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Preface

This thesis was prepared in partial fulfilment of the requirements for the PhD
degree at the Technical University of Denmark (DTU). The work was carried
out between March 1st 2013 and February 29th 2016, in the Section for Scientific
Computing at the Department of Applied Mathematics and Computer Science,
DTU, under the supervision of Associate Professor Kim Knudsen.

The aim of the thesis is to present and document my work on inclusion detection
in electrical impedance tomography; it consists of a summary of the results
documented in both published peer-reviewed journal papers and unpublished
manuscripts (all attached in the appendix, labelled Paper A-E):

(A) H. Garde and K. Knudsen. Depth dependent bounds on distinguishability
of inclusions in electrical impedance tomography. Submitted manuscript
(2016). Available from: http://arxiv.org/abs/1602.03785

(B) H. Garde and S. Staboulis. Convergence and regularization for monotonicity-
based shape reconstruction in electrical impedance tomography. Submitted
manuscript (2016). Available from: http://arxiv.org/abs/1512.01718

(C) H. Garde. Comparison of linear and non-linear monotonicity-based shape
reconstruction using exact matrix characterizations. Submitted manuscript
(2016). Available from: http://arxiv.org/abs/1602.04053

(D) H. Garde and K. Knudsen. Sparsity prior for electrical impedance tomog-
raphy with partial data. Inverse Probl. Sci. Eng., 24 (2016), pp. 524–541.
DOI: 10.1080/17415977.2015.1047365.

http://arxiv.org/abs/1602.03785
http://arxiv.org/abs/1512.01718
http://arxiv.org/abs/1602.04053
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(E) H. Garde and K. Knudsen. 3D reconstruction for partial data electri-
cal impedance tomography using a sparsity prior. Proceedings of the
10th AIMS International Conference on Dynamical Systems, Differential
Equations and Applications, American Institute of Mathematical Science
(AIMS), November 2015, pp. 495–504. DOI: 10.3934/proc.2015.0495.

Additional unpublished results are also presented, in particular on depth-weighted
regularization, that combines the concepts of depth dependence and sparsity
regularization from two different publications.

Finally, it is remarked that the author, during his PhD studies, also has co-
authored another paper not included in this thesis:

• Y. Dong, H. Garde and P. C. Hansen. R3GMRES: including prior infor-
mation in GMRES-type methods for discrete inverse problems. Electronic
Transactions on Numerical Analysis, 42 (2014), pp. 136–146.

The above paper is also concerned with implementing prior information into
algorithms for solving inverse problems, however it deals with general linear and
finite dimensional inverse problems. It was therefore found to be thematically
too different from the other publications that focus on inclusion detection in
electrical impedance tomography.

This version of the thesis has been revised after the PhD defence. The revisions
address minor non-essential corrections and typographical errors pointed out by
the assessment committee.
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Abstract (English)

This thesis gives a threefold perspective on the inverse problem of inclusion
detection in electrical impedance tomography: depth dependence, monotonicity-
based reconstruction, and sparsity-based reconstruction.

The depth dependence is given in terms of explicit bounds on the datum norm,
which shows the change in distinguishability of inclusions (support of an inho-
mogeneity) as they are placed closer towards the measurement boundary. This
is done by determining eigenvalue bounds for differences of pseudodifferential
operators on the boundary of the domain. Ultimately, the bounds serves as in-
sight into how much noise that can be allowed in the datum before an inclusion
cannot be detected.

Themonotonicity method is a direct reconstruction method that utilizes a mono-
tonicity property of the forward problem in order to characterize the inclusions.
Here we rigorously prove that the method can be regularized against noise with
a uniform regularization parameter, and that the method can be generalized to
discrete electrode models. We give examples in 2D and 3D with noisy simulated
data as well as real measurements, and give a comparison of reconstructions
based on a non-linear and a linear formulation of the method.

Sparsity-based reconstruction is an iterative method, that through an optimiza-
tion problem with a sparsity prior, approximates the inhomogeneities. Here we
make use of prior information, that can cheaply be obtained from the monotonic-
ity method, to improve both the contrast and resolution of the reconstruction.
Numerical examples are given in both 2D and 3D for partial data using noisy
simulated data as well as real measurements.



vi



Abstract (Danish)

Denne afhandling giver et trefoldigt perspektiv på det inverse problem at de-
tektere inklusioner i elektrisk impedanstomografi: Dybdeafhængighed, monoto-
nicitetsbaseret rekonstruktion og sparsitetsbaseret rekonstruktion.

Dybdeafhængigheden er angivet i form af eksplicitte grænser på normen af data-
en, hvilket viser ændringen i distinguishability (skelnen) af inklusioner (støtten
af en inhomogenitet) når de placeres tættere og tættere på randen hvor målin-
gerne foretages. Dette gøres ved at bestemme egenværdigrænser for differenser
af pseudodifferentialoperatorer på randen af domænet. I sidste ende tjener græn-
serne som indsigt til hvor meget støj der kan tilføjes dataen, før at en inklusion
ikke længere kan detekteres.

Monotonicitetsmetoden er en direkte rekonstruktionsmetode der anvender en
monotonicitetsegenskab af forward-problemet til at karakterisere inklusionerne.
Vi giver et stringent bevis for at metoden kan regulariseres mod støj ved brug
af en uniform regulariseringsparameter, samt at metoden kan generaliseres til
diskrete elektrodemodeller. Der gives eksempler i 2D og 3D med både støjfyldte
simulerede data og med faktiske målinger, og der gives en sammenligning af
rekonstruktioner fra en ikke-lineær og en lineær formulering af metoden.

Sparse rekonstruktion er en iterativ metode, der gennem et optimeringsproblem
med en sparsitets-prior, approksimerer inhomogeniteterne. Her gør vi brug af
forhåndsviden, der billigt kan beregnes med monotonicitetsmetoden, til at for-
bedre både kontrasten og opløsningen af rekonstruktionen. Der gives numeriske
eksempler i både 2D og 3D med brug af delvis og støjfyldt randdata samt målte
data.
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Chapter 1

Introduction

Inverse problems form a field of mathematics that cover a wide range of tools
from linear algebra, PDEs, pseudodifferential operators, regularization strate-
gies and to numerical aspects such as noise models, quadrature, and efficient im-
plementation of reconstruction algorithms. Many inverse problems are related
to a practical problem based on a physical formulation, prominently for tomog-
raphy problems. Here structural information is inferred by imaging a parameter
in the interior of an object or a person, only from non-invasive and indirect mea-
surements taken at the boundary. Therefore, practical measurements are often
involved. This implies an interplay between applied mathematics and engineer-
ing in the sense that the mathematical models need to balance between model
problems with well-understood theory to, in practice, models more aligned with
real measurements that does not necessarily possess attractive properties such
as uniqueness of solutions or provable regularizing reconstruction methods. Fur-
thermore, inverse problems are often ill-posed and therefore require some form of
regularization to stably solve them. Such regularization imparts a priori knowl-
edge about the solution into the reconstruction algorithm, and it is therefore
worth considering what prior information that is appropriate for reconstruction;
firstly so that the modified problem can be solved and secondly whether that
kind of prior information is obtainable.

The particular inverse problem of interest in this thesis is the inverse problem of
electrical impedance tomography (EIT), also known as the Calderón problem in
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recognition of Calderón’s famous seminal paper [17]. The problem consists of re-
constructing the electrical conductivity in an object or person from several pairs
of electrostatic current-voltage measurements taken at surface electrodes. Appli-
cations include medical imaging, in particular monitoring patient lung function
and early detection of cancer, geophysics, and industrial tomography for instance
for non-destructive imaging of cracks in concrete [35, 1, 71, 19, 27, 67, 46, 45].
EIT is considered high-contrast as different types of soft tissues have distinct
and well-separated conductivity values, this also holds for different rock types
(shale, clay, granite, etc.) [10] which makes it a good imaging modality for the
above applications. On the other hand, EIT is very ill-posed due to the diffusive
nature of electric fields, and imaging leads to low resolution characterized by
smoothed edges and often regions that are difficult to correctly segment and
separate. The numerical results in this thesis show that when reconstructing
sufficiently small (preferably convex-shaped) inclusions it is possible to obtain
reasonably sharp edges and separation of the inclusions, if the background con-
ductivity is assumed known. This is furthermore shown for noisy data and
locally when only part of the boundary is used for measurements.

For a general inverse problem there is, of course, a corresponding forward prob-
lem. Suppose that we have two Banach spaces X and Y , where X is the parame-
ter space which should contain the parameter x that we seek to reconstruct from
the inverse problem. Y is the measurement space where we are able to measure
data y that in some way depends on the unknown x. A map F : D(F ) ⊆ X → Y
is called the forward map if it is the mathematical model that, in the case of
no modelling errors and noise, predicts what data y = F (x) that would be
measured for a parameter x. In the case of EIT x is the electrical conductivity
and y is a current-to-voltage (or voltage-to-current) pseudodifferential operator
that is determined from solving elliptic PDEs with various boundary conditions.
Another example is for instance computed tomography (CT) where x denotes
the attenuation coefficients and y are the line integrals of x through the do-
main, which in some geometries corresponds to the Radon transform or X-ray
transform of x. Typically, the forward map is a model of the physics behind
the problem, in EIT by prescribing currents and measuring voltages at surface
electrodes, and in CT by measuring intensity drops from X-rays after they have
passed through the object and recorded by a detector. In most cases the forward
problem is well-posed, meaning that F is well-defined and continuous, i.e. the
forward map F can reliably be evaluated numerically without having to worry
much about truncation errors or small perturbations to x.

The inverse problem of determining x from the measurement y, however, is
typically ill-posed meaning that either F−1 does not exist or it is discontinuous.
Mostly the existence of a solution x to the inverse problem is implied, and in
practice this makes sense as the data y must come from some parameter x.
However, for noisy data ỹ that may also be influenced by modelling errors, we
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may have that ỹ 6∈ R(F ), where R(F ) is the range of F . Therefore, we may
have to make do for some numerical approximation to a solution from the data
P (ỹ) projected onto R(F ). What remains are three important questions, that
each constitute a major field of research on their own:

(i) Uniqueness: is F injective, i.e. can we define an inverse F−1 : R(F )→ X?

(ii) Stability: is F−1 continuous, or under what assumptions on X is it con-
tinuous?

(iii) Reconstruction: is there an algorithm for evaluating F−1 or some regular-
ized approximation?

A uniqueness proof does not necessarily imply an algorithm for evaluating F−1

as it requires the proof to be constructive. For EIT constructive uniqueness
proofs only exists when regularity assumptions are applied, and the most general
uniqueness proofs are not constructive [7, 57]. In particular for partial data there
are several uniqueness proofs but in most geometries, and types of partial data,
there is no actual algorithm for reconstruction [16, 47, 48, 72, 42]. Stability, of
course, directly implies uniqueness, though similar to reconstruction it is often
necessary to have additional assumptions on the regularity of x and on the
dimension or geometry of the domain to be able to prove some form of stability.
In that case we call the stability conditional.

The ill-posedness of an inverse problem is either that there is no uniqueness, or
that there is uniqueness but no stability. The latter case holds for EIT in very
general cases, though it is possible to obtain conditional log stability [4, 5, 55]
or in the partial data case conditional log-log stability [34]. While the prob-
lem is then technically well-posed, EIT is often called severely ill-posed due to
the poor modulus of continuity from logarithmic stability. More precise would
be to call it severely ill-conditioned, as similar to inverting a matrix with very
high condition number, the inverse problem of EIT suffers from the issue that
very small noise perturbations or modelling errors can lead to very large per-
turbations in the reconstruction. It is therefore always required to utilize some
kind of regularization in order to stably reconstruct an approximation to the
solution. The purpose of using prior information, in the form of regulariza-
tion, is to put enough assumptions on the parameter space X that it becomes
small enough to reduce the ill-posedness/ill-conditioning of the inverse problem.
A few examples of such regularization are Tikhonov regularization (standard
2-norm prior), sparsity (1-norm prior), smoothing priors (requirements on dif-
ferentiability), piecewise constant priors (total variation and Perona-Malik type
regularization). For a few examples related to EIT see [43, 30, 11, 68, 10, 26].
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For reconstruction in the inverse problem of EIT there is a strange duality: all
provable regularization strategies are direct (non-iterative) reconstruction meth-
ods [50, 49, 62, 57] using so-called complex geometric optics solutions. However,
the direct reconstruction methods are often so rigid that prior information about
the solution, or the desired form of regularization, might not be applicable to
the reconstruction method. The more flexible iterative least-squares output
methods are only able to guarantee some local optimum of a cost functional,
and not necessarily the sought solution, however they tend to be more noise ro-
bust. Depending on the applied regularization the iterative methods can lead to
sharper edges, improved contrast and better separation of inclusions compared
to the counterpart of the direct reconstruction methods. As such it is difficult
to discuss what can reliably be reconstructed in EIT, and one way to somewhat
circumvent this duality is to use a direct reconstruction to get a reasonable
starting guess for an iterative method, see for instance [26].

In this thesis the focus is mostly on reconstruction in the inverse problem of EIT.
The common theme of Papers A-E is inclusion detection, a simpler problem than
the general inverse problem of EIT, where perturbations/inhomogeneities from
a known or uninteresting background conductivity are reconstructed. The thesis
is composed of a general introduction to EIT and some of its forward models,
and subsequently the thesis is split into three parts:

(i) Depth dependence, which will be a summary of paper A, on the forward
map’s dependence on inclusions, in particular on their distance to the
boundary. The subject is thematically similar to the concept of signal-to-
noise ratio, as depth dependent bounds on the so-called distinguishability
of the inclusions are determined in the unit disk geometry in 2D.

(ii) The monotonicity method, which will be a summary of papers B and C,
that focus on a direct reconstruction method that characterize the inclu-
sion (location of the perturbation/inhomogeneity) through monotonicity
properties of the forward map. Paper B generalizes the method from the
standard continuum model to more precise electrode models. It is shown
that the method can be regularized, both in terms of noise and in terms
of the change in forward model, with a regularization parameter that is
uniform with respect to the involved test balls. Both noisy simulated and
real measurement data reconstructions are given in 2D, as well as some 3D
reconstructions from simulated data. Paper C gives a comparison of two
different variations of the monotonicity method in a unit disk geometry in
2D; one linear the other non-linear, where the comparison makes use of
exact matrix characterizations of the involved operators.

(iii) Sparsity-based reconstruction, which will be a summary of papers D and
E, that will be concerned with iterative reconstruction of the actual per-
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turbation (not only its location) by the use of a sparsity prior. Here we
consider the problem of partial data EIT where measurements are taken on
a small subset of the boundary. We make use of a spatially varying regu-
larization parameter to implement prior information that, for instance, can
be cheaply obtained from the monotonicity method. Examples with noisy
simulated data are given in both 2D and 3D. Furthermore, some additional
examples not present in the papers are given from real measurements using
a depth-weighted regularization parameter.

In terms of notation, there may be discrepancies between the summary and the
papers; the reason is that I seek to have a unified notation in the thesis which is
not necessarily the case across the different papers. In particular for the forward
models there will be a different notation than in paper B. The notation there was
chosen in consensus with what is often used for direct reconstruction methods
in inclusion detection for the Neumann-to-Dirichlet map and for approximation
results using the complete electrode model. For many papers on other direct
and iterative methods the notation is consistent with this thesis. A few specific
notes on notation: for normed spaces X and Y , the space of bounded and linear
operators from X to Y is denoted L(X,Y ), with L(X) ≡ L(X,X). Furthermore
‖·‖ is the standard L2-norm, and 〈·, ·〉 is either the L2-inner product or a dual
pairing, depending on the context. For integration we use dx as the usual
Lebesgue measure, and ds as the boundary measure (whether in 2D or 3D).

All numerical examples are computed in Python, and solutions to PDEs are
found using the finite element method (FEM) with the Python library FEniCS
[54].

1.1 Electrical impedance tomography

In EIT the electrical conductivity γ is reconstructed from current-voltage mea-
surements taken at electrodes on the surface of an object, modelled by a bounded
simply connected Lipschitz domain Ω ⊂ Rd for d ≥ 2. The problem is governed
by the conductivity equation

∇ · (γ∇u) = 0 in Ω, (1.1)

where u is the electrical potential. The equation (1.1) is derived from Maxwell’s
equations under the assumption that there are no internal sources or sinks of
electricity [10].

In this thesis we assume, for simplicity, that the conductivity γ is real-valued
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and isotropic (scalar-valued) in L∞+ (Ω), where

L∞+ (Ω) ≡ {w ∈ L∞(Ω) : ess infw > 0}.

Other generalizations exists such as complex-valued admittivities and anisotropic
(matrix-valued) conductivities/admittivities. Isotropic γ is often assumed since
it can be proven that for anisotropic γ the underlying inverse problem does not
have a unique solution, there is only uniqueness up to a diffeomorphism which
is the identity on the boundary [8].

1.1.1 Forward models

Various models for EIT exists, the most prominent being the continuum model
(CM) and the complete electrode model (CEM). The CM assumes that the entire
boundary can be accessed and that a continuous boundary current or potential
can be applied. This leads to the original formulation from Calderón’s seminal
paper [17]

∇ · (γ∇u) = 0 in Ω, u|∂Ω = f on ∂Ω, (1.2)

for boundary potential f ∈ H1/2(∂Ω). Here and onwards u|∂Ω denotes the trace
operator applied to u. Standard elliptic theory gives rise to a unique solution
u ∈ H1(Ω) and thereby implies the existence of a well-defined Dirichlet-to-
Neumann (DN) operator

Λ(γ) : H1/2(∂Ω)→ H
−1/2
� (∂Ω), u|∂Ω 7→ ν · γ∇u|∂Ω.

Here ν is an outwards pointing unit normal, and

H
−1/2
� (∂Ω) ≡ {w ∈ H−1/2(∂Ω) : 〈w,1〉 = 0},

where 1 ≡ 1 on ∂Ω and 〈·, ·〉 denotes the (H−1/2, H1/2)-dual pairing. That the
current ν ·γ∇u|∂Ω is in H−1/2

� (∂Ω) is due to the total conservation of current at
the boundary, and can also be directly derived from the conductivity equation
(1.1).

Another formulation makes use of a Neumann problem where a boundary cur-
rent is applied

∇ · (γ∇u) = 0 in Ω, ν · γ∇u|∂Ω = g,

∫

∂Ω

u ds = 0, (1.3)

where g ∈ H−1/2
� (∂Ω) is the applied current pattern (up to a sign). The latter

condition in (1.3) is a grounding condition of the total electrical potential at
the boundary, and is a sufficient condition to uniquely solve (1.3), since the
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Neumann condition only gives uniqueness up to a scalar. The unique solution
to (1.3) is u ∈ H1

� (Ω), where

H
1/2
� (∂Ω) ≡

{
w ∈ H1/2(∂Ω) :

∫

∂Ω

w ds = 0

}
,

H1
� (Ω) ≡ {w ∈ H1(Ω) : w|∂Ω ∈ H1/2

� (∂Ω)}.

This gives rise to the Neumann-to-Dirichlet (ND) map

R(γ) : H
−1/2
� (∂Ω)→ H

1/2
� (∂Ω), ν · γ∇u|∂Ω 7→ u|∂Ω.

It is clear that R(γ) and Λ(γ) are each others inverses when Λ(γ) is restricted to
H

1/2
� (∂Ω). Here it should be noted that Λ(γ) generally has the non-trivial null-

space span{1}, and the aforementioned restriction to H
1/2
� (∂Ω) corresponds

to removing that null-space. In many cases, including the Papers A-C, it is
sufficient to restrict R(γ) to L2

�(∂Ω) where

L2
�(∂Ω) ≡

{
w ∈ L2(∂Ω) :

∫

∂Ω

w ds = 0

}
.

In that case R(γ) becomes a compact and self-adjoint operator in L(L2
�(∂Ω)).

The knowledge of Λ(γ) or R(γ) is equivalent to the knowledge of all possible
current-voltage measurement pairs at ∂Ω, and is the maximal obtainable datum
for EIT. Therefore, the non-linear maps γ 7→ Λ(γ) and γ 7→ R(γ) are called
forward problems for the CM. The corresponding inverse problem of EIT, when
using the CM, is to reconstruct γ given Ω and either Λ(γ) or R(γ). Virtually
all existing theory on uniqueness of the inverse problem in EIT is formulated
through the CM [64, 57, 59, 58, 7, 25].

Another model we will use is the CEM, which is a finite dimensional and discrete
electrode model. This model is often used for reconstruction from practical
measurements and is known to accurately predict current-voltage measurements
[63]. The model is formulated as

∇ · (γ∇v) = 0 in Ω, (1.4)

ν · γ∇v = 0 on ∂Ω \ ∪kj=1Ej , (1.5)

v + zjν · γ∇v = Vj on Ej , j = 1, 2, . . . , k, (1.6)∫

Ej

ν · γ∇v ds = Ij , j = 1, 2, . . . , k, (1.7)

where the Ej-sets are connected and mutually disjoint subsets of ∂Ω that model
the position of the physical electrodes. The boundary condition (1.7) is the
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total applied current Ij through electrode Ej , and (1.5) implies that there is no
current flux outside the electrodes. Finally, the condition (1.6) is the measured
boundary voltage Vj at electrode Ej , and the terms zj > 0 are the contact
impedances that model the resistive layer between object and electrode. It was
proved in [63] that for any current pattern I in the hyperplane

Ck� ≡



W ∈ Ck :

k∑

j=1

Wj = 0



 ,

there is a unique solution (v, V ) ∈ H1(Ω) ⊕ Ck�. This gives rise to the current-
to-voltage map (or measurement map), analogous to the ND map, given by

R(γ) : Ck� → Ck�, I 7→ V.

As γ is real-valued then R(γ) is self-adjoint and it can be shown [63] that R(γ)
is an Rk×k-matrix, or if represented through a real-valued basis for Ck� it is
an R(k−1)×(k−1)-matrix. I will generally suppress the dependence of the contact
impedances z for R(γ) as they are assumed to be known. The values of z can, to
some degree, be estimated through calibration, however we shall also estimate
them concurrently with the conductivity for some real measurement data in
Section 4.2.

1.1.2 Fréchet derivatives

In reconstruction, either direct or iterative, it is often necessary to evaluate the
derivative of the forward map. Consider F : U → Y with open subset U ⊂ X
for Banach spaces X and Y , then F is Fréchet differentiable at x0 ∈ U if there
exists a bounded linear map F ′(x0) : X → Y , called the Fréchet derivative of F
at x0, such that

lim
‖η‖X→0

‖F (x0) + F ′(x0)η − F (x0 + η)‖Y
‖η‖X

= 0.

Here all the forward maps considered

Λ : L∞+ (Ω)→ L(H1/2(∂Ω), H
−1/2
� (∂Ω)),

R : L∞+ (Ω)→ L(H
−1/2
� (∂Ω), H

1/2
� (∂Ω)),

R : L∞+ (Ω)→ L(Ck�),

are Fréchet differentiable everywhere. Let γ0 ∈ L∞+ (Ω), then the Fréchet deriva-
tives at γ0 are given by the following: let uf be the solution to (1.2) with
Dirichlet condition f ∈ H1/2(∂Ω), wg is the solution to (1.3) with Neumann
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condition g ∈ H
−1/2
� (∂Ω), and vI is the solution to (1.4)-(1.7) with current

pattern I ∈ Ck�, all with the conductivity γ = γ0, then for any η ∈ L∞(Ω)

〈Λ′(γ0)[η]f, f̃〉 ≡
∫

Ω

η∇uf · ∇uf̃ dx,

〈R′(γ0)[η]g, g̃〉 ≡ −
∫

Ω

η∇wg · ∇wg̃ dx,

〈R′(γ0)[η]I, Ĩ〉Ck ≡ −
∫

Ω

η∇vI · ∇vĨ dx.

In fact, the forward maps are all analytic (see for instance the appendix of Pa-
per B), however the higher derivatives are rarely used as they are very costly
to evaluate, while the above first order derivatives of the boundary operators
only depend on the interior solutions to the PDE for the conductivity γ0. Fur-
thermore, the first order derivatives hold information on the singularities in the
conductivity that can be used for reconstruction [31, 32]. Generally the n’th or-
der Fréchet derivative of the boundary operators can be written as combinations
of Fréchet derivatives up to order n− 1 of u, w, or v.

1.1.3 Partial data

When considering partial data we deal with two connected subsets ΓD and ΓN

of the boundary ∂Ω, to encompass the partial Dirichlet- and Neumann-data,
respectively. For instance with the ND map, we define the partial ND map as
the operator with the graph

{(g, f) : g ∈ H−1/2
� (∂Ω), supp g ⊆ ΓN, f = (R(γ)g)|ΓD}.

In this case we will also choose the grounding condition in (1.3) as
∫

ΓD
u ds = 0.

Uniqueness has been proven for various choices for ΓD and ΓN [16, 47, 48, 72],
in many cases involving the entire boundary with ΓD and ΓN being a slightly
overlapping partition of ∂Ω. We are in particular interested in local Cauchy data
Γ = ΓD = ΓN, i.e. where the current and voltage measurements are taken on the
same, possibly small, part of the boundary. In 2D uniqueness has been proven
generally for local Cauchy data for an arbitrarily small subset Γ [40], while in
3D uniqueness for local data has only been proven for certain geometries. For
partial data in 3D we use the unit ball geometry, for which there is uniqueness
for local data [42].
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For the CEM one might consider labelling it as partial data since measure-
ments are only taken at the discrete electrodes. This is often misleading, since
reconstructions using CEM with electrodes equidistantly placed on the whole
boundary are typically similar to the CM counterpart. However, reconstruc-
tions from partial data using the CM and for CEM with electrodes restricted
to a small subset Γ have very different characteristics in terms of how stably
γ can be reconstructed, compared to the full boundary reconstructions. In the
partial data case it is often only possible to detect/reconstruct inclusions close
to the measurement boundary from noisy measurements, see in particular Paper
D and E.

It is possible from the CEM measurement map R(γ) to construct an operator
Rh(γ) using the concept of extended electrodes, that extends the physical elec-
trodes to cover all of ∂Ω. For extended electrodes of size h then Rh(γ) gives a
linear approximation to R(γ) in terms of h [36] (we will return in more detail
to this construction in Section 3.2). Consider the example Ω = D the unit disk
in R2, and suppose that we place k electrodes of size π/k equidistantly on ∂D.
Thus, in total, half of ∂D is covered by electrodes no matter what k we choose.
Furthermore the extended electrodes will have size h = 2π/k. Thus, if we dou-
ble the number of electrodes k then h is being halved. This implies that we can
approximate the full ND map R(γ) arbitrarily well by only covering, in total,
half of the boundary with sufficiently small electrodes. The key concept here is
to think of CEM as partial data in terms of how densely the electrodes cover the
boundary, not how much of the boundary that is covered; this is tantamount
to the size h of the extended electrodes. One could consider for local data on a
set Γ (which contains all the physical electrodes) to construct the operator Rh
such that the extended electrodes only extends to Γ, and in turn approximate
the partial ND map instead.

1.2 Inclusion detection

Due to the severe ill-posedness (or ill-conditioning) of the inverse problem in
EIT, it is not always of interest to perform a full-scale reconstruction of the
conductivity γ. Instead one can consider the easier problem of reconstructing
inclusions from a known or uninteresting background conductivity γ0. Consider
the open non-empty subset D ⊂ Ω and assume that γ0 ∈ L∞+ (Ω) is known, then
we assume that the conductivity is of the form

γ = γ0 + κχD, (1.8)

where χD is a characteristic function on the sought inclusion D that we seek to
reconstruct, and κ is a perturbation on D which for instance could be in L∞+ (Ω),
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in which case we call D a positive or definite inclusion. Similarly we could have
negative inclusions by using −κ instead of κ, or even indefinite inclusions (both
positive and negative values of κ).

In Part I the review of Paper A will show depth dependent bounds on the
distinguishability for the inclusion D. This is thematically related to the signal-
to-noise ratio, and shows how much influence D has on the data Λ(γ) or R(γ)
depending on the distance of D to the boundary, and if we can expect to recon-
struct the inclusion from noisy data.

Specialized reconstruction methods exist for reconstructing (or obtaining esti-
mates) on the inclusion D in (1.8), for instance some direct methods that all
involve repeated but cheap testing of criteria, such as the factorization method
[14, 15, 53], the enclosure method [37, 38], and one-step linearization [31]. In
Part II we review one such method known as the monotonicity method that
relies on the monotonicity properties of γ 7→ R(γ), such that for any open ball
B ⊂ Ω we can characterize D by

B ⊆ D if and only if R(γ0 + βnonlinχB)−R(γ) ≥ 0

if and only if R(γ0) + βlinR′(γ0)χB −R(γ) ≥ 0,

for admissible values of βnonlin and βlin. There we summarize the results of
Papers B-C that also generalize the method to handle noisy data and electrode
models such as CEM.

Finally, in Part III we summarize Papers D-E where we not only seek to re-
construct D but instead we approximate the perturbation δγ ≡ κχD with an
iterative method. Here a sparsity assumption is used for reconstruction in both
2D and 3D with local data, and spatially varying regularization is applied to
further include prior information about the location of D, for instance obtained
through the monotonicity method. The actual reconstruction is done by itera-
tively solving an optimization problem

δγ ' argmin
δσ∈A0


1

2

K∑

k=1

‖R(γ0 + δσ)gk − fk‖2L2(Γ) +

∞∑

j=1

αj |〈δσ, ψj〉H1(Ω)|




on a convex subset A0 ⊂ H1
0 (Ω), for K pairs of Cauchy data {(gk, fk)}Kk=1 taken

on the subset Γ ⊂ ∂Ω, the spatially varying regularization parameter αj , and
the `1-sparsity term on the coefficients in an appropriate basis {ψj}∞j=1.
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Part I

Depth dependence





Chapter 2

Depth dependence in EIT

For a compact and self-adjoint Hilbert space operator F : X → X, then F has
discrete real-valued eigenvalues that can be ordered from the largest magnitude
to the smallest magnitude

|λ1| ≥ |λ2| ≥ . . .
By the min-max theorem (see e.g. [60]) the eigenvalues can be found by

|λn| = sup

{
|〈Fx, x〉X |
‖x‖2X

: x 6= 0, x ⊥ span{x1, x2, . . . , xn−1}
}
,

where x1, . . . , xn−1 are the eigenvectors to the largest n−1 eigenvalues (counting
multiplicity), and the supremum is attained for x = xn. The eigenvectors
constitute an orthonormal basis for X, so if Vn ≡ span{x1, . . . , xn−1}⊥, then we
obtain

|λn| = ‖F |Vn‖.
This gives rise to the concept of distinguishability of inclusions in EIT. Sup-
pose the unknown conductivity is of the form γ = 1 + χD, where we seek to
reconstruct D from the noisy ND map Rδ(γ) ≡ R(γ) + Eδ with additive noise
‖Eδ‖L(L2

�(∂D)) = δ. To guarantee that Rδ(γ) is not data coming from the back-
ground data R(1) that has been influenced by noise, we need

‖R(γ)−R(1)‖L(L2
�(∂Ω)) > δ.
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Therefore, the largest eigenvalue ofR(γ)−R(1) determines how much noise that
can be added to R(γ), before we can no longer determine if Rδ(γ) originates
from just the background conductivity, or if there is something else that may be
reconstructed or approximated. The eigenfunctions to the largest eigenvalues
of R(γ) − R(1) are, in this sense, the optimal choice for orthonormal current
patterns for measurements as they maximise the distinguishability.

Distinguishability in EIT was considered in [41, 18], where examples were given
for concentric ball inclusions in the unit disk D ⊂ R2. In Paper A we consider
non-concentric ball inclusions in the disk, and do not obtain the actual eigen-
values but rather lower and upper bounds on the eigenvalues that depend on
how far the inclusion is from the boundary.

2.1 Möbius transformations of the forward prob-
lem

We consider the unit disk domain D ⊂ R2 and use harmonic morphisms, trans-
formations that preserve harmonic functions (see [70, 29, 39, 51, 52, 3, 61] for
other applications in EIT), to determine the eigenvalue bounds. We identify
(x1, x2) ∈ R2 by x1 + ix2 ∈ C.

All harmonic morphisms of the disk are given by Möbius transformations, which
are uniquely given by (up to rotation)

Ma(x) =
x− a
ax− 1

, x ∈ D, (2.1)

for |a| < 1. These transformations satisfy Ma : D → D and ∂D → ∂D. The
particular choice of rotation in (2.1) implies that Ma is an involution, meaning

M−1
a = Ma.

Denoting a ≡ ρeiζ with 0 ≤ ρ < 1 and ζ ∈ R, then for any 0 < r < 1 the Möbius
transformation Ma maps the concentric ball B0,r to a ball BC,R with centre C
and radius R given by

C =
ρ(r2 − 1)

ρ2r2 − 1
eiζ , R =

r(ρ2 − 1)

ρ2r2 − 1
.

On the other hand, given C ≡ ceiζ with 0 ≤ c < 1 and ζ ∈ R, and let 0 < R <
1 − c. Then there is a unique a ∈ D such that Ma maps BC,R to a concentric
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ball B0,r satisfying

r =
1 +R2 − c2 −

√
((1−R)2 − c2)((1 +R)2 − c2)

2R
, a =

C

1−Rr .

The connection above between a concentric ball B0,r and non-concentric ball
BC,R will be used throughout, and is also illustrated in Figure 2.1. Here it
is also noted that applying Ma to B0,r gives a non-concentric ball BC,R such
that a ∈ BC,R along the same direction as the centre, but slightly closer to the
boundary.

Figure 2.1: Illustration of the action of Ma on ball inclusions in the unit disk.

To apply the Möbius transformation to the DN and ND maps we denote the
change of variables with Ma by

Maf ≡ f ◦Ma,

where either f : D→ C or f : ∂D→ C. For distributions in H−1/2(∂D) we use
the natural generalization

〈Mag, f〉 ≡ 〈g, J1/2
a Maf〉, g ∈ H−1/2(∂D), f ∈ H1/2(∂D),

where J1/2
a is the Jacobian determinant for the change of variables on ∂D

J1/2
a (eiθ) =

1− ρ2

1 + ρ2 − 2ρ cos(θ − ζ)
.

The notation used for J1/2
a is because it is the square root of the Jacobian

determinant on D.

Using the short notation

γC,R ≡ 1 +AχBC,R
, (2.2)
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where A > −1 and χBC,R
is a characteristic function on BC,R, we can write up

the DN and ND maps for a non-concentric ball inclusion by

Λ(γC,R) = Λ(Maγ0,r) = J1/2
a MaΛ(γ0,r)Ma, (2.3)

R(γC,R) = R(MaγC,R) = PMaR(γ0,r)J
1/2
a Ma, (2.4)

where P : L2(∂D)→ L2
�(∂D) is an orthogonal projection, and J1/2

a is understood
as the multiplication operator f 7→ J

1/2
a |∂Df . To better see the symmetry of

(2.3) and (2.4) one could use that Λ(γ) has the null-space span{1} to write (2.3)
as

Λ(γC,R) = J1/2
a MaΛ(γ0,r)PMa.

This is a particularly simple expression, because if we consider PMa and J
1/2
a Ma

as operators on L2
�(∂D) they are the adjoint of one another. It is furthermore

noted that γC,R and γ0,r can be interchanged in (2.3) and (2.4).

2.2 Bounds on distinguishability

While Λ(γ) is generally an unbounded operator on L2(∂D), the difference oper-
ator Λ(γC,R)−Λ(1) becomes infinitely smoothing because γC,R = 1 in a neigh-
bourhood of the boundary. In fact Λ(γC,R) − Λ(1) extends to a compact and
self-adjoint operator on L2(∂D) (see Lemma 3.2 of Paper A for more details).
When restrictingR(γ) to L2

�(∂D) the ND map is a compact self-adjoint operator
in L(L2

�(∂D)). So in either case of the DN or ND maps we can investigate the
distinguishability in terms of the eigenvalue of largest magnitude.

Now lower and upper bounds on the distinguishability can be derived from the
expressions (2.3) and (2.4), where it is recalled that ρ = |a| determines how
close BC,R is to ∂D.

Theorem 2.1 There are the following distinguishability bounds:

1− ρ
1 + ρ

≤
‖Λ(γ0,r)− Λ(1)‖L(L2(∂D))

‖Λ(γC,R)− Λ(1)‖L(L2(∂D))

≤
√

1− ρ2

1 + ρ2
,

1− ρ
1 + ρ

≤
‖R(γ0,r)−R(1)‖L(L2

�(∂D))

‖R(γC,R)−R(1)‖L(L2
�(∂D))

≤
√

1 + ρ2

1− ρ2
.

Note that as ρ → 1 we have R → 0, i.e. the non-concentric inclusion shrinks
as it is moved closer to the boundary. For the DN map it is evident that the
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coefficients of both lower and upper bounds tends to 0 as ρ → 1, which im-
plies that ‖Λ(γC,R)− Λ(1)‖L(L2(∂D)) tends to infinity. This makes sense as the
requirement for Λ(γC,R)−Λ(1) to be compact is that γC,R = 1 in a neighbour-
hood of ∂D, so as the inclusion is moved closer to ∂D the spectrum becomes
unbounded. For the upper bound of the ND map we see the opposite; here
the coefficient for the upper bound tends to infinity as ρ → 1 to counter that
‖R(γC,R)−R(1)‖L(L2

�(∂D)) → 0, since R(γ) is generally a compact operator.

Using monotonicity-properties of Λ we can obtain the following upper bound,
where the radius of the inclusion is kept fixed for |C| ≤ 1− r:

‖Λ(γ0,r)− Λ(1)‖L(L2(∂D)) ≤
√

1− ρ2

1 + ρ2
‖Λ(γC,r)− Λ(1)‖L(L2(∂D)). (2.5)

So for a fixed size inclusion the distinguishability is increasing as it is moved
closer to the boundary, as we intuitively expect.

