𝐾𝑁𝑖+1
𝜕𝐾𝑁𝑖+1
𝜕𝑐𝑁

− 𝐷𝑁
(𝑐𝑖−1
𝑡 ) ∙

𝐾𝑁𝑖−1
𝜕𝐾𝑁𝑖−1
𝜕𝑐𝑁

�

2∆𝑧
𝜎𝐻𝑑+1

𝑡 − 𝜎𝐻𝑑−1
𝑡

2∆𝑧

− 𝐷𝑁
(𝑐𝑖
𝑡) �

𝐾𝑁𝑖
𝜕𝐾𝑁𝑖
𝜕𝑐𝑁

𝑉𝑁
𝑅𝑅

𝜎𝐻𝑑+1
𝑡 − 2𝜎𝐻𝑑

𝑡 + 𝜎𝐻𝑑−1
𝑡

∆𝑧2 � 

(65)  

The continuity equation at the surface to balance the fluxes of nitrogen atoms arriving at and leaving from the 

surface cell to calculate the actual surface concentration of nitrogen, described by eq. 24, is discretized as 

 𝑐𝑑𝑡+∆𝑡 − 𝑐𝑑𝑡

∆𝐷
= −

𝐽𝑑→𝑑+1 − 𝐽𝑠𝑠𝑠𝑠
∆𝑧

 (66)  

Combining eq. 66 with the expression for 𝐽𝑠𝑠𝑠𝑠, given in eq. 3, and the expression for the flux, in eq. 61, the 

nitrogen concentration in the surface cell follows from 

 𝑐𝑑𝑡+∆𝑡 − 𝑐𝑑𝑡

∆𝐷
= 𝐷𝑁

(𝑐𝑖
𝑡) 𝑐𝑑+1𝑡 − 𝑐𝑑𝑡

∆𝑧𝑑2
− 𝐷𝑁

(𝑐𝑖
𝑡) 𝐾𝑁𝑖
𝜕𝐾𝑁𝑖
𝜕𝑐𝑁

𝑉𝑁
𝑅𝑅

𝜎𝐻𝑑+1
𝑡 − 𝜎𝐻𝑑

𝑡

∆𝑧𝑑2
+

𝑘
∆𝑧𝑑

∙ �𝑐𝑒𝑒 − 𝑐𝑑𝑡� (67)  

The computational sequence is illustrated by a flowchart in Figure 16. 
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Figure 16 - Computational flowchart for calculation of concentration and stress-depth profiles, assuming purely elastic stresses 
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7.2 Stress effect on diffusion 

7.2.1 Effect of composition induced stress profile on internal diffusion 

The presence of a gradient in the composition-induced stress is equivalent to an additional driving force for the 

diffusion of nitrogen, see for example eq. 21. Since the composition-induced stress is a compressive stress 

decreasing with depth, (Figure 14), it implies a positive additional driving force for diffusion.  

It should be noted that it is the stress changes with depth that increases the diffusion, not the level of stress. 

Adding a constant level of stress does not change the internal diffusion.  

The effect of a stress-gradient induced driving force on the diffusion, when keeping the surface concentration 

constant, is demonstrated in Figure 17  for 22h nitriding at 718 K at KN=1000. The lines obtained without 

considering an effect of the stress on the internal diffusion are reproduced from Figure 12a and Figure 14a. 

From Figure 17 it can be seen that for the extremely huge composition-induced stresses, predicted assuming 

purely elasticity, the driving force resulting from the stress-gradient results in a concentration profile that 

reaches about 3.5 times as deep as when the effect of the stress gradient on diffusion was not considered. This 

shows a potentially substantial contribution of stress-induced diffusion, albeit for the hugely overestimated 

stress.  

 
Figure 17 – Effect of taking into account stress on predicted concentration-depth profiles  and stress-depth profiles  for nitriding of 

316 austenitic stainless steel after 22 hours at 445°C using a nitriding potential of 1000, 𝑲𝑪𝑪𝑵=107 and k=5 10-7 
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7.3 Stress effect on surface 
It was established in section 7.2 that the level of stress does not influence the internal diffusion, only the stress 

gradient does. However, compressive stress reduces the solubility of nitrogen in austenite under equilibrium 

conditions. This will be most clearly manifested by a reduction of the nitrogen concentration at the surface, 

which is the interface between the solid and gaseous phase, where local equilibrium is attempted to be 

imposed. 

7.3.1 Influence of stress on the equilibrium concentration 

The nitrogen content that can be dissolved in equilibrium with a chemical potential as imposed by a gas phase 

of known composition depends on the state of stress of the solid, as expressed by eq. 13. Consequently, the 

value of 𝑐𝑁
𝑒𝑒, i.e. the nitrogen content in the solid in equilibrium with the gas phase, decreases with the invoked 

compressive stress in the surface element. At its turn the flux of nitrogen through the surface as given by eq. 3 

is affected as is the actual surface concentration.  The concentration of nitrogen in a stressed solid in 

equilibrium with nitrogen in a gas of known composition follows from equating the chemical potentials of 

nitrogen in solid and in gas: 

 𝜇𝑔𝑎𝑠 = 𝜇𝜎  (68)  

The chemical potentials in the solid with and without stress (σ=0) are given by 

 
𝜇𝜎=0 = 𝜇0 + 𝑅𝑅ln(𝑎) 

𝜇𝜎 = 𝜇0 + 𝑅𝑅ln(𝑎) − 𝑉𝑁𝜎𝐻 

(69)  

Hence, comparing the chemical potential in a stressed and a stress-free solid in equilibrium with the same gas 

leads to 

 
𝜇0 + 𝑅𝑅𝑅𝑅(𝑎𝜎) − 𝑉𝑁𝜎𝐻 = 𝜇0 + 𝑅𝑅ln(𝑎𝜎=0) 

→ 𝑎𝜎 = 𝑎𝜎=0 ∙ exp �
𝑉𝑁𝜎𝐻
𝑅𝑅

� 

(70)  

Inserting 𝑎𝑁 = 𝐾𝑇 𝐾𝑁 and realizing that  𝐾𝑇  depends on pressure, while KN is independent of pressure, it 

follows 

 𝐾𝑇 𝜎 = 𝐾𝑇 𝜎=0 ∙ exp �
𝑉𝑁𝜎𝐻
𝑅𝑅

� (71)  
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The relation between the nitrogen concentration and the nitriding potential for a stressed solid follows from 

inserting eq. 71 for 𝐾𝑇  in the relation between nitriding potential and concentration, which was given in 

Appendix A3  eq.A29, 

 

 𝐾𝑁 = 0.01125 ∙
𝑐

𝐾𝑇 
𝜎=0 ∙ exp �𝑉𝑁𝜎𝐻𝑅𝑅 �

+
102.5078

𝐾𝑇 
𝜎=0 ∙ exp �𝑉𝑁𝜎𝐻𝑅𝑅 �

∙  exp (0.0005129336 ∙ 𝑐𝑁 − 24.60384) 

(72)  

Since the equation is non-linear and cannot be inverted analytically, the way to calculate the equilibrium 

concentration is by iteration. In this work Newton-Rhapson iterations was applied. 

The dependence of the surface concentration on the hydrostatic component of the compressive stress is given 

in Figure 18, for stainless steel AISI 316 at 718 K and selected values of the nitriding potential2, using eq. 72. 

From Figure 18 it is evident that the nitrogen solubility is very sensitive to the level of stress. Since a lower 

equilibrium concentration leads to a lower maximum flux through the surface, this indicates that a compressive 

stress resulting from the chemical strain reduces the nitrogen flux through the surface.  

This means, that even though the level of stress does not affect the internal diffusion, it does affect the flux 

through the surface. So even though a stress profile with higher compressive stresses at the surface compared 

to the centre increases the internal diffusion, it also decreases the flux through the surface.  

                                                           
2  The nitriding potential is proportional to the activity, and thus the chemical potential, of nitrogen in the gas phase (see 
Appendix A.3). 
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Figure 18 - Equilibrium concentrations as function of surface stress for varying nitriding potentials, 𝑲𝑵, (Note that negative values of 
stress denotes compressive stress) 
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7.3.2 Predicted concentration and stress-profiles when taking into account stress effect on surface 

Implementing the effect of compressive stress on the local equilibrium at the surface, combined with the 

additional stress-induced driving force for diffusion, leads to the predicted concentration depth profile and 

stress-depth profile shown in Figure 19. Figure 19 also shows the profiles produced without considering an 

effect of the stress level on the surface flux (reproduced from Figure 17). Comparing the two profiles a 

reduction by about a factor 2 in the local nitrogen concentration is seen when the effect of stress on the 

surface concentration is taken into account.  Nevertheless, the effect of a compressive stress gradient causes a 

penetration depth of the profile beyond the depth achieved without including the contribution of stress-

induced diffusion, (see Figure 17) despite the substantially smaller chemical contribution to the driving force 

for diffusion.   

 
Figure 19 - Predicted concentration-depth profile and stress-depth profile for nitriding of 316 austenitic stainless steel after 22 hours 
at 445°C using a nitriding potential of 1000 𝑲𝑪𝑪𝑵=107 and k=5 10-7 
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8. Plasticity 
As discussed in section 1.3, plastic deformation has been observed after nitriding, and since the stresses 

predicted assuming elasticity in section 7, are in the order of 13GPa, which is much higher than the yield stress 

of austenite, the assumption of pure elasticity is not very good for the case of nitriding. Thus the effect of 

taking into account plasticity in the model is investigated below. 

8.1 Calculation of elastic-plastic stresses  
For elastic-plastic stresses the stresses cannot be calculated directly, as was done for elasticity, since the stress 

depends on the path. Thus the incremental method is used. Where the relation between the incremental stress 

�̇�𝑑𝑖  and the incremental strain 𝜀�̇�𝑒  is 

 �̇�𝑑𝑖 = 𝐿𝑑𝑖𝑘𝑒𝜀�̇�𝑒  (73)  

where 𝐿𝑑𝑖𝑘𝑒 is the incremental stiffness tensor which is given according to J2-flow theory [62] by 

 
𝐿𝑑𝑖𝑘𝑒 =

𝐸
1 + 𝜈

�
1
2 �
𝛿𝑑𝑘𝛿𝑖𝑒 + 𝛿𝑑𝑒𝛿𝑖𝑘� +

𝜈
1 − 2𝜈

𝛿𝑑𝑖𝛿𝑘𝑒 − 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠𝑑𝑖𝑠𝑘𝑒
𝜎𝑒2

� (74)  

where 𝐸 is Young’s modulus, 𝐸𝑡 is the tangent modulus, ν is Poisson’s ratio and 𝛿𝑑𝑖  is Kronecker’s delta (which 

is =1 if i=j, and =0 if i≠j) and 𝛽 = 0 for elastic unloading and 𝛽 = 1 if there is plastic flow. 

𝑠𝑑𝑖 is the stress deviator tensor, which is given by [62] 

 𝑠𝑑𝑖 = 𝜎𝑑𝑖 − 𝛿𝑑𝑖
𝜎𝑘𝑘

3
 

(75)  

and  the effective von Mises stress is given by [62] 

 𝜎𝑒2 =
3
2
𝑠𝑑𝑖𝑠𝑑𝑖 (76)  

If the Mises stress calculated in an element, 𝑖, exceeds the maximum Mises stress from previous increments, it 

is set to be the new maximum Mises stress: 

 𝑖𝑓 𝜎𝑒  ≥  𝜎𝑒,𝑚𝑎𝑚(𝑑)
  𝐷ℎ𝑒𝑅 𝜎𝑒(𝑑)

 =  𝜎𝑒,𝑚𝑎𝑚(𝑑)
   (77)  

The Mises stress increment �̇�𝑒  is found from the incremental stresses in the element, 𝑖 (�̇�𝑘𝑒𝑑 ) [62]: 
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�̇�𝑒 =

3 ∙ 𝑠𝑘𝑒𝑑 ∙ �̇�𝑘𝑒𝑑

2 ∙ 𝜎𝑒(𝑑)
  (78)  

The 𝛽 values, in eq. 74, can now be determined from the J2 flow theory criteria [62]: 

 𝑓𝑓𝑓 𝜎𝑒 =  𝜎𝑒,𝑚𝑎𝑚
  𝑎𝑅𝑑 �̇�𝑒 ≥ 0       𝛽 = 1 

𝑖𝑓 𝜎𝑒 <  𝜎𝑒,𝑚𝑎𝑚
  𝑓𝑓 �̇�𝑒 < 0       𝛽 = 0  

(79)  

Since 𝛽 depends on the stresses it is used to calculate, the modelling made in this work is made so the program 

uses the 𝛽 calculated in the previous step to determine the stresses in the next step. This means that a small 

overshoot will occur at the time of changing from elasticity to plasticity, but using sufficiently small increments 

it is tiny. 

The tangent modulus is found using a power hardening law [62], which states that  

 
𝑓𝑓𝑓 𝜎 > 𝜎𝑦, 𝜀 =  

𝜎𝑦
𝐸 �

𝜎
𝜎𝑦
�
𝑛

 (80)  

Since 1
𝐸𝑡

= 𝑎𝑑
𝑎𝜎

 this means that, applying this power hardening law, the tangent modulus (𝐸𝑡) used in eq. 74 is 

given by: 

 
𝐸𝑡 =

𝐸
𝑅
�
𝜎𝑦
𝜎𝑒 
�
𝑛−1

 (81)  

The new stress is found by adding the incremental stress to the stress from the previous step 

 𝜎𝑑𝑖 =  𝜎𝑑𝑖 + �̇�𝑑𝑖  (82)  

Applying the assumptions similar to the purely elastic case, using the equivalent method as  Hattel and Hansen 

[58] [59], gives the following assumptions:  

- Since the surface of the nitride specimen is free 𝜎33 = 0,  

- Since there is symmetry, the stresses in the surface plane are equal 𝜎11 = 𝜎22 

- Assuming no bending of the specimen, and hence uniform expansion through the material gives𝜀11𝑡𝑏𝑡 =

𝜀22𝑡𝑏𝑡  constant in space and varying in time, 𝜀12𝑡𝑏𝑡 = 𝜀13𝑡𝑏𝑡 = 𝜀23𝑡𝑏𝑡 = 0, and thus 𝜎12 = 𝜎13 = 𝜎23 = 0 
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for no shear stresses, this gives 

 𝑠11 = 𝜎11 −
𝜎11 + 𝜎22 + 𝜎33

3
 

𝑠22 = 𝜎22 −
𝜎11 + 𝜎22 + 𝜎33

3
 

𝑠33 = 𝜎33 −
𝜎11 + 𝜎22 + 𝜎33

3
 

(83)  

and then 

 𝜎𝑒2 =
3
2

(𝑠112 + 𝑠222 + 𝑠332) (84)  

Having no shear strains then gives 

 �̇�11 = 𝐿1111𝜀1̇1 + 𝐿1122𝜀2̇2 + 𝐿1133𝜀3̇3  

�̇�22 = 𝐿2211𝜀1̇1 + 𝐿2222𝜀2̇2 + 𝐿2233𝜀3̇3  

�̇�33 = 𝐿3311𝜀1̇1 + 𝐿3322𝜀2̇2 + 𝐿3333𝜀3̇3  

(85)  

where 

 
𝐿1111 =

𝐸
1 + 𝜈

�
1
2

(𝛿11𝛿11 + 𝛿11𝛿11) +
𝜈

1 − 2𝜈
𝛿11𝛿11 − 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠11𝑠11
𝜎𝑒2

�

=
𝐸

1 + 𝜈
�1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠11𝑠11
𝜎𝑒2

� 

(86)  

and 

 
𝐿1122 =

𝐸
1 + 𝜈

�
1
2

(𝛿12𝛿12 + 𝛿12𝛿12) +
𝜈

1 − 2𝜈
𝛿11𝛿22 − 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠11𝑠22
𝜎𝑒2

�

=
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠11𝑠22
𝜎𝑒2

� 

(87)  

and similar for the other incremental stiffness tensors, giving 
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�̇�11 =

𝐸
1 + 𝜈

�1 +
𝜈

1 − 2𝜈
− 𝛽

3
2
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𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠11𝑠11
𝜎𝑒2

� 𝜀1̇1 

+
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
3
2
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𝑠11𝑠22
𝜎𝑒2
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+
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠11𝑠33
𝜎𝑒2

� 𝜀3̇3  

(88)  

 
�̇�22 =

𝐸
1 + 𝜈

�
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠22𝑠11
𝜎𝑒2

� 𝜀1̇1 

+
𝐸

1 + 𝜈
�1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠22𝑠22
𝜎𝑒2

� 𝜀2̇2 

+
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠22𝑠33
𝜎𝑒2

� 𝜀3̇3  

(89)  

 
�̇�33 =

𝐸
1 + 𝜈

�
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠33𝑠11
𝜎𝑒2

� 𝜀1̇1 

+
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠33𝑠22
𝜎𝑒2

� 𝜀2̇2 

+
𝐸

1 + 𝜈
�1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠33𝑠33
𝜎𝑒2

� 𝜀3̇3  

(90)  

Since 𝜎11 = 𝜎22 and 𝜀11 = 𝜀22 then �̇�11 = �̇�22 and 𝜀1̇1 = 𝜀2̇2, at a given coordinate 𝑥3 (depth) and since 

𝜎33 = 0 this gives 

 𝑠11 = 𝑠22 =
𝜎22
3

 
(91)  

 𝑠33 = −
2𝜎22

3
 (92)  

and having no shear stresses 

 
𝜎𝑒2 =

3
2

(𝑠112 + 𝑠222 + 𝑠332) =
3
2�

𝜎222

9
+
𝜎222

9
+ 4

𝜎222

9 � = 𝜎222 (93)  
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The Mises stress increment is then 

 
�̇�𝑒 =

3(𝑠11�̇�11 + 𝑠22�̇�22 + 𝑠33�̇�33)
2 ∙ 𝜎𝑒 

=
3 �𝜎223 �̇�22 + 𝜎22

3 �̇�22 −
2𝜎22

3 ∙ 0�
2 ∙ |𝜎22|  (94)  

So if 𝜎22 > 0 

 �̇�𝑒 = �̇�22 (95)  

And if 𝜎22 < 0 

 �̇�𝑒 = −�̇�22 (96)  

Since 𝜀11 = 𝜀22 then 𝜀1̇1 = 𝜀2̇2 and then the expression for the incremental stress tensors can be reduced to 

 �̇�11 = �̇�22 =
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
− 𝛽

1
6

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

𝜀2̇2

+
𝐸

1 + 𝜈 �
1 +

𝜈
1 − 2𝜈

− 𝛽
1
6

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

𝜀2̇2 

+
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
+ 𝛽

1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

𝜀3̇3  

(97)  

 

�̇�33 =
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

−2
9 � 𝜀2̇2

+
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

−2
9 � 𝜀2̇2 

+
𝐸

1 + 𝜈 �
1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

4
9�
𝜀3̇3  

(98)  

Because of the free surface 𝜎33 = 0 at all times thus �̇�33 = 0 giving 

 0 =
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

−2
9 � 𝜀2̇2

+
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

−2
9 � 𝜀2̇2 

+
𝐸

1 + 𝜈 �
1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

4
9�
𝜀3̇3  

(99)  

Restructuring gives an expression for 𝜀3̇3  as function of 𝜀2̇2  
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𝜀3̇3 = −
�2 𝜈

1 − 2𝜈 + 𝛽 2
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

�1 + 𝜈
1 − 2𝜈 − 𝛽 2

3
𝐸/𝐸𝑡 − 1

𝐸/𝐸𝑡 − (1 − 2𝜈)/3�
𝜀2̇2  

(100)  

In case of plasticity 𝛽 = 1 and then 

 �̇�11 = �̇�22 =
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
−

1
6

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

𝜀2̇2 

+
𝐸

1 + 𝜈 �
1 +

𝜈
1 − 2𝜈

−
1
6

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

𝜀2̇2 

+
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
+

1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

𝜀3̇3  

(101)  

And in case of no plasticity then 𝛽 = 0 giving 

 
𝜀3̇3 = −

�2 𝜈
1 − 2𝜈�

�1 + 𝜈
1 − 2𝜈�

=
−2𝜈

1 − 𝜈
𝜀2̇2  (102)  

Inserting these expressions (eq. 100 and 102) in the expression for the in-plane incremental stress tensors (eq. 

97) gives 

for plastic yielding 

 

�̇�11 = �̇�22 =
𝐸

1 + 𝜈
⎝

⎛�1 + 2
𝜈

1 − 2𝜈
−

1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

+
−2 � 𝜈

1 − 2𝜈 + 1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

2

�1 + 𝜈
1 − 2𝜈 −

2
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�⎠

⎞𝜀2̇2  

(103)  

and for elasticity and elastic unloading 

 �̇�11 = �̇�22 =
𝐸

1 + 𝜈 �
𝜈

1− 2𝜈�
𝜀2̇2 +

𝐸
1 + 𝜈 �

1 +
𝜈

1 − 2𝜈�
𝜀2̇2 +

𝐸
1 + 𝜈 �

𝜈
1 − 2𝜈�

−2𝜈
1 − 𝜈

𝜀2̇2 

= 𝐸𝜀2̇2 �
1 − 𝜈 − 2𝜈𝜈

1 − 2𝜈   1 + 𝜈      1 − 𝜈
� =

𝐸
1 − 𝜈

𝜀2̇2  

(104)  

which is the same result for the stress increment as found for the total stress using Hooke’s law in section 6.1. 
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The increment strain 𝜀2̇2  as a function of depth can be found using equilibrium of the stress  �̇�22  over the cross-

section from the surface to the depth 𝑧𝑚𝑎𝑚 

 
� �̇�22 𝑑𝑧
𝑧𝑚𝑚𝑚

0
= 0 

(105)  

Inserting the expression for �̇�22  considering there might be both an elastic and a plastic region, and assuming 

that the Young’s modulus, tangent modulus (an average value is used in the programming) and Poisson’s ratio 

is constant with depth gives 

 
𝐸

1 + 𝜈
⎝

⎛�1 + 2
𝜈

1 − 2𝜈
−

1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

+
−2 � 𝜈

1 − 2𝜈 + 1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

2

�1 + 𝜈
1 − 2𝜈 −

2
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�⎠

⎞� 𝜀2̇2 𝑑𝑧
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

+
𝐸

1 − 𝜈
� 𝜀2̇2 𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

= 0 

(106)  

The mechanical strain increment 𝜀2̇2  was equal to 𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ 

 
𝐸

1 + 𝜈
⎝

⎛�1 + 2
𝜈

1 − 2𝜈
−

1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

+
−2 � 𝜈

1 − 2𝜈 + 1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

2

�1 + 𝜈
1 − 2𝜈 −

2
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�⎠

⎞� �𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

− 𝜀2̇2𝑐ℎ�𝑑𝑧 +
𝐸

1 − 𝜈
� �𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

= 0 

(107)  

The total strain can now be determined. Since it was assumed that 𝜀2̇2𝑡𝑏𝑡 is constant in space and varying in time 

this gives 
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𝜀2̇2𝑡𝑏𝑡

⎣
⎢
⎢
⎡ 𝐸
1 + 𝜈

⎝

⎛�1 + 2
𝜈

1 − 2𝜈
−

1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

+
−2 � 𝜈

1 − 2𝜈 + 1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

2

�1 + 𝜈
1 − 2𝜈 −

2
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�⎠

⎞� 𝑑𝑧 +
𝐸

1 − 𝜈
� 𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0
⎦
⎥
⎥
⎤

=
𝐸

1 + 𝜈
⎝

⎛�1 + 2
𝜈

1 − 2𝜈
−

1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

+
−2 � 𝜈

1 − 2𝜈 + 1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�

2

�1 + 𝜈
1 − 2𝜈 −

2
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3�⎠

⎞� �𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

+
𝐸

1 − 𝜈
� �𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 

(108)  

↔ 
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𝜀2̇2𝑡𝑏𝑡 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐸
1 + 𝜈

⎝

⎜
⎜
⎜
⎜
⎛

�1 + 2
𝜈

1 − 2𝜈
−

1
3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

�

+

−2 � 𝜈
1 − 2𝜈 + 1

3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3
�

2

�1 + 𝜈
1 − 2𝜈 −

2
3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3
�

⎠

⎟
⎟
⎟
⎟
⎞

� �𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

+
𝐸

1 − 𝜈
� �𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

/  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐸
1 + 𝜈

⎝

⎜
⎜
⎜
⎜
⎛

�1 + 2
𝜈

1 − 2𝜈
−

1
3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

�

+

−2 � 𝜈
1 − 2𝜈 + 1

3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3
�

2

�1 + 𝜈
1 − 2𝜈 −

2
3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3
�

⎠

⎟
⎟
⎟
⎟
⎞

𝑧𝑚𝑎𝑚,𝑝𝑒𝑎𝑠𝑡𝑑𝑐 +
𝐸

1 − 𝜈 �
𝑧𝑚𝑎𝑚 − 𝑧𝑚𝑎𝑚,𝑝𝑒𝑎𝑠𝑡𝑑𝑐�

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 

(109)  
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where ∫ �𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝
0  and ∫ �𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ�𝑑𝑧

𝑧𝑚𝑚𝑚
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 can be calculated using finite difference 

discretization as ∑ �𝜀2̇2𝑡ℎ(𝑖) ∙ ∆𝑧(𝑖) + 𝜀2̇2𝑐ℎ(𝑖) ∙ ∆𝑧(𝑖)�𝑑𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝
1   and  ∑ �𝜀2̇2𝑡ℎ(𝑖) ∙ ∆𝑧(𝑖) + 𝜀2̇2𝑐ℎ(𝑖) ∙ ∆𝑧(𝑖)�𝑑𝑚𝑎𝑚

𝑑𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝
 

respectively. 

Computational sequence of the calculations when including plasticity is illustrated by a flowchart in Figure 20. 
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Figure 20 - Flowchart of computational sequence for calculating concentration and stress-depth profiles, when stresses are 
calculating with elasto-plasticity and constant yield stress 
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8.2 Effect on predicted concentration and stress profiles of plasticity 
The difference between the predicted concentration- and stress-depth profiles calculated when assuming 

purely elasticity and when incorporating plasticity are displayed in Figure 21. For plasticity, a constant yield 

strength of 290MPa equal to the yield strength of 316 austenitic stainless steel at room temperature [63] was 

applied. 

Comparison of the profiles shows that when plasticity is taken into account, the stress level in the expanded 

austenite zone is very low as compared to when assuming purely elasticity; as was expected. Consequently, for 

the case of plasticity with constant yield stress, the nitrogen surface concentration and the diffusive flux in the 

expanded austenite would be largely unaffected by the stress and thus a composition-depth profile 

reminiscent of that for no stress is obtained (cf. Figure 17).  

 
Figure 21 - Simulated concentration-depth profiles and stress-depth profiles using purely elastic accommodation of the lattice 

expansion or elastic-plastic accommodation using the const. yield stress of the austenitic material.  
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9. Concentration dependence of mechanical properties 

9.1 Determination of concentration dependence of yield stress from experimental 

data 
The relation between the yield stress and nitrogen content for austenitic stainless steel is not precisely known, 

particularly not for the high nitrogen contents of relevance for expanded austenite. Bottoli, et al. [64] 

investigated two qualities of austenitic stainless steel deformed to various degrees of equivalent strain, and 

found that the hardness (HV) and yield stress (𝜎𝑦) obey the following relation: 

 𝜎𝑦[in MPa] = −396 + 3.73 ∙ HV (110)  

Realizing that hardness and yield stress both are a measure for the resistance against plastic deformation, it is 

attempted to obtain an estimate for the concentration dependence of the yield stress from the hardness. 

Correlating hardness-depth and concentration-depth profiles for nitrided AISI 316 austenitic stainless steel 

from [65] and converting hardness into yield stress with eq. 110, the dependence displayed in Figure 22 was 

obtained.   Obviously, the yield stress increases with the concentration until a point where a plateau is reached 

where the yield stress is independent on the concentration. Taking the yield stress of nitrogen free austenite as 

290 MPa, a linear fit through the region (c<14796) where a steep increase in yield stress occurs, results in: 

 𝜎𝑦[in MPa] = 0.2424 ∙ 𝑐 + 290  (111)  

For the plateau the average value is 𝜎𝑦 = 3848 MPa, which is more than 10 times higher than the yield stress 

of the base material.  
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Figure 22 – Data and fit for relation between yield stress and nitrogen concentration for AISI 316 stainless steel 
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9.2 Plasticity criterion for non-constant yield strength 

9.2.1 Basics for plasticity criterion for varying  yield stress 

For a mechanically sound solution, the plasticity criterion has to be calculated taking a non-constant yield stress 

into account.  

The effect of yield stress temperature dependence on the plasticity criterion, was described by Hattel [58] and 

the concentration dependence can be treated similarly, as explained below. 

The Von Mises stress was defined by eq. 76 

 𝜎𝑒2 =
3
2
𝑠𝑑𝑖𝑠𝑑𝑖  (112)  

and the yield stress is now assumed to be isotropic hardening and dependent on concentration and 

temperature 

 𝜎𝑌(𝜀 
𝑝𝑒, 𝑐,𝑅) (113)  

The yield function is then defined as  

 𝑓 = 𝜎𝑒2 − 𝜎𝑌2 = 0 (114)  

The elastic and plastic states are defined from the yield function as follows 

 𝑓 < 0   elastic state 

𝑓 = 0   plastic state 

(115)  

Note that the yield function cannot be larger than zero, since a stress state where the stress exceeds the 

current yield stress is impossible. 

The associated flow rule states that the plastic strain rate is a function of the load parameter �̇� and the 
direction of the yield surface normal.  

 𝜀�̇�𝑖
𝑝𝑒 = �̇�

𝜕𝑓
𝜕𝜎𝑑𝑖

 (116)  
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According to Drucker’s postulate, this direction is the outward normal to the yield surface, so using the Von 

Mises yield function 

 𝜕𝑓
𝜕𝜎𝑑𝑖

= 𝑠𝑑𝑖  (117)  

Giving the following expression for the plastic strain rate, known as the Prandtl-Reuss expression: 

 𝜀�̇�𝑖
𝑝𝑒 = �̇�𝑠𝑑𝑖  

(118)  

The above is also the basis for the theory for constant yield stress, the difference comes from the consistency 

condition [58], that enforces the solution to stay on the yield surface in a plastic load increment: 

 
𝑓̇ =

𝜕𝑓
𝜕𝑠𝑑𝑖

�̇�𝑑𝑖 +
𝜕𝑓
𝜕𝜀𝑒

𝑝𝑒�
𝑇,𝑐

𝜀�̇�
𝑝𝑒 +

𝜕𝑓
𝜕𝑅�𝑑𝑒𝑝𝑝,𝑐

�̇� = 0 (119)  

where there is now an effect on the yield stress of the temperature to take into account.  

