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ABSTRACT

While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified
by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states
near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a point-
dipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local
density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed
of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded
electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic
Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent
with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify
in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which
homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling
to guided modes supported by the lattice.

Introduction

Spontaneous emission is the irreversible decay of a quaeataitter upon emission of a photon that arises due to interact
with the fluctuating electromagnetic vacuum field. If thedbdensity of available photon states (LDOS), and thereby of
vacuum fluctuations, is modified the spontaneous emisstermmay be inhibited or enhanced. This effect was discuss&d fir
for microcavities by Purcell in 1946The effect was clearly demonstrated by Drexhage in 1966 uoadbcence experiment
using a rare earth ion placed in front of a mirfoRver the past decades technological advances have madkegfedrication

of nanostructered materials possible, allowing for taiigthe LDOS%® Engineering the LDOS is attractive since it controls
light-matter interaction such as thermal emission, alismrpand spontaneous emission.

Metamaterials and metasurfaces are nanostructured tmddwo dimensional materials that aim to mimic homogeneous
materials and interfaces, but with unconventional matgriaperties. Especially metasurfaces and plasmonicésthave
recently attracted interest in the framework of spontasesission control due to their guiding properties, broaticap
resonances and high field enhancemértifshe possibility of diverging LDOS in hyperbolic metamagsi'! and the aspect
of controlling magnetic and chiral transitiois'® Already soon after the first metamaterials were made, RugmirMartirt*
and Kastel and Fleischhadernalyzed the classical Drexhage experiment, but envisipmiagnetic, and negative index con-
tinuous metamaterials to modulate the LDOS. This thoughéerent is interesting for a few reasons: First, metansdser
are often proposed with near-field applications in mindhsagsuper-resolution imaging, or cloaking. Yet, whetheetama-
terial medium built out of, for instance, magnetically p@table scatterers, acts as a magnetic medium, is usuatotérom
the far field with just a single input wave vectors. Insteachaae comprehensive test would be to measure the local gafsit
states, since Drexhage’s effect incorporates the diffggease upon reflectiott,*> and sums over all wave vectors. Second,
since an emitter is a point-like probe, approaching it to tamaterial while measuring the lifetime is a direct methmdriobe
at which source-material separations the effective medipproximation holds despite the inherently discrete geognod
metamaterials. These questions have, to the best of ourl&dge, not been addressed previously.

To address these issues we present a semi-analyticalgipole model, that allows for swift calculations of the LDOS
of lattices of arbitrary electric, magnetic and bianisptoodipolar scatterers. We utilize the method on two typeltices
consisting of isotropically scattering particles with deotric and a magnetic response, respectively. By comgadtia
Drexhage effect of the two lattices we explore the validitjreating a surface of subdiffractive pitch, and compodestrong
electric and magnetic scatterers as a homogenized electn@agnetic mirror. Furthermore, regimes in which the mater
may suitably be treated as a homogeneous material arefiddntiVe spectrally resolve the LDOS in regions in the lattice
plane, revealing an increased LDOS by coupling to guideitéamodes.
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Results

Theoretical framework

The optical response to plane wave excitation of 2D perilatices of electric polarizabilities has previously beeniewed

by de Abajo'® An extension to the full magneto-electric case was preseinté'’1 In the following we shall use results
derived irf to which we refer the reader for further details. We cons&2D periodic lattice of point scatterers in the dipole
approximation positioned aR,,,, = md; + nds, wherem andn are integers, and; andd- are the real space basis
vectors. Previous work, based on finite difference time dorsinulations$® and quasistatic multipole theof§ has shown
that the dipole approximation is warranted &r> 3b, whereb is the radius of the spheres. Each particle is described by a
polarizability tensor{, that relates the induced electric and magnetic dipole nmbpe and u.,,,, to a driving electric and

magnetic fieldE and H according t¢ 2422
E
(m) =7 (&) ®

For ease of notation we use a rationalized unit system asideddn ref2 where e.g.|E|/|H| = 1 for a plane wave. We
note thafl is subject to symmetry constraints and must be made elgetamically consistent, bound by the optical theorem.
This is achieved by addition of radiation dampiiag,! = 851 — 2ik31/3, to the electrostatic polarizabilify, which can for
instance be derived from an LC model. Heré denotes matrix inversior, denotes the wave numbéis the 6-dimensional
identity tensof?. The magnetoelectric static polarizability is decompased

