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ABSTRACT: Predictable integration of foreign biological signals and OOO Tunable buffe
parts remains a key challenge in the systematic engineering of ) SRS -
synthetic cellular actuations, and general methods to improve signal input / M \

transduction and sensitivity are needed. To address this problem we ./ o o l
modeled and built a molecular signal buffer network in Saccharomyces o — . ~, > U
cerevisiae inspired by chemical pH buffer systems. The molecular N 7
buffer system context-insulates a riboswitch enabling synthetic control ) ‘i ______ -
of colony formation and modular signal manipulations. The o A~ A~ "
riboswitch signal is relayed to a transcriptional activation domain of

a split transcription factor, while interacting DNA-binding domains

mediate the transduction of signal and form an interacting molecular buffer. The molecular buffer system enables modular signal
inversion through integration with repressor modules. Further, tuning of input sensitivity was achieved through perturbation of
the buffer pair ratio guided by a mathematical model. Such buffered signal tuning networks will be useful for domestication of
RNA-based sensors enabling tunable outputs and library-wide selections for drug discovery and metabolic engineering.

KEYWORDS: riboswitch, signal tuning, signal inversion, signal processing, biosensor

ynthetic circuits rely on predictable signal processing at the understanding of RNA regulators has improved their scope of
interface of biological input sensors and output actuators. application.'#**~%’
However, constraints in matching signal input/output (I/O) Specific adaptation of the regulatory properties of an RNA
currently limit the possible functions that can be designed.’ switch to fit the needs of a conceived genetic circuit can be
Accordingly, the integration of subtle inputs with general made. For instance, change of sensitivity is possible through

rational mutagenesis of the switch,”® and riboswitch mutants
with inverted outputs have been identified through elaborate
. 28 . .
screenings.” However, these adaptations are challenging and
time-consuming.29 In contrast, the response curve of tran-
scription factor-based input sensors can be manipulated

stabilizing and modulating networks is needed to successfully
actuate complex biological programs. Such approaches may
further help provide context insulation and stability toward
signal errors inherent in many human-designed biological

systems, including multl?omponent synthetic computatloln modularly, eg, by deploying synthetic signal drains and
networks, gene-therapeutic dosage control and metabolic

) : . ) ) competitive inhibitors,>”*" which render the signal ultra-
biosensors constitute systems that otherwise require precise " . .

) R sensitive and can change the input trigger thresholds.
and robust signal transmission.

A wid ¢ ‘ li ) hich Furthermore, modular signal inversion can be achieved based
wide variety of natural input sensor types exist, which are on translational fusions of the sensor to repressor/activator

overall represented by protein transcription factors'”'" and domains. >33

RNA switches.'”"* Despite an apparent abundance of candidate To minimize the need for tailoring riboswitch sensors to
input sensors, only a modest number of such regulators are their specific conceived actuations, a modular signal-processing
routinely used to bulld most Synthetic circuits, namely protein- System Offering control interfaces W]thout need for Changing
based input sensors such as Lacl, LuxR and GAL4.”"*~"* RNA the actual input and output parts is needed. In this study we set
switches hold the potential advantage that their ligand- out to stabilize and transform ineffective responses of a
recognizing part, the aptamer, can be tailored synthetically for tetracycline-responsive riboswitch by directing its output signals
virtually any molecule using the SELEX technology.'’ through a molecular signal buffer network to enable tunable
Sophisticated sensor modules have been constructed on the population-wide selection. Such signal processing adds
basis of modular assembly of synthetic’’ and programmable de beneficial modular control points for switch-independent
novo RNA switches.”' Switches are limited in a number of

aspects: input sensitivity, modularity and whether regulation is Received: October 27, 2015

positive or negative, although recent progress in the design and Published: May 3, 2016
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changes of input sensitivity and output direction. We therefore
adapt the buffer concept to riboswitch regulation through the
use of split transcription factors expressed at uneven ratios as
buffer pairs.