𝜀�̇�
𝑝𝑒 is the equivalent plastic strain increment, which can be calculated by 

 
𝑑𝜀𝑒

𝑝𝑒 = �2
3
𝑑𝜀𝑑𝑖

𝑝𝑒𝑑𝜀𝑑𝑖
𝑝𝑒  (120)  

With no shear strains this gives 

 
𝜀�̇�
𝑝𝑒 = �2

3 �
𝜀1̇1
𝑝𝑒𝜀1̇1

𝑝𝑒 + 𝜀2̇2
𝑝𝑒𝜀2̇2

𝑝𝑒 + 𝜀3̇3
𝑝𝑒𝜀3̇3

𝑝𝑒� (121)  

 

For the case where 𝜎11 = 𝜎22 and 𝜎33 = 0 this reduces to 

 𝜀�̇�
𝑝𝑒 = 2𝜀2̇2

𝑝𝑒  (122)  

 



81 
 
 

9.2.3 Effect of concentration on consistency condition 

When considering the consistency condition when there is an effect of concentration on yield stress, it is 

incorporated similarly to the effect of the temperature (see eq.119) giving 

 
𝑓̇ =

𝜕𝑓
𝜕𝑠𝑑𝑖

�̇�𝑑𝑖 +
𝜕𝑓
𝜕𝜀𝑒

𝑝𝑒�
𝑇,𝑐

𝜀�̇�
𝑝𝑒 +

𝜕𝑓
𝜕𝑅�𝑑𝑒𝑝𝑝,𝑐

�̇� +
𝜕𝑓
𝜕𝑐�𝑑𝑒𝑝𝑝,𝑇

�̇� = 0 (123)  

The differentials can then be calculated from the yield function (eq. 114) as [58] 

 𝜕𝑓
𝜕𝑠𝑑𝑖

�̇�𝑑𝑖 =
𝜕(𝜎𝑒2 − 𝜎𝑌2)

𝜕𝑠𝑑𝑖
�̇�𝑑𝑖 = �

𝜕 �3
2 𝑠𝑑𝑖𝑠𝑑𝑖�
𝜕𝑠𝑑𝑖

+
𝜕(−𝜎𝑌2)
𝜕𝑠𝑑𝑖

� �̇�𝑑𝑖 = �3𝑠𝑑𝑖 + 0��̇�𝑑𝑖 = 3𝑠𝑑𝑖�̇�𝑑𝑖 (124)  

 𝜕𝑓
𝜕𝜀𝑒

𝑝𝑒�
𝑇,𝑐

𝜀�̇�
𝑝𝑒 = �

𝜕𝜎𝑒2

𝜕𝜀𝑒
𝑝𝑒 +

𝜕(−𝜎𝑌2)
𝜕𝜀𝑒

𝑝𝑒 � 𝜀�̇�
𝑝𝑒 = �0 +

𝜕(−𝜎𝑌2)
𝜕𝜎𝑌

𝜕𝜎𝑌
𝜕𝜀𝑒

𝑝𝑒� 𝜀�̇�
𝑝𝑒 = −2𝜎𝑌

𝜕𝜎𝑌
𝜕𝜀𝑒

𝑝𝑒 𝜀�̇�
𝑝𝑒  (125)  

 𝜕𝑓
𝜕𝑅�𝑑𝑒𝑝𝑝,𝑐

�̇� = �
𝜕𝜎𝑒2

𝜕𝑅
+
𝜕(−𝜎𝑌2)
𝜕𝑅 � �̇� = �0 +

𝜕(−𝜎𝑌2)
𝜕𝜎𝑌

𝜕𝜎𝑌
𝜕𝑅 �

�̇� = −2𝜎𝑌
𝜕𝜎𝑌
𝜕𝑅

�̇� (126)  

 𝜕𝑓
𝜕𝑐�𝑑𝑒𝑝𝑝,𝑇

�̇� = �
𝜕𝜎𝑒2

𝜕𝑐
+
𝜕(−𝜎𝑌2)
𝜕𝑐 � �̇� = �0 +

𝜕(−𝜎𝑌2)
𝜕𝜎𝑌

𝜕𝜎𝑌
𝜕𝑐 �

�̇� = −2𝜎𝑌
𝜕𝜎𝑌
𝜕𝑐

�̇� (127)  

Inserting these in eq. 123 gives 

 
𝑓̇ = 3𝑠𝑑𝑖�̇�𝑑𝑖 − 2𝜎𝑌

𝜕𝜎𝑌
𝜕𝜀𝑒

𝑝𝑒�
𝑇,𝑐

𝜀�̇�
𝑝𝑒 − 2𝜎𝑌

𝜕𝜎𝑌
𝜕𝑅

�̇� − 2𝜎𝑌
𝜕𝜎𝑌
𝜕𝑐

�̇� = 0 (128)  
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The yield stress is affected both by the stress state, the temperature and the concentration, and thus the 

incremental change of yield stress is given by 

 
�̇�𝑌 =

𝜕𝜎𝑌
𝜕𝜀𝑒

𝑝𝑒�
𝑇,𝑐

𝜀�̇�
𝑝𝑒 +

𝜕𝜎𝑌
𝜕𝑅 �𝑑𝑒𝑝𝑝,𝑐

�̇� +
𝜕𝜎𝑌
𝜕𝑐 �𝑑𝑒𝑝𝑝,𝑇

�̇� (129)  

For constant temperature and concentration we simply get 

 
�̇�𝑌 =

𝜕𝜎𝑌
𝜕𝜀𝑒

𝑝𝑒�
𝑇,𝑐

𝜀�̇�
𝑝𝑒  (130)  

For constant temperature and concentration, the equivalent plastic strain increment can be related to the 

yields stress increment by [58] 

 𝜀�̇�
𝑝𝑒 =

1
𝐸𝑇

�̇�𝑌 −
1
𝐸
�̇�𝑌 (131)  

Rearranging gives 

 𝜀�̇�
𝑝𝑒

�̇�𝑌
=

1
𝐸𝑇

−
1
𝐸

 (132)  

Inserting eq. 132 in eq. 130 and rearranging gives 

 𝜕𝜎𝑌
𝜕𝜀𝑒

𝑝𝑒�
𝑇,𝑐

=
�̇�𝑌
𝜀�̇�
𝑝𝑒 =

1

� 1
𝐸𝑇

− 1
𝐸�

 (133)  

Inserting this in the consistency condition as expressed in eq. 128 gives 

 

𝑓̇ = 3𝑠𝑑𝑖�̇�𝑑𝑖 − 2𝜎𝑌 �
1

� 1
𝐸𝑇

− 1
𝐸�

𝜀�̇�
𝑝𝑒 +

𝜕𝜎𝑌
𝜕𝑅

�̇� +
𝜕𝜎𝑌
𝜕𝑐

�̇�� = 0 (134)  
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From the definition of 𝑠𝑑𝑖, given in eq. 75, follows that 

 �̇�𝑑𝑖 = �̇�𝑑𝑖 − 𝛿𝑑𝑖
�̇�𝑘𝑘

3
 (135)  

This means that 

 3𝑠𝑑𝑖�̇�𝑑𝑖 = 3𝑠𝑑𝑖�̇�𝑑𝑖 − 3𝛿𝑑𝑖𝑠𝑑𝑖
�̇�𝑘𝑘

3
 (136)  

Since the first invariant is equal to zero [62] 

 𝐽1 = 𝑠𝑘𝑘 = 𝛿𝑑𝑖𝑠𝑑𝑖 = 0 (137)  

this gives 

 3𝑠𝑑𝑖�̇�𝑑𝑖 = 3𝑠𝑑𝑖�̇�𝑑𝑖  (138)  

Inserting this in the expression for the consistency condition, eq. 134, gives 

 

𝑓̇ = 3𝑠𝑑𝑖�̇�𝑑𝑖 − 2𝜎𝑌 �
1

� 1
𝐸𝑇

− 1
𝐸�

𝜀�̇�
𝑝𝑒 +

𝜕𝜎𝑌
𝜕𝑅

�̇� +
𝜕𝜎𝑌
𝜕𝑐

�̇�� = 0 (139)  
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9.2.4 Derivation of load parameter 

Using this form of the consistency condition an expression for the load parameter �̇� can be derived from the 

case of a uniaxial tensile testing similarly to what was described for temperature dependence in [58]. 

For the uniaxial tensile test the following applies 

 𝜎11 = 𝜎𝑌 

𝜎22 = 𝜎33 = 0 

(140)  

and thus 

 𝑠11 =
2
3
𝜎𝑌     ∧      𝑠22 = 𝑠33 = −  

1
3
𝜎𝑌 (141)  

Using the Prandtl-Reuss equation, eq. 118, gives 

 𝜀1̇1
𝑝𝑒 = �̇�

2
3
𝜎𝑌     ∧      𝜀2̇2

𝑝𝑒 = 𝜀2̇2
𝑝𝑒 = −�̇�

1
3
𝜎𝑌 (142)  

which combines to 

 𝜀2̇2
𝑝𝑒 = 𝜀2̇2

𝑝𝑒 = −
1
2
𝜀1̇1
𝑝𝑒  (143)  

Inserting this in the expression for the equivalent strain given by eq. 121 gives 

 
𝜀�̇�
𝑝𝑒 = �2

3
𝜀�̇�𝑖
𝑝𝑒𝜀�̇�𝑖

𝑝𝑒 = �2
3
�𝜀1̇1

𝑝𝑒𝜀1̇1
𝑝𝑒 +

1
4
𝜀1̇1
𝑝𝑒𝜀1̇1

𝑝𝑒 +
1
4
𝜀1̇1
𝑝𝑒𝜀1̇1

𝑝𝑒� = 𝜀1̇1
𝑝𝑒  (144)  

Inserting this in eq. 142 gives 

 𝜀�̇�
𝑝𝑒 = �̇�

2
3
𝜎𝑌 (145)  

Inserting this in the Prandtl-Reuss equation, eq. 118, gives 

 𝜀�̇�𝑖
𝑝𝑒 = �̇�𝑠𝑑𝑖 =

3
2𝜎𝑌

𝜀�̇�
𝑝𝑒𝑠𝑑𝑖 (146)  
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Multiplying the consistency equation, eq. 139, with 𝑠𝑘𝑒 gives 

 

𝑓̇ ∙ 𝑠𝑘𝑒 = �3𝑠𝑑𝑖�̇�𝑑𝑖�𝑠𝑘𝑒 − 2𝜎𝑌 �
1

� 1
𝐸𝑇

− 1
𝐸�

𝜀�̇�
𝑝𝑒𝑠𝑘𝑒 +

𝜕𝜎𝑌
𝜕𝑅

�̇�𝑠𝑘𝑒 +
𝜕𝜎𝑌
𝜕𝑐

�̇�𝑠𝑘𝑒� = 0 (147)  

where we now can substitute 𝜀�̇�
𝑝𝑒𝑠𝑘𝑖 using eq. 146 giving 

 

�3𝑠𝑑𝑖�̇�𝑑𝑖�𝑠𝑘𝑒 − 2𝜎𝑌 �
1

� 1
𝐸𝑇

− 1
𝐸�

2
3
𝜎𝑌𝜀�̇�𝑒

𝑝𝑒 +
𝜕𝜎𝑌
𝜕𝑅

�̇�𝑠𝑘𝑒 +
𝜕𝜎𝑌
𝜕𝑐

�̇�𝑠𝑘𝑒� = 0 (148)  

Rearranging gives 

 𝜀�̇�𝑒
𝑝𝑒 = �

1
𝐸𝑇

−
1
𝐸
�

3
2𝜎𝑌

�
3𝑠𝑑𝑖�̇�𝑑𝑖

2𝜎𝑌
−
𝜕𝜎𝑌
𝜕𝑅

�̇� −
𝜕𝜎𝑌
𝜕𝑐

�̇�� 𝑠𝑘𝑒 (149)  

Combing with the Prandtl-Reuss equation, eq. 118, gives following expression for the load parameter 

 �̇� = �
1
𝐸𝑇

−
1
𝐸
�

3
2𝜎𝑌

�
3𝑠𝑑𝑖�̇�𝑑𝑖

2𝜎𝑌
−
𝜕𝜎𝑌
𝜕𝑅

�̇� −
𝜕𝜎𝑌
𝜕𝑐

�̇�� (150)  

For the nitriding case examined in this work, with the assumption of no shear stresses, �̇�11 = �̇�22 and �̇�33 = 0, 

then  

 𝑠𝑑𝑖�̇�𝑑𝑖 = 𝑠11�̇�22 + 𝑠22�̇�22 (151)  

Using eq. 91, 𝑠11 = 𝑠22 = 𝜎22
3

 leads to 

 𝑠𝑑𝑖�̇�𝑑𝑖 = 2
𝜎22
3
�̇�22 

(152)  

Inserting this in the derived expression for the load parameter given in eq. 150, gives then for the assumption 

of no shear stresses, �̇�11 = �̇�22 and �̇�33 = 0 

 �̇� = �
1
𝐸𝑇

−
1
𝐸
�

3
2𝜎𝑌

�
2𝜎22�̇�22

2𝜎𝑌
−
𝜕𝜎𝑌
𝜕𝑅

�̇� −
𝜕𝜎𝑌
𝜕𝑐

�̇�� (153)  
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9.2.5 Determination of the beta value 

Plasticity and thus the 𝛽 value is now determined from the following criteria [66] 

 𝑓𝑓𝑓 𝜎𝑒 =  𝜎𝑒,𝑚𝑎𝑚
  𝑎𝑅𝑑 �̇� ≥ 0       𝛽 = 1 

𝑖𝑓 𝜎𝑒 <  𝜎𝑒,𝑚𝑎𝑚
  𝑓𝑓 �̇� < 0       𝛽 = 0  

(154)  

Note that if the yield stress was independent of temperature and concentration, eq. 150 would be reduced to 

 �̇� = �
1
𝐸𝑇

−
1
𝐸
�

3
2𝜎𝑌

�
3𝑠𝑑𝑖�̇�𝑑𝑖

2𝜎𝑌
� (155)  

and then the criterion �̇� ≥ 0 would be fulfilled if  

 3𝑠𝑑𝑖�̇�𝑑𝑖
2𝜎𝑌

= �̇�𝑒 ≥ 0 (156)  

which is the criterion for constant yield stress applied in section 8.1. 

Computational sequence for calculating concentration and stress-depth profiles, using elastic-plastic stresses 

and a concentration-dependent yield stress is illustrated by a flowchart in Figure 23. 
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Figure 23 - Flowchart of computational sequence for calculating concentration and stress-depth profiles, when stresses are 
calculating with elasto-plasticity and concentration dependent yield stress 
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9.3 Effect on predicted concentration and stress profiles of concentration-

dependent yield stress 
The effect of the predicted concentration and stress-depth profiles on incorporating the concentration 

dependence of the yield strength compared to when using the constant yield strength of the base material 

(austenitic stainless steel 316) is shown in Figure 24. The increase of yield strength with concentration shown in 

section 9.1, results in surface stresses in the order of 10GPa, which is significantly higher than what is predicted 

using the constant yield strength, but still lower than the values predicted assuming purely elasticity (c.f. 

section 7).  The increased stresses leads to deeper penetration of the concentration profile, and slightly lower 

surface concentrations, as compared to those predicted when using plasticity and constant yield stress. The 

combination of a rather high surface concentration and stress levels of approximately 10GPa at the surface 

leads to penetration depths even slightly higher than the ones predicted using purely elastic stresses (c.f.Figure 

21). 

The occurrence of plasticity in nitrogen-expanded austenite is seen to be the result of a competition between 

strengthening and stress build up. So for nitriding the stress build up clearly exceeds the yield strength 

achievable by solid solution strengthening, as is seen comparing the surface stress levels of around 10GPa to 

the maximum yield stress resulting from solid solution strengthening of 3.8GPa  (c.f. Figure 22). For carburizing 

the strengthening effect presumably dominates the stress build up for the composition range under 

consideration, since plastic deformations are not observed experimentally. 
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Figure 24 - Concentration and stress depth profile calculated assuming elasto-plasticity, with constant yields stress and with 

concentration dependent yield stress for nitriding of 316 austenitic stainless steel after 22 hours at 445°C using a nitriding potential 
of 1000 KMeN=107 and k=5 10-7 

 

9.3.1 Influence of sample thickness 

The effect of the sample thickness on the predicted concentration- and stress-depth profiles, was discussed in 

section 6.2.1, but since there are now more interdependencies between profiles and properties it is re-

evaluated and the effect of assumed sample thickness is shown in Figure 25. Similarly to what was seen in 

section 6.2.1 when purely elastic stresses were assumed, there is only a small difference in predicted stress 

values for the thicker samples and when assuming semi-infinite sample. Interestingly, for the thinner samples 

the highest stress is no longer at the surface but at a distance below the surface, which means that the sample 

thickness affects the shape of the stress-depth profile. Thus the thickness of the sample should be considered 

when evaluating the stress and composition profiles for the case of plasticity. 
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Figure 25 - Concentration and stress depth profile calculated for various sample thickness 2L, for nitriding of 316 austenitic stainless 
steel after 22 hours at 445°C using a nitriding potential of 1000 𝑲𝑪𝑪𝑵=107 and k=5 10-7 
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9.3.2 Influence of assumed element-size 

To check convergence of the model the influence of assumed element-size has been investigated. First it was 

tested for the case when purely elastic stresses are assumed. When assuming purely elastic stresses decreasing 

the element size below 1μm did not result in significantly different results, but with the introduction of 

plasticity, the case could be different, and the effect of element-size is thus evaluated for this case too. 

The effect of changing the element size used in the computational modelling incorporating plasticity is seen in 

Figure 26. Changing element size from 1μm to 0.1μm is seen to give similar concentration predictions at the 

surface, but a small change in the profiles with respect to penetration depth. Thus 0.1μm elements are used for 

subsequent calculations. 

  

Figure 26 - Concentration and stress depth profile calculated for 2 sample thickness 2L, thin sample L=150μm and thick sample L=inf., 
and with two computational element sizes for nitriding of 316 austenitic stainless steel after 22 hours at 445°C using a nitriding 

potential of 1000 𝑲𝑪𝑪𝑵=107 and k=5 10-7 
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9.4 Experimental Determination of concentration dependence of Young’s modulus 

from tensile tests 

9.4.1 Experimental  

To study the concentration dependence of Young’s modulus, tensile testing of samples with varying nitrogen 

contents was performed. Choosing loading direction parallel to the rolling direction of the plate, tensile test 

specimens were cut in accordance with ASTM standard E 8M-04 [67]. 

 In order to obtain uniform nitrogen contents throughout the samples, high temperature solution nitriding at 

1150°C was applied on samples from three types of austenitic steels; AISI 304, AISI 316L and EN1.4369. 

Compositions of these are given in Table 1. 

Table 1 - Composition of steels 

 Cr Ni C Si Mn Mo N 

AISI 304 18.5 10.5 0.08 0.75 2.0   

AISI 316L 16.26 10.05 0.019 0.40 1.47 2.02 0.067 

EN 1.4369 18.58 7.11 0.09 0.74 5.92 0.18 0.23 

 

After high temperature solution nitriding, the nitrogen distribution in the steels was found to be uniform, and 

concentrations were measured using inert gas fusion thermal conductivity detection with a LECO TN500 

nitrogen analyzer. 

Tensile testing was done using an Instron ASM tensile testing machine with a maximum load capacity of 100kN, 

using a constant strain rate of 6.67 ∙ 10−3s−1. Three samples were tested for each concentration and average 

values of Young’s modulus were found.  

It should be noted, that this experimental work was done in cooperation with Bottoli, who used the tensile 

testing results to study plastic deformation and the effect of nitrogen content on yield strength [68]. 
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9.4.1 Results and fit of data 

Making a linear fit, as shown in Figure 27, the average change in Young’s modulus with concentration, 𝜕𝐸
𝜕𝑐𝑁

, is  

 𝜕𝐸
𝜕𝑐𝑁

= 1.9402 ∙ 105 (157)  

Only considering one material at the time gives 

 𝜕𝐸EN1.4369

𝜕𝑐𝑁
= 1.547 ∙ 105 (158)  

 𝜕𝐸304
𝜕𝑐𝑁

= 3.872 ∙ 105 (159)  

 𝜕𝐸316𝐿
𝜕𝑐𝑁

= 0.283 ∙ 105 (160)  

 

 

Figure 27 - Concentration dependence of Young’s modulus 
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9.5 Calculation of elastic-plastic stresses for non-constant Young’s modulus 
Elastic-plastic stresses for non-constant Young’s modulus is calculated as explained in section 8.1 from 
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(161)  

for plasticity, 

and from 

 �̇�11 = �̇�22 =
𝐸

1 − 𝜈
𝜀2̇2𝑚𝑒𝑐ℎ (162)  

for elasticity, where 

 𝜀2̇2𝑚𝑒𝑐ℎ = 𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ (163)  

This formulation will still be applied in this section, even though for changing Young’s modulus additional terms 

in principle should be added to the expression for the stress increment. For a 1D elastic case a more correct 

formulation than �̇� = 𝐸𝜀̇𝑒𝑒   would be    

 �̇� = 𝐸𝜀̇𝑒𝑒 + �̇�𝜀𝑒𝑒 (164)  

For a plastic case it is however more complicated. The best approach would probably be using a formulation on 

the new time-level, rather than an incremental one, which could be convenient for the definition of a residual, 

and iterations could be done for non-linearities. This is however out of the scope for the current work, where 

focus is on an incremental explicit solution, and thus the effect of the Young’s modulus increment on the stress 

increment is neglected in this work. A pragmatic approach where Young’s modulus is adjusted after each time 

step is adopted, in this first attempt to evaluate the effect of a concentration dependent Young’s modulus. 

However, some change is done to the calculation of the total strain from the mechanical equilibrium, because 

if Young’s modulus and Poisson’s ratio are not constant with depth, but depend on temperature and/or 

concentration which changes with depth, the mechanical equilibrium integral to find the total strain (see eq. 

105-106) must be redone, since now the material parameters cannot be set outside the integral 



95 
 
 

For the elastic case this gives 

 
�

𝐸
1 − 𝜈 �

𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚

0
= 0 (165)  

 

Rearranging gives the expression for the total strain increment 
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 (166)  

which can be discretised as  
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 (167)  

For the plastic case the mecahnical equilibrium equation given by eq. 105 becomes  
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giving the following expression for the total strain 
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which in the finite difference program is calculated as  
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9.6 Effect of concentration dependence of Young’s modulus on concentration- and 

stress depth profiles 
By tensile testing of stainless steel samples with various nitrogen concentrations, it was shown that Young’s 

modulus increases with concentration. The effect of incorporating the change of Young’s modulus with 

concentration, given by eq. 157, on the predicted concentration is shown in Figure 28, for the case where semi-

infinity is assumed and for the case of L=150μm. When semi-infinity is assumed, the change of Young’s 

modulus with concentration has only a small effect on the predicted stress depth profile and the effect on the 

concentration depth profile is insignificant, but for the case of a small sample thickness, there is significant 

change on the predicted stress-depth profile, where the increase of Young’s modulus with concentration 

results in higher predicted compressive stresses. 

From the tensile tests shown in section 9.4, the different types of austenitic stainless steels shows slightly 

varying changes of Young’s modulus with concentration, see eq. 158-160, and since the measurements are 

made for concentrations in the range 0-4000mol/m3 and the concentration levels when nitriding reaches up to 

60000mol/m3 resulting in a large extrapolation, it is thus important to check sensitivity of the model to 

variations in change of Young’s modulus with concentration. The sensitivity of the model stress-depth profiles 

predictions to the variance in change of Young’s modulus with concentration, is displayed in Figure 29, which 

shows that for both semi-infinite and thin samples (L = 150μm) the sensitivity of the model is insignificant for 

the variances in eq. 158-160.  
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Figure 28 - Concentration, and stress depth profiles with constant Young’s modulus, E, and with concentration dependent Young’s 
modulus, 𝑬 = 𝖋(𝒄𝑵), for nitriding at austenitic stainless steel after 22 hours at 445°C using a nitriding potential of 1000 
𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟕 and k=5 10-7. 
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Figure 29 - Concentration, and stress depth profiles using various levels of change of Young’s modulus with concentration, dEdc, for 
nitriding at austenitic stainless steel after 22 hours at 445°C using a nitriding potential of 1000 𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟕 and k=5 10-7 
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10. Pre-stressing of sample before nitriding 
In real life, specimens are not always stress free. Residual stresses are often found in the surface as a result of 

the processing history. Since a profound effect of stresses on nitrogen diffusion was demonstrated in the 

previous sections, it is intriguing to investigate the effect of pre-stressing of samples before nitriding. 

From experiments with loading of austenite films during plasma carburizing Li et al. [69] demonstrated a 

substantial effect of pre-stressing on resulting expanded austenite case depth. This pre-stressing was done 

using uniaxial loading. The effect of applying a pre-stress on the predicted composition- and stress depth 

profiles will be examined below with the model developed in sections 4-9. It should be noted that the pre-

stressing will be modelled assuming biaxial-pre-stressing, while the experiments were done using a uniaxial 

stress. This is due to the fact that the model is based on the assumption of rotational symmetry of the in-plane 

stresses. Attempts to expand the model beyond its limit, to incorporate uniaxial in-plane loading, is discussed 

in Appendix D. 

 

10.1 Effect of pre-stressing on model predictions  
The effect of pre-stressing on the predicted concentration- and stress-depth profiles is studied in this section. 

First biaxial pre-stressing for the case examined in this work; 22h nitriding with nitriding potential of 1000, is 

investigated.  In Figure 30 the effect of biaxial pre-stressing of compressive stress of 500MPa to tensile stress of 

1GPa on the concentration- and stress-depth profiles are shown for a sample of thickness (2L) of 300μm and a 

thick sample where semi-infinity is assumed. For both types of samples the effect of pre-stress is clearly seen in 

the depths above 40μm, where the nitrogen concentrations are zero. For the thick samples the pre-stressing 

hardly affects the predicted surface stresses, neither is the predicted concentration profile affected 

significantly. On the other hand, for the thin samples a significant difference is observed for predicted surface 

stresses and on the composition profile. The penetration depth is however not influenced much, unless pre-

stressing is increased to 1GPa. In reality it does however not make sense to pre-stress with such a high pre-

stress since the unexpanded austenite has a yield stress of around 290MPa which increases with the solid-

solution strengthening from the nitrogen (see section 9.1).  
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Figure 30 - Effect of biaxial pre-stressing on predicted concentration-depth and stress-depth profiles for nitriding 22h with nitriding 
potential KN=1000 
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As discussed above, the model predicts that pre-stressing before nitriding does not increase the nitrogen 

penetration depth. This contradicts experimental findings for carburizing as reported by Li et al. [69], who 

found that application of a uniaxial tensile stress of only 20MPa during carburizing at 450°C for 10h almost 

doubled the layer thickness of expanded austenite and that application of tensile stress of 40 MPa almost 

tripled the penetration depth. 

This difference in findings could be due to the differences between carburizing and nitriding, because 

compared to nitriding, carburizing has significantly lower surface concentrations and stresses, as seen in Figure 

5. The carburized samples have surface concentrations of about 8000-13300mol/m3 (𝑦𝑁 about 0.06-0.1) and 

surface stresses of about 1.5-2.5GPa. Plasticity has so far not been observed in carburized samples, contrary to 

the nitrided samples where plasticity does occur. Another difference is, that on carburizing trapping of 

interstitials by Cr is not as pronounced as in the case of nitriding [70]. To compare a simulation to the 

experiments on the effect of tensile stress on formation of expanded austenite during 10h of carburizing 

presented by Li et al. [69], without having input parameters for carburizing and thus using the nitriding data, a 

simulation is made of 10h nitriding with a nitriding potential  of 𝐾𝑁 = 1 to investigate the response of biaxial 

prestressing in the low concentration and low stress situation.  The results are shown in Figure 31. Contrary to 

the experiments by Li et al., the model does not predict an effect on the penetration depth for the levels of 

pre-stressing used by Li et al. not even for the low stress, low concentration case. 

This difference is intriguing, and testing the case of nitriding experimentally would be interesting for further 

research to investigate whether the difference arises from limitations in the model or from flaws in the 

experimental procedures. 
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Figure 31 - Effect of biaxial pre-stressing on predicted concentration- and stress-depth profiles for nitriding at 445°C, 10h with 
nitriding potential KN=1, for the case of trapping with 𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟕and the case of no trapping 
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11. Temperature dependence of mechanical properties  

11.1 Determination of expression for temperature dependence of yield stress  
Data for yield stress as a function of temperature was obtained from AK steel [63]. A fit of the data, as shown in 

Figure 32, gives the following relation for yield stress as function of temperature 

 𝜎𝑌(𝑅) = (8.128 ∙ 10−5 ∙ 𝑅2 − 0.33 ∙ 𝑅 + 379.98 ) ∙ 106 Pa (171)  

 
Figure 32 - Temperature dependence of yield stress 

 

11.2 Determination of expression for temperature dependence of Young’s modulus 
Data for Young’s modulus as a function of temperature was obtained from INCO [71]. A fit of the data as shown 

in Figure 33 gives the following relation for Young’s modulus as function of temperature 

 𝐸(𝑅) =  (−0.0808𝑅 + 226.42) ∙ 109 Pa (172)  
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Figure 33 - Temperature dependence of Young's modulus 

 

11.3 Temperature dependence of Poisson’s ratio 
Data for Poisson’s ratio as function of temperature was obtained from INCO [71]. A fit of the data, as shown in 

Figure 34, gives an almost constant Poisson’s ratio as function of temperature 

 𝜈(𝑅) = 0.29 (173)  

 

Figure 34 - Poisson ratio as function of temperature for 316 steel, measured datapoints from INCO [71] and linear fit 
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11.4 Effect on concentration and stress depth profiles of temperature dependence 

of mechanical properties 
So far the modelling has been done using room temperature values of yield stress and Young’s modulus. 

However, for nitriding at 445°C the temperature dependence of yield stress and Young’s modulus should be 

taken into account. Expressions for temperature dependence of yield stress, (see. eq. 171), and Young’s 

modulus, (see eq. 172) for 316 austenitic stainless steel, have been found from literature table values, see 

section 10.1-10.2. Both yield stress and Young’s modulus decrease with increasing temperature. Poisson’s ratio 

was found to be constant with temperature. 

The effect of taking into account the temperature dependence of the yield stress and Young’s modulus is 

shown in Figure 35, where it can be seen that using yield stress and Young’s modulus at 445°C leads to 

predictions of lower values of compressive stress and slightly lower penetration depths, compared to when 

using yield stress and Young’s modulus at room temperature. 
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Figure 35 - Effect of temperature dependence of yield stress and Young's modulus on predicted concentration- and stress-depth-
profiles for nitriding at austenitic stainless steel, using concentration dependent yield stress and Young’s modulus after 22 hours at 

445°C using a nitriding potential of 1000, 𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟕 and k=5 10-7 

 

  

    , 
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12. Temperature variations 
When the temperature is no longer constant but varies, the temperature flow has to be considered and the 

effect of temperature variations on the stress and composition profiles should be considered.  

12.1 Calculation of temperature flow 
The governing equation for the thermal flow is Fourier’s law [58] 

𝜌𝐶𝑝
𝜕𝑅
𝜕𝐷

=
𝜕
𝜕𝑧
�𝑘
𝜕𝑅
𝜕𝑧
� 

(174)  

where T is the temperature, 𝑘 is the thermal conductivity, 𝐶𝑝 is the specific heat and 𝜌 is the density. If the 

material parameters are assumed constant this can be written as  [58] 

𝜕𝑅
𝜕𝐷

= 𝛼
𝜕2𝑅
𝜕𝑧2

 
(175)  

where 𝛼 is the thermal diffusivity which can be calculated by 

𝛼 =
𝑘
𝜌𝐶𝑝

 
(176)  

Calculating using explicit finite difference method gives 
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(177)  

The boundary conditions are Diriclet at the surface (known Temperature = Temperature in oven) and Neumann 

at the centre (no flow due to symmetry boundary). For non-constant parameters 
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(178)  

Discretizing using explicit finite difference gives 
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Verification of computational calculation of temperature flow is shown in Appendix C.5. 

(179)  
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12.2 Temperature dependence of density 
Data for density as a function of temperature was obtained from INCO [71] A fit of the data, as shown in Figure 

36, gives the following relation for density as function of temperature 

 𝜌(𝑅) =  −0.0042𝑅 + 80.74 kg/m3 (180)  

 
Figure 36 - Density as function of temperature for 316 steel, measured data-points from INCO [71] and linear fit 

 

12.3 Temperature dependence of specific heat 
Data for specific heat as a function of temperature was obtained from INCO [71]. A fit of the data, as shown in 

Figure 37, gives the following relation for specific heat as function of temperature 

 𝐶𝑝(𝑅) = 6 ∙ 10−7 ∙ 𝑅3 − 0.0014𝑅2 + 1.1731𝑅 + 213.17 J/kgK (181)  

 
Figure 37 – Specific heat as function of temperature for 316 steel, measured datapoints from INCO [71] and polynomium fit 
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12.4 Temperature dependence of thermal conductivity 
Data for thermal conductivity as a function of temperature was obtained by Ho and Chu [72]. A fit of the data, 

as shown in Figure 38, gives the following relation for thermal conductivity as function of temperature 

 𝑘(𝑅) = −2 ∙ 10−6 ∙ 𝑅2 + 0.0179𝑅 + 8.3005 W/Km (182)  

 
Figure 38 – Thermal conductivity as function of temperature for 316 steel, measured datapoints from Ho and Chu [72] and 

polynomium fit 
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12.5 Calculation of stress and strains taking into account temperature changes 
The stress can be calculated as described for elastic-plastic stresses in section 8.1. However with varying 

temperatures the thermal strains are no longer equal to zero. 

Thermal strain can be calculated from the temperature change, ∆𝑅, by  [58] 

 𝑓𝑓𝑓 𝑖 = 𝑗  𝜀𝑖𝑗𝐷ℎ = 𝛼∆𝑅, 𝑓𝑓𝑓 𝑖 ≠ 𝑗 𝜀𝑖𝑗𝐷ℎ = 0 (183)  

where 𝛼 is the thermal expansion coefficient. 

For austenitic stainless steel AISI 316 the average expansion coefficient for 385-920K is [73][74] 

 𝛼 = 18.51 ∙ 10−6K−1 (184)  

The definition of the chemical-induced strain, 𝜀𝑑𝑖𝑐ℎ, (see eq. 46) should also be considered 

 
𝑓𝑓𝑓 𝑖 = 𝑗:    𝜀𝑑𝑖𝑐ℎ(𝑐) =

𝑉(𝑐) 
1
3� − 𝑉𝑠𝑒𝑠

1
3�

𝑉𝑠𝑒𝑠
1
3�

 

𝑓𝑓𝑓 𝑖 ≠ 𝑗:    𝜀𝑑𝑖𝑐ℎ = 0 

(185)  

Since the volume changes not only with concentration, but also with temperature.   

The volume is found from the lattice parameter, 𝑎,  

 𝑉 = 𝑎3 (186)  

and the change in the lattice parameter with temperature can be found from the thermal strain 

 ∆𝑎 = 𝜀 
𝑡ℎ ∙ 𝑎 (187)  

The temperature dependence can thus be described using the thermal expansion coefficient 

 ∆𝑎 = 𝛼 ∙ ∆𝑅 ∙ 𝑎 (188)  

and the volume as function of temperature can thus be found as 

 𝑉(𝑅) = �𝛼 ∙ ∆𝑅 ∙ 𝑎𝑠𝑒𝑠 + 𝑎𝑠𝑒𝑠�
3 = �(1 + 𝛼 ∙ ∆𝑅) ∙ 𝑎𝑠𝑒𝑠�

3

= (1 + 𝛼 ∙ ∆𝑅)3𝑉𝑠𝑒𝑠  

(189)  

In section 5.3, the reference volume for zero concentration at room temperature was found to be 
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 𝑉𝑠𝑒𝑠 (20℃) = 4.7134 ∙ 10−29m3 (190)  

Note that using this definition the volume arising from increasing concentration 𝑉(𝑐,𝑅) becomes 

 𝑉(𝑐,𝑅) = 𝑉(𝑐,20℃)(1 + 𝛼 ∙ ∆𝑅)3 (191)  

Where the unitcell volume as function of nitrogen concentration 𝑉(𝑐𝑁,20℃) was defined by eq. 44, to be  

𝑉(𝑐𝑁 ,20℃) = 2.8147 ∙ 10−29m3 ∙
𝑐𝑁

140924mol/m3 − 𝑐𝑁 ∙ 0.59717
+ 4.7134 ∙ 10−29m3 (192)  

 

12.6 Calculation of composition profiles taking into account both influence from 

stress and varying temperatures 
When a temperature gradient is present in the diffusion range, thermomigration should be considered, see for 

example Okafor et al. [83], Mathuni et al. [84] or Höglund and Ågren [85]. 

The diffusive flux of nitrogen atoms in te direction z under the influence of a temperature gradient 𝜕𝑇
𝜕𝑧

 and a 

chemical potential gradient in this species  ∂µ𝑁
∂z

 can be found from 

𝐽 = −
𝐷𝑁𝑐𝑁
𝑅𝑅

𝜕𝜇𝑁
𝜕𝑧

−
𝐷𝑁𝑐𝑁𝑄∗

𝑅𝑅2
𝜕𝑅
𝜕𝑧

 
(193)  

where 𝑄∗is the heat of transport [83,84,85]. 

Giving the following generalized form of Fick's second law 

 
𝜕𝑐𝑁
𝜕𝐷

=
𝜕
𝜕𝑧
�
𝐷𝑁𝑐𝑁
𝑅𝑅

𝜕𝜇𝑁
𝜕𝑧

+
𝐷𝑁𝑐𝑁𝑄∗

𝑅𝑅2
𝜕𝑅
𝜕𝑧
� 

(194)  

 

 
(195)  

 

 (196)  
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12.7 Prediction of temperature profiles during heating or cooling 
In reality when nitriding a sample, the furnace is heated, kept at the nitriding temperature, where nitrogen 

diffuses into the solid, and then subsequently cooled. Until now the heating and cooling have been ignored in 

this work. 