= GEE)  g(EH)
oy = L(w) <—>?HE) <—>?HH) ) )
o o)

where each matrix element is3a< 3 dimensionless matrix. The diagonfa‘iéEE) (8((JHH)) reflect a purely electric (magnetic)

response, whereas the off-diagonal tenmﬁ%H) (aéHE)), describe bianisotropy, such as the electric responseatmeatic
fields (and vice versa)(w) is a Lorenzian prefactor, typical for a plasmon resonance,

2
“o

Lw)=V 3)

wi — w? —iwl’
with resonance frequency,, Ohmic damping” and amplitude governed by the volume of the scatt&rer
The induced dipole moment on a scatterer at the otlgjjp is set by the sum of the incident field and the field of all other

dipoles in the latticé
Poo \ _ [e-1 H# -1 (E,
(mOO) = [OL -G (kHaO)} (Hl ) ) (4)

wherek is the parallel momentum of the incident plane wave,
G kypr) = Y CO(Rypn —r)etiFime (5)
m#0,n#0

and@O(R,,m —r) is the6 x 6 dyadic Green function of the medium surrounding the lattieer our case, we shall assume
the surrounding medium to be vacuum.

Calculating the LDOS in front of the lattice requires evaiing the scattered field arising from a single point source,
instead of from a plane wave of definite parallel momentume @pproach would be to expand the field of the dipole in its
parallel plane Wave!%”.23 However, the resulting -integral unfortunately converges poorly, especiallysorall distances
to the dipole sourcé’ Instead we shall use a technique referred to as the arragisgamethod>* We consider a single point
source dipole with a point curregtat positionry, j(r) = —iwd(r — ro)j. Here we use the notion of point current in a
more generalized magnetoelectric context, wheiea 6-element vector describing both the electric and miagdipole, i.e.

j = —iw(pe, mm) . We may synthesize this single point source by summing tefpphased arrays of point sources:

§(r') =3 8[r = (ro — Ryy)] 1 e, (6)

The original single source current is recovered from thesptarray as

A s
Jr) = @T)Q/BZN )k, @
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Parameter Value Description
di=dy=d 300 nm Lattice constant.
Ao = 2me/wp 1.5 um Res. wavelength of particles.
r 83 THz Ohmic damping in particles.
|4 (90 nm)®  Volume of scatterer.

Table 1. Used parameters for the calculations

where BZ denotes the Brillouin zone and is the real-space unit cell area. We denote all quantitieset to the phased
array with a tilde. The incident field at the origin, geneddby the phased array, is found by propagating the fields frach e

dipole in the phased array. We get
Ein(O) b4 He)
i =Gk, — 8
(Hi (0)) Gy, =ro) (um ®)

where we define@(ku ,r) = ‘é;ﬁ(ku )+ 80(R00 — r)etki-Roo that acts as a field propagator of an array of dipole source.
The induced dipole moment of the scatterer at the origirvedrby the phased array, is found using equati®nagd

equation §).
(20) = G0k (1) ©
moo -1 _ 8#(,6”’0) Il 0 . .