B RESULTS

Direct control of complex cellular actuations, such as cell
survival by riboswitches can sometimes be challenging to
achieve due to leaky expression although the same riboswitch
with luminescent or fluorescent outputs yields quantitative and
repeatable readouts. In spite of these challenges synthetic
control of cell survival is required in order to enable library
selections for specific phenotypes or to control cell populations
in a variety of applications. To assess these challenges we
engineered genetic constructs comprising a tetracycline-
responsive riboswitch®® that down-regulates translation of the
classical yeast selection gene URA3 in Saccharomyces cerevisiae.
URA3 mediates S-fluoroorotic acid (FOA) sensitivity (FOAS),
which permits negative selection. Despite a substantial down-
regulation capacity of the riboswitch at 37-fold,** addition of
tetracycline input resulted only in a limited improvement of
growth with about $-fold more colonies appearing on FOA®
spot assay selection plates (Figure 1), similar to average 21 -

Direct riboswitch
response (GFP)

Genetic circuit Colony formation output

Colony formation rate

Direct signal €3 -

Fluorescence (RFU)

-

é Riboswitch + Riboswitch ligand

Figure 1. Colony formation in response to direct riboswitch-sensed
input. Direct relay of the riboswitch signal to URA3 caused poor
control of colony formation (strain PRdS), further indicated by C-
terminal GFP-tagging of URA3 (strain PRal16). The riboswitch (R)
was expressed in the S'-untranslated region of URA3. Colony
formation responses were determined using spot assays with 10-fold
serial dilution of equally dense cultures (Methods) and representative
examples of triplicate tests shown. GFP output was measured as
background-subtracted relative fluorescence units (RFU) measured
from a C-terminally GFP-tagged URA3 (PRall6), with error bars
depicting standard error (n = 3). Plates were SC—leu—trp, with 0.09%
(w/v) FOA in selective medium. 150 uM tetracycline was used as
ligand in plates, 250 uM tetracycline in liquid cultures.

107* + 4 - 107* colonies by plating, where 150 uM tetracycline
supplementation increased the number to 103 - 107 colonies +
17 - 10™* (& standard error, n = 3).

In selections, cells that form colonies in the absence of the
input are false positives. Due to single cell variation, these
might, eg, form despite correct population-level URA3
expression level. Equally undesirable are the false-negative
cells that fail to form colonies despite receiving input. Both
error types limit the possible throughput, e.g, when assaying
libraries. We wanted to ensure that URA3 expression was
within the dynamic range of cell death and survival. Too high
basal URA3 expression would mean that even the down-
regulated URA3 expression is too high to cause survival due to
leakiness (false negatives). Oppositely, too low basal expression
would constitutively cause survival (false positives). Since all
plated cells did not form colonies with tetracycline (Figure 1),
the system appeared to yield false-negative cells. Similarly false-
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positive cells were indicated due to cells forming colonies in
absence of tetracycline (Figure 1).

This simultaneous occurrence of false-positive and false-
negative cells indicated a fundamentally poor signal relay. We
subsequently tagged the regulated URA3 C-terminally with
GFP, which showed no tetracycline-dependent down-regula-
tion, indicating incompatibility between URA3 and the
riboswitch (Figure 1). Such detrimental “part-junction”
interference™ might, eg, result from interacting mRNA
structures, similar to interaction effects seen between promoters
and circuit output, which could be buffered using ligand-
independent ribozymes.”> Thus, we speculated that an
additional regulatory layer might provide important signal
insulation, while further functioning as a signal-processing
platform to modulate the riboswitch signals.

A Synthetic Molecular Signal Buffer to Effectively
Relay the Riboswitch Signal. Biological and chemical
systems maintain pH homeostasis by providing a surplus of
interconvertible acid/base species. Their ratio influences pH
and shows the capacity to react with fluctuating molecules to
render them dysfunctional, rather than affecting pH, unless a
specific threshold equivalence point is reached; e.g, human
blood is buffered stably to pH 7.4 Thus, we hypothesized that a
simple, protein-based signal buffer can be engineered in a
similar fashion.

One embodiment of such synthetic signal buffer would be a
genetic network employing split transcription factors,*® while
this would simultaneously insulate the riboswitch. Here, the
input-sensing riboswitch controls the translation of a hybrid
activation domain (AD) from a transcription factor such as
GAL4. At the same time, a separate, cognate GAL4 DNA-
binding domain (DBD) is transcribed at equal levels to the AD
transcript (Figure 2). Thus, the DBD will be present in high
numbers relative to the low number of DNA-binding sites
positioned upstream of the output gene. The DBD thereby
functions both as a mediator for the signal-correlated AD when
bound to DNA, and as a surplus buffer molecule when DBD is
not bound to DNA. Thus, the output would only be driven by
the fraction of DBDpy, bound to an AD molecule. Due to the
buffering capacity of surplus DBD, this network architecture
may also buffer against a few AD proteins unintentionally
translated due to leakage or possible intermittent absence of
riboswitch input in the riboswitch signals.

