brought to you by

Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocity scaling, which is proportional to the ion acoustic speed times the square root of the filament particle density times the sum of the electron and ion temperature perturbations. Only for small blobs the cross field convection does not follow this scaling. The influence of finite Larmor radius effects on the cross-field blob convection is shown not to depend strongly on the dynamical ion temperature field. The blob dynamics of constant finite and dynamical ion temperature blobs is similar. When the blob size is on the order of 10 times the ion Larmor radius the blobs stay coherent and decelerate slowly compared to larger blobs which dissipate faster due to fragmentation and turbulent mixing.

General information

State: Published

Organisations: Department of Physics, Plasma Physics and Fusion Energy

Authors: Olsen, J. M. B. (Intern), Madsen, J. (Intern), Nielsen, A. H. (Intern), Rasmussen, J. J. (Intern), Naulin, V. (Intern)

Number of pages: 11 Publication date: 2016

Main Research Area: Technical/natural sciences

Publication information

Journal: Plasma Physics and Controlled Fusion

Volume: 58 Issue number: 4 Article number: 044011 ISSN (Print): 0741-3335

Ratings:

BFI (2017): BFI-level 1

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 1

Scopus rating (2016): CiteScore 1 SJR 0.583 SNIP 0.617

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 1

Scopus rating (2015): SJR 0.734 SNIP 0.864 CiteScore 1.1

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 1

Scopus rating (2014): SJR 1.318 SNIP 1.235 CiteScore 1.61

Web of Science (2014): Indexed yes

BFI (2013): BFI-level 1

Scopus rating (2013): SJR 1.088 SNIP 1.227 CiteScore 1.54

ISI indexed (2013): ISI indexed yes Web of Science (2013): Indexed yes

BFI (2012): BFI-level 1

Scopus rating (2012): SJR 1.391 SNIP 1.142 CiteScore 1.63

ISI indexed (2012): ISI indexed yes Web of Science (2012): Indexed yes

BFI (2011): BFI-level 1

Scopus rating (2011): SJR 1.512 SNIP 1.592 CiteScore 2.69

ISI indexed (2011): ISI indexed yes Web of Science (2011): Indexed yes

BFI (2010): BFI-level 1

Scopus rating (2010): SJR 1.477 SNIP 1.41

Web of Science (2010): Indexed yes

BFI (2009): BFI-level 1

Scopus rating (2009): SJR 1.589 SNIP 1.32

Web of Science (2009): Indexed yes

BFI (2008): BFI-level 1

Scopus rating (2008): SJR 1.872 SNIP 1.603

Web of Science (2008): Indexed yes

Scopus rating (2007): SJR 1.971 SNIP 1.389

Web of Science (2007): Indexed yes

Scopus rating (2006): SJR 1.833 SNIP 1.403

Web of Science (2006): Indexed yes Scopus rating (2005): SJR 1.73 SNIP 1.55 Scopus rating (2004): SJR 2.232 SNIP 1.377 Scopus rating (2003): SJR 2.016 SNIP 1.247

Web of Science (2003): Indexed yes

Scopus rating (2002): SJR 1.667 SNIP 1.022

Web of Science (2002): Indexed yes

Scopus rating (2001): SJR 1.507 SNIP 1.23

Web of Science (2001): Indexed yes

Scopus rating (2000): SJR 1.388 SNIP 1.124 Scopus rating (1999): SJR 2.148 SNIP 1.515

Original language: English

Velocity scaling, Warm ions, Scrape-off layer transport, Blob dynamics

DOIs:

10.1088/0741-3335/58/4/044011

Source: FindIt

Source-ID: 2292431255

Publication: Research - peer-review > Journal article - Annual report year: 2016