Technical University of Denmark

Digital Signal Processing for 100G/400G Optical Fiber Connectivity Links

Eiselt, Nicklas; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

Publication date: 2016

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Eiselt, N., Vegas Olmos, J. J., & Tafur Monroy, I. (2016). Digital Signal Processing for 100G/400G Optical Fiber Connectivity Links. Poster session presented at Big Data Photonics Workshop 2016, Los Angeles, California, United States.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Digital Signal Processing for 100G/400G **Optical Fiber Connectivity Links**

Nicklas Eiselt^{1,2}, J. J. Vegas Olmos¹ and Idelfonso T. Monroy¹

(1) Technical University of Denmark (DTU), Department of Photonics Engineering, Ørsteds Plads, Build. 343, DK-2800 (2) ADVA Optical Networking SE, Märzenquelle 1-3, 98617 Meiningen, Germany

Motivation – DWDM Interconnections

niei@fotonik.dtu.dk

Low-Cost Approach

(Scale up from short reach)

- 400G direct detection
- 8x50G DWDM/ 4x100G WDM

8 x DMT @ 56 Gb/s

Experimental Setup

PAM-4 Eye Diagrams used for transmission

8 x PAM-4 @ 56 Gb/s

DSP

<u>Discrete Multitone (DMT)</u>			
^	\		
Quantization	Synchronisation		
Clipping	S/P		
P/S	CP Remove		
Cyclic Prefix	FFT		
IFFT	TS Remove		
TS	Equalizer		
Mapping	Demapping		
S/P	P/S		
Data	BER		
Transmitter	Receiver		

DMT Parameters				
FFT length	1024			
Oversampling	1.05			
Max. used subcarriers	486			
OFDC Frame	123 Symbols + 5 training symbols			
Equalizer	1-tap, Decision-Directed			
Bit & Powerloading	Chow's & Cioffi's algorithm			

After MZM

Experimental Results @ 56 Gbit/s

Optical b2b performance

BER vs. OSNR for b2b-mode

Estimated SNR of double sidband DMT (DSB-DMT) and vestigial sideband DMT (VSB-DMT) at optical b2b

Residual Dispersion & PAM-4

Required OSNR at the FEC-limit of 3.8e-3 vs. residual dispersion with different FFE tap count

Results					
Format	HD-FEC	OSNR b2b	OSNR 80 km		
PAM-4	3.8e-3	~ 23.8 dB	~ 24.8 dB		

Transmission over 80 km SSMF

Launch Power

Optimum launch power into 80 km SSMF using PAM-4: Where to put the DCF?

Optimum launch power into 80 km SSMF

using DSB-DMT; DCF is not required!

OSNR Performance

Estimated SNR of double sidband DMT (DSB-DMT) and vestigial sideband DMT (VSB-DMT) at 80 km SSMF

DSB-DMT	3.8e-3	~ 25.7 dB	~ 27.2 dB	
VSB-DMT	3.8e-3	~ 27 dB	~ 31 dB	

Conclusion

• PAM-4 and vestigial sideband DMT show a lot of potential for a low-cost solution for next generation of inter-data center interconnections

- PAM-4 outperforms DSB-DMT and VSB-DMT in terms of required OSNR at the FEC-threshold for the b2b-case and even for 80 km SSMF
- DMT does not require any DCF \rightarrow 5 dB higher power margin for DMT compared to PAM-4

Acknolowledgement

The work was in part funded by the European Commission in the Marie Curie projects ABACUS and FENDOI and by the German ministry of education and research (BMBF) in projects SASER-ADVAntage_NET and SpeeD under contracts 16BP12400 and 13N13744

DTU Fotonik **Department of Photonics Engineering**

References

[1] N. Eiselt, et al., "Experimental Comparison of 56 Gbit/s PAM-4 and DMT for Data Center Interconnect Applications", Photonische Netze, 17. ITG Fachtagung, 2016, Leipzig