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Abstract. Overexploitation of groundwater reserves is a ma-

jor environmental problem around the world. In many river

basins, groundwater and surface water are used conjunctively

and joint optimization strategies are required. A hydroeco-

nomic modeling approach is used to find cost-optimal sus-

tainable surface water and groundwater allocation strategies

for a river basin, given an arbitrary initial groundwater level

in the aquifer. A simplified management problem with con-

junctive use of scarce surface water and groundwater un-

der inflow and recharge uncertainty is presented. Because of

head-dependent groundwater pumping costs the optimization

problem is nonlinear and non-convex, and a genetic algo-

rithm is used to solve the one-step-ahead subproblems with

the objective of minimizing the sum of immediate and ex-

pected future costs. A real-world application in the water-

scarce Ziya River basin in northern China is used to demon-

strate the model capabilities. Persistent overdraft from the

groundwater aquifers on the North China Plain has caused

declining groundwater levels. The model maps the marginal

cost of water in different scenarios, and the minimum cost

of ending groundwater overdraft in the basin is estimated

to be CNY 5.58 billion yr−1. The study shows that it is cost-

effective to slowly recover the groundwater aquifer to a level

close to the surface, while gradually lowering the ground-

water value to the equilibrium at CNY 2.15 m−3. The model

can be used to guide decision-makers to economic efficient

long-term sustainable management of groundwater and sur-

face water resources.

1 Introduction

Groundwater aquifers are of high economic importance

around the world and often act as buffers in the water sup-

ply system during droughts (Tsur and Graham-Tomasi, 1991;

Tsur, 1990). On the North China Plain, persistent ground-

water overexploitation over the past decades has caused de-

cline of the shallow and deep groundwater tables (Liu et al.,

2001). The immediate benefits of satisfying the water de-

mands greatly exceed the costs of pumping, which highlights

the problem of the present self-regulating management. As

the groundwater resource is overexploited, the immediate

benefits of the increased unsustainable supply have to be

traded off against the long-term increase in pumping costs

and reduced buffering capacity. Optimal allocation of the wa-

ter resources should address coordinated use of the water re-

sources by considering the long-term total costs, while utiliz-

ing the groundwater as a buffer. This is in line with the 2011

Chinese No. 1 Policy Document, which targets improvement

of water use efficiency and reduction of water scarcity (CPC

Central Committee and State Council, 2010).

Optimal management of conjunctive use of surface water

and groundwater has been addressed widely in the literature

(e.g Booker et al., 2012; Burt, 1964; Knapp and Olson, 1995;

Labadie, 2004; Noel and Howitt, 1982). While control-based

methods, such as model predictive control (e.g., Morari and

Lee, 1999; Mayne et al., 2000) and reinforcement learn-

ing (Lee and Labadie, 2007), focus on deriving real-time

optimal control policies, this study will focus on planning

oriented optimization techniques. Deterministic optimization

problems for a given time horizon allow a detailed represen-
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tation of the groundwater system using spatially distributed

groundwater models (Andreu et al., 1996; Harou and Lund,

2008; Marques et al., 2006; Pulido-Velázquez et al., 2006).

Stochasticity is commonly represented in scenarios where

a regression analysis is used to formulate operation rules;

see e.g., the implicit stochastic optimization approaches re-

viewed by Labadie (2004). Singh (2014) reviewed the use

of simulation–optimization (SO) modeling for conjunctive

groundwater and surface water use. In SO-based studies, ef-

ficient groundwater simulation models are used to answer

“what if” questions, while an optimization model is wrapped

around the simulation model to find “what is best”. Ground-

water aquifers have been represented as simple deterministic

box or “bathtub” models (e.g., Cai et al., 2001; Riegels et

al., 2013) and as spatially distributed models (e.g., Maddock,

1972; Siegfried et al., 2009) with stochasticity (Reichard,

1995; Siegfried and Kinzelbach, 2006). While the results ob-

tained from these methods are rich in detail, they yield only

a single solution to the optimization problem.

Methods based on dynamic programming (DP, Bellman,

1957) have been used extensively to demonstrate the dynam-

ics of conjunctive groundwater–surface water use for both

deterministic (e.g., Buras, 1963; Provencher and Burt, 1994;

Yang et al., 2008) and stochastic DP (SDP, e.g., Burt, 1964;

Philbrick and Kitanidis, 1998; Provencher and Burt, 1994;

Tsur and Graham-Tomasi, 1991) optimization problems. In

DP-based methods, the original optimization problem is de-

composed into subproblems, which are solved sequentially

over time. The entire decision space is thereby mapped, en-

abling use of the results as dynamic decision rules. How-

ever, the number of subproblems grows exponentially with

the number of state variables and this curse of dimensional-

ity has frequently limited the use of DP and SDP (Labadie,

2004; Provencher and Burt, 1994; Saad and Turgeon, 1988).

Although it causes loss of detail and inability to disaggre-

gate the results, reservoir aggregation has been suggested as

a possible solution strategy (Saad and Turgeon, 1988).

This study aims to answer the following two macroscale

decision support questions for conjunctive groundwater and

surface water management for the Ziya River basin in North

China. (1) What are the minimum costs of ending ground-

water overdraft? (2) What is the cost-efficient recovery strat-

egy of the overpumped aquifer? A hydroeconomic model-

ing approach is used to identify the least-cost strategy to

achieve sustainable groundwater abstraction, defined as the

long-term average abstraction that does not exceed the long-

term average recharge. To overcome the management prob-

lem similar to Harou and Lund (2008) with increased com-

plexity caused by uncertain surface water runoff and ground-

water recharge, the surface water reservoirs are aggregated.

This is adequate at a macroscale (Davidsen et al., 2015) and

allows the use of DP-based approaches. The cost minimiza-

tion problem is solved with the water value method, a vari-

ant of SDP (Stage and Larsson, 1961; Stedinger et al., 1984)

which produces dynamic tables of marginal costs linked to

states, stages, and water source. Head- and rate-dependent

pumping costs introduce nonlinearity in the discrete subprob-

lems. This nonlinearity is handled with a hybrid genetic al-

gorithm (GA) and linear programming (LP) method similar

to that used by Cai et al. (2001), here applied in a coupled

groundwater–surface water management problem within an

SDP framework.