Now, the temperature flow in the sample is calculated for a heating sequence. 

To model the diffusive flow, very small elements of 0.1 µm were needed for a reasonable solution of the 

depths penetrated by nitrogen. These very small elements does however complicate using the explicit method 

for calculating the temperature profile described in section 12.1., since the thermal diffusivity is much faster 

than the nitrogen diffusivity. For a stable explicit calculation, the Fourier number has to be below 0.5 [58]. 

The Fourier number, Fo, is given by [58] 

𝐹𝑓 =
𝛼∆𝐷
∆𝑧2

 
(197)  

where, ∆𝐷 is the timestep, ∆𝑧 the element size and 𝛼 is the thermal diffusivity which was given by eq. 176 

𝛼 =
𝑘
𝜌𝐶𝑝

 
(198)  

To obtain 𝐹𝑓 < 0.5 when using the data for specific heat, conductivity and density presented in section 12.2-

12.4, for 445°C and using element sizes of 1 µm which is the largest value used in the concentration 

calculations, means that the time steps have to be 

∆𝐷 < 1.07 ∙ 10−9𝑠 (199)  

This would cause extreme calculation times, in order to obtain a number of steps that would provide 

representative nitriding times. Thus the temperatures are instead calculated using the implicit method where 

the equation used for calculating new temperatures, eq. 179, is changed to have the new time on the right side 

as well, so 

𝑅𝑑𝑡+∆𝑡 − 𝑅𝑑𝑡

∆𝐷
=

1
𝜌𝑑 ∙ 𝐶𝑝(𝑖)�

𝑘𝑑+1 − 𝑘𝑑−1
2∆𝑧

∙
𝑅𝑑+1𝑡+∆𝑡 − 𝑅𝑑−1𝑡+∆𝑡

2∆𝑧
+ 𝑘𝑑

𝑅𝑑+1𝑡+∆𝑡 − 2𝑅𝑑𝑡+∆𝑡 + 𝑅𝑑−1𝑡+∆𝑡

∆𝑧2 � 
(200)  
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The equations are now solved simultaneously for all elements, with a Dirichlet condition at the surface; known 

temperature in the furnace, and a Neumann condition at the centre where we have a symmetry line and thus 

no flow. Details on implicit solving method are found in [58]. 

To test the how the temperature depth-profiles would be in the depths where diffusion occurs, a heating 

sequence was tested to the depth of 1000 µm, using time steps of 0.001 seconds. Note that diffusion depths 

have been seen to be below 100 µm. Figure 39 shows the temperature profile as function of time for the first 

second using an heating of the furnace of 400°C/hour, and what can be seen is that the heat travels so fast that 

the temperature is constant in the depths relevant to diffusion, when using the small time steps of 0.001 

seconds. 

A temperature-depth profile for a furnace heating of 400°C/s (which is unrealistically fast)  is seen in Figure 40, 

and also here the heat penetrated fast enough that the surface and the depth of 1000 µm have the same 

temperature after each time-step. 

It can thus be concluded that for the small depth ranges below 0.1 mm from the surface, relevant for the 

concentration depth profiles, the heat flow is so fast that the temperature can be considered constant even 

during heating and cooling. Thus the effect from a temperature gradient on the diffusion described in eqs. 193-

196 can be neglected. The temperature level will however affect the diffusion coefficient during heating and 

cooling.   
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Figure 39 - Temperature-depth profiles inside the sample as function of time during the first second of simulation of a furnace 

heating of 400°C/hour. 

 

 
Figure 40 - Temperature-depth profiles inside the sample as function of time during the first second of simulation of an unrealistic 

extremely fast furnace heating of 400°C/s. 
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12.8 Prediction of concentration and stress-depth profiles when taking into 

account the expansion of the austenite lattice due to the temperature cycle in the 

furnace 
In the previous section, it was shown that in the depth-ranges relevant to diffusion the temperature can be 

assumed constant with depth, and equal to the temperature in the furnace, since heat penetrates much faster 

than diffusion occurs. 

Thus the heating and cooling which occur in a real thermochemical treatment can be included in the model, by 

assuming the temperature constant in space but varying with time for the depth range relevant for diffusion. 

In reality the thermochemical treatment is usually done by heating from room temperature to the nitriding 

temperature, for example 445°C, and then holding the temperature constant for a specific nitriding time, after 

which the furnace is cooled to room temperature.  

Modelling diffusion during heating and cooling would require knowledge of the dependency of the diffusion 

coefficient on temperature. Since the diffusion coefficient as function of concentration is only known at a few 

temperatures, a mathematical expression for the diffusion coefficient as function of both concentration and 

temperature is currently unknown. It is however known that the diffusion coefficient decreases with 

decreasing temperatures.  

Thus for now, it will be assumed that no diffusion occurs during heating and cooling, implying that the 

composition only changes during the time where the temperature is kept constant at the nitriding 

temperature.  

As described in section 12.5, the volume changes with temperature lead to a thermal strain. 

In Figure 41, the resulting composition- and stress-depth profiles are shown for three cases. One where no 

heating or cooling is assumed, only a 22h holding period of 445°C, one with an initial heating sequence 

followed by a 22h holding period of 445°C, and one with an initial heating sequence, a 22h holding period of 

445°C and then a 1h cooling period. In all cases the thermal expansion coefficient is assumed to be constant 

equal to the average value for austenite 𝛼 = 18.51 ∙ 10−6K−1 [73]. 
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Figure 41 displays that when assuming no composition change during heating or cooling, then the thermal 

strain, which is constant with depth, does not affect the predicted stress-depth profile. This is because the 

samples are assumed to be allowed to expand as long as it expands equally with depth, (i.e. a constant total 

strain with depth is assumed). Thus, since the temperature changes with time do not give rise to any 

temperature-depth gradients, there will not be any stresses predicted, just expansion arising from the 

temperature changes. 

It should be noted here that if the samples are thick enough and the cooling proceeds fast enough, such that a 

temperature gradient occurs, additional residual stresses will occur as a result of the temperature gradient 

during cooling [59].   

 

Figure 41 - concentration and stress-depth profiles resulting from simulation of nitriding with a nitriding potential of 1000, for various 
temperature cycles. For all temperature cycles the holding time at 445°C was 22h, heat and cooling times were 1h. 
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12.9 Effect of concentration on thermal expansion coefficient 
Residual stresses resulting from thermal strains arise due to gradients in thermal strains. Gradients in the 

thermal strains can arise due to temperature gradients or due to gradients of the thermal expansion 

coefficient. For the depths in where diffusion occur, no temperature gradients was found, as discussed in 

section 12.7.  However, thermally induced stresses should still be considered, since recent measurements by 

Brink [73] reveals that the thermal expansion coefficient in expanded austenite depends on the concentration. 

Given that a concentration gradient is present during cooling after nitriding, the dependency of the thermal 

expansion coefficient on concentration is now explored. 

Experimental results, as determined with in situ heating during synchrotron X-ray diffraction from Brink [73], 

for nitrogen- and carbon-expanded austenite are given in Table 2 and Table 3 respectively. From the 

measurements it can be seen that for the fractional occupancy of 0.33 the thermal expansion coefficient 

depends on temperature. This is due to the difference between paramagnetic and ferromagnetic expanded 

austenite [73]. 

Table 2 - Thermal expansion coefficient for nitrogen expanded austenite. Source Brink [73] 

Fractional 

occupancy, yN 

Temperature 

range, T [K] 

Thermal expansion 

coefficient, α [K-1] 

0.0 385-920 18.51 ∙ 10−6 

0.14 385-787 18.91 ∙ 10−6 

0.33 341-549 9.66 ∙ 10−6 

0.33 572-808 15.3 ∙ 10−6 

0.56 385-657 14.3 ∙ 10−6 

 

 

Table 3 - Thermal expansion coefficient for carbon expanded austenite. Source Brink [73] 

Fractional 

occupancy, yC 

Temperature 

range, T [K] 

Thermal expansion 

coefficient, α [K-1] 

0.18 413-767 18.2 ∙ 10−6 

0.22 385-657 18.4 ∙ 10−6 
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In order to mathematically describe the dependency of thermal expansion on concentration and temperature, 

a parametrization is done, as shown in Table 4. The Curie temperature, where the ferro-paramagnetic 

transition occurs, is here taken as 550K, consistent with magnetometry measurements on samples containing 

nitrogen levels in the relevant range [73]. It is noted that this parametrization is rough, and that future 

experimental work could massively improve the accuracy of the expressions. The data and parametrizations 

are displayed in Figure 42. 

 

Table 4 – parametrization-functions for thermal expansion coefficients as function of concentration and temperature 

Fractional 

occupancy, 

yN 

Temperature 

range, T [K] 

Thermal expansion coefficient, α [K-1] 

0-0.22 all 𝑅 𝛼 = 18.51 ∙ 10−6 

0.22-0.33 𝑅 < 550 𝛼 = 3.588 ∙ 10−5 − 7.9455 ∙ 10−5 ∙ 𝑦𝑁 

0.22-0.33 𝑅 > 550 𝛼 = 2.46 ∙ 10−5 − 2.8182 ∙ 10−5 ∙ 𝑦𝑁 

0.33-0.56 𝑅 < 550 𝛼 = 3.0026 ∙ 10−6 + 2.0174 ∙ 10−5 ∙ 𝑦𝑁 

0.33-0.56 𝑅 > 550 𝛼 = 1.6736 ∙ 10−5 − 4.3478 ∙ 10−6 ∙ 𝑦𝑁 

0.56 and up all 𝑅 𝛼 = 14.3 ∙ 10−6 
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Figure 42 - Thermal expansion coefficients from [73]  as function of concentration expressed as fractional occupancy, and lines 
representing a parametrization of the data. 
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12.10 Prediction of concentration and stress-depth profiles after temperature cycle 

in the furnace, taking into account effect of variation of thermal expansion 

coefficient 
It was established in section 12.5 that a thermal strain gradient, can give rise to additional stresses besides the 

concentration-induced. Thermal strain gradient arises due to gradients in temperature or gradients in thermal 

expansion coefficient. It was shown in section 12.9 that variations in concentration lead to variations in thermal 

expansion coefficient. For the case of a thermal cycle in nitriding consisting of heating, holding at constant 

temperature where nitrogen diffuses into the sample and subsequent cooling, a concentration profile will be 

present during the cooling part, and thus a thermal strain gradient can arise due to the gradient in thermal 

expansion coefficient. A thermal expansion coefficient-depth profile corresponding to a concentration-depth 

profile resulting from 22h nitriding with nitriding potential of 1000 is shown in Figure 43. 

 
Figure 43 - Thermal expansion coefficient gradient resulting from concentration gradient. Concentration-depth profile is reproduced 

from Figure 41. 
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Examining Figure 43, it is seen that the concentration-depth gradient indeed leads to gradients in thermal 

expansion coefficient. So considering the case of nitriding with a thermal cycle of 1h heating from 20°C to 

445°C, 22h nitriding at 445°C, and then 1h cooling to 20°C, taking into account the concentration dependence 

of the thermal expansion coefficient in the simulation, should thus lead to a change in the resulting stress-

depth profile, compared to when assuming a constant thermal expansion coefficient.  Results of such 

simulations are shown in Figure 44, where it can be seen that the thermal expansion coefficient gradient leads 

to a small change in the predicted stress-depth profile near the surface. Zooming in on the surface area, as 

shown in Figure 45, it can be seen that including the concentration dependency of the thermal expansion 

coefficient leads to an increase of compressive surface stresses in the order of 400MPa.  

 
Figure 44 – Difference between assuming constant thermal expansion coefficient (constant alpha) and concentration dependent 

thermal expansion coefficient (alpha = f(c)). concentration and stress-depth profiles are resulting from simulation of nitriding with 
nitriding potential of 1000 on a sample of thickness 300μm, using a temperature cycle of 1h heating from 20°C to 445°C, then 22h 

nitriding at 445°C, and then 1h cooling to 20°C. 
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Figure 45 - Zoom in on surface region of stress-depth profiles shown in Figure 44 
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13. Denitriding experiments 
As recognized in section 12.8 modelling of diffusion during the entire nitriding process including the heating 

and cooling sequence requires further knowledge about how the diffusion coefficient of nitrogen depends on 

temperature. To explore this and to obtain knowledge about solubility, nitriding-denitriding experiments were 

conducted.  

13.1 Experimental 
Samples were cut from 12.5μm thin foils of 316 austenitic stainless steel. Sample sizes were limited to 

approximately 15mm x 15mm due to the space in the thermobalance. A total mass of samples of 

approximately 700-900mg was used in each test. 

Prior to nitriding, the samples were heat-treated at 1050°C in a hydrogen atmosphere in a horizontal tube 

furnace, in order to recrystallize and transform any martensite, that might have been introduced during cold 

rolling of the foils, into austenite. 

Gaseous nitriding and subsequent stepwise denitriding were done in a Netzsch STA 449 F3 thermobalance, 

where temperature and gas-flow can be controlled simultaneously, while the sample mass is recorded. 

Samples were heated and nitrided in an atmosphere of pure ammonia at 445°C. After saturation with nitrogen, 

the temperature was changed to the testing temperature and kept at the testing temperature until equilibrium 

was obtained. Then step-wise denitriding was carried out by changing the gas composition and thus the 

nitriding potential.  

An example of a nitriding-denitriding curve is given in Figure 46. 
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Figure 46 - Denitriding curve for nitriding at 445°C and subsequent denitriding at 415°C, mass is given as a percentage of original mass 

 

 

13.2 Theoretical background for determining diffusion coefficient from denitriding 

experiments 
To determine the concentration-dependent diffusion coefficient for different temperatures, the method of 

using denitriding data from thermogravimetric experiments  described by Christiansen and Somers [34], [75] 

was applied. 

Gaseous nitriding and denitriding can be described by equations for absorption and desorption in a plane sheet 

provided that diffusion of nitrogen in the solid state is the rate determining step. This diffusion in a plane sheet 

was described by Crank [76]. 

For a sheet with thickness 2𝐿, where the initial concentration of the diffusing species is 𝑐0, and the surface 

concentration is 𝑐𝑠, the concentration as function of time and distance from the centreline 𝑐(𝑥, 𝐷) is 

𝑐(𝑥, 𝐷) − 𝑐0
𝑐𝑠 − 𝑐0

= 1 −
4
𝜋
�

(−1)𝑛

2𝑅 + 1
∙ exp �

−𝐷�(2𝑅 + 1)2𝜋2𝐷
4𝐿2 � ∙ cos�

(2𝑅 + 1)𝜋𝑥
2𝐿 �

∞

𝑛=0

 
(201)  
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where the centre-line of the sheet is defined as the 𝑥 = 0 for the distance, thus  −𝐿 < 𝑥 < 𝐿, and where 𝐷� is 

the average diffusion coefficient over the concentration range 𝑐𝑠 − 𝑐0, [75]  

𝐷� =
1

𝑐𝑠 − 𝑐0
� 𝐷(𝑐)𝑑𝑐

𝑐𝑝

𝑐0

 
(202)  

where 𝐷(𝑐) is the concentration dependent diffusion coefficient as function of concentration.  

The total amount of diffusing species which has entered or left at time, 𝐷, is then given by 

𝑀(𝐷)
𝑀∞

= 1 −�
8

(2𝑅 + 1)2𝜋2
∙ exp �

−𝐷�(2𝑅 + 1)2𝜋2𝐷
4𝐿2 �

∞

𝑛=0

 
(203)  

where 𝑀∞ is the total amount of diffusing species which has entered or left after infinitely long time. 

During thermogravimetric experiments the mass of the sample is recorded as a function of time, and 

denitriding can be done in steps by controlling the gas-composition. For each of the denitriding steps the 

equation 203 can then be fitted, to find the average diffusion coefficient 𝐷�. As follows from eq. 202 the 

determination of the diffusion coefficient by approximation of 𝐷(𝑐) with 𝐷� is better the narrower the 

concentration range over which it was experimentally measured. 

Christiansen and Somers [75] noted, that since the gas concentration does not shift instantaneously and the 

surface reaction in denitriding is not infinitely rapid, eq. 203  does not apply at the very beginning of the profile 

steps. Accordingly, in this work fitting of eq. 203 to the denitriding curve was done in the time range 10minutes 

to 3hours after regulating the gas. 

The concentration range can be calculated from the mass of nitrogen, 𝑚𝑁,  and the initital mass of steel, using 

the molarmass of nitrogen, 𝑀𝑁, and the equivalent to molar mass for the 316 steel. 

Since the atoms in the f.c.c. lattice equal the number of octahedral interstitial sites that the nitrogen can 

occupy, the fractional occupancy can be found from the fraction of nitrogen atoms to atoms in the original 

sample. 

𝑦𝑁 =
𝑚𝑁/𝑀𝑁

𝑚316/𝑀316
 

(204)  

The concentration can then be found from the fraction occupancy using eq. 42. 
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Taking into account the major contributing elements in the 316 stainless steel, the composition in weight 

percent can be described as [27]; 77%Iron, 17%Chromium, 12%Nickel, 2%Molybdenum and 2%Manganese. 

This gives 

𝑀316 = 0.77 ∙ 𝑀𝐹𝑒 + 0.17 ∙ 𝑀𝐶𝑠 + 0.12 ∙ 𝑀𝑁𝑑 + 0.02 ∙ 𝑀𝑀𝑏 + 0.02 ∙ 𝑀𝑀𝑛 = 61.9g/mol  (205)  

 

13.3 Evaluation of experimentally determined diffusion coefficients  
Determination of diffusion coefficients as a function of concentration and temperature was done from the 

denitriding curves as described in section 13.2. The resulting diffusion coefficients as function of concentration 

for varying temperatures are given in Figure 47.  

For a constant temperature, the concentration dependence can be approximated by a Lorentzian type 

function,  

𝐷 = 𝑦0 +
𝐴

(𝑐 − 𝑥0)2 + 𝐵
 

(206)  

where A, B, 𝑦0 and 𝑥0 are fitting parameters. The Lorentzian type fits are shown in Figure 47. 

The data for 445°C shows an odd behavior, which is probably explained by formation of N2 at the surface. N2 

formation could lead to porosities after prolonged time at the high temperature, which would cause a change 

of the maximum diffusion distance in the sample (L) and thus give wrong results from the fitting. The data 

measured at 445°C will thus not be considered when evaluating the diffusion coefficient results. The reason 

why porosity is suspected is that a loss of mass is observed after saturation is obtained at 445°C. When 

lowering the temperature for denitriding the saturation mass is obtained again after cooling to the denitriding 

temperature (see Figure 46).  A temperature around 460°C is generally considered as the temperature where 

desorption of N2 from an iron based surface can occur [77]. Then the amount of nitrogen in solid solution is the 

outcome of a balance of the dissociation of NH3 and the desorption if N2, i.e. a stationary state, rather than 

equilibrium. Frequently, the formation of N2 has been observed to lead to N2-filled holes, particularly for 

phases with a high nitrogen content as for example iron nitrides, (see [77]). 
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Figure 47 - Measured diffusion coefficients for varying temperatures and Lorentzian fits 

 

Comparing the measured diffusion coefficients presented in Figure 47 to the ones measured by Christiansen 

and Somers [36],  which were shown in Figure 8, (and applied in the previous chapters in this work) the same 

trend is seen with a Lorentzian type concentration dependency, with a maximum around 52000mol/m3 for 

these measurements and around 50000mol/m3  for the data in [36]. The absolute values differ by about a 

factor two, where the diffusion coefficients measured in this work are highest. Besides the insecurities arising 

from the fitting procedure, the differences might be explained by the fact that the samples in [36] were nickel 

coated, whereas the samples in this work were uncoated. The influence of the very thin (approximately 20nm) 

nickel coating could be discussed as follows. The rate of the surface reactions, i.e. N2 and NH3 formation, is 

determined by the condition at the surface. A difference in the rates of surface reactions and the occurrence of 
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mixed rate control of solid state diffusion and surface reaction, would lead to different apparent diffusion 

coefficients. Alternatively, for the nickel coated samples, the nitrogen atoms do not diffuse only through 

stainless steel, but at the 20nm closest to the surface diffusion occurs through Ni. The solubility of nitrogen in 

nickel is much lower than in expanded austenite, while the lattice parameter of f.c.c. nickel is smaller than for 

austenite. Then, it is anticipated that the diffusion of nitrogen in nickel proceeds more slowly than in expanded 

austenite. This is consistent with the relatively shallow case depth of expanded “austenite” on nickel-based 

alloys (see Eliasen et al. [78]). It is noted that, apart from the nickel coating, the main difference between 

present experiments and those described in  [36] is the sample sizes. The use of larger samples in this work in 

principle should give more accurate results. 
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13.4 Determination of activation energies 
For a certain concentration, the temperature dependence of the diffusion coefficient is expected to be 

described by the Arrhenius-type equation [31]; 

𝐷(𝑅) = 𝐷0 ∙ exp �
−𝑄
𝑅𝑅

� 
(207)  

where 𝑄 is activation energy and 𝑅 is the gas constant. 

To determine the activation energy and 𝐷0, a linear fit of the type 𝑦 = 𝑎𝑥 + 𝑏 is made to an Arrhenius plot of  

ln(𝐷) as function of the reciprocal temperature, as seen in Figure 48. 

Since 

ln(𝐷) = ln(𝐷0) − �
𝑄
𝑅
� ∙ �

1
𝑅
� 

(208)  

the activation energy and the pre-exponential factor, 𝐷0,  can be obtained from the slope and intersection of 

the linear fit. Using the fits for 𝐷 for the temperatures 390, 400, 415 and 430°C, gives the Arrhenius plot shown 

in Figure 48. 

 
Figure 48 - Arrhenius plot using fits of diffusion coefficient data 
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The activation energies found, are given in Figure 49, which shows a decrease of the activation energy with 

increasing nitrogen concentration until a point where the activation energy increases again.   

Eckel and Manning [79] reported activation energies of 108-120kJ (25800-28700cal) for low contents of 

nitrogen in austenitic stainless steel, and Wells et al. [80] reported activation energies decreasing from 150.6kJ 

(36000cal) to 117.2kJ (28000cal) with carbon contents increasing from 1at.% (1401mol/m3) to 5at.% 

(6842mol/m3). The initial trend of decreasing activation energy with increasing nitrogen concentration is thus 

consistent with previously published data. The increase of activation energy for high nitrogen concentrations 

could possibly be explained by a change in the diffusion mechanism, but further investigations should be made 

to examine this phenomenon. 

 

Figure 49 - Activation energies, Q, as function of concentration 
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13.5 Determination of expression for diffusion coefficient as function of 

concentration and temperature 
For the temperatures evaluated the concentration dependence was seen, in section 13.3, to follow a 

Lorentzian type function,  

𝐷 = 𝑦0 +
𝐴

(𝑐 − 𝑥0)2 + 𝐵
 

(209)  

where 𝐴, 𝐵, 𝑦0 and 𝑥0 , are fitting parameters which depends on temperature. The temperature dependences 

are evaluated below, in order to give an expression for diffusion coefficient as function of temperature and 

nitrogen concentration. 

Figure 50 shows 𝑥0 as function of temperature. 𝑥0 seems to be largely temperature independent with an 

average value of 

𝑥0(𝑅) = 52961 (210)  

 
Figure 50 - x0 as a function of temperature 

   

Figure 51 shows 𝑦0 as function of temperature [K]. 𝑦0 is clearly temperature dependent and an exponential fit 

is done with the fitting function 

𝑦0(𝑅) = −1.4011 ∙ 10−15 + 1.5709 ∙ 10−15 ∙ exp�0.022194(𝑅 − 641.31)� (211)  
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Figure 51 - y0 as a function of temperature 

Figure 52 shows 𝐴 as function of temperature [K] and an exponential fit with the fitting function 

𝐴(𝑅) = 2.04 ∙ 10−7 + 1.6497 ∙ 10−6 ∙ exp�−0.085818(𝑅 − 661.28)� (212)  

 
Figure 52 - A as a function of temperature 

Figure 53 shows B as function of temperature [K] and an exponential fit with the fitting function 

𝐵(𝑅) = 7.1091 ∙ 106 + 4.1838 ∙ 108 ∙ exp�−0.066925(𝑅 − 661.12)� (213)  

 
Figure 53 - B as a function of temperature 

Inserting the fits of 𝑥0(𝑅) , 𝑦0(𝑅), 𝐴(𝑅) and 𝐵(𝑅) gives the fit shown in Figure 54, for the diffusion coefficient 

as function of concentration and temperature. 
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Figure 54 - Measured diffusion data and final fit of D as function of temperature and concentration 
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13.6 Solubility data  
The absorption-desorption sequence for finding the diffusion coefficient, measured as described in section 

13.1, also provides information about the equilibrium relation between the nitriding potential and the 

concentration of nitrogen in solid solution for a stress free sample of uniform composition. 

The nitriding potential in each denitriding-step is determined from the gas composition in the step using eq. 8. 

From the mass-time curves measured (as for example Figure 46) the equilibrium mass can be determined at 

the end of each step, and the corresponding nitrogen concentration can then be found using eq. 204. 

The nitriding concentration, expressed as fractional occupancy, is plotted as function of the activity in Figure 

55. The activity is determined from the nitriding potential in the gas and the temperature dependent reaction 

equilibrium constant, 𝐾𝑇, using eq. 15. 

The results are comparable to measurements reported by Christiansen and Somers in [25], for AISI 316 

austenitic stainless steel at 693K and 718K which are also shown in Figure 55.  So even for the larger 

temperature span examined in this work the trends are reproducible.  

The differences observed between the results in [25] and those obtained in this work could be due to the use 

of not exactly the same expressions for 𝐾𝑇, or the fact that the measurements made in this work are made 

with thicker samples and larger sample sizes, which should theoretically provide more precise results. 
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Figure 55 – Nitrogen solubility as function of activity in expanded austenite for nitriding of AISI 316 at various temperatures. 
Concentrations are given as fractional occupancy, yN. 
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14. Limitations of the model and comparison to 

experimental work 
The most important novel approaches in the model presented in this work are the coupling of composition and 

composition-induced stress (rather than a pragmatic linear relation between stress and concentration), and 

inclusion of plastic deformation, taking into account the occurrence of solid solution strengthening. 

Concentration and temperature dependency of material properties were explored, but some practical 

approaches were applied which limit the model. When examining the effect of stress-state present in the 

samples prior to nitriding, the assumption of rotational symmetry in the surface plane limits the applicability of 

the model, which cannot be applied to simulate cases such as uniaxial tensile loading.  

In this work the nitrogen diffusion during heating and cooling sequence was ignored, due to insufficient 

knowledge about the diffusion behaviour at lower temperatures. So no diffusion was assumed to occur before 

the nitriding holding temperature was reached, and no diffusion was assumed during cooling. However, some 

diffusion will probably occur at the highest temperature during heating and cooling, especially if the 

heating/cooling is very slow. During cooling thermal stresses were shown to be the result of variation in the 

thermal expansion coefficient with nitrogen concentration. The interactions between thermal stresses, 

composition-induced stresses and diffusion occurring during heating/cooling might lead to changes in the 

predicted stress- and composition depth profiles. 

Compressive surface stresses in the order of 6-10GPa, depending on the sample thickness assumed, are 

predicted by the model presented in this work. Experimentally, compressive stresses have been reported of 7-8 

GPa for nitriding of austenitic stainless steel [1]. However, these values were very recently shown to be a 

consequence of inappropriate elastic constants, which appear to depend strongly on the nitrogen 

concentration, such that a reversal of the elastic anisotropy occurs over the composition range [37]. Thus when 

comparing the values predicted by the model to experimentally measured values, it should be kept in mind 

that both the simulation and the method used to determine stresses from measurements have limitations, and 

thus the correspondence between results is reasonable. 
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To examine the validity of the concentration-depth profiles predicted by the model developed in this work, 

experimentally determined concentration-depth profiles are compared to the profiles predicted from the 

model for the case of 22h hour nitriding. Compositions determined with X-ray diffraction analysis of AISI 316 

nitrided for 22h at infinite nitriding potential and at 430°C are compared with predicted nitrogen 

concentration-depth profiles in Figure 56. Clearly, the nitrogen concentrations at the surface predicted by the 

model are in excellent agreement with the experimental values. However, the model appears to overestimate 

the case depth by about 80 %.  

 

Figure 56 - comparison between experimentally determined concentration-depth profile from 22h nitriding with infinite nitriding 
potential from Christiansen and Somers [2] and concentration depth profile predicted by modelling 22h nitriding with nitriding 

potential of 1000. 

 

In order to understand this overestimation, the experimental time-dependent nitrogen uptake in stainless steel 

during nitriding is compared to that for the model presented by Christiansen et al. in [34], assuming local 

equilibrium at the surface (see Figure 57). Also here the diffusion model overestimated the nitrogen uptake, for 

the case that the surface concentration was assumed to be reached instantaneously at the onset of nitriding.  

Evidently, experimentally the nitrogen uptake proceeds very slowly at the beginning of nitriding, most likely 

because the kinetics of the surface reaction dominate the nitrogen uptake in the early stage. After an 

acceleration of the experimental nitrogen uptake curve, is runs parallel with predicted nitrogen uptake (see 

Figure 57). A similar discrepancy can be expected for the present diffusion model and the experimental results 

(Figure 56). Attempts to account for the slow initial nitrogen uptake by including the influence of the kinetics of 

the surface reaction through adjusting the reaction rate constant, k, in eq. 3, did not lead to a perfect match 
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between predicted and experimental nitrogen concentration-depth profile. In Figure 57 the predicted nitrogen 

uptake after 22h is 1.85 times higher than the experimental nitrogen uptake, implying that the area under the 

corresponding nitrogen concentration profile should be 1.85 times deeper (for the corresponding N profiles see 

[34]). Adopting this factor of 1.85 to the present case, and accordingly extending the experimental 

concentration-depth profile along the depth axis by a factor 1.85, the model predictions and the experimental 

data are seen to agree excellently, as shown in Figure 58.  

It is important to realize that apart from the scaling factor, which has its origin in actual experimental data, the 

present model has no fit parameters at all; all input data on solubility, kinetics and volume expansion was 

obtained on a series of homogeneous foils of expanded austenite of uniform composition. In this sense it is 

encouraging that including cross-effects between stress and diffusion, stress and solubility, as well as assuming 

an elastic-plastic approach and interstitial strengthening, leads to realistic composition-depth profiles that fit 

the experimental data within experimental accuracy. Future experimental work should concentrate on an 

experimental determination of the kinetics of the surface reactions. 

 

 

Figure 57 - Nitrogen uptake during nitriding at 718K experimental profile and calculated uptake [34] 
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Figure 58 - Comparison between  experimentally determined concentration-depth profile from 22h nitriding with infinite nitriding 
potential from Christiansen and Somers [2], which has been adjusted for depth with a factor 1.85, and concentration depth profile 

predicted by modelling 22h nitriding with nitriding potential 
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15. Conclusions 
Nitriding of austenitic stainless steel was modelled taking into account a concentration-dependent diffusion 

coefficient and short-range ordering of chromium and nitrogen atoms (trapping). Stress-depth profiles were 

predicted from the lattice expansion caused by the interstitial nitrogen atoms. The interaction between the 

composition-induced stresses and the solid-state diffusion was examined for both purely elastic and elastic-

plastic deformation. The effects of concentration and temperature dependent material properties were 

examined, as well as effects of pre-stressing. The effects of the thermal cycle of heating, holding and cooling 

were also discussed. 

 It can be concluded that: 

• Solid state diffusion is enhanced by the compressive stress gradient resulting from the nitrogen 

concentration gradient. 

• The flux of nitrogen through the surface is affected by the compressive stress level. 

• Assuming purely elastic deformation, the interaction between stresses and diffusion results in surface 

stresses of around 13GPa (for thick samples), which results in faster predicted growth of the expanded 

austenite case. 

• Assuming elastic-plastic deformation, and a constant yield stress, equal to the yield stress of the 

austenitic stainless steel, decreases the predicted surface stresses to stresses in the order of 1 GPa, 

and the predicted surface concentration is significantly increased compared to when assuming purely 

elastic stresses. 

• Examining the effect of solid-solution strengthening, it is found that the yield stress increases with 

nitrogen concentration to a value more than ten times higher than the one of the austenite base 

material. 

• Assuming elastic-plastic deformations, while taking into account the solid-solution strengthening, 

results in surface stresses of around 9-10GPa for thick samples and 4-5GPa for thin samples. 

• Young’s modulus increases with nitrogen concentration, and including this increases the predicted 

compressive surface stresses for thin samples to 6-7GPa. 

•  Stress states in the sample prior to nitriding can affect the predicted stress and concentration-depth 

profiles, but drastic changes in nitrogen penetration depths as observed experimentally for carburizing 

and reported in literature could not be verified by the model. 
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• Taking into account the nitriding temperature and considering dependence of mechanical properties, 

lowers the predicted surface concentrations for both thick and thin samples by around 1GPa. 

• Including all of the above considerations of temperature and composition dependencies, surface 

stresses between 5-10GPa are predicted depending on sample thickness, where the highest stresses 

are predicted for thick samples. This is in accordance with experimental findings. 

• Temperature flow is so much faster than diffusion flow, that there is no influence from temperature 

gradients on the predicted diffusive flux. 

• The thermal expansion coefficient depends on the nitrogen concentration, which causes stress to arise 

from thermal strains during cooling due to the composition gradient. Associated additional 

compressive stress in the surface region is around 400MPa. 

• Comparison with an experimental nitrogen-concentration profile indicated that the model 

overestimates the diffusion depth of nitrogen. It was demonstrated that this is most likely caused by 

unknown surface reaction kinetics. An effectively correction for this discrepancy shows that an 

excellent match of the shape of the calculated concentration-depth profile and the experimental result 

can be obtained. Further knowledge about the surface kinetics in the beginning of the nitriding 

process is needed for further improvement of the model. 

 

Denitriding experiments were conducted to obtain more knowledge about solubility and diffusive 

behaviour as function of temperature.  It can be concluded that: 

• Solubility data confirms trends seen in literature for relations between nitrogen activity and 

concentration even for the larger temperature span examined in this work.  