2.2.1 Verification of bounds

To numerically verify the bounds, and to test how tight they are, matrix char-
acterizations of Λ(γC,R)−Λ(1) and R(γC,R)−R(1) are determined. The matrix
characterizations make use of bases modified from the standard Fourier basis
{fn}n∈Z for L2(∂D) given by

fn(θ) ≡ 1√
2π
einθ, θ ∈ (−π, π). (2.6)

The bases used are orthonormal in weighted inner products

〈f, g〉1/2 ≡
∫

∂D
fgJ1/2

a ds, 〈f, g〉−1/2 ≡
∫

∂D
fgJ−1/2

a ds.

These will be natural choices of inner products to make use of the known spec-
trum of Λ(γ0,r) − Λ(1) and R(γ0,r) − R(1), when using the expressions (2.3)
and (2.4).

Now the difference operators of DN and ND maps can be characterized using
the following two theorems.

Theorem 2.2 Let λ̂n be the n’th eigenvalue of Λ(γ0,r) − Λ(1). Define the
orthonormal basis {φn}n∈Z by

φn ≡Mafn, fn(θ) ≡ 1√
2π
einθ, n ∈ Z.
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Then Λ(γC,R) − Λ(1) is represented in this basis via the following tridiagonal
matrix:

Am,n ≡ 〈(Λ(γC,R)− Λ(1))φm, φn〉1/2 =





1+ρ2

1−ρ2 λ̂m, m = n,
−a

1−ρ2 λ̂m, m− n = 1,
−a

1−ρ2 λ̂m, m− n = −1,

0, else.

Theorem 2.3 Let either H(γ) ≡ R(γ) or H(γ) ≡ R(γ) − R(1). Let λ̂n be
the n’th eigenvalue of H(γ0,r), and denote by hn the n’th Fourier coefficient of
J

1/2
a given by

hn =





1 n = 0,

a|n| n > 0,

a|n| n < 0.

Define the orthonormal basis {ψn}n∈Z\{0} by

ψn ≡ J1/2
a Mafn, fn(θ) ≡ 1√

2π
einθ, n ∈ Z \ {0}.

Then H(γC,R) is represented in this basis via the following matrix:

An,m ≡ 〈H(γC,R)ψm, ψn〉−1/2 = λ̂m(hn−m − hmhn), m, n 6= 0.

The above matrices are used to efficiently and accurately evaluate the eigen-
values of Λ(γ0,r)−Λ(1) and R(γ0,r)−R(1), without errors from finite element
discretization and numerical integration. Figure 2.2 shows the bounds from
Theorem 2.1 for various choices of radii r, evaluated using the matrices from
Theorems 2.2 and 2.3.
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Figure 2.2: (a): Ratio ‖Λ(γ0,r)−Λ(1)‖/‖Λ(γC,R)−Λ(1)‖ for |a| = ρ ∈ [0, 1),
along with the bounds (dashed lines) from Theorem 2.1. (b): Ra-
tio ‖R(γ0,r)−R(1)‖/‖R(γC,R)−R(1)‖ for |a| = ρ ∈ [0, 1), along
with the upper bound (dashed line) from Theorem 2.1.

2.3 Conclusions/discussion

While the bounds in Theorem 2.1 are not optimal, they are reasonably close,
for instance for the DN maps for large inclusions, or either close to the centre
or to the boundary. While for the ND maps the upper bound is reasonable for
small inclusions. For the DN maps it is seen that for fixed radius r in (2.5) the
distinguishability is increasing the closer the inclusions is to the boundary. The
same does not follow directly for the ND map, though it can be confirmed to
also be the case through numerical examples (see the appendix of Paper A).

The distinguishability bounds can also in some sense be related to stability.
Suppose that there is a stability estimate

‖γ1 − γ2‖L∞(D) ≤ ω (‖Λ(γ1)− Λ(γ2)‖) , (2.7)

where ω : [0,∞) → [0,∞) is an increasing function satisfying limt→0 ω(t) = 0.
If such an estimate holds for the γC,R-conductivities then we obtain:

‖γC,R − 1‖L∞(D) = ‖γ0,r − 1‖L∞(D)

≤ ω (‖Λ(γ0,r)− Λ(1)‖)

≤ ω
(√

1− ρ2

1 + ρ2
‖Λ(γC,R)− Λ(1)‖

)
. (2.8)
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Thus, the stability in (2.8) is strictly better than inserting γC,R−1 directly into
(2.7), and the bound becomes tighter as ρ → 1 i.e. as the inclusion is placed
closer to the boundary. This shows the inherent depth dependence in EIT,
and why we can expect to much more stably reconstruct inclusions close to the
measurement boundary.

The bounds are only found for the 2D problem in the unit disk. One could also
consider a similar analysis on the unit ball domain in 3D. Here it should be noted
that harmonic morphisms in 3D are only translations and orthogonal transfor-
mations such as rotations and reflections in planes, and Möbius transformations
in 3D are generally not harmonic morphisms [56]. Instead one could use Kelvin
transforms, which also preserve harmonic functions and can be used to move
ball inclusions around in the unit ball (see e.g. [28]). The Kelvin transforms are
not harmonic morphisms as they are not only a change of variable, but there is
a scaling that ensures that it preserves harmonic functions. Due to the scaling a
Kelvin transform will not map a Neumann condition to a Neumann condition,
but instead to a Robin condition. So it is likely that the counterparts to (2.3)
and (2.4) in 3D will include a linear combination of both DN and ND maps for
the concentric inclusion.



Part II

Monotonicity-based shape
reconstruction





Chapter 3

The monotonicity method

Suppose that the conductivity is of the form

γ = γ0 + κχD,

where D is the unknown inclusion that we seek to reconstruct, and κ ∈ L∞+ (Ω)
is the perturbation on D from the known background conductivity γ0 ∈ L∞+ (Ω).
The monotonicity method is mainly based on the CM [32, 65, 66] with some
theory on stability of reconstructions when using the CEM [33], in the sense of
how large pixels one should use in the discretization to guarantee detection of
an inclusion. The method is formulated either using a non-linear method that
is numerically quite slow or through the faster linear formulation.

Since κ ∈ L∞+ (Ω) we call κ a positive perturbation, and as it is bounded from
below by a positive scalar, there is a singularity on ∂D in γ. By having the sin-
gularity at ∂D makes it possible to avoid regularity assumptions on κ, although
it is possible to use a more complicated variant of the method if there is no sin-
gularity when κ is piecewise continuous [32]. It should be noted that the method
can also be formulated for negative perturbations, and for perturbations with
both positive and negative values, and the following results naturally extend to
these formulations.

The contributions of Paper B comprises new regularization theory for the mono-
tonicity method and generalizations to the CEM that lead to convergence of
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reconstructions from the CEM to the CM reconstruction, when the boundary
is densely covered by electrodes. In Paper C a numerical comparison of the
non-linear and linear formulation of the monotonicity method shows that there
is essentially no difference in the reconstructions, which is quite useful in the
light that the linear method has a much lower computational complexity.

3.1 The monotonicity method for the continuum
model

The reconstructions of the monotonicity method will be based on a noisy ND-
map Rδ(γ) ≡ R(γ) + Eδ for a compact and self-adjoint noise perturbation
E ∈ L(L2

�(∂Ω)) with noise level ‖E‖L(L2
�(∂Ω)) = δ. The reconstructions with

the CM are done using either of the following non-linear and linear formulations:

Tα,δ ≡
{
B ⊆ Ω open ball : R(γ0 + βnonlinχB) + α Id−Rδ(γ) ≥ 0

}
, (3.1)

T ′α,δ ≡
{
B ⊆ Ω open ball : R(γ0) + βlinR′(γ0)χB + α Id−Rδ(γ) ≥ 0

}
, (3.2)

where α is a regularization parameter, and the inequalities are in the sense of
positive semi-definiteness. In Section 3.2 we return to admissible choices of α
that will lead to convergence when the noise level tends to zero.

The monotonicity method is based on the following monotonicity relations for
the ND map: for any γ, γ̃ ∈ L∞+ (Ω) it holds (see e.g. [32])

∫

Ω

γ̃

γ
(γ − γ̃)|∇ũ|2 dx ≤ 〈(R(γ̃)−R(γ))g, g〉 ≤

∫

Ω

(γ − γ̃)|∇ũ|2 dx, (3.3)

where g ∈ L2
�(∂Ω) is arbitrary and ũ ∈ H1

� (Ω) is the solution to (1.3) with
Neumann condition g and conductivity γ̃.

Under the assumptions that Ω has smooth boundary, γ0 is piecewise analytic,
and D ⊂ Ω, then it follows from (3.3) and theory on localized potentials [32]
that

D ⊆ ∪T0,0 ⊆ D• if 0 < βnonlin ≤ ess infκ, (3.4)

D ⊆ ∪T ′0,0 ⊆ D• if 0 < βlin ≤ ess inf
(
γ0κ

γ

)
, (3.5)

where D• has the rather technical definition

D• ≡ Ω \ ∪{U ⊆ Rd \ D open and connected : U ∩ ∂Ω 6= ∅}.
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In very general cases where |D| = |D| in terms of measure, then D• can be
interpreted as filling out the holes of D (see also Figure 3.1). In particular if D
has connected complement (no holes) then D• = D.

Figure 3.1: Illustration of an example of D (black regions on the left) and the
corresponding upper bound D• (black regions on the right).

For positive bounds βL
0 ≤ γ0 ≤ βU

0 and assuming prior knowledge of positive
bounds on the perturbation βL ≤ κ ≤ βU, then it is possible to choose admissible
β-values in (3.1) and (3.2) as

βnonlin ≡ βL, βlin ≡ βL
0 β

L

βU
0 + βU .

Thus it is typically necessary to assume both lower and upper bounds on κ
when using the linear method, while the non-linear method only requires a
lower bound.

3.1.1 Comparison of linear and non-linear reconstruction

To compare the reconstructions (3.1) and (3.2) we make use of Möbius trans-
formations in the unit disk D ⊂ R2, and a background conductivity γ0 ≡ 1 (see
Section 2.1 for notation). Thus we use Ma to relate a conductivity γ0,r to γC,R,
where similar to (2.2) the conductivities are

γC,R ≡ 1 + βχBC,R
.

The matrix characterizations from Section 2.2.1 cannot directly be used in the
monotonicity tests in (3.1) because the bases used depend on the transformation
Ma of each ball BC,R. However we need a fixed basis, the same used to represent
the datumR(γ), and here we make use of the standard Fourier basis {fn}n∈Z\{0}
for L2

�(∂D), defined in (2.6). The main idea is to find matrix representations of
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J
1/2
a Ma and PMa in the Fourier basis, which is done using a matrix Ha and

its adjoint (Ha)∗ defined in the following theorem.

Theorem 3.1 Recall that a = ρeiζ and define the matrix Ha by

(Ha)n,m ≡ 〈fm,Mafn〉, n,m ∈ Z \ {0},

then Ha has the following properties (note in particular that (iv)-(vii) explicitly
defines the entire matrix):

(i) Ha is a matrix representation of J1/2
a Ma.

(ii) (Ha)∗ is a matrix representation of PMa.

(iii) Ha is involutory, i.e. Ha = H−1
a .

(iv) (Ha)n,m = ei(m−n)ζ(Hρ)n,m, ∀n,m.

(v) Ha is centrohermitian, i.e. (Ha)n,m = (Ha)−n,−m, ∀n,m.

(vi) Ha is block diagonal with (Ha)n,m = 0 for n < 0,m > 0 and for n >
0,m < 0.

(vii) There is the following formula for n > 0,m > 0:

(Hρ)n,m =

n∑

k=max{n−m,0}
(−1)n−k

(
k +m− 1

k +m− n

)(
n

k

)
ρ2k+m−n.

The Ha-matrices are closely related to the matrix formulations in Theorems 2.2
and 2.3. In fact, Theorem 3.1 directly implies:

(i) Ha is the basis change matrix from/to orthonormal basis {J1/2
a Mafn}n∈Z\{0}

of the weighted space (L2
�(∂D), ‖·‖−1/2) to/from orthonormal basis {fn}n∈Z\{0}

of (L2
�(∂D), ‖·‖).

(ii) (Ha)∗ is the orthonormal basis change matrix from/to basis {PMafn}n∈Z\{0}
of the weighted space (L2

�(∂D), ‖·‖1/2) to/from orthonormal basis {fn}n∈Z\{0}
of (L2

�(∂D), ‖·‖).

In the same vein the Fréchet derivative for ball inclusions can be found using
the following proposition.

Proposition 3.2 Denote by A′ the matrix representation of R′(1)[χBC,R
],

i.e.
A′n,m ≡ 〈R′(1)[χBC,R

]fm, fn〉, n,m ∈ Z \ {0},
then
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(i) A′ is Hermitian, i.e. A′ = (A′)∗.

(ii) A′ is centrohermitian, i.e. A′n,m = A′−n,−m.

(iii) A′ is block diagonal with A′n,m = 0 for n < 0,m > 0 and for n > 0,m < 0.

(iv) There is the following formula for n > 0,m > 0, recalling that C = ceiζ :

A′n,m = −ei(m−n)ζ

min{n,m}−1∑

k=0

1

k + 1

(
m− 1

k

)(
n− 1

k

)
cm+n−2k−2R2k+2.

So using the expression (2.4), along with the properties of Theorem 3.1 and
Proposition 3.2 the matrix structures A of R(γC,R) and A′ of R′(1)χBC,R

are:

A =

(
J (H+

a )∗D+H+
a J 0

0 (H+
a )∗D+H+

a

)
, A′ =

(
JA′+J 0

0 A′+

)
,

where D is the diagonal matrix holding the eigenvalues of R(γ0,r), J is the
exchange matrix (zeroes in all entries except on the anti-diagonal, from bottom
left to top right, where its entries equal 1), and D+, H+

a , and A′+ are the lower
right parts of D, Ha, and A′, respectively.

Now we have representations of R(1), R′(1)χB , and R(1 + βχB) for any ball
B ⊂ Ω, and the reconstructions (3.1) and (3.2) can be compared for various
noise levels δ. A few examples are given in Figure 3.2 (see Paper C for more
noise levels).

The instability of EIT is evident, and even for noiseless data we are not able
to perfectly reconstruct D. This is because we have to use a finite N -term
approximation of A and A′, and as such we only use the operators

PNR(1)PN , PNR′(1)[χB ]PN , PNR(1 + βχB)PN ,

where PN is the orthogonal projection onto span{fn}|n|=1,2,...,N .
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Figure 3.2: Monotonicity-based reconstructions from simulated data using 32
current patterns and with a noise level of δ = 10−4 (see Paper C
for more details). The linear method is used for the top row and
the non-linear method for the bottom row. The ground truth
inclusions are outlined with a black line, with γ0 = 1 and κ = 4.
The plots show the smallest eigenvalue for each ball that gave a
positive semi-definite operator.

3.2 Generalizations to electrode models

Here we summarize the regularization and convergence results of Paper B. The
main idea is to generalize (3.1) and (3.2) to other forward models, in particular
the CEM. Thus we assume to have approximate compact self-adjoint operators
{Rh(γ)}h>0, and replace R(γ) with the approximation Rh(γ):

Tα,δ,h ≡
{
B ⊆ Ω open ball : Rh(γ0 + βnonlinχB) + α Id−Rδh(γ) ≥ 0

}
,

T ′α,δ,h ≡
{
B ⊆ Ω open ball : Rh(γ0) + βlinR′h(γ0)χB + α Id−Rδh(γ) ≥ 0

}
.

Here we assume that there is the following type of estimate

‖R(γ)−Rh(γ)‖L(L2
�(∂Ω)) ≤ ω(h)‖γ‖L∞(Ω), (3.6)

where ω : [0,∞)→ [0,∞) with limh→0 ω(h) = 0. Similarly for the linearisation
we assume

‖R′(γ)η −R′h(γ)η‖L(L2
�(∂Ω)) ≤ ω(h)‖η‖L∞(Ω)‖γ‖L∞(Ω). (3.7)
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It is worth noting that Tα,δ,0 = Tα,δ and T ′α,δ,0 = T ′α,δ, from (3.1) and (3.2). Now
we can formulate the regularization of the monotonicity method for an admissi-
ble choice of regularization parameter, where σ below denotes the spectrum of
compact and self-adjoint operators on L2

�(∂Ω).

Theorem 3.3 Let α = α(h, δ) ∈ R satisfy

(i) δ − infB∈T0,0
inf σ

(
Rh(γ0 + βnonlinχB)−Rh(γ)

)
≤ α(h, δ),

(ii) limh,δ→0 α(h, δ) = 0.

Then for any λ > 0 there exists an ελ > 0 such that

T0,0 ⊆ Tα,δ,h ⊆ Tλ,0,

for all h, δ ∈ (0, ελ].

Theorem 3.3 implies that it is possible to regularize the monotonicity method
using the same regularization parameter for all balls B ⊂ Ω. Furthermore, it
states that the reconstruction from the approximative forward model Rh(γ),
even when influenced by noise, is interlaced between two reconstructions from
the CM, both noiseless: one with no regularization and one with regularization
α = λ. So the choice of regularization parameter in Theorem 3.3 implies that
the approximative model always gives an overestimate of the inclusion D, i.e.
that the inclusion is guaranteed to be detected.

We furthermore obtain the set-theoretic limit when α(h, δ) is chosen as in The-
orem 3.3

lim
h,δ→0

Tα,δ,h = T0,0,

and as such we have convergence, from above, to the reconstruction from the
CM with no noise or regularization.

An analogous result holds for the linear method.

Theorem 3.4 Let α = α(h, δ) ∈ R satisfy

(i) δ − infB∈T ′0,0 inf σ
(
Rh(γ0) + βlinR′h(γ0)χB −Rh(γ)

)
≤ α(h, δ),

(ii) limh,δ→0 α(h, δ) = 0.

Then for any λ > 0 there exists an ελ > 0 such that

T ′0,0 ⊆ T ′α,δ,h ⊆ T ′λ,0,

for all h, δ ∈ (0, ελ].
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For the approximative operator Rh(γ) we would like to use the CEM, as it is
a precise electrode model to use for real measurements. Here the concept of
extended electrodes is applied, which was introduced in [36]. Recall the CEM
from (1.4)-(1.7), and define mutually disjoint extended electrodes {E+

j }kj=1 that
cover all of the boundary:

Ej ⊆ E+
j ⊆ ∂Ω,

k⋃

j=1

E+
j = ∂Ω, min

j=1,...,k

|Ej |
|E+
j |
≥ c, (3.8)

for a scalar c > 0 independent of the electrodes. The first two conditions in (3.8)
means, as the name implies, that the extended electrodes E+

j artificially extends
the physical electrodes to cover the whole boundary. The latter condition in
(3.8) is used in the estimates below, and implies that there must be a relation
between the size of the physical electrodes |Ej | and the number of electrodes k
in order to estimate the ND map using the CEM. That is, if we reduce the size
of |Ej | sufficiently we also need to increase the number of electrodes in order to
densely cover the boundary.

This gives rise to the extension operator Q : Rk → L2(∂Ω) and its adjoint
Q∗ : L2(∂Ω)→ Rk given by

QW ≡
k∑

j=1

Wjχ
+
j , (Q∗f)j ≡

∫

E+
j

f ds,

where χ+
j is a characteristic function on E+

j . Thus, there is the following relation
between the ND map R(γ) and the measurement map for CEM R(γ), where
the first estimate (3.9) is a restatement of the estimate in [36] and the estimate
for the linearisation (3.10) was proven in Paper B.

Theorem 3.5 Let L : L2(∂Ω)→ L2
�(∂Ω) be an orthogonal projection, and let

P : L2(∂Ω)→ Rk be defined as

(Pf)j ≡
1

|Ej |

∫

Ej

f ds.

For mutually disjoint extended electrodes {E+
j } satisfying (3.8), with maximal

diameter on ∂Ω given by h ≡ maxj diam(E+
j ), assume that there is the Poincaré

inequality-type estimate

‖(Id−QP )f‖L2(∂Ω) ≤ Ch inf
c∈R
‖f + c‖H1(∂Ω),

for all f ∈ H1(∂Ω) and constant C > 0 independent of h. If γ is C∞-smooth
near ∂Ω and η ∈ L∞(Ω) is compactly supported in Ω, we have

‖R(γ)− LQ(R(γ)− Z)Q∗‖L(L2
�(∂Ω)) ≤ Ch‖γ‖L∞(Ω), (3.9)

‖R′(γ)η − LQ(R′(γ)η)Q∗‖L(L2
�(∂Ω)) ≤ Ch‖η‖L∞(Ω)‖γ‖L∞(Ω), (3.10)
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where C > 0 is independent of γ, η, and h. Here Z ∈ Rk×k is the diagonal
matrix holding the non-zero entries Zj,j ≡ zj/|Ej |.

A simple explanation of the approximation LQ(R(γ)−Z)Q∗ applied to a current
pattern f ∈ L2

�(∂Ω), is that Q∗ takes the total current through each extended
electrode E+

j and passes it on to R(γ) that assumes it comes from the smaller
physical electrodes Ej . The contribution from the contact impedances in R(γ)
is subtracted as they are not part of the CM. The corresponding voltages are
then extended by Q to a simple function on the extended electrodes, and L
ensures that the same grounding level is used as in the CM. That the estimate
holds for h→ 0 is intuitive as simple functions are dense in L2.

Here it is straightforward to see that Rh(γ) = LQ(R(γ) − Z)Q∗ with Fréchet
derivative R′h(γ)η = LQ(R′(γ)η)Q∗ satisfies the requirements from (3.6) and
(3.7), and therefore the CEM can be used in the monotonicity method. It is
furthermore possible to use the monotonicity method directly using the mea-
surement map R(γ) instead of LQ(R(γ)−Z)Q∗, because it holds that A ≥ 0 if
and only if LQAQ∗ ≥ 0 for any A ∈ Rk×k.

Due to similar monotonicity relations to (3.3) for the CEM it is possible to
simplify the choice of regularization parameter in Theorems 3.3 and 3.4 to α ≥ δ.
The monotonicity method was implemented and tested for both 2D and 3D
reconstruction using the linear formulation with the CEM. The examples in
Figures 3.3 and 3.4 shows that the monotonicity method is numerically viable
when using the CEM. See Paper B for more details on the choice of current
patterns and discretization.

For real measurements (see Figure 3.5) a slight modification to the reconstruc-
tion was done, by not using one β-value, but instead a series of increasing
β-values and for each ball B ⊂ Ω it is counted for how many β-values it yields
a positive semi-definite operator. This approach seems to be more stable, and
rather than giving a binary reconstruction of B is inside D or B is outside D,
it shows how reliably we can expect the reconstruction to be at various points
in the domain. The modification was necessary as the method is quite sensitive
with respect to the background conductivity γ0 which was estimated from the
measurements.
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(a) (b) (c)

Figure 3.3: 2D monotonicity-based reconstruction using the CEM with 16
equidistant electrodes. The plots show the smallest eigenvalue for
the monotonicity tests that yielded a positive semi-definite opera-
tor. (a): Numerical phantom. (b): Reconstruction from noiseless
simulated data. (c): Reconstruction from noisy simulated data
with approximately 0.5% noise. See Paper B for further details.
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Figure 3.4: 3D monotonicity-based reconstruction using the CEM with 32
equidistant electrodes. (a): Electrode placement on the sphere;
electrodes marked as red are on the front side (facing the cam-
era) of the sphere and green electrodes are placed on the back of
the sphere. (b): Numerical phantom. (c): Reconstruction from
noiseless simulated data. The plot shows the smallest eigenvalue
for the monotonicity tests that yielded a positive semi-definite op-
erator.
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Figure 3.5: 2D monotonicity-based reconstruction using the CEM with 16
equidistant electrodes. The measurement equipment is the KIT4
measurement device from the University of Eastern Finland, see
Paper B for further details. Left: Measurement setup with metal
objects submerged in tap water. Right: Reconstruction based
on counting how many times a monotonicity test succeeds for in-
creasing β-values.
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3.3 Conclusions/discussion

From the comparison of the linear and non-linear monotonicity method it is no
surprise that they give similar results when no noise is added, due to (3.4) and
(3.5) where it is seen that the Fréchet derivative can be used to determine the
singularities of γ. It is however a bit surprising that the linear and non-linear
method performs equally well for noisy data, especially in light of the resolution
guarantees found in [33] that are much more pessimistic for the linear approach.
It should however be noted that the estimates found in [33] are not shown to
be optimal and are also based on the CEM and not the CM. It is very useful
that there is not much difference in using the non-linear and linear approach
since, in other geometries than the unit disk, the non-linear method is far more
computationally demanding: the non-linear method requires an evaluation of
the ND map for each ball that is used in the monotonicity tests. If the ND
map is approximated using N current patterns, it is required to solve N linear
systems of equations from the FEM discretization of (1.3) for each ball that is
tested, which depending on resolution and dimension may be several hundreds
to several thousands of monotonicity tests. However, for the linear approach it is
only needed to solve N such systems once, as solutions to (1.3) are used for both
R(γ0) and R′(γ0). Therefore, the linear monotonicity method is amongst the
fastest reconstruction methods in EIT, and compared to an iterative gradient-
based reconstruction method, the computational complexity is equivalent to one
iteration with one evaluation of the forward map and its derivative. Further-
more, it is often possible to evaluate R(γ0) and R′(γ0) beforehand, and reuse
them for several reconstructions, in which case it is possible to perform real-time
reconstructions in 3D on a regular laptop. The method is, however, less noise
robust (similar to other direct reconstruction methods) than for instance the
sparsity-based method in Part III, and is especially sensitive with regards to
inaccuracies in the background conductivity [33].

In terms of efficient implementation, if the linearisation is evaluated with respect
to the test balls so each column in the matrix representation is the linearisation
on a ball, then the matrix for the Fréchet derivative can be split into smaller
parts; one part for each core on the computer system. In that way the re-
construction can be run in parallel as the monotonicity tests are completely
independent of one another, and it is also a way to run the method on systems
without enough memory to hold the full linearisation.

While it was speculated in [32, 33] that it is possible to regularize and use the
CEM with the monotonicity method, it was not proved that a uniform regular-
ization parameter could be used nor that the reconstructions would converge as
noise and approximation errors decayed. This is the contribution from Paper B,
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and is one of few proven convergence results for reconstruction methods using
the CEM, which makes it thematically comparable to what was done with the
factorization method in [53]. It is expected that other direct reconstruction
methods can be extended to use the CEM, with convergence theory based on
the estimates in Theorem 3.5.

In [32] it was outlined how to prove the monotonicity method for the CM based
on partial data, in particular with local data. The proof of Theorems 3.3 and
3.4 can straightforwardly be adapted to use the partial ND map by changing
the estimates (3.6) and (3.7) accordingly, to estimates on L2

�(Γ) for a subset Γ ⊂
∂Ω. The author has not performed any numerical tests with the monotonicity
method for partial data, and it is subject to future research.
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Part III

Sparsity-based reconstruction





Chapter 4
Sparse reconstruction from

local Cauchy data

This chapter outlines the work in Papers D and E on sparsity-based reconstruc-
tion using the CM in 2D and 3D, where it is assumed that measurements are
only taken on a part of the boundary. The work is based on [44, 43] that ap-
plied `1-sparsity based reconstruction to EIT with full boundary data for the
CM, that was later adapted to the CEM in [23, 24].

Furthermore, a spatially varying regularization parameter is used in Papers D
and E to be able to apply prior information about the location of inhomogeneities
directly into the algorithm. Additional unpublished results will also be shown
for depth-weighted regularization using the theory from Part I, and apply it to
real measurements.

4.1 Sparse reconstruction in EIT

Here we reconstruct, or approximate, a perturbation δγ (and not only its support
as in the monotonicity method), from a known background conductivity γ0, i.e.
γ is on the form

γ = γ0 + δγ.
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For a fixed c ∈ (0, 1) we assume that γ0 ∈ H1(Ω) with c ≤ γ0 ≤ c−1, and
furthermore that the perturbation δγ is in the following convex set

A0 ≡
{
δσ ∈ H1

0 (Ω) : c ≤ γ0 + δσ ≤ c−1 a.e. in Ω
}
.

We use K real-valued current patterns for partial data measurements, meaning
Cauchy data taken on subsets ΓD and ΓN (see Section 1.1.3 for details), given
by

{
(gk, fk) : gk ∈ H−1/2

� (∂Ω), supp gk ⊆ ΓN, fk = (R(γ)gk)|ΓD

}K
k=1

.

The sparse reconstruction of δγ is formulated in terms of an optimization prob-
lem, to minimize the following Tikhonov functional on A0:

Ψ(δσ) ≡
K∑

k=1

Jk(δσ) + P (δσ), δσ ∈ A0, (4.1)

with

Jk(δσ) ≡ 1

2
‖R(γ0 + δσ)gk − fk‖2L2(ΓD), P (δσ) ≡

∞∑

j=1

αj |〈δσ, ψj〉H1(Ω)|,

where αj > 0 is the regularization parameter and {ψj}∞j=1 is an orthonormal
basis forH1

0 (Ω), chosen such that δγ is sparse in that basis i.e. well approximated
by only few basis functions. Ideally, the basis is chosen such that there exists a
finite index set I ⊂ N such that

δγ =
∑

j∈I
〈δγ, ψj〉H1(Ω)ψj .

Prior information about the sparsity of δγ can be directly included in the algo-
rithm by choosing αj significantly lower for the basis functions that are expected
to be in the expansion of δγ. In that way the basis coefficients that are expected
to be non-zero are penalized less in the optimization problem, and are allowed
to attain larger values, cf. Figure 4.1.

A local optimum of the optimization problem argminδσ∈A0
Ψ(δσ) can be ob-

tained by use of the soft thresholding map with threshold β > 0

Sβ(x) ≡ sgn(x) max{|x| − β, 0}, x ∈ R,

by iteratively evaluating (cf. [12, 13, 44, 43, 22])

δγi+1 ≡ PA0



∞∑

j=1

Ssiαj (〈δγi − siG(δγi), ψj〉H1(Ω))ψj


 , (4.2)



4.1 Sparse reconstruction in EIT 43

(a) (b) (c)

Figure 4.1: 3D sparsity-based reconstruction in the unit ball, using noisy sim-
ulated data from 35 current patterns given by spherical harmonics
and γ0 = 1. The plots show volumetric representations of the re-
constructions (a): Numerical phantom. (b): Reconstruction from
full boundary data. (c): Reconstruction from full boundary data
assuming the support of δγ is given on a 10% dilation of the true
support.

where PA0
is a projection of H1

0 (Ω) onto A0, si is a step length parameter for
the i’th iterate, and G(δγi) is a gradient of J ≡ ∑K

j=1 Jk evaluated at the i’th
iterate. The method is initialized with δγ0 ≡ 0 and a Barzilai-Borwein step size
estimate [9] is used to evaluate si.

Define the map Fg : δσ 7→ u, where u is the solution to (1.3) with Neumann
condition g and conductivity γ0 + δσ, then the Fréchet derivative J ′(δσ) can be
identified with a function, which we denote by the same symbol, given by

J ′(δσ) = −
K∑

k=1

∇Fgk(δσ) · ∇Fχ
ΓD (R(γ0+δσ)gk−fk)(δσ).

In 2D it is necessary to assume that the current patterns satisfy g ∈ Lp(∂Ω) ∩
H
−1/2
� (∂Ω) for some p > 1 to have the Fréchet derivative in terms of H1

0 (Ω).
In 3D we need p ≥ 8

5 and furthermore that c in A0 is sufficiently close to 1,
meaning that the perturbation δγ cannot be too large. The gradient G used
in (4.2) is the H1

0 (Ω)-function that through Riesz’ representation theorem gives
J ′(δσ) by

J ′(δσ)η = 〈G(δσ), η〉H1(Ω), η ∈ H1
0 (Ω),

which in practice corresponds to the solution of the homogeneous Dirichlet prob-
lem

(−∆ + 1)v = J ′(δσ) in Ω, v|∂Ω = 0 on ∂Ω. (4.3)

So for each iteration it is required to solve K + 1 elliptic PDEs to obtain the
gradient G (and possibly additional evaluations when determining the step size),
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where in the first K it is possible to reuse the factorization of the FEM system
matrix as only the boundary conditions change, and the last problem (4.3)
remains unchanged throughout the iterations.

4.1.1 Reconstructions

All reconstructions considered in Papers D and E are for local data

Γ = ΓD = ΓN.

Similar to what is done in [43, 23], a FEM basis {ψj}Nj=1 for piecewise affine
elements is used, which is a bit heuristic as it is not orthonormal in terms of the
H1(Ω)-inner product. The corresponding functional becomes

Ψ(δσ) ≡ 1

2

K∑

k=1

‖R(γ0 + δσ)gk − fk‖2L2(Γ) +

N∑

j=1

αj |δσ(xj)|, (4.4)

where {xj}Nj=1 are the mesh nodes in the FEM mesh used for reconstruction,
and {δσ(xj)}Nj=1 are the corresponding basis coefficients for δσ.

It is evident from (4.4) that including prior information via the regularization
parameter αj corresponds to knowledge about the support of perturbation δγ.
Such information can, for instance, be found using the monotonicity method
(see Part II) during the first iteration where the ND map and its derivative at
γ0 is evaluated. Thereby, the spatially varying regularization can be performed
at almost no additional computational cost.

The regularization parameter is chosen as

αj ≡ αβjµj ,

where α corresponds to a general regularization parameter, that is chosen from
assumptions on the general sparsity of δγ, and is not related to prior information
on the location of δγ. The µj-values correspond to the prior information on the
location of δγ as they are chosen as 1 where no prior information is given, and
as a smaller scalar (in the numerical examples as 10−2) where the support of δγ
is assumed. The βj-values are chosen such that the penalty term approximates
a weighted L1-norm

α

∫

Ω

µ(x)|δσ(x)| dx ' α
N∑

j=1

βjµj |δσ(xj)|, (4.5)
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where µ(xj) = µj . This makes it possible to choose α independently of how
fine the FEM discretization is. Partial data examples for noisy simulated test
problems are shown in Figure 4.2, where it is possible to reasonably reconstruct
close to the measurement boundary, and the reconstruction is much improved
when using prior knowledge about the location of the inclusions (if they are
close enough to the measurement boundary).

(a) (b) (c) (d) (e)

Figure 4.2: 2D sparsity-based reconstruction using noisy simulated partial
data from 10 trigonometric current patterns and γ0 = 1. (a): Nu-
merical phantom. (b): Reconstruction from partial data on half
of the boundary. (c): Reconstruction from partial data on half of
the boundary, assuming the support of δγ is given on a 10% di-
lation of the true support. (d): Reconstruction from partial data
on a quarter of the boundary. (e): Reconstruction from partial
data on a quarter of the boundary, assuming the support of δγ is
given on a 10% dilation of the true support.

4.2 Depth-weighted regularization

From the bounds in Part I there is an inherent depth dependence in the ND-
map. This means that there is a depth dependence in the discrepancy terms Jk
in (4.4), however we have not taken this into consideration in the penalty term P .
The idea of the regularization parameter is to balance the discrepancy and the
regularization term. This implies that if we use a fixed regularization parameter
αj = α, for all the coefficients, then the regularization is actually not uniformly
distributed on the domain due to the depth dependence in the problem. The
approximation that is found from the iterative method can therefore be affected
by having shape and positioning errors, see e.g. Figure 4.3.

Instead, similar to (4.5), we define αj ≡ αβjwj such that it approximates
a weighted L1-norm for a positive and continuous weight function satisfying
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w(xj) = wj

α

∫

Ω

w(x)|δσ(x)| dx ' α
N∑

j=1

βjwj |δσ(xj)|.

Here w(x) is not used to include prior information, but is instead a depth-
dependent weight function only depending on Ω. In light of (2.8), where limr→0 ρ =
|C|, and that it is possible to obtain conditional Lipschitz stability for piecewise
constant conductivities [6], we choose the following weight function as a kind of
pointwise estimate on the change in distinguishability

w(x) ≡
√

1 + |x|2

1− |x|2
, x ∈ D. (4.6)

It is noteworthy that (2.8) is given in terms of DN-maps. Using that estimate
is partially justified in the sense that one can obtain estimates in terms of ND-
maps using the following identity

Λ(γ1)− Λ(γ2) = Λ(γ1) (R(γ2)−R(γ1)) Λ(γ2).

(a) (b) (c)

Figure 4.3: 2D sparsity-based reconstruction using noiseless simulated data
from 10 trigonometric current patterns and γ0 = 1. (a): Numeri-
cal phantom. (b): Reconstruction without using depth-weighted
regularization. (c): Reconstruction using depth-weighted regular-
ization.

4.2.1 Reconstructions using the CEM

Sparse reconstruction is now considered for the CEM, where both perturbation
δγ and the contact impedances z are estimated. The contact impedances are of
no real interest, however it turns out that simultaneous estimation of both δγ
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and z yields better reconstructions compared to using a fixed z estimated from
the measurements. The corresponding functional for the optimization problem,
using K current-voltage measurements {(Ik, V k)}Kk=1, is then

ΨCEM(δσ, z) ≡ 1

2

K∑

k=1

‖R(γ0 + δσ, z)Ik − V k‖22 + α
∑

j=1

βjwj |δσ(xj)|.

The solution of the optimization problem is analogous to (4.2). The only change
is in the derivative J ′ where the maps F are given in terms of the CEM (1.4)-
(1.7). If we denote by JCEM the discrepancy term

JCEM(δσ) ≡ 1

2

K∑

k=1

‖R(γ0 + δσ, z)Ik − V k‖22,

and by FI : δσ 7→ v the solution to (1.4)-(1.7) with current pattern I and
conductivity γ = γ0 + δσ, then

(JCEM)′(δσ) = −
K∑

k=1

∇FIk(δσ) · ∇FR(γ0+δσ,z)Ik−V k(δσ),

see also [44, 23] for more details. In terms of the contact impedances the op-
timization is a plain projected steepest descend, where we only assume that
zj ≥ cz for a fixed scalar cz > 0 (in the examples chosen as 10−10).

Due to the estimates in Theorem 3.5 we expect that depth dependence of the CM
is also observed for the CEM, at least if there are sufficiently many electrodes.
Therefore the weight function (4.6) is used here.

