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1. Introduction

The interest for the runaway mechanism has increased in the 
last 25 years due to the discovery of terrestrial gamma-ray 
flashes (TGFs) by the burst and transient source experiment 
(BATSE) on board the compton Gamma-ray observatory in 

1991 [3]. The emissions are bursts of Γ rays of millisecond dura-
tion occurring in association with thunderstorms. The BATSE 
observation has described millisecond bursts, but the Reuven 
Ramaty High Energy Solar Spectroscopic Imager revealed 
later on that they were submillisecond bursts [4]. The TGF 
emissions are now understood as bremsstrahlung from high 
energy electrons accelerated in high electric fields associated 
with thunderstorms (see the review of Dwyer et al [5]), and 
the idea builds on Wilson’s proposal that the electrons accel-
erated in thunderstorm fields may reach the runaway regime  
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Abstract
The runaway electron mechanism is of great importance for the understanding of the 
generation of x- and gamma rays in atmospheric discharges. In 1991, terrestrial gamma-ray 
flashes (TGFs) were discovered by the Compton Gamma-Ray Observatory. Those emissions 
are bremsstrahlung from high energy electrons that run away in electric fields associated with 
thunderstorms. In this paper, we discuss the runaway threshold definition with a particular 
interest in the influence of the angular scattering for electron energy close to the threshold. 
In order to understand the mechanism of runaway, we compare the outcome of different 
Fokker–Planck and Monte Carlo models with increasing complexity in the description of the 
scattering. The results show that the inclusion of the stochastic nature of collisions smooths 
the probability to run away around the threshold. Furthermore, we observe that a significant 
number of electrons diffuse out of the runaway regime when we take into account the diffusion 
in angle due to the scattering. Those results suggest using a runaway threshold energy based 
on the Fokker–Planck model assuming the angular equilibrium that is 1.6 to 1.8 times higher 
than the one proposed by [1, 2], depending on the magnitude of the ambient electric field. The 
threshold also is found to be 5 to 26 times higher than the one assuming forward scattering. 
We give a fitted formula for the threshold field valid over a large range of electric fields. 
Furthermore, we have shown that the assumption of forward scattering is not valid below 
1 MeV where the runaway threshold usually is defined. These results are important for the 
thermal runaway and the runaway electron avalanche discharge mechanisms suggested to 
participate in the TGF generation.

Keywords: terrestrial gamma-ray flashes, runaway electrons, streamers, thunderstorms, 
angular scattering, lightning, thermal runaway

(Some figures may appear in colour only in the online journal)

O Chanrion et al

Influence of the angular scattering of electrons on the runaway threshold in air

Printed in the UK

044001

PLPHBZ

© 2016 IOP Publishing Ltd

2016

58

Plasma Phys. Control. Fusion

PPCF

0741-3335

10.1088/0741-3335/58/4/044001

Paper

4

Plasma Physics and Controlled Fusion

IOP

Original content from this work may be used under the terms 
of the Creative Commons Attribution 3.0 licence. Any further 

distribution of this work must maintain attribution to the author(s) and the title 
of the work, journal citation and DOI.

0741-3335/16/044001+9$33.00

doi:10.1088/0741-3335/58/4/044001Plasma Phys. Control. Fusion 58 (2016) 044001 (9pp)

mailto:chanrion@space.dtu.dk
mailto:zbona@physics.muni.cz
mailto:anne.bourdon@lpp.polytechnique.fr
mailto:neubert@space.dtu.dk
http://crossmark.crossref.org/dialog/?doi=10.1088/0741-3335/58/4/044001&domain=pdf&date_stamp=2016-01-22
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
http://dx.doi.org/10.1088/0741-3335/58/4/044001