• Diffusion coefficient data confirms the trend, shown in literature, of a Lorentzian type 

concentration dependency, where diffusivity increases with nitrogen concentration until a 

concentration of about 52000mol/m3 where after the diffusivity decreases again. 

• Absolute values of diffusion coefficients determined in this work are a factor two higher than data 

earlier reported in the literature. 
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16. Outlook 
Future works in modelling the concentration- and stress-depth profiles could be to incorporate the 

interdependencies in a full scale 3D finite element model, where stress states present before nitriding from 

manufacturing processes can be included.  

Experimentally, future work should focus on determination of the kinetics of the surface reaction, as discussed 

in section 14.  

Further work on denitriding curves to establish dependency of diffusion coefficient on both temperature and 

concentration would also be interesting, both to investigate the validity of the trends seen in this work for the 

activation energy, and to provide the basis for analyzing diffusion and stress development during heating and 

cooling. Further experimental work of determining thermal expansion coefficients as function of nitrogen 

concentration would also be of interest, in order to give a more accurate description of stress development 

during cooling after nitriding. 

It would also be interesting to experimentally determine whether the literature results showing an effect of 

pre-stressing samples during carburizing can be verified, and to examine if similar trends are seen for nitriding 

experiments in order to investigate the discrepancy between the model predictions and the experiments. 

Future works could also include measuring input parameters for modelling carburizing, by determining the 

carbon concentration dependencies of the diffusion coefficient, yield strength and Young’s modulus. 
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Appendix A – Determination of input parameters 
 

A.1  Partial molar volume, 𝑽𝑵 
The partial molar volume of nitrogen(/carbon) in the solid matrix, 𝑉𝑁 [m3/molN], can be found from the slope 

of the volume as function of the fractional occupancy 𝑦𝑁. 

The volume as function of  𝑦𝑁 is found from data from Christiansen et al. [2] in section 5.3 to be 

𝑉𝜑(𝑦𝑁) = 2.8147 ∙ 10−29 ∙ 𝑦𝑁 + 4.7134 ∙ 10−29 
(A1)  

Converting the slope to obtain the SI-units 

𝑉𝑁 = 2.8147 ∙ 10−29
m3

unitcell
 
atomM
atomN

∙
1
4

unitcell
atomM

∙ 𝑁𝑎𝑎 (A2)  

 

𝑉𝑁 = 2.8147 ∙ 10−29
m3

unitcell
 
atomM
atomN

∙
1
4

unitcell
atomM

∙ 6.022 ∙ 1023
atomN
molN

 (A3)  

 

𝑉𝑁 = 4.2376 ∙ 10−6 m3/molN 
(A4)  
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A.2  Temperature dependent equilibrium constant, 𝑲𝑻 
𝐾𝑇 is the equilibrium constant for the reaction describing the dissolution of N into the solid phase from the gas 

phase containing NH3 and H2 . 

The reaction which determines 𝐾𝑇 is the decomposition of the ammonia will occur by the following reaction 

𝑁𝐻3 ⇄ 𝑁𝑎𝑎 +
3
2
𝐻2 

At equilibrium the following equation is fulfilled for the equation [81] 

0 = ∆𝑠𝐺 + 𝑅𝑅 ∙ ln(𝐾𝑇) (A5)  

where ∆𝑠𝐺 is the change of Gibbs energy for the standard reaction, r, which in this case is given for a specific 

temperature, T, by [81] 

∆𝑠𝐺 = ∆𝑠𝐻 − 𝑅∆𝑠𝑆 (A6)  

where ∆𝑠𝐻 is the standard enthalphy change for the reaction and ∆𝑠𝑆 is the entropy change for the reaction. 

The standard enthalphy change for the reaction at a specific temperature is [81] 

∆𝑠𝐻(𝑅) = ∆𝑠𝐻�𝑅𝑠𝑒𝑠� + � ∆𝑠𝐶𝑝 𝑑𝑅
𝑇

𝑇𝑟𝑒𝑟

 
(A7)  

where ∆𝑠𝐻�𝑅𝑠𝑒𝑠� is the standard enthalphy change for the reaction at a reference temperature, and ∆𝑠𝐶𝑝 is 

the reaction change of the heat capacity at constant pressure, which at for this specific reaction can be found 

from the following formula 

∆𝑠𝐶𝑝 =
1
2
𝐶𝑝(𝑁2) +

3
2
∙ 𝐶𝑝(𝐻2)− 𝐶𝑝(𝑁𝐻3) 

(A8)  
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The heat capacity as function of temperature can be determined by  [81] 

𝐶𝑝 = 𝑎 + 𝑏𝑅 +
𝑐
𝑅2

 (A9)  

where 𝑎, 𝑏 and 𝑐 are temperature independent material parameters. The values for the relevant gasses [81] 

are given in Table 5. 

Table 5 –Material parameters for gases 

Gas\parameters 𝒂 𝒃 (𝟑𝟎−𝟑𝑲−𝟑) 𝒄  (𝟑𝟎𝟏𝑲𝟐) 

𝑯𝟐 27.28 3.26 0.50 

𝑵𝑯𝟑 29.75 25.1 -1.55 

𝑵𝟐 28.58 3.77 -0.50 

 

And thus 

∆𝑠𝐶𝑝 = ∆𝑠𝑎 + ∆𝑠𝑏𝑅 +
∆𝑠𝑐
𝑅2

 
(A10)  

where 

∆𝑠𝑎 =
1
2
∙ 𝑎(𝑁2) +

3
2
∙ 𝑎(𝐻2) − 𝑎(𝑁𝐻3) = 25.46 

(A11)  

∆𝑠𝑏 =
1
2
∙ 𝑏(𝑁2) +

3
2
∙ 𝑏(𝐻2) − 𝑏(𝑁𝐻3) = −0.018325 𝐾−1 (A12)  

∆𝑠𝑐 =
1
2
∙ 𝑐(𝑁2) +

3
2
∙ 𝑐(𝐻2) − 𝑐(𝑁𝐻3) = 2.05 ∙ 105𝐾2 (A13)  

 

Inserting in eq. A7 gives 

∆𝑠𝐻(𝑅) = ∆𝑠𝐻�𝑅𝑠𝑒𝑠� + � �∆𝑠𝑎 + ∆𝑠𝑏𝑅 +
∆𝑠𝑐
𝑅2

�  𝑑𝑅
𝑇

𝑇𝑟𝑒𝑟

 
(A14)  
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Using 298K as the reference temperature the reference standard enthalphy changes, ∆𝑠𝐻�𝑅𝑠𝑒𝑠�, can be 

calculated by 

∆𝑠𝐻�𝑅𝑠𝑒𝑠� =
1
2
∙ 𝐻(298K,𝑁2) +

3
2
∙ 𝐻(298K,𝐻2) −𝐻(298K,𝑁𝐻3) 

(A15)  

where the enthalpy values for the gasses are  [81] 

 𝑵𝟐 𝑯𝟐 𝑵𝑯𝟑 

𝑯(𝟐𝟗𝟖𝑲)  [𝑱/𝒎𝒕𝒊] 0 0 -46110 

 

Giving 

∆𝑠𝐻�𝑅𝑠𝑒𝑠� = 46110 J/mol (A16)  

which gives the following expression for the standard enthalphy change of the reaction 

∆𝑠𝐻(𝑅) = ∆𝑠𝐻(298) + ��∆𝑠𝑎 + ∆𝑠𝑏𝑅 +
∆𝑠𝑐
𝑅2

�  𝑑𝑅
𝑇

298

= ∆𝑠𝐻�𝑅𝑠𝑒𝑠� + ∆𝑠𝑎 ∙ (𝑅 − 298) +
1
2
∆𝑠𝑏(𝑅2 − 2982)− ∆𝑠𝑐 �

1
𝑅
−

1
298

�

= 46110 + 25.46 ∙ (𝑅 − 298) −
1
2

0.018325 (𝑅2 − 2982)− 2.05 ∙ 105 �
1
𝑅
−

1
298

�

= 40024.5 + 25.46 ∙ 𝑅 − 0.009163 ∙ 𝑅2 −
2.05 ∙ 105

𝑅
 

(A17)  

The entropy change for the reaction at a specific temperature is [81] 

∆𝑠𝑆(𝑅) = ∆𝑠𝑆�𝑅𝑠𝑒𝑠� + �
∆𝑠𝐶𝑝
𝑅

 𝑑𝑅
𝑇

𝑇𝑟𝑒𝑟

 (A18)  

where ∆𝑠𝐶𝑝 is the reaction change of the heat capacity at constant pressure and ∆𝑠𝑆�𝑅𝑠𝑒𝑠� is the standard 

entrophy change for the reaction at a reference temperature, which using 298K as the reference temperature 

can be calculated by 
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∆𝑠𝑆�𝑅𝑠𝑒𝑠� =
1
2
∙ 𝑆(298K,𝑁2) +

3
2
∙ 𝑆(298K,𝐻2) − 𝑆(298K,𝑁𝐻3) (A19)  

where the entropy values for the gasses are  [81] 

 𝑵𝟐 𝑯𝟐 𝑵𝑯𝟑 

𝑺(𝟐𝟗𝟖𝑲)    [𝑱/(𝒎𝒕𝒊 ∙ 𝑲)] 191.61 130.684 192.45 

 

Giving 

∆𝑠𝑆�𝑅𝑠𝑒𝑠� = 99.381 J/(mol ∙ K) 
(A20)  

Using the expression for ∆𝑠𝐶𝑝 calculated when finding the enthalphy gives 

∆𝑠𝑆(𝑅) = ∆𝑠𝑆(298) + ��
∆𝑠𝑎
𝑅

+ ∆𝑠𝑏 +
∆𝑠𝑐
𝑅3

�  𝑑𝑅
𝑇

298

 

= ∆𝑠𝑆(298) + ∆𝑠𝑎 ∙ (ln(𝑅) − ln(298)) + ∆𝑠𝑏(𝑅 − 298) −
∆𝑠𝑐

2
�

1
𝑅2

−
1

2982
�

=  99.381
𝐽

𝑚𝑓𝑅 ∙ 𝐾
+  25.46 ∙ (ln(𝑅) − ln(298))− 0.018325(𝑅 − 298)

−
2.05 ∙ 105

2
�

1
𝑅2

−
1

2982
�                              

=  −37.8977 +  25.46 ∙ ln(𝑅) − 0.018325 ∙ 𝑅 −
2.05 ∙ 105

2 ∙ 𝑅2
 

 

(A21)  

The change of Gibbs energy for the standard reaction, r, can now be found 

∆𝑠𝐺 = ∆𝑠𝐻 − 𝑅∆𝑠𝑆

= 40024.5 + 25.46 ∙ 𝑅 − 0.009163 ∙ 𝑅2 −
2.05 ∙ 105

𝑅

− 𝑅 �−37.8977 +  25.46 ∙ ln(𝑅) − 0.018325 ∙ 𝑅 −
2.05 ∙ 105

2 ∙ 𝑅2 �

= 40024.5 + 63.3577 ∙ 𝑅 + 0.009162 ∙ 𝑅2 −  25.46 ∙ 𝑅 ∙ ln(𝑅) −
2.05 ∙ 105

2 ∙ 𝑅
 

(A22)  

Giving the following expression for the equilibrium constant 
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𝐾𝑇 = exp �
−∆𝑠𝐺
𝑅𝑅

� = exp�
−1
𝑅 �

40024.5
𝑅

+ 63.3577 + 0.009162 ∙ 𝑅 −  25.46 ∙ ln(𝑅) −
2.05 ∙ 105

2 ∙ 𝑅2 �� (A23)  

Using the gas-constant 𝑅 = 8.314J/(mol ∙ K) gives the equilibrium constant in J/mol N. 

𝐾𝑇 = exp �−
4814.11

𝑅
− 7.6206− 0.001102 ∙ 𝑅 +  3.0623 ∙ ln(𝑅) +

12328.6
𝑅2

� (A24)  

The change of the equilibrium constant with pressure is given by [82] 

∂ln(𝐾𝑇)
𝜕𝑝

=
∆𝑉
𝑅𝑅

 (A25)  

and it can then be written  

𝐾𝑇 𝜎 = 𝐾𝑇 𝜎=0 ∙ exp �
𝑉𝑁𝜎𝐻
𝑅𝑅

� (A26)  

which gives the final expression for the equilibrium constant 

𝐾𝑇 = exp �−
4814.11

𝑅
− 7.6206 − 0.001102 ∙ 𝑅 +  3.0623 ∙ ln(𝑅) +

12328.6
𝑅2

� ∙ exp �
𝑉𝑁𝜎𝐻
𝑅𝑅

� (A27)  
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A.3 Relation between nitriding potential, 𝑲𝑵, and concentration 

The  relation between nitriding potential of an NH3/H2 gas mixture, i.e. 𝐾𝑁 =
𝑝𝑁𝐻3

𝑝𝐻2
3
2

� ,  and the nitrogen 

concentration, 𝑐𝑁 , is determined from the absorption isotherms relation between the equilibrium nitrogen 

content, expressed as the fractional occupancy of the nitrogen sub-lattice, 𝑦𝑁, in stress-free austenite and the 

nitrogen activity applied by the gas mixture from Christiansen [2]. Converting the fractional occupancy, 𝑦𝑁 , to 

concentration, 𝑐𝑁, using eq. 42, Figure 59, is obtained. For equilibrium between nitrogen in solid state and 

imposed nitriding potential the activity of nitrogen in the solid state is linearly proportional to the nitriding 

potential, 𝐾𝑁 by  [55] 

𝑎𝑁 = 𝐾𝑇𝐾𝑁 
(A28)  

where 𝐾𝑇 is the equilibrium constant for the dissolution reaction of N into the solid state  from the gas phase, 

and is a function of temperature and pressure. For dilute solutions Henrian behaviour can be assumed, 

implying linear proportionality between the nitrogen activity and the nitrogen concentration: 𝑎𝑁 = 𝛾 ∙ 𝑐𝑁. This 

condition can be assumed only for nitrogen concentrations approaching nil. 

 

Since 𝐾𝑇 is not a function of concentration, it follows from the above for small concentrations 𝐾𝑁 = 𝛾 ∙ 𝑐𝑁
𝐾𝑇

. The 

raw data suggest an exponential relation between 𝐾𝑁 and  𝑐𝑁. A function of the following form obeys Henrian 

behaviour for small 𝑐𝑁, and was used to parametrize the data  

𝐾𝑁 = 𝑘1 ∙
𝑐
𝐾𝑇 

+
𝑘2
𝐾𝑇 

∙  exp (𝑘3 ∙ 𝑐𝑁 + 𝑘4) (A29)  

where 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are fitting parameters. 

Calculating 𝐾𝑇  for 316 stainless steel the temperature of the measurements 445°C = 718.15K, and no 

hydrostatic stress Gives 𝐾𝑇 = 155.738. 

For AISI 316 a satisfactory fit of the data at 445°C was obtained with the following parameters 

𝒌𝟑 𝒌𝟐 𝒌𝟑 𝒌𝒌 

0.01125 102.5078 0.0005129336 -24.60384 
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Figure 59 – Fit and - raw data of nitriding potential as function of concentration at 445°C 
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Appendix B – Extended calculations 
 

B.1 Reduction of stress expression 
 

𝜎𝑦𝑦 =
𝐸

(1 + 𝜈)(1− 2𝜈)�
𝜈2 + 𝜈
1 − 𝜈 �𝜀𝑦𝑦𝑡ℎ + 𝜀𝑦𝑦𝑐ℎ� −

2𝜈2

1 − 𝜈
𝜀𝑦𝑦 + 𝜀𝑦𝑦 − (1 + 𝜈)�𝜀𝑦𝑦𝑡ℎ + 𝜀𝑦𝑦𝑐ℎ�� 

(B1)  

↔  𝜎𝑦𝑦 =
𝐸

(1 + 𝜈)(1 − 2𝜈)�
𝜈2 + 𝜈�𝜀𝑦𝑦𝑡ℎ + 𝜀𝑦𝑦𝑐ℎ� − 2𝜈2𝜀𝑦𝑦 + (1 − 𝜈)𝜀𝑦𝑦 − (1 + 𝜈)(1 − 𝜈)�𝜀𝑦𝑦𝑡ℎ + 𝜀𝑦𝑦𝑐ℎ�

1− 𝜈 � 
(B2)  

↔  𝜎𝑦𝑦 =
𝐸

(1 + 𝜈)(1− 2𝜈)�
(1 − 𝜈 − 2𝜈2)𝜀𝑦𝑦 + �𝜈2 + 𝜈 − (1 + 𝜈)(1− 𝜈)��𝜀𝑦𝑦𝑡ℎ + 𝜀𝑦𝑦𝑐ℎ�

1 − 𝜈 � 
(B3)  

↔  𝜎𝑦𝑦 =
𝐸

(1 − 𝜈 − 2𝜈2)�
(1 − 𝜈 − 2𝜈2)𝜀𝑦𝑦 + (2𝜈2 + 𝜈 − 1)�𝜀𝑦𝑦𝑡ℎ + 𝜀𝑦𝑦𝑐ℎ�

1 − 𝜈 � 
(B4)  

↔  𝜎𝑦𝑦 =
𝐸

(1 − 𝜈 − 2𝜈2)�
(1 − 𝜈 − 2𝜈2)𝜀𝑦𝑦 − (1 − 𝜈 − 2𝜈2)�𝜀𝑦𝑦𝑡ℎ + 𝜀𝑦𝑦𝑐ℎ�

1 − 𝜈 � 
(B5)  

↔  𝜎𝑦𝑦 = 𝐸 �
𝜀𝑦𝑦 − �𝜀𝑦𝑦𝑡ℎ + 𝜀𝑦𝑦𝑐ℎ�

1− 𝜈 � 
(B6)  

↔  𝜎𝑦𝑦 =
𝐸

1 − 𝜈 �
𝜀𝑦𝑦 − 𝜀𝑦𝑦𝑡ℎ − 𝜀𝑦𝑦𝑐ℎ� 

(B7)  
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B.2 isolation of total strain expression for uneven strains 

Isolating 𝜀1̇1𝑡𝑏𝑡 in the equation from ∫ �̇�11 𝑑𝑧
𝑧𝑚𝑚𝑚
0 = 0 gives  

�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈 −
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �4𝜎112 + 𝜎222 − 4𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� � 𝜈

1 − 2𝜈 −
3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ �𝜀1̇1𝑡𝑏𝑡 − 𝜀1̇1𝑡ℎ − 𝜀1̇1𝑐ℎ�

+

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1− 2𝜈 −
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

−

� 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� � 𝜈

1 − 2𝜈 −
3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ �𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ�

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧

+ �
𝐸

1 + 𝜈
⎝

⎛��1 +
𝜈

1 − 2𝜈� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� �𝜀1̇1𝑡𝑏𝑡 − 𝜀1̇1𝑡ℎ − 𝜀1̇1𝑐ℎ� + ��
𝜈

1 − 2𝜈� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� �𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ�

⎠

⎞𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

= 0 
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Isolating 𝜀1̇1𝑡𝑏𝑡 

�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �4𝜎112 + 𝜎222 − 4𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� � 𝜈

1 − 2𝜈 −
3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧

∙ 𝜀1̇1𝑡𝑏𝑡 

−�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �4𝜎112 + 𝜎222 − 4𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� � 𝜈

1 − 2𝜈 −
3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 
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+�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1 − 2𝜈 −
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� � 𝜈

1− 2𝜈 −
3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 ∙ 𝜀2̇2𝑡𝑏𝑡  

−�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1− 2𝜈 −
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� � 𝜈

1 − 2𝜈 −
3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ �𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ�

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

 

+�
𝐸

1 + 𝜈
��1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� 𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

∙ 𝜀1̇1𝑡𝑏𝑡

− �
𝐸

1 + 𝜈
��1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ)𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

+ �
𝐸

1 + 𝜈
��

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� 𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

∙ 𝜀2̇2𝑡𝑏𝑡

− �
𝐸

1 + 𝜈
��

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ)𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

= 0 
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Simplifying 

𝐴𝑑𝑛𝑡 ∙ �̇�11
𝐷𝑓𝐷 + 𝐵𝑑𝑛𝑡 + 𝐶𝑑𝑛𝑡 ∙ �̇�22

𝐷𝑓𝐷 + 𝐷𝑑𝑛𝑡 + 𝐸𝑑𝑛𝑡 ∙ �̇�11
𝐷𝑓𝐷 + 𝐹𝑑𝑛𝑡 + 𝐺𝑑𝑛𝑡 ∙ �̇�22

𝐷𝑓𝐷 + 𝐻𝑑𝑛𝑡 = 0 

𝐴𝑑𝑛𝑡 ∙ �̇�11
𝐷𝑓𝐷 + 𝐸𝑑𝑛𝑡 ∙ �̇�11

𝐷𝑓𝐷 = −𝐵𝑑𝑛𝑡 − 𝐶𝑑𝑛𝑡 ∙ �̇�22
𝐷𝑓𝐷 − 𝐷𝑑𝑛𝑡 − 𝐹𝑑𝑛𝑡 − 𝐺𝑑𝑛𝑡 ∙ �̇�22

𝐷𝑓𝐷 − 𝐻𝑑𝑛𝑡 

(𝐴𝑖𝑅𝐷 + 𝐸𝑖𝑅𝐷) ∙ �̇�11
𝐷𝑓𝐷 = −(𝐶𝑖𝑅𝐷 + 𝐺𝑖𝑅𝐷) ∙ �̇�22

𝐷𝑓𝐷 − 𝐵𝑖𝑅𝐷 − 𝐷𝑖𝑅𝐷 − 𝐹𝑖𝑅𝐷 − 𝐻𝑖𝑅𝐷 

𝜀1̇1𝑡𝑏𝑡 = −
(𝐶𝑖𝑅𝐷 + 𝐺𝑖𝑅𝐷)
(𝐴𝑖𝑅𝐷 + 𝐸𝑖𝑅𝐷)

∙ 𝜀2̇2𝑡𝑏𝑡 −
𝐵𝑖𝑅𝐷 + 𝐷𝑖𝑅𝐷 + 𝐹𝑖𝑅𝐷 + 𝐻𝑖𝑅𝐷

(𝐴𝑖𝑅𝐷 + 𝐸𝑖𝑅𝐷)
 

where 

𝐴𝑑𝑛𝑡 = �
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1− 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 �4𝜎112 + 𝜎222 − 4𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

𝐵𝑑𝑛𝑡 = −�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �4𝜎112 + 𝜎222 − 4𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 
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𝐶𝑑𝑛𝑡 = �
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1− 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 �−2𝜎11

2 − 2𝜎222 + 5𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

𝐷𝑑𝑛𝑡 = −�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1− 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 �−2𝜎11

2 − 2𝜎222 + 5𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

𝐸𝑑𝑛𝑡 = �
𝐸

1 + 𝜈 �
�1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 

𝐹𝑑𝑛𝑡 = −�
𝐸

1 + 𝜈 �
�1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1− 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ)𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 

𝐺𝑑𝑛𝑡 = �
𝐸

1 + 𝜈 �
�

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1− 2𝜈�

�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 

𝐻𝑑𝑛𝑡 = −�
𝐸

1 + 𝜈 �
�

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ)𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝
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The integral over �̇�22 is then: 

�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀1̇1𝑡𝑏𝑡 − 𝜀1̇1𝑡ℎ − 𝜀1̇1𝑐ℎ)

+

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 + 4𝜎222 − 4𝜎22𝜎11)

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧

+ �
𝐸

1 + 𝜈
⎝

⎛��
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀1̇1𝑡𝑏𝑡 − 𝜀1̇1𝑡ℎ − 𝜀1̇1𝑐ℎ)
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

+ ��1 +
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ)

⎠

⎞𝑑𝑧 = 0 
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Isolating 𝜀1̇1𝑡𝑏𝑡 and 𝜀2̇2𝑡𝑏𝑡 gives 

�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧

∙ 𝜀1̇1𝑡𝑏𝑡 

−�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 
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+�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 + 4𝜎222 − 4𝜎22𝜎11)

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧

∙ 𝜀2̇2𝑡𝑏𝑡 

−�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 + 4𝜎222 − 4𝜎22𝜎11)

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

+�
𝐸

1 + 𝜈
��

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� 𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

∙ 𝜀1̇1𝑡𝑏𝑡 − �
𝐸

1 + 𝜈
��

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ)𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

+ �
𝐸

1 + 𝜈
��1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� 𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

∙ 𝜀2̇2𝑡𝑏𝑡

− �
𝐸

1 + 𝜈
��1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ)𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

= 0 
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which can be shortened to 

𝐼𝑑𝑛𝑡 ∙ �̇�11
𝐷𝑓𝐷 + 𝐽𝑑𝑛𝑡 + 𝐾𝑑𝑛𝑡 ∙ �̇�22

𝐷𝑓𝐷 + 𝐿𝑑𝑛𝑡 +𝑀𝑑𝑛𝑡 ∙ �̇�11
𝐷𝑓𝐷 + 𝑁𝑑𝑛𝑡 + 𝑂𝑑𝑛𝑡 ∙ �̇�22

𝐷𝑓𝐷 + 𝑃𝑑𝑛𝑡 = 0 

where 

𝐼𝑑𝑛𝑡 = �
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 �−2𝜎11

2 − 2𝜎222 + 5𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

𝐽𝑑𝑛𝑡 = −�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1− 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎11

2 − 2𝜎222 + 5𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

𝐾𝑑𝑛𝑡 = �
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 + 4𝜎222 − 4𝜎22𝜎11)

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1− 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 
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𝐿𝑑𝑛𝑡 = −�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1− 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 (𝜎112 + 4𝜎222 − 4𝜎22𝜎11)

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

𝑀𝑑𝑛𝑡 = �
𝐸

1 + 𝜈 �
�

𝜈
1− 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 

𝑁𝑑𝑛𝑡 = −�
𝐸

1 + 𝜈 �
�

𝜈
1− 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ)𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 

𝑂𝑑𝑛𝑡 = �
𝐸

1 + 𝜈 �
�1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 

𝑃𝑑𝑛𝑡 = −�
𝐸

1 + 𝜈 �
�1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ)𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 

 

Inserting expression for 𝜀1̇1𝑡𝑏𝑡 derived from the integral over �̇�11  

𝜀1̇1𝑡𝑏𝑡 = −
(𝐶𝑖𝑅𝐷 + 𝐺𝑖𝑅𝐷)
(𝐴𝑖𝑅𝐷 + 𝐸𝑖𝑅𝐷)

∙ 𝜀2̇2𝑡𝑏𝑡 −
𝐵𝑖𝑅𝐷 + 𝐷𝑖𝑅𝐷 + 𝐹𝑖𝑅𝐷 + 𝐻𝑖𝑅𝐷

(𝐴𝑖𝑅𝐷 + 𝐸𝑖𝑅𝐷)
 

in the expression resulting from the integral over �̇�22 

𝐼𝑑𝑛𝑡 ∙ �̇�11
𝐷𝑓𝐷 + 𝐽𝑑𝑛𝑡 + 𝐾𝑑𝑛𝑡 ∙ �̇�22

𝐷𝑓𝐷 + 𝐿𝑑𝑛𝑡 +𝑀𝑑𝑛𝑡 ∙ �̇�11
𝐷𝑓𝐷 + 𝑁𝑑𝑛𝑡 + 𝑂𝑑𝑛𝑡 ∙ �̇�22

𝐷𝑓𝐷 + 𝑃𝑑𝑛𝑡 = 0 

Gives (omitting the subscript int for convenience) 
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𝐼 ∙ �−
(𝐶 + 𝐺)
(𝐴 + 𝐸) ∙ �̇�22

𝐷𝑓𝐷 −
𝐵 + 𝐷 + 𝐹 + 𝐻

(𝐴 + 𝐸) � + 𝐽 + 𝐾 ∙ �̇�22
𝐷𝑓𝐷 + 𝐿 + 𝑀 ∙ �−

(𝐶 + 𝐺)
(𝐴 + 𝐸) ∙ �̇�22

𝐷𝑓𝐷 −
𝐵 + 𝐷 + 𝐹 + 𝐻

(𝐴 + 𝐸) � + 𝑁 + 𝑂 ∙ �̇�22
𝐷𝑓𝐷

+ 𝑃 = 0 

Isolating 𝜀2̇2𝑡𝑏𝑡 gives 

−𝐼 ∙
(𝐶 + 𝐺)
(𝐴 + 𝐸) ∙ 𝜀2̇2

𝑡𝑏𝑡 − 𝐼 ∙
𝐵 + 𝐷 + 𝐹 + 𝐻

(𝐴 + 𝐸) + 𝐽 + 𝐾 ∙ 𝜀2̇2𝑡𝑏𝑡 + 𝐿 − 𝑀 ∙
(𝐶 + 𝐺)
(𝐴 + 𝐸) ∙ 𝜀2̇2

𝑡𝑏𝑡 − 𝑀 ∙
𝐵 + 𝐷 + 𝐹 + 𝐻

(𝐴 + 𝐸) + 𝑁 + 𝑂 ∙ 𝜀2̇2𝑡𝑏𝑡 + 𝑃

= 0 

↔ 

−𝐼 ∙
(𝐶 + 𝐺)
(𝐴 + 𝐸) ∙ 𝜀2̇2

𝑡𝑏𝑡 + 𝐾 ∙ 𝜀2̇2𝑡𝑏𝑡 − 𝑀 ∙
(𝐶 + 𝐺)
(𝐴 + 𝐸) ∙ 𝜀2̇2

𝑡𝑏𝑡 + 𝑂 ∙ 𝜀2̇2𝑡𝑏𝑡 = 𝐼 ∙
𝐵 + 𝐷 + 𝐹 + 𝐻

(𝐴 + 𝐸) − 𝐽 − 𝐿 + 𝑀 ∙
𝐵 + 𝐷 + 𝐹 + 𝐻

(𝐴 + 𝐸) − 𝑁 − 𝑃 

↔ 

 

�−
(𝐼+𝑀) ∙ (𝐶 + 𝐺)

(𝐴 + 𝐸) + 𝐾 + 𝑂� ∙ 𝜀2̇2𝑡𝑏𝑡 =
(𝐼+𝑀) ∙ (𝐵 + 𝐷 + 𝐹 + 𝐻)

(𝐴 + 𝐸) − 𝐽 − 𝐿 − 𝑁 − 𝑃 

↔ 

𝜀2̇2𝑡𝑏𝑡 =

(𝐼+𝑀) ∙ (𝐵 + 𝐷 + 𝐹 + 𝐻)
(𝐴 + 𝐸) − 𝐽 − 𝐿 − 𝑁 − 𝑃

�− (𝐼+𝑀) ∙ (𝐶 + 𝐺)
(𝐴 + 𝐸) + 𝐾 + 𝑂�
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Appendix C - Verification of program calculations  

C.1 - Verification of strain calculation 

Verification of calculation of total strain from chemical strain 

To verify the calculation of the chemical and total strains, a constant temperature test case is run where the 

concentration initially is set to zero, �𝑐𝑑0 = 0� throughout the specimen and then in one time step is raised to a 

fixed value �𝑐𝑑1 = 𝑐̅�. 

This gives the same chemical strain in all elements; for 𝑖 = 𝑗 𝜀𝑖𝑗
𝑐ℎ𝑒,𝜑(𝑐) = 1

3
∙
𝑉(𝑐)𝜑 −𝑉𝜑,𝑓𝑒𝑓

 

𝑉𝜑,𝑓𝑒𝑓
 ,  where  

𝑉𝜑(𝑐) = 2.7603 ∙ 10−34 ∙ 𝑐̅ + 4.6197 ∙ 10−29 and 𝑉𝜑,𝑓𝑒𝑓
 = 4.6197 ∙ 10−29 was applied for this test case.  

The expression for the total strain, 

𝜀𝑦𝑦 =
1

𝑥𝑚𝑎𝑚
� �𝜀𝑦𝑦𝑡ℎ(𝑖) ∙ ∆𝑥(𝑖) + 𝜀𝑦𝑦𝑐ℎ(𝑖) ∙ ∆𝑥(𝑖)�
𝑑𝑚𝑎𝑚

1

 
(C1)  

can then be reduced to 

𝜀𝑦𝑦 = 𝜀𝑦𝑦𝑐ℎ(𝑖) (C2)  

which reduces the expression for the stress to 

𝜎𝑦𝑦 =
𝐸

1 − 𝜈 �
𝜀𝑦𝑦 − 𝜀𝑦𝑦𝑡ℎ − 𝜀𝑦𝑦𝑐ℎ� = 0 

(C3)  
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Using 𝑐̅ = 5000,𝐸 = 200GPa, 𝜈 = 0.3  the following results were obtained 

 Chemical strain: 

𝜺𝒚𝒚𝒄𝒄(𝒊) 

Total strain: 𝜺𝒚𝒚 Elastic strain:  Stress:  𝝈𝒚𝒚 

Calculated 

analytically from 

above expressions 

0.009958 0.009958 0 0 

Result from test-run 

of program 

0.009958 0.009958 −1.7347 ∙ 10−18 

(numeric zero) 

−4.9564 ∙ 10−7Pa 

(numeric zero) 

 

Resulting curves from the simulation, shown in Figure 60 shows the intended horizontal linear profiles. Since 

the analytically calculated results and the simulation results are the same, the calculation of total strain in the 

simulation is verified. 

   

Figure 60 - strains and stresses predicted by test simulation, calculating total strain (epstot) from chemical strain (epsch) 
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Verification of calculation of total strain from thermal strain 

To verify the calculation of the thermal and total strains, a zero concentration test case is run where the 

temperature initially is set to zero, �𝑅𝑑0 = 0� throughout the specimen and then in one time step is raised to a 

fixed value �𝑅𝑑1 = 𝑅��. 