Mathematical Model of a Synthetic Signal Buffer
System. We constructed a simple mathematical model for the
conceived buffer network to guide the design. The model was
built through application of ordinary differential equations
(ODEs) describing the accumulation of mRNA and protein for
the system (Table 1).

On the basis of equilibrium reactions between receptor R and
ligand L, we derived simple Michaelis—Menten type saturation
fractions (f) for receptor saturations given the formal L and R
concentrations and their dissociation constant (K;) (more
details in Supporting Information). Receptors and ligands
notably represent several interactions in the network:
riboswitch:tetracycline, DNA:DBD, DBD:AD.

The saturation fractions of these regulating receptors were
subsequently used in the ODEs to linearly regulate the
formation rates (Vi) of cognate mRNA and protein (ie,
the transcription and translation rates). Formation of a
regulated species was further limited by a minimum and
maximum value, describing a leakiness level, and a general
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Figure 2. Design of the molecular buffer network to modulate
riboswitch signals. The signal-buffer design is composed of equal-level
expression of the two independent GAL4 transcription factor domains,
the riboswitch-regulated AD (blue) and the DBD (red), both fused to
mutually interacting domains. The output gene of interest (GOI) is
expressed from a minimal promoter featuring upstream binding sites
for the DBD. When adding riboswitch ligand as input to the system,
the translation of AD mRNA is inhibited, leading to a reduced
expression of the GOL The buffer system thus relays the riboswitch
signal, while also insulating the output GOL

reduction in translation strength, eg, as observed for
riboswitches.®’

In the case of the buffer system, the general expression for f
can both be used to model the fraction of DNA sites that is
bound to DBD and the fraction of DBD that is bound to AD,
assuming simple binding dynamics. Since we assume that the
two interactions are independent of each other, we can multiply
the two fractions to report the fraction of DNA sites that is
bound by an AD-DBD complex, or the fraction of time that a
given DNA site will be bound by an AD-DBD complex.

According to the model, the specific tuning of the buffer
molecule levels significantly impacts function, and full
utilization of the riboswitch regulation potential will be
achieved with roughly equal expression of DBD and AD
transcripts (Figure S3).

Molecular Construction of the Synthetic Signal Buffer
System. To set up the buffer network in S. cerevisiae, cognate
GAL4 AD and DBD proteins were expressed with equal
strength from ADHI promoters with the tetracycline-
responsive riboswitch down-regulating translation of AD
(Figure 2). Repeats of the cognate DNA-binding sites were
positioned upstream of a minimal promoter from SPO13. This
promoter features a natural UMEG6 repressor binding site to
reduce system-independent expression, such as previously
engineered for a yeast two-hybrid strain (SPALI10 in strain
MaV203)™* to allow GAL4-dependent regulation of URA3 in a
range affecting colony formation. After relaying the riboswitch
signal through the buffer network, population-level control of
the URA3 phenotypes became possible in an S. cerevisige strain
deficient of wild type GAL4 and GALS80 (Figure 3A). The
signal-buffered strains acquired an ability to link colony
formation to presence of the riboswitch input using classical
FOAR selection where false-positive cells were first observed
when spotting 10° cells (Figure 3A) in the buffered strain.
Further, since all plated cells formed colonies in the presence of

Table 1. Ordinary Differential Equations Describing the Formation and Degradation of mRNA and Protein in the Split TF
Buffer System, Given the Saturation Fractions f of Regulating Receptors (Riboswitch or TF)