O Chanrion et al

2

[6, 7]. First, the TGFs were thought to be associated with 
sprites due to the high absorption of gamma rays in the atmos-
phere [3]. As the research went on, they appear to originate 
from cloud altitudes [8, 9] where it is estimated that 1017run-
away electrons are needed to be produced in order to observe 
a TGF at satellite altitude [8]. From observation, the typical 
lightning associated with TGFs is a strong positive intracloud 
[10–12]. Today, the two most accepted theories to justify TGF 
observations are the acceleration of cold electrons in the high 
field surrounding leaders [13–20] and the relativistic feedback 
mechanism enhancing the flow of electrons in relativistic run-
away electron avalanches (RREAs) associated with the storm 
electric field [21, 22]. It remains a possibility that the two 
mechanisms are at work concurrently. Modeling associated 
with TGFs and RREA has started with the works of [23–26] 
mostly looking at the generation of RREA from cosmic rays 
using a Fokker–Planck approach to solve the evolution of rela-
tivistic electrons. They addressed the problem analytically and 
by solving it with finite-difference methods. [27] looked at the 
RREA beam solving the Fokker–Planck equation with a Monte 
Carlo method. [28, 29] and [8] intensively studied RREA 
and the feedback process, in particular, they used a Monte 
Carlo approach, followed by [30, 31]. [13–17, 19, 20, 32]  
looked at the acceleration of cold electrons in discharges to 
justify TGF emissions. [13] used a 1D Monte Carlo model of 
a streamer. [14, 16] looked at a 2D axisymmetric Monte Carlo 
model and later on at a hybrid fluid-particle energy-coupled 
model [20]. [15] used a hybrid fluid-particle space-coupled 
model. [2, 18, 19, 32] looked at a full Monte Carlo model. 
In these models, cold electrons have to go through an energy 
runaway threshold to reach the runaway regime. The defini-
tion of the runaway threshold used in [13, 14, 24] assumes 
a forward scattering of electrons. [33] discuss the runaway 
electron mechanism with the nonlocal criterion for runaway 
electrons in laboratory discharges. In [34], based on a Monte 
Carlo model in N2 and He, they have defined a stochastic run-
away threshold ε th

sto for large electric fields higher than the 
one corresponding to the maximum of the friction force, and 
they give the rate of the runaway electron in the absence of 
ionization. These authors took into account the influence of 
the angular scattering of electrons. The obtained stochastic 
runaway threshold is higher than the one with a forward scat-
tering assumption. In the present work, we investigate the 
influence of the angular scattering of electrons in air on the 
definition of the runaway energy threshold for a large range 
of electric fields from 0.3 to 15Ek with Fokker–Planck and 
Monte Carlo models.

2. The models

In this section, we introduce the four models that will be 
used to investigate the influence of the scattering on the 
runaway threshold. The first two models are based on the 
Fokker–Planck equation describing the movement of an elec-
tron drifting in the electric field. The collisional operator is 
simplified by averaging over many collisions, introducing 
an effective friction force that simply slows the electrons 

down, and a diffusion coefficient that affects the electron 
velocity angular distribution. For the first Fokker–Planck 
model, we impose forward scattering at all electron ener-
gies, thus, neglecting the diffusion coefficient. This reduced 
model gives the definition of the runaway energy threshold in 
which all electrons have forward velocities, i.e., antiparallel 
to the electric field. For the second Fokker–Planck model, 
we keep the diffusion coefficient, but we assume the angular 
equilibrium [1]. This allows us to reduce the problem and 
to define an energy threshold for runaways. Being interested 
in the runaway threshold, we drop the source terms in both 
Fokker–Planck models. For the sake of correctness, we use 
the same set of collision cross sections to derive the Fokker–
Planck equation  coefficients as in the Monte Carlo model. 
The Monte Carlo model uses the method of [35] to imple-
ment the scattering in the velocity angle knowing the ratio 
of the momentum transfer to the total cross section of indi-
vidual collisions. To cancel the source terms in the Monte 
Carlo models, we remove the attachment process, and we do 
not create new electrons when ionization occurs. Instead, we 
simply take into account the energy loss and the deviation in 
angle.

2.1. Fokker–Planck models

Following [24, 27], the Fokker–Planck equation reads
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where e, p, and μ are the electron charge, the magnitude of 
the electron momentum, and the cosine of the angle θ, respec-
tively, between the electric field and the momentum vector. E 
is the magnitude of the applied field. FD is the friction force 
that represents the change in electron momentum due to col-
lisions, and D represents the diffusion in angle due to col-
lisions. The friction force FD is reconstructed as in [13, 14] 
from a set of cross sections, obtained thanks to the work of 
[36, 37] with the exception that we use the relativistic binary 
encounter Bethe (RBEB) model for ionization as in [2, 38]. 
The diffusion coefficient D is approximated by one-fourth the 
rate of change in the electron mean square angle [27, 39]

( ) ( )⟨ ⟩σ χ≈D p N v p
1

4
,Tg

2 (2)

where Ng is the neutral gas density, v is the electron velocity, 
and χ is the scattering angle. The average square deviation 
angle ⟨ ⟩χ2  is calculated by an independant Monte Carlo 
scheme using the set of cross sections  used in the present 
paper.