This gives the same chemical strain in all elements 𝑓𝑓𝑓 𝑖 = 𝑗 𝜀𝑖𝑗𝐷ℎ(𝑐) = 𝛼∆𝑅,   

The expression for the total strain 

𝜀𝑦𝑦 =
1

𝑥𝑚𝑎𝑚
� �𝜀𝑦𝑦𝑡ℎ(𝑖) ∙ ∆𝑥(𝑖) + 𝜀𝑦𝑦𝑐ℎ(𝑖) ∙ ∆𝑥(𝑖)�
𝑑𝑚𝑎𝑚

1

 
(C4)  

Can then be reduced to 

𝜀𝑦𝑦 = 𝜀𝑦𝑦𝑡ℎ(𝑖) (C5)  

which reduces the expression for the stress to 

𝜎𝑦𝑦 =
𝐸

1 − 𝜈 �
𝜀𝑦𝑦 − 𝜀𝑦𝑦𝑡ℎ − 𝜀𝑦𝑦𝑐ℎ� = 0 

(C6)  

Using 𝑅� = 200𝐾,𝐸 = 200GPa, 𝜈 = 0.3,𝛼 = 10−5  the following results were obtained 

 Thermal strain: 

𝜺𝒚𝒚𝒕𝒄 (𝒊) for all i 

Total strain: 𝜺𝒚𝒚 Elastic strain:  Stress:  𝝈𝒚𝒚 

Calculated 

analytically from 

above expressions 

0.002 0.002 0 0 

Result from test-run 

of program 

0.002 0.002  −8.6736 ∙ 10−19 

(numeric zero) 

−2.4782 ∙ 10−07Pa 

(numeric zero) 

 

Analytically calculated results and the simulation results are the same, the calculation of total strain from 

thermal strain in the simulation is verified. 

 

 



176 
 
 

C.2 - Verification of stress calculation 

Concentration differences test 

To verify the calculation of the stress, a constant temperature test case is run where the concentration initially 

is set to zero, �𝑐𝑑0 = 0� throughout the specimen and then in one time step is raised so that the first half of the 

specimen is set to a fixed value �𝑐𝑑1 = 𝑐̅�, and the second half is kept at zero 𝑐𝑑1 = 𝑐𝑑0. 

This gives, analytically, a chemical strain of zero in the second half, and in the elements of the first half; 

for 𝑖 = 𝑗 𝜀𝑖𝑗
𝑐ℎ𝑒,𝜑(𝑐) = 1

3
∙
𝑉(𝑐)𝜑 −𝑉𝜑,𝑓𝑒𝑓

 

𝑉𝜑,𝑓𝑒𝑓
 ,  where  

𝑉𝜑(𝑐) = 2.7603 ∙ 10−34 ∙ 𝑐̅ + 4.6197 ∙ 10−29 and 𝑉𝜑,𝑓𝑒𝑓
 = 4.6197 ∙ 10−29 was applied.  

The total strain is then found to be half of the chemical strain in the second half of the specimen, 

𝜀𝑦𝑦 =
1

𝑥𝑚𝑎𝑚
� �0 ∙

𝑥𝑚𝑎𝑚

2
+ 𝜀𝑦𝑦𝑐ℎ ∙

𝑥𝑚𝑎𝑚

2 �
𝑑𝑚𝑎𝑚

1

=
𝜀𝑦𝑦𝑐ℎ

2
 

(C7)  

 inducing a compressive stress in the first half of the specimen of 

𝜎𝑦𝑦 =
𝐸

1 − 𝜈 �
𝜀𝑦𝑦𝑐ℎ

2
− 𝜀𝑦𝑦𝑐ℎ� = −

𝐸
1 − 𝜈

𝜀𝑦𝑦𝑐ℎ

2
 

(C8)  

and a tensile stress in the second half of the specimen of 

𝜎𝑦𝑦 =
𝐸

1 − 𝜈 �
𝜀𝑦𝑦𝑐ℎ

2
− 0� =

𝐸
1 − 𝜈

𝜀𝑦𝑦𝑐ℎ

2
 

(C9)  
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Using 𝑐̅ = 10000,𝐸 = 200GPa, 𝜈 = 0.3  the following results were obtained 

 Chemical strain 

first half: 𝜺𝒚𝒚𝒄𝒄(𝒊) 

Chemical strain 

2nd half: 𝜺𝒚𝒚𝒄𝒄(𝒊) 

Total strain: 

𝜺𝒚𝒚 

Stress first half:  

𝝈𝒚𝒚 

Stress 2nd 

half:  𝝈𝒚𝒚 

Calculated 

analytically from 

above expressions 

0.01992 0 0.009958 −2.8453 GPa 2.8453 GPa 

Result from test-

run of program 

0.01992 0 0.009958 −2.8453 GPa 2.8453 GPa 

  

The total strain is now the same as the one found in the strain check example as would be expected since the 

concentration average was the same. 

Resulting curves from program, seen in Figure 61, shows the expected profiles 

 

Figure 61 - strains and stresses predicted by test simulation; varying concentrations 

Analytically the residual from the stress should be 

𝑅 = � 𝜎𝑦𝑦𝑑𝑥
𝑚𝑚𝑚𝑚

0
= 0 

(C10)  

In the numerical code this is implemented as 
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𝑅 = � 𝜎𝑑 ∙ ∆𝑧𝑑

𝑑𝑚𝑎𝑚

𝑑

 
(C11)  

For this test example  𝑅 = −3.45 ∙ 10−8 (numerical zero). 

Linear varying concentration test 

Verifying the stress and strain calculation the program is now subjected to a linear decreasing concentration 

profile with concentrations going from 10000 to 0. This still gives the same concentration average as in the two 

previous tests and thus the same average strain should be found. Since the concentration at the surface cell 

and the centre cell are the same as in the concentration differences test, the same stress levels should be 

found in these cells as in the concentration differences test, and a linear stress profile is expected. 

The resulting curves from the program run are seen below in Figure 62, and the expected linear profiles are 

achieved. 

 

Figure 62 - strains and stresses predicted by test simulation; linear varying concentrations 
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Comparing the results with the ones from the concentration differences test it is seen that they are the same. 

 Chemical strain 

first cell: 𝜺𝒚𝒚𝒄𝒄(𝒊) 

Total strain: 

𝜺𝒚𝒚 

Stress first cell:  

𝝈𝒚𝒚 

Stress center cell:  

𝝈𝒚𝒚 

Concentration differences 

test 

0.01992 0.009958 −2.8453 GPa 2.8453 GPa 

Result from test-run of 

program 

(linear variation 

concentration) 

0.01992 0.009958 −2.8453 GPa 2.8453 GPa 

 

The residual for this test examples stress calculation was found to be 𝑅 = −2.79 ∙ 10−9 (numerical zero). 

Temperature differences test 

To verify the calculation of the stress, a zero concentration test case is run where the temperature initially is 

set to zero, �𝑅𝑑0 = 0� throughout the specimen and then in one time step is raised so that the first half of the 

specimen is set to a fixed value �𝑅𝑑1 = 𝑅��, and the second half is kept at zero 𝑅𝑑1 = 𝑅𝑑0. 

This gives analytically a thermal strain of zero in the second half, and in the elements of the first half; 

for 𝑖 = 𝑗 𝜀𝑖𝑗𝐷ℎ(𝑐) = 𝛼∆𝑅�,   

The total strain is then found to be half of the thermal strain in the second half, 

𝜀𝑦𝑦 =
1

𝑥𝑚𝑎𝑚
� �𝜀𝑦𝑦𝑡ℎ ∙

𝑥𝑚𝑎𝑚

2
+ 0 ∙

𝑥𝑚𝑎𝑚

2 �
𝑑𝑚𝑎𝑚

1

=
𝜀𝑦𝑦𝑡ℎ

2
 

(C12)  

inducing a compressive stress in the first half of 

𝜎𝑦𝑦 =
𝐸

1 − 𝜈 �
𝜀𝑦𝑦𝑡ℎ

2
− 𝜀𝑦𝑦𝑡ℎ� = −

𝐸
1 − 𝜈

𝜀𝑦𝑦𝑡ℎ

2
 

(C13)  

And a tensile stress in the second half of 

𝜎𝑦𝑦 =
𝐸

1 − 𝜈 �
𝜀𝑦𝑦𝑡ℎ

2
− 0� =

𝐸
1 − 𝜈

𝜀𝑦𝑦𝑡ℎ

2
 

(C14)  
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Using 𝑅� = 400𝐾,𝐸 = 200GPa, 𝜈 = 0.3,𝛼 = 10−5  the following results were obtained 

 

 Thermal strain 

first half: 𝜺𝒚𝒚𝒕𝒄 (𝒊) 

Thermal strain 

2nd half: 𝜺𝒚𝒚𝒕𝒄 (𝒊) 

Total strain: 

𝜺𝒚𝒚 

Stress first half:  

𝝈𝒚𝒚 

Stress 2nd 

half:  𝝈𝒚𝒚 

Calculated 

analytically from 

above expressions 

0.004 0 0.002 -571.4 MPa 571.4 MPa 

Result from test-

run of program 

0.004 0 0.002 -571.4 MPa 571.4 MPa 

 

The total strain is now the same as the one found in the strain check example as would be expected since the 

temperature average was the same. 

Resulting curves from simulation, seen in Figure 63, shows the expected profiles 

 

Figure 63 - strains and stresses predicted by test simulation; temperature variations 
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Linear varying temperature test 

Verifying the stress and strain calculation the program is now subjected to a linear decreasing temperature 

profile with temperatures going from 400K to 0K. This still gives the same temperature average as in the 

previous temperature test and thus the same average strain should be found. Since the temperature at the 

surface cell and the centre cell are the same as in the temperature differences test, the same stress levels 

should be found in these cells as in the temperature differences test, and a linear stress profile is expected. 

The resulting curves from the program run are seen below in Figure 64, and the expected linear profiles are 

achieved. 

 

Figure 64 - strains and stresses predicted by test simulation; linear varying temperatures 

Comparing the results with the ones from the temperature differences test it is seen that they are the same. 

 Thermal strain 

first cell: 𝜺𝒚𝒚𝒕𝒄 (𝒊) 

Total strain: 

𝜺𝒚𝒚 

Stress first cell:  

𝝈𝒚𝒚 

Stress center 

cell:  𝝈𝒚𝒚 

Temperature differences 

test 

0.004 0.002 -571.4 MPa 571.4 MPa 

Result from test-run of 

program 

(linear variation 

temperature) 

0.004 0.002 -571.4 MPa 571.4 MPa 

The residual for this test examples stress calculation was found to be 𝑅 = −1.164 ∙ 10−9 (numerical zero). 
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C.3 - Verification of concentration calculation by Fick’s law 
The concentration calculated by Fick’s law can be verified by comparing with the analytical solution, testing the 

case where there is a constant concentration at the surface and zero concentration in the specimen to begin 

with. 

The analytical solution is given by eq. 1; 

𝑐 = 𝑐𝑠 − (𝑐𝑠 − 𝑐0) ∙ erf �
𝑧

2√𝐷𝐷
� (C15)  

where 𝑐𝑠 is the surface concentration, 𝐷 the diffusion coefficient, 𝐷 the time, 𝑧 the distance from the surface 

and 𝑐0 the initial concentration in the specimen, which in this case is zero giving 

𝑐 = 𝑐𝑠 − 𝑐𝑠 ∙ erf �
𝑧

2√𝐷𝐷
� (C16)  

Running this test, and plotting the analytical and numerically found solutions, as shown in Figure 65, it is seen 

that the same composition profile is obtained. 

 
Figure 65 - concentration depth profiles, calculated analytically and explicit numerical. The two curves are seen to be identical. 
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C.4 - Verification of Non-constant diffusion coefficient calculation by comparison to 

model by Christiansen et al.  
Christiansen et al. [34] modeled concentration profiles for non-constant diffusion coefficients. Using the 

fractional occupancies, y, thus modeled 

𝜕𝑦
𝜕𝐷

=
𝜕𝐷
𝜕𝑧

𝜕𝑦
𝜕𝑧

+ 𝐷
𝜕2𝑦
𝜕𝑧2

 
(C17)  

Comparing results from the model presented in this work to their model, using the same input parameters, 

gives the same output, as shown in Figure 66. 

 

Figure 66 – fractional occupancy-depth profiles predicted by the model of Christiansen et al. and the model presented in this work 

However, running a simulation where the input was transformed from fractional occupancies to concentrations 

and then running the simulations with concentrations; 

𝜕𝑐
𝜕𝐷

=
𝜕𝐷
𝜕𝑧

𝜕𝑐
𝜕𝑧

+ 𝐷
𝜕2𝑐
𝜕𝑧2

 
(C18)  

and comparing to the concentration profile found from the y-profile calculated by their model did not give the 

same output as shown in Figure 67. 
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Figure 67 - concentration-depth profiles predicted by the model of Christiansen et al. and the model in this work 

This however is explained by the following: 

Their model is based on the equation 

𝜕𝑦
𝜕𝐷

=
𝜕𝐷
𝜕𝑧

𝜕𝑦
𝜕𝑧

+ 𝐷
𝜕2𝑦
𝜕𝑧2

 
(C19)  

Using the chain rule since the fractional occupancy, 𝑦, depends on the concentration c gives 

𝜕𝑦
𝜕𝑐

𝜕𝑐
𝜕𝐷

=
𝜕𝐷
𝜕𝑧

𝜕𝑦
𝜕𝑐

𝜕𝑐
𝜕𝑧

+ 𝐷 ∙
𝜕
𝜕𝑧
�
𝜕𝑦
𝜕𝑐

𝜕𝑐
𝜕𝑧
� 

(C20)  

which leads to 

𝜕𝑦
𝜕𝑐

𝜕𝑐
𝜕𝐷

=
𝜕𝐷
𝜕𝑧

𝜕𝑦
𝜕𝑐

𝜕𝑐
𝜕𝑧

+ 𝐷 ∙ �
𝜕
𝜕𝑧
�
𝜕𝑦
𝜕𝑐
�
𝜕𝑐
𝜕𝑧

+
𝜕𝑦
𝜕𝑐

𝜕2𝑐
𝜕𝑧2�

 
(C21)  

↔ 

𝜕𝑦
𝜕𝑐

𝜕𝑐
𝜕𝐷

=
𝜕𝐷
𝜕𝑧

𝜕𝑦
𝜕𝑐

𝜕𝑐
𝜕𝑧

+ 𝐷 ∙ �
𝜕2𝑦
𝜕𝑐2

�
𝜕𝑐
𝜕𝑧
�
2

+
𝜕𝑦
𝜕𝑐

𝜕2𝑐
𝜕𝑧2�

 
(C22)  

and finally gives 
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𝜕𝑐
𝜕𝐷

=
𝜕𝐷
𝜕𝑧

𝜕𝑐
𝜕𝑧

+ 𝐷 ∙
𝜕2𝑦
𝜕𝑐2
𝜕𝑦
𝜕𝑐

�
𝜕𝑐
𝜕𝑧
�
2

+ 𝐷
𝜕2𝑐
𝜕𝑧2

 

(C23)  

Since the relation between 𝑦 and c is 

𝑦 =
𝑐

𝑎 − 𝑏𝑐
 (C24)  

where 𝑎 = 140924mol
m3 , 𝑏 = 0.59717 (see eq. 43) 

𝜕𝑦
𝜕𝑐

=
𝑎

(𝑎 − 𝑏𝑐)2 
(C25)  

𝜕2𝑦
𝜕𝑐2

=
𝑎 ∙ 2 ∙ (𝑎 − 𝑏𝑐) ∙ 𝑏

(𝑎 − 𝑏𝑐)4  
(C26)  

𝜕2𝑦
𝜕𝑐2
𝜕𝑦
𝜕𝑐

=

𝑎 ∙ 2 ∙ (𝑎 − 𝑏𝑐) ∙ 𝑏
(𝑎 − 𝑏𝑐)4

𝑎
(𝑎 − 𝑏𝑐)2

=
2 ∙ (𝑎 − 𝑏𝑐) ∙ 𝑏

(𝑎 − 𝑏𝑐)2 =
2𝑏

𝑎 − 𝑏𝑐
 

(C27)  

Thus 

𝜕𝑐
𝜕𝐷

=
𝜕𝐷
𝜕𝑧

𝜕𝑐
𝜕𝑧

+ 𝐷 ∙
2𝑏

𝑎 − 𝑏𝑐
�
𝜕𝑐
𝜕𝑧
�
2

+ 𝐷
𝜕2𝑐
𝜕𝑧2

 
(C28)  

And this is different compared to 

𝜕𝑐
𝜕𝐷

=
𝜕𝐷
𝜕𝑧

𝜕𝑐
𝜕𝑧

+ 𝐷
𝜕2𝑐
𝜕𝑧2

 
(C29)  

So in calculating the differential equation in fractional occupancies instead of concentrations it is inherently 

assumed that the relation between concentration and fractional occupancies is linear and thus the volumetric 

expansion is not taken into account in their model. 
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C.5 - Verification of temperature calculation 
The temperature calculation can be verified by comparing with the analytical solution, testing the case where 

there is a constant temperature of 200K at the surface and a temperature of 0K in the specimen to begin with. 

The analytical solution to the heat conduction equation 

𝜕𝑅
𝜕𝐷

= 𝛼
𝜕2𝑅
𝜕𝑧2

 
(C30)  

 is given by 

𝑅(𝑥, 𝐷) − 𝑅𝑠
𝑅𝑑 − 𝑅𝑠

= erf �
𝑧

√4𝛼𝐷
� 

(C31)  

where 𝑅𝑠 is the surface temperature, 𝑅𝑑 the initital temperature of the material, 𝑧 is the distance from the 

surface, 𝐷 is the time and  𝛼 is the thermal diffusivity which can be calculated by eq. 176. erf(𝑥) is the error-

function of x. 

In this case where 𝑅𝑑 = 0 this gives 

𝑅(𝑥, 𝐷) = 𝑅𝑠 − 𝑅𝑠 ∙ erf �
𝑧

√4𝛼𝐷
� (C32)  

which is a similar expression to the obtained analytical solution for the concentration. 

Running this test assuming zero resistance in the air-cell, and plotting the analytically and numerically found 

solutions it is seen that the same temperature profiles are obtained. 

 
Figure 68 - temperature-depth profiles 
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Appendix D – Uneven loading 
When the stresses can no longer be assumed to be the same in both in-plane directions, as is the case if the 

sample was subjected to uniaxial stressing, the assumption that 𝜎11 = 𝜎22 is no longer valid. Below it is 

attempted to expand the model, beyond its limits, and calculate the stresses for the case of uneven loading 

The theoretical foundation for calculating stresses is discussed in section D1 and the results of applying this 

model is discussed in section D2. 

D.1 - Calculation of elastic-plastic stresses with uneven loading 

Applying the assumptions similar to the unloaded case, but with the difference that  𝜎11 ≠ 𝜎22 when uniaxial 

loading of the specimen applies, the assumptions are now 

- Since the surface of the nitride specimen is free 𝜎33 = 0,  

- assuming no bending of the specimen, and hence uniform expansion through the material gives total 

strains 𝜀11𝑡𝑏𝑡 , 𝜀22𝑡𝑏𝑡 constant in space and varying in time, 𝜀12 = 𝜀13 = 𝜀23 = 0, and thus 𝜎12 = 𝜎13 =

𝜎23 = 0 

 

Since 𝜎33 = 0  

 𝑠11 = 𝜎11 −
𝜎11 + 𝜎22

3
 

 

(D1)  

 𝑠22 = 𝜎22 −
𝜎11 + 𝜎22

3
 

 

(D2)  

 𝑠33 = −
𝜎11 + 𝜎22

3
 

 

(D3)  

and having no shear stresses, von Mises stress can be described by 
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 𝜎𝑒2 =
3
2

(𝑠112 + 𝑠222 + 𝑠332)

=
3
2�

�𝜎11 −
𝜎11 + 𝜎22

3
�
2

+ �𝜎22 −
𝜎11 + 𝜎22

3
�
2

+ �−
𝜎11 + 𝜎22

3
�
2
�  

= 𝜎112 + 𝜎222 − 𝜎22𝜎11 

(D4)  

The von Mises stress increment is then 

 

�̇�𝑒 =
3(𝑠11�̇�11 + 𝑠22�̇�22 + 𝑠33�̇�33)

2 ∙ 𝜎𝑒 
=

3��𝜎11 −
𝜎11 + 𝜎22

3 � �̇�11 + �𝜎22 −
𝜎11 + 𝜎22

3 � �̇�22�

2 ∙ �𝜎112 + 𝜎222 − 𝜎22𝜎11
 

(D5)  

For concentration dependent yield strength the plasticity criterion is not only formulated in terms of the von 

Mises stress increment, but on the plastic strain increment and the parameter �̇�, (see section 9.2). Now when 

the inplane stresses are not equal the expressions used to calculate the plastic strain increment should be 

modified. eqs. 149-150 gives the expressions 

 �̇� = �
1
𝐸𝑇

−
1
𝐸
�

3
2𝜎𝑌

�
3𝑠𝑑𝑖�̇�𝑑𝑖

2𝜎𝑌
−
𝜕𝜎𝑌
𝜕𝑅

�̇� −
𝜕𝜎𝑌
𝜕𝑐

�̇�� (D6)  

 𝜀�̇�𝑒
𝑝𝑒 = �

1
𝐸𝑇

−
1
𝐸
�

3
2𝜎𝑌

�
3𝑠𝑑𝑖�̇�𝑑𝑖

2𝜎𝑌
−
𝜕𝜎𝑌
𝜕𝑅

�̇� −
𝜕𝜎𝑌
𝜕𝑐

�̇�� 𝑠𝑘𝑒 

 

(D7)  

Combining with eqs. D1- D2 and since 𝜎12 = 𝜎13 = 𝜎23 = 0, and 𝜎33 = 0 gives 

 
�̇� = �

1
𝐸𝑇

−
1
𝐸
�

3
2𝜎𝑌

�
(2𝜎11 − 𝜎22)�̇�11 + (2𝜎22 − 𝜎11)�̇�22

2𝜎𝑌
−
𝜕𝜎𝑌
𝜕𝑅

�̇� −
𝜕𝜎𝑌
𝜕𝑐

�̇�� (D8)  

and 

 
𝜀�̇�𝑒
𝑝𝑒 = �

1
𝐸𝑇

−
1
𝐸
�

3
2𝜎𝑌

�
(2𝜎11 − 𝜎22)�̇�11 + (2𝜎22 − 𝜎11)�̇�22

2𝜎𝑌
−
𝜕𝜎𝑌
𝜕𝑅

�̇� −
𝜕𝜎𝑌
𝜕𝑐

�̇�� 𝑠𝑘𝑒 (D9)  

 

The expressions for the increments of the stress components are given by (see eq. 88-90) 
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�̇�11 =

𝐸
1 + 𝜈

�1 +
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠11𝑠11
𝜎𝑒2

� 𝜀1̇1 

+
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠11𝑠22
𝜎𝑒2

� 𝜀2̇2 

+
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠11𝑠33
𝜎𝑒2

� 𝜀3̇3  

(D10)  

 
�̇�22 =

𝐸
1 + 𝜈

�
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠22𝑠11
𝜎𝑒2

� 𝜀1̇1 

+
𝐸

1 + 𝜈
�1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠22𝑠22
𝜎𝑒2

� 𝜀2̇2 

+
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠22𝑠33
𝜎𝑒2

� 𝜀3̇3  

(D11)  

 
�̇�33 =

𝐸
1 + 𝜈

�
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠33𝑠11
𝜎𝑒2

� 𝜀1̇1 

+
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠33𝑠22
𝜎𝑒2

� 𝜀2̇2 

+
𝐸

1 + 𝜈
�1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

𝑠33𝑠33
𝜎𝑒2

� 𝜀3̇3  

 

(D12)  

 

Inserting the expressions for 𝑠11, 𝑠22, 𝑠33 (eqs. D1-D3) and 𝜎𝑒2  (eq. D4) gives 

 
�̇�11 (𝑖) =

𝐸
1 + 𝜈 �

1 +
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �4𝜎112 + 𝜎222 − 4𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀1̇1 

+
𝐸

1 + 𝜈 �
𝜈

1− 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀2̇2 

+
𝐸

1 + 𝜈 �
𝜈

1− 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀3̇3  

 

(D13)  



190 
 
 

 
�̇�22 (𝑖) =

𝐸
1 + 𝜈 �

𝜈
1− 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀1̇1 

+
𝐸

1 + 𝜈 �
1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 + 4𝜎222 − 4𝜎22𝜎11)

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀2̇2 

+
𝐸

1 + 𝜈 �
𝜈

1− 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� 𝜀3̇3  

 

(D14)  

 
�̇�33 (𝑖) =

𝐸
1 + 𝜈 �

𝜈
1− 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀1̇1 

+
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� 𝜀2̇2 

+
𝐸

1 + 𝜈 �
1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� 𝜀3̇3  

 

(D15)  

Because of the free surface 𝜎33 = 0 at all times, thus �̇�33 = 0, giving 

 
0 =

𝐸
1 + 𝜈 �

𝜈
1− 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀1̇1 

+
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� 𝜀2̇2 

+
𝐸

1 + 𝜈 �
1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� 𝜀3̇3  

 

(D16)  

 

and from this 𝜀3̇3  can be found as a function of 𝜀1̇1  and 𝜀2̇2 : 
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𝜀3̇3 =  −

� 𝜈
1− 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

𝜀1̇1 

−

� 𝜈
1− 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

𝜀2̇2  

(D17)  
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Inserting this expression for 𝜀3̇3  in the equations for �̇�11  and �̇�22  (eqs. D13-D14) gives 

 
�̇�11 (𝑖) =

𝐸
1 + 𝜈 �

1 +
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �4𝜎112 + 𝜎222 − 4𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀1̇1 

+
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀2̇2 

+
𝐸

1 + 𝜈 �
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

∙

⎝

⎜
⎜
⎜
⎜
⎛

−

� 𝜈
1− 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

𝜀1̇1 

−

� 𝜈
1− 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

𝜀2̇2 

⎠

⎟
⎟
⎟
⎟
⎞

 

 

(D18)  
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�̇�22 (𝑖) =

𝐸
1 + 𝜈 �

𝜈
1− 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀1̇1 

+
𝐸

1 + 𝜈 �
1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 + 4𝜎222 − 4𝜎22𝜎11)

𝜎112 + 𝜎222 − 𝜎22𝜎11
� 𝜀2̇2 

+
𝐸

1 + 𝜈 �
𝜈

1− 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

∙

⎝

⎜
⎜
⎜
⎜
⎛

−

� 𝜈
1 − 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

𝜀1̇1 

−

� 𝜈
1 − 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 − 𝛽 3

2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

𝜀2̇2 

⎠

⎟
⎟
⎟
⎟
⎞

 

 

(D19)  

 

where for plasticity 𝛽 = 1. For elasticity 𝛽 = 0 and �̇�11  and �̇�22  reduces to 

 

�̇�11 (𝑖) =
𝐸

1 + 𝜈
⎝

⎛��1 +
𝜈

1 − 2𝜈�
−

� 𝜈
1− 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝜀1̇1 + ��
𝜈

1 − 2𝜈�
−

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� 𝜀2̇2 

⎠

⎞ 
(D20)  

 

�̇�22 (𝑖) =
𝐸

1 + 𝜈
⎝

⎛��
𝜈

1− 2𝜈�
−

� 𝜈
1− 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝜀1̇1 + ��1 +
𝜈

1 − 2𝜈�
−

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� 𝜀2̇2 

⎠

⎞ 
(D21)  

 

The mechanical strain, 𝜀2̇2 , was equal to 𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ 
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and since the total strains are assumed constant in space and varying in time, they can be found using 

equilibrium of the stress over the cross-section from the surface to the depth 𝑧𝑚𝑎𝑚 giving 

 
� �̇�11 𝑑𝑧
𝑧𝑚𝑚𝑚

0
= 0 (D22)  

 
� �̇�22 𝑑𝑧
𝑧𝑚𝑚𝑚

0
= 0 (D23)  

For elasticity this gives  

 

�
𝐸

1 + 𝜈
⎝

⎛��1 +
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� �̇�11
𝐷𝑓𝐷

𝑧𝑚𝑚𝑚

0

− ��1 +
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� ��̇�11
𝐷ℎ + �̇�11

𝑐ℎ�

+ ��
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� �̇�22
𝐷𝑓𝐷

− ��
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� ��̇�22
𝐷ℎ + �̇�22

𝑐ℎ�

⎠

⎞𝑑𝑧 = 0 

(D24)  

and 
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�
𝐸

1 + 𝜈
⎝

⎛��
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� �̇�11
𝐷𝑓𝐷

𝑧𝑚𝑚𝑚

0

− ��
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� ��̇�11
𝐷ℎ + �̇�11

𝑐ℎ�

+ ��1 +
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� �̇�22
𝐷𝑓𝐷

− ��1 +
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� ��̇�22
𝐷ℎ + �̇�22

𝑐ℎ�

⎠

⎞𝑑𝑧 = 0 

(D25)  

Isolating 𝜀1̇1𝑡𝑏𝑡 in the first equation gives 

 
𝜀1̇1𝑡𝑏𝑡 = ��

𝐸
1 + 𝜈

��1 +
𝜈

1 − 2𝜈�
−

� 𝜈
1− 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� �𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ�𝑑𝑧
𝑧𝑚𝑎𝑥

0

−�
𝐸

1 + 𝜈
��

𝜈
1− 2𝜈�

−
� 𝜈
1− 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑎𝑥

0
∙ 𝜀2̇2𝑡𝑏𝑡

+ �
𝐸

1 + 𝜈
��

𝜈
1− 2𝜈�

−
� 𝜈
1− 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

��𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ�𝑑𝑧
𝑧𝑚𝑎𝑥

0
�

/�
𝐸

1 + 𝜈
��1 +

𝜈
1 − 2𝜈�

−
� 𝜈
1− 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑎𝑥

0
 

(D26)  

Setting 

 

𝐴𝐸𝑒 = �
𝐸

1 + 𝜈
��1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� ��̇�11
𝐷ℎ + �̇�11

𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚

0
 (D27)  
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𝐵𝐸𝑒 = �
𝐸

1 + 𝜈
��

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑚𝑚

0
 (D28)  

 

𝐶𝐸𝑒 = �
𝐸

1 + 𝜈
��

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� ��̇�22
𝐷ℎ + �̇�22

𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚

0
 (D29)  

 

𝐷𝐸𝑒 = �
𝐸

1 + 𝜈
��1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑚𝑚

0
 (D30)  

The expression for 𝜀1̇1𝑡𝑏𝑡 can be written as 

 𝜀1̇1𝑡𝑏𝑡 = (𝐴𝐸𝑅 − 𝐵𝐸𝑅 ∙ 𝜀2̇2𝑡𝑏𝑡 + 𝐶𝐸𝑅)/𝐷𝐸𝑅 (D31)  

Inserting this in the second equation and isolating 𝜀2̇2𝑡𝑏𝑡 gives 

 

𝜀2̇2𝑡𝑏𝑡 =
−𝐸𝐸𝑅 ∙ (𝐴𝐸𝑅 + 𝐶𝐸𝑅)

𝐷𝐸𝑅
+ 𝐹𝐸𝐿 +𝐻𝐸𝑅

𝐺𝐸𝑅 + 𝐸𝐸𝑅 ∙ 𝐵𝐸𝑅
𝐷𝐸𝑅

 (D32)  

 

where 

 

𝐸𝐸𝑒 = �
𝐸

1 + 𝜈
��

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑚𝑚

0
 (D33)  

 

𝐹𝐸𝑒 = �
𝐸

1 + 𝜈
��

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

���̇�11
𝐷ℎ + �̇�11

𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚

0
 (D34)  

 

𝐺𝐸𝑒 = �
𝐸

1 + 𝜈
��1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑚𝑚

0
 (D35)  
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𝐻𝐸𝑒 = �
𝐸

1 + 𝜈
��1 +

𝜈
1 − 2𝜈

� −
� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� ��̇�22
𝐷ℎ + �̇�22

𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚

0
 

(D36)  

 

For plasticity the equilibrium of stress over the cross-section gives: 

�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 �4𝜎112 + 𝜎222 − 4𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙  (𝜀1̇1𝑡𝑏𝑡 − 𝜀1̇1𝑡ℎ − 𝜀1̇1𝑐ℎ)

+

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1− 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 �−2𝜎11

2 − 2𝜎222 + 5𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧

+ �
𝐸

1 + 𝜈
⎝

⎛��1 +
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀1̇1𝑡𝑏𝑡 − 𝜀1̇1𝑡ℎ − 𝜀1̇1𝑐ℎ)
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

+ ��
𝜈

1− 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ)

⎠

⎞𝑑𝑧 = 0 

 

(D37)  
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and 

�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1 − 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 �−2𝜎11

2 − 2𝜎222 + 5𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1− 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 �−2𝜎11

2 + 𝜎222 − 𝜎22𝜎11�
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀1̇1𝑡𝑏𝑡 − 𝜀1̇1𝑡ℎ − 𝜀1̇1𝑐ℎ)

+

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1− 2𝜈
−

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 (𝜎112 + 4𝜎222 − 4𝜎22𝜎11)

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

−

� 𝜈
1− 2𝜈 −

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1− 2𝜈)/3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

� � 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1− 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ (𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧

+�
𝐸

1 + 𝜈
⎝

⎛��
𝜈

1 − 2𝜈
� −

� 𝜈
1− 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� (𝜀1̇1𝑡𝑏𝑡 − 𝜀1̇1𝑡ℎ − 𝜀1̇1𝑐ℎ) + ��1 +
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1− 2𝜈�

� (𝜀2̇2𝑡𝑏𝑡 − 𝜀2̇2𝑡ℎ − 𝜀2̇2𝑐ℎ)

⎠

⎞𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

= 0 

 

(D38)  

 

From these two equations with two unknown, expressions for the total strains can be found, as seen in 

Appendix B.2, to be 

 
𝜀1̇1𝑡𝑏𝑡 = −

(𝐶𝑑𝑛𝑡 + 𝐺𝑑𝑛𝑡)
(𝐴𝑑𝑛𝑡 + 𝐸𝑑𝑛𝑡) ∙ 𝜀2̇2

𝑡𝑏𝑡 −
𝐵𝑑𝑛𝑡 + 𝐷𝑑𝑛𝑡 + 𝐹𝑑𝑛𝑡 + 𝐻𝑑𝑛𝑡

(𝐴𝑑𝑛𝑡 + 𝐸𝑑𝑛𝑡)  (D39)  

 

and 
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𝜀2̇2𝑡𝑏𝑡 =

(𝐼𝑑𝑛𝑡 +𝑀𝑑𝑛𝑡) ∙ (𝐵𝑑𝑛𝑡 + 𝐷𝑑𝑛𝑡 + 𝐹𝑑𝑛𝑡 + 𝐻𝑑𝑛𝑡)
(𝐴𝑑𝑛𝑡 + 𝐸𝑑𝑛𝑡) − 𝐽𝑑𝑛𝑡 − 𝐿𝑑𝑛𝑡 − 𝑁𝑑𝑛𝑡 − 𝑃𝑑𝑛𝑡

�− (𝐼+𝑀) ∙ (𝐶𝑑𝑛𝑡 + 𝐺𝑑𝑛𝑡)
(𝐴𝑑𝑛𝑡 + 𝐸𝑑𝑛𝑡) + 𝐾𝑑𝑛𝑡 + 𝑂𝑑𝑛𝑡�

 (D40)  

where 

𝐴𝑑𝑛𝑡

= �
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈 −
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �4𝜎112 + 𝜎222 − 4𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� � 𝜈

1− 2𝜈 −
3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

(D41)  

 

𝐵𝑑𝑛𝑡

= −�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�1 +
𝜈

1 − 2𝜈 −
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �4𝜎112 + 𝜎222 − 4𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� � 𝜈

1 − 2𝜈 −
3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ �𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ�

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

(D42)  
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𝐶𝑑𝑛𝑡

= �
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1− 2𝜈 −
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1− 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� � 𝜈

1 − 2𝜈 −
3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

 

(D43)  

 

𝐷𝑑𝑛𝑡

= −�
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎜
⎛

�
𝜈

1− 2𝜈 −
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

1
9 �−2𝜎112 − 2𝜎222 + 5𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
�

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

0

−

� 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 �−2𝜎112 + 𝜎222 − 𝜎22𝜎11�

𝜎112 + 𝜎222 − 𝜎22𝜎11
� � 𝜈

1 − 2𝜈 −
3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 − 2𝜎222 − 𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�

�1 + 𝜈
1 − 2𝜈 −

3
2

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

1
9 (𝜎112 + 𝜎222 + 2𝜎22𝜎11)
𝜎112 + 𝜎222 − 𝜎22𝜎11

�
⎠

⎟
⎟
⎟
⎟
⎞

∙ �𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ�

⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑𝑧 

 

(D44)  

 

 
𝐸𝑑𝑛𝑡 = �

𝐸
1 + 𝜈

��1 +
𝜈

1 − 2𝜈�
−

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 (D45)  
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𝐹𝑑𝑛𝑡 = −�

𝐸
1 + 𝜈

��1 +
𝜈

1 − 2𝜈�
−

� 𝜈
1− 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

� �𝜀1̇1𝑡ℎ + 𝜀1̇1𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 (D46)  

 
𝐺𝑑𝑛𝑡 = �

𝐸
1 + 𝜈

��
𝜈

1 − 2𝜈
� −

� 𝜈
1 − 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 (D47)  

 
𝐻𝑑𝑛𝑡 = −�

𝐸
1 + 𝜈

��
𝜈

1− 2𝜈�
−

� 𝜈
1− 2𝜈�

2

�1 + 𝜈
1 − 2𝜈�

��𝜀2̇2𝑡ℎ + 𝜀2̇2𝑐ℎ�𝑑𝑧
𝑧𝑚𝑚𝑚

𝑧𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

 (D48)  

 

𝐼𝑑𝑛𝑡

= �
𝐸

1 + 𝜈

⎩
⎪
⎪
⎨

⎪
⎪
⎧
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D.2 – Results and discussion of modelling of uneven loading 
Incorporating the calculation of stresses for uneven loading described above instead of the ones where even 

loading is assumed, provides the opportunity for applying for example uniaxial tensile stressing of the sample. 