Similar to equation&), we may evaluate the scattered field at a positidsy multiplying the induced dipole wit@)(k” ,T)

giving B
(%C"‘t(T)> = G(ky,7) <£°0> : (10)

H . (1) moo

The scattered field from the original single dipole sourcisd by integrating the scattered field, generated by tlzesqdh

array, over the entire Brillouin zone:
(Escat (T)) — @tot (T,O’ 'T') (He ) ’ (11)
Hot (T) M

1

=

@-1-G7(ky,0)

where
G (ky, —70)dky . (12)

P A o
Gtot(r()vr) = W By g(kHar)

Using equationX1), the decay ratey(r(), of an emitter relative to the decay ratg,.(ro), in vacuum is calculated &s:

N T ~
( ﬂ;) Bros (ro. 70) ( ;j;)] , (13)

where' is the conjugate transpose apd (f,,,) is the normalized electric (magnetic) dipole moment. lis thork we will
solely consider electric dipole transitions as soufeg & 0). We note that the computation of the summation in equagpn (
is carried out using Ewald summatfSrdescribed in Supplementary material, and details of tregial in equation?) is
computed in practice are described in Methods. Moreovetewye only consider a single magneto-electric dipole maoide o
the scatterers, the model may easily be extended to trekiestdattices as well as complex unit cells consisting diedént
scatterers, to mimic multipolar resonanésAlso, more advanced methods for retrieving the polaritgbié.g. surface
integral equation$? may be used as input.

y(ro) 3
=1+ —I
VYvac + 2k3 m

Numerical examples

As examples we shall consider non-diffractive squareciastiof strong scatterers. We calculate the LDOS near laiitevo
types of scatterers: (1) Scatterers with an isotropic Btexsponse (i.e. plasmonic spheres) by setHréSE) = L(w)I, and
88EH) = 88HE) = 8E)HH) =0, and (2) Scatterers with an isotropic magnetic responseetbmg‘&éHH) = L(w)I, and
P = TP = g(FP) = §. All parameter values used are presented in TablEhe parameters are chosen so that the
electric scatterers match the polarizability, extinctimass section and albedo found experimentally for plasmscatterers

at telecom frequencies (extinction cross secti@3s pun?), as studied in depth by Husnik et’ad’
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Figure 1. Calculated relative lifetime of an electric dipole as a fiime of distance for the case of a lattice with isotropic
magnetic scatterers (dashed) and electric scattereid)(sdlthe resonance frequengy for the four in-plane positions
(x,y) = (d/2,0) (blue),(z,y) = (0,d/2) (red),(z,y) = (d/2,d/2) (yellow), and(z,y) = (d/2,0) (purple) as depicted in
the inset. a) Dipoles oriented alotigparallel to the lattice. b) Dipoles oriented perpendictdahe surface. Thin black lines
are calculated lifetimes assuming a homogeneous plareafane.

The calculated LDOS modulation (plotted as predicted flsoeace lifetime normalized to lifetime in vacuum) as a func-
tion of distance is presented in Figy. for an electric dipole source positioned at the four symyngointsr = (0,0)d/2,

r = (1,0)d/2,r = (1,1)d/2, andr|| = (1,1)d/2, oriented parallel to the lattice plane alabgFig. 1a), and perpendicular
to the lattice plane along, Fig. 1b). The relative lifetimes oscillate as a function of digtarwith a periodicity of about
\/2, as encountered in typical Drexhage-type experim&f#§.2® Comparing the electric versus magnetic lattices, we note
that the oscillations in lifetime are out of phase. A similar effect was predicted by Ruppin andtMt for hypothetical
‘magnetic mirrors’, i.e., for reflection at a medium thatggetsy, = —oo, ¢ = 1, as opposed te = —oo, 1 = 1 for a normal
electric mirror. In their work, the difference is assocthteith a difference in Fresnel reflection coefficients that appears
when interchanging magnetic permeability and electrienigivity. The calculated Drexhage oscillations, and theversal

in phase with exchanging the nature of the scatterers hemderos that electric (magnetic) particle lattices act dective
electric (magnetic) reflective interfaces.