2.1.1. Fokker–Planck model with forward scattering. Under 
the assumption of forward scattering, the diffusion coefficient 
D is null. Moreover, following [24], (1) can be rewritten in 
the form
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Particle orbits describing the movement of an electron through 
the phase space can be obtained by dropping the right hand 
side of (3). The electron orbits then are given by the Langevin 
equation,
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With a further assumption of electron drifting in the direc-
tion of the electric force, i.e., µ = −1, these equations become 
simply

( )= −
p

t
eE F p

d

d
.D (5)

This equation  gives the definition of the runaway threshold 
with the forward scattering assumption ε th, corresponding to 
the electron momentum or energy for which FD( p )  =  eE in 
the energy range from 100 eV to 1 MeV [13, 14, 24]. The plot 
of the friction force is given in figure 1, similar to [13, 14]. For 
comparison, we plot on top, the friction force used in Lehtinen 
et al [1] (red curve) and the one given by the National Insitute 
of Standards and Technology (NIST) [40] (dashed black 
curve). We observe good agreement with both. The definition 
of the runaway threshold ε th is obtained when the friction force 
FD( p ) (the blue curve in figure 1) intersects the magnitude of 
the Lorentz force eE( p ) (horizontal green curves in figure 1) 
for energies above 100 eV. A list of runaway threshold ener-
gies is given in table  1 for various electric fields expressed 

as a function of Ek, the conventional breakdown field in air 
(Ek  =  32 kV cm−1 at ground pressure).

2.1.2. Fokker–Planck model without forward scatter-
ing. Without the assumption of forward scattering, the dif-
fusion term in (1) cannot be neglected. Following the strategy 
of [27], we assume that the equilibrium in angles is achieved. 
This should hold, particularly, around the runaway threshold, 
where p varies slowly and the value of D is relatively high [1]. 
This allows setting the µ∂ ∂/  term in (1) to zero and, further-
more, leads to the distribution function for the angular equi-
librium in the form
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is the averaged cosine μ.
From the expression for M( p ), we can see that the beam of 

electrons at angular equilibrium is forward when ( )∼−M p 1, 
which requires that ( )�eE pD p . The comparison of the dif-
fusion force pD( p )/e and the Lorentz force for different elec-
tric fields is presented in figure 2. For comparison, we present 
the force pDL/e with the diffusion coefficient based on the 
screened Rutherford model of cross section used in Lehtinen 
et al [1].

It can be seen from figure 2 that electrons drifting in high 
fields ( E6 k) must have an energy above  1 MeV and electrons 
drifting in weak fields (0.5Ek) must have an energy even above 
100 MeV in order to satisfy the condition ( )�eE pD p  for the 
forward beam. Clearly, these conditions cannot be fulfilled for 
models that intend to model the generation of runaway elec-
trons from thermal electrons nor for models involving MeV 
electrons in a RREA.

Furthermore, the forward beam assumption is not valid close 
to the runaway threshold energy ε th, which is always below 1 
MeV. The assumption that electrons drift forward as well as 
the forward scattering assumption is implicitly included in the 
definition of ε th. In the following, we, therefore, adopt the defi-
nition of runaway threshold energy [1, 2] that does not rely on 
the forward scattering nor on the forward drift of electrons.

Figure 1. Comparison of the friction force FD (blue curve) and 
the magnitude of Lorentz forces eE (horizontal green curves). The 
intersection for 100 eV >ε  gives the runaway threshold energy, thε  
for a given electric field E. Ek is the conventional breakdown field 
in air. For comparison, we present the friction force FDL used in 
Lehtinen et al [1] (red curve) and the one given by the NIST [40] 
(dashed black curve).