The calculations were tested with no loading, for both a thin sample and a sample where semi-infinity was 

assumed (𝜀𝑡𝑏𝑡 = 0), to verify the model and in both cases these tests gave the same simulation results as when 

applying the simpler model where even loading is assumed.   

Testing the response of uniaxial pre-stressing was then done assuming a semi-infinite sample. The results are 

shown in Figure 69. As for the case of biaxial pre-stressing discussed in section 10, pre-stressing does not affect 

the composition profile much when semi-infinite samples are assumed.  

Testing uniaxial pre-stressing of thin samples resulted in unstable calculations of the stress, even for very small 

time steps, and thus this is reaching the limits of reasonable applicability of this model. This is probably the 

time to use a full 3D finite element model instead. An example of the unstable behaviour is seen in Figure 70. 
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Figure 69 - Predicted composition and stress profiles after 22h nitriding for a sample of thickness 2L = 300μm with various even and 
uneven pre-stressing 
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Figure 70 - Calculated stress profiles (𝝈𝟑𝟑) uneven loading of 𝝈𝟑𝟑 = 100MPa and 𝝈𝟐𝟐 = 0, for 10h nitriding of 25μm thin samples with 
no trapping 
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Appendix E- Articles 
 

E.1 Article 1 
The subsequent article has been submitted to the journal Modelling and Simulation in Materials Science and 

Engineering. 
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Abstract 

Nitriding of stainless steel causes a surface zone of expanded austenite, which improves the wear resistance of the stainless 

steel while preserving the stainless behavior.  During nitriding huge residual stresses are introduced in the treated zone, 

arising from the volume expansion that accompanies the dissolution of high nitrogen contents in expanded austenite.   

An intriguing phenomenon during low-temperature nitriding is that the residual stresses evoked by dissolution of nitrogen in 

the solid state, affect the thermodynamics and the diffusion kinetics of nitrogen dissolution. In the present paper solid 

mechanics was combined with thermodynamics and diffusion kinetics to simulate the evolution of composition-depth and 

stress-depth profiles resulting from nitriding.  The model takes into account a composition-dependent diffusion coefficient 

of nitrogen in expanded austenite, short range ordering (trapping) of nitrogen atoms by chromium atoms, and the effect of 

composition-induced stress on surface concentration and diffusive flux. The effect of plasticity and concentration- 

dependence of the yield stress was also included. 

 

Keywords: Nitriding, nitrogen diffusion, expanded austenite, modelling, stress induced diffusion, plasticity 

 

Introduction 

Austenitic stainless steels are widely applied in structural applications because of their corrosion resistance in combination 

with favourable manufacturing performance. Generally, austenitic stainless steels have poor tribological and wear 

performance. Low-temperature thermochemical surface engineering by nitriding, carburizing and nitrocarburizing provides 

a means to drastically improve the tribological/wear performance, without compromising the general corrosion performance 

and even improving the resistance against localized corrosion, as pitting and crevice corrosion [1,2,3]. 

In low-temperature nitriding, carburizing or nitrocarburizing large amounts of nitrogen and/or carbon are dissolved in the 

surface region. This brings about a zone of expanded austenite, which essentially is a supersaturated solution of nitrogen 

and/or carbon in austenite. The expanded austenite zone has a substantially higher hardness than the untreated steel and 
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provides drastically improved wear resistance. Furthermore, high compressive residual stresses are introduced, which result 

in enhanced fatigue performance. A zone of expanded austenite can be achieved by bringing the steel in contact with an 

environment providing nitrogen and/or carbon, as for example in plasma-assisted or gas-based processing [1,2,3]. The 

present work is concerned with gas-based nitriding of austenitic stainless steels and modelling the evolution of nitrogen-

depth and residual stress-depth profiles in relation to the processing parameters. Even though the case investigated is 

specific for gaseous nitriding, the concepts of the mechanisms governing the evolution of composition and residual stress 

are claimed to be applicable to (nitro)carburizing and plasma-assisted and liquid processing, as in Kolsterizing®, as well. 

  

1. State-of-the art of modelling low-temperature surface hardening of stainless steel. 

Concentration-depth profiles developing during low temperature nitriding, measured in for example [1], are characterized 

by the shape shown in Fig. 1: an initially steep decrease in nitrogen content followed by a plateau and a steep decline at the 

case-core transition. This behaviour deviates from the classical example in  textbooks on diffusion showing the  

composition profile expected for diffusion into a semi-infinite medium with a constant diffusion coefficient (as for example 

carbon into iron/steel) and constant surface concentration, which obeys the complementary error function. Different 

approaches have been presented in the literature to explain and model the evolution of such composition-profiles. 

Parascandola, et al. [4] explained the characteristic nitrogen-concentration profile developing during ion plantation of 

nitrogen from trapping and detrapping of nitrogen atoms at chromium sites (i.e. short range order of chromium and nitrogen 

[5]),  assuming a constant diffusion coefficient. A satisfactory correspondence was obtained between measured and fitted 

composition profiles. This mechanism was adopted, extended to include sputtering, and applied to plasma-nitrided single 

crystals with various orientations by Martinavicius et al. [6]. The assumption of a constant diffusion coefficient in these 

models contrasts the strong dependence of the nitrogen diffusion coefficient in austenitic stainless steel as determined 

experimentally on homogeneous thin foils of expanded austenite with various nitrogen contents [7].  Qualitatively, the 

composition dependence of the diffusion coefficient of nitrogen in expanded austenite can explain the shape of the nitrogen 

concentration profile developing during nitriding, as demonstrated by calculating the concentration profile from Fick’s 2nd 

law [8,9,10].  A better correspondence between calculated and experimental composition-depth profiles was found when 

trapping of nitrogen atoms was taken into account, as this allows a steeper case-core transition [8,9,10]. Moreover, it was 

demonstrated that the finite rate of the surface reaction, i.e. the decomposition rate of gas species at the surface before 

incorporation in the solid, as well as the effects of a compressive stress on the solubility of nitrogen in expanded austenite 

and a compressive stress gradient on the diffusive flux also contribute to the evolution of the concentration-depth profile 

[10]. 
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Figure 1 – Typical shape of measured concentration-depth profiles 

 

It is well established that low-temperature nitriding of austenitic stainless steel leads to a composition-induced compressive 

residual stress depth-profile as a consequence of the lattice expansion associated with the dissolution of interstitial nitrogen 

and/or carbon. The compressive stresses developing are several GPa’s in magnitude, as determined at room temperature 

after cooling [1,11,12]. Although the stresses at room temperature are mainly composition-induced, a contribution from a 

difference in linear expansion coefficient between austenite and expanded austenite cannot be excluded, because the 

expansion coefficient depends on the nitrogen content in expanded austenite [13].  

Christiansen and Somers showed that the enormous residual stress gradient can augment the depth range of the expanded 

austenite zone by a factor of 2 [14]. The effect of residual stress on the nitrogen concentration profile was also recognized 

by Galdikas and Moskalioviene. They modelled the influence of a residual stress gradient on the concentration profile for 

the case of a constant as well as for a composition-dependent diffusion coefficient, assuming that the lattice misfit  

associated with nitrogen dissolution is elastically accommodated [15,16] . In their model a linear relation between residual 

stress and nitrogen concentration profile was assumed. For this purpose they adopted an unphysical proportionality 

parameter originally proposed by Christiansen and Somers [17] for the purpose of estimating artefacts on X-ray stress 

determination.  In the pragmatic approach by Galdikas and Moskalioviene [15,16], no actual physical coupling occurs 

between the concentration-depth profile and mechanical equilibrium considerations. Furthermore, in [15,16] a diffusion 

coefficient continuously decreasing with nitrogen concentration was assumed (which approaches infinity for very low 

nitrogen contents!), rather than the dependence showing an increase with nitrogen content and a decrease as determined 

experimentally from diffusion in stress-free foils of uniform composition [7].  
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Experimentally, it has been demonstrated from lattice rotations and associated texture changes in expanded austenite as well 

as from enhanced surface roughness by grain push-out, that, at least part of the composition-induced stress is accommodated 

plastically during nitriding [18,19,20,21]. Biaxial compressive stress levels of several GPa’s, as observed experimentally, 

clearly exceed by far the yield stress of austenitic stainless steel. The high compressive stresses measured are explained 

from solid-solution strengthening of austenite by the presence of nitrogen, which implies that the yield stress is augmented 

importantly by the dissolution of nitrogen. The occurrence of plastic accommodation of composition-induced stress is 

therefore the result of a competition between strengthening and stress build-up. Apparently, for nitriding (and nitro-

carburizing) the stress build up exceeds the yield stress achievable by solid-solution strengthening. Note that the occurrence 

of plastic accommodation of composition-induced stresses has so far not been observed for carburizing of stainless steel. 

This indicates that in carbon-expanded austenite the strengthening effect dominates over the composition induced stress 

build-up for the (narrower) composition range under consideration. 

A better understanding of the stress-assisted diffusion controlled growth of the expanded austenite case and the associated 

evolution of the substantial composition-induced stresses is crucial for an accurate prediction of the concentration-depth and 

stress-depth profiles.   

In the present work the interdependent influences of composition and stress on the evolution of nitrogen concentration-

depth profiles and stress-depth profiles in expanded austenite zones are modelled. The model includes: 

a concentration-dependent diffusion coefficient of nitrogen in expanded austenite; 

trapping of nitrogen atoms by chromium atoms;  

the kinetics of the surface reaction;  

the effect of composition-induced stress on the nitrogen solubility in expanded austenite;    

the effect of a composition-induced stress gradient on the diffusive flux; 

the effect of the competition between solid-solution strengthening and compressive stress build-up to account for the 

occurrence of plastic deformation.  

 

In contrast with previous work by for example Christiansen et al. [10] or Galdikas  and Moskalioviene [15] the model 

presented here calculates stress based on mechanical equilibrium principles and considers elasto-plasticity. 

Apart from the kinetics of the surface reactions the concepts investigated here can be directly transferred to plasma nitriding 

as well, albeit that plasma nitriding requires a consideration of the sputtering effects at the surface. It is beyond the scope of 

the present work to discuss such peculiarities of plasma-surface interactions.  
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2. Basic equations of the model 

The present work assumes 1-dimensional diffusion of nitrogen in the depth-direction, with reference to a flat surface. 

Consequently, the influence of corners and curved surfaces is not considered.   

2.1 Basic diffusion equations 

The diffusive flux of nitrogen atoms in the direction z under the influence of a chemical potential gradient of this species,  
∂µ𝑁
∂z

, is defined as [22]  

J = −M𝑁c𝑁
∂µ𝑁
∂z

        (1) 

where cN is the nitrogen concentration in mol.m-3, 𝜇𝑁 is the chemical potential of nitrogen in J.mol-1 and MN is the mobility 

of nitrogen in m2.s-1 given by [22]  

𝑀𝑁 = 𝜕𝑁
𝑅𝑇

        (2) 

where DN is the intrinsic diffusion coefficient of nitrogen in m2.s-1, R is the gas constant in J.mol-1.K-1 and T is the 

temperature in K. 

Generally, the chemical potential is assumed to depend on the concentration only 

𝜇(𝑐𝑁) = 𝜇0 + 𝑅𝑅𝑅𝑅(𝑐𝑁)       (3) 

In which case Eq. 1 reduces to Fick’s first law 

J𝑁 = −D𝑁
∂c𝑁
∂z

        (4) 

More generally, the chemical potential is a function of the activity of nitrogen, aN, and the hydrostatic stress (pressure), 𝜎𝐻 , 

and the temperature T [23,24] 

𝜇𝑁(𝑎𝑁 ,𝜎𝐻 ,𝑅) = 𝜇𝑁,0 + 𝑅𝑅𝑅𝑅(𝑎𝑁) − 𝑉𝑁𝜎𝐻      (5)  

where 𝜇𝑁,0 is the chemical potential of nitrogen in the reference state with respect to which aN is defined3, VN is the partial 

molar volume of nitrogen. It is noted that in principle aN, VN and 𝜎𝐻 depend on the temperature. Assuming that diffusion 

occurs at constant temperature and that no temperature gradients are present, the diffusive flux follows from inserting Eq. 5 

into Eq. 1, which results in 

𝐽𝑁 = −𝜕𝑁𝑐𝑁
𝑅𝑇

�𝜕𝜇𝑁
𝜕𝑐𝑁

𝜕𝑐𝑁
𝜕𝑧

+ 𝜕𝜇𝑁
𝜕𝜎𝑁

𝜕𝜎𝑁
𝜕𝑧
�      (6) 

                                                           
3 Usually, for nitrogen in solid solution the reference state is taken as nitrogen gas at 1 bar at the temperature under 
consideration. 
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In a Fe-N phase the activity is linearly proportional to the nitriding potential, 𝐾𝑁 = 𝑝𝑁𝑁3
𝑝𝑁2

3/2, by [25]  

𝑎 = 𝐾𝑇
𝜑𝐾𝑁       (7) 

 where 𝐾𝑇
𝜑(𝑅,𝑝) is the temperature and pressure dependent equilibrium constant for the reaction describing the dissolution 

of N into the solid phase 𝜑  from a gas containing NH3 and H2. 

Since the activity depends on the concentration 

𝜕𝜇𝑁
𝜕𝑐𝑁

= 𝑅𝑅 𝜕𝑒𝑛𝑎𝑁
𝜕𝑐𝑁

= 𝑅𝑇
𝑐𝑁

𝜕𝑒𝑛(𝑎𝑁)
𝜕𝑒𝑛(𝑐𝑁)

= 𝑅𝑇
𝑐𝑁

𝜕𝑒𝑛�𝐾𝑇
𝜑𝐾𝑁�

𝜕𝑒𝑛(𝑐𝑁)
     (8)  

Realizing that 𝐾𝑇
𝜑only depends on pressure and temperature and not on nitrogen concentration, it is obtained 

𝜕𝜇𝑁
𝜕𝑐𝑁

= 𝑅𝑇
𝐾𝑁

𝜕𝐾𝑁
𝜕𝑐𝑁

       (9) 

Inserting Eq. 9 in Eq. 8, and inserting in Eq. 6 the following generalized form of Fick’s 1st law is obtained 

𝐽𝑁 = −𝜕𝑁𝑐𝑁
𝑅𝑇

�𝑅𝑇
𝐾𝑁

𝜕𝐾𝑁
𝜕𝑐𝑁

𝜕𝑐𝑁
𝜕𝑧

− 𝑉𝑁
𝜕𝜎𝑁
𝜕𝑧
�     (10) 

Accordingly, the generalized form of Fick’s 2nd law is 

𝜕𝑐𝑁
𝜕𝑡

= − 𝜕
𝜕𝑧
�−𝐷𝑁

(𝑐). 𝜕𝑐𝑁
𝜕𝑧

+ 𝜕𝑁.𝑐𝑁
𝑅𝑇

.𝑉𝑁 . 𝜕𝜎𝑁
𝜕𝑧
�     (11a) 

where 𝐷𝑁
(𝑐) represents the concentration dependence of the diffusion coefficient of nitrogen, i.e. 𝐷𝑁 times the 

thermodynamic factor �𝑐𝑁
𝐾𝑁

𝜕𝐾𝑁
𝜕𝑐𝑁

�. When 𝐷𝑁
(𝑐) is a known explicit function of the concentration the equation can be rewritten 

to 

𝜕𝑐𝑁
𝜕𝑡

= − 𝜕
𝜕𝑧
�−𝐷𝑁

(𝑐). 𝜕𝑐𝑁
𝜕𝑧

+ 𝜕𝑁
(𝑝)

𝜕𝐾𝑁
𝜕𝑝𝑁

. 𝐾𝑁
𝑅𝑇

.𝑉𝑁 . 𝜕𝜎𝑁
𝜕𝑧
�     (11b) 

and then the differentiation with respect to z gives 

𝜕𝑐𝑁
𝜕𝑡

= 𝜕𝜕𝑁
(𝑝)

𝜕𝑐𝑁
∙ �𝜕𝑐𝑁

𝜕𝑧
�
2

+ 𝐷𝑁
(𝑐) ∙ 𝜕

2𝑐𝑁
𝜕𝑧2

− 𝜕
𝜕𝑧
�𝐷𝑁

(𝑐) ∙ 𝐾𝑁
𝜕𝐾𝑁
𝜕𝑝𝑁

� ∙ 𝑉𝑁
𝑅𝑇

𝜕𝜎𝑁
𝜕𝑧

− 𝐷𝑁
(𝑐) ∙ � 𝐾𝑁

𝜕𝐾𝑁
𝜕𝑝𝑁

𝑉𝑁
𝑅𝑇

𝜕2𝜎𝑁
𝜕𝑧2

� (12) 
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2.2 Trapping 

The short-range ordering of nitrogen atoms by chromium is referred to as trapping and is mathematically treated 

analogously to nitrogen precipitation as in [10,26,27]. It is assumed that trapping first occurs above a certain threshold 

probability for finding a Cr-N pair of atoms. Analogous to the solubility product of nitrogen and chromium contents above 

which CrN precipitation occurs, the thermodynamic solubility constant, Ke, is introduced to describe the solubility product 

of nitrogen and chromium contents above which trapping of nitrogen atoms occurs. Suppression of the actual precipitation 

of chromium nitride through sluggish diffusion kinetics of chromium diffusion is the very essence of supersaturated, 

metastable expanded austenite during low temperature nitriding (and/or carburizing) of stainless steel. Prolonged nitriding 

or subsequent ageing will eventually lead to the unintentional but unavoidable precipitation of CrN. 

The equilibrium constant of trapping nitrogen by chromium is described by: 

𝐾𝑒 = 1
𝑐𝐶𝑟∙𝑐𝑁

𝑛 = 1
𝐾𝑀𝑒𝑁

→ 𝐾𝑀𝑒𝑁 = 𝑐𝐶𝑠 ∙ 𝑐𝑁𝑛      (13) 

where jc is the concentration of the dissolved element j and 𝐾𝑀𝑒𝑁 is the solubility product of Cr  and N with n being the 

number of nitrogen atoms per chromium atom, which is about Cr:N=1:0.9 for strong binding of nitrogen to chromium in 

AISI 316L [21]. 

 

2.3 Diffusion boundary condition at the gas/solid interface 

The concentration of nitrogen at the surface of expanded austenite during gaseous nitriding depends on the balance of the 

fluxes of nitrogen atoms at the surface [28]. The flux of nitrogen atoms arriving at the surface can usually be assumed to be 

governed by the dissociation kinetics of nitrogen-containing species at the surface (as ammonia). The fluxes of nitrogen 

atoms leaving from the surface are the diffusive flux of nitrogen into the solid state and the flux of N2 molecules desorbing 

from the surface after association of adsorbed N atoms. The latter can be omitted for low temperature nitriding of stainless 

steel (T< 723 K), but has been observed to play an important role at higher temperatures and high ammonia contents [29]. 

The flux of nitrogen atoms arriving at the surface 𝐽𝑁𝑠  is given by [28,30] 

𝐽𝑠𝑠𝑠𝑠 = 𝑘 ∙ �𝑐𝑁
𝑒𝑒 − 𝑐𝑁𝑠 �       (14)  

where 𝑐𝑁𝑠  is the concentration of nitrogen just below the surface, 𝑐𝑁
𝑒𝑒  is the nitrogen concentration in the solid phase at the 

surface that would prevail if imposed equilibrium would be attained between nitrogen in the gas phase and nitrogen in solid 

solution, i.e. the chemical potentials of nitrogen in the gas-phase and in solid solution are equal; k is the reaction-rate 

constant of the slowest step in the ammonia dissociation [30]. 

At the surface the concentration can then be found from the continuity equation for balancing the arriving and leaving 

nitrogen fluxes: 
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𝜕𝑐𝑁
𝑝

𝜕𝑡
= −𝜕𝐽𝑁

𝑝

𝜕𝑧
= −�𝜕𝐽𝑁

𝑝,𝑑𝑖𝑟𝑟

𝜕𝑧
− 𝜕𝐽𝑁

𝑝,𝑑𝑖𝑝𝑝

𝜕𝑧
�     (15) 

where  𝐽𝑁
𝑠,𝑎𝑑𝑠𝑠 and 𝐽𝑁

𝑠,𝑎𝑑𝑠𝑠 are the fluxes of nitrogen atoms arriving at the surface (from dissociation) and leaving from the 

surface by diffusion, respectively. 

2.4 Calculation of stress 

The strain arising from the expansion of the austenite lattice as caused by the dissolution of interstitial nitrogen, i.e. the 

chemical-induced strain, 𝜀𝑑𝑖𝑐ℎ, is defined as 

  

𝑓𝑓𝑓 𝑖 = 𝑗:    𝜀𝑑𝑖𝑐ℎ(𝑐) =
𝑉(𝑐) 

1 3� −𝑉𝑟𝑒𝑟
1 3�

𝑉𝑟𝑒𝑟
1 3�

      (16) 

𝑓𝑓𝑓 𝑖 ≠ 𝑗:    𝜀𝑑𝑖𝑐ℎ = 0 

 

 

where V(c) in the concentration-dependent volume of (expanded) austenite per metal atom in m3 and Vref indicates the  

volume per metal atom of the interstitial-free lattice of austenite. 

The total strain, 𝜀𝑑𝑖𝑡𝑏𝑡, is then given by [31] 

𝜀𝑑𝑖𝑡𝑏𝑡 = 𝜀𝑑𝑖𝑚𝑒𝑐ℎ + 𝜀𝑑𝑖𝑐ℎ + 𝜀𝑑𝑖𝑡ℎ       (17)  

where  𝜀𝑑𝑖𝑡ℎ is the thermal strain and 𝜀𝑑𝑖𝑚𝑒𝑐ℎ is the mechanical strain which is the sum of the elastic and plastic strain. 

A simple description of the stress state in the surface can be found by applying a method equivalent to that described by 

Hattel and Hansen [31,32], with the following assumptions:  

- the surface of the sample is homogeneous and can move freely: 𝜎33 = 𝜎⊥ = 0 (𝜎⊥ is the stress normal to the 
surface); 

- the stress state in the surface is rotationally symmetric, hence the normal stresses in the surface plane are equal 
𝜎11 = 𝜎22 = 𝜎∥ (𝜎∥ is the stress parallel to the surface); 

- the specimen does not bend, hence uniform expansion at all depths: 𝜀11𝑡𝑏𝑡 = 𝜀22𝑡𝑏𝑡 = 𝜀∥𝑡𝑏𝑡  and 𝜀12𝑡𝑏𝑡 = 𝜀13𝑡𝑏𝑡 = 𝜀23𝑡𝑏𝑡 =
0, and thus 𝜎12 = 𝜎13 = 𝜎23 = 0 

- there are no temperature gradients in the sample, hence no thermal strains. 
Using these assumptions and assuming, for the time being, purely elastic stresses, the following relation can be found 

between the in-plane stresses and strain in the surface region 

𝜎∥𝑒𝑒 = 𝐸
1−𝜈

�𝜀∥𝑡𝑏𝑡 − 𝜀∥𝑐ℎ�       (18) 
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where 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. The total strain 𝜀∥𝑡𝑏𝑡 can be found from considering mechanical 

equilibrium over the cross-section of the sample, which for the case that the stress state is mirror-symmetrical with respect 

to the plane at half the sample thickness (total sample thickness is 2L). Note that nitrogen is assumed to diffuse from two 

parallel surfaces on either side of the sample towards the centre of the sample, and thus mirror-symmetry is assumed and 

considering one side suffices for the calculations. Hence, 

∫ 𝜎∥𝑑𝑧
𝐿
0 = 0       (19) 

Inserting Eq. 18 into Eq. 19, and assuming that Young’s modulus, E, and the Poisson ratio, 𝜈, are independent of depth, 

yields 

𝐸
1−𝜈 ∫ �𝜀∥𝑡𝑏𝑡 − 𝜀∥𝑐ℎ�𝑑𝑧

𝐿
0 = 0       (20) 

Since it was assumed that 𝜀22𝑡𝑏𝑡 = 𝜀11𝑡𝑏𝑡 is constant in space and varies in time, this gives 

𝜀∥𝑡𝑏𝑡 = 1
𝐿 ∫ �𝜀∥𝑐ℎ�𝑑𝑧

𝐿
0        (21) 

It is noted that a similar method was applied in [10,33,34], albeit that the total strain was taken equal to zero. This is a 

reasonable assumption, provided that the depth range where chemical strains apply is infinitely thin as compared to the 

depth range of the sample (cf. section 4.3). This assumption drastically simplifies the mathematical equations, resulting in 

the following equation for calculating the stress 

𝜎∥ = − 𝐸
1−𝜈

𝜀∥𝑐ℎ       (22) 

 

2.5 Plastic accommodation of stress 

If the strains are no longer accommodated purely elastically, but lead to plastic deformation as well, the stresses can no 

longer be calculated directly, since the stress depends on the loading path. Thus an incremental formulation is used. The 

relation between the incremental stress �̇�𝑑𝑖  and the incremental mechanical strain 𝜀�̇�𝑒  is 

�̇�𝑑𝑖 = 𝐿𝑑𝑖𝑘𝑒𝜀�̇�𝑒        (23) 

where 𝐿𝑑𝑖𝑘𝑒 is the incremental stiffness tensor which, according to J2-flow theory [35], is given by 

𝐿𝑑𝑖𝑘𝑒 = 𝐸
1+𝜈

�1
2
�𝛿𝑑𝑘𝛿𝑖𝑒 + 𝛿𝑑𝑒𝛿𝑖𝑘� + 𝜈

1−2𝜈
𝛿𝑑𝑖𝛿𝑘𝑒 − 𝛽 3

2
𝐸/𝐸𝑡−1

𝐸/𝐸𝑡−(1−2𝜈)/3

𝑠𝑖𝑖𝑠𝑘𝑝
𝜎𝑒2

�    (24) 

where E is Young’s modulus, Et is the tangent modulus, ν is Poisson’s ratio and δij is Kronecker’s delta and β = 0 for elastic 

problems and β = 1 if there is plastic flow. 



217 
 
 

The stress deviator tensor, sij, is given by [35] 

𝑠𝑑𝑖 = 𝜎𝑑𝑖 − 𝛿𝑑𝑖
𝜎𝑘𝑘
3

      (25)  

and the von Mises yield surface is described by [35] 

𝜎𝑒2 = 3
2
𝑠𝑑𝑖𝑠𝑑𝑖        (26) 

The maximal von Mises stress depends on the loading path and is changed if the actual von Mises stress exceeds the 

preceding maximum von Mises stress (strengthening): 

𝑖𝑓 𝜎𝑒  ≥  𝜎𝑒,𝑚𝑎𝑚
  𝐷ℎ𝑒𝑅 𝜎𝑒,𝑚𝑎𝑚

 =  𝜎𝑒       (27) 

The von Mises stress increment �̇�𝑒  is found from the incremental stresses (�̇�𝑘𝑒 ) [35]: 

�̇�𝑒 = 3∙𝑠𝑘𝑝
 ∙�̇�𝑘𝑝

 

2∙𝜎𝑒 
       (28) 

The values for 𝛽 can now be determined from the flow criteria, in J2 flow theory [35]: 

𝑓𝑓𝑓 𝜎𝑒 =  𝜎𝑒,𝑚𝑎𝑚
  𝑎𝑅𝑑 �̇�𝑒 ≥ 0       𝛽 = 1      

𝑖𝑓 𝜎𝑒 <  𝜎𝑒,𝑚𝑎𝑚
  𝑓𝑓 �̇�𝑒 < 0       𝛽 = 0     (29) 

Since 𝛽 depends on the stresses, in this work the 𝛽 calculated in the preceding step is used to determine the state and hence 

stresses in the next step. This means that no equilibrium iterations are performed and thus a small overshoot will occur at 

the time of changing from elasticity to plasticity. For the monotone loading seen for nitriding, the overshoot can be 

minimized (neglected) using sufficiently small increments. 

