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Global Genomic Epidemiology of Salmonella enterica Serovar
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Department of System Biology, Technical University of Denmark, Kgs. Lyngby, Denmarkb; Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de
Référence des Salmonella, Paris, Francec; Technical University of Denmark, National Food Institute, Søborg, Denmarkd; Comparative Genomics Group, Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USAe; Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United
Kingdomf; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdomg

It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica
serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used
whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct tem-
poral and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 iso-
lates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimi-
crobial susceptible in �1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in �1972 (95% CI, 1972 to
1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already
containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several
European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR
DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand
in �1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds
of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to
eradicate Salmonella from pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the
evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of
Salmonella infections.

Salmonella is one of the most common food-borne pathogens
worldwide (1). In the United States of America alone, Salmo-

nella is estimated to cause 1.4 million cases of salmonellosis, re-
sulting in 17,000 hospitalizations and almost 600 deaths each year
(2, 3). Globally, Salmonella enterica serovar Typhimurium is the
most commonly isolated serovar (1). S. Typhimurium consists of
a number of subtypes that classically have been divided by phage
typing. During the last 3 decades, S. Typhimurium phage type
DT104 (DT104) emerged as the most important phage type and
one of the best studied because of its rapid global dissemination (1,
4). One of the characteristics of DT104 is its typical resistance to
ampicillin, chloramphenicol, streptomycin, sulfonamide, and tet-
racycline (ACSSuT) (5) along with its capacity to acquire addi-
tional resistance to other clinically important antimicrobials (4).

Susceptible DT104 was first reported in the 1960s in humans
and subsequently as multidrug-resistant DT104 (MDR DT104) in
the early 1980s in humans and birds from the United Kingdom
(6–9). Another instance of human MDR DT104 was reported in
Hong Kong in the late 1970s (10). Isolates from agricultural ani-
mals were first reported in the United Kingdom in 1988 (8) and in
the United States in 1990 (11). MDR DT104 rapidly emerged
globally in the 1990s and became the most prevalent phage type
isolated from humans and animals in many countries (4, 6, 12).
Previous epidemics with MDR phage types of S. Typhimurium,
such as DT29, DT204, DT193, and DT204c, were mostly restricted
to cattle, whereas MDR DT104 spread among all domestic ani-
mals, including cattle, poultry, pigs, and sheep (6). A decline in
MDR DT104 has been reported in the last decade (13, 14).

A recent study used whole-genome sequencing (WGS) to
study DT104 mainly from cattle and humans in Scotland (15).
This study was hampered by the lack of inclusion of isolates from
other animal species and from food products consumed in Scot-
land but imported from other countries (15, 16).

The origin and transmission routes of the phage type DT104
are still ambiguous. Based on the presence of the rare resistance
genes floR and tet(G), it has been suggested that the MDR phage
type originated in Southeast Asia (6). Transmission has been sug-
gested to be through trade of live animals, but it has not been
established whether the epidemiologies in the different animal
species are part of a common global spread or whether there are
host-specific variants.

Received 25 November 2015 Accepted 9 February 2016

Accepted manuscript posted online 4 March 2016

Citation Leekitcharoenphon P, Hendriksen RS, Le Hello S, Weill F-X, Baggesen DL,
Jun S-R, Ussery DW, Lund O, Crook DW, Wilson DJ, Aarestrup FM. 2016. Global
genomic epidemiology of Salmonella enterica serovar Typhimurium DT104. Appl
Environ Microbiol 82:2516 –2526. doi:10.1128/AEM.03821-15.

Editor: M. Kivisaar, Tartu University

Address correspondence to Pimlapas Leekitcharoenphon, pile@food.dtu.dk.

Supplemental material for this article may be found at http://dx.doi.org/10.1128
/AEM.03821-15.

Copyright © 2016 Leekitcharoenphon et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution 4.0
International license.

crossmark

2516 aem.asm.org April 2016 Volume 82 Number 8Applied and Environmental Microbiology

 on A
pril 11, 2016 by D

T
U

 Library
http://aem

.asm
.org/

D
ow

nloaded from
 

http://orcid.org/0000-0003-3632-5512
http://dx.doi.org/10.1128/AEM.03821-15
http://dx.doi.org/10.1128/AEM.03821-15
http://dx.doi.org/10.1128/AEM.03821-15
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1128/AEM.03821-15&domain=pdf&date_stamp=2016-3-4
http://aem.asm.org
http://aem.asm.org/


In order to examine the population structure of DT104, we
sequenced a carefully selected representative intercontinental
DT104 collection from different human and animal sources in 21
countries, covering the period from 1969 to 2012. We identified
single nucleotide polymorphisms (SNPs) and performed phylog-
enomic dating based on temporally structured sequence analysis
within a Bayesian framework in order to characterize the popula-
tion structure, phylogeny, and evolution over time of DT104. We
also revealed historical as well as recent dissemination events, in-
cluding local transmission between and within farms in Denmark.

