brought to you by

The influence of blobs on neutral particles in the scrape-off layer - DTU Orbit (08/11/2017)

The influence of blobs on neutral particles in the scrape-off layer

Interactions between plasma and neutrals are investigated with particular attention to the influence of large amplitude blob structures that mediate a significant particle and energy transport through the scrape-off layer (SOL). We perform a statistical analysis of the mean-field approximation for plasma parameters in the SOL, and this approximation is shown to be poor in a SOL with a high level of fluctuations, as the plasma fields are strongly correlated. A 1D neutral fluid model which account for both cold and hot neutrals is formulated and the effects of blobs on the ionization in the SOL and edge are investigated. Simulations suggest that neutrals originating from dissociation of hydrogen molecules only fuel in the outermost edge region of the plasma, whereas hot neutrals from charge exchange collisions penetrate deep into the bulk plasma. The results are recovered in a simplified 2D model.

General information

State: Published

Organisations: Department of Physics, Plasma Physics and Fusion Energy

Authors: Thrysøe, A. S. (Intern), Tophøj, L. E. H. (Intern), Naulin, V. (Intern), Rasmussen, J. J. (Intern), Madsen, J. (Intern)

, Nielsen, A. H. (Intern) Number of pages: 9 Publication date: 2016

Main Research Area: Technical/natural sciences

Publication information

Journal: Plasma Physics and Controlled Fusion

Volume: 58 Issue number: 4 Article number: 044010 ISSN (Print): 0741-3335

Ratings:

BFI (2017): BFI-level 1

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 1

Scopus rating (2016): CiteScore 1 SJR 0.583 SNIP 0.617

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 1

Scopus rating (2015): SJR 0.734 SNIP 0.864 CiteScore 1.1

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 1

Scopus rating (2014): SJR 1.318 SNIP 1.235 CiteScore 1.61

Web of Science (2014): Indexed yes

BFI (2013): BFI-level 1

Scopus rating (2013): SJR 1.088 SNIP 1.227 CiteScore 1.54

ISI indexed (2013): ISI indexed yes Web of Science (2013): Indexed yes

BFI (2012): BFI-level 1

Scopus rating (2012): SJR 1.391 SNIP 1.142 CiteScore 1.63

ISI indexed (2012): ISI indexed yes Web of Science (2012): Indexed yes

BFI (2011): BFI-level 1

Scopus rating (2011): SJR 1.512 SNIP 1.592 CiteScore 2.69

ISI indexed (2011): ISI indexed yes Web of Science (2011): Indexed yes

BFI (2010): BFI-level 1

Scopus rating (2010): SJR 1.477 SNIP 1.41 Web of Science (2010): Indexed yes

BFI (2009): BFI-level 1

Scopus rating (2009): SJR 1.589 SNIP 1.32

Web of Science (2009): Indexed yes

BFI (2008): BFI-level 1

Scopus rating (2008): SJR 1.872 SNIP 1.603

Web of Science (2008): Indexed yes

Scopus rating (2007): SJR 1.971 SNIP 1.389

Web of Science (2007): Indexed yes

Scopus rating (2006): SJR 1.833 SNIP 1.403

Web of Science (2006): Indexed yes Scopus rating (2005): SJR 1.73 SNIP 1.55 Scopus rating (2004): SJR 2.232 SNIP 1.377 Scopus rating (2003): SJR 2.016 SNIP 1.247

Web of Science (2003): Indexed yes

Scopus rating (2002): SJR 1.667 SNIP 1.022

Web of Science (2002): Indexed yes

Scopus rating (2001): SJR 1.507 SNIP 1.23

Web of Science (2001): Indexed yes

Scopus rating (2000): SJR 1.388 SNIP 1.124 Scopus rating (1999): SJR 2.148 SNIP 1.515

Original language: English

Blob, Edge, Transport, Neutral, Interaction, Ionization, Charge-exchange

DOIs:

10.1088/0741-3335/58/4/044010

Source: FindIt

Source-ID: 2302843461

Publication: Research - peer-review > Journal article - Annual report year: 2016