2 Methods

2.1 Study area

Northern China and particularly the North China Plain (NCP)

have experienced increasing water scarcity problems over

the past 50 years due to population growth, economic de-

velopment, and reduced precipitation (Liu and Xia, 2004).

The deficit in the water balance has historically been covered

by overexploitation of the groundwater aquifer, causing a re-

gional lowering of the groundwater table by up to 1 m yr−1

(Zheng et al., 2010).

The Ziya River basin, a part of the Hai River basin, was se-

lected as a case study area (see Fig. 1). The upper basin is lo-

cated in the Shanxi province, while the lower basin is located

in the Hebei province on the NCP. The 52 300 km2 basin has

approximately 25 million inhabitants (data from 2007, Bright

et al., 2008), and severe water scarcity is causing multiple

conflicts. Five major reservoirs with a combined storage ca-

pacity of 3.5 km3 are located in the basin. While reservoir

rule curves and flood control volumes can easily be accom-

modated for in the optimization approach, current reservoir

management rule curves in the case area are unavailable to

the public. Instead it is assumed that the full storage capac-

ity can be managed flexibly without consideration of storage

reserved for flood protection or existing management rules.

Incorporating flood storage volumes will reduce the available

storage and increase water scarcity in the long dry season. In

the present model setup, we therefore find the lower limit on

water scarcity costs, assuming that the entire storage capac-

ity is available for storing water. Reservoir spills will cause

an economic loss, and the model tends to avoid spills by en-

tering the rainy season with a low reservoir storage level.

A previous hydroeconomic study of the Ziya River basin

was a traditional implementation of SDP on a single-

reservoir system (surface water reservoir) and showed opti-

mal water management, while disregarding dynamic ground-

water storage and head-dependent groundwater pumping

costs (Davidsen et al., 2015). Instead, the groundwater re-

source was included as a simple monthly upper allocation

constraint.

In the present study, the groundwater resource is included

as a dynamic aquifer box model with a storage capacity of

275 km3. The river basin has two aquifers (upstream and

downstream) which are only connected by the river. Ideally,

each aquifer should be modeled as a box model, but this extra

state variable would be computationally challenging within

Hydrol. Earth Syst. Sci., 20, 771–785, 2016 www.hydrol-earth-syst-sci.net/20/771/2016/
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Figure 1. The Ziya River basin. Watershed and rivers automatically

delineated from a digital elevation map (USGS, 2004) and manu-

ally verified and corrected with Google Earth (Google Inc., 2013).

The SNWTP routes (central and eastern) were sketched in Google

Earth and verified with field observations. Provincial boundaries

from NGCC (2009).

the SDP framework. We therefore set up a box model for

the downstream and most important aquifer only, and ab-

straction from the upstream aquifer is only bounded by an

upper pumping limit corresponding to the average monthly

recharge. The box model for the downstream aquifer is

formulated as Infiltration+Storage=Pumping+Overflow.

The groundwater overflow is only used in extreme cases,

where the total pumping and available storage is less than

the infiltration. The spills will go to the spill variable and

leave the system as baseflow to the rivers (unavailable for

allocation). The aquifer is so heavily overexploited that no

significant baseflow is being created or will be created in

the foreseeable future. The box model allows for more flexi-

ble management with large abstractions in dry years and in-

creased recharge in wet years. The groundwater aquifer can

thereby be used to bridge longer drought periods. Except for

the groundwater box model, the conceptual model is identi-

cal to the one used by Davidsen et al. (2015).

A conceptual sketch of the management problem is shown

in Fig. 2. The water users are divided into groups of eco-

nomic activities; irrigation agriculture, industrial users, and

domestic water users. Ideally, each water user group should

be characterized by flexible demand curves, but due to poor

data availability a constant water demand (m3) and a con-

stant curtailment cost of not meeting the demand were used

for each group (see Table 1). The water demands are assumed

to be deterministic and decoupled from the stochastic runoff.

This is a reasonable assumption because the rainfall on the

NCP normally occurs in the summer months, while irrigation

water demands are concentrated in the dry spring. The irri-

gation schedule is centrally planned and typically unchanged

from year to year. The upstream (u) users have access to

runoff and are restricted to an upper pumping limit Xgw cor-

Table 1. Annual water demands and curtailment costs for the users

in the Ziya River basin. Based on the data set from Davidsen et

al. (2015).

Upstream Downstream

Water demands (106 m3 yr−1)

Industries 539 543a

Domestic 223 864b

Maize 569 1522c

Wheat – 6089c

Beijing – 1000d

Ecosystems – 100e

Total 1331 10 119

Curtailment costs (CNY m−3)

Industries 5.3 5.3f

Domestic 3.2 3.2f

Maize 1.8 2.8g

Wheat – 2.1g

Beijing – 5.5h

a Demands scaled by area, (Berkoff, 2003; Moiwo et al., 2010;

World Bank, 2001).
b Based on daily water demand (National Bureau of Statistics of China, 2011)

scaled by the 2007 population from Landscan (Bright et al., 2008).
c Based on the land cover (USGS, 2013) and irrigation practices collected in the

field. The wheat irrigation demand is evenly distributed in March, April, May,

and June. Maize is irrigated in July.
d Based on the plan by The People’s Government of Hebei Province (2012),

Ivanova (2011).
e Estimated deficit in the Baiyangdian Lake (Mo, 2006).
f Estimated by World Bank (2001).
g Based on the water use efficiency (Deng et al., 2006) and producers’ prices

(USDA Foreign Agricultural Service, 2012).
h Estimated by Berkoff (2003).
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Figure 2. Conceptual sketch of the simplified water management

problem. Water users are located upstream (u) and downstream (d)

of a surface water reservoir. Allocation decision variables for sur-

face water (blue), SNWTP water (green), and groundwater (orange)

are indicated. The conceptual sketch of the downstream dynamic

aquifer shows how the total lift (1h) is composed of the thickness

of the top layer, the regional groundwater drawdown, and the local

Thiem steady-state groundwater drawdown.

responding to the average monthly upstream recharge, while

the downstream users (d) have access to reservoir releases,

water delivered through the South-to-North Water Transfer

Project (SNWTP) and groundwater from the downstream

aquifer.
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2.2 Optimization model formulation