MATERIALS AND METHODS
Bacterial isolates. The 315 S. Typhimurium DT104 isolates included in
this study were collected intercontinentally from 21 countries: Argentina
(n � 5), Austria (n � 30), Canada (n � 6), Czech Republic (n � 9),
Denmark (n � 79), France (n � 9), Germany (n � 27), Ireland (n � 10),
Israel (n � 17), Japan (n � 10), Luxembourg (n � 13), Morocco (n � 2),
The Netherlands (n � 22), New Zealand (n � 7), Poland (n � 13), Scot-
land (n � 14), Spain (n � 1), Switzerland (n � 8), Taiwan (n � 13),
Thailand (n � 8), and the United States (n � 12). All isolates from Japan
and Scotland were retrieved as paired-end reads from the recent study
(15) via the European Nucleotide Archive (ENA). The other isolates were
supplied from the laboratory strain collections in the respective countries.
The collection dates of the isolates ranged from 1969 to 2012; the oldest
isolates were a horse isolate from France in 1969, human isolates from
Morocco in 1975 and 1981, and a human isolate from Spain in 1976.
Isolates were sampled from various sources: cattle (n � 35), poultry (n �
51), swine (n � 109), a hare (n � 1), a horse (n � 1), and humans (n �
118). The full details for the isolates used in this study are shown in Data
Set S1 in the supplemental material.

Whole-genome sequencing, de novo assembly, and resistance genes.
Isolates were sequenced using either the Illumina HiSeq or the MiSeq
platform. Raw sequence data have been submitted to the European Nu-
cleotide Archive (ENA). The raw reads were de novo assembled using the
pipeline available from the Center for Genomic Epidemiology (CGE)
(www.genomicepidemiology.org), which is based on Velvet algorithms,
for the de novo short read assembly (17). A complete list of genomic
sequence data is available in Data Set S1. The assembled genomes were
analyzed using similar pipelines available on the CGE website. The web-
server ResFinder (18) was used to detect acquired antimicrobial resistance
genes with a selected threshold equal to 80% identity.

Core genes. Protein sequences were clustered based on sequence sim-
ilarities by employing the Markov clustering algorithm (MCL) (19), a
network-based unsupervised clustering algorithm. To generate an undi-
rected network of protein sequences for input into the MCL, we first did
all-against-all BLAST using an E value of 0.0001 and BLASTp (20) and
kept only pairs of proteins whose reciprocal alignments removed gaps that
are at least 50% as long as their query sequences and have at least 50%
sequence identity. The network was generated by connecting proteins in
conserved pairs with weight defined as the maximum sequence identity
between reciprocal alignments where the sequence identity of alignments
was adjusted along query sequences. The core genome was built from the
intersection of gene clusters shared by every genome under analysis (21).

SNP identification. Single nucleotide polymorphisms (SNPs) were
determined using CSI Phylogeny 1.1, available from the Center for
Genomic Epidemiology (www.genomicepidemiology.org) (22, 23). Fun-
damentally, the pipeline consists of various publicly available programs.
The paired-end reads were aligned against the reference genome, S. Ty-
phimurium DT104 (GenBank accession number HF937208, genome length
4,933,631 bp) (15), using the Burrows-Wheeler aligner (BWA) (24).
SAMtools (25) mpileup commands were used to identify and filter SNPs.
The qualified SNPs were selected once they met the following criteria: (i)
a minimum coverage (the number of reads mapped to reference posi-
tions) of 5, (ii) a minimum distance of 15 bp between each SNP, (iii) a
minimum quality score for each SNP at 20, and (iv) the exclusion of all

indels. The final qualified SNPs for each genome were concatenated to an
alignment by an in-house Python script. The SNP alignments were sub-
jected to maximum-likelihood tree construction using PhyML (26).

Recombination detection. SNP alignments had been detected for sig-
nificant recombination sites prior to reconstruction of the phylogenetic
trees. We used a novel hidden Markov model tool called RecHMM (27) to
detect the clusters of sequence diversity that mark the recombination
events within branches. RecHMM is computationally more practical than
ClonalFrame (28) and yields comparable results.

Temporal Bayesian phylogeny, discrete phylogeographic analysis,
and Bayesian skyline plot. SNP alignments were analyzed with BEAST
(Bayesian evolutionary analysis sampling trees), version 1.7 (29, 30) for
temporal phylogenetic reconstruction and estimations of mutation rates
and divergence times. Several combinations of population size change
and molecular clock models were evaluated to find the best-fit models.
Among the models tested, the combination of a skyline model (31) of
population size change and a relaxed uncorrelated log-normal clock gave
the highest Bayes factors. The model that was selected allows the evolu-
tionary rates to change (32) among the branches of the tree and has a
general time-reversible (GTR) substitution model with � correction for
among-site rate variations.