Considering the case of an electrically scattering latsoéid lines in Fig.1, we note, that for distances beyord2d, or
equivalently abou#\/3, the lifetimes at the four different positions are indisgble. Above this distance, the lattice is well
approximated as an effective homogeneous material, as assumed®'4*° To qualify this statement further, we calculated
the angle-dependefar field reflection coefficients (using equatio) @nd equation (15) in réf)). These reflection constants
can be used as input to textbook expressions for the LDOSabamogeneous interfaé&?® which for electric sources
perpendicular, respectively parallel to an interface read

PLE = glm/ 1 - rp(kH)e’Qikzd]f—”dkH

0 z

and 5 - .
. . (3

plE = ZIm/o {[1 (ke 2% 4 (1 - KR)[L + rp(kn)e_zmzd]}k—JdkH.

Herek, (k? — kﬁ)l/Q andr , represent the- andp-reflection coefficient, and integrating up kg = & accounts for all
far-field reflection effects. We find excellent agreementdistances beyond a few lattice constants. This delinehtes t
validity of using far field measurements to obtain effectivaterial parameters. Furthermore, the notion of "effecthaterial
parameter” should be read as meaning that the medium isqulintified by its far-field reflection for all angles, irrespee

of the question if these reflection constants are consistiéhtany e and.
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Figure 2. Spectral dependence of the relative lifetime of a dipoletmplaced in the plane (= 0) of an electric
isotropically scattering lattice, as a function of emissiequency and in-plane position along straight pathdastiated by
the colored arrows and the inset. a) Dipole alangarallel to the lattice. b) Dipole along perpendicular to the lattice.
Markers illustrate different positions of the emitter. Tihéerred coupling to guided modes, associated with thesgipns,
are marked on the calculated dispersion of the two modesayitiduced dipoles parallelle to the plane of the latticangl®d
and d) induced dipoles perpendicular to the lattice plane.

For closer distances than 2d, the discrete nature of the lattice is revealed in the pwsitiependence of the decay. For
all four positions, the lifetime rapidly decreases for shimcreasing distances. Naturally, very close to a scajephere we
expect a decrease associated with the near field of a singbeespT his should occur for ranges of order 50 man5j.°

For intermediate distances we identify a third effect, nignceupling to guided modes in the lattiéeTo investigate
contributions from guided modes we calculated the reldifeéime as a function of its emission frequency and in-plan
position for a parallel and perpendicular dipole positibirethe plane of an electric isotropically scattering ttipresented
in Fig. 2c)-d). Firstly, we note, that for a perpendicular (paraltBpole positioned in the plane of the lattice, all elecfiéd
components in the plane are perpendicular (parallel) tdattiee plane. Hence we expect coupling to modes with induce
dipoles being purely perpendicular (parallel) to the plabensidering the case of a parallel dipole (Fd)) we firstly notice
that close to the scattering element:aty) = (0,0), the lifetime drastically decreases owing to the? scaling of the near
field of the scatterer. Elsewhere, distinct bands of redlitstimes are resolved for frequencies different from tesanance
frequency of the individual scatterer. This indicates ttha&t source dipole couples not simply to the individual scaty
elements, rather it couples to a guided lattice mode thaeguincy dispersive. E.g. ne@r, y) = (0,d/2), marked with a
red circle, a significant reduction of the lifetime occurs lidue shifted frequencies relative to the single partieleonance
frequency ¢o). Symmetry of the lattice and the field lines of a dipole imihlgt the band arises from coupling to a longitudinal
in-plane mode (LI) where the induced dipoles are arrangadigad to head configuration aloagThis is confirmed from the
calculated dispersion of the lattice mode with induced @ipparallel taz, presented in Figga) (for details on the calculation
of the modal dispersion we refer to R&f.At pointsX = kj = (r/d,0) andM = k; = (7/d, 7/d), the mode is blueshifted
with a flat slope thus giving rise to a large LDOS. Similarlgan(z,y) = (d/2,0), marked with a triangle, a reduction is
seen to occur for red shifted frequencies correspondingtansverse in-plane mode wilh = Y = (0,7/2). In the case
of a dipole perpendicular to the lattice, (Fd)), the calculated lifetime is symmetric abdut 0) owing to the four-fold
rotational symmetry of the lattice. Two bands appear feaf/2) and(d/2,0) with one being slightly red shifted, the other
blue shifted relative to the resonance frequesagy Comparing with the calculated mode with induced dipole raprants
perpendicular to the lattice plane, shown in F2p), we conclude that the red shifted band is associated witipleg to
a transverse guided mode with the induced dipoles perpgladito the lattice, while the blue shifted resonance atieenf
coupling to a non-guided mode with wavevectors near abavbght line. Coupling to this leaky mode is only achievedsao
to the lattice, since only in the near field of a radiating d#aines it contain wave vectors parallel to its dipole momBuie to
symmetry a{1, 1)d/2, marked by+, only coupling to the blue shifted non-guided mode with saimg in-plane wavevectors
near the poink; =T' = (0,0), remains.
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Discussion and conclusion