An SDP formulation is used to find the expected value of

storing an incremental amount of surface water or ground-

water, given the month of the year, the available storage in

surface and groundwater reservoirs, and the inflow scenar-

ios. The backward recursive equation calculates the sum of

immediate and expected future costs for all combinations of

discrete reservoir storage levels (states) and monthly time

steps (stages). The immediate management cost (IC) arises

from water supply and water curtailment, whereas the ex-

pected future cost (EFC) is the optimal value function in t+1

weighed by the corresponding transition probabilities. In the

present setup, we decided to weigh the IC and EFC equally,

but inclusion of discount rates other than zero is possible. Be-

cause of the head- and rate-dependent groundwater pumping

costs, which will be described in detail later, the immediate

cost depends nonlinearly on the decision variables. The ob-

jective is to minimize the total costs over the planning period,

given by the optimal value function F ∗t
(
Vgw, t ,Vsw, t ,Q

k
sw, t

)
based on the classical Bellman formulation:

F ∗t

(
Vgw,t ,Vsw,t ,Q

k
sw,t

)
=

min
(
IC
(
Vgw,t ,Vsw,t ,Q

k
sw,t

)
+

L∑
l=1

(
pklF

∗

t+1

(
Vgw,t+1,Vsw,t+1,Q

l
sw,t+1

)))
, (1)

with IC being

IC
(
Vgw, t ,Vsw, t ,Q

k
sw, t

)
=

M∑
m=1

(
cswxsw+ cgwxgw

+cSNWTPxSNWTP+ cctxct)m, t

− rsw, tbhp, (2)

subject to

xsw,m, t + xgw,m, t + xSNWTP,m, t + xct,m, t = dmm, t (3)

Vsw, t +Qsw, t −

U∑
u=1

xsw, u, t − rsw, t − sgw, t = Vgw, t+1 (4)

rsw, t + ssw, t =

D∑
d=1

xsw, d, t + qE, t (5)

Vgw, t +Qgw, t −

D∑
d=1

xgw, d, t − sgw, t = Vgw, t+1 (6)

U∑
u=1

xsw, u, t ≤Qsw, t (7)

U∑
u=1

xgw, u, t ≤Xgw, t (8)

rt ≤ R,xsw,Bei+ xSNWTP,Bei ≤QSNWTP,

qE, t ≥QE,Vsw, t ≤ Vmax, sw,Vgw, t ≤ Vmax, gw (9)

cgw = f

(
Vgw,

D∑
d=1

xsw, d

)
. (10)

See Table 2 for nomenclature.

Equation (3) is the water demand fulfillment constraint;

i.e., the sum of water allocation and water curtailments

equals the water demand of each user. Equation (4) is the

water balance of the combined surface water reservoir, while

Eq. (5) is the water balance of the reservoir releases. A sim-

ilar water balance for the dynamic groundwater aquifer fol-

lows in Eq. (6). The upstream surface water allocations are

constrained by the upstream runoff as shown in Eq. (7), while

the upstream groundwater allocations are constrained to a

fixed sustainable monthly average as shown in Eq. (8). In

Eq. (9), the upper and lower hard constraints on the decision

variables are shown. Lastly, Eq. (10) is the marginal ground-

water pumping cost, which depends on the combined down-

stream groundwater allocations as described later.

A rainfall–runoff model based on the Budyko Framework

(Budyko, 1958; Zhang et al., 2008) has been used in a pre-

vious study to estimate the near-natural daily surface wa-

ter runoff into reservoirs (Davidsen et al., 2015). The re-

sulting 51 years (1958–2008) of simulated daily runoff was

aggregated to monthly runoff and normalized. A Markov

chain, which describes the runoff serial correlation between

three flow classes defined as dry (0–20th percentile), nor-

mal (20–80th percentile), and wet (80–100th percentile), was

established and validated to ensure second-order stationar-

ity (Davidsen et al., 2015; Loucks and van Beek, 2005).

The groundwater recharge is estimated from the precipita-

tion data also used in the rainfall–runoff model. The average

monthly precipitation (mm month−1) for each runoff class is

calculated, and a simple groundwater recharge coefficient of

17.5 % of the precipitation (Wang et al., 2008) is used.

The SDP loop is initiated with EFC set to zero and will

propagate backward in time through all the discrete system

states as described in the objective function. For each discrete

combination of states, a cost minimization subproblem will

be solved. A subproblem will have the discrete reservoir stor-

age levels (Vgw, t and Vsw, t ) as initial conditions and reser-

voir inflow given by the present inflow class in the Markov

chain. The optimization algorithm will search for the opti-

mal solution, given the costs of the immediate management

(water allocations and water curtailments, including reser-

voir releases and groundwater pumping) which have to be

balanced against the expected future costs. As the SDP al-

gorithm propagates backward in time, the future costs will

be equal to the minimum total costs from t+1, weighted by

Hydrol. Earth Syst. Sci., 20, 771–785, 2016 www.hydrol-earth-syst-sci.net/20/771/2016/
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Table 2. Nomenclature.

F ∗t optimal value function in stage t (2005 Chinese Yuan, CNY)

Vgw, t stored volume in the groundwater aquifer, decision variable (m3)

Vsw, t stored volume in the surface water reservoir, decision variable (m3)

Vmax, sw upper storage capacity, surface water reservoir (m3)

Vmax,gw upper storage capacity, groundwater aquifer (m3)

Qsw, t river runoff upstream reservoirs, stochastic variable (m3 month−1)

Qgw, t groundwater recharge, assumed to be perfectly correlated with Qsw, t (m3 month−1)

m indicates the M water users

gw groundwater

sw surface water

ct water curtailments

x allocated volume, decision variable (m3 month−1)

c marginal costs (CNY m−3); the costs are all constants, except for

cgw which is correlated to the specific pump energy; see Eq. (11)–(16)

rt reservoir releases through hydropower turbines, decision variable (m3 month−1)

R upper surface water reservoir turbine capacity (m3 month−1)

ssw reservoir releases exceeding R, decision variable (m3 month−1)

bhp marginal hydropower benefits (CNY m−3)

k indexes the K inflow classes in stage t

l indexes the L inflow classes in t+1

pkl transition probability from k to l

dmm water demand for user m (m3 month−1)

u indexes the U upstream users

d indexes the D downstream users

sgw spills from aquifer when Vgw, t +Qsw, t − xgw, t > Vmax, sw (m3 month−1)

Xgw maximum monthly groundwater pumping in the upstream basin (m3 month−1)

qE, t unused surface water available to ecosystems, decision variable (m3 month−1)

QE minimum in-stream ecosystem flow constraint (m3 month−1)

Bei Beijing user

QSNWTP maximum capacity of the SNWTP canal (m3 month−1)

the Markov chain transition probabilities. The algorithm will

continue backward in time until equilibrium is reached, i.e.,

until the shadow prices (marginal value of storing water for

future use) in two successive years remain constant. The SDP

model is developed in MATLAB (MathWorks Inc., 2013)

and uses the fast cplexlp (IBM, 2013) to solve the linear sub-

problems.