All BEAST Monte Carlo Markov chains (MCMC) were run for at least
150 million and up to 300 million steps, with subsampling every 10,000
steps. The trees produced by BEAST were summarized by a single maxi-
mum clade credibility (MCC) tree using TreeAnnotator (30) with 10% of
the MCMC steps discarded as burn-in. Statistical uncertainty was repre-
sented by a 95% credible interval (CI) calculated as the 95% highest pos-
terior density (HPD) interval. A final tree was visualized and edited in
FigTree (http://tree.bio.ed.ac.uk/software/figtree/). The geographic loca-
tions and direction of the transmissions were estimated by discrete phy-
logeographic analysis using a standard continuous-time Markov chain
(CTMC) (33) implemented in BEAST. A location-annotated MCC tree
was converted to the KML format using phylogeo.jar, which is relatively
equivalent to SPREAD (http://www.phylogeography.org/SPREAD.html).
The KML file was then visualized in Google Earth (http://earth.google
.com/).

The demographic history was reconstructed using the Bayesian skyline
plot implemented in Tracer (30) by processing the inferred genealogy and
effective population size estimated by BEAST at different points along the
genealogy time scale. The population size was inferred by the product of
the interval size (�i) and i(i � 1)/2, where i is the number of genealogical
lineages in the interval (34, 35). The effective population size is always
smaller than the actual population size as the effective population size
exhibits the number of individuals that contribute to offspring to the
descendant generation (35).

Nucleotide sequence accession number. Raw reads can be obtained
from ENA study accession no. PRJEB11174 (http://www.ebi.ac.uk/ena
/data/view/PRJEB11174) or downloaded individually from the accession
number in Data Set S1 in the supplemental material.

RESULTS

A global collection of 315 S. Typhimurium DT104 isolates (Eu-
rope [n � 235], Asia [n � 48], Australia [n � 7], North America
[n � 18], South America [n � 5], and Africa [n � 2]) dating from
1969 to 2012 was studied. The isolates originated from animal
(n � 197) and human (n � 118) sources. Seventy-five of the
animal isolates were from Denmark and were selected to represent
animal hosts, temporal and spatial diversity, and specific epidemi-
ological events that had been left unexplained during the last 20
years’ investigation of DT104 in Denmark. The complete details
for the isolates studied can be found in Data Set S1 in the supple-
mental material.

Using comparative genomics, we found 4,472 core genes (out
of a total of 15,098 protein clusters) from the DT104 collection
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meaning that, on average, about 96% of the total genes in a DT104
genome (�4,635 genes) are common among other DT104 strains.
This number is reasonable, considering the close relatedness of the
DT104 strains; it is significantly higher than the 62% of genes
found commonly within Salmonella enterica (36).

Global phylogeny of S. Typhimurium DT104. The global col-
lection of DT104 isolates was subjected to WGS, and 4,619 SNPs
were identified. There were 152 significant recombination sites
detected in the SNP alignment prior to the reconstruction of phy-
logenetic trees by RecHMM (27). Therefore, 97% (4,467/4,619) of
the SNPs arose by mutation (vertical descent). We applied phy-
logenomic dating on the alignment of 4,467 SNPs to reconstruct
the temporal and spatial phylogenetic dynamics using BEAST
(Bayesian evolutionary analysis sampling trees) (29, 30). The pre-

liminary model selection identified a combination of a Bayesian
skyline model and a relaxed, uncorrelated log-normal clock as the
best-supported models of population size change and molecular
clock. The Bayesian maximum clade credibility (MCC) tree for all
315 DT104 isolates is shown in Fig. 1A. The mutation rate was
estimated to be 2.79 � 10�7 substitutions/site/year, correspond-
ing to slightly more than 1 SNP/genome/year (1.38 SNPs/genome/
year). Our estimated rate of mutation coincides with the mutation
rates from the previous studies of invasive S. Typhimurium in
sub-Saharan Africa (37) and multidrug-resistant S. Typhimurium
DT104 in different hosts (15). The most recent common ancestor
was estimated to have emerged in 1948 (95% credible interval,
1934 to 1962). The tree consisted of a complex cluster of multi-
drug-resistant strains (MDR cluster) conferring resistance to am-