The numerical examples in Figure 4.4 are done using real measurements from
the KIT4 device at the University of Eastern Finland in Kuopio, Finland (the
same equipment used for real measurements in Paper B). The geometry is a
cylindrical tank filled with tap water. The tank has a radius of 14.0 cm and
is equipped with 16 equidistantly placed electrodes of width 2.5 cm and height
7.0 cm. The measurement setup is essentially 2D, and the optimization problem
is also solved in 2D by dividing the currents by the height of the electrodes. The
measurements consist of 60 current patterns; four sets of 15 linearly independent
current patterns where each set is enough to construct the measurement map
R(γ). All of the redundant measurements are used in the reconstruction as they
may be influenced by measurement noise and calibration errors.

The background conductivity and initial contact impedances are estimated from
a measurement with the tank only filled with water, where contact impedances
and a constant conductivity are fitted to the data using a least squares fit.
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Figure 4.4: 2D sparsity-based reconstruction with depth-weighted regulariza-
tion using the CEM with 16 equidistant electrodes and 60 current
patterns. The measurement equipment is the KIT4 measurement
device from the University of Eastern Finland. Top: Measurement
setup with various metal and plastic objects submerged in water.
Bottom: Reconstructions.

4.3 Conclusions/discussion

The sparsity reconstruction is reasonably noise robust and generally able to at-
tain a high contrast and relatively high resolution (in terms of EIT), in particular
when using full boundary data with either CM or CEM. In all the 2D examples
in Paper D we only used 10 current patterns which is quite low. Compared
to the monotonicity reconstructions in Paper C where 32 current patterns are
used, the reconstruction with the sparsity assumption is still more noise robust.
While most of the noise robustness is from the choice of regularization, there is
also something to be gained from how the data is represented. For simplicity
consider the full boundary problem ΓN = ΓD = ∂Ω, then the data in the sparse
reconstruction is

{
(gk, fk) : gk ∈ H−1/2

� (∂Ω), fk = R(γ)gk

}K
k=1

,

which for an orthonormal set of current patterns is the graph of the operator

R(γ)PK , (4.7)

where PK is the orthogonal projection onto span{gk}Kk=1. For many direct
methods, including the monotonicity method, it is not possible to directly use
the graph but instead requires some finite dimensional matrix representation
A ≡ {〈R(γ)gm, gn〉}n,m=1,...K . Such a matrix is a representation of the operator

PKR(γ)PK . (4.8)
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So by simply using different representations of the measured data, which in the
infinite dimensional case are equivalent, there is a discrepancy where in (4.7) all
the measured data is used while in (4.8) parts of the voltage measurements are
thrown away in the need to use a matrix representation. For the CEM which is
already finite dimensional there is no difference between the two representations,
however using the graph still gives the flexibility to use redundant measurements
which is very useful in practice.

In terms of how fast it is possible to get a reconstruction the sparse reconstruc-
tion usually requires in the magnitude of 50 iterations to converge, and less if
additional prior information about the location of the perturbation is included.
The method’s main computational burden lies in evaluating the forward prob-
lem, which involves solving several elliptic PDEs. Solving a linear system of size
N×N requires O(N3) floating point operations, therefore the method is affected
by the curse of dimensionality in which 3D reconstructions takes significantly
longer than 2D reconstruction because of the much larger FEM system matrix
required for a 3D domain. The linear monotonicity method, however, is much
less affected by the dimension of the domain, and can therefore be quite useful
for obtaining information about the location of the perturbation δγ to speed up
the 3D reconstructions in the sparsity-based method. Further studies on this
topic is reserved for future research.

For the depth-weighted regularization a similar approach has been used in [69],
where the depth-weighting is done indirectly by changing the mesh discretization
to have larger elements near the centre of the domain. It is in this author’s
opinion that the weighting should be done through the regularization parameter,
if possible, since changing the FEM discretization to be less fine in certain
areas of the domain can affect the precision in the evaluation of the forward
problem. Having a precise solution to the forward problem is essential to obtain
a reasonable resolution with iterative methods in EIT (and for inverse problems
in general).

Finally, some observations for the general sparse reconstruction method:

(i) The reason that H1
0 (Ω)-regularity is used for δγ, rather than just L2(Ω)

with a penalty term on the coefficients 〈δγ, ψj〉L2(Ω), is that the derivative
J ′(δσ) of the discrepancy terms is not guaranteed to be in L2(Ω). In 2D
the derivative is in Lp(Ω) for some p > 1 and in 3D it is in L6/5(Ω), which
in both cases by Sobolev embedding theorems [2] implies that J ′(δσ) is in
H−1(Ω), the dual space of H1

0 (Ω). Most of the assumptions in the method
are related to the existence of a derivative for the corresponding spaces
used.

(ii) When using partial data in the sparsity reconstruction it is still assumed
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that the boundary shape ∂Ω is known. In practical measurements, for in-
stance with lung imaging, it is not guaranteed that the boundary shape is
known, and it may lead to severe modelling errors that propagate through
the solution. There are methods that simultaneously estimate the bound-
ary shape and reconstruct the conductivity (e.g. [21]) which maybe can be
adapted to sparse reconstruction.
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Abstract. The inverse problem of electrical impedance tomography is highly ill-posed, and it is
often observed that inclusions far from the boundary are difficult to reconstruct. This paper provides
rigorous results supporting the intuition. Indeed, lower and upper bounds on the distinguishability
of an inclusion are derived in terms of the data. These bounds depend explicitly on the distance of
the inclusion to the boundary, i.e. the depth of the inclusion. The results are obtained for inclusions
in a homogeneous background in the unit disk. This corresponds to determining bounds on eigen-
values for difference operators of Dirichlet-to-Neumann maps corresponding to the case of a known
homogeneous background and the case where there is an inclusion perturbation to this background.
The theoretical bounds are verified numerically using an exact characterization of the forward map
as a tridiagonal matrix depending explicitly on the size and location of the inclusion.
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1. Introduction. The goal of electrical impedance tomography (EIT) is to re-
construct the internal electrical conductivity of an object. This is done from voltage-
current boundary measurements through electrodes on the surface. The forward prob-
lem of EIT is, given the real-valued conductivity γ, to solve the conductivity equation

(1.1) ∇ · (γ∇u) = 0, in Ω,

where u models the interior electric potential and Ω ⊂ Rd is a bounded Lipschitz
domain for d ≥ 2 modelling the physical object. Depending on the choice of boundary
conditions various models for EIT arise. The simplest model is Calderón’s original
formulation of the continuum model [6] that given a boundary potential f ∈ H1/2(∂Ω)
makes use of a Dirichlet boundary condition

u|∂Ω = f on ∂Ω,

where u|∂Ω denotes the trace of u. If

γ ∈ L∞+ (Ω) ≡ {w ∈ L∞(Ω) : ess infw > 0}

standard elliptic theory for the continuum model gives a unique solution u ∈ H1(Ω).
The Dirichlet-to-Neumann (DN) map defined by Λ(γ) : u|∂Ω 7→ ν · γ∇u where ν
is a unit normal to ∂Ω, gives a relation between any applied potential f and the
corresponding current flux ν · γ∇u. Λ(γ) : H1/2(∂Ω) → H−1/2(∂Ω) is therefore the
maximal boundary datum of voltage-current measurements that can be obtained, and
the inverse problem of EIT is given Λ(γ) to reconstruct γ. Uniqueness for the inverse
problem with the continuum model is a well-studied subject [36, 27, 30, 28, 4, 14];
in this paper we focus on 2D where there is uniqueness for general conductivities in
L∞+ (Ω) if the domain is simply connected.
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The inverse problem in EIT is highly ill-posed, and under reasonable assumptions
it is only possible to obtain conditional log-type stability estimates [2, 24]. It is
worth noting that these estimates are uniform throughout the domain, and therefore
does not depend on the distance to the boundary. In spite of the global estimates,
reconstruction algorithms often produce good results close to the boundary (e.g. [11,
10, 13, 37]). Few theoretical results seem to address this depth dependence, for
instance in the linearized problem [29, 3]; the results presented in this paper will
focus on the non-linear problem.

In this paper we consider conductivities with an inclusion in a homogeneous back-
ground. Let A > −1 and let χBC,R be a characteristic function on the open ball BC,R
with centre C and radius R. For the unit disk D ≡ {x ∈ R2 : |x| < 1}, we investigate

(1.2) ‖Λ(1 +AχBC,R)− Λ(1)‖L(L2(∂D))

where L(L2(∂D)) is the space of bounded linear operators from L2(∂D) to itself.
The difference operator Λ(1 +AχBC,R)− Λ(1) is compact and self-adjoint in L2(∂D)
(cf. Lemma 3.2), so the norm in (1.2) equals the largest magnitude eigenvalue of
Λ(1 +AχBC,R)−Λ(1). Suppose we have a noisy approximation Λδ ≡ Λ(1+AχBC,R)+
Eδ with a noise level ‖Eδ‖L(L2(∂D)) = δ. If we hope to reconstruct the inclusion

BC,R from Λδ we need (1.2) to be larger than δ, to be sure that Λδ is not a noisy
measurement originating from the background conductivity γ = 1. Therefore, we call
(1.2) the distinguishability of the inclusion BC,R from the background, as it shows
how much noise that can be added to a measurement before the interior information
for the inclusion BC,R is completely lost. In [20, 7] the norm

‖R(1 +AχB0,r
)−R(1))‖L(L2

�(∂D)),

again in the sense of largest eigenvalue, was investigated in the unit disk, where R(γ)
is the Neumann-to-Dirichlet (ND) map (the inverse of Λ(γ)) and B0,r is a concentric
ball with radius r. This characterization is straightforward, as the eigenvalues of the
operator R(1+AχB0,r

)−R(1) can be found explicitly by separation of variables. The
difference in this paper is that we use balls BC,R for any centre C and radius R; here we
do not get a full characterization of (1.2) but rather explicit lower and upper bounds
in Theorem 3.4, which depend on the distance of BC,R to the boundary, i.e. the depth
of the inclusion. The bounds show that the distinguishability is decreasing with the
depth of the inclusion, and that sufficiently close to the boundary the distinguishability
can be arbitrarily high. Furthermore, the depth dependence can be formulated for
inclusions of fixed size but varying distance to the boundary (cf. Corollary 3.5).

For non-concentric ball-inclusions BC,R the spectrum of Λ(1 + AχBC,R) − Λ(1)
does not have a known explicit characterization. To relate the spectrum of the non-
concentric inclusions to the known spectrum of a concentric inclusion is done by the
use of Möbius transformations. These transformations belong to a class of harmonic
morphisms that is used widely in EIT for instance in reconstruction [15, 19, 22, 23, 1,
33], and recently for generating spatially varying meshes trying to accommodate for
the depth dependence in numerical reconstruction when using electrode models [37].

As a side remark we note that there are bounds for eigenvalues of DN maps as they
coincide with so-called Steklov eigenvalues (see e.g. [5, 9]), however for a difference
operator of two different DN maps there is no clear relation to the Steklov eigenvalue
problem.

We focus on the unit disk Ω ≡ D. This is a natural choice of domain both in
terms of depth dependence, as it is rotationally symmetric, but also in terms of the
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Riemann mapping theorem (e.g. [35]) which states that any simply connected domain
which is not all of C can be mapped conformally to the unit disk. In the rest of the
paper (x1, x2) ∈ R2 will be identified with x1 + ix2 ∈ C. Furthermore, ‖·‖ will denote
the L2(∂D)-norm and 〈·, ·〉 the corresponding inner product.

The paper is organised as follows: in Section 2 we introduce Möbius transfor-
mations in the unit disk, and the DN map for non-concentric inclusions are given in
terms of these transformations. The distinguishability bounds are derived in Theo-
rem 3.4 in Section 3. Section 4 gives an exact tridiagonal matrix representation of the
non-concentric DN maps to accurately and efficiently validate the bounds numerically
and demonstrate their tightness. Finally, we conclude in Section 5.

In Appendix B similar results regarding bounds on distinguishability and exact
matrix characterization for the Neumann-to-Dirichlet (ND) map are given. While the
actual bounds for the ND map are fundamentally different from the DN counterparts,
they are placed in the appendix due to the nature of the proofs being very similar to
the proofs for the DN map. Furthermore, in particular the lower bound for the ND
map is not as sharp as for the DN map.

2. Möbius transformation of the Dirichlet-to-Neumann map. In this
section we will relate the DN map of a non-concentric ball inclusion to a DN map for
a concentric ball inclusion by the use of Möbius transformations. This relation will in
Section 3 be used to obtain bounds on the distinguishability.

2.1. Möbius transformations in the unit disk. Möbius transformations are
known to preserve harmonic functions in 2D, which makes them harmonic morphisms.
On the unit disk D the harmonic morphisms are uniquely (up to rotation) given by

(2.1) Ma(x) =
x− a
ax− 1

, x ∈ D,

for |a| < 1 [35]. The transformations in (2.1) are special cases of Möbius transfor-
mations, where Ma : D → D and ∂D → ∂D. The particular choice of rotation in
(2.1) implies that Ma is an involution, i.e. M−1

a = Ma. Furthermore, for any ball
BC,R ⊂ D with centre C and radius R < 1−|C| there exists a unique a ∈ D such that
Ma(BC,R) = B0,r for some r ≥ R.

Let a ≡ ρeiζ with 0 ≤ ρ < 1 and ζ ∈ R. Then we can straightforwardly relate
the Möbius transformation anywhere in the disk to the transformation along the real
line by the following rotations

(2.2) Mρeiζ (x) = eiζMρ(e
−iζx).

This is a useful property that often reduces proofs including Ma to the simpler form
Mρ.

The characterization below of how Ma can be used to move ball inclusions in D
while preserving harmonic functions is well-known (cf. [15, 37]). The proof is short
and given for completeness for the particular choice of transformation in (2.1).

Proposition 2.1.
(i) Let a ≡ ρeiζ with 0 ≤ ρ < 1 and ζ ∈ R, and let 0 < r < 1. Then Ma maps

B0,r to BC,R with

C =
ρ(r2 − 1)

ρ2r2 − 1
eiζ , R =

r(ρ2 − 1)

ρ2r2 − 1
.
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(ii) Let C ≡ ceiζ with 0 ≤ c < 1 and ζ ∈ R, and let 0 < R < 1 − c. Then the
unique a ∈ D such that Ma maps BC,R to a concentric ball B0,r satisfies

(2.3) r =
1 +R2 − c2 −

√
((1−R)2 − c2)((1 +R)2 − c2)

2R
, a =

C

1−Rr .

Proof. For (i) we first consider the case ζ = 0 so a = ρ. From (2.1) it is seen that
Mρ is symmetric about the real axis so the centre of Mρ(B0,r) lies on the real axis.
Furthermore, the mapping of Mρ(r) and Mρ(−r) gives the following real points on
∂Mρ(B0,r):

Mρ(r) =
r − ρ
ρr − 1

, Mρ(−r) =
r + ρ

ρr + 1
,

where Mρ(−r) > Mρ(r) for all ρ < 1. Thus centre c and radius R of Mρ(B0,r) can be
found as

c =
Mρ(−r) +Mρ(r)

2
=
ρ(r2 − 1)

ρ2r2 − 1
,(2.4)

R = Mρ(−r)− c =
r(ρ2 − 1)

ρ2r2 − 1
.(2.5)

Now in the case ζ 6= 0 we note that Ma(B0,r) = eiζMρ(B0,r) due to (2.2) and that
B0,r is rotationally symmetric. So C = ceiζ which yields the desired result.

For (ii) we solve (2.4) and (2.5) with respect to r and ρ, which for h ≡ 1+R2− c2
gives

r =
h−
√
h2 − 4R2

2R
, ρ =

c

1−Rr .

By using that a = ρeiζ and expanding the terms in r gives the expressions in (2.3).
Note from Proposition 2.1 that Ma maps the origin O to a in the same direction

as C, but a little further towards the boundary as illustrated in Figure 1. However,
we will always have that a ∈ BC,R since c < 1−R and r < 1 implies

|a− C| = ρ− c =
c

1−Rr − c =
cr

1−RrR <
(1−R)r

1−Rr R ≤ R.

Thus there is in (2.3) the asymptotic limit

lim
r→0

a = lim
R→0

a = C.

Writing Ma(x) = V1(x)+ iV2(x) for real valued V1 and V2, and similarly x = x1 +
ix2, then as Ma is holomorphic on D the Cauchy-Riemann equations hold

∂
∂x1

V1 = ∂
∂x2

V2,
∂
∂x2

V1 = − ∂
∂x1

V2,

so the Jacobian determinant of Ma becomes:

(2.6) Ja(x) =
(

∂
∂x1

V1

)2

+
(

∂
∂x1

V2

)2

= | ∂∂x1
Ma|2 =

(
1− |a|2
|ax− 1|2

)2

.

Ja is the Jacobian determinant for the transformation on the whole domain D, but for
the purposes of transforming the boundary operator Λ(γ) it is necessary to determine
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Fig. 1: Illustration of the action of Ma on ball inclusions in the unit disk D using the
notation in Proposition 2.1.

the corresponding transformation on the boundary, i.e. determining the tangential and
normal part to the Jacobian matrix on ∂D. Denote for x ∈ D the polar coordinates
x = βeiθ and Ma(x) = BeiΘ. We have the following relations on ∂D:

∂B

∂θ
|∂D =

∂Θ

∂β
|∂D = 0,

∂B

∂β
|∂D =

∂Θ

∂θ
|∂D = J1/2

a |∂D =
1− ρ2

1 + ρ2 − 2ρ cos(θ − ζ)
.(2.7)

Deriving the terms in (2.7) involves straightforward computations using that Ma

maps ∂D to itself, along with the following identities which are a consequence of the
Cauchy-Riemann equations and (2.2)

Re(∂Ma

∂β )Ma − ∂Ma

∂β Re(Ma) = 0, on ∂D,

Im(∂Ma

∂β )Ma − ∂Ma

∂β Im(Ma) = 0, on ∂D.

2.2. Transformation of the DN map. In this section we will write up the
DN map for the problem transformed by Ma for disk perturbations. Denote γC,R ≡
1 + AχBC,R for A > −1 where χBC,R is a characteristic function over the open ball
BC,R with centre C and radius R. Furthermore, the notation in Proposition 2.1 will
be used throughout, relating a and r to C and R. The background conductivity of
1 is merely for ease of presentation, and can easily be changed to another (constant)
background using the identity

Λ(cγ) = cΛ(γ), c > 0.

By Ma we denote the operator applying the transformation Maf ≡ f ◦ Ma,

where either f : D → C or f : ∂D → C. Furthermore, we will use the notation J
1/2
a

both for the square root of (2.6) and for the multiplication operator f 7→ J
1/2
a |∂Df ,

indiscriminately. Before investigating the DN map we list a few basic properties.
Proposition 2.2.

(i) Ma(H1/2(∂D)) = H1/2(∂D) and Ma(L2(∂D)) = L2(∂D).

(ii) Ma and J
1/2
a Ma are involutions, i.e. their own inverse.

(iii) J
1/2
a Ma =MaJ

−1/2
a and J

−1/2
a Ma =MaJ

1/2
a .
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(iv) Ma
∗ = J

1/2
a Ma in L2(∂D).

(v) J
1/2
a is on ∂D bounded from below and above by positive constants:

1− ρ
1 + ρ

≤ J1/2
a ≤ 1 + ρ

1− ρ .

Proof. (iii) is a consequence of the inverse function theorem. For (ii) Ma is an
involution since Ma is an involution, and from (iii)

J1/2
a MaJ

1/2
a Ma =MaJ

−1/2
a J1/2

a Ma = Id .

(iv) follows since M−1
a = Ma and J

1/2
a is real-valued and is the Jacobian determinant

for the boundary integral. For (v) we have

inf
θ∈(−π,π)

J1/2
a (eiθ) = inf

θ∈(−π,π)

1− ρ2

|1− ρei(θ−ζ)|2 =
1− ρ2

(1 + ρ)2
=

1− ρ
1 + ρ

,

sup
θ∈(−π,π)

J1/2
a (eiθ) = sup

θ∈(−π,π)

1− ρ2

|1− ρei(θ−ζ)|2 =
1− ρ2

(1− ρ)2
=

1 + ρ

1− ρ .

That Ma is smooth and J
1/2
a bounded from below and above by positive constants

implies that Ma(H1/2(∂D)) ⊆ H1/2(∂D), and Ma being an involution implies the
opposite inclusion H1/2(∂D) ⊆ Ma(H1/2(∂D)). The same argument is used to show
that Ma(L2(∂D)) = L2(∂D).

Applying Ma to a distribution in H−1/2(∂D) is done as a generalization of the
change of variables through the dual pairing

〈Mag, f〉 ≡ 〈g, J1/2
a Maf〉, g ∈ H−1/2(∂D), f ∈ H1/2(∂D).

Now we can write up the DN maps for an inclusion transformed with Ma.
Lemma 2.3. There is the following relation between the DN map for the concen-

tric problem and the DN map for the non-concentric problem:

(2.8) Λ(γC,R) = Λ(Ma(γ0,r)) = J1/2
a MaΛ(γ0,r)Ma,

and similarly

Λ(γ0,r) = Λ(Ma(γC,R)) = J1/2
a MaΛ(γC,R)Ma.

Proof. For brevity let w̃ be a shorthand notation for Maw where w is either
a function on ∂D or on D. Let u be the solution to (1.1) with conductivity γ0,r

and Dirichlet condition u|∂D = f . Denote the corresponding Neumann condition
g ≡ Λ(γ0,r)f = ν ·∇u|∂D. Furthermore, let u1 ≡ u in B0,r and u2 ≡ u in D\B0,r. Then
as γ0,r = 1+AχB0,r

and γC,R = 1+AχBC,R we can write up (1.1), along with Dirichlet-
and Neumann-conditions as the following system, alongside with the corresponding
transformed problem. This gives the following two transmission problems:

∆u1 = 0 in B0,r

∆u2 = 0 in D \B0,r

u1 = u2 on ∂B0,r

(1 +A)η · ∇u1 = η · ∇u2 on ∂B0,r

u2 = f on ∂D
ν · ∇u2 = g on ∂D

∆ũ1 = 0 in BC,R

∆ũ2 = 0 in D \BC,R
ũ1 = ũ2 on ∂BC,R

(1 +A)η · ∇ũ1 = η · ∇ũ2 on ∂BC,R

ũ2 = f̃ on ∂D

ν · ∇ũ2 = J1/2
a g̃ on ∂D
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Some notational abuse was used as η is both unit normal to ∂B0,r and to ∂BC,R
in the transformed problem. The Laplace-Beltrami operator is preserved as Ma is a
harmonic morphism, and the Dirichlet conditions simply apply the change of variable.
The only real change occurs in the derivatives, which on the boundary ∂BC,R cancels

out as Ja is non-zero, and on the outer boundary ∂D gives J
−1/2
a ν · ∇ũ2 from (2.7)

and the property MaJ
1/2
a = J

−1/2
a Ma.

Thus we have

Λ(γC,R)f̃ = J1/2
a Mag = J1/2

a MaΛ(γ0,r)f = J1/2
a MaΛ(γ0,r)Maf̃ , ∀f̃ ∈ H1/2(∂D).

One can interchange γ0,r and γC,R above by Proposition 2.2 since Ma and J
1/2
a Ma

are involutions.

3. Depth dependent bounds on distinguishability of inclusions. In this
section we determine lower and upper bounds for the distinguishability of Λ(γC,R)−
Λ(1), in terms of its largest eigenvalue. The bounds are given in Theorem 3.4.

The spectrum of Λ(γ0,r) is given below and is derived from a straightforward
application of separation of variables, cf. [26, chapter 12.5.1]. Since the eigenfunctions
of Λ(γ0,r) and Λ(1) are identical, the eigenvalues of the difference operator Λ(γ0,r)−
Λ(1) is just the difference of the eigenvalues for the two respective operators. This
simplification of course only holds if the eigenfunctions are identical, i.e. it will not
be the case for the non-concentric problem.

Proposition 3.1. For γ0,r ≡ 1 + AχB0,r with 0 < r < 1 and A > −1, the
eigenfunctions of Λ(γ0,r) are fn(θ) ≡ 1√

2π
einθ, n ∈ Z. The corresponding eigenvalues

are

λn ≡
2 +A(1 + r2|n|)

2 +A(1− r2|n|)
|n|, n ∈ Z.

The eigenvalues for the difference operator Λ(γ0,r)− Λ(1) are

(3.1) λn ≡
2Ar2|n|

2 +A(1− r2|n|)
|n|, n ∈ Z.

Remark 1. The eigenvalues in (3.1) are not necessarily monotonously decay-
ing in |n|. This depends on the values of A and r. This is unlike the Neumann-
to-Dirichlet operators for which the eigenvalues have monotonous decay as seen in
Proposition B.1.

Λ(γ) is an unbounded operator on L2(∂D) for any γ ∈ L∞+ (D), however the
difference Λ(γC,R) − Λ(1) is infinitely smoothing as γC,R = 1 in a neighbourhood
of ∂D (see e.g. [8, Lemma 3.1]). In fact Λ(γC,R) − Λ(1) extends continuously to a
compact and self-adjoint operator on all of L2(∂D), and it is for this extension that
we determine distinguishability bounds. In lack of a proper reference to such a result
we give the proof below for our specific scenario.

Lemma 3.2. For each centre C and radius R such that BC,R ⊂ D, the oper-
ator Λ(γC,R) − Λ(1) continuously extends to a compact and self-adjoint operator in
L(L2(∂D)).

Proof. The eigenfunctions in Proposition 3.1 comprises the orthonormal Fourier
basis {fn}n∈Z for L2(∂D). Using that Λ(γ0,r) and Λ(1) are symmetric operators w.r.t.
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the L2(∂D)-inner product, implies that the difference operator Λ(γ0,r)− Λ(1) can be
written as below, where λn denotes the eigenvalues in (3.1):

(3.2) (Λ(γ0,r)− Λ(1))f =
∑

n∈Z
λn〈f, fn〉fn, f ∈ H1/2(∂D).

Since supn∈Z|λn| < ∞ then (3.2) implies that Λ(γ0,r) − Λ(1) is bounded in terms of
the L2(∂D)-norm:

‖(Λ(γ0,r)− Λ(1))f‖L2(∂D) ≤ sup
n∈Z
|λn|‖f‖L2(∂D), f ∈ H1/2(∂D),

i.e. using the formula in (3.2) the operator Λ(γ0,r) − Λ(1) continuously extends to a
self-adjoint operator in L(L2(∂D)).

Note that |λn| ≤ 2|A||n|r2|n| → 0 for n → ∞ implies that the extension is
compact. This follows as Λ(γ0,r) − Λ(1) is the limit of the finite rank operators
PN (Λ(γ0,r)− Λ(1)), where PN is the orthogonal projection onto span{fn}|n|≤N ,

‖(PN − Id)(Λ(γ0,r)− Λ(1))‖2L(L2(∂D)) = sup
f∈L2(∂D)\{0}

1

‖f‖2
∑

|n|>N
|λn|2|〈f, fn〉|2

≤ sup
|n|>N

|λn|2 → 0 for N →∞.

SinceMa and J
1/2
a Ma belong to L(L2(∂D)) implies that through (2.8) then Λ(γC,R)−

Λ(1) extends to a compact and self-adjoint operator in L(L2(∂D)), for any centre C
and radius R.

For brevity we will denote by ‖·‖ the operator norm on L(L2(∂D)), and it should
be straightforward to distinguish it from the L2(∂D)-norm from the context it is used.
It is well known from the spectral theorem that the operator norm of a compact and
self-adjoint Hilbert space operator equals the largest magnitude eigenvalue of the
operator, and is furthermore given by

‖Λ(γC,R)− Λ(1)‖ = sup
f∈L2(∂D)\{0}

‖(Λ(γC,R)− Λ(1))f‖
‖f‖

= sup
f∈L2(∂D)\{0}

|〈(Λ(γC,R)− Λ(1))f, f〉|
‖f‖2 .(3.3)

Thus in reality the distinguishability is related to a choice of boundary condition
(here Dirichlet condition). Choosing the eigenfunction f1 to the largest magnitude
eigenvalue λ1 of Λ(γC,R) − Λ(1) maximises the expression in (3.3). The min-max
theorem (see e.g. [32]) furthermore states that in the orthogonal complement to f1,
the maximising function is f2, the eigenfunction to the second largest eigenvalue λ2.
Continuing the procedure gives an orthonormal set of boundary conditions that in
each orthogonal direction maximises the difference (Λ(γC,R)− Λ(1))f .

Suppose that we instead have a noisy approximation Λδ ≡ Λ(γC,R) + Eδ with
noise level ‖Eδ‖ = δ. If we hope to be able to recover the inclusion BC,R from Λδ

then we need ‖Λ(γC,R) − Λ(1)‖ > δ in order to distinguish that the data Λδ does
not come from the background conductivity γ = 1, and that there is an inclusion
to reconstruct. The distinguishability is therefore a measure of how much noise that
can be added before the structural information is completely lost. In particular the
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magnitude of the eigenvalues for Λ(γC,R) − Λ(1) shows whether the corresponding
eigenfunctions are able to contribute any distinguishability for a given noise level.

Even though the eigenvalues for the concentric problem are known, this does not
imply that Lemma 2.3 directly gives the spectrum of the non-concentric problem. As
seen below, an eigenfunction f of Λ(γ0,r) does not yield an eigenfunction Maf of

Λ(γC,R) but is instead an eigenfunction of the operator scaled by J
−1/2
a .

Corollary 3.3. (λ, f) is an eigenpair of Λ(γ0,r) if and only if (λ,Maf) is an

eigenpair of J
−1/2
a Λ(γC,R).

Proof. From Lemma 2.3 we have:

(3.4) J−1/2
a Λ(γC,R)Maf =MaΛ(γ0,r)f.

If (λ, f) is an eigenpair of Λ(γ0,r) then (3.4) gives J
−1/2
a Λ(γC,R)Maf = λMaf .

On the other hand, if (λ,Maf) is an eigenpair of J
−1/2
a Λ(γC,R) then (3.4) gives

MaΛ(γ0,r)f = λMaf and as M−1
a =Ma then (λ, f) is an eigenpair of Λ(γ0,r).

To the authors’ knowledge there is not a known closed-form expression for either
eigenvalues or eigenfunctions of the non-concentric problem. However, it is possible
to obtain explicit bounds, and for these bounds we will make use of certain weighted
norms.

Since J
1/2
a is real-valued and bounded as in Proposition 2.2 gives rise to other

weighted norms and inner products on L2(∂D), namely

〈f, g〉1/2 ≡
∫

∂D
fgJ1/2

a ds, ‖f‖1/2 ≡
√
〈f, f〉1/2,(3.5)

〈f, g〉−1/2 ≡
∫

∂D
fgJ−1/2

a ds, ‖f‖−1/2 ≡
√
〈f, f〉−1/2.(3.6)

It is clear from Proposition 2.2(v) that these weighted norms are equivalent to the
usual L2(∂D)-norm:

(3.7)

√
1− ρ
1 + ρ

‖f‖ ≤ ‖f‖±1/2 ≤
√

1 + ρ

1− ρ‖f‖, f ∈ L
2(∂D).

The weighted norms are used below in Theorem 3.4 for determining bounds on the dis-
tinguishability. The weighted inner products will turn out to be a natural choice when
determining an exact matrix representation for Λ(γC,R)−Λ(1), as seen in Section 4.

Theorem 3.4. Let γ be either γ0,r or γC,R. From the weighted norms (3.5) and
(3.6) we obtain

(3.8) ‖Λ(γ)− Λ(1)‖ = sup
f∈L2(∂D)\{0}

‖(Λ(Maγ)− Λ(1))f‖−1/2

‖f‖1/2
.

Furthermore the following bounds hold

(3.9)
1− ρ
1 + ρ

‖Λ(γC,R)− Λ(1)‖ ≤ ‖Λ(γ0,r)− Λ(1)‖ ≤
√

1− ρ2

1 + ρ2
‖Λ(γC,R)− Λ(1)‖.

Proof. By Lemma 2.3

‖Λ(γ)− Λ(1)‖2 = ‖J1/2
a Ma(Λ(Maγ)− Λ(1))Ma‖2

= sup
f∈L2(∂D)\{0}

‖J1/2
a Ma(Λ(Maγ)− Λ(1))Maf‖2

‖f‖2 .
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Now applying the change of variables with Ma in both numerator and denominator,

and using that J
1/2
a is the Jacobian determinant in the boundary integral along with

Proposition 2.2(iii), yields

‖Λ(γ)− Λ(1)‖2 = sup
f∈L2(∂D)\{0}

∫
∂D JaMa|(Λ(Maγ)− Λ(1))Maf |2 ds∫

∂D|f |2 ds

= sup
f∈L2(∂D)\{0}

∫
∂D J

−1/2
a |(Λ(Maγ)− Λ(1))Maf |2 ds∫

∂D J
1/2
a |Maf |2 ds

.

Finally, it is applied that Maf can be substituted by f in the supremum since
Ma(L2(∂D)) = L2(∂D) and Maf = 0⇔ f = 0

‖Λ(γ)− Λ(1)‖2 = sup
f∈L2(∂D)\{0}

∫
∂D J

−1/2
a |(Λ(Maγ)− Λ(1))f |2 ds

∫
∂D J

1/2
a |f |2 ds

,

which is the expression in (3.8).
Let f1 be the eigenfunction of Λ(γC,R)−Λ(1) corresponding to the largest eigen-

value λ1, and similarly let f̂1 be the eigenfunction of Λ(γ0,r)−Λ(1) corresponding to

the largest eigenvalue λ̂1, then

|λ̂1| = ‖Λ(γ0,r)− Λ(1)‖ ≥ ‖(Λ(γC,R)− Λ(1))f1‖−1/2

‖f1‖1/2
= |λ1|

‖f1‖−1/2

‖f1‖1/2
.

Now utilizing the norm equivalence in (3.7)

|λ̂1| ≥ |λ1|
‖f1‖−1/2

‖f1‖1/2
≥ |λ1|

√
1−ρ
1+ρ‖f1‖

√
1+ρ
1−ρ‖f1‖

=
1− ρ
1 + ρ

|λ1|,

which is the lower bound in (3.9). The same can be done by interchanging γ0,r and
γC,R

|λ1| = ‖Λ(γC,R)− Λ(1)‖ ≥ ‖(Λ(γ0,r)− Λ(1))f̂1‖−1/2

‖f̂1‖1/2
= |λ̂1|

‖f̂1‖−1/2

‖f̂1‖1/2
.

Since γ0,r is concentric, then f̂1 may be chosen as a complex exponential by Proposi-

tion 3.1 i.e. |f̂1| = 1

(3.10) |λ̂1| ≤ |λ1|

√√√√
∫
∂D J

1/2
a ds

∫
∂D J

−1/2
a ds

.

Here
∫
∂D J

1/2
a ds =

∫
∂D 1 ds = 2π as J

1/2
a is the Jacobian determinant in the boundary

integral. By (2.7)

(3.11)

∫

∂D
J−1/2
a dx =

1

1− ρ2

∫ 2π

0

[
1 + ρ2 − 2ρ cos(θ − ζ)

]
dθ = 2π

1 + ρ2

1− ρ2
,

which combined with (3.10) gives the upper bound in (3.9)

|λ̂1| ≤ |λ1|
√

1− ρ2

1 + ρ2
.



DEPTH DEPENDENT BOUNDS ON DISTINGUISHABILITY OF INCLUSIONS IN EIT 11

In the bounds in Theorem 3.4 it is worth noting that both lower and upper bound
tends to zero as ρ tends to 1. When ρ approaches 1, BC,R approaches ∂D, and the
largest eigenvalue of Λ(γC,R)−Λ(1) tends to infinity corresponding to Λ(γC,R)−Λ(1)
diverging in L(L2(∂D)).

Since the constant in the upper bound in (3.9) is smaller than 1 for any 0 ≤ ρ < 1
implies that ‖Λ(γ0,r)−Λ(1)‖ ≤ ‖Λ(γC,R)−Λ(1)‖ for any a ∈ D. This means that the
distinguishability increases as the inclusion is moved closer to the boundary. However
it does so even though BC,R is decreasing in size as limρ→1R = 0. So no matter what
the size of B0,r is, it is always possible to construct another arbitrarily small inclusion
BC,R sufficiently close to the boundary ∂D such that Λ(γC,R) is easier to distinguish
from Λ(1) than Λ(γ0,r) is, in the presence of noise. In other words, given a noisy
measurement we can expect to more stably reconstruct smaller structures of γ near
the boundary than larger structures deeper in the domain.

Combining (3.9) with Corollary A.2 in Appendix A directly gives the following
upper bound on the distinguishability when then size of the inclusion is fixed.

Corollary 3.5. For |C| ≤ 1− r the following bounds hold

‖Λ(γ0,r)− Λ(1)‖ ≤
√

1− ρ2

1 + ρ2
‖Λ(γC,R)− Λ(1)‖ ≤

√
1− ρ2

1 + ρ2
‖Λ(γC,r)− Λ(1)‖.

4. Comparison of bounds on the dinstinguishability. In this section the
bounds from Theorem 3.4 are investigated and verified numerically, to see how tight
the bounds are for inclusions of various sizes. Here it is important to determine eigen-
values of the non-concentric problem Λ(γC,R) − Λ(1) accurately. Therefore, we will
avoid numerical solution of f 7→ Λ(γC,R)f as well as numerical integration, as inte-
gration of high frequent trigonometric-like functions requires many sampling points
for a usual Gauss-Legendre quadrature rule to be accurate. Instead we will use an
orthonormal basis {φn}n∈Z in terms of the inner product 〈·, ·〉1/2 from (3.5), and
determine the coefficients

An,m ≡ 〈(Λ(γC,R)− Λ(1))φm, φn〉1/2

exactly, based on the known spectrum of the concentric problem Λ(γ0,r)−Λ(1) and the
transformation Ma that takes B0,r to BC,R. As the basis is orthonormal the infinite
dimensional matrix A is then a matrix representation of Λ(γC,R) − Λ(1). This is
understood in the sense that for f ∈ H1/2(∂D) where we write f =

∑
m∈Z vmφm with

the coefficients vm ≡ 〈f, φm〉1/2 collected in a sequence v, then the n’th component
of Av is by linearity of Λ(γC,R)− Λ(1) and the inner product given by

(Av)n =
∑

m∈Z
〈f, φm〉1/2〈(Λ(γC,R)− Λ(1))φm, φn〉1/2

= 〈(Λ(γC,R)− Λ(1))f, φn〉1/2.