The sets of equilibrium shadow prices, referred to as the

water value tables, can subsequently be used to guide optimal

water resources management forward in time with unknown

future runoff. In this study, the available historic runoff time

series is used to demonstrate how the derived water value ta-

bles should be used in real-time operation. The simulation

will be initiated from different initial groundwater aquifer

storage levels, thereby demonstrating which pricing policy

should be used to bring the NCP back into a sustainable state.

2.3 Dynamic groundwater aquifer

The groundwater aquifer is represented as a simple box

model (see Fig. 2) with recharge and groundwater pumping

determining the change in the stored volume of the aquifer

(Eq. 6). The pumping is associated with a pumping cost de-

termined by the energy needed to lift the water from the

groundwater table to the land surface (Eq. 10):

P = (ρg1h)/ε, (11)

where P is the specific pump energy (J m−3), ρ is the den-

sity of water (kg m−3), g is the gravitational acceleration

(m s−2), 1h is the head difference between groundwater ta-

ble and land surface (m), and ε is the pump efficiency (−).

The marginal pumping cost cgw (CNY m−3) is found from

the average electricity price cel (CNY/Ws) in northern China:

cgw = celP. (12)

Hence this cost will vary with the stored volume in the

groundwater aquifer. The present electricity price structure

in China is quite complex, with the users typically paying

between CNY 0.4 and 1 kWh−1 depending on power source,

province, and consumer type (Li, 2012; Yu, 2011). In this

study a fixed electricity price of CNY 1 kWh−1 is used. The

immediate costs of supplying groundwater to a single user

follow

cgw, txgw, t = ρg1hε
−1celxgw, t , (13)

www.hydrol-earth-syst-sci.net/20/771/2016/ Hydrol. Earth Syst. Sci., 20, 771–785, 2016



776 C. Davidsen et al.: The cost of ending groundwater overdraft

where 1h is found as the mean depth from the land surface

to the groundwater table (see Fig. 2) between t and t + 1:

1h=1htop+

(
Vmax, gw−

Vgw, t +Vgw, t+1

2

)
S−1
y A−1, (14)

where 1htop is the distance from the land surface to the top

of the aquifer at full storage (m), Sy is the specific yield

(−) of the aquifer, and A is the area of the aquifer (m2).

Here Vgw, t+1 is a decision variable, and once substituted into

Eq. (13) it is clear that the problem becomes nonlinear.

In Eq. (14) the drawdown is assumed uniform over the en-

tire aquifer. This simplification might be problematic as the

local cone of depression around each well could contribute

significantly to the pumping cost and thereby the optimal

policy. Therefore, the steady-state Thiem drawdown (Thiem,

1906) solution is used to estimate local drawdown at the

pumping wells. Local drawdown is then added to Eq. (15)

to estimate total required lift:

1hThiem =
Qw

2πT
ln

(
rin

rw

)
, (15)

where Qw is the pumping rate of each well (m3 month−1),

T is the transmissivity (m2 month−1), rin is the radius of

influence (m), and rw is the distance from origin to the

point of interest (m), which here is the radius of the well.

The transmissivity is based on a hydraulic conductivity of

1.3× 10−6 m s−1 for silty loam (Qin et al., 2013). The hy-

draulic conductivity is lower than the expected average for

the NCP to provide a conservative estimate of the effect

of drawdown. Field interviews revealed that the wells typi-

cally reach no deeper than 200 m below surface, which re-

sults in a specific yield of 5 %. The groundwater pumping

Qw is defined as the total allocated groundwater within the

stage (m3 month−1) and assumed evenly distributed among

the number of wells in the catchment:

Qw, t =

D∑
d=1

xgw, d, t

nw

=
Vgw, t −Vgw, t+1+Qgw, t − sgw, t

nw

, (16)

where nw is the number of wells in the downstream basin.

The even pumping distribution is a fair assumption, as field

investigations showed that (1) the majority of the groundwa-

ter wells are for irrigation; (2) the timing of irrigation, crop

types, and climate is homogeneous; and (3) the groundwa-

ter wells have comparable capacities. Erlendsson (2014) es-

timated the well density in the Ziya River basin from Google

Earth to be 16 wells km−2. Assuming that the wells are dis-

tributed evenly on a regular grid and that the radius of in-

fluence rin is 500 m, overlapping cones of depression from

eight surrounding wells are included in the calculation of the

local drawdown. This additional drawdown is included us-

ing the principle of superposition as also applied by Erlends-

son (2014).

2.4 Solving nonlinear and non-convex subproblems

With two reservoir state variables and a climate state vari-

able, the number of discrete states is quickly limited by the

curse of dimensionality. A very fine discretization of the

groundwater aquifer to allow discrete storage levels and deci-

sions is computationally infeasible. A low number of discrete

states increases the discretization error, particularly if both

the initial and the end storages Vgw, t+1 and Vsw, t+1 are kept

discrete. The discrete volumes of the large aquifer become

much larger than the combined monthly demands, and stor-

ing all recharge will therefore not be sufficient to recharge to

a higher discrete storage level. Similarly, the demands will be

smaller than the discrete volumes, and pumping the remain-

ing water to reach a lower discrete level would also be infea-

sible. Allowing free end storage in each subproblem will al-

low the model to pick, e.g., the optimal groundwater recharge

and pumping without a requirement of meeting an exact dis-

crete end state. With free surface water and groundwater end

storages, the future cost function has three dimensions (sur-

face water storage, groundwater storage, and expected future

costs). Pereira and Pinto (1991) used Benders’ decomposi-

tion approach, which employs piecewise linear approxima-

tions and requires convexity. With head- and rate-dependent

pumping costs and increasing electricity price, we observed

that the future cost function changes from strictly convex

(very low electricity price) to strictly concave (very high

electricity price). At realistic electricity prices, we observed

a mix of concave and convex shapes. An alternative is to

use linear interpolation with defined upper and lower bounds.