FIG 1 Global phylogeny of S. Typhimurium DT104. Bayesian-based temporal phylogenetic trees from BEAST of all DT104 (A) and subsampled MDR DT104
isolates (B). The maximum clade credibility (MCC) tree in panel A shows the most recent common ancestor of S. Typhimurium DT104 in �1948 (95% CI, 1934
to 1962) and exhibits distinct clusters between a susceptible DT104 cluster and an MDR DT104 cluster. Meanwhile, the MCC tree in panel B indicates that MDR
DT104 initially emerged in �1972 (95% CI, 1972 to 1988). (C) The changes in effective population size over time are captured in a Bayesian skyline plot. Isolates
are labeled by country of origin, isolate identification number, source, and date (day-month-year). The branches and nodes are colored according to the
continent of the isolate. Country abbreviations are as follows: AT, Austria; CZ, Czech Republic; DK, Denmark; FR, France; DE, Germany; IL, Israel; JP, Japan; LU,
Luxembourg; MA, Morocco; NL, The Netherlands; NZ, New Zealand; ES, Spain; CH, Switzerland; TW, Taiwan; TH, Thailand; US, United States.
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picillin, chloramphenicol, streptomycin, sulfonamide, and tetra-
cycline (ACSSuT resistance type) and subclades of susceptible and
resistant isolates. The topology of this phylogenetic tree was con-
firmed by a maximum-likelihood tree (see Fig. S1A and B in the
supplemental material). Other separated Bayesian phylogenetic
trees were reconstructed from the alignment of 4,619 SNPs with-
out removing recombination sites (see Fig. S2 in the supplemental
material). The trees showed topologies similar to those of the trees
free from recombination sites (Fig. 1A and B). Nonetheless, the
branch lengths of the phylogenetic trees and mutation rates were
different as the presence of recombination distorts the branch
lengths of the phylogenetic tree (38). In addition, we constructed
a maximum-likelihood tree of DT104 and 53 publicly available S.
Typhimurium strains (see Fig. S3 in the supplemental material).
The tree showed that the closest neighbors of DT104 were phage
types DT12a and DT197.

The phylogenetic tree (Fig. 1A) was also analyzed according to
the host (see Fig. S4 in the supplemental material). There have
likely been several random transmission events among different
hosts, including transmission events from human to animals and
from animals to human. Transmission was also observed among
different animal hosts: swine to cattle, swine to poultry, and cattle
to poultry.

We also analyzed the 261 MDR isolates separately, yielding
3,621 variable sites. There were 99 significant recombination sites
detected by RecHMM. Therefore, the alignment of 3,522 SNPs
was subjected to Bayesian tree reconstruction using BEAST (Fig.
1B). The European isolates are disseminated throughout the tree
as are the isolates from Japan, the United States, and New Zealand;
in particular, the human isolates from New Zealand do not cluster
together but cluster with isolates from different countries and
continents (Fig. 1B), suggesting that they might be travel-related
cases. This result is concordant with the report that Australia and
New Zealand have had few MDR DT104 human infections, prob-
ably due to the strict regulations on importation of livestock and
the fact that most human cases were travelers (4). A complete
Bayesian phylogenetic tree of the 261 MDR DT104 isolates can be
seen in Fig. S5 in the supplemental material.

A Bayesian skyline plot for all DT104 isolates reconstructed the
demographic history of DT104 from �1960 (Fig. 1C). The effec-
tive population size of DT104 rose gradually until �1980, having
acquired multidrug resistance in �1974, after which the popula-
tion size increased sharply from 1980 to 1985 (Fig. 1C). This co-
incided with the initial dissemination of MDR DT104 throughout
Europe, Asia, and North and South America during the 1980s
(Fig. 1B). The second wave of DT104 started in �1990, and the
population size increased dramatically. This increase may reflect
the global dissemination of MDR DT104 because the timeline is
consistent with the occurrence of MDR DT104 in many countries.
Germany experienced an increase in DT104 at the beginning of
the 1990s (39, 40). The number of DT104 human infections in the
United Kingdom rose from 259 in 1990 to 4,006 in 1995 (41),
while the number of DT104 infections in animals increased from
458 in 1993 to 1,513 in 1996 (7). Almost 67% of the Salmonella
isolates from animals in Scotland during 1994 to 1995 were MDR
DT104 (42), and a number of studies have shown that throughout
the 1990s, MDR DT104 spread to other parts of the world, includ-
ing the United States, the United Kingdom, and France (43–46).
The trend in the skyline plot has leveled off since 1995 and grad-
ually decreased from 2008.

The susceptible-resistant and MDR clusters differed by ap-
proximately 109 SNPs (Fig. 1A). The average SNP difference
among isolates in the susceptible-resistant cluster (n � 18) was
103 SNPs, whereas the SNP difference among isolates in the MDR
cluster, where the isolates (n � 297) were sampled more thor-
oughly, was 60 SNPs (range, 38 to 100 SNPs).

The SNP distribution across genes in DT104 was likely random
with a few genes containing more than 5 SNPs (see Fig. S6 in the
supplemental material). The scatter plot of the SNPs found in the
susceptible and MDR strains (see Fig. S7 in the supplemental ma-
terial) showed that most of the SNPs were found exclusively in
some of the MDR strains and 14 SNPs were uniquely found be-
tween 62 and 74% of all MDR strains. In addition, 4 SNPs were
absent in the MDR strains but present in all of the susceptible
strains.