In conclusion, we have presented a simple point dipole ntktising the array scanning method for calculating the LDOS
of an arbitrary magnetoelectric infinite 2D lattice. Thenpary motivation to tackle this problem was to assess in haw fa
analyzing a metamaterial as effectively homogeneous soreble in an actual scenario where it interacts with a ipedl
object in its near field. As example, we calculated the lifetiof a dipole in front of electric and magnetic isotropigall
scattering spheres. We found that a lattice of magnetiteseas shows characteristic oscillations of the LDOS aqatfan
of distance, shifted in phase compared to those at an @lsctitering lattice. This confirms that a metamaterial ggoear as
a magnetic mirror also in "Drexhage” experiments that atdimated to probing by a single far field incidence angle, asw
first proposed by Ruppin and Martihand Kastel and Fleischhau€rOur results reveal that for distances beyadd~ )\ /3,
the surfaces can be well approximated as an effective honoagenterface, with electric and magnetic propertiesrdikam
far field reflection constants. For somewhat shorter digsutize lifetime shows a dependence on both in-plane positidn
frequency that is due to the discrete nature of the lattiod,@upling to lattice guided modes, which is not capturedaoy
field reflection constants. At even shorter distances coatgpparto feature sizes of the scatterer, where microscopailde
matters, equation (7) of our work remains valid, however dipole approximation breaks down. Microscopically, ooeld
use a full-wave solver (FDTD, COMSOL) for every wave vectotthe integral in equation7j. In practice, however, this
leads to an impractical computational burden. As an inteliaie, and more tractable, approach we propose to imprave th
microscopic detail captured by our model by using multipleotes to describe a single scatterer, instead of usingesing
dipoles?®

These results are of fundamental interest to the questiandma probes the range of validity of effective medium pa-
rameters in near field geometries. Furthermore, our methesdellently suited for emitters with an excited state satijo
competing radiative decay pathways with electric, magneind mixed charactét3? where the calculated LDOS for the
magnetic and electric transitions may be used as coefficiarthe rate equations for the density of states of the emftie
nally, our method can be easily extended to diffractiverplasic systems, arbitrarily complex unit cetfsmultilayered unit
cells, and bi-anisotropic or hyperbolic metasurfaces.

Methods

The integrant in equatiorip) typically contains sharp features over thg-plane, so an adaptive numerical integration is
crucial. Furthermore, since

k. = /K2 — |ky|? (14)

there is a branchpoint & | = k. Since the routine method of performing the integratiornr@yginto the complex plang
would require complek-lattice sums, we avoid it. Instead we split the integratida two different domains. Fok within
the light cone we use polar coordinates

kH S {(¢,k||) ERO<Sp<T A kH < k}. (15)
Outside the light cone cartesian coordingtes k, ) are used for
{(ko, k) € RO < Ky < dlARe («/k‘z—kg) <k, gdl} (16)
1 2

were used. Rather than computing all 36 tensor elementsneetlgi calculated

3,3 e "o fre
a I ~ O » ol )
/BZ 2k m (um) G ot (K, 7, T0) (um dk (17)
where )
<= < <
Giot(ky,r,10) = G (K, T G(ky,—rg). 18
tot (K|, T, 70) (k| )82—1—3#(@,0) (kyj, —70) (18)
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Supplementary material