However, with two state variables, interpolation between the

future cost points will yield a hyperplane in three dimensions,

which complicates the establishment of boundary conditions

for each plane.

Nonlinear optimization problems can be solved with evo-

lutionary search methods, a subdivision of global optimiz-

ers. A widely used group of evolutionary search methods

are genetic algorithms (GAs), which are found to be efficient

tools for getting approximate solutions to complex nonlinear

optimization problems (see, e.g., Goldberg, 1989; Reeves,

1997). GAs use a random search approach inspired by nat-

ural evolution and have been applied to the field of water

resources management by, e.g., Cai et al. (2001), McKinney

and Lin (1994), and Nicklow et al. (2010). Cai et al. (2001)

used a combined GA and LP approach to solve a highly non-

linear surface water management problem. By fixing some

of the complicating decision variables, the remaining objec-

tive function became linear and thereby solvable with LP.

The GA was used to test combinations of the fixed parame-

ters, while looking for the optimal solution. The combination

yielded faster computation time than if the GA was used to

estimate all the parameters.

A GA implemented in MATLAB is used to solve the cost

minimization subproblems. This GA function will initially

generate a set of candidate solutions known as the popula-
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tion. Each of the candidate solutions contains a set of de-

cision variables (sampled within the decision space), which

will yield a feasible solution to the optimization problem. In

MATLAB, a set of options specifies the population size, the

stopping criteria (fitness limit, stall limit, function tolerance,

and others), the crossover fraction, the elite count (number

of top parents to be guaranteed survival), and the generation

function (how the initial population is generated). The op-

tions were adjusted to achieve maximum efficiency of the

GA for the present optimization problem.

The computation time for one single subproblem is orders

of magnitude larger than solving a simple LP. As the opti-

mization problem became computationally heavier with in-

creasing number of decision variables, a hybrid version of

GA and LP, similar to the method used by Cai et al. (2001),

was developed (see Fig. 3). Decision variables that cause

nonlinearity are identified and chosen by the GA. Once these

complicating decision variables are chosen, the remaining

objective function becomes linear and thereby solvable with

LP. In the optimization problem presented in Eq. (1), the non-

linearity is caused by the head-dependent pumping costs as

explained in Eq. (13)–(14). Both the regional lowering of

the groundwater table and the Thiem local drawdown cones

depend on the decision variable for the stored volume in

t + 1,Vgw, t+1. If Vgw, t+1 is preselected, the regional draw-

down is given, and the resulting groundwater pumping rate

Qw can be calculated from the water balance. The ground-

water pumping price is thereby also given, and the remaining

optimization problem becomes linear.

For a given combination of stages, discrete states and flow

classes, the objective of the GA is to minimize the total cost,

TC, with the free states Vgw, t+1,Vsw, t+1 being the decisions:

TC
(
Vgw, t+1,Vsw, t + 1

)
=minIC

(
Vgw, t+1,Vsw, t + 1

)
+EFC

(
Vgw, t+1,Vsw, t + 1

)
, (17)

with EFC being the expected future cost. Given initial states

and once the GA has chosen the end states, the immediate

cost minimization problem becomes linear and hence solv-

able with LP (see Fig. 3). The expected future costs are found

by cubic interpolation of the discrete neighboring future cost

grid points in each dimension of the matrix. The GA ap-

proaches the global optimum until fitness limit criteria are

met. The total costs are stored and the algorithm continues to

the next state. To reduce the computation time, the outer loop

through the groundwater states is parallelized.

The performance of the GA–SDP model is compared to

a fully deterministic DP, which finds the optimal solution

given perfect knowledge about future inflows and ground-

water recharge. The DP model uses the same algorithm as

the SDP model and one-dimensional state transition matrices

with p = 1 between the deterministic monthly runoff data.

For low storage capacity and long timescales, the effect of the

end storage volume becomes negligible. Similar to the SDP

for all stages

for all surface water states
for all groundwater states

Load data

Upper and lower bounds for GA
Generate initial population (Vgw,t+1 , Vsw,t+1)

for all runoff flow classes

Calculate immediate costs (LP)
Interpolate future costs
Calculate total costs
Calculate fitness

no

yes
Stopping critera met?

Store total costs

New generation
Mutation
Crossover

next

Figure 3. SDP optimization algorithm design.

model, the DP model was looped until the present manage-

ment was no longer affected by the end of period condition.

3 Results

Without any regulation or consideration of the expected fu-

ture costs arising from overexploitation of the groundwater

aquifer, the water users will continue maximizing immediate

profits (producers) or utility (consumers). Because there are

only electricity costs for groundwater, the users will continue

pumping groundwater until the marginal groundwater cost

exceeds the curtailment cost. At CNY 1 kWh−1 the marginal

cost of lifting groundwater 200 m (typical depth of wells ob-

served in the study area) can be found with Eqs. (13)–(14)

to be CNY 0.8 m−3 and thereby less than the lowest curtail-

ment cost at CNY 2.3 m−3. Only once the electricity price

is higher than CNY 2.8 kWh−1 does the user with the low-

est curtailment cost stop pumping, if the groundwater level is

200 m below the surface.

The backward recursive SDP algorithm was run with a

looped annual data set until equilibrium water values, i.e.,

no interannual changes, were obtained. The water values in-

crease fastest during the first years, and after approximately

100 years, the annual increases become small. Due to the

large storage capacity of the groundwater aquifer, equilib-

rium is however not achieved until after 150–180 years.

These marginal water values represent the true values of stor-

ing a unit volume of water for later use, and vary with reser-

voir storage levels, runoff flow class, and time of the year. A
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values at fixed [0, 80, 100 %] groundwater aquifer storage. (b) Groundwater values at fixed [0, 50, 100 %] surface water reservoir storage.