Based on the dates of the nodes estimated in the phylogenetic
trees (Fig. 1A and B), the proposed transmissions are illustrated in
Fig. 2. S. Typhimurium DT104 appears to have originated as a
susceptible strain in 1948 (95% CI, 1934 to 1962) from an uniden-
tified source. Susceptible strains later emerged in Morocco, Spain,
and France in �1953 (95% CI, 1953 to 1966). In �1959 (95% CI,
1958 to 1974), the susceptible ancestral DT104 appeared in Thai-
land, where it was likely transferred onward to Denmark in �1997
(95% CI, 1987 to 2000). Locally in Thailand, the susceptible
strains evolved resistance to streptomycin (aadA2) and sulfon-
amide (sul1) in �1975 (95% CI, 1975 to 1990).

We estimated that MDR DT104 emerged in �1972 (95% CI,
1972 to 1988) (Fig. 1B and 2). From an unknown source, multiple
introductions of MDR DT104 occurred in Europe from �1975
(95% HPD, 1975 to 1984). Subsequently, further introductions to
and from Israel occurred in �1986 (95% HPD, 1986 to 1992).
Separate events transmitted MDR DT104 to Japan in �1976 (95%
HPD, 1976 to 1984), from Japan to Taiwan in �1978 (95% HPD,
1977 to 1985), and from Japan to Canada in �1988 (95% HPD,
1986 to 1992). The transmission from Japan to Taiwan needs to be
interpreted with caution, as there was only one Japanese isolate
which confirmed this transmission. In addition, MDR DT104 of
an unknown source initially spread to the United States in �1981
(95% HPD, 1980 to 1987), consistent with the report of the emer-
gence of MDR DT104 in the United States, particularly in western
states in early 1985 (45). Furthermore, it spread from Austria to
Argentina in �1986 (95% HPD, 1986 to 1997), with an average of
81 SNP differences. MDR DT104 from an unknown source might
have spread to Argentina in �1977 (95% HPD, 1976 to 1988).

Dissemination of DT104 in Europe. The spatial and temporal
transmission of MDR DT104 isolates among animals in European
countries based on discrete phylogeographic analysis using a stan-
dard continuous-time Markov chain (CTMC) is summarized and
illustrated in Fig. 3. The earliest predicted dissemination (Fig. 3A)
was from Germany to the Czech Republic in �1984 (95% CI, 1982
to 1988), from Germany to Denmark in �1985 (95% CI, 1982 to
1990), and from Germany to Scotland in �1986 (95% CI, 1984 to
1989). More recent dissemination events occurred from Denmark
back to Germany in �1988 (95% CI, 1987 to 1994) and from
Germany to The Netherlands in �1988 (95% CI, 1984 to 1990). In
addition, Germany had transmission to Israel in �1988 (95% CI,
1986 to 1991). The next waves (Fig. 3B) were from The Nether-
lands to Ireland in �1992 (95% CI, 1988 to 1997) and Switzerland
in �1993 (95% CI, 1988 to 1997). In the early 1990s, Denmark
had transmission to Poland in �1992 (95% CI, 1988 to 1996),
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Austria in �1992 (95% CI, 1990 to 2000), Luxembourg in �1993
(95% CI, 1988 to 1997), and Ireland in �1993 (95% CI, 1989 to
2001). In the same period, Germany had an outward wave to Lux-
embourg in �1990 (95% CI, 1990 to 1998), Austria in �1990
(95% CI, 1988 to 1996), and Switzerland in �1993 (95% CI, 1990
to 1997). Scotland was another hub in the early 1990s, appearing

to drive transmission to Austria in �1990 (95% CI, 1987 to 1991),
Ireland in �1990 (95% CI, 1986 to 1994), The Netherlands in
�1991 (95% CI, 1989 to 1993), Denmark in �1992 (95% CI, 1988
to 1994), and Switzerland in �1993 (95% CI, 1989 to 1995). Scot-
land is a net importer of food (15); 58% of all red meat and 38% of
raw beef are non-Scottish in origin (16). Austria also had trans-

FIG 2 Diagram of the dissemination of S. Typhimurium DT104. The ages of the nodes and the divergence times of the key events from Fig. 1A and B are
summarized and illustrated in this diagram. Ancestral S. Typhimurium DT104 initially emerged as susceptible strains in �1948 (95% CI, 1934 to 1962). The
susceptible DT104 was estimated to acquire multidrug resistance in �1972 (95% CI, 1972 to 1988). The ancestral MDR DT104 spread to Europe and other
continents in �1975 and the 1980s, respectively. The estimated times when transmissions initially occurred (in years) are presented as the median values with
95% CI in parentheses.

FIG 3 Transmissions within Europe of MDR S. Typhimurium DT104 from animal isolates. Discrete phylogeographic analysis of MDR DT104 during 1981 to
1990 (A) and 1990 to 2011 (B) within European countries. The locations and transmission lines were obtained from the nodes and branches in our BEAST
analysis. The color gradient represents the ages of the transmission lines. Maps adapted from Wikimedia Commons (https://commons.wikimedia.org/wiki
/File:Europe_blank_political_border_map.svg).
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mission back to Denmark in �1998 (95% CI, 1990 to 1999) and
had a phylogenetically linked wave to Israel in 1992 (95% CI, 1989
to 1994) via isolates from poultry. The most recent predicted
transmission was from Scotland to Luxembourg in �2000 (95%
CI, 1998 to 2005).