Thus A maps the basis coefficients for f to the corresponding basis coefficients of
(Λ(γC,R) − Λ(1))f . Furthermore, A has the same eigenvalues as Λ(γC,R) − Λ(1),
and the eigenvectors of A comprises the basis coefficients for the eigenfunctions of
Λ(γC,R) − Λ(1). In practice we can only construct an N -term approximation AN
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using the finite {φn}|n|≤N set of basis functions. Such a matrix is a representation of
the operator

PN (Λ(γC,R)− Λ(1))PN ,

where PN is an orthogonal projection onto span{φn}|n|≤N in terms of the 〈·, ·〉1/2-inner
product. For compact operators it is known from spectral theory (cf. [31, 21]) that
eigenvalues and eigenfunctions of such N -term approximations converge as N → ∞.
From Figure 2 it is evident that it is possible to estimate the correct eigenvalues to
machine precision using very small N if the basis {φn}n∈Z is well-chosen.

Let fn(θ) ≡ 1√
2π
einθ be the usual Fourier basis for L2(∂D). Since {fn}n∈Z is

an orthonormal basis in the usual L2(∂D)-inner product, it follows straightforwardly
that φn ≡ Mafn gives an orthonormal basis in the 〈·, ·〉1/2-inner product. It is a
consequence of Proposition 2.2 and thatMa is bounded; by picking f ∈ L2(∂D) then
Maf ∈ L2(∂D) so

Maf =
∑

n∈Z
〈Maf, fn〉fn =

∑

n∈Z
〈f, φn〉1/2fn ⇒ f =

∑

n∈Z
〈f, φn〉1/2φn.

Theorem 4.1. Let λ̂n be the n’th eigenvalue of Λ(γ0,r) − Λ(1) (cf. Proposi-
tion 3.1). Define the orthonormal basis {φn}n∈Z by

φn ≡Mafn, fn(θ) ≡ 1√
2π
einθ, n ∈ Z.

Then Λ(γC,R)−Λ(1) is represented in this basis via the following tridiagonal matrix:

Am,n ≡ 〈(Λ(γC,R)− Λ(1))φm, φn〉1/2 =





1+ρ2

1−ρ2 λ̂m, m = n,
−a

1−ρ2 λ̂m, m− n = 1,
−a

1−ρ2 λ̂m, m− n = −1,

0, else.

Proof. Utilizing Lemma 2.3 and Proposition 2.2 (and that Λ(Ma1) = Λ(1)):

〈(Λ(γC,R)− Λ(1))φm, φn〉1/2 = 〈J1/2
a Ma(Λ(γ0,r)− Λ(1))MaMafm, J

1/2
a Mafn〉

= 〈(Λ(γ0,r)− Λ(1))fm, J
−1/2
a fn〉.

Now using that fm is an eigenfunction of Λ(γ0,r)− Λ(1) and the expression (2.7) for

J
1/2
a |∂D

〈(Λ(γC,R)− Λ(1))φm, φn〉1/2 =
1

2π
〈(Λ(γ0,r)− Λ(1))eimθ, J−1/2

a einθ〉

=
λ̂m
2π
〈eimθ, J−1/2

a einθ〉

=
λ̂m

2π(1− ρ2)

∫ 2π

0

ei(m−n)θ(1 + ρ2 − 2ρ cos(θ − ζ))dθ

=





1+ρ2

1−ρ2 λ̂m, m = n,
−a

1−ρ2 λ̂m, m− n = 1,
−a

1−ρ2 λ̂m, m− n = −1,

0, else.
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Fig. 2: (a): Difference |λn − λNn | between the n = 1, 2, . . . , 5 largest eigenvalues λn
of Λ(γC,R)− Λ(1) with C = 0.7 and R = 0.2, and the eigenvalues λNn of the N -term
approximation AN from Theorem 4.1. (b): Largest n = 1, 2, . . . , 40 eigenvalues of
Λ(γC,R)−Λ(1) for various values of C and R, estimated to machine precision (dashed
line).

So the above calculation gives the matrix representation.
The basis functions in Theorem 4.1 can explicitly be given in terms of θ. Since

Ma : ∂D → ∂D then the angular variable θ is mapped to another angular variable
ψa(θ), thus

φn(θ) =
1√
2π
einψa(θ) =

1√
2π
Ma(eiθ)n =

1√
2π

(
eiθ − ρeiζ
ρei(θ−ζ) − 1

)n
, n ∈ Z.

Remark 2. The matrix A in Theorem 4.1 is not Hermitian as Λ(γC,R)−Λ(1) is
only self-adjoint in the regular L2(∂D)-inner product, and not in the weighted 〈·, ·〉1/2-
inner product.

The ratio of the norms in Theorem 3.4 have negligible dependence with respect
to the amplitude A, compared to the radius r (note also that ρ in the bounds are
independent of A). This can also be seen in terms of the Fréchet derivate of γ 7→ Λ(γ):

‖Λ(1 +AχB0,r )− Λ(1)‖
‖Λ(1 +AχBC,R)− Λ(1)‖ =

‖Λ′(1)χB0,r + o(A)/A‖
‖Λ′(1)χBC,R + o(A)/A‖ −−−→A→0

‖Λ′(1)χB0,r‖
‖Λ′(1)χBC,R‖

.

Therefore A will be kept fixed A = 2 in the following examples.
Figure 3 shows that for large inclusions with r close to 1 the lower bound of

Theorem 3.4 comes reasonably close, while for small inclusions with r close to 0 the
upper bound is quite tight for ρ < 0.3 (meaning inclusions close to the centre). It
appears that as r → 0 the distinguishability approaches a fixed curve (the curves for
r = 0.1 and r = 0.01 are indistinguishable in the figure, and even r = 0.5 is quite
close), lying in the middle of the lower and upper bounds.

The depth dependence of EIT is further exemplified in Figure 4a where the eigen-
values of Λ(γC,R)−Λ(1) are shown for a fixed radius R = 0.1 as increasing functions
of the centre |C|. Furthermore, the eigenfunction for the largest eigenvalue is shown
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from Theorem 3.4.
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Fig. 4: (a): 10 largest eigenvalues λn (each with multiplicity 2) of Λ(γC,R) − Λ(1)
with fixed R = 0.1 and 0 ≤ |C| < 1−R. (b): Eigenfunction f(θ) (normalized in ‖·‖)
corresponding to largest eigenvalue of Λ(γC,R) − Λ(1) for fixed R = 0.1 and various
values of C.

in Figure 4b, and how it changes from a cosine to a very localized function as the
inclusion is moved closer to the boundary. The eigenfunctions corresponding to the
largest eigenvalues are the best choice of (orthonormal) boundary conditions in prac-
tice, as they maximize the distinguishability. Therefore reconstruction is expected to
be more noise robust when using the eigenfunctions in the measurements. So from
the behaviour in Figure 4b it is not surprising that it is possible to numerically obtain
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very reasonable local reconstructions in the case of partial data (where only part of
the boundary is accessible), close to the measured boundary [11, 10].

5. Conclusions. We have characterized the Dirichlet-to-Neumann map for ball
inclusions in the unit disk (and for the Neumann-to-Dirichlet map, cf. Appendix B),
and have shown explicit lower and upper bounds on how much the distance of the
inclusions to the boundary affects the operator norms. The bounds show a distinct
depth dependence that can be utilized in numerical reconstruction, for instance by
spatially varying regularization.

It is not known if the bounds are optimal, however through several examples it is
demonstrated that the bounds accurately predicts the change in distinguishability. To
verify the bounds and test their tightness numerically, exact matrix representations of
the boundary operators were derived, where the matrix elements are given explicitly
without the need for numerical integration or solution of PDEs.

Other forward models for EIT exists that in practical measurements can reduce
modelling errors, such as the complete electrode model (CEM) [34]. However, in
[18, 12] it was shown that the difference in the forward map of CEM and the continuum
model, as well as their Fréchet derivatives, depends linearly on a parameter that
characterize how densely the electrodes cover the boundary. It is therefore expected
that, for sufficiently many boundary electrodes, any depth dependent properties of
the continuum model will also be observed for the CEM.

The analysis was restricted to the 2D case, though it is natural to consider if the
same bounds hold for the 3D unit ball. However, in higher dimensions d ≥ 3 the
harmonic morphisms only include orthogonal transformations and translation, while
Möbius transformations generally preserve the d-Laplacian [25]. For this reason there
is not a straightforward extension to 3D.

Appendix A. A monotonicity property of the DN map.

The results in this appendix are given for completeness due to a lack of proper
reference.

For the Neumann-to-Dirichlet map a similar monotonicity relation as below is
well-known and is used in reconstruction algorithms [12, 16, 17], where the right
hand-side inequality is ”flipped”. In both cases of DN and ND maps the proof boils
down to an application of a generalized Dirichlet principle.

Lemma A.1. Let γ1, γ2 ∈ L∞+ (Ω) be real-valued, then

γ1 ≤ γ2 a.e. in Ω implies 〈Λ(γ1)f, f〉 ≤ 〈Λ(γ2)f, f〉, ∀f ∈ H1/2(∂Ω).

Proof. From the weak form of the continuum model then for any γ ∈ L∞+ (Ω) we
have

〈Λ(γ)f, h〉 =

∫

Ω

γ∇u · ∇v dx, ∀v ∈ H1(∂Ω), v|∂Ω = h,

in particular

(A.1)

∫

Ω

γ∇u · ∇v dx = 0, ∀v ∈ H1
0 (∂Ω).
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So for v ∈ H1
0 (∂Ω) then (A.1) implies

∫

Ω

γ|∇(u+ v)|2 dx =

∫

Ω

γ
(
|∇u|2 + |∇v|2 +∇u · ∇v +∇v · ∇u

)
dx

=

∫

Ω

γ
(
|∇u|2 + |∇v|2

)
dx,

or rather

(A.2) 〈Λ(γ)f, f〉 =

∫

Ω

γ|∇u|2 dx = inf

{∫

Ω

γ|∇w|2 dx : w ∈ H1(Ω), w|∂Ω = f

}
.

So for any boundary potential f ∈ H1/2(∂Ω), and with u1 being the solution to (1.1)
for γ1 and u2 the solution for γ2. Then using γ1 ≤ γ2 in Ω, and the minimizing
property (A.2)

〈Λ(γ1)f, f〉 =

∫

Ω

γ1|∇u1|2 dx ≤
∫

Ω

γ1|∇u2|2 dx ≤
∫

Ω

γ2|∇u2|2 dx = 〈Λ(γ2)f, f〉.

This leads to the very intuitive conclusion that larger inclusions gives larger dis-
tinguishability.

Corollary A.2. Let A > −1 and D1 ⊆ D2 ⊂ Ω̃, where Ω̃ ( Ω such that
dist(Ω̃, ∂Ω) > 0, then

‖Λ(1 +AχD1
)− Λ(1)‖ ≤ ‖Λ(1 +AχD2

)− Λ(1)‖.

Proof. The case A ≡ 0 is trivial. Let A > 0 then by Lemma A.1

0 = 〈(Λ(1)− Λ(1))f, f〉
≤ 〈(Λ(1 +AχD1

)− Λ(1))f, f〉
≤ 〈(Λ(1 +AχD2

)− Λ(1))f, f〉, ∀f ∈ H1/2(∂Ω),

and similarly if −1 < A < 0:

0 = 〈(Λ(1)− Λ(1))f, f〉
≥ 〈(Λ(1 +AχD1)− Λ(1))f, f〉
≥ 〈(Λ(1 +AχD2

)− Λ(1))f, f〉, ∀f ∈ H1/2(∂Ω).

Thus for any A > −1:

(A.3) |〈(Λ(1 +AχD1)−Λ(1))f, f〉| ≤ |〈(Λ(1 +AχD2)−Λ(1))f, f〉|, ∀f ∈ H1/2(∂Ω).

Then the claim follows directly from (A.3) and that H1/2(∂Ω) is dense in L2(∂Ω)

‖Λ(1 +AχD1)− Λ(1)‖ = sup
f∈H1/2(∂Ω)\{0}

|〈(Λ(1 +AχD1
)− Λ(1))f, f〉|

‖f‖2L2(∂Ω)

≤ sup
f∈H1/2(∂Ω)\{0}

|〈(Λ(1 +AχD2
)− Λ(1))f, f〉|

‖f‖2L2(∂Ω)

= ‖Λ(1 +AχD2)− Λ(1)‖.
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Appendix B. Distinguishability bounds and matrix characterizations
for the Neumann-to-Dirichlet map.

In this appendix we give extensions to the distinguishability bounds as well as
matrix representations in terms of the Neumann-to-Dirichlet (ND) map.

The ND map is the operator R(γ) : ν · γ∇u 7→ u|∂Ω, where u is the solution to

the conductivity equation subject to a Neumann boundary condition g ∈ H−1/2
� (∂Ω)

(B.1) ∇ · (γ∇u) = 0 in Ω, ν · γ∇u = g on ∂Ω,

∫

∂Ω

u ds = 0.

The latter condition in (B.1) is a grounding of the boundary potential, and is required

to uniquely solve the PDE. Thus the ND map is an operator from H
−1/2
� (∂Ω) to

H
1/2
� (∂Ω), where the �-symbol indicates distributions/functions with zero mean on

∂Ω. R(γ) is the inverse of Λ(γ), if Λ(γ) is restricted to H
1/2
� (∂Ω).

Returning to the domain Ω ≡ D it is in this paper sufficient to consider R(γ) :
L2
�(∂Ω)→ L2

�(∂Ω) with

L2
�(∂Ω) ≡ {f ∈ L2(∂Ω) : 〈f, 1〉 = 0},

for which R(γ) is compact and self-adjoint (unlike the DN map where a difference of
two DN maps were required for compactness).

From the proof of Lemma 2.3 we may expect that R(γC,R) =MaR(γ0,r)J
1/2
a Ma,

however we need to be slightly more careful. First of all J
1/2
a Ma(L2

�(∂D)) = L2
�(∂D)

which follows from Proposition 2.2 where the boundary integral is preserved and that

J
1/2
a Ma is an involution. However, we only have Ma(L2

�(∂D)) ⊂ L2(∂D). What
we end up with is an ND operator from L2

�(∂D) to Ma(L2
�(∂D)), corresponding to

changing the grounding condition in (B.1) to
∫

∂D
J1/2
a u|∂D ds = 0.

Since the PDE and Neumann condition in (B.1) gives uniqueness up to a scalar
(which is chosen by the grounding condition), we can obtain the correct operator in
L(L2

�(∂D)) by

(B.2) R(γC,R) = PMaR(γ0,r)J
1/2
a Ma,

and similarly

R(γ0,r) = PMaR(γC,R)J1/2
a Ma,

where P ≡ Id−L is the orthogonal projection of L2(∂D) onto L2
�(∂D), with

Lf ≡ 1

2π

∫

∂D
f ds, f ∈ L2(∂D).

While the change is minor, the projection is necessary for the transformed ND map
R(γC,R) to have any eigenvalues.

Proposition B.1. For γ0,r ≡ 1 + AχB0,r
with 0 < r < 1 and A > −1, the

eigenfunctions of R(γ0,r) are fn(θ) ≡ 1√
2π
einθ, n ∈ Z \ {0}. The corresponding
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eigenvalues are

λn =
2 +A(1− r2|n|)

2 +A(1 + r2|n|)

1

|n| , n 6= 0.

The eigenvalues for the difference operator R(γ0,r)−R(1) are

(B.3) λn =
−2Ar2|n|

2 +A(1 + r2|n|)
· 1

|n| , n 6= 0.

With the numbering given in (B.3), then |λn| decays monotonically with increasing
|n|.

Proof. The eigenvalues can be derived from Proposition 3.1. Now define

f(x) =
−2Ar2x

2 +A(1 + r2x)
· 1

x
, x > 0.

It follows immediately that

f ′(x) =
−2Ar2x(2 log(r)x(A+ 2)− (A+ 2 +Ar2x))

(A+ 2 +Ar2x)2x2
, x > 0.

Since 0 < r < 1 and A > −1 then log(r) < 0, A + 2 > 0 and A + 2 + Ar2x > 0. In
the case −1 < A < 0 we have f ′ < 0 so f is a decreasing function, however f > 0. In
the case A > 0 then f ′ > 0 so f is increasing, but f < 0. Collected we get that |f | is
decreasing.

While Proposition B.1 seems obvious, the corresponding case for the DN-maps
does not hold for all A and r, i.e. the eigenvalues for the DN-map difference does not
decay monotonically with the usual numbering of the eigenvalues from the trigono-
metric basis.

Similar to Section 4 let fn(θ) ≡ 1√
2π
einθ. Defining ψn ≡ J

1/2
a Mafn makes

{ψn}n∈Z\{0} an orthonormal basis for L2
�(∂D) with respect to the 〈·, ·〉−1/2-inner prod-

uct defined in (3.6).

Theorem B.2. Let either H(γ) ≡ R(γ) or H(γ) ≡ R(γ)−R(1). Let λ̂n be the
n’th eigenvalue of H(γ0,r) (cf. Proposition B.1), and denote by hn the n’th Fourier

coefficient of J
1/2
a given by

(B.4) hn =





1 n = 0,

a|n| n > 0,

a|n| n < 0.

Define the orthonormal basis {ψn}n∈Z\{0} by

ψn ≡ J1/2
a Mafn, fn(θ) ≡ 1√

2π
einθ, n ∈ Z \ {0}.

Then H(γC,R) is represented in this basis via the following matrix:

(B.5) An,m ≡ 〈H(γC,R)ψm, ψn〉−1/2 = λ̂m(hn−m − hmhn), m, n 6= 0.
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Proof. First the Fourier series of J
1/2
a will be determined. Consider the case

ζ = 0:

J1/2
ρ |eiθ =

1− ρ2

|ρeiθ − 1|2 = 1 +
ρ

e−iθ − ρ +
ρ

eiθ − ρ = 1 +
∞∑

n=1

ρneinθ +
∞∑

n=1

ρne−inθ,

where the series comes from geometric series of ρeiθ and ρe−iθ, which converge as
0 ≤ ρ < 1. Now ζ 6= 0 corresponds to a translation by ζ in the θ-variable:

J1/2
a |eiθ = 1 +

∞∑

n=1

ρnein(θ−ζ) +
∞∑

n=1

ρne−in(θ−ζ) = 1 +
∞∑

n=1

aneinθ +
∞∑

n=1

ane−inθ,

which corresponds to the Fourier coefficients given in (B.4).
The adjoint of the projection operator P with respect to 〈·, ·〉−1/2 is

(B.6) P ∗ = Id−J1/2
a LJ−1/2

a .

This follows from the calculation

〈Pf, g〉−1/2 = 〈f, g〉−1/2 −
1

2π

∫

∂D
f dx

∫

∂D
J−1/2
a g ds

= 〈f, g〉−1/2 − 〈f, LJ−1/2
a g〉

= 〈f, (Id−J1/2
a LJ−1/2

a )g〉−1/2.

Let m 6= 0, then by (B.2) the terms of (B.5) can be expanded. Using P ∗ from
(B.6) and the properties in Proposition 2.2 gives

An,m = 〈H(γC,R)ψm, ψn〉−1/2

= 〈PMaH(γ0,r)J
1/2
a MaJ

1/2
a Mafm, J

1/2
a Mafn〉−1/2

= 〈MaH(γ0,r)fm, J
−1/2
a (Id−J1/2

a LJ−1/2
a )J1/2

a Mafn〉
= λ̂m〈Mafm,Mafn〉 − λ̂m〈Mafm, LMafn〉,

where in the last equality it was used that fm is an eigenfunction of H(γ0,r). Note
that MaLf = Lf as it is constant, and

LMaf = 1
2π 〈Maf, 1〉 = 1

2π 〈J1/2
a f, 1〉 = LJ1/2

a f.

Thus for hn = 1√
2π
〈J1/2
a , fn〉 = 1

2π

∫ 2π

0
J

1/2
a e−inθ dθ being the n’th Fourier coefficient

of J
1/2
a , then

An,m =
λ̂m√
2π
〈J1/2
a , fn−m〉 − λ̂m〈J1/2

a fm, LJ
1/2
a fn〉

= λ̂mhn−m − λ̂m〈J1/2
a fm, 1〉LJ1/2

a fn

= λ̂mhn−m − λ̂m〈J1/2
a , fm〉

1

2π
〈J1/2
a , fn〉

= λ̂m(hn−m − hmhn), m 6= 0.
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Thereby concluding the proof.
Remark 3. The ND map can also be considered on all of L2(∂D) by introducing

the null-space span{1} such that A is a matrix representation of H(γC,R)P instead of
H(γC,R). In that case the row n = 0 and column m = 0, respectively, becomes

A0,m = 〈H(γC,R)Pψm, ψ0〉−1/2 = 0,

An,0 = 〈H(γC,R)Pψ0, ψn〉−1/2 = −
∑

k 6=0

hkAn,k.

Now we obtain distinguishability bounds analogous to Theorem 3.4.
Theorem B.3. Let γ be either γ0,r or γC,R and denote by ‖·‖ the operator norm

on L(L2
�(∂D)). From the weighted norms in (3.5) and (3.6) we have

(B.7) ‖R(γ)−R(1)‖ = sup
g∈L2

�(∂D)\{0}

‖(Id−LJ1/2
a )(R(Maγ)−R(1))g‖1/2

‖g‖−1/2
.

Furthermore the following bounds hold:

(B.8)
1− ρ
1 + ρ

‖R(γC,R)−R(1)‖ ≤ ‖R(γ0,r)−R(1)‖ ≤
√

1 + ρ2

1− ρ2
‖R(γC,R)−R(1)‖.

Proof. By (B.2)

‖R(γ)−R(1)‖2 = sup
g∈L2

�(∂D)\{0}

‖PMa(R(Maγ)−R(1))J
1/2
a Mag‖2

‖g‖2

= sup
g∈L2

�(∂D)\{0}

∫
∂D|PMa(R(Maγ)−R(1))J

1/2
a Mag|2 ds∫

∂D J
1/2
a |Mag|2 ds

.

Utilizing that J
1/2
a Ma(L2

�(∂D)) = L2
�(∂D), we can substitute J

1/2
a Mag with g, and

afterwards use that PMa =Ma − LJ1/2
a

‖R(γ)−R(1)‖2 = sup
g∈L2

�(∂D)\{0}

∫
∂D|PMa(R(Maγ)−R(1))g|2 ds

∫
∂D J

−1/2
a |g|2 ds

= sup
g∈L2

�(∂D)\{0}

∫
∂D|(Ma − LJ1/2

a )(R(Maγ)−R(1))g|2 ds
∫
∂D J

−1/2
a |g|2 ds

.

Applying the change of variables Ma and MaL = L yields the expression in (B.7)

‖R(γ)−R(1)‖2 = sup
g∈L2

�(∂D)\{0}

∫
∂D J

1/2
a |(Id−LJ1/2

a )(R(Maγ)−R(1))g|2 ds
∫
∂D J

−1/2
a |g|2 ds

= sup
g∈L2

�(∂D)\{0}

‖(Id−LJ1/2
a )(R(Maγ)−R(1))g‖21/2

‖g‖2−1/2

.

Now let ĝ1 ≡ eiθ which by Proposition B.1 is the eigenfunction corresponding to
the largest eigenvalue λ̂1 for R(γ0,r) − R(1). Let λ1 be the largest eigenvalue for



DEPTH DEPENDENT BOUNDS ON DISTINGUISHABILITY OF INCLUSIONS IN EIT 21

R(γC,R)−R(1), then (B.7) implies

|λ1|2 = ‖R(γC,R)−R(1)‖2(B.9)

= sup
g∈L2

�(∂D)\{0}

∫
∂D J

1/2
a |(Id−LJ1/2

a )(R(γ0,r)−R(1))g|2 ds
∫
∂D J

−1/2
a |g|2 ds

≥ |λ̂1|2
∫
∂D J

1/2
a |(Id−LJ1/2

a )ĝ1|2 ds∫
∂D J

−1/2
a ds

=
|λ̂1|2
2π

1− ρ2

1 + ρ2

∫

∂D
J1/2
a |(Id−LJ1/2

a )ĝ1|2 ds,(B.10)

where the integral of J
−1/2
a was calculated in (3.11). Expanding J

1/2
a in its Fourier

series from (B.4) gives J
1/2
a ĝ1 =

∑
k∈Z hke

i(k+1)θ, thus

(B.11) LJ1/2
a ĝ1 =

1

2π

∫

∂D
J1/2
a ĝ1 ds =

1

2π

∑

k∈Z
hk

∫ 2π

0

ei(k+1)θ dθ = h−1 = a.

By inserting (B.11) into (B.10), again applying the Fourier series of J
1/2
a from (B.4)

and that
∫
∂D J

1/2
a ds = 2π gives the upper bound

|λ1|2 ≥
|λ̂1|2
2π

1− ρ2

1 + ρ2

∫ 2π

0

J1/2
a |eiθ − a|2 dθ

=
|λ̂1|2
2π

1− ρ2

1 + ρ2

∫ 2π

0

J1/2
a (1 + ρ2 − aeiθ − ae−iθ) dθ

=
|λ̂1|2
2π

1− ρ2

1 + ρ2

[
2π(1 + ρ2)−

∫ 2π

0

(
a
∑

k∈Z
hke

i(k+1)θ + a
∑

k∈Z
hke

i(k−1)θ

)
dθ

]

=
|λ̂1|2
2π

1− ρ2

1 + ρ2

[
2π(1 + ρ2)− 2π(ah−1 + ah1)

]

= |λ̂1|2
(1− ρ2)2

1 + ρ2
.

Thus

‖R(γ0,r)−R(1)‖ = |λ̂1| ≤
√

1 + ρ2

1− ρ2
|λ1| =

√
1 + ρ2

1− ρ2
‖R(γC,R)−R(1)‖.

Now consider the opposite case for (B.9), and let g1 be a normalized (in ‖·‖L2(∂D))
eigenfunction corresponding to the largest eigenvalue λ1 of R(γC,R) − R(1). Using
the bounds (3.7)

|λ̂1|2 = ‖R(γ0,r)−R(1)‖2

= sup
g∈L2

�(∂D)\{0}

‖(Id−LJ1/2
a )(R(γC,R)−R(1))g‖21/2

‖g‖2−1/2

≥ |λ1|2
‖(Id−LJ1/2

a )g1‖21/2
‖g1‖2−1/2

≥ |λ1|2
(

1−ρ
1+ρ

)2

‖(Id−LJ1/2
a )g1‖2.
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Now utilizing that g1 ∈ L2
�(∂D), so as LJ

1/2
a g1 is constant then 〈LJ1/2

a g1, g1〉 = 0:

|λ̂1|2 ≥ |λ1|2
(

1−ρ
1+ρ

)2

(‖g1‖2 + ‖LJ1/2
a g1‖2)

= |λ1|2
(

1−ρ
1+ρ

)2

(1 + 2π|LJ1/2
a g1|2)(B.12)

≥ |λ1|2
(

1−ρ
1+ρ

)2

,

which gives the lower bound in (B.8).
Numerically it can be verified (cf. Figure 5a) that

‖R(γC,R)−R(1)‖ ≤ ‖R(γ0,r)−R(1)‖,

which is a stronger bound than in Theorem B.3. However, in the proof even the bound
(B.12) which depends on g1 does not give ‖R(γC,R) −R(1)‖ ≤ ‖R(γ0,r) −R(1)‖ in
general.

Remark 4. It is possible to remove the projection operator P in Theorem B.3,
which led to its lengthy proof, by writing the norm as

‖R(γ)−R(1)‖ = sup
g∈L2

�(∂D)\{0}

|〈PMa(R(Maγ)−R(1))J
1/2
a Mag, g〉|

‖g‖2 ,

and abusing that P is self-adjoint in the usual L2(∂D)-inner product (as it is an
orthogonal projection). The proof would give the same lower bound, however it leads

to the worse upper bound with the term (1+ρ2)/(1−ρ2) instead of
√

1 + ρ2/(1−ρ2).
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Fig. 5: (a): Ratio ‖R(γ0,r) − R(1)‖/‖R(γC,R) − R(1)‖ for |a| = ρ ∈ [0, 1) where
R and C are determined from r and ρ by Proposition 2.1, along with the upper
bound (dashed line) from Theorem B.3. (b): 10 largest eigenvalues λn (each with
multiplicity 2) of R(γC,R)−R(1) with fixed R = 0.1 and 0 ≤ |C| < 1−R.

Figure 5a shows that the upper bound in Theorem B.3 is very reasonable for small
inclusions with r close to 0. Furthermore, it shows (for the chosen examples) that
the distinguishability is decreasing as ρ is increased, meaning ‖R(γC,R) − R(1)‖ ≤
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‖R(γ0,r) − R(1)‖. This is different from what was observed for the DN map in
Figure 3, however it is worth noting that the radius R is decreasing with ρ, and in
Figure 5b where the radius is kept fixed, the distinguishability is increasing. Thus,
for the ND map the distinguishability is increasing at a slower rate as the distance to
the boundary is reduced (compared to the DN map), and is not able to overcome the
change in radius from r to R. It is therefore worth noting that reconstruction based
on ND- and DN-maps are fundamentally different in terms of depth dependence.
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Abstract The inverse problem of electrical impedance tomography is severely
ill-posed, meaning that, only limited information about the conductivity can in
practice be recovered from boundary measurements of electric current and volt-
age. Recently it was shown that a simple monotonicity property of the related
Neumann-to-Dirichlet map can be used to characterize shapes of inhomogeneities
in a known background conductivity. In this paper we formulate a monotonicity-
based shape reconstruction scheme that applies to approximative measurement
models, and regularizes against noise and modelling error. We demonstrate that
for admissible choices of regularization parameters the inhomogeneities are de-
tected, and under reasonable assumptions, asymptotically exactly characterized.
Moreover, we rigorously associate this result with the complete electrode model,
and describe how a computationally cheap monotonicity-based reconstruction al-
gorithm can be implemented. Numerical reconstructions from both simulated and
real-life measurement data are presented.

Keywords electrical impedance tomography · inverse problems · monotonicity
method · regularization · complete electrode model · direct reconstruction
methods
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1 Introduction

In electrical impedance tomography (EIT), the aim is to extract information about
the internal properties of a physical object by external measurements of electric
current and voltage. In practice, through a set of surface electrodes, currents of
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prescribed magnitudes are conducted into the object and the voltages needed for
maintaining the currents are recorded. The obtained current-voltage data are used
for imaging the internal electrical conductivity distribution of the object. Exam-
ples of EIT applications include, among others, monitoring patient lung function,
control of industrial processes, non-destructive testing of materials, and locating
mineral deposits [3,8,12,42].

In EIT, electricity inside the domain is modelled by the conductivity equation

∇ · (γ∇u) = 0, in Ω (1)

where Ω ⊂ Rn describes the spatial dimensions of the object, γ = γ(x) the conduc-
tivity (or admittivity) distribution, and u = u(x) the potential of the electric field.
The ideal data obtainable by current-voltage measurements are characterized by
the Neumann-to-Dirichlet operator Λ(γ) which relates a boundary current density
to the corresponding boundary potential through a Neumann-problem for (1).

The inverse conductivity problem is stated as “given Λ(γ), determine γ”. The
problem has been extensively studied during the past decades [6,35,42] — the
known solvability conditions depend on the spatial dimension. In the plane, a
general bounded real-valued γ with a positive lower bound is uniquely determined
by Λ(γ) as long as Ω is simply connected [1]. In the three-dimensional space, more
regularity of Ω and γ is in general required [39]. Despite the unique solvability,
the mapping Λ(γ) 7→ γ has points of discontinuity in the L∞-norm [3]. Therefore,
the problem of reconstructing a general γ from Λ(γ) is ill-posed in the sense of
Hadamard.

A practical version of the inverse conductivity problem is “given a noisy and
discrete approximation of Λ(γ), reconstruct information about γ”. Arguably, the
most flexible framework for computational EIT reconstruction is provided by it-
erative output least-squares type methods [7,21,30,43] which work with realistic
measurement models and allow incorporation of prior information into the model.
However, in many applications, full-scale imaging may not be the top priority
— especially if it is computationally expensive due to high dimensionality of the
computational domain. Instead, one may be interested in locating conductivity
inhomogeneities in a known and/or uninteresting background medium. A variety
of iterative [10,24] and direct inhomogeneity detection methods have been intro-
duced and elaborately studied. Two of the most prominent direct EIT methods
relevant to this work are the factorization method [4,5,13,14,31] and the enclosure
method [26,27], which rely on repetitive but computationally very cheap testing of
criteria that theoretically characterize shapes of conductivity inhomogeneities.

In this paper we study the monotonicity method, the idea of which originates in
[19,40,41]. This direct method detects conductivity inhomogeneities by utilizing
the fact that the forward map γ 7→ Λ(γ) is monotonically decreasing. To describe
the method’s main idea, suppose for simplicity that Ω has a smooth boundary and
that the target conductivity is of form γ = 1 + χD where D ⊆ Ω is an unknown
open set we would like to reconstruct. The monotonicity property implies that if a
ball B ⊆ D then Λ(1 +χB)−Λ(γ) ≥ 0 in the sense of semidefiniteness. Therefore,
the collection M of all open balls satisfying the latter criterion forms a cover
for D. Recently, it was shown that, if D has no holes, the converse holds: ∪M
coincides with D. Moreover, the result remains valid even if Λ(1 +χB) is replaced
with the affine approximation Λ(1) + 1

2Λ
′(1)χB (note the factor 1

2 ) regardless of
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the possibly large linearization error [19]. The affine formulation is numerically
tempting as the Fréchet derivative can be calculated ahead of time and applied by
evaluating computationally cheap matrix-vector products.

A key property of the monotonicity method is that it can be trivially formulated
using the realistic complete electrode model (CEM) — just by replacing Λ(γ) by its
CEM counterpart. The feasibility of the CEM-based monotonicity method was first
considered in [20]. By suitably relaxing the monotonicity test, it was shown that a
non-trivial upper bound for D can be obtained from inaccurate CEM data. In this
paper, we consider the converse, that is, whether a sequence of suitably regularized
reconstructions Mα in some sense converges to a limit as the discretization error
and measurement noise level tend to zero. We study this question by extending
the ideas of [19] where B-dependent regularization of the monotonicity method is
discussed.

Our main theoretical result (Theorem 1) states that, as a suitable sequence of
regularization parameters tends to zero, the noisy and discrete semidefiniteness test
converges uniformly in B to the continuum counterpart. As a corollary, we obtain
the set-theoretic convergence of the regularized reconstructionMα to the idealistic
M. To be more precise, we formulate the above results in terms of a certain class
of admissible approximate models for Λ(γ). However, we also rigorously show
how the results apply to the CEM by constructing approximate sequences for a
Fréchet derivative of γ 7→ Λ(γ) of arbitrary order (Theorems 2–3 and Remark 4).
The approximation technique generalizes the ideas of [23] which studies the CEM
in the limit as the number of electrodes grows towards infinity. All in all, this
paper is thematically comparable to [31] where a rigorous asymptotic connection
between the factorization method and the CEM is established.

Before describing the structure of this paper, let us make some general com-
ments on the extensions and limitations of the considered reconstruction method.
Compared to other direct inhomogeneity detection techniques, the monotonicity
method has the advantage that the inhomogeneity characterization results natu-
rally extend to the indefinite case [19] (both jumps and drops off the background
conductivity). Although fast and easy to implement, a drawback of the standard
implementation is that it requires the knowledge of the background conductivity.
Fortunately, as in the context of the factorization method [17], this problem can
be partly avoided if A/C measurements with different frequencies are available.
The appropriate analysis is carried out in [16] where the monotonicity method is
generalized to complex-valued admittivities.

The contents of this article are organised as follows. In section 2 the idealized
continuum model (CM) of EIT is rigorously defined, and its fundamental mono-
tonicity properties are revised. In section 3 the regularized monotonicity method
is formulated and the main result (Theorem 1) of the paper is proven. Section 4
introduces the CEM and demonstrates how it can be used to construct approxima-
tions to the CM. Two alternative algorithmic implementations of the monotonicity
method are described in section 5. Moreover, a theoretical justification for the algo-
ritmic use of the CEM is given. Finally, in section 6, the CEM-based reconstruction
algorithms are tested numerically in two and three spatial dimensions for simu-
lated measurements, and in two dimensions for real-life (cylindrically symmetric)
water tank measurement data.
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2 Electrical impedance tomography based on monotonicity

In this section we formulate the continuum model (CM) and revise its fundamental
monotonicity property that motivates the monotonicity method. For simplicity, we
only consider static EIT where all electric quantities are modelled by real-numbers.
Generalizations of the method for A/C measurements, that is, complex-valued
quantities, can be found in [16].

2.1 Continuum model

Let Ω ⊂ Rn, n = 2 or 3, be a bounded domain with C∞-regular boundary ∂Ω.
Consider the elliptic boundary value problem

∇ · (γ∇u) = 0, in Ω,

ν · γ∇u = f, on ∂Ω,
(2)

where ν denotes the outward-pointing unit normal of ∂Ω and the real-valued
coefficient function γ = γ(x) belongs to

L∞+ (Ω) = {w ∈ L∞(Ω) : ess inf w > 0}.