The reservoir storage is shown from E (empty) to F (full).

sample of the resulting equilibrium water value tables is pre-

sented in Fig. 4. This figure shows the temporal variations of

water values as a function of one state variable, keeping the

other state variables at a fixed value. The state variables are

fixed at empty, half full, and full storage respectively. Dur-

ing the rainy season from June to August, high precipitation

rates reduce water scarcity, resulting in lower surface water

values. Because the groundwater storage capacity is much

larger, increased recharge can easily be stored for later use,

and groundwater values are therefore not affected. Addition

of stream–aquifer interactions to the model is expected to af-

fect this behavior, but since the flow in rivers/canals in the

case study area is small most of the year, and since most areas

are far from a river, it is reasonable to ignore these dynam-

ics. The water values after 1980 are clearly higher than in the

period before 1980 due to increased water scarcity caused

by a reduction in the regional precipitation. In contrast, the

groundwater value tables are uniform, with variation only in

groundwater storage. The detailed water value tables are in-

cluded in the Supplement.

We simulate management using the equilibrium water

value tables as a pricing policy and force the system with

51 years of simulated historical runoff. Time series of the

simulated groundwater storage can be seen in Fig. 5 for dif-

ferent initial storage scenarios. The groundwater aquifer ap-

proaches an equilibrium storage level around 260 km3 (95 %

full). If the storage in the aquifer is below this level, the av-

erage recharge will exceed average pumping until the equi-

librium storage is reached. If the storage level is above equi-

librium, average pumping will exceed average recharge un-

til equilibrium is reached. In Fig. 6, the surface water and
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Figure 5. Simulated groundwater aquifer storage levels for 51 years

of historical runoff with different initial groundwater tables (0, 100,

200, 258, and 275 km3). Results for the business-as-usual scenario

(EFC is disregarded) and a benchmark scenario with perfect fore-

sight (DP) are also shown.

groundwater storages are shown for a situation with equilib-

rium groundwater storage. In most years, the surface water

storage falls below 1 km3, leaving space in the reservoir for

the rainy season. The potential high scarcity cost of facing

a dry scenario with an almost empty reservoir is avoided by

pumping more groundwater. These additional pumping costs

seem to be exceeded by the benefits of minimizing spills in

the rainy season. To demonstrate the business-as-usual solu-

tion, the simulation model is run for a 20-year period with

the present water demands and curtailment costs and with a

discount rate set to infinity (i.e., zero future costs). The result-

ing groundwater table is continuously decreasing, as shown

in Fig. 5.

In the simulated management runs, water will be allocated

to the users up to a point where reductions in immediate cost

are compensated by increases in expected future costs. The
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Figure 7. User’s price for groundwater and surface water through for a 51-year simulation based on simulated historical runoff for two initial

groundwater storages. P refers to the user’s price. M1 denotes results for a single surface water reservoir with a constant groundwater cost

(Davidsen et al., 2015). M2 denotes results from the presented model framework with an additional dynamic groundwater aquifer. The user’s

price for groundwater in M2 is the immediate pumping cost added to the marginal cost from the water value tables.

user’s price, which can be applied in a marginal cost pric-

ing (MCP) scheme, is the marginal value of the last unit of

water allocated to the users. The user’s price is the sum of

the actual pumping cost (electricity used) and the additional

marginal cost given by the equilibrium water value tables. In

Fig. 7, the user’s prices for groundwater and surface water are

shown for the 51-year simulation at and below the long-term

sustainable groundwater storage level. When the groundwa-

ter storage level is close to equilibrium, the user’s prices of

groundwater and surface water are equal during periods with

water scarcity. In wet months with reduced water scarcity,

the model switches to surface water allocation only, and the

groundwater user’s price is undefined (gaps in the time series

in Fig. 7). If the groundwater storage level is below equi-

librium, the groundwater user’s price will be higher, caus-

ing an increase in water curtailments and an increase in stor-

age level, as shown in Fig. 5. Under these circumstances the

surface water user’s price increases up to a point where the

two prices meet. With an initial aquifer storage at one-third

of the aquifer capacity (100 km3), the groundwater value is
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CNY 3 m−3 (see Fig. 7). As the aquifer slowly recovers, the

groundwater price decreases gradually.

At the equilibrium groundwater storage level, the user’s

prices for groundwater is stable at around CNY 2.15 m−3, as

shown in Fig. 7. This indicates curtailment of wheat agri-

culture in the downstream Hebei province, which has a will-

ingness to pay CNY 2.12 m−3 (see Table 1). The allocation

pattern to this user is shown in Fig. 8; the model switches

between high curtailment and high allocations, depending on

water availability and storage in the reservoirs. Groundwater

allocations fluctuate between satisfying 0 and 80 % of the de-

mand. Inclusion of the steady-state Thiem drawdown cones

in the optimization model increases the marginal groundwa-

ter pumping cost with increased pumping rates. Groundwa-

ter allocations are distributed more evenly over the months,

which results in less local drawdown. The total curtailments

remain constant, while 1 % of the total water abstraction is

shifted from groundwater to surface water, if the stationary

Thiem drawdown is included. Inclusion of well drawdown

significantly changed the simulated management but resulted

in an only slightly increased computation time.

The average total costs of the 51-year simulation for dif-

ferent scenarios can be seen in Table 3. The average reduc-

tion in the total costs, associated with the introduction of the

SNWTP canal, can be used to estimate the expected marginal

economic impact of the SNWTP water. The minimum total

costs after the SNWTP is put in operation are compared to

the scenario without the SNWTP (pre-2008) and divided by

the allocated SNWTP water. The resulting marginal value of

the SNWTP water delivered from Shijiazhuang to Beijing

(2008–2014 scenario) is CNY 3.2 m−3, while the SNWTP

water from Yangtze River (post-2014 scenario) reduces the

total costs with CNY 4.9 m−3. Similarly, a comparison of the

total costs for the post-2014 scenarios shows a marginal in-

crease of CNY 0.91 m−3 as a consequence of introducing a

minimum in-stream flow constraint.

Table 3. Average minimum total cost (TC) and hydropower benefits

(HP) over the 51-year planning period for different scenario runs.

SNWTP scenarios: pre-2008 refers to the period before the cen-

tral route of the SNWTP was built; 2008–2014 refers to a situation

with a partly completed SNWTP central route from Shijiazhuang

to Beijing; post-2014 refers to the fully operational SNWTP cen-

tral route from the Yangtze River to Beijing. Scenarios: LGW is

initial groundwater storage at 100 km3 (all other scenarios are initi-

ated at equilibrium groundwater storage); dm is 10 % higher water

demands; ct is 10 % higher curtailment costs ; T is 10 % higher

transmissivity; TD is Thiem steady-state drawdown; E is minimum

ecosystem flow constraint; “+” is active and “−” is inactive.