Local phylogeny of S. Typhimurium DT104. Seventy-five
MDR S. Typhimurium DT104 isolates sampled from 1997 to
2011, originating from several farms in Denmark, were part of the
larger collection, among which 755 SNPs were identified. A total
of 108 recombination sites were identified. The sequence align-
ments of 647 SNPs separating these isolates were analyzed using
BEAST. The Bayesian phylogenetic tree (Fig. 4A) estimated a mu-
tation rate of 2.50 � 10�7 substitutions/site/year or 1.23 SNPs/
genome/year. The most recent common ancestor was predicted to
have emerged in �1972 (95% CI, 1961 to 1982). The tree was

initially divided into two complex clusters and subsequently
branched off into many lineages, indicating multiple introduc-
tions of MDR DT104 to different farms in Denmark. The topology
of the Bayesian tree was concordant with the maximum-likeli-
hood tree of Danish MDR DT104 (see Fig. S8 in the supplemental
material).

Several isolates were sampled from the same farms. Most of
those isolates clustered phylogenetically according to their farms.
Isolates from four different farms namely D32, D41, D42, and D47
were mixed within the same lineage. This is consistent with epide-
miological information reporting physical contact among those
four farms, thus confirming the ability of WGS to detect very local
transmission dynamics. Considering all the farm-associated iso-
lates, there appear to have been several transmission events be-
tween swine and cattle (Fig. 4A), whereas isolates from poultry

FIG 4 Local phylogeny of MDR S. Typhimurium DT104 isolates in Denmark. (A) Bayesian phylogenetic tree of 75 Danish MDR DT104 isolates showing that
the most recent common ancestor is estimated to have emerged in �1972 (95% CI, 1961 to 1982). The tree is further divided into two major clusters in �1979
(95% CI, 1969 to 1987) and �1980 (95% CI, 1970 to 1988). The farm numbers are noted at the ends of the node names. The nodes are colored according to the
farm of origin. Strains originating from the same farm are labeled the same color except that black is used for a single isolate originating from a single farm.
Colored branches show animal sources. (B) Bayesian skyline plot of changes in population size of Danish MDR DT104 over time. (C) Geographic diffusion across
different farms based on discrete phylogeographic analysis for the confirmed-farm contacts. The complete geospatial transmission is provided in Video S1 in the
supplemental material. Map adapted from d-maps.com (http://www.d-maps.com/m/europa/danemark/danemark42.gif).
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clustered together. This indicates free transmission between cattle
and swine, but a more closed spread among poultry isolates and is
consistent with the analysis of proliferation of the infection in
various species, which suggested that DT104 strains spread from
cattle to pigs and humans (7, 47), unlike the global transmission
events of DT104, which are random and not specific to the host
(see Fig. S4 in the supplemental material).

The relationship between the population structure and time
(Fig. 4B) showed that the effective population size of MDR DT104
in Denmark rose slowly until �1984 and then increased sharply
from �1984 to �1987. Subsequently, the population was stable
until �1998, and it declined dramatically during �1999 to
�2000, when an intensive eradication program was attempted in
Denmark (48). Following the abandonment of the eradication
program, the population size increased in �2001 and has de-
creased slightly since �2004. We carried out different Bayesian
skyline plots based on different animal and human sources (see
Fig. S9 in the supplemental material). The pattern of sharp decline
during 2000 appears to be restricted to swine isolates and was not
apparent among isolates from cattle, poultry, and humans. In fact,
69% of the Danish isolates were from swine. Thus, we conclude
that the decline of the population size in 2000 was related to a
decrease in swine infection/colonization.

Discrete phylogeographic analysis indicated several transmis-
sion events between farms in Denmark. The complete transmis-
sion events can be found in Video S1 in the supplemental material,
which is a video recorded from the KML file (KLM is a file format
used to display geographic data in an Earth browser such as
Google Earth or Google Maps). The average SNP distances be-
tween the isolates from the farms ranged from 3 to 100 SNPs. We
have four confirmed physical contacts between the farms. Those

contacts were concordant with the phylogeographic links shown
in Fig. 4C. The contacts between farms D12 and D38 and D41 and
D42 were direct relationships with 30 and 7 SNP differences, re-
spectively, whereas the contacts from farms D32 and D42 and D42
and D47 were indirect contacts corresponding to 10 and 8 SNP
distances, respectively. Interestingly, data from one farm (D10)
where eradication was presumably unsuccessful showed that iso-
lates found posteradication were not the same lineage as the iso-
lates found prior to eradication.