Plasma Phys. Control. Fusion 58 (2016) 044001
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Looking back to equation (6), we now see that the distribu-
tion fp(t, p) follows the 1D transport equation inside a force 
field given by FD( p )  +  eEM( p ). Proceeding as in the pre-
vious section to obtain the electron orbits, we can write (6) as

( )
( ( ) ( )) ( )

∂

∂
= +

∂
∂

f t p

t
F p eEM p

p
f t p

,
, .

p
D p (7)

The sign of this force gives the definition of a runaway 
threshold in a similar way as in the case with the forward scat-
tering assumption. Here, it means that electrons at angular 
equilibrium and above a certain threshold ε th

eq will accelerate, 
and those below the threshold ε th

eq will slow down. The com-
parison of the different forces present in this expression are 
given in figure 3.

The threshold definition ε th
eq is obtained when the friction 

force FD( p ) intersects the effective driving force  −eEM( p ) 
for energies above 100 eV as shown in figure 3. The compar-
ison of both the threshold ε th and the threshold ε th

eq is presented 
in table  1 for various values of the electric field E. For the 
threshold ε th

eq, we give both our value and the one obtained 
by Lehtinen et al [1] noted ε L

th
eq, . Note that the difference in 

thresholds is relatively significant. First, the threshold ε th
eq is 

5 to 26 times higher than the one with the forward scattering 
assumption, which emphasizes the role of diffusion in the 
threshold definition. Second, our threshold is 1.6 to 1.8 times 
higher than the one proposed by Lehtinen et al [1] and Celestin 
et al 19, depending on the magnitude of the ambient electric 
field. The latter difference comes mostly from the choice of 
cross sections  from which the friction force and the diffu-
sion coefficient are derived. It is important to recall the good 
agreement of our friction force observed in figures 1 and 3. 

On the other hand, the comparison of our diffusion coefficient 
with the one used by Lehtinen et al [1] presented in figure 3 
shows that our diffusion coefficient is 2.5 to 3.8 times higher. 
As an example, we plot the effective driving force  −eEML( p ) 
calculated with the diffusion coefficient DL in figure 3 for a 
field of 0.5Ek. It shows clearly that the combination of friction 
force and effective driving force from Lehtinen et al [1] gives 
a lower threshold than with our data and that the small devia-
tions observed in the friction force are responsible for a small 
part of the difference observed in the threshold, the major part 
of which comes from the deviation in the diffusion coefficient.

The cross-sectional data we used were obtained from 
the work of Biagi [37], which gives a data set of total and 
momentum transfer cross sections validated experimentally by 
means of transport coefficients. The anisotropy function comes 
from the work of [41] calculating the cross section by using the 
Dirac partial wave method with screened potentials obtained 
from Dirac–Hartree–Fock atomic electron density. The aniso-
tropy model is expected to be more accurate and more diffu-
sive than the Rutherford model used in Lehtinen et al [1].

In the following, we give a fitting formula for runaway 
threshold energy ε th

eq valid from 0.3 Ek to 15 Ek:

 
⎛
⎝
⎜

⎞
⎠
⎟≈
−

ε
E

E
39.473 keV.

k
th
eq

1.3292

 (8)

Since the bremsstrahlung process strongly affects the friction 
force above 1 MeV, a correction of the formula for fields less 
than 0.3 Ek would have to be considered.

Figure 2. Comparison of the diffusion force pD( p )/e (blue curve) 
with the Lorentz force for different electric fields (green lines). 
For comparison, we present the force pDL/e with the diffusion 
coefficient used in Lehtinen et al [1] (red curve). Electrons drift 
mostly forward when E pD p e/( )� .

Figure 3. Comparison of the friction force FD (blue curve) with 
effective driving force  −eEM( p ) (green curves). The intersection 
gives the runaway threshold energy th

eqε . The vertical dashed lines 
indicate at which energies this happens for different electric 
field E. For comparison, we present the friction force FDL used in 
Lehtinen et al [1] (red curve) together with the effective driving 
force  −eEML( p ) (yellow curve) calculated with the diffusion 
coefficient DL and for a field of 0.5Ek.

Table 1. Comparison of runaway thresholds thε , th
eq,Lε , and th

eqε  in air for various values of the electric field.

/ keVk  ( )ε ε 12.5 10.9 9 8.4 7.5 6 4 2 1 0.81 0.67 0.54 0.34

thε — — — — 0.10 0.26 0.72 2.29 5.88 8.25 10.84 14.11 25.22

th
eq,Lε — — — — — — — — 24 32 41 54 103

th
eqε 1.3 1.57 2.04 2.26 2.61 3.54 6.25 15.95 39.41 50.47 66.05 89.77 181.34

Note: A formula approximating ε th
eq is given by equation (8).