By the Lax–Milgram theorem, for a given Neumann-boundary datum

f ∈ L2
�(∂Ω) = {w ∈ L2(∂Ω) : 〈w,1〉 = 0}, (3)

problem (2) has a unique weak solution

u ∈ H1
�(Ω) = {w ∈ H1(Ω) : 〈w|∂Ω ,1〉 = 0}. (4)

Above and from here on 〈·, ·〉 denotes the L2(∂Ω)-inner product, w|∂Ω stands for
the trace of w on ∂Ω, and 1 ≡ 1 on ∂Ω. In electrostatics, u models the electric
potential in Ω induced by the electrical conductivity distribution γ and the input
current density f . The extra conditions in the function space definitions (3) and
(4) correspond to current conservation law and choice of ground level of potential,
respectively.

The idealistic infinite precision data related to electric current-voltage bound-
ary measurements are characterized by the Neumann-to-Dirichlet (ND) map

Λ(γ) : L2
�(∂Ω)→ L2

�(∂Ω), f 7→ u|∂Ω ,

where u is the solution to (2). Note that by density, knowledge of Λ(γ) is tanta-
mount to knowing every boundary current-voltage density pair

(f, u|∂Ω) ∈ H−1/2
� (∂Ω)×H1/2

� (∂Ω)

connected via a more general formulation of (2) for less regular input current
densities. The operator Λ(γ) is linear and bounded, that is, it belongs to the space
L(L2

�(∂Ω)) of bounded linear operators from L2
�(∂Ω) to itself. Furthermore, it is

straightforward to show that Λ(γ) is self-adjoint (see e.g. [3]). On the other hand,
the mapping

γ 7→ Λ(γ) : L∞+ (Ω)→ L(L2
�(∂Ω))
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is non-linear since clearly Λ(cγ) = Λ(γ)/c for any constant c > 0. Despite being
non-linear, the mapping is still very regular as it is analytic in γ ∈ L∞+ (Ω) (cf.
Appendix B).

Although the CM is feasible in proving interesting solvability and uniqueness
results, it should be emphasized that the model is not very accurate in predicting
real-life measurements. This is because, in practice, point-wise boundary current
densities are out of reach and realistic electrodes cause a shunting effect which
the CM does not directly account for [9,38]. Be that as it may, the operator
Λ(γ) ∈ L(L2

�(∂Ω)) as well as its linearization is compact due to the compact
embedding H1/2(∂Ω) ⊂⊂ L2(∂Ω). Therefore, it seems natural that they can be
approximated accurately by finite-dimensional electrode model-based matrices.
Before returning to this question in section 4, we recapitulate the ideas behind the
monotonicity method.

2.2 Monotonicity-based characterization of inclusions

The following principle forms the basis of the monotonicity method in EIT [18,19,
41].

Proposition 1 For two arbitrary conductivities γ, γ̃ ∈ L∞+ (Ω) it holds

∫

Ω

γ̃

γ
(γ − γ̃)|∇ũ|2dx ≤ 〈(Λ(γ̃)− Λ(γ))f, f〉 ≤

∫

Ω

(γ − γ̃)|∇ũ|2dx (5)

where f ∈ L2
�(∂Ω) is arbitrary and ũ ∈ H1

�(Ω) solves

∇ · (γ̃∇ũ) = 0 in Ω, ν · γ̃∇ũ = f on ∂Ω.

Proof See, e.g., [19, Lemma 3.1]. ut

In what follows, we focus on detecting (definite) conductivity inhomogeneities, or
inclusions, lying in a known background. For the ease of presentation, we define
the notion of an inclusion.

Definition 1 Consider a conductivity distribution of the form γ = γ0 + κχD,
where γ0 ∈ L∞+ (Ω) is piecewise analytic, κ ∈ L∞+ (Ω), and D is open with D ⊆ Ω.
The setD is called a positive inclusion with respect to the background conductivity
γ0.

In the rest of the paper, γ is implicitly assumed to be as in Definition 1 unless
otherwise mentioned.

Proposition 1 gives rise to the following method for computing upper estimates
for the inclusion D. Assume 0 < β ≤ κ and let B ⊆ Ω be an arbitrary open ball.
As a consequence of Proposition 1 we have

B ⊆ D implies Λ(γ0 + βχB)− Λ(γ) ≥ 0 (6)

in the sense of semidefiniteness. Here χB is the characteristic function of B. De-
noting the collection of all admissible open balls by

M = {B ⊆ Ω open ball : Λ(γ0 + βχB)− Λ(γ) ≥ 0}, (7)
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we get the upper estimate
D ⊆ ∪M. (8)

Accurate numerical approximation of M can be costly, as it typically requires
computation of a large number of forward solutions to (2).

Faster formulation of the semidefiniteness tests in (7) can be derived by lin-
earizing the operator γ 7→ Λ(γ) around γ = γ0. In fact, this modification also
yields an upper bound for D analogous to (8). To see this, suppose that γ is as in
Definition 1. As a consequence of Proposition 1 and the Fréchet derivative (see (52)
in Appendix B), we obtain

〈(Λ(γ0) + βΛ′(γ0)χB − Λ(γ))f, f〉 ≥
∫

Ω

(
γ0κ

γ
χD − βχB

)
|∇u0|2dx

for any f ∈ L2
�(∂Ω) and u0 ∈ H1

�(Ω) solving

∇ · (γ0∇u0) = 0 in Ω, ν · γ0∇u0 = f on ∂Ω.

In particular (cf. (6)) we deduce

B ⊆ D implies Λ(γ0) + βΛ′(γ0)χB − Λ(γ) ≥ 0 (9)

provided that 0 < β ≤ γ0κ/γ. By defining

M′ =
{
B ⊆ Ω open ball : Λ(γ0) + βΛ′(γ0)χB − Λ(γ) ≥ 0

}
, (10)

we have
D ⊆ ∪M′ (11)

which is analogous to (8). Computational approximation of the set M′ is the
main idea behind the reconstruction algorithm studied in this paper. A particular
advantage of this approach is that the Fréchet derivative Λ′(γ0) can be computed
ahead of time since it only depends on the (known) background conductivity γ0
and object Ω but not on B or β. More theoretical plausibility for the monotonicity
method is given by the following result which, in a sense, complements relations
(6) and (9) [19].

Proposition 2 Assume that γ ∈ L∞+ (Ω) is as in Definition 1. Then, for any
constant β > 0,

Λ(γ0 + βχB)− Λ(γ) ≥ 0 or Λ(γ0) + βΛ′(γ0)χB − Λ(γ) ≥ 0 (12)

implies

B ⊆ D• = Ω \ ∪{U ⊆ Rn \D open and connected : U ∩ ∂Ω 6= ∅}.

Note that D• corresponds to the smallest closed set containing D and having con-
nected complement. Consequently, by (7) and (10), the conditions

D ⊆ ∪M ⊆ D• if 0 < β ≤ ess inf κ, (13)

D ⊆ ∪M′ ⊆ D• if 0 < β ≤ ess inf
(γ0κ
γ

)
. (14)

hold true. Note also that if D has connected complement, then D• = D.
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Proof The claim follows directly from [19, Theorem 4.1 and Theorem 4.3] which
are proven using the theory of localized potentials [11]. It should be noted that the
piecewise analyticity assumption in Definition 1 is a sufficient condition for the
existence of such potentials. The intuition behind (12) can roughly be described
as follows. If B 6⊆ D•, then γ0 + βχB ≥ γ in B \ D•. Consequently, each of the
semidefiniteness conditions in (12) can be contradicted by constructing sequences
of potentials having simultaneously very large energy in B \ D• and very small
energy in D•. ut

Remark 1 In the original version of Proposition 2 [19, Theorem 4.1 and Theorem
4.3], the upper bound in the counterparts of (13) and (14) is formulated as the
“outer support” out∂Ω(κχD). Using Definition 1 and [19, Definition 2.3 (c) and
(d)], it is easy to point out that this set coincides with D•.

Relations (13) and (14) indicate that both M and M′ can contain significant
information about D. However, due to ill-posedness, the associated semidefinite-
ness tests can be expected to be sensitive with respect to measurement noise and
modelling error. Aiming for stable numerical implementation we introduce a reg-
ularized variant of the semidefiniteness tests.

3 Regularized monotonicity-based reconstruction

In practice, the infinite precision measurement Λ(γ) is out of reach, and moreover,
only approximate numerical models are available for computational monotonicity
tests. We model a collection of abstract approximate forward models by a family
of compact self-adjoint operators {Λh(γ)}h>0 such that

‖Λ(γ)− Λh(γ)‖L(L2
�(∂Ω)) ≤ ω(h)‖γ‖L∞(Ω), lim

h→0
ω(h) = 0 (15)

for any γ ∈ L∞+ (Ω), where ω is independent of γ. In addition to systematic mod-
elling error, real-life measurements are also corrupted by noise caused by imper-
fections of the measurement device. We assume the following additive noise model

Λδh(γ) = Λh(γ) +Nδ,

where the noise is modelled by a family of compact and self-adjoint operators

Nδ : L2
�(∂Ω)→ L2

�(∂Ω), ‖Nδ‖L(L2
�(∂Ω)) ≤ δ. (16)

Note that, by symmetrizing if necessary, the self-adjointness assumption of the
error operator can be made without loss of generality.

To facilitate reading, we use the following abbreviations for certain operators
and the related infimal eigenvalues. For a given open set B ⊆ Ω we denote

T (B) = Λ(γ0 + βχB)− Λ(γ),

Th(B) = Λh(γ0 + βχB)− Λh(γ),

T δh(B) = Λh(γ0 + βχB)− Λδh(γ).

(17)
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As all operators in (17) are self-adjoint, their spectra are contained in R. More-
over, by Hilbert–Schmidt theorem [36], the eigenvalues of any infinite dimensional,
compact and self-adjoint Hilbert space operator S accumulate at zero implying

−‖S‖ ≤ inf σ(S) ≤ 0

where σ(S) denotes the spectrum of S.
To guarantee a meaningful noisy reconstruction, we introduce a regularized

version of (7) with the help of the relaxed ball collections

Mα(S) = {B ⊆ Ω open ball : S(B) + α Id ≥ 0} (18)

where α ∈ R is a regularization parameter and S = S(B) is a compact operator for
each B ⊆ Ω. Next we investigate in which sense and under which conditions the
set Mα(T δh) converges to M0(T ), as the error parameters h and δ tend to zero.
To establish an asymptotic relationship, we resort to the following lemma which
is a consequence of spectral continuity [29].

Lemma 1 Let S and T be bounded self-adjoint operators on a Hilbert space H.
Then

| inf σ(S)− inf σ(T )| ≤ ‖S − T‖L(H) (19)

Proof We begin by noting that (19) trivially holds if its left-hand side vanishes.
Hence, by symmetry we may assume that inf σ(S) < inf σ(T ). There exists a
sequence {λj}∞j=1 ⊆ σ(S) such that

lim
j→∞

λj = inf σ(S)

and inf σ(S) ≤ λj < inf σ(T ) for all j. By the continuity of the spectrum [29,
Chapter V §4, Theorem 4.10], we have

dist(λj , σ(T )) ≤ sup
λ∈σ(S)

dist(λ, σ(T )) ≤ ‖S − T‖L(H).

Consequently

‖S − T‖L(H) ≥ dist(λj , σ(T )) = inf
µ∈σ(T )

|λj − µ| = inf σ(T )− λj

and hence, by taking the limit, we deduce

inf σ(T )− inf σ(S) = lim
j→∞

dist(λj , σ(T )) ≤ ‖S − T‖L(H)

which concludes the proof. ut

As a special consequence of Lemma 1, (15), and (16) we obtain

| inf σ(T δh(B))− inf σ(T (B))| ≤ ω(h)
(
‖γ0‖L∞(Ω) + β + ‖γ‖L∞(Ω)

)
+ δ

which implies that
lim
h,δ→0

inf σ(T δh(B)) = inf σ(T (B)) (20)

uniformly in B ⊆ Ω.
The following theorem shows that, with a suitable sequence of regularization

parameters α ∈ R, the set M0(T ) can be, in a sense, stably approximated by the
sequence Mα(T δh).
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Theorem 1 Suppose that the regularization parameter α = α(h, δ) ∈ R satisfies

δ − α(h, δ) ≤ inf
B∈M0(T )

inf σ(Th(B)) and lim
h,δ→0

α(h, δ) = 0. (21)

Then for any given λ > 0 there exists an ελ > 0 such that

M0(T ) ⊆Mα(h,δ)(T
δ
h) ⊆Mλ(T ) (22)

for all h, δ ∈ (0, ελ].

Proof Let us start by noting that according to (20) and Lemma 2 of Appendix A,
the conditions (21) are not contradictory, and thus, the set of admissible sequences
of regularization parameters is not empty.

To prove the left-hand set inclusion in (22), let B ∈ M0(T ) be an arbitrary
open ball. First we note that, by a basic property of the infimal eigenvalue and
(21), we have

Th(B) ≥ inf σ(Th(B)) Id ≥ (δ − α(h, δ)) Id . (23)

From (16) we obtain δ Id ≥ Nδ, which together with (23) yields

T δh(B) + α(h, δ) Id = Th(B)−Nδ + α(h, δ) Id ≥ δ Id−Nδ ≥ 0.

This shows that B ∈ Mα(h,δ)(T
δ
h) for all h, δ > 0. In particular, the left-hand set

inclusion in (22) holds.
To prove the right-hand set inclusion in (22), let λ > 0 be arbitrary. According

to (21) and the uniform convergence (20), there exists an ελ > 0 such that

α(h, δ) ≤ λ

2
, inf σ(T δh(B)) ≤ inf σ(T (B)) +

λ

2

for all h, δ ∈ (0, ελ] and open balls B ⊆ Ω. Moreover, by definition (18), any open
ball B ∈Mα(h,δ)(T

δ
h) satisfies

0 ≤ inf σ(T δh(B)) + α(h, δ) ≤ inf σ(T (B)) + λ (24)

which implies that Mα(h,δ)(T
δ
h) ⊆Mλ(T ) for all h, δ ∈ (0, ελ]. ut

Compared toMα(T δh), the familyMλ(T ) has the favourable monotone decreasing
property

0 < λ ≤ µ implies Mλ(T ) ⊆Mµ(T ). (25)

This yields the set-theoretic limit (defined as in e.g. [37])

lim
λ→0
Mλ(T ) =

⋂

λ>0

Mλ(T ) =M0(T ) (26)

where the left and right equalities follow from the monotone decreasing property
(25) and the definition of Mλ(T ), respectively. As a consequence of (26) and
Theorem 1, we obtain a corresponding limit for Mα(T δh).

Corollary 1 Let the regularization parameter be as in (21). Then we have the
set-theoretic limit

lim
h,δ→0

Mα(h,δ)(T
δ
h) =M0(T ) =

⋂

h,δ>0

Mα(h,δ)(T
δ
h). (27)
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Proof The fact that the set-theoretic limit exists and coincides with M0(T ) is a
direct consequence of the “squeeze principle” enforced by (22) and (26). Note that
the considered family of sets is not necessarily decreasing; hence, the right-hand
equality in (27) has to be proven separately. In the proof of Theorem 1 it is shown
thatM0(T ) ⊆Mα(h,δ)(T

δ
h) for all h, δ > 0, implying the “⊇”-direction. The “⊆”-

direction follows from (24) by letting h, δ → 0 and recalling (20). ut

Remark 2 Suppose that the inclusion D has a connected complement, and that
|D| = |D|. Assume further that the approximate operator family satisfies the
monotonicity property: γ ≥ γ̃ implies Λh(γ̃)−Λh(γ) ≥ 0 for all γ, γ̃ ∈ L∞+ (Ω). By
Proposition 2 we have ∪M0(T ) ⊆ D. Hence, by monotonicity and choosing β as
in (13) yields

Th(B) ≥ Th(∪M0(T )) ≥ Th(D) = Th(D) ≥ 0

for any B ∈ M0(T ). Consequently, the choice α(h, δ) = δ is in this case sufficient
for obtaining (27).

Remark 3 The results indicated by Theorem 1, Corollary 1, and Remark 2 straight-
forwardly adapt to the linearized version (11). To complete the proofs it is suffi-
cient, in addition to (15), to assume that we have

‖Λ′(γ)η − Λ′h(γ)η‖L(L2
�(∂Ω)) ≤ ω(h)‖γ‖L∞(Ω)‖η‖L∞(Ω) (28)

for all η ∈ L∞(Ω). Furthermore, the definitions (17) have to be modified accord-
ingly.

While the above asymptotic results are formulated between the somewhat ab-
stract ball collections, a relevant question is whether an analogue of (27) holds for
their unions which — according to Proposition 2 — can be directly compared to
conductivity inclusions. In particular, such a result would imply

D ⊆ lim
h,δ→0

∪Mα(h,δ)(T
δ
h) ⊆ D•

with the convergence in the sense of the Lebesgue measure. With straightforward
modifications, the proof of Theorem 1 can be adapted to the case where the ball
collections are replaced with the unions

∪Mλ(T ) and ∪Mα(T δh).

Moreover, the former family is monotonously decreasing (cf. (25)) allowing a set-
theoretic limit and convergence in the Lebesgue measure. However, currently we
are not aware of a non-trivial relationship between (cf (26))

⋂

λ>0

∪Mλ(T ) and ∪M0(T ).

To demonstrate the present difficulty, pick a point x that belongs to ∪Mλ(T ) for all
λ > 0. Then for each λ > 0 there exists an open ball Bλ ∈Mλ(T ) which contains
x. However, without further specifications, this does not imply the existence of a
fixed ball B that would contain x and lie in Mλ(T ) for all λ > 0.
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4 Approximating infinite-precision data by realistic models

The most widely used model for real-life EIT measurements is the CEM which
is capable of predicting measurement data up to instrument precision [8,9,38]. In
this section, we define the CEM and review its fundamental monotonicity property
analogous to (5). Subsequently, we point out that — under some reasonable regu-
larity assumptions — the CEM can be used to construct sequences of approximate
operators of type (15) and (28) for both Λ(γ) and Λ′(γ), respectively.

4.1 Complete electrode model

The CEM is formally defined by the boundary value problem

∇ · (γ∇v) = 0, in Ω,

ν · γ∇v = 0, on ∂Ω \⋃kj=1Ej ,

v + zjν · γ∇v = Vj , on Ej ,∫

Ej

ν · γ∇v dS = Ij , j = 1, 2, . . . k,

(29)

where the open, connected and mutually disjoint sets Ej ⊆ ∂Ω model the electrode
patches attached to the outer boundary of the object. For a given conductivity
γ ∈ L∞+ (Ω), contact impedance z ∈ Rk+, and net input current pattern

I ∈ Rk� =

{
W ∈ Rk :

k∑

j=1

Wj = 0

}
,

a unique weak solution pair

(v, V ) ∈ H1(Ω)⊕ Rk�

to problem (29) exists [38,22]. The electrode measurement data related to γ (and
z) are fully characterized by the bounded, linear, and self-adjoint [38] measurement
map

R(γ) : Rk� → Rk�, I 7→ V.

Here I and V model the net input currents and the net voltages perceived by the
electrodes, respectively. Note that R(γ) depends also on the contact impedance z.
However, this dependence will be omitted except in Proposition 3 where its values
may vary.

Compared to the CM (2), the CEM has a more complicated mathematical
formulation (29). Partly due to this, CEM-based EIT is not theoretically well-
understood. In particular, virtually all known uniqueness and stability results —
and the related reconstruction techniques — for the inverse conductivity problem
are formulated in terms of the CM. However, by the following proposition, the
monotonicity principle (5) extends quite naturally to the CEM framework [20].
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Proposition 3 Consider two arbitrary conductivities γ, γ̃ ∈ L∞+ (Ω) and contact
impedances z, z̃ ∈ Rk+. Denote

c0 =

∫

Ω

γ̃

γ
(γ − γ̃)|∇ṽ|2dx+

k∑

j=1

∫

Ej

zj
z̃j

( 1

zj
− 1

z̃j

)
|ṽ − Ṽj |2dS,

c1 =

∫

Ω

(γ − γ̃)|∇ṽ|2dx+
k∑

j=1

∫

Ej

( 1

zj
− 1

z̃j

)
|ṽ − Ṽj |2dS,

where (ṽ, Ṽ ) is the solution pair to (29) corresponding to the input current I ∈ Rk�,
conductivity γ̃, and contact impedance z̃ ∈ Rk+. Then it holds

c0 ≤ IT(R(γ̃, z̃)−R(γ, z))I ≤ c1.

Proof See [20, Theorem 2]. ut

Proposition 3 implies, in particular, that counterparts of (6) and (9) hold in the
CEM framework.

4.2 Approximating Λ(γ) using the measurement map R(γ)

The relationship between Λ(γ) ∈ L(L2
�(∂Ω)) and R(γ) ∈ L(Rk�) has been studied

e.g. in [31,23]. In what follows, we review the approach in [23] because it is simple
to formulate, and it gives a good error estimate. The method relies on the con-
cept of open and mutually disjoint extended electrodes {E+

j }kj=1 that are assumed
(together with the actual electrodes) to satisfy

Ej ⊆ E+
j ⊆ ∂Ω,

k⋃

j=1

E+
j = ∂Ω, min

j=1,...,k

|Ej |
|E+
j |
≥ c (30)

where c > 0 is a constant independent of the set of electrodes in question. The
mappings Λ(γ) and R(γ) can be compared with the help of the adjoint pair
Q : Rk → L2(∂Ω) and Q∗: L2(∂Ω)→ Rk defined via

QW =
k∑

j=1

Wjχ
+
j , (Q∗f)j =

∫

E+
j

fdS

where χ+
j denotes the characteristic function of E+

j . A thorough motivation of the
notion of extended electrodes can be found in [23].

As indicated by the following theorem, under reasonable assumptions on the
regularity of E+

j and ∂Ω, the infinite precision EIT data can be approximated using
the CEM with an error directly proportional to the maximal extended electrode
width.
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Theorem 2 Let P : L2(∂Ω) → Rk and L : L2(∂Ω) → L2
�(∂Ω) be the orthogonal

projectors1 defined via

(Pf)j = −
∫

Ej

f dS, Lf = f −−
∫

∂Ω

fdS, (31)

and denote the maximal extended electrode diameter by h = maxj diam(E+
j ). As-

sume that the extended electrodes are regular enough2 so that the Poincaré inequality-
type estimate

‖(Id−QP )f‖L2(∂Ω) ≤ Ch inf
c∈R
‖f + c‖H1(∂Ω), (32)

holds for all f ∈ H1(∂Ω) with a constant C > 0 independent of h. Then we have

‖Λ(γ)− LQ(R(γ)− Z)Q∗‖L(L2
�(∂Ω)) ≤ Ch‖γ‖L∞(Ω) (33)

for any γ as in Definition 1 with a constant C > 0 independent of γ and h. Here
Z ∈ Rk×k is the diagonal matrix with the non-zero entries Zjj = zj/|Ej |.

Proof The claim follows from [23, Proof of Theorem 4.1] with the following minor
modifications. First of all, note that the projector Q∗and the matrix Z are defined
slightly differently here because [23] formulates (29) in terms of mean electrode
currents instead of the total currents used in this paper. Moreover, for the proof, it
is essential that QZQ∗ is uniformly bounded with respect to h. This is ensured by
assuming the rightmost condition in (30). Finally, in [23] the forward models are
formulated in the quotient space framework, that is, choice of ground level poten-
tial is circumvented by letting Λ(γ) and R(γ) take values in spaces L2(∂Ω)/R and
Rk/R, respectively. With the above modifications to Q and Z, it is straightforward
to see that the whole difference operator in (33) equals its counterpart in [23] up
to an isometry between L2(∂Ω)/R and L2

�(∂Ω).

Above it was pointed out that, under suitable assumptions, the CEM provides
a linearly convergent approximation to the CM as the number of electrodes grows
in a suitable manner. Next we point out that the same holds true also for the
linearized versions of the models.

Theorem 3 Let η ∈ L∞(Ω) be compactly supported in Ω. Under the same as-
sumptions as in Theorem 2, there holds

‖Λ′(γ)η − LQ(R′(γ)η)Q∗‖L(L2
�(∂Ω)) ≤ Ch‖γ‖L∞(Ω)‖η‖L∞(Ω),

where h is the maximal diameter of E+
j and C > 0 is a constant independent of

h, γ, and η.

1 The former in the sense in which Rk is identified with the subspace of L2(∂Ω) consisting
of piecewise constant functions of form a =

∑
j ajχj where χj is the characteristic function of

Ej .
2 Estimate (32) could be enforced by assuming E+

j are regular enough to allow a “scaling
argument” resulting in a Poincaré inequality with a constant bounded by C diam(E+

j ) [23,33,
2].
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Proof Let u be the solution to (2) with boundary condition f ∈ L2
�(∂Ω) and let

(v, V ) solve (29) with the input current I = Q∗f . Denote by u′ the solution to the
sensitivity problem (52) and by (v′, V ′) the solution to (53). In the following, the
operator L is also considered an operator from H1(Ω) to H1

�(Ω) in the sense of
subtracting the mean of the trace; cf. (31).

By the boundary conditions of (53), we have

QV ′ =
k∑

j=1

χ+
j −
∫

Ej

(v′ + zjν · γ∇v′)dS =
k∑

j=1

χ+
j −
∫

Ej

v′dS = QPv′. (34)

By (34), the triangle inequality, and by applying the trace theorem and the fact
‖L‖L(L2(∂Ω)) = 1, we get

‖u′ − LQV ′‖L2(∂Ω) ≤ ‖u′ − Lv′‖L2(∂Ω) + ‖L(Id−QP )v′‖L2(∂Ω)

≤ C‖u′ − Lv′‖H1(Ω) + ‖(Id−QP )v′‖L2(∂Ω). (35)

Next we estimate the first term on the right side of (35). By coercivity of the
bilinear form associated with (2), we have

‖u′ − Lv′‖2H1(Ω) ≤ C
∫

Ω

γ|∇(u′ − v′)|2 dx. (36)

Furthermore, using the variational formulations of the sensitivity problems (52)
and (53), we obtain

∫

Ω

γ|∇(u′ − v′)|2 dx =

∫

Ω

η∇(Lv − u) · ∇(u′ − Lv′) dx

+
k∑

j=1

∫

Ej

1

z
(v′ − V ′j )(u′ − Lv′) dS. (37)

Note that, in the three instances above, v has been replaced by Lv and v′ by Lv′,
respectively. While in the interior term the replacements are trivially justified, the
boundary term follows from the fact that — by the boundary conditions (53) —
we have ∫

Ej

1

z
(v′ − V ′j )c dS = c

∫

Ej

ν · γ∇v′dS = 0

for all scalars c. Inserting (37) into (36), and applying Cauchy–Schwartz inequality
and trace theorem to the right-hand quantity results in

‖u′ − Lv′‖H1(Ω) ≤ C
(
‖η‖L∞(Ω)‖u− Lv‖H1(Ω) +

k∑

j=1

‖v′ − V ′j ‖L2(Ej)

)
. (38)

The first term on the right side of (38) can be estimated suitably by using

‖u− Lv‖H1(Ω) ≤ Ch‖γ‖L∞(Ω)‖f‖L2(∂Ω) (39)

which follows from the proof of Theorem 2. Since by (34) we have

‖v′ − V ′j ‖L2(Ej) = ‖v′ −QV ′‖L2(Ej) ≤ ‖(Id−QP )v′‖L2(∂Ω),
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the second term on the right side of (38) can be handled by working out an
appropriate upper bound for ‖(Id−QP )v′‖L2(∂Ω).

At this point, to guarantee sufficient regularity for v′, we need the assumptions
that γ is as in Definition 1 and η is compactly supported in Ω (cf. (53)). Under
these hypotheses, an analogous argument to [25, Theorem 2.1] — ultimately based
on elliptic regularity theory [34] and the boundary conditions (53) — implies that
there exists a relatively open connected set U ⊆ Ω such that

∂Ω ⊆ ∂U, U ∩ (supp η ∪D) = ∅, ‖ν · γ∇v′‖L2(∂U) ≤ C‖v′‖H1(Ω). (40)

Consequently, applying (32), the trace theorem for quotient spaces [22], continuous
dependence on Neumann-data [34, §1 Theorem 7.4], the rightmost estimate of (40),
and continuity properties of (53) leads us to the estimate

‖(Id−QP )v′‖L2(∂Ω) ≤ Ch inf
c∈R
‖v′ + c‖H1(∂Ω)

≤ Ch inf
c∈R
‖v′ + c‖H3/2(U)

≤ Ch‖ν · γ∇v′‖L2(∂U)

≤ Ch‖v′‖H1(Ω)

≤ Ch‖γ‖L∞(Ω)‖η‖L∞(Ω)‖f‖L2(∂Ω). (41)

In conclusion, using (35)–(41) we have shown that

‖(Λ(γ)′η)f − LQ(R′(γ)η)Q∗f‖L2(∂Ω)

≤ C‖u′ − Lv′‖H1(Ω) + ‖(Id−QP )v′‖L2(∂Ω)

≤ C
(
‖η‖L∞(Ω)‖u− Lv‖H1(Ω) + ‖(Id−QP )v′‖L2(∂Ω)

)

≤ Ch‖γ‖L∞(Ω)‖η‖L∞(Ω)‖f‖L2(∂Ω)

and the proof is concluded. ut
Remark 4 Analogous argumentation can be used to generalize Theorem 3 for
higher order Fréchet derivatives; cf. Proposition 5 in Appendix B.

According to Theorems 2–3, the operators of the form

Λh(γ) = LQ(R(γ)− Z)Q∗, Λ′h(γ) = LQR′(γ)Q∗

satisfy (15) and (28), respectively. Given a noisy measurement map Rδ(γ), the
semidefiniteness test applied to the operators

LQ(R(γ0 + βχB)−Rδ(γ))Q∗, LQ(R(γ0) + βR′(γ0)χB +Rδ(γ))Q∗

where B ⊆ Ω is an open ball, satisfies the asymptotic characterization property
of Theorem 1. Note also that the noise does not get amplified since the operator
norms of Q (and Q∗) and L are obviously bounded by maxj=1,...,k |E+

j |1/2 and 1,
respectively.

The following lemma shows that equivalent semidefiniteness tests can be car-
ried out without constructing the projection operators, but instead, just using the
electrode measurement map.
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Proposition 4 Let A : Rk� → Rk� be arbitrary. Then for any f, g ∈ L2
�(∂Ω) we

have
〈LQAQ∗f, g〉 = AQ∗f ·Q∗g. (42)

As a consequence, the conditions

LQAQ∗ ≥ 0 and A ≥ 0

are equivalent.

Proof Clearly, L is self-adjoint when considered an operator from L2(∂Ω) to itself.
Moreover, since L|L2

�(∂Ω) = Id, we have

〈LQAQ∗f, g〉 = AQ∗f ·Q∗Lg = AQ∗f ·Q∗g.

for any f, g ∈ L2
�(∂Ω), that is, (42). In particular, it follows that A ≥ 0 implies

LQAQ∗ ≥ 0.
To show the converse, assume that LQAQ∗ ≥ 0. As a consequence of (42), it

is sufficient to show that for any I ∈ Rk� there exists an fI ∈ L2
�(∂Ω) such that

I = Q∗fI . For example, the function defined by

fI =
k∑

j=1

χ+
j

|E+
j |
Ij ,

has the desired property. ut

Let us finish the section with a short recap. We have demonstrated that, under the
assumption (32), the CEM can be used to construct a sequence of monotonicity
reconstructions that converge to the infinite precision counterpart in the sense of
Theorem 1. Although the assumptions of Theorem 1 do not require the approxi-
mative operators to satisfy a monotonicity principle, Proposition 3 shows that the
CEM measurement map nevertheless has this favourable property (cf. Remark 2).
We also emphasize that, by Proposition 4, the operators Q and L do not have a
practical role in terms of implementing the algorithm — they are only needed for
forming a theoretical connection between the CEM and CM-based semidefiniteness
tests.

5 Algorithmic implementation

In this section we formulate two slightly different algorithms for reconstructing
strictly positive (or negative) conductivity inclusions. The modifications that en-
able reconstructing indefinite inclusions are left for future studies. To highlight the
fact that in practice the “true” conductivity is unknown, we denote the noisy mea-
surement data by Rδ omitting the dependence on γ. Moreover, let us remind that
we make the arguably restrictive assumption that the background conductivity γ0
is known a priori.

Algorithm 1 (Monotonicity method for the CEM)

0. Fix the collection of balls B, choose the regularization parameter α > 0, and
compute R(γ0) and R′(γ0).
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1. For all B = B(x, r) ∈ B, construct the indicator

Ind(x) := max{0,minσ(R(γ0) + βR′(γ0)χB −Rδ + α Id)} (43)

2. Return Ind.

A logical choice for the probing scalar is

β = ess inf
(γ0κ
γ

)
.

In practice a scalar satisfying β ≤ ess inf(γ0κ/γ) can be constructed from knowl-
edge of a lower bound on κ. Moreover, we propose constructing the regularization
parameter in the form

α = α(h, δ) = −µminσ(R(γ0)−Rδ), µ ≈ 1. (44)

The value of µ is to be tuned — according to our numerical results typically very
close to 1. The idea behind this choice comes from the following heuristic argument.
According to the adaptation of Theorem 1 to the linearized monotonicity method,
the following holds. If the regularization parameter satisfies

α(h, δ) ≥ δ − inf
B∈M′0

inf σ(Λh(γ0) + βΛ′h(γ0)χB − Λh(γ)),

then the reconstruction forms an upper bound for M′0. However, recalling that
βΛ′h(γ0)χB ≤ 0 [19, Corollary 3.4] and Nδ ≤ δ, we see that

− inf σ(Λh(γ0)− Λδh(γ)) ≤ δ − inf σ(Λh(γ0)− Λh(γ))

≤ δ − inf
B∈M′0

inf σ(Λh(γ0) + βΛ′h(γ0)χB − Λh(γ)). (45)

The idea is to barely reverse the inequality (45) by multiplying with a suitable
µ such that the resulting regularization parameter α satisfies (21) while being
small enough. Rigorous association of (44) with the reversal of (45) would of
course require taking the operators L, Q and Q∗ into the consideration. Further
elaboration of the choice of the regularization parameter is left for future studies.

According to our numerical tests, the output of Algorithm 1 is very sensitive
to the choice of the regularization parameter: Choosing slightly too large α tends
to result in crudely overestimated supports, whereas even a bit too small α yields
vanishing reconstructions. An idea for increasing the flexibility of the method is
to fix sufficiently large α, and probe monotonicity using various values of β. Intu-
itively this seems natural, as increasing β will tighten the monotonicity test and
in turn (hopefully) sharpen up the reconstruction. This gives rise to the following
algorithm.

Algorithm 2 (A flexible monotonicity method for the CEM)

0. Fix the collection of balls B and choose the regularization parameter α > 0, and
compute R(γ0) and R′(γ0). Fix a collection {βj}mj=1 ⊂ R of increasing values
for probing semidefiniteness, and set j = 1.
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1. For all B = B(x, r) ∈ B, construct

Indj(x) :=

{
1, if minσ(R(γ0) + βjR

′(γ0)χB −Rδ + α Id) ≥ 0,

0, otherwise.
(46)

2. Set j → j + 1, redefine B → B \ {B(x, r) ∈ B : Indj(x) = 0}, and go back to
step 1.

3. If B = ∅, return the indicator

Ind :=
m∑

j=1

Indj .

Observe that the idea of “Step 2” in Algorithm 2 is to speed up the computations
by discarding excess test balls — this is justified by the monotonicity property of
the CEM measurement map. We also remark that, instead of using the counter
function as in (46), an analogous stability improvement for Algorithm 2 can be
achieved by defining the indicator at each point as the maximal β for which the
respective positive-semidefiniteness holds [15]. Typically, if α > 0 is not very large
and the inclusions are small, the running times of the Algorithms 1–2 are essentially
the same.

6 Numerical experiments

We proceed with four numerical examples which test the implementation of Algo-
rithms 1–2 from the following point of views. The idea of the first example is to
test whether the reconstruction of a fixed (non-convex) inclusion sharpens up as
the number of measurement electrodes increase. Here, for comparison, adaptations
of Algorithms 1–2 are applied also in the CM framework. In the second example,
the algorithms are applied in a two-dimensional geometrical setting to synthetic
data with and without additive artificial random noise. In the third example Al-
gorithm 2 is applied to real-life data measured on a cylindrically symmetric water
tank phantom. Due to the symmetry, the reconstruction is carried out in two spa-
tial dimensions. The last example is an application of Algorithm 1 to synthetic
exact data simulated in three spatial dimensions.

In all of the two-dimensional experiments the object Ω is unit disk-shaped,
and the electrodes are equispaced and of equal length, covering in total half of
the boundary. In the three-dimensional experiment, the domain is a unit ball
with spherical cap-shaped electrodes that are placed approximately equidistantly.
Moreover, in all simulated examples, the contact impedance is given a constant
value zj = 0.01, j = 1, 2, . . . , k.

The numerical implementation of Algorithms 1–2 is based on the following
linear algebra. Let {I(j)}k−1

j=1 be a basis of Rk� and denote

I = [I(1), I(2), . . . , I(k−1)].

Then a matrix representation of R(γ0) + βR′(γ0)χB − R(γ) in this basis is given
by

A = I†(X + V) ∈ R(k−1)×(k−1),
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where I† = (ITI)−1IT is the Moore–Penrose pseudoinverse of I,

X = [X(1), X(2), . . . , X(k−1)], V = [V (1), V (2), . . . , V (k−1)],

with X(j) = (R(γ0) + βR′(γ0)χB)I(j) and V (j) = R(γ)I(j). Evaluation of the
indicator functions in (43) and (46) is based on computing the smallest eigenvalue
of

Aδ = I†(X + Vδ),

where
Vδ = Sym(ṼδI†)I

and Ṽδ is the noisy measurement data. Here Sym denotes the symmetric part,
and it is applied to ensure that the underlying noisy data comprise a symmetric
matrix. In addition, each column of Ṽδ and Vδ is enforced to be in Rk�. Noise is
simulated by setting

Ṽδ = V + N, (47)

where each entry of N is given by Nij = V
(j)
i Yij and Yij is a drawn from normal

distribution of mean zero and standard deviation 5 · 10−3. In the simulated noisy
examples the ratio

‖V −Vδ‖F /‖V‖F
of Frobenius norms is called the “relative error”.