Salmonella genomic island 1 and resistance genes. All of the
isolates in the susceptible-resistant clusters contained small frag-
ments or partial sequences of the 43-kb Salmonella genomic island
1 (SGI1) (GenBank accession number AF261825) (49, 50), but
none of them harbored the 13-kb SGI1 multidrug resistance re-
gion (51) (Fig. 5). The phylogenetic tree based on the SNPs of
SGI1 of all of the DT104 isolates and other Salmonella and Proteus
mirabilis genomes that carry SGI1 are shown in Fig. S10 in the
supplemental material. The tree showed that the SGI1 sequences
of the DT104 isolates were very similar, and they were similar to
SGI1 sequences from other Salmonella and P. mirabilis genomes.
The SGI1 tree showed a topology similar to that of the tree of the
entire genome of DT104 (Fig. 1A; see also Fig. S1 in the supple-
mental material) and also showed that the four Thai resistant iso-
lates were distinct from the other resistant strains. The gene orga-
nizations of the antimicrobial resistance genes in the 13-kb region
are shown in Fig. 5. The maximum-likelihood trees of each resis-
tance gene [aadA2, floR, tet(G), blaP1, and sul1] from the DT104
isolates and other bacterial genomes are shown Fig. S11A to E in
the supplemental material. The trees show that the sequences of
the floR and tet(G) genes among the DT104 isolates are similar and
formed a cluster distinct from those of the same genes from other

FIG 5 Structure of SGI1 in susceptible DT104 and SGI1 containing a 13-kb MDR region in MDR DT104 isolates. The gene organization of the MDR region of
S. Typhimurium DT104 is illustrated. The antimicrobial resistance gene cassettes are colored purple. The aadA2 gene cassette confers resistance to streptomycin
and spectinomycin. The floR conferring resistance to chloramphenicol and florfenicol and the tet(G) and tetA conferring resistance to tetracycline reside between
the two integron-derived regions. The blaP1 gene cassette confers resistance to ampicillin. A complete sul1 sulfonamide resistance gene cassette is located in the
3=-CS on the right.
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bacterial species, whereas there was more variation for the aadA2,
blaP1, and sul1 genes.

DISCUSSION
Global epidemiology. S. Typhimurium DT104 has gained inten-
sive global interest due to its rapid intercontinental dissemination,
the chromosomal location of multiple resistance genes, and its
capacity to promptly acquire additional resistance traits (4). Our
analysis of a global collection of DT104 isolates suggests that the
most recent common ancestor of S. Typhimurium DT104
emerged in �1948 (95% CI, 1934 to 1962) in an antimicrobial-
susceptible form (Fig. 1A) from an unidentified reservoir. The
earliest reports on susceptible DT104 strains isolated from human
infections appeared in 1960s in the United Kingdom (6). How-
ever, most, if not all, nontyphoidal Salmonella serovars have their
natural reservoir in animals and only occasionally infect humans.
Thus, susceptible DT104 may easily have spread for several years
in an animal reservoir before the first infections occurred in hu-
mans. Interestingly, our results suggest that the ancestral suscep-
tible DT104 spread to Thailand in �1959 (95% CI, 1958 to 1974)
and later acquired resistance locally in �1975 (95% CI, 1975 to
1990) in Thailand (Fig. 1A and 2). It has previously been assumed
that these resistant isolates (ACSSuT) emerged from an MDR
strain (ampicillin, chloramphenicol, streptomycin, sulfonamides,
tetracyclines, trimethoprim and ciprofloxacin [ACSSuTTmCp])
that lost some of its resistance genes (6). However, our study re-
futes this hypothesis.

Our results suggest that the earliest multidrug-resistant DT104
arose independently in �1972 (95% CI, 1972 to 1988) from an
unknown source (Fig. 1B and 2). The first observations of MDR
DT104 in humans were in Hong Kong in the late 1970s, and the
first observation in seagulls and cattle were in the United Kingdom
in 1984 (6, 39, 52), where it was thought to have originated from
gulls and exotic birds imported from Indonesia and Hong Kong
(6). An Asian origin has also been suggested in other previous
studies, where it was indicated that the resistance determinants of
MDR DT104 strains may have emerged among bacteria in aqua-
culture (most farmed shrimp are produced in Asia, particularly in
China and Thailand) and were subsequently horizontally trans-
ferred to S. Typhimurium DT104 (53). It might be that aquacul-
ture bacteria caused the emergence of Thai resistant DT104. Our
study refutes this hypothesis. Based on our results, a European
origin of MDR DT104 seems much more likely. Accordingly, the
isolates from Thailand are not involved in the MDR DT104 cluster
and MDR DT104 did not emerge in the countries from which we
have isolates prior to 1980.