Plasma Phys. Control. Fusion 58 (2016) 044001
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2.2. Monte Carlo models

In the following, we briefly introduce the Monte Carlo model 
we use to compare with the preceding models. The model is 
described in detail in [14] and corresponds to a way to approx-
imate the Boltzmann equation,

t
f

p

m
f eE f Q p ,x p

e
e( )

γ
∂
∂
+ ⋅ ∇ − ⋅ ∇ = (9)

where me is the rest mass of an electron, γ = − v c1/ 1 /2 2 , 
v is the electron speed, c is the speed of light, and Qe is the 
Boltzmann collision term accounting for both elastic and 
inelastic collisions.

The Monte Carlo method allows for simulating the tra-
jectory of electrons drifting in a constant electric field while 
modeling individual collisions by taking into account their 
stochastic nature, accounting also for the fact that each dif-
ferent collisional process, e.g., elastic collisions, excitation, 
or ionization, absorbs a different amount of energy of the 
electron. The model uses the set of cross sections  of [37] 
with the exception that we use the model of RBEB for ioniz-
ation as in [2, 38]. The scattering angle after the collision is 
obtained following the scheme of [35]. Comparing with the 
Fokker–Planck model, the Monte Carlo model corresponds 

to a description of collisions at a timescale short enough not 
to be able to average over all collisions. Being interested in 
the runaway threshold and the electron orbits, we cancel the 
source terms in the model by removing the attachment process 
and by not creating new electrons when ionization occurs. We 
simply take into account the energy loss and the deviation 
in angle for this process. The model will be used in the fol-
lowing: (a) with an assumption of forward scattering, forcing 
particle velocity not changing direction in a collision; and (b) 
without this assumption as the classical Monte Carlo model.

3. Results

3.1. Forward scattering models

3.1.1. Fokker–Planck with forward scattering. In this section, 
we present the orbits of the Fokker–Planck equation (3) with 
the forward scattering assumption, described by the Langevin 
equation (4). The solution of (4) is performed numerically as 
an initial value problem by lsode solver from ODEPACK 
[42]. The sample orbits are started by setting the initial con-
dition for (4) on a circle with energy of 100 keV. Individual 
orbits are then followed as long as the electron energy stays 
in the range in between 100 eV and 100 keV. Electron orbits 

Figure 4. Orbits of the Fokker–Planck equation with forward scattering for electric fields of 0.5, 2, 4, and 6Ek. v v∥ µ=  and v v 1 2µ= −⊥  
are parallel and perpendicular components of the electron velocity with respect to the electric field. Golden orbits run away, while the thin 
blue orbits are trapped. The golden orbits accelerate when F eE 0D µ− − > , and the borderline for this condition is shown by the thick blue 
line. The light blue circle zone in the center covers energies that are below the runaway threshold thε , and all electron orbits entering this 
zone are trapped.

Plasma Phys. Control. Fusion 58 (2016) 044001
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in phase space are shown in figure 4 for electric fields of 0.5, 
2, 4, and 6Ek. In each panel of figure 4, we observe that some 
electrons are trapped and slow down (thin blue orbits), while 
others run away (golden orbits). A curve made of points ( )µp,  
that realize the equilibrium between the friction force FD( p ) 
and the Lorentz force µeE  is shown with a thick blue line on 
top of each panel of figure 4. It is clear that some electrons 
slow down until they cross this curve and then accelerate 
again to finally run away. Note that electrons drifting strictly 
against the field such that µ = −1 hold the definition of the 
runaway threshold with the forward scattering assumption 
(see table 1). The delimitation of golden orbits and thin blue 
ones can be used to define a probability to run away as a func-
tion of the initial angle θ0. The probability is simply one for 
the golden orbits (these will run away) and zero for the thin 
blue orbits (these are trapped), and the result for the electric 
field of 2Ek is plotted in red in figure 5 as a function of the ini-
tial angle θ0 for an initial electron energy of 20 keV. The step-
like simplicity of the probability function comes from the fact 
that we have omitted random changes in the velocity angle 
and we consider the friction force instead of individual col-
lisional events. Both effects normally cause single electrons 
to "jump" randomly from one orbit to another. As discussed in 
section 2.1, the assumption of forward scattering often is valid 
when an electron has a really high energy, i.e., high above 1 
MeV, but it is questionable for electrons with energies around 
keV as emphasized below.