species differential equation
d[AD mRNA]
AD mRNA " = Vi — Kaegraga'[AD mRNA]
d[DBD mRNA]
DBD mRNA = Vom " Kgegrygs’ [DBD mRNA]
RNA
ALURAS mRNAL _ AL, + (GALpac = GALuiy) o Fonoons
URA3 mRNA (driven by DBD:AD) dt
= Kiegrpys [URA3 mRNA]
AD protei AIAD) _ (bo  — (sibo,. — ribo.)f. )-[AD mRNA] — k... [AD]
protein PP ribo,,.. tibo,,, — riboy ) f m degipror
d[DBD
DBD protein L " ] = kgym'[DBD mRNA] — kdegr},mt[DBD]
d[GAL4 mRNA]
GAL4 mRNA = Vom - K gegrngs [GAL4 mRNA]
d[GAL4] = (riboy,,, — (1iboy,,, — 1ibo,;,)f, )-[GAL4 mRNA]
GAL4 protein dt
= Kaege,o [ GAL4]
RNA
M = GALmin + (GALmax - GALmin)fGAIADNA
URA3 mRNA (driven by GAL4) dt
= Kiegrgns'[URA3 mMRNA]
d[URA3
URA3 protein % = kiom' [URA mRNA] = kyepe -[URA3 mRNA]
634 DOI: 10.1021/acssynbio.5b00213
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Figure 3. Colony formation in response to riboswitch-sensed inputs
using the engineered circuits. (A) Signal-buffered riboswitch relay
provided full ligand-controlled colony formation (PRa22). (B) Relay
of the riboswitch through the single-protein wild type transcription
factor did not allow ligand-dependent colony formation (PRa28). (C)
Modular inversion of the riboswitch signal by regulation via the
GALSO repressor (PRa84). The riboswitch (R) was expressed in the
§'-untranslated region of the illustrated target gene (AD, GAL4 or the
GALS80 repressor). Colony-formation responses were determined
using spot assays with 10-fold serial dilution of the cultures (Methods)
and representative examples of triplicate tests shown. GFP output was
measured as background-subtracted relative fluorescence units (RFU)
measured from a C-terminally GFP-tagged AD (PRall$), with error
bars depicting standard error (n = 3). Plates were SC—leu—trp, with
0.09% (w/v) FOA in selective medium. 150 uM tetracycline was used
as input ligand in plates, 150 uM tetracycline in liquid cultures.

tetracycline (Figure 3A), both false-positive and false-negative
colonies were reduced at the same time using the molecular
buffer compared to the strain directly linking the signal from
the riboswitch sensor to the output gene (Figure 1). We also

observed efficient tetracycline-dependent down-regulation of
AD by C-terminal GFP tagging, confirming that the riboswitch
signal was relayed when using the AD gene (Figure 3A). Thus,
insulated from the URA3 gene, the riboswitch signal
propagated correctly.

We hypothesized that the introduction of a buffering layer
can provide additional, modular advantages for signal tuning
unlike a possible insulation using a simple N-terminal tag.
However, the complete network also must be carefully balanced
and thus we first tested the importance of the introduced DBD
buffer molecules compared to simply passing the signal through
a transcription factor layer employed at the same transcriptional
strength but without buffering. Likely due to the high
expression level and concomitant constitutive DNA saturation,
use of a single-protein, wild type GAL4 transcription factor
resulted in no control of colony formation (Figure 3B) despite
possessing the same DNA-binding domain (as modeled Figure
S4). As indicated in a riboswitch selection study, such direct
riboswitch control of a full transcription factor likely requires
use of a much weaker expression level (driven by CYCI
promoter).>

Modular Inversion of Sensor Signals. The need for ON
or OFF switches in genetic circuits depends on the desired
actuations and outputs. To allow the combination of OFF
riboswitches with gain-of-function genes, we wanted to
demonstrate the ease by which riboswitch signals can be
treated modularly with the synthetic buffer network and a
repressor module. Engineering of regulated repression by
adding repressor-binding sites within synthetic/hybrid pro-
moters can be challenging. Instead we took advantage of the
constructed, robust activation modules and inverted the signal
modularly by relaying the OFF signal to the GALSO
antiactivating repressor, which binds and inhibits GAL4 AD.*
In this way signal inversion results from expressing the genes
encoding DBD and AD with the same transcriptional strength
as a gene encoding GAL80 controlled by the tetracycline

High

Low
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Figure 4. Tuning the effective sensitivity for the ligand by modulating the transcriptional ratio of AD and DBD in the buffered network with
fluorescence and colony formation as output. (A) Model showing the effect on output (URA3 expression) by changing the AD:DBD transcriptional
ratio (AD(:DBD) or adding riboswitch ligand. (B) Dynamic range tuning measured in S. cerevisiae with 6xGFP as output. Background-subtracted
relative fluorescence units (RFU) are shown responding to added riboswitch ligand (tetracycline) for two strains AD; and AD, with perturbed
AD(:DBD, error bars denote std. error (n = 3). The output is shown with the fit to the model with linear x-axis and in the small window with
logarithmic x-axis. (C) Shifted trigger point for colony formation of the two perturbed strains spotted in 10-fold serial-dilution spot assays of equally
dense cultures on SC—leu—trp +0.09% FOA with indicated riboswitch ligand concentrations (tetracycline) (one representative experiment shown

from triplicates).