The tangent modulus is found using a power hardening law [35], which states that 

𝑓𝑓𝑓 𝜎 > 𝜎𝑦, 𝜀 =  𝜎𝑦
𝐸
� 𝜎
𝜎𝑦
�
𝑛

      (30)  

Since 1
𝐸𝑡

= 𝑎𝑑
𝑎𝜎

 this means that, using von Mises criterion of plasticity, the tangent modulus, 𝐸𝑡, is given by: 

𝐸𝑡 = 𝐸
𝑛
�𝜎𝑦
𝜎𝑒 
�
𝑛−1

       (31) 

The new stress is found by adding the incremental stress to the stress from the preceding step 

𝜎𝑑𝑖𝑡+∆𝑡 =  𝜎𝑑𝑖𝑡 + 𝜎𝚤𝚤 ̇      (32) 

Analogous to the purely elastic case, assuming equal in-plane stresses, 𝜎11 = 𝜎22, and no shear stresses, gives the following 

expression for the von Mises stress 
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𝜎𝑒2 = 3
2

(𝑠112 + 𝑠222 + 𝑠332) = 𝜎222    (33) 

Since the out of plane stress is zero, 𝜎33 = 0, it follows immediately �̇�33 = 0, and the von Mises stress increment is then 

�̇�𝑒 = 3(𝑠11�̇�11+𝑠22�̇�22+𝑠33�̇�33)
2∙𝜎𝑒 

=
3�𝜎223 �̇�22+

𝜎22
3 �̇�22−

2𝜎22
3 ∙0�

2∙|𝜎22|
    (34) 

and thus 

𝑓𝑓𝑓 𝜎22 > 0,    �̇�𝑒 = �̇�22 

𝑓𝑓𝑓 𝜎22 < 0,    �̇�𝑒 = −�̇�22      (35) 

Since 𝜀11 = 𝜀22 it holds that 𝜀1̇1 = 𝜀2̇2 and then the expressions for the incremental stress components become 

�̇�∥ = �̇�11 = �̇�22 =
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
1
6

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

� 𝜀2̇2 +
𝐸

1 + 𝜈
�1 +

𝜈
1 − 2𝜈

− 𝛽
1
6

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

� 𝜀2̇2

+
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

+ 𝛽
1
3

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

� 𝜀3̇3  

�̇�⊥ = �̇�33 =
𝐸

1 + 𝜈
�

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

−2
9
� 𝜀2̇2 +

𝐸
1 + 𝜈

�
𝜈

1 − 2𝜈
− 𝛽

3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

−2
9
� 𝜀2̇2

+
𝐸

1 + 𝜈
�1 +

𝜈
1 − 2𝜈

− 𝛽
3
2

𝐸/𝐸𝑡 − 1
𝐸/𝐸𝑡 − (1 − 2𝜈)/3

4
9
� 𝜀3̇3  

(36) 

Because of the free surface 𝜎33 = 0 at all times, thus �̇�33 = 0 and restructuring Eq. 36 gives an expression for 𝜀3̇3  as a 

function of 𝜀2̇2  

𝜀3̇3 = −
�2 𝜈
1−2𝜈+𝛽

2
3

𝐸/𝐸𝑡−1
𝐸/𝐸𝑡−(1−2𝜈)/3�

�1+ 𝜈
1−2𝜈−𝛽

2
3

𝐸/𝐸𝑡−1
𝐸/𝐸𝑡−(1−2𝜈)/3�

𝜀2̇2      (37) 

Inserting this interdependence of 𝜀3̇3  and 𝜀2̇2  in the expression for the in-plane incremental stress tensors, it follows for the 

case of plasticity, 𝛽 = 1, that 

�̇�11 = �̇�22 = 𝐸
1+𝜈

��1 + 2 𝜈
1−2𝜈

− 1
3

𝐸/𝐸𝑡−1
𝐸/𝐸𝑡−(1−2𝜈)/3

� +
−2� 𝜈

1−2𝜈+
1
3

𝐸/𝐸𝑡−1
𝐸/𝐸𝑡−(1−2𝜈)/3�

2

�1+ 𝜈
1−2𝜈−

2
3

𝐸/𝐸𝑡−1
𝐸/𝐸𝑡−(1−2𝜈)/3�

� 𝜀2̇2    (38)  

and for elasticity, 𝛽 = 0, 

�̇�11 = �̇�22 = 𝐸
1−𝜈

𝜀2̇2       (39)  
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where the mechanical incremental strain, 𝜀2̇2 , is found by 

𝜀2̇2 𝑡𝑏𝑡 = 𝜀2̇2 + 𝜀2̇2𝑐ℎ       (40) 

The total strain increment 𝜀2̇2𝑡𝑏𝑡 can be found using equilibrium of the stress increment �̇�22  over the cross-section from the 

surface to the depth 𝐿 

∫ �̇�22 𝑑𝑧
𝐿
0 = 0      (41) 

Since there are now both a plastic region from the surface to a depth 𝑧𝑝𝑒 and an elastic region from 𝑧𝑝𝑒 to the maximum 

depth, L, the integral is split as follows 

∫ �̇�22 𝑑𝑧
𝐿
0 = ∫ �̇�22 𝑑𝑧

𝑧𝑝𝑝
0 + ∫ �̇�22 𝑑𝑧

𝐿
𝑧𝑝𝑝

     (42) 

This results in the following form of the equilibrium equation 

∫ �̇�22 𝑑𝑧
𝑧𝑝𝑝
0 + ∫ �̇�22 𝑑𝑧

𝐿
𝑧𝑝𝑝

= 0     (43) 

Assuming constant material parameters (𝐸, 𝜈) and inserting the expressions for the stress in elastic (Eq. 39) and the plastic 

regions (Eq.38) in Eq. 43 gives 

𝜀2̇2𝑡𝑏𝑡 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐸
1 + 𝜈

⎝

⎜
⎜
⎜
⎜
⎛

�1 + 2
𝜈

1 − 2𝜈
−

1
3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

� +

−2 � 𝜈
1 − 2𝜈 + 1

3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3
�

2

�1 + 𝜈
1 − 2𝜈 −

2
3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3
�

⎠

⎟
⎟
⎟
⎟
⎞

� 𝜀2̇2𝑐ℎ𝑑𝑧 +
𝐸

1 − 𝜈
� 𝜀2̇2𝑐ℎ𝑑𝑧
𝐿

𝑧𝑝𝑝

𝑧𝑝𝑝

0

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

/   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐸
1 + 𝜈

⎝

⎜
⎜
⎜
⎜
⎛

�1 + 2
𝜈

1 − 2𝜈
−

1
3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3

� +

−2 � 𝜈
1 − 2𝜈 + 1

3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3
�

2

�1 + 𝜈
1 − 2𝜈 −

2
3

𝐸
𝐸𝑡
− 1

𝐸
𝐸𝑡
− (1 − 2𝜈)

3
�

⎠

⎟
⎟
⎟
⎟
⎞

𝑧𝑝𝑒

+
𝐸

1 − 𝜈
�𝐿 − 𝑧𝑝𝑒�

⎦
⎥
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3. Computational Method 

3.1 Computation of composition profiles 

Composition profiles were computed with the finite difference method. Discretizing was done using the central explicit 

finite-difference method giving for Eq. 12: 

𝑐𝑑𝑡+∆𝑡 − 𝑐𝑑𝑡

∆𝐷
=
𝜕𝐷𝑁

(𝑐𝑖
𝑡)

𝜕𝑐
�
𝑐𝑑+1𝑡 − 𝑐𝑑−1𝑡

2∆𝑧
�
2

+ 𝐷𝑁
(𝑐𝑖
𝑡) ∙

𝑐𝑑+1𝑡 − 2𝑐𝑑𝑡 + 𝑐𝑑−1𝑡

∆𝑧2
−

�𝐷𝑁
(𝑐𝑖+1
𝑡 ) ∙

𝐾𝑁𝑖+1
𝜕𝐾𝑁𝑖+1
𝜕𝑐𝑁

− 𝐷𝑁
(𝑐𝑖−1
𝑡 ) ∙

𝐾𝑁𝑖−1
𝜕𝐾𝑁𝑖−1
𝜕𝑐𝑁

�

2∆𝑧
𝜎𝐻𝑑+1

𝑡 − 𝜎𝐻𝑑−1
𝑡

2∆𝑧

− 𝐷𝑁
(𝑐𝑖
𝑡) �

𝐾𝑁𝑖
𝜕𝐾𝑁𝑖
𝜕𝑐𝑁

𝑉𝑁
𝑅𝑅

𝜎𝐻𝑑+1
𝑡 − 2𝜎𝐻𝑑

𝑡 + 𝜎𝐻𝑑−1
𝑡

∆𝑧2
� 

(45) 

where 𝐷𝑁
(𝑐𝑖
𝑡) is a known explicit function of the concentration, giving the possibility of calculating  𝜕𝜕

𝜕𝑐
 for a known 

concentration 𝑐𝑑𝑡. 

The continuity equation at the surface to balance the fluxes of nitrogen atoms arriving at and leaving from the surface cell to 

calculate the actual surface concentration of nitrogen, described by Eq. 15, can be discretized as 

𝑐𝑖
𝑡+∆𝑡−𝑐𝑖

𝑡

∆𝑡
= − 𝐽𝑖→𝑖+1−𝐽𝑝𝑠𝑟𝑟

∆𝑧
      (46) 

Combining Eq. 46 with the expression for 𝐽𝑠𝑠𝑠𝑠, given in Eq. 14 and the expression for the flux, (see Eq. 10 and 11b) the 

nitrogen concentration in the surface cell follows from 

𝑐𝑖
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A Flow chart of the computational sequence is shown in Fig. 2. 
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Figure 2 - Computational flowchart 
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3.2 Computation of strains and stresses 

The computation of composition-induced strains and stresses is done straightforwardly for each element after the 

concentration is calculated in each time-step. However since 𝛽 depends on the stresses, this work uses the beta calculated in 

the preceding step to determine the state and hence stresses. This means that a small overshoot will occur at the time of 

changing from elasticity to plasticity, but with the monotone loading and using sufficiently small increments the overshoot 

can be neglected. 

The computation of the integrals used for finding the total strains as in for example Eq. 21 is done using the following 

numerical integration 

𝜀∥𝑡𝑏𝑡 = 1
𝐿 ∫ �𝜀∥𝑐ℎ�𝑑𝑧

𝐿
0 = 1

𝐿
∑ [𝜀22𝑐ℎ(𝑖) ∙ ∆𝑧(𝑖)]𝑑𝑚𝑎𝑚
1     (48) 

where i, is the element number and imax, is the number of the element ending at the depth L. 

Similarly the integrals used for calculating the total strain when there is plasticity (Eq. 44)  

is calculated using a similar numerical integration 

∫ 𝜀2̇2𝑐ℎ𝑑𝑧
𝑧𝑝𝑝
0 = ∑ [𝜀2̇2𝑐ℎ(𝑖) ∙ ∆𝑧(𝑖)]𝑑𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

1       (49) 

∫ 𝜀2̇2𝑐ℎ𝑑𝑧
𝐿
𝑧𝑝𝑝

= ∑ [𝜀2̇2𝑐ℎ(𝑖) ∙ ∆𝑧(𝑖)]𝑑𝑚𝑎𝑚
𝑑𝑚𝑚𝑚,𝑝𝑝𝑚𝑝𝑡𝑖𝑝

     (50) 

For the case of expanded austenite, where no nucleation or precipitation of a new phase occurs, the chemical strain can be 

calculated directly from the total nitrogen concentration by 

𝑓𝑓𝑓 𝑖 = 𝑗     𝜀𝑑𝑖𝑐ℎ𝑒(𝑐𝑁𝑡𝑏𝑡) =
𝑉(𝑐𝑁𝑡𝑏𝑡) 

1
3� − 𝑉𝑠𝑒𝑠

1
3�

𝑉𝑠𝑒𝑠
1
3�

   

𝑓𝑓𝑓 𝑖 ≠ 𝑗     𝜀𝑑𝑖𝑐ℎ𝑒 = 0       (51) 

 

3.3 Computational implementation of trapping 

The amount of free nitrogen after trapping, i.e. the concentration of residual nitrogen, 𝑐𝑁𝑠𝑒𝑠, can  be found using Eq. 13 from 

𝐾𝑀𝑒𝑁 = 𝑐𝐶𝑠𝑠𝑒𝑠 ∙ (𝑐𝑁𝑠𝑒𝑠)𝑛       (52) 

Computationally, the calculation of residual nitrogen and chromium is done sequentially by calculating the residual nitrogen 

assuming that residual chromium concentration in the equation above is equal to the free chromium concentration before 

trapping, so 
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𝑐𝐶𝑠𝑠𝑒𝑠𝑏𝑒𝑠𝑏𝑠𝑒 𝑡𝑠𝑎𝑝𝑝𝑑𝑛𝑔 ∙
 �𝑐𝑁𝑠𝑒𝑠𝑎𝑠𝑡𝑒𝑠 𝑡𝑠𝑎𝑝𝑝𝑑𝑛𝑔�

𝑛
= 𝐾𝑀𝑒𝑁     (53) 

The concentration of trapped nitrogen, 𝑐𝑁𝑡𝑠, is then found by 

𝑐𝑁𝑡𝑠 = 𝑐𝑁 (𝐷, 𝑧) − 𝑐𝑁𝑠𝑒𝑠       (54) 

and the trapped chromium, 𝑐𝐶𝑠𝑡𝑠 , by 

𝑐𝐶𝑠𝑡𝑠 = 𝑐𝑁
𝑡𝑟

𝑛
       (55) 

The concentration of residual chromium after trapping, 𝑐𝐶𝑠𝑠𝑒𝑠 , is then found as 

𝑐𝐶𝑠𝑠𝑒𝑠 = 𝑐𝐶𝑠 (𝐷, 𝑧) − 𝑐𝐶𝑠𝑡𝑠        (56) 

It is noted that this sequential modeling induces a slight error, but for small time steps it is deemed negligible. 

On incorporating trapping in the model for nitrogen diffusion only residual nitrogen is considered to diffuse, while the 

surface flux depends on the total concentration of nitrogen in the surface: 

𝑐𝑁𝑡𝑏𝑡 = 𝑐𝑁𝑡𝑠 + 𝑐𝑁𝑠𝑒𝑠       (57)  

It should be noted that the diffusion coefficient also depends on the total nitrogen concentration. 

 

4. Results and discussion 

4.1 Effects of trapping and concentration dependent diffusion coefficient  

The combined effect of a composition-dependent diffusion coefficient of nitrogen and the role of trapping on the developing 

concentration profile is investigated in this section. For this purpose nitriding at 718 K for 22 hours is considered, using a 

nitriding potential of 1000 atm-1/2. The concentration-dependent diffusion coefficient is given in Eq. A-1. For the 

calculations with a constant diffusion coefficient, the average value over the composition range is taken. For diffusion, in all 

cases the sample was considered infinitely thick, as compared to the diffusion depth range, i.e. diffusion into a semi-infinite 

solid can be considered. The nitrogen concentration-depth profiles were calculated for the case of no trapping, 𝐾𝑀𝑒𝑁 = ∞, 

full trapping 𝐾𝑀𝑒𝑁 = 0,  and intermediate trapping for solubility products 𝐾𝑀𝑒𝑁 = 107, 𝐾𝑀𝑒𝑁 = 108 and 𝐾𝑀𝑒𝑁 = 109. For 

these three cases of intermediate trapping, trapping occurs for nitrogen concentrations higher than approximately 

700mol. m−3, 4600mol. m−3and 41600mol. m−3, respectively. The concentration profiles were calculated under the 

assumption that no stress develops in the case. 

 The results of the calculations are presented in Fig. 3 a) and b) for constant diffusivity and concentration-dependent 

diffusivity, respectively. The effect of trapping is most easily observed in Fig. 3a for a constant diffusivity. No trapping 



224 
 
 

yields the usual complementary error-function profile, with a concentration gradient that decreases gradually with depth 

(black line in Fig. 3a). Full trapping leads to an abrupt transition to zero nitrogen concentration (dashed line in Fig. 3a). 

Intermediate trapping has as a consequence that a tail appears to the concentration profile beyond the depth where the 

solubility product is reached. The arrows in Fig. 3a indicate where this discontinuity in the slope to the concentration profile 

occurs, corresponding to the nitrogen concentrations given above, marking the combination of nitrogen concentration and 

the depth below which no trapping occurs. Furthermore, a smoothening of the aforementioned abrupt transition from high to 

low nitrogen concentration is obtained for intermediate trapping. This is most clearly reflected by the profile for KMeN=107. 

The effect of a concentration-dependent diffusion coefficient that increases with nitrogen content, reaches a maximum and 

thereafter decreases with nitrogen content (see Appendix A1) is reflected in Fig. 3b. Analogous to the observations in Fig. 

3a a discontinuity in the slope is observed (marked by arrows) for the concentration and depth below which no trapping 

occurs.  
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Figure 3 - Concentration-depth profiles calculated assuming a) constant diffusion coefficient and b) concentration 

dependent diffusion coefficient (cf. Appendix A1), for no trapping, 𝑲𝑴𝒆𝑵 = ∞, full trapping 𝑲𝑴𝒆𝑵 = 𝟎,  and 

intermediate trapping for solubility products 𝑲𝑴𝒆𝑵 = 𝟑𝟎𝟕, 𝑲𝑴𝒆𝑵 = 𝟑𝟎𝟖 and 𝑲𝑴𝒆𝑵 = 𝟑𝟎𝟗 of diffusing nitrogen atoms 

by chromium atoms.  The arrows mark the concentrations (and depths) below which no trapping occurs. 
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4.2 The role of the surface reaction on evolution of composition-depth profiles 

The competition of the fluxes of nitrogen arriving at and leaving from the surface was calculated for a concentration-

dependent diffusivity, intermediate trapping 𝐾𝑀𝑒𝑵 = 107and 𝐾𝑀𝑒𝑵 = 109 (cf. Fig. 3b), and different values of the reaction-

rate constant k in Eq. 14. Again nitriding at KN= 1000 atm-1/2 at 718 K is considered. The evolution of the concentration-

depth profile with time for k = 5 ∙ 10−7m. s−1 and k = 5 ∙ 10−10m. s−1 is shown in Fig. 4, while the evolution of the surface 

concentration for various values of k is displayed in Fig. 5. As above, the role of stress is omitted.  

  

Figure 4 - evolution of the concentration-depth profile with time for 𝒌 = 𝟏 ∙ 𝟑𝟎−𝟕𝐦. 𝐬−𝟑 and 𝒌 = 𝟏 ∙ 𝟑𝟎−𝟑𝟎 𝐦. 𝐬−𝟑, for 

nitriding with a nitriding potential of 1000 atm-1/2. 
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Figure 5 - Evolution of the surface concentration for various values of k, for 𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟕 (thin lines) and 𝑲𝑪𝑪𝑵 = 𝟑𝟎𝟗 

(thick lines) for nitriding of 22h at 718K at 𝑲𝑵 = 𝟑𝟎𝟎𝟎 𝐚𝐚𝐦−𝟑/𝟐. 

 

The evolution of the concentration profile in Fig. 4 shows that the reaction rate constant of the surface reaction leads to the 

same surface concentration for all investigated times if k=10-7 m.s-1. This indicates that (imposed) local equilibrium between 

nitrogen in the gas phase and nitrogen in the solid phase is achieved at the surface.  For a lower value of the reaction rate 

constant (k=5 10-10 m.s-1), the surface concentration increases gradually with nitriding time. In Fig. 5 the concentration 

profiles obtained after nitriding for 22 h at 718 K are shown for various combinations of KMeN and k. Clearly, the surface 

concentration of nitrogen attained after 22h decreases with a reduction of the reaction rate constant of the surface reaction. 

Moreover, the incorporation of trapping and the value of KMeN have an important influence on the total amount of nitrogen 

incorporated in the material. Stronger trapping leads to a lower amount of incorporated nitrogen and a steeper case-core 

transition. 
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4.3 Composition induced stress-depth profiles 

 The dissolution of interstitials into the solid state is not associated with the nucleation of a new phase, but rather an 

expansion of the existing lattice. From the relation between lattice parameter and nitrogen concentration, the volumetric 

expansion of the lattice can be calculated, see Appendix A2. Accordingly, the composition-induced strains introduced into 

the lattice can be calculated with Eq. 16. Firstly, it is assumed that these strains are accommodated purely elastically. The 

stresses introduced under the assumption of an infinitely thick substrate, i.e. all stress is accumulated in the expanded 

region, were calculated with Eq. 22 and are shown in Fig. 6, for the composition profiles as displayed in Fig. 4. Not 

surprisingly, the elastic composition-induced compressive stress-depth profiles reflect the composition-depth profiles from 

which they were calculated. In this respect it is important to realize that in the present calculations the elastic constants were 

assumed to be independent of the composition of austenite, because no quantitative data are available of how Young’s 

modulus and Poisson’s ratio depend on nitrogen concentration in austenite. It is noted that the calculated stress values are 

unrealistically high and will never be possible to be supported by the austenitic stainless steels under consideration. 

Furthermore, the values of the elastic stresses are five times as high as found experimentally with X-ray diffraction stress 

analysis [37]. Clearly, accommodation of the volume misfit introduced by dissolving nitrogen into austenite should, at least 

partly, be accommodated by plastic deformation. This is in agreement with the experimental observations of grain rotation 

and stacking fault introduction in expanded austenite [18,19,20,21]. 

 

Figure 6 - Compressive composition-induced stress for an infinitely thick substrate, elastic accommodation of the volume 

expansion and KCrN=107 and k=5 10-7 m.s-1 and k=5 10-10 m.s-1 for selected diffusion times. The corresponding nitrogen 

concentration-depth profiles are given in Fig. 4. 
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The effect of the sample thickness on the stress distribution as calculated with Eqs. 18-21 is shown in Fig. 7 for several 

sample thicknesses, 2L. Only for relatively thin samples substantial tensile stresses are present in the core to compensate for 

the high compressive stresses in the case. Realizing that the stresses in the case are grossly overestimated by the assumption 

of fully elastic accommodation, it is concluded that for practical situations the tensile stresses in the core can be neglected. 

This justified omission is therefore implemented in the sequel of this manuscript. 

 

Figure 7 - Effect of thickness of the sample on the predicted stress profile, for 22h nitriding with a nitriding potential of 1000 
𝐚𝐚𝐦−𝟑/𝟐, k= 𝟏 ∙ 𝟑𝟎−𝟕 m.s-1 and no trapping (cf. Fig. 3b for 𝑲𝑪𝑪𝑵 = 𝐢𝐢𝐢𝐢𝐢𝐢𝐚𝐢). 
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4.4 Influence of compressive stress on diffusive flux in the sample 

The presence of a gradient in the composition-induced stress is equivalent to an additional (positive or negative) driving 

force for the diffusion of nitrogen. A compressive stress decreasing with depth, as for the present case (Fig. 6), would imply 

a positive additional driving force for diffusion. It should be noted that it is the stress change with depth that increases the 

diffusion, not the actual level of the stress.  

In Fig. 8 the effect of a stress-gradient induced driving force is demonstrated for the same nitriding conditions as in Fig. 5a, 

i.e. 22h at 718 K at KN=1000 atm-1/2, while keeping the surface concentration constant. The lines obtained without 

considering an effect of the stress on the internal diffusion are reproduced from Fig. 4 and Fig. 6. Evidently, for the 

exorbitantly huge elastic stresses the stress-gradient induced driving force establishes a concentration profile that reaches 

about 3.5 times as deep as driven by the concentration gradient alone. This shows the potentially substantial contribution of 

stress-induced diffusion in expanded austenite, albeit for a grossly overestimated elastic stress.  

 

Figure 8 – Effect of taking into account stress on Predicted concentration-depth profiles and stress-depth profiles for nitriding of 
316 austenitic stainless steel after 22 hours at 718K using a nitriding potential of 1000 atm-1/2, KCrN=107 and k=5 10-7 m.s-1 
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4.5 Influence of compressive stresses on the surface flux 

Compressive stress (or pressure) reduces the solubility of nitrogen in austenite under equilibrium conditions. This will be 

most clearly manifested by a reduction of the nitrogen concentration at the interface between the solid and gaseous phase, 

i.e. the surface, where local equilibrium is attempted to be imposed. 

The dependence of the surface concentration on the hydrostatic component of the compressive stress is given in Fig. 9 for 

stainless steel AISI 316 at 718 K and selected values of the nitriding potential4, using Eq. A-14 (for details of the 

quantitative data extracted from literature data, see Appendix A3 and A4). Evidently, the solubility of nitrogen depends 

sensitively on the (imposed or residual) stress. Since a lower equilibrium concentration leads to a lower maximum flux 

through the surface, this indicates that a compressive stress resulting from the chemical strain reduces the nitrogen flux 

through the surface.  

This means, that even though the level of stress does not affect the internal diffusion, as discussed earlier, it does affect the 

flux through the surface. So even though a stress profile with higher compressive stresses at the surface compared to the 

centre increases the internal diffusion, it also decreases the flux through the surface.  

 

Figure 9 - Equilibrium concentrations as a function of surface stress for varying nitriding potentials, 𝑲𝑵, (Note that 

negative values of stress denotes compressive stress) 

                                                           
4  The nitriding potential is proportional to the activity, and thus the chemical potential, of nitrogen in the gas phase (see 
Appendix A4). 
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Implementing the effect of compressive stress on the local equilibrium at the surface, combined with the additional stress-

induced driving force for diffusion, leads to the predicted concentration-depth and stress-depth profiles shown in Fig. 10. A 

reduction by about a factor 2 in the local nitrogen concentration is seen compared to the profile predicted, when the effect of 

stress on the surface concentration is not taken into account. The lines obtained without considering an effect of the stress 

on the surface concentration are reproduced from Fig. 8. According to Eq. 14 a lower equilibrium concentration at the 

surface leads to a lower maximally possible flux through the surface. Nevertheless, the effect of a compressive stress 

gradient causes a penetration depth of the profile beyond the depth achieved without including the contribution of stress-

induced diffusion, (see Fig. 8) despite the substantially smaller chemical contribution to the driving force for diffusion.  This 

indicates that the net effect of the combination of the lower maximal flux through the surface and the larger diffusive flux 

postpones the establishment of local equilibrium at the surface to guarantee a sufficient uptake of nitrogen to maintain 

growth of the expanded austenite zone. 

 
Figure 10 - Predicted concentration-depth profile and stress-depth profile for nitriding of 316 austenitic stainless 

steel after 22 hours at 718K using a nitriding potential of 1000 atm-1/2 KCrN=107 and 𝒌 = 𝟏 ∙ 𝟑𝟎−𝟕m.s-1. 
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4.6 Effect of plasticity on predicted profiles 

Assuming purely elastic accommodation of the lattice expansion of austenitic stainless steel associated with nitrogen 

dissolution is unrealistic, because the yield stress of austenite is as low as 290 MPa [38].  

Concentration-depth and stress-depth profiles are shown for three distinct situations in Fig. 11: assuming purely elastic 

accommodation of the composition-induced expansion (cf. Fig. 10 for stress affected surface) indicated as “elastic”, plastic 

accommodation for stress beyond the yield stress of the base material, indicated as “plastic (const. Yield stress)” and the 

situation where both plasticity and solid-solution hardening are taken into account, indicated as “plastic, Yield stress 

= 𝑓(𝑐𝑁)”, reflecting the composition-dependence of the yield stress. Details of the input parameters and computational 

method for incorporating the composition-dependent yield stress are described in Appendix A5. Comparison of the profiles 

for elastic and plastic accommodation shows that taking into account plasticity, the stress level in the expanded austenite 

zone is very low as compared to when assuming purely elastic accommodation; as was expected. Consequently, for the case 

of plasticity with constant yield stress, the nitrogen surface concentration and diffusion in expanded austenite would be 

largely unaffected by the stress and thus a composition-depth profile reminiscent of that for no stress is obtained (cf. Fig. 4). 

Consistently with the appreciably lower elastic stress in the case, the contribution of stress-induced diffusion is limited, as 

reflected by the relatively shallow diffusion depth reached. Assuming a concentration-dependent yield stress, implying that 

solid solution strengthening by nitrogen dissolution in austenite is accounted for, a high nitrogen content is obtained, whilst 

the compressive residual stresses reach a level of maximally 6 GPa at the surface (Fig. 11).  



234 
 
 

 

Figure 11 - Simulated concentration-depth profiles and stress-depth profiles using purely elastic accommodation (designated 
“elastic”) of the lattice expansion or elastic-plastic accommodation. For a fixed yield stress the lines denoted “plastic, (const. Yield 
stress)” are obtained, while the assumption of a concentration-dependent yield stress results in the lines denoted “plastic, 
𝐘𝐢𝐢𝐘𝐘 𝐬𝐚𝐬𝐢𝐬𝐬 = 𝒇(𝒄𝑵)”. In all cases the nitriding conditions are 22h at 718 K for KN=1000 atm-1/2, KCrN=107 and k=5 10-7 m.s-1. 
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5. Discussion  

5.1 Evolution of composition and stress-depth profiles 

In the preceding chapter it was demonstrated how the various parameters influence both the shape of the concentration-

depth profile as well as its evolution with nitriding time. From the systematic analysis in this manuscript it is clear that from 

the concentration-depth profile alone it is not possible to discriminate between the various models that have so far been 

presented in the literature. On the one-hand, the adoption of a model presuming a constant diffusion coefficient and trapping 

of nitrogen atoms, as in Refs. [4,6], can yield concentration-depth profiles of a shape as given in Fig. 3a (in particular for 

KMeN=107). Taking the diffusivity and solubility product, KMeNn (including n), as fitting parameters will certainly allow a 

satisfactory mathematical description of concentration-depth profiles. On the other hand, the assumption of a concentration-

dependent diffusivity as adopted in this work (cf. Appendix A1) also leads to concentration-profiles that resemble those 

determined experimentally, particularly after including trapping  (cf. Fig. 3b).  Simulation models like these do not account 

for the development of residual stress and its influence on the developing concentration-depth profiles. Although the 

consideration of residual stress was suggested to enhance nitrogen diffusion in expanded austenite, and demonstrated to be 

able to enhance the case depth by a factor two when the surface concentration was constant [14], further mathematical 

implementation has so far been pragmatic, assuming an unphysical linear relation between composition and stress and a 

continuously decreasing diffusion coefficient [36], which obviously is in conflict with the experimentally determined 

diffusion coefficient for nitrogen in expanded austenite. In the present work the actual lattice expansion of expanded 

austenite was taken into account and mechanical equilibrium considerations were used to estimate the stress. Moreover, the 

experimentally observed concentration-dependent diffusion coefficient (measured for stress-free expanded austenite!) were 

taken as input data in the model, while also the effect of stress on the surface flux and stress-enhanced diffusion was 

accounted for. Clearly, the present simulations demonstrate that elastic accommodation of the lattice expansion leads to 

residual stress values far beyond the yield stress of the material, which necessitates an elastic-plastic accommodation of the 

lattice expansion. Moreover, the residual stress values determined experimentally in expanded austenite are far beyond the 

yield stress of stainless steel, albeit not as high as the predicted elastic stress values (Fig. 6). Accordingly, solid-solution 

strengthening by the dissolution of high amounts of interstitials in expanded austenite has to be incorporated, yielding 

realistic simulations of both concentration-depth and stress-depth profiles over the expanded austenite case (Fig. 11). 

The evolution of the case depth, taking a concentration of 5 mol.m-3 as the minimum nitrogen concentration that belongs to 

the expanded austenite case, is shown in Fig. 12 for various values of the nitriding potential at a nitriding temperature of 

718K. In these simulations all of the effects described in the previous chapter were included. Trapping was included by 

taking KMeN=107, while the surface reaction was assumed to be in equilibrium (𝑘 = 5 ∙ 10−7 m. s−1). Also, stress-induced 

diffusion and stress effects at the surface were assumed as well as plasticity with a concentration-dependent yield strength. 

As follows from Fig. 12, increasing the nitriding potential beyond KN=100 atm-1/2 has no further influence on the case depth. 

Note that a linear relation is obtained between squared depth and time, as expected for diffusion-controlled evolution of 

concentration profiles. The depth range of the expanded austenite case wherein plastic accommodation occurs for the same 

nitriding conditions, is shown in Fig. 13. Comparison of Fig. 12 and Fig. 13 shows that it is nearly unavoidable that plastic 
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accommodation occurs. Only for a very low nitriding potential and associated shallow case depths can plastic 

accommodation be avoided during nitriding of stainless steel. This is in excellent agreement with the results published in 

Ref. [20], where lattice rotation, as a consequence of plastic accommodation of residual stress, was observed from the case-

core transition to the surface.  

So far, carburizing has not been reported to lead to plastic accommodation of lattice expansion and leads to relatively low 

interstitial contents in the expanded austenite zone. Consistently, the experimental residual stress values reported for carbon-

stabilized expanded austenite are below 3 GPa [1, 11] while the interstitial concentration is maximally 20.103 mol.m-3 [1]. 

For this combination of interstitial content and compressive residual stress, indeed purely elastic accommodation is 

predicted by Appendix A5 (Fig. A-3). 

 

Figure 12 - Case depth (cN>5 mol.m-3) of expanded austenite as a function of nitriding time for various applied nitriding 
potentials, KN, given in atm-1/2 in the legend. 
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Figure 13 - depth of the plastic zone of expanded austenite as a function of nitriding time for various applied nitriding potentials, 
KN, given in atm-1/2 in the legend. 

 

5.2 limitations of the model and comparison to experimental work 

The most important novel approaches in the model presented are the coupling of composition and composition-induced 

stress (rather than a pragmatic linear relation between stress and concentration), and inclusion of plastic deformation, taking 

into account the occurrence of solid solution strengthening. While experimental data on the concentration-dependent 

diffusion coefficient was included in the current work, several simplifications and pragmatic approximations were adopted, 

which are listed below. Also, an anticipation of the effects that these simplifications may have caused are briefly described. 

In the simulations, as an approximation for the elastic properties of expanded austenite those for austenitic stainless steel at 

room temperature were adopted. It was indicated very recently by nano-indentation observations [18] and X-ray residual 

stress measurements [37] that the elastic properties of expanded austenite vary with nitrogen content and that reversal of 

elastic anisotropy occurs as compared to austenite. As yet the absolute values of Young’s modulus and Poisson constant are 

undetermined, a prediction of the effect of the approximate elastic constants can therefore not be given.  

Elastic and plastic properties are also temperature dependent; both the Young’s modulus and the yield stress decrease with 

temperature [38]. Thus, at the nitriding temperature, a lower Young’s modulus and a lower yield stress prevail than the 

values adopted in the model. A lower Young’s modulus would cause lower stress levels (for a certain imposed strain) and a 

lower yield stress would lead to an earlier introduction of plasticity.  Both effects result in a lower surface stress.  

Moreover, it should be noted that the updating of the plasticity criterion is based on a semi-coupled procedure in which the 

strengthening and the effect of the concentration-dependent yield stress is considered in a sequential manner.  This may 
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affect the stress-predictions, but as a pragmatic approach this is deemed sufficient for the small elements and time-steps 

considered. 

In this work the lattice expansion caused by the dissolution of nitrogen in the austenite lattice was taken from the lattice 

parameter applying at room temperature. Actually, for the calculation of the concentration (in mol.m-3) and the lattice strain, 

the lattice parameters at the nitriding temperature should have been adopted. Thermal expansion of expanded austenite was 

recently determined experimentally and it was demonstrated that the linear expansion coefficient depends on the nitrogen 

content [13]. 

Thermally-induced stress from the heating and cooling cycle are not considered in the present work, and could lead to a 

modification of the stress profile that affects the diffusive flux and a modification of the stress-profile after cooling to room 

temperature. This should be considered in order to more realistically compare the experimental stress values with the 

calculated values. The influence of thermal stress will be the topic of future research. 

Experimentally, no elastic compressive stresses exceeding 10 GPa have been reported and the highest experimentally 

determined compressive stresses of 7-8 GPa [1] were very recently shown to be a consequence of inappropriate elastic 

constants, which appear to depend strongly on the nitrogen concentration, such that a reversal of the elastic anisotropy 

occurs over the composition range [37]. Based on recent insights, the compressive stresses are estimated to be maximally 

about 5 GPa. In this respect the present calculations give an overestimation by 20%. Seen in the light of the limitations 

mentioned above, this is considered a good agreement 

 

6. Conclusion 

Nitriding of austenitic stainless steel was modelled taking into account a concentration-dependent diffusion coefficient and 

short-range ordering of chromium and nitrogen atoms (trapping). Stress-depth profiles were predicted from the lattice 

expansion caused by the interstitial nitrogen atoms. The interaction between the composition-induced stresses and the 

diffusion was examined for both purely elastic and elastic-plastic stresses. It can be concluded that: 

• Solid state diffusion is enhanced by the compressive stress gradient resulting from the nitrogen concentration 
gradient; 

• Assuming purely elastic accommodation of the composition-induced strain, the interaction between stresses and 
diffusion results in surface stresses in the order of 10GPa, which causes a significant decrease of predicted 
nitrogen concentration at the surface and faster growth of the expanded austenite case; 

• Assuming elastic-plastic accommodation of the composition-induced strain, and a constant yield stress, equal to 
the yield stress of the austenitic stainless steel, decreases the predicted surface stresses to stresses in the order of 1 
GPa, and the predicted surface concentration is significantly increased compared to when assuming purely elastic 
stresses; 

• Taking into account the concentration dependent yield stress in the elastic-plastic approach, results in stresses up 
to 6GPa and a surface concentration value slightly lower than predicted using the constant yield stress of the 
austenitic stainless steel. The thus obtained composition-depth and stress-depth profiles are in favourable 
agreement with experimental results. 
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Appendix A – Input parameters to the model 

 

A1 – Concentration dependent diffusion coefficient 

The following Lorentzian type expression for diffusion coefficient as a function of concentration for the specific 

temperature of 718K was obtained using the data of Christiansen and Somers [34] 

𝐷(𝑐) = 3.16 ∙ 10−15 ∙ 1
𝜋
∙ 0.109

(𝑦𝑁−0.4365)2+0.1092
     (A-1) 

where 𝑦𝑁 is the fractional occupancy of the octahedral interstices of the f.c.c. lattice with nitrogen atoms. 