Sums of magneto-electric Dyadic Greens function

The sum presented in equation (5), requires special aitesince it converges poorly. The problem has been treatet-ex
sively in ref. 1 and utilizes a technique pioneered by P. Bwahe technigue consists in splitting a poorly convergant s
into two convergenttermﬁ(l) andg(g), which are exponentially convergent. Specifically, coasity the sum

yT) = mn_re- 1" 5%mn
I'(k G'(R ki R S1
where the scalar Green function is
0 eik|Rmn—r\
G (Rypp — 1) = TR — 7" (S2)
we may rewrite this as
eik\Rmn—ﬂ )
> T — efi-Rmn — P 4 PO, (S3)
Here
i(k||+gma) T - kZ . Lz
ro = %; {QT . [emﬁlﬁzerfc (2L77” + |z|77) + e malzlerfe <2Ln” — |z|n>} } (S4a)
and
k|- Rin ) ik ) ik
F(2) — Z {% . |:€7,/€Pmnerfc <pmnr,7 + ;_77> —+ e_zkpmnerfc <pmnr,7 — ;_n>:| } s (S4b)

mn

where we usea = (||, 2), k = w/c, k%; = /k2 — [k)| + 9 mil? andpmn = | Ry, — 1)||. Convergence of equatiof4h
and equation$439 follows from the asymptotic expansion of the error funetievealing: erfc(z) ~ exp(—22) for z — 00.2%
The parametey can be chosen for optimal convergence, and should be setdwoy /7 /a, wherea is the lattice constant.
Naturally, the cut off for the summation over andn must be chosen at least bigger than the number of propagatitigg
diffraction orders one expects.For our calculations onametterials, with essentially no grating orders, ik, < 27, we
already obtained converged lattice sums|farn| < 5.

The dyadic lattice sums in equation (5) are easily genetatawbting that the scalar Green function

exp (tk|r — r'|)

A
G(’l",’l" ) - |7’—7’/| (85)
sets the dyadic Green function via
<0 n_ (IK*+VeVv —ikV x ,
G(T_r)_( iwx W +vev) ) (S6)

wherel indicates the3 x 3 identity matrix and® denotes the outer product. The derivatives can be simplgguito each
exponentially convergent sum to be applied to each ternragg and are most easily implemented in practice by gdtiat
the sumI"(?) only depends on radius in spherical coordinatgs, while the sum in”(") only depends on radius and height in
cylindrical coordinates. For these coordinate systemslifferential operator in equatiors) take particularly simple forms.
For spherical coordinates this form reads

) ) 1d T TEN 1 d (1 d
(Ik* + VV)F(r) =1 |k*F(r)+ ——F(r)| + |2y y° yz|-—|-—F(r) (S7a)
rdr o | rdr |rdr
Tz Yz =z
and
0 Z =Y\ 14
—itkVxF(r)y=ik| -2z 0 =« F(r), (S7b)
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which can be directly applied to the summands in equatsagiy( For cylindrical coordinates the differential form reads

_ K- k2 —kok, 0)
(I* + V@ V)e*Pg(z) = | —koky, k*— k2 02 e mig(z)
0 0 k

0 0 ik, 000
+10 0 ik, eik"‘udg—(z)+ 0 00 eik"‘udg() (S8a)
ike ik, O dz= o 0 1
and
‘ 0 0 —kk)\ 0 ik O\ g
—ikV xe*Tig(z)=1 0 0 kk, |e®mig(z)+ | —ik 0 0 ethr) 202 (S8b)
kk, —kk, 0 0 0 0 dz

which can be directly applied to evaluate the dyadic eqaiviadf equation$49.
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