The phylogenomic tree based on the host association (see
Fig. S4 in the supplemental material) indicated several host
switch events between different animal species: from animals
to humans and also likely from humans to animals. The con-
clusions on the host switches have to be interpreted with care
since not all host species are represented for all geographic
regions (e.g., no human isolates from Denmark and no animal
isolates from Thailand). The zoonotic nature of DT104 is well
documented (4, 54–56), but this study documents the ubiqui-
tous nature of the bacterium and the fact that the global emer-
gence has been one of shared epidemics with multiple trans-
mission events between countries and animal hosts and likely
also events of human to animal transmission. Nonetheless, the
predictive powers of DT104 transmission and host preference

were obstructed by a limited number of strains and software to
infer phylogeny and evolution.

The Bayesian phylogenetic tree revealed that the susceptible
and MDR clusters differed by 109 SNPs, indicating that these two
clusters are diverse. The 18 isolates within the susceptible cluster
had 103 SNP differences, while there were 60 SNP distances within
the MDR cluster (n � 297), suggesting that the MDR strains were
more genetically uniform. From the sequence comparisons, we
found that partial or complete SGI1 was present in all isolates and
the main variation was the presence or absence of the different
resistance gene cassettes.

SGI1 is a 43-kb genomic island containing 44 open reading
frames (ORFs). The antimicrobial resistance gene cassettes have
resided in a 13-kb segment of the SGI1, namely the MDR region
(49, 57). SGI1 is non-self-transmissible, but it is mobilizable by the
conjugative machinery of an IncA/C plasmid (50). Therefore, it is
considered an integrative mobilizable element (58).

The 13-kb MDR region contains class 1 integrons with the
presence of a 5=-conserved segment (5=-CS), consisting of the in-
sertion sequence IS6100 (59) (Fig. 5). Further, the MDR region is
surrounded by 5-bp direct repeats, suggesting that it integrated
into the SGI1 by a transposition event (59, 60). The GC content of
SGI1 is 49.17% compared to 58.7% for the MDR region within
SGI1 (57), suggesting a potentially horizontal transfer of the MDR
region into SGI1. Another indication for horizontal transfer of the
antibiotic resistance gene cluster is that this cluster is present in
another serovar, S. enterica serovar Agona (61). In addition, the
DT104 resistance genes can be transduced by the P22-like phage
ES18 and by phage PDT17, which are produced by all DT104
isolates so far encountered (62). Moreover, a phylogenetic analy-
sis of SGI1 (see Fig. S10 in the supplemental material), excluding
resistance genes, from DT104 and other bacterial species showed
that the islands were highly similar. These support the observa-
tions that SGI1, without the resistance genes, is intrinsic to DT104
and that the resistance genes were acquired later. The phylogenetic
analysis also indicates that SGI1 from other Salmonella serovars
and P. mirabilis might have been acquired mainly from DT104.
Our results challenge the hypothesis that MDR DT104 emerged by
acquiring an entire SGI1 with an MDR region (63) or emerged
from an MDR strain (ACSSuT) that lost some of its resistance
genes (6).

More phylogenetic variation was observed for the aadA,
blaP1, and sul1 genes (see Fig. S11A to E in the supplemental
material). This suggests that these genes have either been ac-
quired on a number of occasions or on a higher frequency of
evolution of recombination. Both floR and tet(G) formed a
group separated from those of other bacterial species or Salmo-
nella serovars. Even though the number of sequences from
other species was low, this suggests that these two genes have
only been acquired once into MDR DT104. In addition, 14
SNPs were uniquely found among 62 to 74% of all MDR
strains. These SNPs might be other factors contributing to the
emergence of the MDR DT104.

Local epidemiology. The phylogenomic analysis was able to
cluster isolates from the same herd and to cluster isolates from
different confirmed contact farms, suggesting that WGS is highly
useful for reconstructing local epidemiological dynamics across
animal herds.

The reconstructed changes in effective population sizes over
time also provided an interesting insight in that there was a sharp
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decline in the population size of swine-associated MDR DT104
during �1999 to �2000 and a recovery in the population size to
the same state prior to decreasing since �2001. The decrease of
swine MDR DT104 is evidence of the success of the eradication
program in 1996 to 2000 implemented by the Federation of
Danish Pig Producers and Slaughterhouses in collaboration
with the Danish Veterinary Service and the Danish Veterinary
Laboratory. The program aimed to eradicate MDR DT104
from infected pig herds. The methods used included the de-
population of pig herds and the cleaning and disinfection of
buildings before repopulation with pigs free of DT104 (48). In
2000, the program was stopped due to no evidence of success,
but if WGS had been available at that time, such evidence
would have been found.

In conclusion, this study charts the timeline of global and
local dissemination of S. Typhimurium DT104 and the evolu-
tion of antimicrobial-susceptible strains to multidrug-resistant
DT104 strains through horizontal transfer of the 13-kb SGI1
MDR region. The results are consistent with the historical
emergence of MDR DT104 since it was first observed in 1984.
Moreover, the results revealed by WGS confirm the local epi-
demiology of DT104 and the efficiency of the eradication pro-
gram in Denmark. The inferred transmission routes and demo-
graphic history might suggest some potential monitoring and
strategies for further prevention and control of similar success-
ful clones.
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