A2 – determination of volumetric expansion of the lattice with nitrogen concentration 

To find the volume of the unit cell as a function of the concentration for expanded austenite 𝑉(𝑐𝑁), data from Christiansen 

and Somers [21] of the lattice parameter a corresponding to fractional occupancy, 𝑦𝑁 , was used. 

The relation between the nitrogen concentration, cN, and the nitrogen occupancy, 𝑦𝑁 , is [39]: 

𝑐𝑁 = 𝑛
𝑁𝑚𝑎

∙ 𝑦𝑁 ∙
1

𝑉(𝑦𝑁)
      (A-2) 

where n is the number of atoms pr. unit-cell in the iron lattice (equal to 4 for f.c.c.),  𝑁𝑎𝑎 is Avogadros number and 𝑉(𝑦𝑁) is 

the volume of the unit cell in [m3] at the given 𝑦𝑁 . 

𝑐𝑁 = 4
6.022∙1023[/𝑚𝑏𝑒]

∙ 𝑦𝑁 ∙
1

𝑉(𝑦𝑁)
      (A-3) 

A plot showing the calculated volumes as a function of the fractional occupancy are shown in Fig. A-1. Fitting a 

polynomium to the data gives a linear fit of  

𝑉(𝑦𝑁) = 2.8147 ∙ 10−29 ∙ 𝑦𝑁 + 4.7134 ∙ 10−29     (A-4) 
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Figure A-1 - unit cell volume as function of nitrogen concentration expressed as fractional occupancy 

Inserting the linear fit gives the following expression for calculating concentration as function of fractional occupancy 

𝑐𝑁[mol/m3] = 4
6.022∙1023/mol

∙ 𝑦𝑁
 

2.8147∙10−29m3∙𝑦𝑁
 +4.7134∙10−29m3     (A-5) 

Inverting and reducing gives the following expression for fractional occupancy as function of concentration 

𝑦𝑁 = 𝑐𝑁
140924mol/m3−𝑐𝑁∙0.59717

      (A-6) 

Inserting Eq. (A-6) in the expression for volume as a function of fractional occupancy, Eq. (A-4) gives the unit cell volume 

as function of concentration 

𝑉(𝑐𝑁) = 2.8147 ∙ 10−29m3 ∙ 𝑐𝑁
140924mol/m3−𝑐𝑁∙0.59717

+ 4.7134 ∙ 10−29m3   (A-7) 

 

A3 – Relation between activity and nitrogen content; nitrogen absorption isotherms 

Absorption isotherms depict the relation between nitriding potential of an NH3/H2 gas mixture, i.e. 𝐾𝑁 = 𝑝𝑁𝐻3
𝑝𝐻2
3
2

� ,  and the 

nitrogen concentration, 𝑐𝑁. The fractional occupancy of the nitrogen sub-lattice, 𝑦𝑁, in stress-free austenite was determined 

experimentally by Christiansen and Somers [21]. Converting the fractional occupancy, 𝑦𝑁 , to concentration, 𝑐𝑁 ,  Fig. A-2, 

is obtained. For equilibrium between nitrogen in solid state and imposed nitriding potential the activity of nitrogen in the 

solid state is linearly proportional to the nitriding potential, 𝐾𝑁 by [25] 

𝑎𝑁 = 𝐾𝑇𝐾𝑁       (A-8)  
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where 𝐾𝑇 is the equilibrium constant for the dissolution reaction of N into the solid state  from the gas phase, and is a 

function of temperature and pressure. For dilute solutions Henrian behaviour can be assumed, implying linear 

proportionality between the nitrogen activity and the nitrogen concentration: 𝑎𝑁 = 𝛾 ∙ 𝑐𝑁. This condition can be assumed 

only for nitrogen concentrations approaching nil. Since 𝐾𝑇 is not a function of concentration, it follows from the above for 

small concentrations 𝐾𝑁 = 𝛾 ∙ 𝑐𝑁
𝐾𝑇

. The raw data suggest an exponential relation between 𝐾𝑁 and  𝑐𝑁. A function of the 

following form obeys Henrian behaviour for small 𝑐𝑁, and was used to parametrize the data  

𝐾𝑁 = 𝑘1 ∙ 𝑐𝑁
𝐾𝑇

+ 𝑘2 ∙ 𝑒
𝑝𝑁∙𝑘3+𝑘4
ln�𝐾𝑇�       (A-9) 

 

where k1, k2, k3 and k4 are fitting parameters. Calculating 𝐾𝑇 for 316 stainless steel the temperature of the measurements 

445°C = 718.15K, and no hydrostatic stress gives 𝐾𝑇 = 2.4256 ∙ 104. 

For AISI 316 a satisfactory fit of the data at 718K was obtained with the following parameters;  

𝑘1 = 1.7524, 𝑘2 = 0.9346, 𝑘3 = 0.0051788and 𝑘4 = 251.9510. 

 

Figure A-2 – fit and - raw data of nitriding potential as function of concentration at 445°C 

A4 - Determination of the effect of stress on the surface flux 

The nitrogen content that can be dissolved in equilibrium with a chemical potential as imposed by a gas phase of known 

composition depends on the state of stress of the solid, as expressed by Eq. 5. Consequently, the value of 𝑐𝑁
𝑒𝑒 , i.e. the 

nitrogen content in the solid in equilibrium with the gas phase, decreases with the invoked compressive stress in the surface 

element. At its turn the flux of nitrogen through the surface as given by Eq. 14 is affected as is the actual surface 
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concentration.  The concentration of nitrogen in a stressed solid in equilibrium with nitrogen in a gas of known composition 

follows from equating the chemical potentials of nitrogen in solid and in gas: 

𝜇𝑔𝑎𝑠 = 𝜇𝜎       (A-10) 

The chemical potentials in the solid with and without stress (σ=0) are given by 

𝜇𝜎=0 = 𝜇0 + 𝑅𝑅𝑅𝑅(𝑎) 

𝜇𝜎 = 𝜇0 + 𝑅𝑅𝑅𝑅(𝑎) − 𝑉𝑁𝜎𝐻      (A-11) 

 

Hence, comparing the chemical potential in a stressed and a stress-free solid in equilibrium with the same gas leads to 

𝜇0 + 𝑅𝑅𝑅𝑅(𝑎𝜎) − 𝑉𝑁𝜎𝐻 = 𝜇0 + 𝑅𝑅𝑅𝑅(𝑎𝜎=0) 

→ 𝑎𝜎 = 𝑎𝜎=0 ∙ 𝑒𝑥𝑝 �𝑉𝑁𝜎𝑁
𝑅𝑇

�      (A-12) 

Inserting 𝑎𝑁 = 𝐾𝑇 𝐾𝑁 and realizing that  𝐾𝑇  depends on pressure, it follows 

𝐾𝑇 𝜎 = 𝐾𝑇 𝜎=0 ∙ 𝑒𝑥𝑝 �
𝑉𝑁𝜎𝑁
𝑅𝑇

�      (A-13)  

The relation between the nitrogen concentration and the nitriding potential for a stressed solid follows from inserting Eq. A-

13 for 𝐾𝑇  in Eq. A-9 

𝐾𝑁 = 𝑘1 ∙ 𝑐𝑒𝑒

𝐾𝑇
 𝜎=0∙𝑒𝑚𝑝�𝑉𝑁𝜎𝑁𝑅𝑇 �

+ 𝑘2 ∙ 𝑒
𝑝𝑒𝑒∙𝑘3−𝑘4

ln (𝐾𝑇
 𝜎=0∙𝑒𝑚𝑝�

𝑉𝑁𝜎𝑁
𝑅𝑇 �)    (A-14) 

Since the equation is non-linear and cannot be inverted analytically, the equilibrium concentration was evaluated using 

Newton-Rhapson iterations. 

 

A5- Concentration dependent yield stress 

The dependence of yield stress on the nitrogen content for austenitic stainless steel is not precisely known, particularly not 

for the high nitrogen contents of relevance for expanded austenite. Bottoli, et al. [40] investigated two qualities of austenitic 

stainless steel deformed to various degrees of equivalent strain, and found that the Vickers hardness (HV) and yield stress 

(𝜎𝑦) obey the following relation:  

𝜎𝑦[in MPa] = −396 + 3.73 ∙ HV [in MPa]      (A-15) 

Realizing that hardness and yield stress both are a measure of the resistance against plastic deformation, it is attempted to 

obtain an estimate for the concentration dependence of the yield stress from the hardness. Correlating hardness-depth and 

concentration-depth profiles for nitrided AISI 316 austenitic stainless steel from [41] and converting hardness into yield 
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stress with Eq. A-15, the dependence displayed in Fig. A-3 was obtained.   Obviously, the yield stress increases with the 

concentration until a plateau of constant yield stress is reached. Taking the yield stress of nitrogen free austenite as 290 

MPa, a linear fit through the region (c<14796 mol.m-3) where a steep increase in yield stress occurs, results in: 

𝜎𝑦[in MPa] = 0.2424 ∙ 𝑐[in mol. m−3] + 290       (A-16) 

For the plateau the average value is 𝜎𝑦 = 3848 MPa, which is considerably higher that the yield stress of the base material.  

 

Figure A-3 - Relation between yield stress and nitrogen concentration for AISI 316 stainless steel 

Computationally the changing yield stress was implemented by comparing the maximum von Mises stress with the current 

yield stress resulting from the current concentration, after each time-step. If the concentration dependent yield stress 

exceeded the maximum von Mises stress, it replaced the value of the maximum von Mises stress, when evaluating plasticity 

in the next time step. 
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Abstract  

 
Thermochemical surface engineering by nitriding/carburizing 
of stainless steel causes a surface zone of expanded austenite, 
which improves the wear resistance of the stainless steel while 
preserving the stainless behavior.  As a consequence of the 
thermochemical surface engineering, huge residual stresses are 
introduced in the developing case, arising from the volume 
expansion that accompanies the dissolution of high interstitial 
contents in expanded austenite.  
Modelling of the composition and stress profiles developing 
during low temperature surface engineering from the 
processing parameters temperature, time and gas composition 
is a prerequisite for targeted process optimization. A realistic 
model to simulate the developing case has to take the 
following influences on composition and stress into account: 
- a concentration dependent diffusion coefficient 
- trapping of nitrogen by chromium atoms 
- the effect of residual stress on diffusive flux 
- the effect of residual stress on solubility of interstitials 
- plastic accommodation of residual stress. 

The effect of all these contributions on composition and stress 
profiles will be addressed. 
  
 

Introduction 

Austenitic stainless steels are widely applied in structural 
applications because of their corrosion resistance in 
combination with favourable manufacturing performance. 
Generally, austenitic stainless steels have poor tribological and 
wear performance. Low-temperature thermochemical surface 
engineering by nitriding, carburizing and nitrocarburizing 
provides a means to drastically improve the tribological/wear 
performance, without compromising the general corrosion 
performance and even improving the resistance against 
localized corrosion, as pitting and crevice corrosion [1],[2],[3]. 
In low-temperature nitriding, carburizing or nitrocarburizing  
large amounts of nitrogen and/or carbon are dissolved in the 
surface region. This brings about a zone of expanded 
austenite, which essentially is a supersaturated solution of 
nitrogen and/or carbon in austenite. The expanded austenite 
zone has a substantially higher hardness than the untreated 
steel and provides drastically improved wear resistance. 
Furthermore, high compressive residual stresses are 

introduced, which result in enhanced fatigue performance. A 
zone of expanded austenite, can be achieved by bringing the 
steel in contact with an environment providing nitrogen and/or 
carbon, as for example in plasma-assisted or gas-based 
processing. The concentration-depth profiles developing 
during low temperature nitriding are characterized by an 
initially steep decrease in nitrogen content followed by a 
plateau and a steep decline at the case-core transition [1]. This 
behaviour deviates from the composition profile expected for 
diffusion into a semi-infinite medium with a constant diffusion 
coefficient (as for example carbon into iron/steel) and constant 
surface concentration. It is well established that low-
temperature nitriding/carburizing of austenitic stainless steel 
leads to a composition-induced compressive residual stress 
depth-profile as a consequence of the lattice expansion 
associated with the dissolution of interstitial nitrogen and/or 
carbon. The compressive stresses developing in the case are 
several GPa’s in magnitude [1],[4],[5] and are largely 
composition induced. 
In this contribution an attempt is made to simulate realistic 
composition-depth and stress-depth profiles during nitriding, 
taking into account the influences of trapping of nitrogen by 
chromium atoms, the concentration-dependence of diffusivity 
of nitrogen in expanded austenite, stress-affected nitrogen 
solubility, a stress-assisted diffusive flux and composition-
induced volume expansion which is partly accommodated 
plastically. Details of the model and the input parameters used 
are provided in a separate publication [6]. 
 

Basic Equations 
 
The equation describing the diffusive flux, 𝐽𝐽𝑁𝑁, in the direction 
z under the influence of a composition and a stress profile is: 
 

𝐽𝐽𝑁𝑁 = −
𝐷𝐷𝑁𝑁𝑐𝑐𝑁𝑁
𝑅𝑅𝑅𝑅

�
𝜕𝜕𝜇𝜇𝑁𝑁
𝜕𝜕𝑐𝑐𝑁𝑁

𝜕𝜕𝑐𝑐𝑁𝑁
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜇𝜇𝑁𝑁
𝜕𝜕𝜎𝜎𝐻𝐻

𝜕𝜕𝜎𝜎𝐻𝐻
𝜕𝜕𝜕𝜕

� (1) 

 
where 𝐷𝐷𝑁𝑁 , 𝑐𝑐𝑁𝑁 and 𝜇𝜇𝑁𝑁 are the intrinsic diffusivity, the 
concentration and the chemical potential of nitrogen in 
expanded austenite, respectively. R and T are the gas constant 
and temperature and 𝜎𝜎𝐻𝐻 is the hydrostatic stress. The chemical 
potential of nitrogen is proportional to the nitrogen activity, 
which, for gasnitriding, is linearly proportional to the nitriding 
potential, 𝐾𝐾𝑁𝑁 = 𝑝𝑝𝑁𝑁𝑁𝑁3

𝑃𝑃𝑁𝑁2
3/2 , of the gas mixture. Then, after inserting 

the equation for the chemical potential of stressed solids [7]  
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𝜇𝜇𝑁𝑁 = 𝜇𝜇𝑁𝑁,0 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎𝑁𝑁) − 𝑉𝑉𝑁𝑁𝜎𝜎𝐻𝐻 (2) 

 
with 𝑎𝑎𝑁𝑁 the nitrogen activity and 𝑉𝑉𝑁𝑁 the partial molar volume 
of nitrogen in expanded austenite, Eq. 1 can be shown to obey 
[6] 
 

𝐽𝐽𝑁𝑁 = −
𝐷𝐷𝑁𝑁𝑐𝑐𝑁𝑁
𝑅𝑅𝑅𝑅

�
𝑅𝑅𝑅𝑅
𝐾𝐾𝑁𝑁

𝜕𝜕𝐾𝐾𝑁𝑁
𝜕𝜕𝑐𝑐𝑁𝑁

𝜕𝜕𝑐𝑐𝑁𝑁
𝜕𝜕𝜕𝜕

− 𝑉𝑉𝑁𝑁
𝜕𝜕𝜎𝜎𝐻𝐻
𝜕𝜕𝜕𝜕

� (3) 
 
 

From experimental data available in the literature the 
dependence of 𝑐𝑐𝑁𝑁 on 𝐾𝐾𝑁𝑁 (a so-called absorption isotherm) [8], 
the composition-dependent 𝐷𝐷𝑁𝑁 [9] and the dependence of 
lattice parameter on nitrogen content, and hence, 𝑉𝑉𝑁𝑁 [8] are 
known. Then, in principle, the diffusive flux of nitrogen in 
expanded austenite can be calculated for the experimental 
conditions of temperature and nitriding potential, provided 
that assumptions for the accommodation of composition-
induced stresses are done.  In the present work it is assumed 
that the surface reaction by which nitrogen is transferred from 
the gas to the solid is always in equilibrium, implying that the 
surface reaction (adsorption/dissociation of ammonia and 
desorption of hydrogen) proceeds infinitely rapidly. 
Another mechanism that affects the composition profile of 
nitrogen over the expanded austenite case is the occurrence of 
short-range order of nitrogen and chromium atoms, manifested 
as and often referred to as trapping of nitrogen. Analogous to 
[10], in the present work, trapping has pragmatically been 
accounted for by adopting a solubility product 𝐾𝐾𝐶𝐶𝐶𝐶𝑁𝑁𝑛𝑛 = 𝑐𝑐𝐶𝐶𝐶𝐶 ∙
𝑐𝑐𝑁𝑁𝑛𝑛, with  𝑐𝑐𝐶𝐶𝐶𝐶  the chromium concentration. 
 

Accommodation of composition-induced stress 
 
For simplicity, strains arising from externally imposed forces 
or thermal gradients are not included. Then, the strain in 
expanded austenite is the strain arising from the expansion of 
the austenite lattice as caused by the dissolution of interstitial 
nitrogen, i.e. the chemical-induced strain, 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐ℎ, defined as  

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 𝑗𝑗:    𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐ℎ(𝑐𝑐) =
𝑉𝑉(𝑐𝑐) 

1
3� − 𝑉𝑉𝐶𝐶𝑟𝑟𝑟𝑟

1
3�

𝑉𝑉𝐶𝐶𝑟𝑟𝑟𝑟
1
3�

 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 ≠ 𝑗𝑗:    𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐ℎ = 0 

(4) 

where V(c) in the concentration-dependent volume of 
(expanded) austenite per metal atom and Vref indicates the  
volume per metal atom of the interstitial-free lattice of 
austenite. A simple description of the stress state in the surface 
can be found under the following assumptions:  

- the surface of the sample can move freely: 𝜎𝜎33 =
𝜎𝜎⊥ = 0 (𝜎𝜎⊥ is the stress normal to the surface); 

- the stress state is rotationally symmetric, hence 
𝜎𝜎11 = 𝜎𝜎22 = 𝜎𝜎∥ (𝜎𝜎∥ is the stress within the plane of 
the surface); 

- the specimen does not bend, hence 𝜎𝜎12 = 𝜎𝜎13 =
𝜎𝜎23 = 0; 

- the depth range of the expanded austenite case is 
infinitely thin as compared to the total thickness of 
the sample. Accordingly, all stresses can be assumed 

to be accommodated in the case and the core is 
stress-free. 

Under these conditions and assuming purely elastic stresses, it 
is obtained 
 

𝜎𝜎∥𝑟𝑟𝑒𝑒 = −
𝐸𝐸

1 − 𝜈𝜈
𝜀𝜀∥𝑐𝑐ℎ (5) 

where 𝐸𝐸 is Young’s modulus, 𝜈𝜈 is the Poisson ratio and 𝜀𝜀∥𝑐𝑐ℎ is 
the chemical strain within the plane of the surface.  
 
The assumption of fully elastic accommodation of the 
composition-induced strains leads to exorbitantly high, 
unrealistic residual stresses, as will be demonstrated. These 
huge compressive stresses have a large impact on the stress-
gradient induced diffusive flux (cf. Eqs. 1 and 3) as well as on 
the solubility of nitrogen in the solid state for an imposed 
chemical potential (as dictated by the nitriding potential) by 
the gas phase (cf. Eq. 2). For elastic-plastic accommodation of 
the composition-induced strain, the stress depends on the 
loading path, and, thus, an incremental description has to be 
adopted: �̇�𝜎𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝜀𝜀�̇�𝑖𝑒𝑒 , with 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒  the incremental stiffness 
tensor. Here, the J2 flow theory was implemented to evaluate 
𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 . As a plastic stress criterion, the von Mises yield surface 
was adopted: 𝜎𝜎𝑟𝑟2 = 3

2
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖 . The occurrence of strengthening 

was accounted for by evaluating the yield stress as a function 
of nitrogen concentration, adopting the experimental relation 
between hardness and yield stress [11] and an experimental 
relation between hardness and nitrogen concentration over a 
nitrided case [12]. 
 

Computational Method 
 
Composition profiles were computed applying the central 
explicit finite difference method on the 1-dimensional version 
of Fick’s 2nd law 

𝜕𝜕𝑐𝑐𝑁𝑁
𝜕𝜕𝜕𝜕

= −
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐽𝐽𝑁𝑁� 

(6) 

 
where 𝐽𝐽𝑁𝑁 is given by Eq. 3. 
Including trapping of nitrogen by chromium atoms only the 
non-trapped nitrogen atoms are considered to diffuse, while all 
nitrogen atoms are taken into account to describe the lattice 
expansion that leads to stress build-up in the diffusion zone. 
The computation of chemical strains and stresses is done 
straightforwardly for each element after the concentration is 
calculated in each time-step. 
Full details of the calculations are given elsewhere [6]. 
 

Results and interpretation 
 
The combined effect of a composition-dependent diffusion 
coefficient of nitrogen and the role of trapping on the 
developing concentration profile was simulated for nitriding at 
718 K for 22 hours, using a nitriding potential of 1,000 atm-1/2. 
The concentration-dependent diffusion coefficient is given by 
a Lorentzian fit to the diffusivity data from [9]: 
 



𝐷𝐷𝑁𝑁 = 3.16 ∙ 10−15 ∙
1
𝜋𝜋
∙

0.109

�𝑦𝑦𝑁𝑁 − 0.4365�2 + 0.1092
 (7) 

 
where 𝑦𝑦𝑁𝑁 is the fractional occupancy of the octahedral 
interstices of the f.c.c. lattice with nitrogen atoms. For the 
calculations with a constant diffusion coefficient, the average 
value over the composition range was taken. In Fig.1 
simulation results are given for a constant diffusivity (Fig. 1a) 
and a diffusivity obeying Eq.7 (Fig. 1b), considering three 
degrees of trapping: no trapping (KCrN=inf), infinitely strong 
trapping (KCrN=0) and an intermediate level of trapping 
(KCrN=108). 
 

 
(a.) 

 
(b.) 
 
Figure 1: Simulated nitrogen concentration-depth profiles for 
constant diffusivity (a.) and concentration-dependent 
diffusivity (b.) and three degrees of trapping: no trapping 
(KCrN=inf), infinitely strong trapping (KCrN=0) and an 
intermediate level of trapping (KCrN=108). The nitriding 
conditions were T=718 K, t=22 h and KN=1,000 atm-1/2.  
Local equilibrium was assumed at the surface.  
 
The effect of trapping is observed as follows: no trapping 
(KCrN=inf) yields the usual complementary error-function 
profile for a constant diffusivity in Fig.1a, while the 
concentration dependence of the diffusivity is reflected by the 
profile in Fig.1b. Full trapping (KCrN=0) leads to an abrupt 
transition to zero nitrogen concentration (dashed line in Fig. 
3a). Intermediate trapping has as a consequence that a tail 
appears to the concentration profile beyond the depth where 

the solubility product is reached. The onset of the tail is 
indicated by arrows in Fig.1. 
 
From the relation between lattice parameter and nitrogen 
concentration [8], the volume expansion of the lattice can be 
calculated according to Eq.4. The elastic constants were 
assumed to be independent of the composition of austenite, 
because no quantitative data are available of how Young’s 
modulus and the Poisson ratio depend on nitrogen 
concentration. Under these assumptions, the elastic 
composition-induced compressive stress-depth profiles reflect 
the composition-depth profiles from which they were 
calculated. An example is given in Fig. 2.  
 

 
Figure 2: Simulated stress-depth profiles for concentration-
dependent diffusivity and an intermediate level of trapping 
(KCrN=107). The nitriding conditions were T=718 K and 
KN=1,000 atm-1/2 for various nitriding times. Local 
equilibrium was assumed at the surface.  
 
Compressive stresses of close to 30 GPa are obviously 
impossible to be subtended by metals. Before introducing 
elastic-plastic accommodation of the lattice expansion, it is 
investigated how these enormous stress distributions affect the 
evolution of the concentration profile by stress-enhanced 
diffusion (cf. Eq. 3) and reduce the solubility of nitrogen in the 
solid state (cf. Eq. 2). Fig.3 shows the concentration and stress 
profiles simulated for the cases that (i) the stress affects 
neither the solubility nor the diffusive flux (dashed line), (ii) 
the stress influences the diffusive flux (drawn line) and (iii) 
the stress affects both the solubility of nitrogen in expanded 
austenite and the diffuse flux (dash-dot line). Evidently, for 
the exorbitantly huge elastic stress gradient, the additional 
driving force for diffusion induced by the stress gradient 
establishes a concentration profile that reaches about 3.5 times 
as deep as driven by the concentration gradient alone (cf. 
drawn line in Fig.3). This illustrates the potentially substantial 
contribution of stress-induced diffusion, albeit for a grossly 
overestimated elastic stress. Further, including the effect of 
residual stress on solubility (dash-dot line) shows that, for the 
assumption of local equilibrium at the surface, elastic 
accommodation of the composition-induced stress leads to a 
reduction of the solubility of nitrogen in austenite by a factor 
2. The stress-gradient induced diffusive flux is still sufficiently 
large to establish a case depth beyond that reached without 
including the influence of stress (Fig.3).   



 

 
 
Figure 3: Simulated concentration-depth and stress-depth 
profiles for elastic accommodation of composition-induced 
stress, where (i) stress has no influence (dashed line), (ii) the 
stress-gradient induces an additional diffusive flux (drawn 
line) and (iii) stress affects both solubility of nitrogen in 
austenite and the diffusive flux (dash-dot line). The nitriding 
conditions were T=718 K and KN=1,000 atm-1/2 for 22 h and 
KCrN=107. Local equilibrium was assumed at the surface. Note 
that the dashed stress line is identical to the drawn line in Fig. 
2. 
 
Assuming purely elastic accommodation of the composition-
induced stress in austenitic stainless steel is unrealistic, 
because the yield stress of (interstitial-free) austenite is as low 
as 290 MPa [13]. The dissolution of interstitials in the f.c.c. 
lattice is most effective for strengthening of austenite, 
indicating that solid-solution strengthening has to be 
accounted for. Recently, it was found for the relation between 
Vickers hardness, HV, and the yield stress for uniaxial 
tension, 𝜎𝜎𝑦𝑦, of austenite [11] 𝜎𝜎𝑦𝑦 = −396 + 3.73 ∙ HV , where 
both 𝜎𝜎𝑦𝑦 and HV are given in MPa. Correlating hardness-depth 
and concentration-depth profiles for nitrided AISI 316 [12], it 
is obtained from implementing the above relation between 
hardness and yield stress 𝜎𝜎𝑦𝑦 = 0.2424 ∙ 𝑐𝑐𝑁𝑁 + 290   where 𝑐𝑐𝑁𝑁 
is given in mol.m-3 (Fig.4). The maximum yield stress in 
expanded austenite thus found is 𝜎𝜎𝑦𝑦 = 3.85 GPa in uniaxial 
tension. This value compares favorably with the experimental 
residual stress values observed for nitrogen expanded 
austenite, which generally exceed 4 GPa in biaxial 
compression.  

 
 
Figure 4: Relation between yield stress and nitrogen 
concentration for AISI 316 stainless steel as evaluated from 
experimental data in [11] and [12]. 
 
In Fig.5 simulated concentration-depth and stress-depth 
profiles are shown for: (i) purely elastic accommodation of the 
composition-induced expansion (cf. Fig.3) indicated as 
“elastic”, (ii) elastic-plastic accommodation for stress beyond 
the yield stress of 290 MPa for the base material, indicated as 
“plastic (const. yield stress)” and (iii) elastic-plastic 
accommodation for a concentration-dependent yield stress, 
i.e., solid-solution strengthening, indicated as “plastic, yield 
stress =f(cN)”, using the composition-dependence of the yield 
stress in Fig.4. Comparison of the profiles for elastic and 
elastic-plastic accommodation shows that, in accordance with 
expectations, the elastic stress level in the expanded austenite 
zone is very low if plasticity as for austenitic stainless steel is 
taken into account. Consequently, for this case of plasticity 
with a constant yield stress, the nitrogen surface concentration 
and diffusion in expanded austenite would be largely 
unaffected by the stress and thus a composition-depth profile 
reminiscent of that for a stress-free case is obtained (cf. Fig. 3 
“no stress”). Consistent with the appreciably lower stress in 
the case, the contribution of stress-induced diffusion is 
limited, as reflected by the relatively shallow diffusion depth 
reached. Assuming a concentration-dependent yield stress, 
implying that solid-solution strengthening by nitrogen 
dissolution in austenite is effectively accounted for, a high 
nitrogen content is obtained, whilst the (elastic) compressive 
residual stresses reach a level of approximately 5 GPa at the 
surface (Fig.5). This is in favourable agreement with the 
residual stresses found experimentally [1,12]. 
 

Discussion 
 
In the preceding chapter it was demonstrated how 
concentration-dependence of the diffusivity, nitrogen trapping 
and elastic-plastic stress influence the shape of the 
concentration-depth profile. Evidently, it is not possible to 



discriminate between the various models presented in the 
literature only on the basis of the shape of the concentration-
depth profile. 
 

 
Figure 5: Simulated concentration-depth and stress-depth 
profiles using purely elastic accommodation (designated 
“elastic”) of the lattice expansion or elastic-plastic 
accommodation. For a constant yield stress the lines denoted 
“plastic, (const. yield stress)” are obtained, while the 
assumption of a concentration-dependent yield stress results 
in the lines denoted “plastic, yield stress=f(cN)”. In all cases 
the nitriding conditions are 22h at 718 K for KN=1000 atm-1/2, 
KCrN=107 and local equilibrium at the surface. 

The adoption of a model presuming a constant diffusion 
coefficient and trapping of nitrogen atoms [14,15], can yield 
concentration-depth profiles of a shape as given in Fig. 1a 
(particularly for KCrN=107; not shown here, but see [6]). 
Taking the diffusivity, DN, and solubility product, 𝐾𝐾𝐶𝐶𝐶𝐶𝑁𝑁𝑛𝑛, as 
fitting parameters will certainly allow a satisfactory 
mathematical description of concentration-depth profiles. On 
the other hand, the assumption of a concentration-dependent 
diffusivity also leads to concentration-profiles that resemble 
those determined experimentally (cf. Fig. 1b).  The simulation 
of concentration profiles omitting the role of composition-
induced residual stress and its influence on the developing 
concentration profiles, appears an over-simplification of the 
case. In previous work it was estimated that a residual stress 
gradient enhances nitrogen diffusion in expanded austenite, 
such that the case depth is increased by a factor two [16]. 
Further mathematical implementation has so far been 
pragmatic, assuming an unphysical linear relation between 
composition and stress and a continuously decreasing 
diffusion coefficient [17], which obviously is in conflict with 
the experimentally determined diffusion coefficient for 

nitrogen in expanded austenite (cf. Eq.7). The present work 
adopts the actual lattice expansion of expanded austenite to 
estimate the stress, and the experimentally observed stress-free 
concentration-dependent diffusion coefficient were included in 
the model, while also the effect of stress on the nitrogen 
solubility and stress-enhanced diffusion were taken into 
account. Clearly, the present simulations demonstrate that 
elastic accommodation of the lattice expansion leads to 
residual stress values far beyond the yield stress of the 
material, which necessitates the incorporation of plasticity. 
Moreover, the residual stress values determined 
experimentally in expanded austenite are far beyond the yield 
stress of stainless steel (Fig. 5). It is necessary to take solid-
solution strengthening of expanded austenite by the 
dissolution of high amounts of interstitials into account. This 
provides realistic simulations of concentration-depth and 
stress-depth profiles over the expanded austenite case (Fig. 5). 
It is noted that plastic deformation in expanded austenite 
induced by the dissolution of nitrogen has been reported by 
several research groups [8,19]. Simulations of the depth range 
where plasticity occurs with the present model (not shown 
here) indicated that plastic deformation occurs over the entire 
case depth of expanded austenite [6], which is reflected by the 
steep increase in nitrogen concentration and compressive 
stress at the core-case transition.  
In this respect it is mentioned that after carburizing no plastic 
deformation in the expanded austenite zone has been 
observed. In order to understand this significant difference 
between nitriding and carburizing of stainless steel, it is 
important to realize that the interstitial content introduced by 
carburizing is appreciably lower than for nitriding, maximally 
20.103 mol.m-3 [1], while the level of compressive residual 
stress is generally below, say, 3 GPa [19]. For this 
combination of interstitial content and compressive residual 
stress, indeed purely elastic accommodation is predicted by 
Fig.4. 
 

Conclusions 
 

Nitriding of austenitic stainless steel was modelled taking into 
account a concentration-dependent diffusion coefficient and 
short-range ordering of chromium and nitrogen atoms 
(trapping). Stress-depth profiles were predicted from the 
lattice expansion caused by the interstitial nitrogen atoms. The 
interaction between stress (gradients) and solid-state diffusion 
was examined for purely elastic and for elastic-plastic 
accommodation of the composition-induced strain. It can be 
concluded that: 

- solid-state diffusion is enhanced by the compressive 
stress gradient resulting from the nitrogen 
concentration gradient; 

- for elastic accommodation of composition-induced 
strain, the interaction between stresses and diffusion 
results in compressive surface stresses exceeding 10 
GPa, which causes a significant decrease of the 
equilibrium nitrogen concentration; 

- for elastic-plastic accommodation of composition-
induced strains, the predicted compressive surface 
stresses are below 1 GPa, if a constant yield stress is 



assumed, while the nitrogen concentration at the 
surface approaches that for the stress-free condition; 

- for a concentration-dependent yield stress in the 
elastic-plastic approach, compressive stresses up to 5 
GPa are predicted. The thus obtained composition-
depth and stress-depth profiles are in good agreement 
with experimental results; 

- the elastic-plastic approach including the 
composition-dependent yield stress shows that no 
plastic deformation occurs for low-temperature 
surface hardening by carburizing instead of nitriding. 
This is consistent with experimental observations. 
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