The measurement maps and their Fréchet derivatives are approximated by a
standard finite element method [28] using piecewise quadratic (P2) and piecewise
affine (P1) elements, in two and three spatial dimensions, respectively. Moreover,
the conductivity distribution is discretized by simplex-wise constant (P0) elements.
The computational domain is a polygonal discretization of a unit disk/ball. In the
two-dimensional examples, the meshes used in simulations and reconstructions
consist of approximately 2.7 × 106 nodes and 1.3 × 106 triangles, and 7.5 × 105

nodes and 3.7 × 105 triangles, respectively. In the three-dimensional examples
the simulations are performed on a mesh with 1.2 × 105 nodes and 6.9 × 105

tetrahedrons, while the reconstructions are computed using a mesh with 4.9 ×
104 nodes and 2.9 × 105 tetrahedrons. With the above dimensions, an average
reconstruction computation time using a laptop with two Intel Core 2 processors
with CPU clock rate 2.4 Ghz was around five seconds.

As our FEM model is based on P0-discretization of the conductivity, the char-
acteristic functions of the test sets B are approximated by

χB ≈
∑

K⊆B
χK , (48)

where K are simplices in the mesh. While carrying out the computations, some
subtlety regarding to the choice of the test sets was observed. In particular, using
very small balls yields artifactual reconstructions. This is not surprising since, for
a fixed mesh, (48) is a bad approximation when the radius of B is small. To ease
visualization of the results, we do not use disks/balls as computational test sets.
In two-dimensions, the test sets are chosen from a regular hexagonal tiling of the
plane. In the three-dimensional computations, we use voxels. We emphasize that
convergence result analogous to Theorem 1 can be generalized to various types of
measurable subsets of Ω.
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Example 1 In this numerical example we compute linearized monotonicity recon-
structions with respect to different numbers of electrodes. For comparison, we use
both CEM and discretized CM as forward models. No extra artificial noise is added
to the synthesized data.

The (noiseless) discretized CM is formulated as a truncated matrix approxi-
mation as follows. For a set of linearly independent boundary current densities
{f (m)}pm=1 ⊆ L2

�(∂Ω), we set

A`m =

∫

Ω

(γ0 − βχB)∇u(`)0 · ∇u
(m)
0 dx− 〈Λ(γ)f`, fm〉

where u
(m)
0 solves (2) for the conductivity γ0 and the current density f (m), m =

1, 2, . . . , p. By (2), (52), and Green’s formula, the matrix A = {A`m}p`,m=1 is a

discretization of Λ(γ0) + βΛ′(γ0)χB − Λ(γ). Figure 1 shows the reconstructions

Target Noiseless 1 Noiseless 2

Fig. 1 Two-dimensional CM reconstructions from synthetic exact datum using 64 linearly
independent boundary current densities. Reconstructions “Noiseless 1” and “2” are calcu-
lated using Algorithms 1 and 2, respectively. For more information on the FE mesh, see the
beginning of section 6.

Parameter Noiseless 1 (CM) Noiseless 2 (CM)

diam(B) 0.053 0.053

β 0.8 0.1 + 0.5N
µ 1.00003 1.01

Tbl. 1 Parameter values used in the computations; diam(B) is the diameter of the hexagons
in the hexagonal reconstruction mesh (48), β is the probing scalar(s) in the semidefiniteness
test, and µ is the regularization parameter (44).

produced by Algorithms 1–2 using the discretized CM model. No random noise
is added to the data which are simulated using a target conductivity with an L-
shaped conductive inclusion. The model uses a fairly high number p = 64 linearly
independent boundary current density inputs of form

fm(θ) =
1√
π

{
cos(mθ), m = 1, 2, . . . , p/2,
sin((m− p/2)θ), m− p/2 = 1, 2, . . . , p/2,

, θ ∈ [0, 2π).

Figure 2 displays noiseless reconstructions using the CEM with increasing num-
bers of electrodes. In this example, current inputs of form

I
(m)
j =

{
cos(m2πj/k), m = 1, 2, . . . , k/2,
sin((m− k/2)2πj/k), m− k/2 = 1, 2, . . . , k/2− 1,
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k = 8 k = 16 k = 32 k = 64

Noiseless 1

Noiseless 2

Fig. 2 Two-dimensional CEM reconstructions from synthetic noiseless data using k =
8, 16, 32 and 64 equispaced electrodes of equal width. Reconstructions in the table rows “Noise-
less 1” and “2” are calculated using Algorithms 1 and 2, respectively. For more information
on the FE mesh, see the beginning of section 6.

k = 8





k = 16





k = 32





k = 64





Parameter Noiseless 1 Noiseless 2

diam(B) 0.053 0.053

β 0.8 0.1 + 0.5N
µ 1.4 1.4

diam(B) 0.053 0.053

β 0.8 0.1 + 0.5N
µ 1.001 1.01

diam(B) 0.053 0.053

β 0.8 0.1 + 0.5N
µ 1.00001 1.01

diam(B) 0.053 0.053

β 0.8 0.1 + 0.5N
µ 1.00001 1.0001

Tbl. 2 Parameter values used in the computations; diam(B) is the diameter of the hexagons
in the hexagonal reconstruction mesh (48), β is the probing scalar(s) in the semidefiniteness
test, and µ is the regularization parameter (44).

are used. Intuitively, the results should not depend too much on the choice of the
current basis if the noise level is low. We observe that increasing the number of
electrodes seems to improve the reconstruction to the extent that the non-convexity
of the target is revealed.

Example 2 The second example considers three different test objects in which
the conductivity consists of a constant background with various convex-shaped
inclusions. Both noisy and noiseless measurements are simulated using k = 16
electrodes. The reconstructions computed with both Algorithms 1–2 are displayed
in Figure 3. In the rightmost target, the inclusions are less conductive than the
background, i.e., γ = γ0 − κχD where γ0 > κ > 0. In this case, the suitable
semidefiniteness test is

minσ(Rδ + βR′(γ0)χB −R(γ0) + α Id) ≥ 0.
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Using the right-hand side of (5), one can deduce that a sufficient condition for the
probe constant is β ≤ ess inf(−κ). In the noiseless case we observe that (44) yields
a negative α. However, we emphasize that negative regularization parameters are
allowed by the adaptation of (21) to the case with resistive inclusions. The results
indicate that interesting information about the inclusion locations can be retrieved
in a relatively realistic simulated setting. Moreover, we notice that Algorithm 2
is more flexible in the sense that it enables compensating bad choices of α by
increasing β.

Example 3 In this example we verify that, in principle, Algorithm 2 can provide
reasonable reconstructions from real-life measurement data. The measurement
data are gathered at the laboratory of the Applied Physics Department at Uni-
versity of Eastern Finland in Kuopio. The test object consists of a cylinder tank
filled with regular tap water and iron objects. There are 16 rectangular electrodes
on the lateral surface of the tank, and they are homogeneous along the symme-
try axis of the tank. Moreover, the water surface is set along the top edge of the
electrodes. Thus, the measurement geometry is essentially two-dimensional. The
radius of the tank cross-section is 14.0 cm, and the electrode width and height are
2.5 cm and 7.0 cm, respectively. The measurements were performed using a dipole
current basis I(m) = (e(1) − e(m+1))× 1.0 mA, m = 1, 2, . . . , k − 1.

The results obtained with a planar computational model are presented in Fig-
ure 4. Both reconstructions were computed using Algorithm 2 with the trial-and-
error estimated values

γ0 = 0.0243 S/m, z = 0.005 m2/S

for the background conductivity and contact impedance, respectively.
It was observed that the reconstruction procedure is very sensitive with respect

to the values of γ0 and z — a few percent perturbation in their values was enough to
ruin the whole reconstruction. This is not surprising as the measurement operator
(when interpreted as a function of the conductivity and the contact resistance)
satisfies

1

c
R(γ0, z) = R(cγ0, z/c) (49)

for any constant c > 0. By (49), a few percent error on γ0 and z can cause a few
percent error on the measurement operator. Due to ill-posedness, such error lev-
els are enough to suppress the signal entirely. However, the results show that with
sufficiently good estimates for γ0 and z, the proposed method can yield reconstruc-
tions that are comparable in quality to virtually any existing EIT reconstruction
method.

Example 4 The final example is a simulated three-dimensional example. The ob-
ject is a unit ball, and there are k = 32 approximately equidistantly placed elec-
trodes which all are spherical caps of radius 0.1. An orthonormal current basis
{I(m)}k−1

m=1, defined by

I
(m)
j =





√
1

m(m+1) j = 1, 2, . . . ,m,

−
√

m
m+1 j = m+ 1,

0 j = m+ 2,m+ 3, . . . , k,

(50)
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is used. Note that (50) is the Gram-Schmidt orthonormalization of the standard
e(1) − e(m+1) basis used in many measurement setups, including the setup in
Example 3.

The results are shown in Figure 5; for the ease of presentation only Algorithm 1
is considered. It is observed that, with suitable choices of regularization parame-
ters, the algorithm can separate the reconstructed inclusions. We stress that, after
precomputing an approximation of R′(γ0) and fixing the χB ’s, the implementation
of the method is independent of the spatial dimension.

7 Conclusions

We have extended previous works on the regularization analysis as well as the im-
plementation of the monotonicity method. The leading idea of this reconstruction
technique is to perform semidefiniteness tests on certain linear combinations of
(noisy and discrete) current-to-voltage operators. We have proven that, as a suit-
ably chosen sequence of regularization parameters tends to zero, the approximative
test criterion converges uniformly to the idealistic one. Moreover, we rigorously
justified the use of the CEM as an approximate model.

To complement the theoretical study, two reconstruction algorithms were for-
mulated and implemented. Numerical examples were carried out using both sim-
ulated CEM data and real-life measurement data. The tests indicate that the
monotonicity method can very efficiently provide relatively good images on con-
ductivity inhomogeneities if the homogeneous background conductivity and the
electrode contact resistances are sufficiently accurately known.
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A Appendix: a lemma on the convergence of infima/suprema

Lemma 2 Let J be an arbitrary index set and {aj}j∈J , {aj(h)}j∈J ⊂ R, h > 0, be sequences
such that infj∈J aj > −∞ and

lim
h→0

sup
j∈J
|aj − aj(h)| = 0.

Denoting a = infj∈J aj and a(h) = infj∈J aj(h) we have

lim
h→0

a(h) = a. (51)

Proof Let us first show that the limit in (51) exists. Given an arbitrary ε > 0, there exists
an hε > 0 such that supj∈J |aj − aj(h)| ≤ ε/2 for all h ∈ (0, hε). Let h, h′ ∈ (0, hε) then

supj∈J |aj(h)− aj(h′)| ≤ ε, and fix a sequence {j(k)}∞k=1 ⊆ J such that aj(k)(h) converges to
a(h). Hence

a(h′) ≤ lim inf
k→∞

aj(k)(h
′) ≤ lim inf

k→∞
aj(k)(h) + ε = a(h) + ε.

By symmetry with respect to h and h′, it follows that {a(h)}h>0 is a Cauchy sequence.

It still remains to show that the limit coincides with a. For any ε > 0, there exists jε ∈ J
and hε > 0 such that |ajε−a| ≤ ε/2 and supj∈J |aj−aj(h)| ≤ ε/2 for h ∈ (0, hε), respectively.
Thus for h ∈ (0, hε)

a(h) ≤ ajε (h) ≤ ajε + ε/2 ≤ a+ ε.

For h ∈ (0, hε) pick j′ε such that |aj′ε (h)− a(h)| ≤ ε/2 then

a ≤ aj′ε ≤ aj′ε (h) + ε/2 ≤ a(h) + ε.

Altogether we have shown for any ε > 0 that |a(h)− a| ≤ ε for h ∈ (0, hε). ut

B Appendix: linearization of the CEM and the CM

Proposition 5 The operators Λ(γ) ∈ L(L2
�(∂Ω)) and R(γ) ∈ L(Rk�) are analytic in γ ∈

L∞+ (Ω). In particular, they are infinitely many times Fréchet differentiable. Furthermore, if
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η is compactly supported in Ω, then the boundary value problems

{
∇ · (γ∇u′) = −∇ · (η∇u) in Ω,

ν · γ∇u′ = 0 on ∂Ω,
(52)





∇ · (γ∇v′) = −∇ · (η∇v) in Ω,

ν · γ∇v′ = 0 on ∂Ω \⋃kj=1 Ej ,

v′ + zν · γ∇v′ = V ′j on Ej ,∫

Ej

ν · γ∇v′ dS = 0, j = 1, 2, . . . k,

(53)

uniquely determine the Fréchet derivatives via

Λ′(γ)η = u′|∂Ω , R′(γ)η = V ′,

respectively. Above u and (v, V ) are the unique weak solutions of (2) and (29), respectively.

Proof For clarity, we only consider the CEM case as the CM can be handled analogously [6].
Given (v, V ) ∈ H1(Ω)⊕ Rk� and η ∈ L∞+ (Ω), the variational problem

∫

Ω
γ∇v′ · ∇w dx+

k∑

j=1

∫

Ej

1

z
(v′ − V ′j )(w −Wj) dS = −

∫

Ω
η∇v · ∇w dx (54)

for all (w,W ) ∈ H1(Ω)⊕Rk� , is uniquely solvable. Moreover, if (v, V ) weakly solves (29), then
V ′ = R′(γ)I [32]. Clearly, if η is compactly supported, the right-hand side of (54) does not
induce any boundary terms and hence (v′, V ′) satisfies (53).

Define the mapping
D = D(η) : Rk� → Rk� , V 7→ V ′

as the solution operator to (54). Consider the expansion

V (γ + η) = V (γ) + Ṽ (η),

where we denote V (γ) = R(γ)I and V (γ + η) = R(γ + η)I. A direct calculation using the
variational formulation with the associated internal potentials reveals

Ṽ (η) = D(η)V (γ + η) = D(η)Ṽ (η) +D(η)V (γ).

As ‖D(η)‖ ≤ C‖η‖L∞(Ω), the associated Neumann-series converges for small enough η. Con-
sequently,

V (γ + η) = V (γ) + Ṽ (η) = V (γ) + (Id−D(η))−1D(η)V (γ) =
∞∑

m=0

D(η)mV (γ). (55)

Different order Fréchet derivatives can be inductively derived using (55) and the fact that D(η)
is linear. ut
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Target

Noiseless 1

(CEM)

Noiseless 2

(CEM)

Noisy.1

(CEM)

Noisy.2

(CEM)

Fig. 3 Two-dimensional reconstructions on a unit disk with 16 equispaced and equidis-
tant electrodes that cover 50% of the boundary. Reconstructions in the table rows “Noise-
less/Noisy 1” and “2” are calculated using Algorithms 1 and 2, respectively. In each column,
the noisy reconstructions are computed from a single dataset that contains around 0.5% pseu-
dorandom noise; see (47) for details on the noise simulation. For more information on the FE
mesh, see the beginning of section 6.

Left





Middle





Right





Parameter Noiseless 1 Noiseless 2 Noisy 1 Noisy 2

diam(B) 0.053 0.053 0.053 0.053

β 0.8 0.1 + 0.5N 0.8 0.1 + 0.5N
µ 1.001 1.01 1.01 1.01

diam(B) 0.053 0.053 0.053 0.053

β 0.66 0.1 + 0.5N 0.66 0.1 + 0.5N
µ 1.0002 1.01 1.01 1.01

diam(B) 0.053 0.053 0.053 0.053

β −0.1 −0.01− 0.02N −0.01 −0.01− 0.02N
µ 0.99998 0.99998 1.001 1.001

Tbl. 3 Parameter values used in the computations; diam(B) is the diameter of the hexagons
in the hexagonal reconstruction mesh (48), β is the probing scalar(s) in the semidefiniteness
test, and µ is the regularization parameter (44).
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Target Reconstrution 2 (CEM)

Fig. 4 Reconstructions from water tank measurement data computed using a planar com-
putational model and Algorithm 2. The tank is cylindrically symmetric with cross-sectional
radius 14 cm. The measurements are done using 16 identical rectangular equispaced electrodes
of 2.5 cm width and 7 cm height, and the depth of the water is 7 cm. For more information
on the FE mesh, see the beginning of section 6.

Parameter Reconstruction 2

diam(B) 0.093

β 0.1 + 0.1N
µ 1.02

Tbl. 4 Parameter values used in the computations; diam(B) is the diameter of the hexagons
in the hexagonal reconstruction mesh (48), β is the probing scalar(s) in the semidefiniteness
test, and µ is the regularization parameter (44).
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Target Noiseless 1 (CEM)

1

2

3

4

5

6

7

8

9

10

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

1e−10

1

2

3

4

5

6

7

8

9

10

0.15

0.30

0.45

0.60

0.75

0.90

1.05
1e−10

1

2

3

4

5

6

7

8

9

10

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e−9

Fig. 5 Three-dimensional reconstructions from simulated noise-free measurements with 32
electrodes. The test sets B are cubes. Reconstructions in the table column “Noiseless 1”
are calculated using Algorithm 1. For more information on the FE mesh, see the beginning of
section 6.

Top





Middle





Bottom





Parameter Noiseless 1

diam(B) 0.069

β 0.8

µ 1.023

diam(B) 0.069

β 0.8

µ 1.002

diam(B) 0.069

β 0.8

µ 0.9966

Tbl. 5 Parameter values used in the computations; diam(B) is the diameter of the voxels in
the reconstruction mesh (48), β is the probing scalar(s) in the semidefiniteness test, and µ is
the regularization parameter (44).
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Detecting inhomogeneities in the electrical conductivity is a special case of the inverse problem in
electrical impedance tomography, that leads to fast direct reconstruction methods. One such method
can, under reasonable assumptions, exactly characterize the inhomogeneities based on monotonicity
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and show numerically that the two methods gives essentially the same reconstruction. For a fair
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errors from numerical solution to PDEs and numerical integration. Using a special factorization of
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1. Introduction

In electrical impedance tomography (EIT) the internal electrical conductivity γ, inside
a bounded Lipschitz domain Ω ⊂ Rd for d ≥ 2, is determined from boundary current-
voltage measurements through electrode patches. The underlying mathematical problem,
also known as the Calderón problem [1], is an inverse problem. A common mathematical
formulation of EIT is the continuum model

∇ · (γ∇u) = 0 in Ω, ν · γ∇u = g on ∂Ω,

∫

∂Ω
u|∂Ω ds = 0, (1.1)

where u is the internal electrical potential, ν is an outwards pointing unit normal, and g
is the applied current. The latter condition in (1.1) is a grounding of the total electrical

potential at the boundary. If γ ∈ L∞+ (Ω) and g ∈ H−1/2
� (∂Ω) with

L∞+ (Ω) ≡ {w ∈ L∞(Ω) : ess infw > 0} ,

H
−1/2
� (∂Ω) ≡

{
w ∈ H−1/2(∂Ω) : 〈w, 1〉 = 0

}
,

∗Corresponding author. Email: hgar@dtu.dk
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then standard elliptic theory gives rise to a unique solution u ∈ H1
� (Ω) to (1.1), where

the �-symbol implies functions with zero mean on the boundary

H
1/2
� (∂Ω) ≡

{
w ∈ H1/2(∂Ω) :

∫

∂Ω
w ds = 0

}
,

H1
� (Ω) ≡

{
w ∈ H1(∂Ω) : w|∂Ω ∈ H1/2

� (∂Ω)
}
.

The forward problem of EIT is the Neumann-to-Dirichlet (ND) map R(γ) : ν · γ∇u →
u|∂Ω which relates any applied current to the corresponding boundary potential. In gen-

eral R(γ) is a map from H
−1/2
� (∂Ω) to H

1/2
� (∂Ω), however in this paper it suffices to

restrict it to a map in L(L2
�(∂Ω)), the space of linear and bounded operators from L2

�(∂Ω)
to itself, where

L2
�(∂Ω) ≡

{
w ∈ L2(∂Ω) :

∫

∂Ω
w ds = 0

}
.

In this sense R(γ) is both compact and self-adjoint in the usual L2(∂Ω)-inner product.
The inverse problem of EIT is from knowledge ofR(γ) and Ω to reconstruct γ. Uniqueness
has been shown with various regularity assumptions depending on the dimension d [2–6]
and for d = 2 there is uniqueness for general L∞+ (Ω)-conductivities when the domain Ω
is simply connected [7].

The inverse problem of EIT is severely ill-posed and with reasonable assumptions
it is only possible to get conditional logarithmic stability [8, 9]. It is therefore not
always of interest to perform a full reconstruction of γ, but rather reconstruct inclu-
sions/inhomogeneities from a known or uninteresting background, which is an easier
problem. Here it is assumed that

γ ≡ γ0 + κχD,

where γ0 ∈ L∞+ (Ω) is known and χD is a characteristic function over the sought inclusion
D ⊂ Ω, on which γ0 is perturbed by κ. Direct reconstruction methods for such inclusion
detection are prominently the factorization method [10–12] and the enclosure method
[13, 14]. In this paper we investigate the more recent monotonicity method [15–19] that
makes use of a monotonicity property of γ 7→ R(γ). The basic idea of the method is to
determine whether or not a chosen ball B is inside the inclusion D, for instance in the
simple case γ ≡ 1 + χD, then

B ⊆ D implies R(1 + χB)−R(1 + χD) ≥ 0, (1.2)

where the inequality is in terms of positive semi-definiteness. Checking the positive semi-
definiteness for all balls in Ω gives an upper bound on D, and in [15] it was shown that
it completely characterizes D under reasonable regularity assumptions.

The map γ 7→ R(γ) is non-linear and thus the evaluation of R(1 + χB) is costly as
each evaluation requires solving (1.1) for several Neumann conditions. In [15] it was
shown that, without loss of shape information, the non-linear part could be replaced by
a linearisation

B ⊆ D implies R(1) + 1
2R′(1)χB −R(1 + χD) ≥ 0. (1.3)

Using the Fréchet derivative is attractive as it only requires one evaluation of the deriva-
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tive, and can be evaluated beforehand.
In this paper we compare reconstructions based on the non-linear approach (1.2) and

the linear approach (1.3). In [17] resolution bounds for stable reconstruction were deter-
mined based on the non-linear and linear approach, which for the linear method were
much more pessimistic, though the bounds were not shown to be optimal. With various
levels of noise added to the measurements, the numerical examples in section 4 surpris-
ingly shows that there is essentially no difference in the reconstructions based on the
non-linear and the linear approach.

We focus on the unit disk domain Ω ≡ D in R2. For a fair comparison of the non-linear
and linear method, exact matrix representations are determined for R(1 + βχB) and
R′(1)χB for any ball in D, in order to avoid errors from numerical solution to PDEs
and numerical integration. In this specific geometry the non-linear method furthermore
becomes as fast as the linear method, by use of an explicit factorization derived from
Möbius transformations.

More precise forward models for EIT exists for practical measurements, such as the
complete electrode model (CEM). It was recently shown in [16] that the monotonicity
method can be regularized against noise and generalizes to various approximations of
the continuum model, including the CEM. By simply replacing the ND map with the
CEM counterpart gives a reconstruction that is interlaced between two reconstructions
from the continuum model; one without regularization and one with regularization. Thus,
in this sense, the comparison made here also directly applies to the CEM variant of the
monotonicity method.

The contents of this paper is organised as follows: in section 2 the monotonicity method
is outlined and Möbius transformations are introduced to relate non-concentric ball inc-
lusions to concentric ones. In section 3 the exact matrix representations of the ND map
and its Fréchet derivatives are derived, and their matrix structures are elaborated on.
Implementation details and numerical examples are given in section 4, and finally we
conclude in section 5.

2. Monotonicity-based shape reconstruction

Let γ0 ∈ L∞+ (Ω) be a known background conductivity and let κ ∈ L∞+ (Ω), and for an
inclusion D ⊂ Ω define the conductivity as

γ ≡ γ0 + κχD, (2.1)

where χD is a characteristic function on D. As κ > 0 we call the inclusion in (2.1) positive
(or definite). The monotonicity method can also be formulated for negative inclusions
and for a combination of both positive and negative inclusions (indefinite) [15, 16]. We
denote for β > 0 the monotonicity-based reconstructions by

T ≡ {B ⊆ Ω open ball : R(γ0 + βχB)−R(γ) ≥ 0} ,
T ′ ≡

{
B ⊆ Ω open ball : R(γ0) + βR′(γ0)χB −R(γ) ≥ 0

}
.

Here the Fréchet derivative R′(γ0) of γ 7→ R(γ) evaluated at γ0 and in direction η ∈
L∞(Ω) is given by

〈R′(γ0)[η]f, g〉 = −
∫

Ω
η∇wf · ∇wg dx, (2.2)
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where wf and wg are solutions to (1.1) with conductivity γ0 and Neumann condition f
and g, respectively.

Using the formulation in [16], if we assume that γ0 is furthermore piecewise analytic,
D ⊆ Ω and D has connected complement (no holes in the inclusions), then

D ⊆ ∪T ⊆ D if 0 < β ≤ ess infκ, (2.3)

D ⊆ ∪T ′ ⊆ D if 0 < β ≤ ess inf

(
γ0κ

γ

)
. (2.4)

Given bounds βL
0 ≤ γ0 ≤ βU

0 and assuming prior knowledge of bounds on the inclusion
βL ≤ κ ≤ βU, then an admissible choice for the β-value in (2.3) and (2.4) can be
guaranteed by

βnonlin ≡ βL, βlin ≡ βL
0 β

L

βU
0 + βU

. (2.5)

The main advantage of the linear method is that R′(γ0) can be evaluated cheaply and
prior to reconstruction. While the R(γ0 + βχB)-maps can also be evaluated prior to
reconstruction it requires knowledge of the β-value beforehand, and different β-values
requires new evaluations. The non-linear method has the advantage that choosing β as
in (2.5) only requires prior knowledge of a lower bound on κ, while the linear method
requires both a lower and upper bound.

Given a noisy perturbation Eδ ∈ L(L2
�(∂Ω)) with noise level ‖Eδ‖L(L2

�(∂Ω)) ≤ δ, then

the noisy datum Rδ(γ) is modelled with additive noise

Rδ(γ) ≡ R(γ) + Eδ. (2.6)

For regularization parameter choice α(δ) ≥ δ with limδ→0 α(δ) = 0 it was proved in [16]
that the following regularized reconstructions are upper bounds for D, and that they
converge as the noise level tends to zero, δ → 0:

Tα ≡
{
B ⊆ Ω open ball : R(γ0 + βχB) + α Id−Rδ(γ) ≥ 0

}
, (2.7)

T ′α ≡
{
B ⊆ Ω open ball : R(γ0) + βR′(γ0)χB + α Id−Rδ(γ) ≥ 0

}
. (2.8)

In the rest of the paper we will consider Ω ≡ D the unit disk in R2, furthermore we
will throughout identify (x1, x2) ∈ R2 with x1 + ix2 ∈ C. The background conductivity
will be chosen as γ0 ≡ 1, however this choice is merely for ease of presentation, and other
(constant) background conductivities can be used with the identity

R(cγ) =
1

c
R(γ), c > 0.

2.1. Möbius transformations and additional notation

To get a precise and fast evaluation of R(1 + βχB), we use Möbius transformations to
move non-concentric balls BC,R to concentric balls B0,r, and abuse that the spectrum of
R(1 + βχB0,r

) is known. To shorten notation we will use the abbreviation

γC,R ≡ 1 + βχBC,R ,
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where BC,R is an open ball with centre C and radius R. Denote by Ma for any a ∈ D
the Möbius transformation

Ma(x) ≡ x− a
ax− 1

, x ∈ D.

Here Ma : D → D and ∂D → ∂D, and is furthermore an involution i.e. its own inverse
M−1
a = Ma. Using the notation in [20] let a ≡ ρeiζ for 0 ≤ ρ < 1 and ζ ∈ R. For

0 < r < 1 then Ma(B0,r) = BC,R with

C =
ρ(r2 − 1)

ρ2r2 − 1
eiζ , R =

r(ρ2 − 1)

ρ2r2 − 1
.

Furthermore, for C = ceiζ with 0 ≤ c < 1 and 0 < R < 1 − c, then there is a unique
a ∈ D such that Ma(BC,R) = B0,r where r and a satisfies

r =
1 +R2 − c2 −

√
((1−R)2 − c2)((1 +R)2 − c2)

2R
, a =

C

1−Rr .

The above notation for the relation between a non-concentric ball BC,R and a concentric
ball B0,r will be used in the remainder of the paper, and it is also illustrated in figure 2.1.

Figure 2.1. Illustration of Ma acting on balls B0,r and BC,R.

LetMaf ≡ f ◦Ma, then the Jacobian determinant for the change of variables on D is

Ja ≡
(

1− ρ2

|a · −1|2
)2

.

The Jacobian determinant for the integral on ∂D is J
1/2
a |∂D, and there is the following

factorization of R(γC,R) (cf. [20, Appendix B])

R(γC,R) = PMaR(γ0,r)J
1/2
a Ma. (2.9)

Here P : L2(∂D)→ L2
�(∂D) is the orthogonal projection given by Pf ≡ f − 1

2π

∫
∂D f ds,

and J
1/2
a : L2(∂D)→ L2(∂D) is the multiplication operator f 7→ J

1/2
a |∂Df .

The operator R(γ0,r) for the concentric ball has the Fourier basis

fn(θ) ≡ 1√
2π
einθ, n ∈ Z \ {0}, (2.10)

5



as eigenfunctions with eigenvalues

λn ≡
2 + β(1− r2|n|)
2 + β(1 + r2|n|)

1

|n| , n ∈ Z \ {0}. (2.11)

So the factorization in (2.9) implies that the β-dependence of R(γC,R) is given explicitly

through a diagonalization of R(γ0,r) with the eigenvalues (2.11). Here PMa and J
1/2
a Ma

only depends on the transformation parameter a, and can be determined prior to recon-
struction, thus making the non-linear and linear methods have identical computational
complexity.

In order to determine matrix representations of PMa and J
1/2
a Ma in the Fourier basis

it is relevant to investigate the action of Ma on a trigonometric function, utilizing that
it maps ∂D to itself:

Ma(e
inθ) = einψa(θ) = Ma(e

iθ)n =

(
eiθ − ρeiζ
ρei(θ−ζ) − 1

)n
, (2.12)

where ψa is the corresponding transformation in the angular variable on ∂D.

Lemma 2.1 The map ψa in (2.12) is given by

ψa(θ) ≡ π + ζ + 2 arctan

(
1 + ρ

1− ρ tan

(
θ − ζ

2

))
.

Proof. By standard trigonometric identities it follows that

eiz =
1 + i tan(z/2)

1− i tan(z/2)
, z ∈ (−π, π),

thus

ei(π+2 arctan(z)) =
−1− iz
1− iz , z ∈ R. (2.13)

Since Ma(e
iθ) = eiζMρ(e

i(θ−ζ)) we get

ψa(θ) = ζ + ψρ(θ − ζ), (2.14)

so it is sufficient to consider ζ = 0. Writing ψρ(θ) on the form (2.13) gives

eiψρ(θ) =
eiθ − ρ
ρeiθ − 1

=
−1− iz
1− iz ⇒ z =

(1 + ρ)(1− eiθ)
(1− ρ)(1 + eiθ)

i =
1 + ρ

1− ρ tan(θ/2). (2.15)

Now combining (2.15) with (2.13) and (2.14) yields the desired result.

3. Matrix structures and characterizations

For a general real-valued γ ∈ L∞+ (D) it holds that R(γ)f = R(γ)f . Defining {fn}n∈Z\{0}
as the usual Fourier basis for L2

�(∂D) as in (2.10) gives the identity R(γ)fn = R(γ)f−n,
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i.e.

An,m ≡ 〈R(γ)fm, fn〉 = 〈R(γ)f−m, f−n〉 = A−n,−m, n,m ∈ Z \ {0}. (3.1)

So by arranging the row and column indices in the matrix representation A from negative
to positive gives a centrohermitian matrix [21], meaning that there is symmetry (similar
to a Hermitian matrix) across the centre of the matrix. The centrohermitian property
can be written as in (3.1) for that particular choice of indices (which will used throughout
this paper), or in general as

A = JAJ ,

where J is the exchange matrix which has zeroes in all entries except on the anti-diagonal
(from bottom left to top right) where its entries equals 1. Since R(γ) is self-adjoint also
makes A Hermitian in addition to being centrohermitian.

In [20] an explicit matrix representation of R(γC,R) was determined by the use of basis
functions orthonormal in weighted L2-inner products. This matrix representation cannot
be used for the monotonicity method as the basis functions depends on the transformation
Ma, and here we need a fixed basis namely the same used for the datum R(γ). A common
choice of orthonormal basis for the unit disk is the Fourier basis (2.10) for L2

�(∂D), which

will also be used here. Now a matrix representation of PMa and J
1/2
a Ma from (2.9) can

be found in terms of the Fourier basis.

Theorem 3.1 Recall that a = ρeiζ and define the matrix Ha by

(Ha)n,m ≡ 〈fm,Mafn〉, n,m ∈ Z \ {0}, (3.2)

then Ha has the following properties (note in particular that (iv)-(vii) explicitly defines
the entire matrix):

(i) Ha is a matrix representation of J
1/2
a Ma.

(ii) (Ha)
∗ is a matrix representation of PMa.

(iii) Ha is involutory, i.e. Ha = H−1
a .

(iv) (Ha)n,m = ei(m−n)ζ(Hρ)n,m, ∀n,m.

(v) Ha is centrohermitian, i.e. (Ha)n,m = (Ha)−n,−m, ∀n,m.
(vi) Ha is block diagonal with (Ha)n,m = 0 for n < 0,m > 0 and for n > 0,m < 0.

(vii) There is the following formula for n > 0,m > 0:

(Hρ)n,m =
n∑

k=max{n−m,0}
(−1)n−k

(
k +m− 1

k +m− n

)(
n

k

)
ρ2k+m−n. (3.3)

Proof. Since J
1/2
a is the Jacobian determinant for the change of variables Ma we get

(Ha)n,m = 〈J1/2
a Mafm, fn〉,

which shows (i). (iii) follows directly from (i) as J1/2Ma is an involution on L2
�(∂D)

(cf. [20]). Furthermore, as P is self-adjoint in the L2(∂D)-inner product (as it is an
orthogonal projection), then

〈J1/2
a Maf, g〉 = 〈f,Mag〉 = 〈Pf,Mag〉 = 〈f, PMag〉, ∀f, g ∈ L2

�(∂D),
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i.e. the adjoint of PMa (in terms of maps from L2
�(∂D) to itself) is J

1/2
a Ma, which shows

(ii).
Proof of (iv) and (v): from Lemma 2.1 and (2.14) where ψρ is 2π-periodic, then a

change of variable from θ to θ + ζ gives

〈fm,Mafn〉 =
1

2π

∫ 2π

0
ei(mθ−nζ−nψρ(θ−ζ)) dθ =

1

2π

∫ 2π

0
ei(mθ+mζ−nζ−nψρ(θ)) dθ

= ei(m−n)ζ 1

2π

∫ 2π

0
ei(mθ−nψρ(θ)) dθ = ei(m−n)ζ〈fm,Mρfn〉.

This shows (iv). Furthermore,

〈fm,Mafn〉 =
1

2π

∫ 2π

0
ei(mθ−nψa(θ)) dθ =

1

2π

∫ 2π

0
e−i(mθ−nψa(θ)) dθ = 〈f−m,Maf−n〉.

Proof of (vi): first notice the identity

Mρfn =
1√
2π

(
eiθ − ρ
ρeiθ − 1

)n
=

1√
2π

(
ρe−iθ − 1

e−iθ − ρ

)−n
=

1√
2π

(
eiθ − ρ
ρeiθ − 1

)−n

=
1√
2π

(eiθ − ρ)−n(ρeiθ − 1)n.

Assume n > 0, then using the binomial theorem for both (eiθ − ρ)−n and (ρeiθ − 1)n

(which for (eiθ−ρ)−n converges as ρ < 1) and using that the negative binomial coefficient
can be written as

(−n
k′

)
= (−1)k

′
(
n+ k′ − 1

k′

)
,

gives

Mρfn =
1√
2π

[ ∞∑

k′=0

(−1)k
′
(
n+ k′ − 1

k′

)
(−ρ)k

′
e−i(k

′+n)θ

]
·
[

n∑

k=0

(
n

k

)
(−1)n−kρkeikθ

]

=
1√
2π

∞∑

k′=0

n∑

k=0

(−1)n−k
(
n+ k′ − 1

k′

)(
n

k

)
ρk+k′ei(k−k

′−n)θ, n > 0.

Thus

〈fm,Mρfn〉 =
1

2π

∞∑

k′=0

n∑

k=0

(−1)n−k
(
n+ k′ − 1

k′

)(
n

k

)
ρk+k′

∫ 2π

0
ei(m+k−k′−n)θ dθ. (3.4)

So if m < 0 and n > 0 then m + k − k′ − n < 0 for all k = 0, 1, . . . , n and k′ ≥ 0 so∫ 2π
0 ei(m+k−k′−n)θ dθ = 0, i.e.

〈fm,Mρfn〉 = 0, m < 0, n > 0. (3.5)

Now (vi) follows from (3.5), (iv), and (v).
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Proof of (vii): Assume n > 0 and m > 0. We have

1

2π

∫ 2π

0
ei(m+k−k′−n)θ dθ = δm+k−k′−n,0,

so to find the non-zero coefficients in (3.4) we need to determine when m+k−k′−n = 0,
i.e. set k′ = m+ k − n and find m+ k − n ≥ 0 (as we have k′ ≥ 0). Since k ≥ 0 we need
k′ = m+ k − n and k ≥ max{n−m, 0}. Thus (3.4) becomes

〈fm,Mρfn〉 =

n∑

k=max{n−m,0}
(−1)n−k

(
k +m− 1

k +m− n

)(
n

k

)
ρ2k+m−n, n > 0,m > 0.
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Figure 3.1. Plot of absolute value |(Ha)n,m| for |n|, |m| = 1, 2, . . . , 100.