635

DOI: 10.1021/acssynbio.5b00213
ACS Synth. Biol. 2016, 5, 632—638


http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00213/suppl_file/sb5b00213_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssynbio.5b00213/suppl_file/sb5b00213_si_001.pdf
http://dx.doi.org/10.1021/acssynbio.5b00213

ACS Synthetic Biology

Research Article

riboswitch. With these strains using the exact same sensor and
output modules, the opposite colony formation behavior was
observed (Figure 3C) compared to the first buffered strain,
although the frequency of false positives increased by 10-fold,
indicating that the expression level of GAL80 could be further
optimized relative to DBD and AD.

Using the Synthetic Buffer Network for Modular
Tuning of Input Sensitivity. The sensitivity of a riboswitch
for its ligand depends on molecular RNA interactions, which
are nontrivial to engineer.25 Instead, our model suggested that
the sensitivity could be modularly shifted by perturbing the
transcriptional ratios of AD to DBD (AD,:DBD) while
maintaining the riboswitch unchanged (Figure 4A). We
calculated steady state concentrations of URA3 at different
tetracycline concentrations and transcriptional AD,:DBD ratios
by setting the ODEs equal to zero. The ADy:DBD ratio was
varied by changing the DBD transcription rate while keeping
AD transcription rate constant.

By introducing more free AD molecules relative to DBD in
the system, a higher number of input molecules (i.., larger AD
reduction) would be required to lead to the same output. Thus,
an increased ligand concentration would be required in order to
produce an AD:DBD protein ratio that outputs a survival
response (Figure 4A).

To test this experimentally, we perturbed the ratios by
introducing the weaker CUPI promoter to drive DBD
expression as a low-expression alternative to the ADHI
promoter’' otherwise used. The response curves of the two
perturbed systems measured with 2 X 3 tandem green
fluorescent protein (2X 3vGEP)* displayed this response
shift and the changed curvature was fitted to our model (Figure
4B) with high confidence (R* = 0.98 and 0.96). The increase of
AD:DBD transcriptional ratio resulted in a vertical response
increase, probably due to a higher degree of AD-binding to
DNA-bound DBD. More interestingly and as predicted, it also
introduced a horizontal right-shift, thus increasing the number
of ligand molecules needed to produce the same absolute
expression level and produce the same relative down-regulation
from the maximum. This horizontal shift could also be relayed
to colony-formation output (Figure 4C). The increased
AD:DBD transcription ratio effectively shifted the ligand
sensitivity threshold to trigger survival at an increased ligand
concentration. Whereas the strain AD; with ADHI-based
expression of AD and DBD required 50 M tetracycline to
trigger the survival, the strain AD, with increased AD:DBD
transcription ratio required 150 uM tetracycline to trigger
survival (Figure 4C). As predicted by the model, the low
threshold concentration could be reconstituted by simply
reducing the absolute transcription levels for AD as much as for
DBD, hence reestablishing the 1:1 transcriptional AD:DBD
ratio (Figure SS). Much like pH buffers, the output did not
change notably in response to absolute changes in the
concentration of the interacting buffer pairs when their mutual
ratio was kept the same.

B DISCUSSION

In next-generation synthetic systems, biological signal interfaces
that improve parts’ interoperability are needed to meet the
challenge of designing diverse biological functions using diverse
biological parts. Recently, such progress has been attained using
spatial insulators to limit the negative impact from the genetic
context of the combined parts®> or using modular signal
transduction scaffolds with autoinhibition.*’ In other systems,

636

better I/O coherence has been obtained through use of
directed evolution approaches or extensive tuning libraries
sampling the functional circuit space.">** Another powerful
method for signal improvement is the use of protein
sequestration to generate ultrasensitivity and to transform
graded signals into binary forms.””* Ultrasensitivity can result
if the buffering molecules have higher affinity for the input
signal than the output relay has,*® whereas in our
demonstration, the buffering agent is the same protein as the
output relay. Molecular buffering may be a natural signal
stabilization strategy. In fact, buffering of noise in some natural
systems has been predicted as a result of the order of dimer
transcription factor binding, which produces a pool of signal
stabilizing, inactive monomers.”” In this study, we demon-
strated that design principles of molecular buffers can be
reconstructed synthetically to effectively tune and utilize the
signal response of a riboswitch, allowing new cellular actuations,
while also insulating the riboswitch from the nucleotide
context. Adapted from pH-stabilizing buffers, this protein-
based buffer device allowed the modular tuning of riboswitch
signals. Similarly, the input trigger threshold for shifting the
output phenotype could be tuned by changing the ratio of the
buffer proteins, analogous to how pH buffer ratios affect the
stabilized pH.

