Technical University of Denmark

Systematic design of optimal control systems for WWTPs: case study of the SHARON-Anammox process

Valverde Pérez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

Publication date: 2016

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Valverde Perez, B., Mauricio Iglesias, M., & Sin, G. (2016). Systematic design of optimal control systems for WWTPs: case study of the SHARON-Anammox process. Poster session presented at 5 th IWA/WEF Wastewater Treatment Modelling Seminar 2016, Annecy, France.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

VWTmod

Systematic design of optimal control systems for WWTPs: case study of the SHARON-Anammox process

Borja Valverde-Pérez* **, Miguel Mauricio-Iglesias* ***, Gürkan Sin* (gsi@kt.dtu.dk)

*CAPEC-PROCESS research center, Department of Chemical and Biochemical University of Denmark; **Department of Environmental Engineering, Technical University of Denmark, ***Department of Chemical Engineering, Universidade de Santiago de Compostela

1. INTRODUCTION

Challenges faced when developing control structures for WWTPs:

- Scarcity of actuators
- Control variables linked to the objectives of the plant

How can we design a control system using a model-based systematic approach?

Objectives:

- To develop a **methodology** to design **optimal control structures** for 1) WWTPs. The methodology should be suited for systematic design of **regulatory control** layers when **high number of controlled** variables and few actuators are available.
- To apply the novel methodology to the SHARON-Anammox process 2)

3. CASE STUDY: SHARON-ANAMMOX PROCESS

1. Goal definition and process optimization

Goal: maximize the nitrogen removal

Optimal conditions for maximum N-removal (based on scenario analysis):

- Nitrite to ammonia ratio of 1.3 in the influent to the Anammox reactor \bullet
- Oxygen level of 0.2 mg/L
- pH of 7.3 \bullet
- 2. Degrees of freedom analysis (SHARON)

Manipulated variables	Controlled variables	
Air supply	Dissolved oxygen (DO)	
	рН	
Acid/base	Ammonia (TAN)	
addition	Nitrite (TNN)	
	Nitrite to ammonia ratio	

4. Pairing using the Relative Gain Array

	MVs	
CVS	Fbase	k∟a
DO	-0.233	1.233
рН	1.233	-0.233

5. Disturbance analysis using the Closed Loop Disturbances Gain plots

3. Ranking of CVs H∞ analysis

$S = \frac{I}{I + G(s)C(s)}$	$T = \frac{G(s)C(s)}{I+G(s)C(s)}$	$CS = \frac{C(s)}{I + G(s)C(s)}$	
bounded for performance	bounded for robustness and to avoid sensitivity to noise	bounded to penalize large input variations	
$\min_{C} \ N(C)\ _{\infty} N \triangleq \begin{pmatrix} W_U CS \\ W_T T \\ W_P S \end{pmatrix}$	$\int \overline{\sigma}(S(j\omega)) \\ \overline{\sigma}(T(j\omega)) \\ \overline{\sigma}(CS(j\omega))$	$ \leq \gamma \underline{\sigma} \Big(W_P^{-1} \big(j \omega \big) \Big) $ $ \leq \gamma \underline{\sigma} \Big(W_T^{-1} \big(j \omega \big) \Big) \begin{array}{l} \gamma \textbf{must be} \\ \textbf{source} \\ \textbf$	small for lability
	$C \setminus I_{C}$		

	CVs		γ
	DO	рН	7.0
	DO	TAN	13.3
	TAN	TNN/TAN	19.5
	рН	TNN/TAN	20.3
	DO	TNN/TAN	24.7
. V 5	рН	TAN	32.0
	TAN	TNN	41.6
	рН	TNN	48.9
	DO	TNN	53.6
	TNN	TNN/TAN	92.6

6. 7. Regulatory and Supervisory control layers

8. Evaluation under dynamic conditions

Structure	Nitrogen removal		DO SHARON	pH SHARON	
Degulatory	89%	IAE	IAE	5.97 d	22.67 d
Regulatory		TV	744.5 d ⁻¹	7.22·10-4 m ³ d ⁻¹	
Casaada	92%	IAE	85.26 d	53.03 d	
Cascade		TV	1060 d ⁻¹	5.07·10-4 m ³ d ⁻¹	
Nectod cocodo	000/	IAE	87.9 d	61.49 d	
Nested cascade	97 %	TV	1070 d ⁻¹	4.5·10-4 m3 d ⁻¹	

Ranking of CVs

4. CONCLUSIONS

- Methodology combining of *H* analysis, RGA and CLDG plots is successfully applied to design **optimal regulatory control structures** for WWTPs
- *H*∞ analysis is used to screen the candidates to CVs
- Nested cascade structure performs best in terms of nitrogen removal

ACKNOWLEDGEMENT

Centre for Design of Microbial Communitie in Membrane Bioreactor EcoDesign MBR

This research is funded, in part, by the Danish Agency for Science, Technology and Innovation through the Research Centre for Design of Microbial Communities in Membrane Bioreactors (09-067230).

References:

[1] Valverde-Pérez, B., Mauricio-Iglesias, M., Sin, G., 2016. Journal of Process control, 39, 1-10 [2] Jahanshahi, E., Skogestad, S., Hansen, H., 2012, Proceedings of the 8th IFAC Symposium on Advanced Control of Chemical Processes [3] Hovd, M., Skogestad, S., 1992. Automatica, 28(5), 989-996