Figure 3.1 shows the structure of the Ha-matrices for different choice of a. It is evident
that as a → 1, and thereby Ma maps B0,r to a ball BC,R close to the boundary, the
representation Ha becomes less sparse in the Fourier basis.

If we denote the matrix representation of R(γC.R) by

An,m ≡ 〈R(γC,R)fm, fn〉,

and for R(γ0,r) the matrix representation is a diagonal matrix D with Dn,n ≡ λn from
(2.11), then from Theorem 3.1 and (2.9) we have

A = (Ha)
∗DHa. (3.6)

Due to the centrohermitian and block diagonal properties of both Ha and D they have
the block structure

Ha =

(
JH+

a J 0
0 H+

a

)
, D =

(
JD+J 0

0 D+

)
, (3.7)

where J is the previously defined exchange matrix, H+
a is the lower right part of Ha i.e.

for n > 0,m > 0, and similarly D+ is the lower right part of D. Therefore we get the
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following structure for A:

A =

(
J (H+

a )∗D+H+
a J 0

0 (H+
a )∗D+H+

a

)
. (3.8)

That the matrix representation ofR(γC,R), for any ball inclusion BC,R, is a block diagonal
matrix of the form (3.8) is a non-trivial result of the factorization (3.6). For a general
γ ∈ L∞+ (D) the matrix representation of R(γ) is not block diagonal. Furthermore, it also
means that we only need to evaluate and save the H+

a -part for constructing A.
An explicit formula can also be obtained for the Fréchet derivative R′(1) on ball inc-

lusions.

Proposition 3.2 Denote by A′ the matrix representation of R′(1)[χBC,R ], i.e.

A′n,m ≡ 〈R′(1)[χBC,R ]fm, fn〉, n,m ∈ Z \ {0}, (3.9)

then

(i) A′ is Hermitian, i.e. A′ = (A′)∗.
(ii) A′ is centrohermitian, i.e. A′n,m = A′−n,−m.

(iii) A′ is block diagonal with A′n,m = 0 for n < 0,m > 0 and for n > 0,m < 0.

(iv) There is the following formula for n > 0,m > 0, recalling that C = ceiζ :

A′n,m = −ei(m−n)ζ

min{n,m}−1∑

k=0

1

k + 1

(
m− 1

k

)(
n− 1

k

)
cm+n−2k−2R2k+2. (3.10)

Proof. (i) and (ii) follows directly from (2.2), and the proof of (iii) can be done in an
analogous way to the proof of Theorem 3.1. These three properties can also be derived
from the fact that the matrix representations of both R(γC,R) and R(1) have the same
properties.

Now proving (iv). Let n > 0,m > 0 and for x ∈ D write x ≡ x1 + ix2 for real-valued
x1 and x2. Then the solution to (1.1) with γ ≡ 1 and Neumann boundary condition fn
from (2.10) is

wn(x) ≡ 1

n
√

2π
xn, n > 0.

From (2.2) we get

A′n,m = −
∫

BC,R

∇wm · ∇wn dx = − 1

π

∫

BC,R

xm−1xn−1 dx.

Applying a change of variables from x to x+C and writing x = ηeiθ in polar coordinates
yields

A′n,m = − 1

π

∫

B0,R

(x+ C)m−1(x+ C)
n−1

dx

= − 1

π

∫ R

0

∫ 2π

0
(ηeiθ + C)m−1(ηe−iθ + C)n−1η dθ dη.
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Now using the binomial theorem for (ηeiθ + C)m−1 and (ηe−iθ + C)n−1

A′n,m = − 1

π

m−1∑

k=0

n−1∑

k′=0

(
m− 1

k

)(
n− 1

k′

)
Cm−k−1C

n−k′−1
∫ R

0
ηk+k′+1 dη

∫ 2π

0
ei(k−k

′)θ dθ.

Here the term
∫ 2π

0 ei(k−k
′)θ dθ is only non-zero for k′ = k, which can only hold for k up

to min{n,m} − 1. Also recalling that C = ceiζ gives the expression in (3.10)

A′n,m = −2

min{n,m}−1∑

k=0

(
m− 1

k

)(
n− 1

k

)
Cm−k−1C

n−k−1
∫ R

0
η2k+1 dη

= −ei(m−n)ζ

min{n,m}−1∑

k=0

1

k + 1

(
m− 1

k

)(
n− 1

k

)
cm+n−2k−2R2k+2.

Analogous to (3.7) the matrix structure of A′ is

A′ =
(
JA′+J 0

0 A′+

)
,

thus we only need to evaluate the lower right part A′+, and as A′ is Hermitian it is
sufficient to evaluate the upper triangular part of A′+.

4. Implementation details and numerical results

In this section we will shortly discuss the implementation details for the algorithms (2.7)
and (2.8), and apply the linear and non-linear approach to the three examples in fig-
ure 4.1. These three examples are difficult scenarios for EIT reconstruction. Example A
will demonstrate if the algorithms can reconstruct very non-convex shapes, in particular
where the non-convex part is oriented away from the closest boundary. Example B will
test if the algorithms can separate relatively small convex inclusions. Since the mono-
tonicity method cannot detect holes in inclusions [15], the point of Example C will be to
test whether one wide inclusion can partially shield another inclusion, potentially making
it difficult to separate the two in the presence of noise. The β-values for the reconstruc-
tions are chosen as in (2.5) which for the examples in figure 4.1 are βnonlin = 4 and
βlin = 0.8.

For the numerical implementation we will use a regular hexagonal tiling of the plane,
where each hexagon has a centre C and radius R such that its corners are placed on the
ball BC,R. Here the resolution is controlled by the radius R which is kept fixed; it is chosen
as R = 0.025 for the given examples. In terms of the monotonicity-based reconstructions
(2.7) and (2.8) a hexagon is included in the reconstruction if the corresponding ball
BC,R yields a positive semi-definite operator in the monotonicity test. The positive semi-
definiteness is determined from the sign of the smallest eigenvalue, which are real-valued
as all the involved operators are self-adjoint.

In practice we can only use finite dimensional approximations to the matrix repre-
sentations in (3.6) and (3.9), so we have |n|, |m| = 1, 2, . . . , N which gives 2N × 2N
matrices. For any compact operator F : L2

�(∂D) → L2
�(∂D) the corresponding N -term
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Figure 4.1. Numerical phantoms.

matrix approximation is

FNn,m ≡ 〈Ffm, fn〉, |n|, |m| = 1, 2, . . . , N.

As {fn}n∈Z\{0} is an orthonormal basis for L2
�(∂D) then FN is a matrix representation of

PNFPN , where PN is the orthogonal projection onto span{fn}|n|=1,2,...,N . It is straight-

forward to show that the eigenvalues of FN and PNFPN coincide, and from spectral
theory of compact operators (e.g. [22, 23]) it is well known that the spectrum of PNFPN
converge to that of F as N →∞.

In the numerical examples below we use N = 16 which implies 32 orthonormal current
patterns; more than 32 current patterns for a 2D reconstruction is often considered
excessive. Since the factorization (3.6) holds in terms of infinite matrices, we use a much
larger Ñ > N to generate the Ha-matrices for which we according to (3.8) only construct
the Ñ×Ñ matrices H+

a . Afterwards we use (3.8) to construct the larger 2Ñ×2Ñ matrix

AÑ and extract the central 2N × 2N matrix AN to use for the monotonicity tests in
the non-linear case. For the following examples Ñ = 200 was used, and that sufficient
accuracy is attained is checked through the involution property of Ha; namely how large

a central 2N × 2N part of HÑ
a H

Ñ
a that equals an identity matrix.

From Theorem 3.1.(vii) it is observed that (Hρ)n,m is a polynomial in ρ with at most
m non-zero terms. The coefficients of the polynomial are independent of a, and can
therefore be precomputed and reused for the evaluation of Ha for each a. Since the
coefficients in the polynomial are binomial coefficients, and that we need to evaluate them
up to a very high index Ñ = 200, the summation in (3.3) quickly becomes numerically
unstable. For this purpose the Python library gmpy2 [24] is used, which has a very fast
implementation for exact evaluation of binomial coefficients, and has data structures
that supports much higher precision (in terms of no. of digits) and is able to accurately
evaluate the expressions in (3.3). Alternatively, a more stable approach which would not
require gmpy2 or the equivalent, is to apply Gauss-Legendre quadrature to the inner
products (3.2) with weights w and sample points θ, which from Lemma 2.1 gives

(Ha)n,m '
(−1)ne−inζ

2π
wT exp

[
i

(
mθ − 2n arctan

(
1 + ρ

1− ρ tan

[
1

2
(θ − ζ)

]))]
. (4.1)

It should be noted that using (4.1) was about 30 times slower than (3.3) when the
binomial coefficients were reused, in order to attain the same precision for Ñ = 200.

The involved PDEs to simulate the data R(γ), for the three examples in figure 4.1, are
solved with a finite element method with piecewise affine elements. The applied mesh is
excessively fine (1.3·105 nodes) and is aligned with the inclusions, such that we can expect
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that only the applied noise and the finite dimensional truncation 2N has an influence in
the comparison.

The added noise is a matrix Eδ cf. (2.6), which is constructed in the following way: for
each index (n,m) let E1

n,m be a realization from a normal N (0, 1)-distribution, and take
the Hermitian and centrohermitian parts:

E2 ≡ 1

2

[
E1 + (E1)∗

]
, E3 ≡ 1

2

[
E2 + JE2J

]
. (4.2)

If A is the matrix representation of the noiseless data R(γ), then we scale

E4
n,m ≡ E3

n,mAn,m.

Finally, the noise is scaled to have a specified norm δ in the operator norm

Eδ ≡ δ

‖E4‖E
4.

A different noise realization is used for each noise level δ, however the same noisy data
Rδ(γ) is used for both the linear and non-linear reconstruction. It should be noted
that the measured data Rδ(γ) can in practice be symmetrized to achieve (4.2), which
often reduces the noise level significantly below δ. How much the noise level is reduced
completely depends on the particular noise realization. The way the noise is added in
this paper makes the reconstructions less dependent on whether we were lucky enough
that part of the noise cancels out, and the reconstructions are in this sense a worst-case
scenario for a specified noise level δ.

It was shown in [16] that the regularization parameter could be chosen as α = δ,
however it is no guarantee for the best choice of regularization parameter. Furthermore,
there is also the truncation of the dimension to 2N which implies that slightly more
regularization is required. In [16] it was suggested that a good choice of regularization
parameter in both linear and non-linear cases is

α = −µ inf σ(R(γ0)−Rδ(γ)), (4.3)

where γ0 is the background conductivity (in this case constant 1), σ denotes the spectrum
of the operators, and µ is a parameter that must be tuned; typically very close to 1. The
values of µ for the numerical experiments are shown in table 4.1.

Example A Example B Example C
δ linear non-linear linear non-linear linear non-linear
0 0.999200 0.998600 0.999750 0.999660 0.999300 0.998900

10−5 0.999600 0.999200 0.999750 0.999400 0.999600 0.999400
10−4 0.999200 0.998400 0.999800 0.999700 0.999600 0.999200
10−3 1.000040 1.000050 1.000002 1.000004 1.000040 1.000070
10−2 1.000100 1.000200 1.000050 1.000050 1.000002 1.000002

Table 4.1. Choice of regularization parameter µ from (4.3) for the examples in figure 4.1 with different levels of
noise δ.

The reconstruction is very fast as it only requires computation of eigenvalues for 2N ×
2N Hermitian matrices, and it is suited for parallel computing as the monotonicity tests
for different balls can be done completely independently.

From figure 4.2 and 4.3 it is clear that there is hardly any difference in the recon-
structions based on the linear and non-linear methods. It is observed that for 32 current

13



patterns it is difficult to reconstruct non-convex shapes, in particular the large L-shaped
inclusion in Example A where the non-convex part is pointed away from the closest
boundary. For the non-convex inclusion in Example C the reconstruction is reasonable in
the noiseless case, where for increased noise the separation of the two inclusions is lost.
This is a common feature of the monotonicity reconstructions when one larger inclusion
partially shields another.

For Example B there is a reasonable separation of the inclusions even for the highest
noise level, and both shapes and locations are found well in the cases δ = 0, 10−5, 10−4.
A slight positioning error is present in Example B even in the noiseless case, this can
sometimes happen when there are multiple inclusions of various sizes placed asymmetri-
cally. The positioning error as well as shape errors can be improved by either increasing
the pixel size (this affects the size of the balls in the test inclusions) or by increasing the
number of current patterns used.

The ball inclusions BC,R are small enough that we might consider if R(1) +
βlinR′(1)χBC,R is a good approximation to R(1 + βnonlinχBC,R), and therefore leads to
similar reconstructions. Firstly, the Fréchet derivative is given in terms of L∞ which only
relates to the β-values here, and not the radius of the ball inclusions, secondly the values
of βlin and βnonlin in this case are quite different. Furthermore, tests from both smaller
and larger R gives comparable results.

5. Conclusions

The linear and non-linear algorithms for monotonicity-based shape reconstruction in
EIT were compared, and surprisingly found to essentially yield the same reconstructions
both for noiseless and for noisy data. Exact matrix characterizations were derived for the
Neumann-to-Dirichlet map and its Fréchet derivative for the ball inclusions used in the
monotonicity tests. These matrix characterizations ensures that the sources of errors in
the reconstructions are limited to the finite dimensional truncation and the added noise.

It is clear that the monotonicity method performs best for detecting small convex
shapes, and here it is often possible to separate inclusions quite well in the presence
of noise. For non-convex shapes, one usually obtains something that resembles a convex
approximation to the shape either due to noise or the limited number of current patterns.
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Figure 4.2. Monotonicity reconstruction using the linear algorithm for the examples in figure 4.1 with various
levels of noise δ. The regularization parameters are chosen as in table 4.1. The smallest eigenvalues are plotted for
the hexagons where the inclusions are detected. The correct targets are outlined with a solid black line.
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Figure 4.3. Monotonicity reconstruction using the non-linear algorithm for the examples in figure 4.1 with various
levels of noise δ. The regularization parameters are chosen as in table 4.1. The smallest eigenvalues are plotted for
the hexagons where the inclusions are detected. The correct targets are outlined with a solid black line.
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This paper focuses on prior information for improved sparsity reconstruction in
electrical impedance tomography with partial data, i.e. Cauchy data measured
on subsets of the boundary. Sparsity is enforced using an �1 norm of the basis
coefficients as the penalty term in a Tikhonov functional, and prior information
is incorporated by applying a spatially distributed regularization parameter. The
resulting optimization problem allows great flexibility with respect to the choice
of measurement subsets of the boundary and incorporation of prior knowledge. In
fact, the measurement subsets can be chosen completely arbitrary. The problem is
solved using a generalized conditional gradient method applying soft threshold-
ing. Numerical examples with noisy simulated data show that the addition of prior
information in the proposed algorithm gives vastly improved reconstructions,
even for the partial data problem. Moreover, numerical examples show that a
reliable reconstruction for the partial data problem can only be found close to
the measurement subsets. The method is in addition compared to a total variation
approach.

Keywords: electrical impedance tomography; inverse boundary value problem;
ill-posed problem; partial data; sparsity

AMS Subject Classifications: 65N20; 65N21

1. Introduction

The inverse problem in electrical impedance tomography (EIT) consists of reconstructing
an electrical conductivity distribution in the interior of an object from electrostatic boundary
measurements on the surface of the object. EIT is an emerging technology with applications
in medical imaging,[1] geophysics [2] and industrial tomography.[3] The underlying math-
ematical problem is known as the Calderón problem in recognition of Calderón’s seminal
paper.[4]

Consider a bounded domain � ⊂ Rn, n ≥ 2, with smooth boundary ∂�. In order to
consider partial boundary measurements, we introduce the subsets �N, �D ⊆ ∂� for the
Neumann and Dirichlet data, respectively. Let σ ∈ L∞(�) with 0 < c ≤ σ a.e. denote the
real-valued conductivity distribution in �. Applying a boundary current flux g (Neumann
condition) through �N ⊆ ∂� gives rise to the interior electric potential u characterized as
the solution to
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∇ · (σ∇u) = 0 in �, σ
∂u

∂ν
= g on ∂�,

∫
�D

u|∂� ds = 0, (1.1)

where ν is an outward unit normal to ∂�. The latter condition in (1.1) is a grounding of the
total electric potential along the subset �D ⊆ ∂�. To be precise, we define the spaces

L2
(∂�) ≡
{

g ∈ L2(∂�) |
∫
∂�

g ds = 0

}
,

H−1/2

 (∂�) ≡ {g ∈ H−1/2(∂�) | 〈g, 1〉 = 0},

consisting of boundary functions with mean zero, and the spaces

H1
�D(�) ≡ {u ∈ H1(�) | u|∂� ∈ H1/2

�D (∂�) },
H1/2
�D (∂�) ≡

{
f ∈ H1/2(∂�) |

∫
�D

f ds = 0

}
,

consisting of functions with mean zero on �D designed to encompass the partial boundary
data. Since σ is real valued, it is sufficient to consider the above spaces as real vector spaces,
for the use of real-valued Cauchy data in the measurements. Using standard elliptic theory,
it follows that (1.1) has a unique solution u ∈ H 1

�D(�) for any g ∈ H−1/2

 (∂�). This

defines the Neumann-to-Dirichlet map (ND-map) Rσ as an operator from H−1/2

 (∂�) into

H1/2
�D (∂�) by g �→ u|∂�, and the partial ND-map as g �→ (Rσ g)|�D .

The data for the classical Calderón problem is the full operator Rσ with �D = �N =
∂�. The problem is well studied and there are numerous publications addressing different
aspects of its solution; we mention only a few: the uniqueness and reconstruction problem
was solved in [5–10] using the so-called complex geometrical optics (CGO) solutions;
for a recent survey see [11]. Stability estimates of log type were obtained in [12,13] and
shown to be optimal in [14]. Thus any computational algorithm must rely on regularization.
Such computational regularization algorithms following the CGO approach were designed,
implemented and analysed in [15–19].

Recently, the partial data Calderón problem have been studied intensively. In 3D unique-
ness has been proved under certain conditions on �D and �N,[20–24] and in 2D the general
problem with localized data i.e. �D = �N = � for some, possibly small, subset � ⊆ ∂�

has been shown to possess uniqueness.[25] Also stability estimates of log–log type have
been obtained for the partial data problem [26]; this suggests that the partial data problem
is even more ill-posed and hence requires more regularization than the full data problem.
Recently, a computational algorithm for the partial data problem in 2D was suggested and
investigated in [27].

The boundary condition in (1.1) is the continuum model which is related to the above-
mentioned uniqueness results, and actual electrode measurements can be seen as an approx-
imation to this model, see for instance [28]. Another more realistic model is the Complete
Electrode Model (CEM) introduced in [29]. The approach to the reconstruction problem in
EIT considered here can be formulated with CEM as well, see [30,31].

A general approach to linear inverse problems with sparsity regularization was given
in [32], and in [33,34] the method was adapted to non-linear problems using a so-called
generalized conditional gradient method. In [30,35,36], the method was applied to the
reconstruction problem in EIT with full boundary data. A study was made in [31] with 3D
sparse reconstruction with current injection and voltage measurements on disjoint sets of
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electrodes on a planar EIT device, where it was possible to reconstruct a 2D position of
an inclusion close to the measured boundary. In this paper, we seek a general approach
with regards to the measurement boundaries �D and �N, and the use of prior information
to improve the reconstruction further away from the measured boundary. In the numerical
examples in Section 4 we consider the case of local data, with Cauchy data on the same part
of the boundary. For other approaches to EIT using optimization methods, we refer to [37].

In this paper, we will focus on the partial data problem for which we develop a
reconstruction algorithm based on a least squares formulation with sparsity regularization.
The results are twofold: first we extend the full data algorithm of [36] to the case of partial
data, second we show how prior information about the spatial location of the perturbation
in the conductivity can be used in the design of a spatially varying regularization parameter.
We will restrict the treatment to 2D, however everything extends to 3D with some minor
assumptions on the regularity of the Neumann data.[38]

The data considered here consist of a finite number of Cauchy data, corresponding to
the number of applied current patterns, taken on the subsets �D and �N, i.e.

{( fk, gk) | gk ∈ H−1/2

 (∂�), supp(gk) ⊆ �N, fk = Rσ gk |�D}K

k=1, K ∈ N. (1.2)

We assume that the true conductivity is given as σ = σ0 + δσ , where σ0 is a known
background conductivity. Define the closed and convex subset

A0 ≡ {δγ ∈ H1
0 (�) | c ≤ σ0 + δγ ≤ c−1 a.e. in �} (1.3)

for some c ∈ (0, 1), and σ0 ∈ H1(�) where c ≤ σ0 ≤ c−1. Similarly define

A ≡ {δγ + σ0 | δγ ∈ A0} = {γ ∈ H1(�) | c ≤ γ ≤ c−1 a.e. in �, γ |∂� = σ0|∂�}.
The inverse problem is then to approximate δσ ∈ A0 given the data (1.2).

Let {ψ j }∞j=1 denote a chosen orthonormal basis for H1
0 (�). For sparsity regularization,

we approximate δσ by argminδγ∈A0
�(δγ ) using the following Tikhonov functional [36]

�(δγ ) ≡
K∑

k=1

Jk(δγ )+ P(δγ ), δγ ∈ A0, (1.4)

with

Jk(δγ ) ≡ 1

2
‖Rσ0+δγ gk − fk‖2

L2(�D)
, P(δγ ) ≡

∞∑
j=1

α j |c j |,

for c j ≡ 〈δγ, ψ j 〉H1(�). The regularization parameter α j > 0 for the sparsity-promoting �1
penalty term P is distributed such that each basis coefficient can be regularized differently;
we will return to this in Section 3. It should be noted how easy and natural the use of partial
data is introduced in this way, simply by only minimizing the discrepancy on �D on which
the Dirichlet data are known and ignoring the rest of the boundary.

This paper is organized as follows: in Section 2 we derive the Fréchet derivative of Jk

and reformulate the optimization problem using the generalized conditional gradient method
as a sequence of linearized optimization problems. In Section 3, we explain the idea of the
spatially dependent regularization parameter designed for the use of prior information. Then,
in Section 4 we show the feasibility of the algorithm by several numerical examples, and
finally we conclude in Section 5.
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2. Sparse reconstruction

In this section, the sparse reconstruction of δσ based on the optimization problem (1.4)
is investigated for a bounded domain � ⊂ R2 with smooth boundary ∂�. The penalty
term emphasizes that δσ should only be expanded by few basis functions in a given
orthonormal basis, and the level of sparsity is controlled by the regularization parameter.
Using a distributed regularization parameter, it is possible to further apply prior information
about which basis functions that should be included in the expansion of δσ . The partial data
problem comes into play in the discrepancy term, in which we only fit the data on part of
the boundary. Ultimately, this leads to the algorithm given in Algorithm 1 at the end of this
section.

Denote by Fg(σ ) the unique solution to (1.1) and let Fg(σ ) be its trace (note that
Rσ g = Fg(σ )). Let γ ∈ A, g ∈ L p(∂�) ∩ H−1/2


 (∂�) for p > 1, then following the
proofs of Theorem 2.2 and Corollary 2.1 in [35] whilst applying the partial boundary �D

we have

lim‖η‖H1(�)→0
γ+η∈A

‖Fg(γ + η)− Fg(γ )− (Fg)
′
γ η‖H1/2

�D (∂�)

‖η‖H1(�)

= 0. (2.1)

Here (Fg)
′
γ is the linear map that maps η to w|∂�, where w is the unique solution to

−∇ · (γ∇w) = ∇ · (η∇Fg(γ )) in �, σ
∂w

∂ν
= 0 on ∂�,

∫
�D
w|∂� ds = 0. (2.2)

It is noted that (Fg)
′
γ resembles a Fréchet derivative of Fg evaluated at γ due to (2.1),

however A is not a linear vector space, thus the requirement γ, γ + η ∈ A.
The first step in minimizing � using a gradient descent-type iterative algorithm is to

determine a derivative to the discrepancy terms Jk .

Lemma 2.1 Let γ = σ0 + δγ for δγ ∈ A0, and χ�D be a characteristic function on �D.
Then

Ek ≡ −∇Fgk (γ ) · ∇Fχ
�D (Rγ gk− fk )(γ ) ∈ Lr (�) ⊂ H−1(�) (2.3)

for some r > 1, and the Fréchet derivative (Jk)
′
δγ of Jk on H1

0 (�) evaluated at δγ is given
by

(Jk)
′
δγ η =

∫
�

Ekη dx, δγ + η ∈ A0. (2.4)

Proof For the proof, the index k is suppressed. First it is proved that E ∈ Lr (�) for some
r > 1, which is shown by estimates on Fg(γ ) and Fh(γ ) where h ≡ χ�D(Rγ g − f ). Note
that Rγ g ∈ H1/2

�D (∂�) and f ∈ L2
(�D), i.e. h ∈ L2
(∂�) ⊂ L2(∂�) ∩ H−1/2

 (∂�). Now

using [35, Theorem 3.1], there exists Q > 2 such that

‖Fh(γ )‖W 1,q (�) ≤ C‖h‖L2(∂�), (2.5)

where q ∈ (2, Q) ∩ [2, 4]. Since Fg(γ ) ∈ H1
�D(�) then |∇Fg(γ )| ∈ L2(�). It has already

been established in (2.5) that Fh(γ ) ∈ W 1,q(�) for q ∈ (2,min{Q, 4}), so |∇Fh(γ )| ∈
Lq(�). By Hölder’s generalized inequality

E = −∇Fg(γ ) · ∇Fh(γ ) ∈ Lr (�), 1
r = 1

2 + 1
q ,
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and as q > 2 then r > 1. Let r ′ be the conjugate exponent to r , then r ′ ∈ [1,∞), i.e.
the Sobolev imbedding theorem [39] implies that H 1(�) ↪→ Lr ′

(�) as � ⊂ R2. Thus
E ∈ (Lr ′

(�))′ ⊂ (H1(�))′ ⊂ (H1
0 (�))

′ = H−1(�).
Now it will be shown that J ′

δγ can be identified with E . J ′
δγ η is by the chain rule

(utilizing that Rγ g = Fg(γ )) given as

J ′
δγ η =

∫
∂�

χ�D(Rγ g − f )(Fg)
′
γ η ds, (2.6)

where χ�D is enforcing that the integral is over �D. The weak formulations of (1.1), with
Neumann data χ�D(Rγ g − f ), and (2.2) are∫

�

γ∇Fχ
�D (Rγ g− f )(γ ) · ∇v dx =

∫
∂�

χ�D(Rγ g − f )v|∂� ds, ∀v ∈ H1(�), (2.7)∫
�

γ∇w · ∇v dx = −
∫
�

η∇Fg(γ ) · ∇v dx, ∀v ∈ H 1(�). (2.8)

Now by letting v ≡ w in (2.7) and v ≡ Fχ
�D (Rγ g− f )(γ ) in (2.8), we obtain using the

definition w|∂� = (Fg)
′
γ η that

J ′
δγ η =

∫
∂�

χ�D(Rγ g − f )(Fg)
′
γ η ds =

∫
�

γ∇Fχ
�D (Rγ g− f )(γ ) · ∇w dx

= −
∫
�

η∇Fg(γ ) · ∇Fχ
�D (Rγ g− f )(γ ) dx =

∫
�

Eη dx .

�

Remark 2.2 It should be noted that (Jk)
′
δγ is related to the Fréchet derivative R′

γ of γ �→
Rγ evaluated at γ , by (Jk)

′
δγ η = ∫

�D(Rγ gk − fk)R′
γ [η]gk ds.

Define

J ′
δγ ≡

K∑
k=1

(Jk)
′
δγ = −

K∑
k=1

∇Fgk (γ ) · ∇Fχ
�D (Rγ gk− fk )(γ ).

For a gradient-type descent method, we seek to find a direction η for which the discrepancy
decreases. As J ′

δγ ∈ H−1(�) it is known from Riesz’ representation theorem that there
exists a unique function in H1

0 (�), denoted by G(δγ ), such that

J ′
δγ η = 〈G(δγ ), η〉H1(�), η ∈ H1

0 (�). (2.9)

Now η ≡ −G(δγ ) points in the direction of steepest descend among the viable directions.
Furthermore, since G(δγ )|∂� = 0 the boundary condition δσ |∂� = 0 will automatically
be fulfilled for the approximation. In [40], G(δγ ) is called a Sobolev gradient, and it is the
unique solution to

(−�+ 1)v = J ′
δγ in �, v = 0 on ∂�,

for which (2.9) is the weak formulation.
In each iteration step, we need to determine a step size si for an algorithm resembling a

steepest descent δγi+1 = δγi −si G(δγi ). Here a Barzilai–Borwein step size rule [36,41,42]
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will be applied, for which we determine si such that 1
si
(δγi − δγi−1) = 1

si
(γi − γi−1) �

G(δγi )− G(δγi−1) in the least squares sense

si ≡ argmin
s

‖s−1 (δγi − δγi−1)− (G(δγi )− G(δγi−1))‖2
H1(�)

. (2.10)

Assuming that 〈δγi − δγi−1,G(δγi )− G(δγi−1)〉H1(�) �= 0 yields

si =
‖δγi − δγi−1‖2

H1(�)

〈δγi − δγi−1,G(δγi )− G(δγi−1)〉H1(�)

. (2.11)

A maximum step size smax is enforced to avoid the situations where 〈δγi − δγi−1,G(δγi )−
G(δγi−1)〉H1(�) � 0.

With inspiration from [42], si will be initialized by (2.11), after which it is thresholded
to lie in [smin, smax], for positive constants smin and smax. It is noted in [42] that Barzilai–
Borwein step rules lead to faster convergence if we do not restrict � to decrease in every
iteration. Allowing an occasional increase in � can be used to avoid places where the
method has to take many small steps to ensure the decrease of �. Therefore, one makes
sure that the following so called weak monotonicity is satisfied, which compares�(δγi+1)

with the most recent M steps. Let τ ∈ (0, 1) and M ∈ N, then si is said to satisfy the weak
monotonicity with respect to M and τ if the following is satisfied [42]

�(δγi+1) ≤ max
i−M+1≤ j≤i

�(δγ j )− τ

2si
‖δγi+1 − δγi‖2

H1(�)
. (2.12)

If (2.12) is not satisfied, the step size si is reduced until this is the case. To solve the
non-linear minimization problem for (1.4), we iteratively solve the following linearized
problem

ζi+1 ≡ argmin
δγ∈H1

0 (�)

⎡
⎣1

2
‖δγ − (δγi − si G(δγi ))‖2

H1(�)
+ si

∞∑
j=1

α j |c j |
⎤
⎦ , (2.13)

δγi+1 ≡ PA0(ζi+1).

Here {ψ j }∞j=1 is an orthonormal basis for H 1
0 (�) in the H1-metric, andPA0 is the projection

of H1
0 (�) onto A0 to ensure that (1.1) is solvable (note that H1

0 (�) does not imbed into
L∞(�), i.e. ζi+1 may be unbounded). By use of the map Sβ : R → R defined below,
known as the soft shrinkage/thresholding map with threshold β > 0,

Sβ(x) ≡ sgn(x)max{|x | − β, 0}, x ∈ R, (2.14)

the solution to (2.13) is easy to find directly (see also [32, Section 1.5]):

ζi+1 =
∞∑
j=1

Ssiα j (d j )ψ j , (2.15)

where d j ≡ 〈δγi − si G(δγi ), ψ j 〉H1(�) are the basis coefficients for δγi − si G(δγi ).

Remark 2.3 The soft threshold in (2.15) assumes that the coefficients {d j }∞j=1 are
real valued, as in this case with real-valued conductivity σ and Cauchy-data. For
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complex-valued admittivity σ , appropriate use of complex conjugation is required for the
derivative in Lemma 2.1, and a minimizer for (2.13) can be found in [42].

The projection PA0 : H1
0 (�) → A0 is defined as

PA0(v) ≡ Tc(σ0 + v)− σ0, v ∈ H1
0 (�), (2.16)

where Tc is the following truncation that depends on the constant c ∈ (0, 1) in (1.3)

Tc(v) ≡

⎧⎪⎨
⎪⎩

c where v < c a.e.,

c−1 where v > c−1 a.e.,

v else.

Since σ0 ∈ H1(�) and c ≤ σ0 ≤ c−1, it follows directly from [43, Lemma 1.2] that Tc and
PA0 are well defined, and it is easy to see that PA0 is a projection.

Remark 2.4 In the numerical examples in Section 4, the value of c is chosen small enough
that the truncation inPA0 does not occur during the iterations. If tight bounds onσ are known
a priori, the truncation may lead to improved rate of convergence and gives reconstructions
in the correct dynamic range.

It should also be noted that 0 ∈ A0 since c ≤ σ0 ≤ c−1, thus we may choose δγ0 ≡ 0
as the initial guess in the algorithm. The algorithm is summarized in Algorithm 1. In this
paper, the stopping criterion is when the step size si gets below a threshold sstop.

Remark 2.5 Note that
∑

j 〈δγi − si G(δγi ), ψ j 〉H1(�)ψ j corresponds to only having the
discrepancy term in (2.13), while the penalty term si

∑∞
j=1 α j |〈δγ, ψ j 〉H1(�)| leads to the

soft thresholding in (2.15).

Remark 2.6 The functional� in (1.4) is non-convex. Thus, the best we can hope is to find
a local minimum. The quality of the reconstruction depends on the initial guess, and as we
expect the reconstruction to be sparse, then δγ0 ≡ 0 is a reasonable initial guess.

Algorithm 1 Sparse reconstruction for partial data EIT.
Set δγ0 := 0.
while stopping criteria not reached do

Set γi := σ0 + δγi .
Compute �(δγi ) by (1.4).
Compute J ′

δγi
:= − ∑K

k=1 ∇Fgk (γi ) · ∇Fχ
�D (Rγi gk− fk )(γi ).

Compute G(δγi ) ∈ H1
0 (�) such that J ′

δγi
η = 〈G(δγi ), η〉H1(�).

Compute step length si by (2.11), and decrease it till (2.12) is satisfied.
Compute the basis coefficients {d j }∞j=1 for δγi − si G(δγi ).

Update δγi+1 := PA0

(∑∞
j=1 Ssiα j (d j )ψ j

)
using (2.14) and (2.16).

end while
Return final iterate of δγ .
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Remark 2.7 The main computational cost lies in computing J ′
δγi

, which involves solving
2K well-posed PDE’s (note that Fgk (γi ) can be reused from the evaluation of �), where
K is the number of current patterns used in the measurements. It should be noted that each
of the 2K problems consists of solving the same problem, but with different boundary
conditions, which leads to only having to assemble and factorize the finite element method
(FEM) matrix once per iteration.

3. Prior information

Prior information is typically introduced in the penalty term P for Tikhonov-like function-
als, and here the regularization parameter determines how much this prior information is
enforced. In the case of sparsity regularization, this implies knowledge of how sparse we
expect the solution is in general. Instead of applying the same prior information for each
basis function, a distributed parameter is applied. Let

α j ≡ αμ j ,

where α is the usual regularization parameter, corresponding to the case where no prior
information is considered about specific basis functions. The μ j ∈ (0, 1] will be used to
weight the penalty depending on whether a specific basis function should be included in the
expansion of δσ . The μ j are chosen as

μ j =
{

1, no prior on c j ,

∼ 0, prior that c j �= 0,

i.e. if we know that a coefficient in the expansion of δσ should be non-zero, we can choose to
penalize that coefficient less. Using a basis with localized support, the sparsity assumption
translates to an assumption on the support of the inclusion.

3.1. Applying the FEM basis

In order to improve the sparsity solution for finding small inclusions, it seems appropriate
to include prior information about the support of the inclusions. There are different methods
available for obtaining such information assuming piecewise constant conductivity [44,45]
or real-analytic conductivity.[46] An example of the reconstruction of supp δσ is shown in
Figure 1, where it is observed that numerically it is possible to reconstruct a reasonable
convex approximation to the support. Thus, it is possible to acquire estimates of supp δσ
for free, in the sense that it is gained directly from the data without further assumptions on
the location.

Another approach is to consider other reconstruction methods such as total variation
(TV) regularization that tends to give good approximations to the support, but has issues
with reconstructing the contrast if the amplitude of δσ is large as seen in Section 4.3. The
idea is to be able to apply such information in the sparsity algorithm in order to get good
contrast in the reconstruction while maintaining the correct support, even for the partial
data problem.

Suppose that as a basis we consider a FEM basis {ψ j }N
j=1 for the subspace Vh ⊆

H1
0 (�) of piecewise affine elements. This basis comprises basis functions that are piecewise

affine with degrees of freedom at the mesh nodes, i.e. ψ j (xk) = δ j,k at mesh node xk



532 H. Garde and K. Knudsen

(a) (b)

Figure 1. (a) Phantom with kite-shaped piecewise constant inclusion δσ . (b) Reconstruction of
supp δσ using monotonicity relations from the approach in [45] by use of simulated noiseless data.

in the applied mesh. Let δσ ∈ Vh , then δσ (x) = ∑
j δσ (x j )ψ j (x), i.e. for each node

there is a basis function for which the coefficient contains local information about the
expanded function; this is convenient when applying prior information about the support
of an inclusion. Note that the FEM basis functions are not mutually orthogonal, since basis
functions corresponding to neighbouring nodes are non-negative and have overlapping
support. However, for any non-neighbouring pair of nodes the corresponding basis functions
are orthogonal.

When applying the FEM basis for mesh nodes {x j }N
j=1, the corresponding functional is

�(δγ ) = 1

2

K∑
k=1

‖Rσ0+δγ gk − fk‖2
L2(�D)

+
N∑

j=1

α j |δγ (x j )|.

It is evident that the penalty corresponds to determining inclusions with small support, and
prior information on the sparsity corresponds to prior information on the support of δσ .
We cannot directly utilize (2.15) due to the FEM basis not being an orthonormal basis for
H1

0 (�), and instead we suggest the following iteration step:

ζi+1(x j ) = Ssiα j /‖ψ j ‖L1(�)
(δγi (x j )− si G(δγi )(x j )), j = 1, 2, . . . , N , (3.1)

δγi+1 = PA0(ζi+1).