Signal modulation has been described employing different
pools of “unfunctional” response mediators such as anti-
activators and shunt DNA-binding sites to change GFP-based
outputs.’”**** Introducing signal computation based on
protein—protein interactions, this concept alleviates issues
with tuning the expression level of DNA-binding proteins
such as repressors at levels of a few molecules per cell where
unintended, constitutive oversaturation of the binding sites will
result in loss of signal. Using split transcription factors, we
instead rely on customized protein—protein interaction of
hybrid proteins. Lower binding affinity between these parts
allows responses to transmit at higher signal molecule
concentrations, which may provide stability toward fluctuations.
These provide an easy protein—protein interaction control
point for inversion of the signal direction, which is often
important as many output genes work only with ON signals.

These different generic interaction interfaces of the network
may serve to further incorporate multicomponent signal
schemes comprising, e.g, sub-buffer systems by engineering
specific conditional DBDs and specific protein-interaction
domains without module cross talk. We also anticipate that
the signal-stabilizing network engineered in this study could be
reconstructed in quite different synthetic embodiments by
implementation of other buffer molecules cognate to an
otherwise fluctuating signal. By taking advantage of the natural
concept of molecular signal buffers, these systems will aid the
large-scale domestication of wild type or synthetic input sensors
for more predictable, customized cell reprogramming.

B METHODS

Standard methods for strain construction and molecular
biology in S. cerevisiae and Escherichia coli were used. All
plasmids and chromosomal deletion substrates cloned in this
study were constructed using uracil-excision cloning™ by
assembly of PCR fragments as described in Supporting
Information. Complete cloning and strain construction
methods, strain lists and plasmid lists are given in Supporting
Information.
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Colony Formation Response Assays. Four mL synthetic
complete (SC) medium (2% glucose, pH = 5.6) lacking leucine
(lew) and tryptophan (trp) was inoculated with a single colony
of the strain and split into two halves for preculturing with/
without the riboswitch ligand (150 uM tetracycline) for 18 h at
30 °C, 175 rpm horizontal shaking. Each culture was 10-fold
serial diluted in a 96-well plate, such that each dilution
contained 100 uL of volume. Five uL of each dilution (both
precultures) was spotted onto SC—leu—trp plates (pH = 4.5)
and the respective assay plates, supplemented with 0.09% (w/
v) FOA and the relevant concentration of tetracycline.
Preparation of FOA-containing plates is further described in
Supporting Information. Plates were incubated in darkness at
30 °C for 3 days. For spot assays, equal cell concentrations
between strains and conditions were controlled by evaluation of
the spots on SC -leu -trp plates. Photographs were taken with a
ColonyDoc-It (UVP).

GFP Response Assays. Precultures of the strains PRa74
(background), PRa78 (AD,) and PRa79 (AD,) were inoculated
from a single colony of the strain in SC medium (2% glucose,
pH = 5.6) lacking leu, trp and histidine. Following 18 h of
cultivation at 30 °C, 175 rpm horizontal shaking, 200 uL
microtiter main cultures were inoculated from these in 75% SC
medium (diluted with Milli-Q water and back-standardized to
2% glucose) with the relevant concentrations of tetracycline
added. The cultures were sealed with a gas-permeable
Breathseal (Greiner bio-one) and plastic lid and were cultured
in a horizontal shaker (Innova) at 30 °C, 300 rpm shaking.
Following 16 h of cultivation, the cultures were measured by
flow cytometry on a BD LSRFortessa Cell Analyzer using a
FITC filter with collection limit set to 10 000 cells. The mean
FITC intensity for each sample was reported. The measure-
ments from the GFP-devoid PRa74 strain were used for
background-subtraction.

Direct Riboswitch Response (GFP-Tagging). Precultures
of the strains PRal8 (background), PRallS (AD-GFP) and
PRal16 (URA3-GFP) were inoculated from a single colony of
the strain in SC medium (2% glucose, pH = 5.6) lacking the
relevant auxotrophic selection dropout (leu or trp). Following
18 h of cultivation at 30 °C, 250 rpm horizontal shaking, 4 mL
cultures of SC medium (2% glucose, pH = 5.6, 250 uM Cu*")
were inoculated from the precultures (by 100X back-dilution)
and with the relevant concentrations of tetracycline added.
Following 16 h of cultivation at 30 °C, 250 rpm horizontal
shaking, the cultures were measured in a Synergy H1 reader
(BioTek) with 485 nm excitation, $S28 nm emission and
standardized to the cell density (OD600). The measurements
from the GFP-devoid PRal8 strain were used for background-
subtraction.
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