SNWTP Scenario settings TC HP

scenario SDP SDP

Special run TD E CNY CNY

109 yr−1 106 yr−1

Pre-2008 − + + 14.87 103.6

2008–2014 − + + 11.69 103.5

Post-2014 − − − 8.43 103.5

Post-2014 − + − 8.47 103.6

Post-2014 − + + 8.56 104.3

Post-2014 LGW + + 13.32 99.2

Post-2014 T + + 8.69 103.5

Post-2014 dm + + 8.74 103.3

Post-2014 ct + + 9.08 103.1

A local sensitivity analysis focused on the water demands

and curtailment costs used directly in the objective func-

tion (Eq. 1) and the transmissivity used to estimate the lo-

cal drawdown (Eq. 14). The uncertain input parameters were

increased by 10 %, and the sensitivity was evaluated based

on the simulation results. The resulting total costs can be

seen in Table 3. The benchmark DP was run for the post-

2014 scenario with Thiem drawdown and minimum ecosys-

tem flow constraint. The minimum total cost of this run is
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CNY 8.46× 109 yr−1. This is 1.3 % lower than the equiva-

lent SDP run (CNY 8.56× 109 yr−1).

The minimum total costs were lowered from

CNY 10.50× 109 yr−1 (Davidsen et al., 2015) to

CNY 8.56× 109 yr−1 (18 % reduction) by allowing the

groundwater aquifer to be utilized as buffer instead of a fixed

monthly volume. This difference highlights the problem of

defining realistic boundaries of optimization problems and

shows that simple hard constraints, here fixed groundwater

pumping limits, can highly limit the optimal decision space.

With a dynamic groundwater aquifer, the model can mitigate

dry periods and stabilize the user’s price of surface water as

shown in Fig. 7. Finally, policies like minimum in-stream

ecosystem flow constraints can be satisfied with less impact

on users with high curtailment costs. The total costs without

restrictions on the groundwater pumping have been esti-

mated to be CNY 2.98× 109,yr−1 (Davidsen et al., 2015).

To end the groundwater overdraft in the basin, the present

study thus estimates a cost increase of CNY 5.58× 109 yr−1,

once the groundwater aquifer is at equilibrium storage. The

cost of recharging the aquifer from the present storage level

below the equilibrium is significantly higher. In Table 3, the

LGW scenario shows that the average cost of sustainable

management from an initial storage at 100 km3 (one-third

full) is CNY 13.32× 109 yr−1.

From any initial groundwater reservoir storage level, the

model brings the groundwater table to an equilibrium stor-

age level at approximately 95 % of the aquifer storage capac-

ity. Only small variations in the aquifer storage level are ob-

served after the storage level reaches equilibrium as shown in

Fig. 6. While addition of the Thiem stationary drawdown has

only a small effect on total costs and total allocated water,

it is clear from Fig. 8 that the additional Thiem drawdown

highly impacts the allocation pattern for some of the water

users. High groundwater pumping rates result in larger local

drawdown and thus in higher pumping costs. This mecha-

nism leads to a more uniform groundwater pumping strategy,

which is clearly seen in Fig. 8, and results in a much more re-

alistic management policy.

4 Discussion

This study presents a hydroeconomic optimization approach

that provides a macroscale economic pricing policy in terms

of water values for conjunctive surface water–groundwater

management. The method was used to demonstrate how the

water resources in the Ziya River basin should be priced over

time, to reach a sustainable situation at minimum cost. We

believe that the presented modeling framework has great po-

tential use as a robust decision support tool in real-time water

management. However, a number of limitations and simpli-

fications need to be discussed.

A first limitation of the approach is the high level of sim-

plification needed. There are two main reasons for the high

level of simplification: limited data availability and the lim-

itations of the SDP method. The curse of dimensionality

limits the approach to 2–3 interlinked storage facilities and

higher dimensional management problems will not be com-

putationally feasible with SDP today. This limit on the num-

ber of surface water reservoirs and groundwater aquifers re-

quires a strongly simplified representation of the real-world

situation in the optimization model. The simulation phase

following the optimization is not limited to the same ex-

tent, since only a single subproblem is solved at each stage.

The water values determined by the SDP scheme can thus be

used to simulate management using a much more spatially

resolved model with a high number of users; this was not

demonstrated in this study. The advantage of SDP is that it

provides a complete set of pricing policies that can be ap-

plied in adaptive management, provided that the system can

be simplified to a computationally feasible level. An alter-

native approach known as stochastic dual dynamic program-

ming (SDDP, Pereira and Pinto, 1991; Pereira et al., 1998)

has shown great potential for multi-reservoir river basin wa-

ter management problems. Instead of sampling the entire de-

cision space with the same accuracy level, SDDP samples

with a variable accuracy not predefined in a grid, focusing

the highest accuracy around the optimal solution. This vari-

able accuracy makes SDDP less suitable for adaptive man-

agement. Despite the highly simplified system representa-

tion, we believe that the modeling framework provides inter-

esting and nontrivial insights, which are extremely valuable

for water resources management on the NCP.

Computation time was a limitation in this study. Three

factors increased the computational load of the optimization

model. (1) Inclusion of the groundwater state variable re-

sulted in an exponential growth of the number of subprob-

lems; (2) the non-convexity handled by the slower GA–LP

formulation caused an increase in the computation time of

10–100 times a single LP; and (3) the SDP algorithm needed

to run through more than 200 years to reach a steady state. A

single scenario run required 4000 CPU hours and was solved

in 2 weeks, using 12 cores at the high-performance comput-

ing facilities at the Technical University of Denmark. This is

50 000 times more CPU hours than a single-reservoir SDP

model (Davidsen et al., 2015). Since the water value tables

can be used offline in the decision making, this long compu-

tation time can be accepted.