Note that the regularization parameter will depend quite heavily on the discretization of the
mesh, i.e. for the same domain a good regularization parameter α will be much larger on a
coarse mesh than on a fine mesh. This is quite inconvenient, and instead we can weight the
regularization parameter according to the mesh cells, by having α j ≡ αβ jμ j . This leads to
a discretization of a weighted L1-norm penalty term:

α

∫
�

fμ|δγ | dx � α

N∑
j=1

β jμ j |δγ (x j )|,

where fμ : � → (0, 1] is continuous and fμ(x j ) = μ j . For a triangulated mesh, the
weights β j consists of the node area computed in 2D as 1/3 of the area of suppψ j . This
corresponds to splitting each cell’s area evenly amongst the nodes, and it will not lead to
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(a) (b) (c)

Figure 2. Numerical phantoms. (a) Circular piecewise constant inclusion. (b) Kite-shaped piecewise
constant inclusion. (c) Multiple C2 inclusions.

instability on a regular mesh. This will make the choice of α almost independent of the
mesh, and is used in the numerical examples in the following section.

Remark 3.1 The corresponding algorithm with the FEM basis is the same as Algorithm 1,
except that the update is applied via (3.1) instead of (2.13).

4. Numerical examples

In this section we illustrate, through several examples, the numerical algorithm implemented
using the finite element library FEniCS.[47] We consider the full data case �D = �N = ∂�

first without prior information and then with prior information, and afterwards we do the
same for the partial data case. Finally, a brief comparison is made with another sparsity
promoting method based on TV.

For the following examples � is the unit disk in R2 (however, the algorithm can be
applied to any bounded domain with smooth boundary). The regularization parameter α is
chosen manually by trial and error. The other parameters are σ0 ≡ 1, M = 5, τ = 10−5,
smin = 1, smax = 1000, and the stopping criteria are when the step size is below sstop =
10−3. We take K = 10 with the applied Neumann data of the form gc

n(θ) ≡ cos(nθ) and
gs

n(θ) ≡ sin(nθ) for n = 1, . . . , 5 and θ being the angular variable. Such trigonometric
current patterns are realistic approximations to electrode measurements, see for instance
[28]. For the partial data, an interval � = �N = �D = {θ ∈ (θ1, θ2)} is considered, and gc

n
and gs

n are scaled and translated such that they have n periods in the interval.
When applying prior information, the coefficients μ j are chosen as 10−2 where the

support of δσ is assumed, and 1 elsewhere. It should be noted that in order to get fast
transitions for sharp edges when prior information is applied, a local mesh refinement is
used during the iterations to refine the mesh where |∇δγi | is large.

For the simulated Dirichlet data, the forward problem is computed on a very fine mesh,
and afterwards interpolated onto a different much coarser mesh (with roughly 2800 triangle
elements) in order to avoid inverse crimes. White Gaussian noise has been added to the
Dirichlet data { fk}K

k=1 on the discrete nodes on the boundary of the mesh. The standard
deviation of the noise is chosen as εmaxk maxx j ∈�D | fk(x j )| as in [36], where the noise
level is fixed as ε = 10−2 (corresponding to 1% noise) unless otherwise stated.

Figure 2 shows the numerical phantoms: where one is a simple circular inclusion,
another is the non-convex kite-shaped phantom. Finally, we also shortly investigate the
case of multiple smoother inclusions.
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4.1. Full boundary data

For �D = �N = ∂�, it is possible to get quite good reconstructions of both shape and
contrast for the convex inclusions as seen in Figure 3, and for the case with multiple
inclusions there is a reasonable separation of the inclusions.

For the kite-shaped phantom, we only get what seems like a convex approximation of
the shape. It is seen in [36] that the algorithm is able to reconstruct some types of non-convex
inclusions such as the hole in a ring-shaped phantom, however those inclusions are much
larger which makes it easier to distinguish from similar convex inclusions.

We note that the method is very noise robust. Figure 4 demonstrates that even unreason-
ably large amounts of noise lead to only small deformations in the shape of the reconstructed
inclusion.

In order to investigate the use of prior information, we consider the phantom in
Figure 2(a), and let B(r) denote a ball centred at the correct inclusion and with radius
r . Now we can investigate reconstructions with prior information assuming that the support
of the inclusion is B((1 + δr)r∗) for r∗ being the correct radius of the inclusion. Figure 5
shows that underestimating the support of the inclusion δr < 0 is heavily enforced, and the
contrast is vastly overestimated in the reconstruction as shown in Figure 6 (note that this
cannot be seen in Figure 5 as the color scale for the phantom is applied).

Interestingly, when overestimating the support, the contrast and support of the recon-
structed inclusion does not suffer particularly. Intuitively, this corresponds to increasing δr
such that the assumed support of δσ contains the entire domain�, which corresponds to the
case with no prior information. Denote by σB ≡ |B(r∗)|−1

∫
B(r∗) σ dx the average of the

reconstruction σ on B(r∗), the correct support of the inclusion, and by σBC the average of
σ on the complement to B(r∗). Denote by σmax ≡ max j |σ(x j )| the maximum of σ on the
mesh nodes. Then Figure 6 gives a good indication of the aforementioned intuition, where
around δr = 0 both σB and σmax level off around the correct contrast of the inclusion (the
red line) and stays there for δr > 0. It should be noted that even a 25% overestimation of
the support leads to a better contrast in the reconstruction than if no prior information was
applied, as seen in Figure 5.

Having an overestimation of the support for δσ also seems to be a reasonable assumption.
Definitely there is the case of no prior information which means that supp δσ is assumed
to be �. If the estimation comes from another method such as TV regularization, then
the support is typically slightly overestimated while the contrast suffers.[48] Thus, we

(a)    = 10–3   (b)    = 5 .10–4   (c)    = 6.5 .10–4

Figure 3. Full data sparse reconstruction of the phantoms in Figure 2 without prior information on
the support of inclusions.



Inverse Problems in Science and Engineering 535

10% noise 50% noise

Figure 4. Left: Dirichlet data corresponding to g = cos(θ) for the phantom in Figure 2(a), with
10% and 50% noise level. Middle: full data reconstruction for 10% noise level. Right: full data
reconstruction for 50% noise level.

No prior   = −0.25   = −0.10

  = 0.25  = 0.10  = 0

Figure 5. Full data sparse reconstruction of the phantom in Figure 2(a) varying the assumed support
given by a dilation δr . The colour bar is truncated at [1, 6]. For δr < 0, the contrast in the reconstruction
is higher than in the phantom.

can use the overestimated support to get a good localization and contrast reconstruction
simultaneously.

Figure 7 shows how the reconstruction of the kite-shaped phantom can be vastly
improved. Note that not only is supp δσ better approximated, but the contrast is also highly
improved. It is not surprising that we can achieve an almost perfect reconstruction if supp δσ
is exactly known, however it is a good benchmark to compare the cases for the overestimated
support as it shows how well the method can possibly do.

4.2. Partial boundary data

For the partial data problem we choose � = �D = �N = {θ ∈ (θ1, θ2)} for 0 ≤ θ1 < θ2 ≤
2π .
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Figure 6. Behaviour of full data sparsity reconstruction based on the phantom in Figure 2(a) by
varying δr characterizing the assumed support. The correct support of the inclusion is a ball B(r∗)
while the assumed support is B((1 + δr)r∗). σB is the average of reconstruction σ over B(r∗) and
σBC is the average on the complement of B(r∗). σmax is the maximum of σ on the mesh nodes.

No prior 10% overestimated support Exact support

Figure 7. Full data sparse reconstruction of the phantom in Figure 2(b). The applied prior information
for the overestimated support is a 10% dilation of the correct shape.

In Figure 8 we observe that with data on the top half of the unit circle, it is actually
possible to get very good contrast and also reasonable localization of the two large in-
clusions. There is still a clear separation of the inclusions, while the small inclusion is not
reconstructed at all. With data on the bottom half, the small inclusion is reconstructed almost
as well as with full boundary data, but the larger inclusions are only vaguely visible. This is
the kind of behaviour that is expected from partial data EIT, and in practice it implies that
we can only expect reasonable reconstruction close to where the measurements are taken.

In the rightmost reconstruction in Figure 8, there is a small artefact to the left in a region
where a reliable reconstruction is expected. This may be due to the partial data problem
being very noise sensitive and the low number of current patterns (K = 10).

In Figures 9 and 10 panels (a) and (c) it is observed that as the length of � becomes
smaller, the reconstructed shape of the inclusion is rapidly deformed. By including prior
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Full data Top half Bottom half

Figure 8. Sparse reconstruction of the phantom in Figure 2(c). Left: � = ∂�. Middle: (θ1, θ2) =
(0, π). Right: (θ1, θ2) = (π, 2π).

(a) (b) (c) (d)

Figure 9. Sparse reconstruction of the phantom with a ball inclusion in Figure 2(a). (a) 50% boundary
data, no prior. (b): 50% boundary data with 5% overestimated support. (c): 25% boundary data, no
prior. (d): 25% boundary data with 5% overestimated support.

(a) (b) (c) (d)

Figure 10. Sparse reconstruction of the phantom with a kite-shaped inclusion in Figure 2(b). (a) 50%
boundary data, no prior. (b) 50% boundary data with 10% overestimated support. (c) 25% boundary
data, no prior. (d) 25% boundary data with 10% overestimated support.

information about the support of δσ , it is possible to rectify the deformation of the shape,
and get reconstructions with almost the correct shape but with a slightly worse reconstructed
contrast compared to full boundary data reconstructions. This is observed for the ball- and
kite-shaped inclusions in Figures 9 and 10, respectively.
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4.3. Comparison with TV regularization

Another sparsity promoting method is TV regularization, which promotes a sparse gradient
in the solution. This can be achieved by minimizing the functional

�TV(δγ ) ≡
K∑

k=1

Jk(δγ )+ PTV(δγ ), δγ ∈ A0, (4.1)

where the discrepancy terms Jk remain the same as in (1.4), but the penalty term is now
given by

PTV(δγ ) ≡ α

∫
�

√
|∇δγ |2 + b dx . (4.2)

Here b > 0 is a constant that implies that PTV is differentiable, but chosen small such that
PTV approximates α

∫
�
|∇δγ | dx . The computational cost for determining the derivative of

�TV is the same as for the sparsity regularization in (1.4), as it is dominated by the same
2K PDE’s (see Remark 2.7). Minimizing the functional (4.1) is implemented numerically
using a plain steepest descend method.

For the numerical examples, the piecewise constant phantoms in Figure 2 panels (a)
and (b) are used, with the same noise level as in the previous sections. The value b = 10−5

is used for the penalty term in all the examples.
It should be noted that the colour scale in the following examples is not the same scale as

for the phantoms, unlike the previous reconstructions. This is because the TV reconstructions
have a significantly lower contrast, in particular for the partial data reconstructions, and
would be visually difficult to distinguish from the background conductivity in the correct
colour scale.

As seen from Figures 11 and 12, the support of the inclusion is slightly overestimated
in the case of full boundary data, and for the partial data cases the support is slightly larger
than the counterparts in Figures 9 and 10. It is also noticed that the TV reconstructions
have a much lower contrast than the �1 sparsity reconstructions, and the contrast for the TV
reconstructions is severely reduced when partial data are used. It is also observed that the
same type of shape deformation occurs for both methods in case of partial data.

A typical feature of the TV regularization is piecewise constant reconstructions; how-
ever, the reconstructions seen here have constant contrast levels with a smooth transition
between them. This is partly due to the slight smoothing of the penalty term with the

(a) (b) (c)

Figure 11. TV reconstruction of the phantom with a ball inclusion in Figure 2(a). (a) Full boundary
data. (b) 50% boundary data. (c) 25% boundary data.
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(a) (b) (c)

Figure 12. TV reconstruction of the phantom with a kite-shaped inclusion in Figure 2(b). (a) Full
boundary data. (b) 50% boundary data. (c) 25% boundary data.

parameter b > 0 to make it differentiable, but mostly because the discrepancy terms are
not convex which may lead to local minima. The same kind of smooth transitions is also
observed in TV-based methods for EIT in [48].

5. Conclusions

We have extended the algorithm developed in [36], for sparse reconstruction in electrical
impedance tomography, to the case of partial data. Furthermore, we have shown how a
distributed regularization parameter can be applied to utilize spatial prior information. This
lead to numerical results showing improved reconstructions for the support of the inclusions
and the contrast simultaneously. The use of the distributed regularization parameter enables
sharper edges in the reconstruction and vastly reduces the deformation of the inclusions in
the partial data problem, even when the prior is overestimated.

The optimization problem is non-convex and the suggested algorithm is therefore only
expected to find a local minimum. Initializing with the background conductivity in the
numerical examples yields acceptable reconstructions for both full boundary data and partial
boundary data.

The algorithm can be generalized for 3D reconstruction, under further assumptions on
the boundary conditions {gk}K

k=1 and the amplitude of the perturbation δσ . This will be
considered in a forthcoming paper [38].
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Abstract. In electrical impedance tomography the electrical conductivity inside a phys-

ical body is computed from electro-static boundary measurements. The focus of this

paper is to extend recent results for the 2D problem to 3D: prior information about the
sparsity and spatial distribution of the conductivity is used to improve reconstructions for

the partial data problem with Cauchy data measured only on a subset of the boundary. A

sparsity prior is enforced using the `1 norm in the penalty term of a Tikhonov functional,
and spatial prior information is incorporated by applying a spatially distributed regular-

ization parameter. The optimization problem is solved numerically using a generalized

conditional gradient method with soft thresholding. Numerical examples show the effec-
tiveness of the suggested method even for the partial data problem with measurements

affected by noise.

1. Introduction. Sparse reconstruction for electrical impedance tomography (EIT) with
full boundary data has been utilized in [9, 14, 15] and are based on algorithms from [3, 4].
A similar approach was used for the 2D partial data problem in [8] by applying a spatially
varying regularization parameter; this paper extends the algorithm to the 3D partial data
problem. The main contributions are in deriving the Fréchet derivative for the algorithm
and in the numerical results in 3D.

The inverse problem in EIT consists of reconstructing an electrical conductivity distribu-
tion in the interior of an object from electro-static boundary measurements on the surface
of the object. The underlying mathematical problem is known as the Calderón problem
in recognition of Calderón’s seminal paper [6]. While the Calderón problem can also be
considered in two dimensions, physical electric fields are intrinsically three dimensional, and
thus the reconstruction problem in EIT should ideally use a 3D reconstruction algorithm to
reduce modelling errors in the reconstruction.

Consider a bounded domain Ω ⊂ R3 with smooth boundary ∂Ω. In order to consider
partial boundary measurements we introduce the subsets ΓN,ΓD ⊆ ∂Ω for the Neumann
and Dirichlet data respectively. Let σ ∈ L∞(Ω) with 0 < c ≤ σ a.e. denote the conductivity
distribution in Ω. Applying a boundary current flux g (Neumann condition) through ΓN ⊆
∂Ω gives rise to the interior electric potential u characterized as the solution to

∇ · (σ∇u) = 0 in Ω, σ
∂u

∂ν
= g on ∂Ω,

∫

ΓD

u|∂Ω ds = 0, (1)
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where ν is an outward unit normal to ∂Ω. The latter condition in (1) is a grounding of the
total electric potential along the subset ΓD ⊆ ∂Ω. To be precise we define the spaces

L2
�(∂Ω) ≡

{
g ∈ L2(∂Ω)

∣∣∣
∫

∂Ω

g ds = 0

}
,

H
−1/2
� (∂Ω) ≡

{
g ∈ H−1/2(∂Ω)

∣∣∣ 〈g, 1〉 = 0
}
,

consisting of boundary functions with mean zero (here 〈·, ·〉 denotes the dual pairing), and
the spaces

H1
ΓD(Ω) ≡

{
u ∈ H1(Ω)

∣∣∣ u|∂Ω ∈ H1/2
ΓD (∂Ω)

}
,

H
1/2
ΓD (∂Ω) ≡

{
f ∈ H1/2(∂Ω)

∣∣∣
∫

ΓD

f ds = 0

}
,

consisting of functions with mean zero on ΓD. Using standard elliptic theory it follows that

(1) has a unique solution u ∈ H1
ΓD(Ω) for any g ∈ H−1/2

� (∂Ω). This defines the Neumann-

to-Dirichlet map (ND-map) Rσ : H
−1/2
� (∂Ω) → H

1/2
ΓD (∂Ω) by Rσg = u|∂Ω, and the partial

ND-map as (Rσg)|ΓD for supp(g) ⊆ ΓN.
Recently the partial data Calderón problem has been studied intensively. In 3D unique-

ness has been proved under certain conditions on ΓD and ΓN [5, 13, 16, 18]. Also stability
estimates of log-log type have been obtained for the partial data problem [12]; this suggests
that the partial data problem is even more ill-posed and hence requires more regularization
than the full data problem which has log type estimates [2].

The data considered here consist of K pairs of Cauchy data taken on the subsets ΓD and
ΓN, i.e.

{(fk, gk) | gk ∈ H−1/2
� (∂Ω), supp(gk) ⊆ ΓN, fk = (Rσgk)|ΓD}Kk=1. (2)

We assume that the unknown conductivity is given as σ = σ0 + δσ, where σ0 is a known
background conductivity. For some fixed c ∈ (0, 1) and σ0 ∈ H1(Ω) where c ≤ σ0 ≤ c−1,
define the closed and convex subset

A0 ≡ {δγ ∈ H1
0 (Ω) | c ≤ σ0 + δγ ≤ c−1 a.e. in Ω}. (3)

Similarly define

A ≡ A0 + σ0 = {γ ∈ H1(Ω) | c ≤ γ ≤ c−1 a.e. in Ω, γ|∂Ω = σ0|∂Ω}.
The inverse problem is then to approximate δσ ∈ A0 given the data (2).

Let {ψj}∞j=1 denote a chosen orthonormal basis for H1
0 (Ω). For sparsity regularization we

approximate δσ by argminδγ∈A0
Ψ(δγ) using the following Tikhonov functional

Ψ(δγ) ≡
K∑

k=1

Jk(δγ) + P (δγ), δγ ∈ A0, (4)

with the discrepancy terms Jk and penalty term P given by

Jk(δγ) ≡ 1

2
‖Rσ0+δγgk − fk‖2L2(ΓD), P (δγ) ≡

∞∑

j=1

αj |cj |,

for cj ≡ 〈δγ, ψj〉H1(Ω). The regularization parameter αj for the sparsity-promoting `1
penalty term P is distributed such that each basis coefficient can be regularized differently;
we will return to this in Section 3. It should be noted how easy and natural the use of
partial data is introduced in this way, simply by only minimizing the discrepancy on ΓD

where the Dirichlet data is known and ignoring the rest of the boundary.
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Remark 1. The non-linearity of σ 7→ Rσ leads to a non-convex discrepancy term, i.e. Ψ is
non-convex. When applying a gradient based optimization method, the best we can hope
is to find a local minimum.

This paper is organised as follows: in Section 2 we derive the Fréchet derivative of Jk and
reformulate the optimization problem using the generalized conditional gradient method
as a sequence of linearized optimization problems. In Section 3 we explain the idea of
the spatially dependent regularization parameter designed for the use of prior information.
Finally, in Section 4 we show the feasibility of the algorithm by numerical examples.

2. Sparse Reconstruction. In this section the sparse reconstruction of δσ based on the
optimization problem (4) is investigated for a bounded domain Ω ⊂ R3 with smooth bound-
ary. The penalty term emphasizes that δσ should only be expanded by few basis functions
in the given orthonormal basis. The partial data problem comes into play in the discrep-
ancy term, in which we only fit the data on part of the boundary. Ultimately, this leads to
Algorithm 1 at the end of this section.

For fixed g let u be the unique solution to (1). Define the solution operator Fg : σ 7→ u
and further its trace Fg : σ 7→ u|∂Ω (note that Rσg = Fg(σ)). In order to compute the

derivative of Fg, let γ ∈ A and g ∈ Lp(∂Ω) ∩ H−1/2
� (∂Ω) for p ≥ 8

5 . Then following the

proofs of Theorem 2.2 and Corollary 2.1 in [15] whilst applying the partial boundary ΓD we
have

lim
‖η‖H1(Ω)→0

γ+η∈A

‖Fg(γ + η)−Fg(γ)− (Fg)′γη‖H1/2

ΓD (∂Ω)

‖η‖H1(Ω)
= 0. (5)

The linear map (Fg)′γ maps η to w|∂Ω, where w is the unique solution to

−∇ · (γ∇w) = ∇ · (η∇Fg(γ)) in Ω, γ
∂w

∂ν
= 0 on ∂Ω,

∫

ΓD

w|∂Ω ds = 0. (6)

Note that (Fg)′γ resembles a Fréchet derivative of Fg evaluated at γ due to (5), however A
is not a linear vector space, thus the requirement γ, γ + η ∈ A.

The first step in minimizing Ψ using a gradient descent type iterative algorithm is to de-
termine a derivative to the discrepancy terms Jk. For this purpose the following proposition
is applied, and is a special case of [15, Theorem 3.1].

Proposition 1. Let Ω ⊂ R3 be open and bounded with smooth boundary ∂Ω. For γ ∈ A
there exists Q(c) > 2 depending continuously on the bound c from A, such that limc→1Q(c) =

∞. For q ∈ (2, Q(c))∩ [ 3
2 ,

3
2p] and g ∈ Lp(∂Ω)∩H−1/2

� (∂Ω), there is the following estimate
with C only depending on c, Ω and q:

‖Fg(γ)‖W 1,q(Ω) ≤ C‖g‖Lp(∂Ω). (7)

Now we can formulate the Fréchet derivative of Jk.

Lemma 2.1. Let gk ∈ Lp(∂Ω) ∩ H−1/2
� (∂Ω) with p ≥ 8

5 , and χΓD be a characteristic

function on ΓD. Then there exists c ∈ (0, 1) as the bound in A0 sufficiently close to 1, such
that γ = σ0 + δγ with δγ ∈ A0 implies

Ek ≡ −∇Fgk(γ) · ∇FχΓD (Rγgk−fk)(γ) ∈ L6/5(Ω) ⊂ H−1(Ω), (8)

and the Fréchet derivative (Jk)′δγ of Jk on H1
0 (Ω) evaluated at δγ is given by

(Jk)′δγη =

∫

Ω

Ekη dx, δγ + η ∈ A0. (9)
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Proof. For the proof the index k is suppressed. First it is proved that E ∈ L6/5(Ω). Write

h ≡ χΓD(Rγg − f) and note that Rγg ∈ H
1/2
ΓD (∂Ω) and f ∈ L2

�(Γ
D), i.e. h ∈ L2

�(∂Ω) ⊂
L2(∂Ω) ∩H−1/2

� (∂Ω). Now using Proposition 1, there exists Q(c) > 2 such that

‖Fh(γ)‖W 1,q(Ω) ≤ C‖h‖L2(∂Ω), (10)

where q ∈ (2, Q(c)) ∩ [ 3
2 , 3]. Since g ∈ L8/5(∂Ω) ∩H−1/2

� (∂Ω) then Proposition 1 implies

‖Fg(γ)‖W 1,q̃(Ω) ≤ C̃‖g‖L8/5(Ω), (11)

for q̃ ∈ (2, Q(c))∩ [ 3
2 ,

12
5 ]. Choosing c sufficiently close to 1 leads to Q(c) > 12

5 . By (10) and

(11) then |∇Fh(γ)|, |∇Fg(γ)| ∈ L12/5(Ω), and Hölder’s generalized inequality entails that
E ∈ Lr(Ω) with 1

r = 5
12 + 5

12 , i.e. r = 6
5 ,

E = −∇Fg(γ) · ∇Fh(γ) ∈ L6/5(Ω).

The Sobolev embedding theorem [1] implies the embedding H1(Ω) ↪→ L6(Ω) as Ω ⊂ R3.
Thus E ∈ L6/5(Ω) = (L6(Ω))′ ⊂ (H1(Ω))′ ⊂ (H1

0 (Ω))′ = H−1(Ω).
Next we prove (9). J ′δγη is by the chain rule (utilizing that Rγg = Fg(γ)) given as

J ′δγη =

∫

∂Ω

χΓD(Rγg − f)(Fg)′γη ds, (12)

where χΓD is enforcing that the integral is over ΓD. The weak formulations of (1), with
Neumann data χΓD(Rγg − f), and (6) are

∫

Ω

γ∇FχΓD (Rγg−f)(γ) · ∇v dx =

∫

∂Ω

χΓD(Rγg − f)v|∂Ω ds, ∀v ∈ H1(Ω), (13)

∫

Ω

γ∇w · ∇v dx = −
∫

Ω

η∇Fg(γ) · ∇v dx, ∀v ∈ H1(Ω). (14)

Now by letting v ≡ w in (13) and v ≡ FχΓD (Rγg−f)(γ) in (14), we obtain using the definition

w|∂Ω = (Fg)′γη that

J ′δγη =

∫

∂Ω

χΓD(Rγg − f)(Fg)′γη ds =

∫

Ω

γ∇FχΓD (Rγg−f)(γ) · ∇w dx

= −
∫

Ω

η∇Fg(γ) · ∇FχΓD (Rγg−f)(γ) dx =

∫

Ω

Eη dx.

Define

J ′δγ ≡
K∑

k=1

(Jk)′δγ = −
K∑

k=1

∇Fgk(γ) · ∇FχΓD (Rγgk−fk)(γ).

We seek to find a direction η for which the discrepancy decreases. As J ′δγ ∈ H−1(Ω) it is

known from Riesz’ representation theorem that there exists a unique function in H1
0 (Ω),

denoted by G(δγ), such that

J ′δγη = 〈G(δγ), η〉H1(Ω), η ∈ H1
0 (Ω). (15)

Now η ≡ −G(δγ) points in the direction of steepest descend among the viable directions.
Furthermore, since G(δγ)|∂Ω = 0 the boundary condition δσ|∂Ω = 0 for the approximation
will automatically be fulfilled. Note that G(δγ) is the unique solution to

(−∆ + 1)v = J ′δγ in Ω, v = 0 on ∂Ω,
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for which (15) is the weak formulation. In each iteration step we need to determine a step
size si for an algorithm resembling a steepest descent δγi+1 = δγi − siG(δγi). As in [8] a
Barzilai-Borwein step size rule is applied

si =
‖δγi − δγi−1‖2H1(Ω)

〈δγi − δγi−1, G(δγi)−G(δγi−1)〉H1(Ω)
. (16)

A maximum step size smax is enforced to avoid problems in the situation where 〈δγi −
δγi−1, G(δγi)−G(δγi−1)〉H1(Ω) ' 0.

With inspiration from [21], si will be initialized by (16), after which it is thresholded
to lie in [smin, smax] for two chosen positive constants smin and smax. It is noted in [21]
that Barzilai-Borwein type step rules lead to faster convergence if we do not restrict Ψ to
decrease in every iteration. Therefore, one makes sure that the following so-called weak
monotonicity is satisfied, which compares Ψ(δγi+1) with the most recent M steps. Let
τ ∈ (0, 1) and M ∈ N, then si is said to satisfy the weak monotonicity with respect to M
and τ if the following is satisfied

Ψ(δγi+1) ≤ max
i−M+1≤j≤i

Ψ(δγj)−
τ

2si
‖δγi+1 − δγi‖2H1(Ω). (17)

If (17) is not satisfied, the step size si is reduced until this is the case.
To solve the non-linear minimization problem (4) we iteratively solve the following lin-

earized problem

ζi+1 ≡ argminδγ∈H1
0 (Ω)


1

2
‖δγ − (δγi − siG(δγi))‖2H1(Ω) + si

∞∑

j=1

αj |cj |


 , (18)

δγi+1 ≡ PA0
(ζi+1).

Here {ψj}∞j=1 is an orthonormal basis for H1
0 (Ω) in the H1-metric, and PA0

is a projection

of H1
0 (Ω) onto A0 to ensure that (1) is solvable (note that H1

0 (Ω) does not embed into
L∞(Ω), i.e. ζi+1 may be unbounded). By use of the map Sβ : R→ R defined below, known
as the soft shrinkage/thresholding map with threshold β > 0,

Sβ(x) ≡ sgn(x) max{|x| − β, 0}, x ∈ R, (19)

the solution to (18) is easy to find directly (see also [7, Section 1.5])

ζi+1 =
∞∑

j=1

Ssiαj (dj)ψj , (20)

where dj ≡ 〈δγi − siG(δγi), ψj〉H1(Ω) are the basis coefficients for δγi − siG(δγi).

The projection PA0
: H1

0 (Ω)→ A0 is defined as

PA0(v) ≡ Tc(σ0 + v)− σ0, v ∈ H1
0 (Ω),

where Tc is the following truncation that depends on the constant c ∈ (0, 1) in (3)

Tc(v) ≡





c where v < c a.e.,

c−1 where v > c−1 a.e.,

v else.

Since σ0 ∈ H1(Ω) and c ≤ σ0 ≤ c−1, it follows directly from [20, Lemma 1.2] that Tc and
PA0 are well-defined, and it is easy to see that PA0 is a projection. It should also be noted
that 0 ∈ A0 since c ≤ σ0 ≤ c−1, thus we may choose δγ0 ≡ 0 as the initial guess in the
algorithm, which is appropriate as we expect the solution to be sparse.

The algorithm is summarized in Algorithm 1. In the numerical experiments in Section 4
the stopping criterion is when the step size si gets below a threshold sstop.
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Algorithm 1 Sparse Reconstruction for Partial Data EIT
Set δγ0 := 0.
While stopping criteria not reached

Set γi := σ0 + δγi.
Compute Ψ(δγi).

Compute J ′δγi := −∑K
k=1∇Fgk(γi) · ∇FχΓD (Rγigk−fk)(γi).

Compute G(δγi) ∈ H1
0 (Ω) such that J ′δγiη = 〈G(δγi), η〉H1(Ω).

Compute step length si by (16), and decrease it till (17) is satisfied.
Compute the basis coefficients {dj}∞j=1 for δγi − siG(δγi).

Update δγi+1 := PA0

(∑∞
j=1 Ssiαj (dj)ψj

)
.

end while
Return final iterate of δγ.

3. Prior Information. Prior information is intrinsically linked to the penalty term P for
Tikhonov-like functionals, and the regularization parameter determines how much this prior
information is enforced. In the case of sparsity regularization this implies knowledge of how
sparse we expect the solution is in general. Instead of applying the same prior information
for each basis function, a distributed parameter is applied. Let

αj ≡ αµj ,
where α is a usual regularization parameter, corresponding to the case where no prior
information is considered about specific basis functions. The µj ∈ (0, 1] will be used to
weight the penalty depending on whether a specific basis function should be included in the
expansion of δσ. The µj are chosen as

µj =

{
1, no prior on cj ,

∼ 0, prior that cj 6= 0,

i.e. if we know that a coefficient in the expansion of δσ should be non-zero, we can choose
to penalize that coefficient less.

3.1. Applying the FEM Basis. In order to improve the sparsity solution for finding
small inclusions, it seems appropriate to include prior information about the support of the
inclusions. There are different methods available for obtaining such information assuming
piecewise constant conductivity [11, 17] or real analytic conductivity [10]. The idea is to be
able to apply such information in the sparsity algorithm in order to get good contrast in the
reconstruction while maintaining the correct support, even for the partial data problem.

Suppose that as a basis we consider a finite element method (FEM) basis {ψj}Nj=1 for

the subspace Vh ⊆ H1
0 (Ω) of piecewise affine functions on each element. Let δγ ∈ Vh

with mesh nodes {xj}Nj=1, then δγ(x) =
∑N
j=1 δγ(xj)ψj(x) and ψj(xk) = δj,k, i.e. for each

node there is a basis function for which the coefficient contains local information about the
expanded function; this is convenient when applying prior information about the support
of an inclusion.

When applying the FEM basis for mesh nodes {xj}Nj=1, the corresponding functional is

Ψ(δγ) =
1

2

K∑

k=1

‖Rσ0+δγgk − fk‖2L2(ΓD) +

N∑

j=1

αj |δγ(xj)|.

It is evident that the penalty corresponds to determining inclusions with small support, and
prior information on the sparsity corresponds to prior information on the support of δσ.
We cannot directly utilize (20) due to the FEM basis not being an orthonormal basis for
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H1
0 (Ω), and instead we suggest the following iteration step as in [8]:

ζi+1(xj) = Ssiαj/‖ψj‖L1(Ω)
(δγi(xj)− siG(δγi)(xj)), j = 1, 2, . . . , N, (21)

δγi+1 = PA0
(ζi+1).

Note that the regularization parameter will depend quite heavily on the discretization of
the mesh, i.e. for the same domain a good regularization parameter α will be much larger
on a coarse mesh than on a fine mesh. Instead we can weight the regularization parameter
according to the mesh cells, by having αj ≡ αβjµj . This leads to a discretization of a
weighted L1-norm penalty term:

α

∫

Ω

fµ|δγ| dx ' α
∑

j

βjµj |δγ(xj)|,

where fµ : Ω → (0, 1] is continuous and fµ(xj) = µj . The weights βj consists of the node
volume computed in 3D as 1/4 of the volume of supp(ψj) (if using a mesh of tetrahedrons).
This corresponds to splitting each cell’s volume evenly amongst the nodes, and it will not
lead to instability on a regular mesh. This will make the choice of α almost independent of
the mesh, and will be used in the numerical examples in the following section.

Remark 2. The corresponding algorithm with the FEM basis is the same as Algorithm 1,
except that the update is applied via (21).

4. Numerical Examples. In this section we illustrate, through a few examples, the nu-
merical algorithm implemented by use of the finite element library FEniCS [19]. First we
consider the full data case ΓD = ΓN = ∂Ω both without and with prior information, and
then we do the same for the partial data case.

For the following examples Ω is the unit ball in R3. The numerical phantom consists
of a background conductivity with value 1, a smaller ball inclusion with value 2 centred
at (−0.09,−0.55, 0) and with radius 0.35, and two large ellipsoid inclusions with value 0.5.
One ellipsoid is centred at (−0.55 sin( 5

12π), 0.55 cos( 5
12π), 0) and with semi-axes of length

(0.6, 0.3, 0.3). The other ellipsoid is centred at (0.45 sin( 5
12π), 0.45 cos( 5

12π), 0) and with

semi-axes of length (0.7, 0.35, 0.35). The two ellipsoids are rotated respectively 5
12π and

− 5
12π about the axis parallel to the Z-axis and through the centre of the ellipsoids; see

Figure 1.

Figure 1. Left: 3D illustration of the numerical phantom. Right: 2D
slice (z = 0) of the numerical phantom.

In this paper we do not consider choice rules for α; it is chosen manually by trial and
error. The parameters are chosen as σ0 ≡ 1, M = 5, τ = 10−5, smin = 1, smax = 1000, and
the stopping criteria is when the step size is reduced below sstop = 10−3. Let Y mn denote



502 HENRIK GARDE AND KIM KNUDSEN

Laplace’s spherical harmonics of degree n and order m, with real form

Ỹ mn =





i√
2
(Y mn − (−1)mY −mn ) for m < 0,

Y 0
n for m = 0,
1√
2
(Y −mn + (−1)mY mn ) for m > 0.

(22)

The Neumann data consists of Ỹ mn for −n ≤ m ≤ n and n = 1, 2, . . . , 5, i.e. a total of
K = 35 current patterns. For the partial data examples a half-sphere is used for local data
Γ = ΓN = ΓD, and the corresponding Neumann data are scaled to have the same number
of periods as the full data examples.

When applying prior information, the coefficients µj are chosen as 10−2 where the support
of δσ is assumed, and 1 elsewhere. The assumed support is a 10% dilation of the true support,
to show that this inaccuracy in the prior information still leads to improved reconstructions.

For the simulated Dirichlet data, the forward problem is solved on a very fine mesh,
and afterwards interpolated onto a different much coarser mesh in order to avoid inverse
crimes. White Gaussian noise has been added to the Dirichlet data {fk}Kk=1 on the discrete
nodes on the boundary of the mesh. The standard deviation of the noise is chosen as
εmaxk maxxj∈ΓD |fk(xj)| as in [8], where ε = 10−2 corresponding to 1% noise.

Figure 2. Top: 2D slices (z = 0) through centre of ball domain. Bottom:
3D volume plot where the background value of 1 is made transparent. Left:
reconstruction with full data and no spatial prior information. Right:
reconstruction with full data and overestimated support as additional prior
information.

Figure 2 shows 2D slices of reconstructions from full boundary data. It is seen that the
reconstructions attain the correct contrast, and close to the boundary gives good approxi-
mations to the correct support for the inclusions. Using the overestimated support as prior
information gives vastly improved reconstruction further away from the boundary. This
holds for the entire 3D reconstruction as seen in the bottom part of Figure 2, and makes it
possible to get a reasonable separation of the inclusions.

From Figure 3 2D slices of partial data reconstructions are shown, and it is evident that
far from the measured boundary the reconstructions suffer severely. Reconstructing with
data on the lower part of the sphere gives a reasonable reconstruction with correct contrast
for the ball inclusion, however the larger inclusions are hardly reconstructed at all.

With data on the top half of the sphere yields a reconstruction with no clear separation
of the ellipsoid inclusions, which is much improved by use of the overestimated support.



3D RECONSTRUCTION FOR PARTIAL DATA EIT USING A SPARSITY PRIOR 503

Figure 3. 2D slices (z = 0) through centre of ball domain Left: recon-
struction with data on lower half-sphere and no spatial prior information.
Middle: reconstruction with data on upper half-sphere and no spatial
prior information. Right: reconstruction with data on upper half-sphere
and overestimated support as additional prior information.

There is however an artefact in one of the reconstructed inclusions that could correspond
to data from the ball inclusion, which is not detected in the reconstruction even when the
additional prior information is used.

The reconstructions shown here are consistent with what was observed in [8] for the 2D
problem, and it is possible to reconstruct the correct contrast even in the partial data case,
and also get decent local reconstruction close to the measured boundary. However, the
partial data reconstructions seems to be slightly worse in 3D when no prior information
about the support is applied.
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