The long computation time made the use of, e.g., Monte

Carlo-based uncertainty analysis infeasible. The local sen-

sitivity analysis showed that a 10 % increase in the curtail-

ment costs is returned as a 6.0 % increase in the total costs,

while a similar increase of the demands generates a 2.1 %

increase in costs. The transmissivity can vary over many or-

ders of magnitude because it is a log-normally distributed

variable. The sensitivity of log(T ) is high: a 1.3 % change of

log(T ) from the baseline value results in a 1.5 % change in

the cost. At the same time, the simple system representation

needed in SDP required assumptions of inflow and storage

discretization, aggregation of the surface water reservoirs,
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generalized estimates of pumping cost, and a lumped ground-

water model, which all contribute to the uncertainty. Further,

poor data availability for the case study area required some

rough estimates of the natural water availability, single-point

demand curves, and perfect correlation between rainfall and

groundwater recharge. The method-driven assumptions gen-

erally limit the decision support to the basin scale, while the

simple estimates caused by poor data availability contribute

to raising the general uncertainty of the model results. Given

the computational challenges and the diverse and significant

uncertainties, the model results should be seen as a demon-

stration of the model’s capabilities rather than precise cost

estimates. Better estimates will require access to a more com-

prehensive case data set and involve a complete sensitivity

analysis.

Intuitively, one would expect the equilibrium groundwater

storage level to be as close as possible to full capacity, while

still ensuring that any incoming groundwater recharge can

be stored. Finding the exact equilibrium groundwater storage

level would require a very fine storage discretization, which,

given the size of the groundwater storage, is computation-

ally infeasible. Therefore the equilibrium groundwater stor-

age level is subject to significant discretization errors. The

long time steps (monthly) make the stationarity required for

using the Thiem stationary drawdown method a realistic as-

sumption.

The difference between total cost with SDP and with

DP (perfect foresight) is small (1.3 %). Apart from Bei-

jing, which has access to the SNWTP water, the remaining

downstream users have unlimited access to groundwater. The

large downstream groundwater aquifer serves as a buffer to

the system and eliminates the economic consequences of a

wrong decision. The model almost empties the reservoir ev-

ery year as shown in Fig. 6, and wrong decisions are not

punished with curtailment of expensive users as observed by

Davidsen et al. (2015). The groundwater aquifer reduces the

effect of wrong decisions by allowing the model to mini-

mize spills from the reservoir without significant economic

impact of facing a dry period with an empty reservoir. A dy-

namic groundwater aquifer thereby makes the decision sup-

port more robust, since it is the timing and not the amount of

curtailment that is being affected.

The derived equilibrium groundwater value tables in Fig. 4

(and detailed water value tables in the Supplement) show

that the groundwater values vary with groundwater storage

alone and are independent of time of the year, the inflow and

recharge scenario, and the storage in the surface water reser-

voir. This finding is important for future work, as a substi-

tution of the groundwater values with a simpler cost func-

tion could greatly reduce the number of states and thereby

the computation time. The equilibrium groundwater price,

i.e., the groundwater values around the long-term equilib-

rium groundwater storage, can possibly be estimated from

the total renewable water and the water demands ahead of

the optimization, but further work is required to test this.

Further work should also address the effect of discounting

of the future costs on the equilibrium water value tables and

the long-term steady-state groundwater table. In the present

model setup, the large groundwater aquifer storage capacity

forces the backward-moving SDP algorithm to run through

200–250 model years, until the water values converge to the

long-term equilibrium. Another great improvement, given

the availability of the required data, would be to replace the

constant water demands with elastic demand curves in the

highly flexible GA–LP setup.

A significant impact of including groundwater as a dy-

namic aquifer is the more stable user’s prices shown in Fig. 7.

The user’s price of groundwater consists of two parts: the im-

mediate groundwater pumping costs (electricity costs) and

the expected future costs represented by the groundwater

value for the last allocated unit of water. As the model is

run to equilibrium, the user’s prices converge towards the

long-term equilibrium at approximately CNY 2.2 m−3. The

electricity price can be used as a policy tool to internalize the

user’s prices of groundwater shown in Fig. 7. Stable water

user’s prices will ease the implementation of, e.g., an MCP

scheme, which is one of the available policy options to en-

force long-term sustainability of groundwater management.

5 Conclusions

This study describes development and application of a hy-

droeconomic approach to optimally manage conjunctive use

of groundwater and surface water. The model determines

the water allocation, reservoir operation, and groundwater

pumping that minimizes the long-term sum of head- and

rate-dependent groundwater pumping costs and water cur-

tailment costs. The model is used to quantify potential sav-

ings of joint water management of the Ziya River basin in

northern China, but the model can be applied to other basins

as well. Estimates of natural runoff, groundwater recharge,

water demands, and marginal user curtailment costs are cast

into an SDP-based optimization framework. Regional and

Thiem stationary drawdown is used to estimate rate- and

head-dependent marginal groundwater pumping costs. The

resulting optimization subproblems become nonlinear and

non-convex and are solved with a hybrid GA–LP setup. A

central outcome from the SDP framework is tables of shadow

prices of surface and groundwater for any combination of

time, inflow class, and reservoir storage. These tables repre-

sent a complete set of pricing policies for any combination of

system states and can be used to guide real-time water man-

agement. Despite a significant computational demand to ex-

tract the water value tables, the method provides a suitable

approach for basin-scale decision support for conjunctive

groundwater and surface water management. The model pro-

vides useful insight to basin-scale scarcity-driven tradeoffs.

The model outputs time series of optimal reservoir storage,

groundwater pumping, water allocation, and the marginal

economic value of the water resources at each time step. The
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model is used to derive a pricing policy to bring the over-

exploited groundwater aquifer back to a long-term sustain-

able state. The economic efficient recovery policy is found

by trading off the immediate costs of water scarcity with the

long-term additional costs of a large groundwater head. From

an initial storage at one-third of the aquifer capacity, the av-

erage costs of ending groundwater overdraft are estimated

to be CNY 13.32× 109 yr−1. The long-term cost-effective

reservoir policy is to slowly recover the groundwater aquifer

to a level close to the surface by gradually lowering the

groundwater value from an initial level of CNY 3 m−3. Once

at this sustainable state, the groundwater values are almost

constant at CNY 2.15 m−3, which suggests that wheat agri-

culture should generally be curtailed under periods of water

scarcity. The dynamic groundwater aquifer serves as a buffer

to the system and is used to bridge the water resources to

multiple years. The average annual total costs are reduced by

18 % to CNY 8.56× 109 yr−1 compared to a simpler formu-

lation with fixed monthly pumping limits. The stable user’s

prices are suitable to guide a policy scheme based on water

prices, and the method has great potential as a basin-scale de-

cision support tool in the context of the China No. 1 Policy

Document.

The Supplement related to this article is available online

at doi:10.5194/hess-20-771-2016-supplement.
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