3.1.2. Monte Carlo model with forward scattering. In the fol-
lowing, we present results from two simulations. In the first, 
electrons are injected into the homogeneous background elec-
tric field of 2 Ek with an initial angle of θ0 and an energy of 
20 keV. Figure 5 shows the converged probability of running 
away as a function of the initial angle θ0. The probability is 
derived by counting the number of runaway electrons and 
dividing it by the number of electrons injected. Electrons are 
classified as runaway if their energy is above the threshold 
energy ε th. In figure 5, results from the Monte Carlo model 

are compared with the results from the Fokker–Planck model 
with the forward assumption described in the preceding sec-
tion. Note that the inclusion of the stochastic nature in the 
treatment of collisions into the Monte Carlo model allows 
electrons to jump from one orbit to another and, thus, smooths 
the sharp probability obtained from the Fokker–Planck model 
as we can observe in figure 5.

In the second simulation, we initiated several monoen-
ergetic beams of electrons injected forward with different 
initial energies. Figure 6 shows the probability to run away 
as a function of the initial energy of electrons drifting in 
homogeneous electric fields of 0.5, 2, 4, and 6Ek. For 0.5, 2, 
and 4Ek, the Monte Carlo results converged in less than 200 
ps, and we show results obtained at convergence. For 6Ek, 
as shown in figure 1, the driving force is very close to the 
maximum of the friction force. With the forward scattering 
assumption, low energy electrons are gradually lost and run 
away. To illustrate this, in figure 6, we show results every 
30 ps from 0 to 330 ps, showing the probability increasing 
in time. Results from the Fokker–Planck model appear as 
vertical dashed lines, and these are simply the threshold 
energies for runaway ε th, delimiting the probability to run 
away, that is, by definition, equal to 0 when the electron 
is below the energy threshold ε th and 1 when above. Once 
again, we observe good agreement on the probability to run 
away between the two models. Again, introducing the sto-
chastic nature of collisions by the Monte Carlo model simply 
smooths the probability curve without introducing too many 
other differences. This indicates that, for the case of forward 
scattering, the runaway threshold ε th is valid even for the 
Monte Carlo models.

3.2. Nonforward scattering models

3.2.1. Fokker–Planck with angular diffusion. Equation (6) 

is, in fact, the continuity equation for quantity p fp
2  and can 

be solved numerically by the monotonic upstream-centered 
scheme for conservation laws [43] using the finite volume 
method. The population of electrons was initiated by a set of 

Figure 5. Probability to run away as a function of the initial 
angle 0θ  for electrons injected with an energy of 20 keV into the 
homogeneous background electric field of 2 Ek. (Red curve): 
Fokker–Planck model with the forward scattering assumption. (Blue 
curve): results of the Monte Carlo model with forward scattering. 
(Green curve): results of the full Monte Carlo model.

Figure 6. Probability to run away for a forward beam of electrons 
as a function of the initial electron energy for models with the 
forward scattering assumption: (dashed lines): Fokker–Planck 
model and (solid lines): Monte Carlo model.
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sharp Gaussian peaks centered at energies around the runaway 
threshold ε th

eq (given in table 1) and separated by 0.1 keV. Look-
ing at the trajectory of the electron population, we observe 
similar behavior for different electric fields. As expected, the 
electrons accelerate if their energy is above the threshold ε th

eq 
and decelerate if their energy is below the threshold. Natu-
rally, the force field FD( p )  +  eEM( p ) sign and magnitude in 
(6) drive the acceleration or deceleration of the electron popu-

lation. As an example, in figure 7, we present the time evol-

ution of p fp
2  for an applied electric field of 4Ek.

3.2.2. Classical Monte Carlo model. In this last comparison, 
we present the results of similar test cases as above but per-
formed with the full Monte Carlo model. We recall that this 
model contains not only the stochastic nature of collisions, but 
also considers the scattering in the angle. In the first simulation, 
we, again, run the code initiated with 20 keV electrons injected 
with different angles into the homogeneous background field 
of 2 Ek. The green curve in figure 5 shows the converged prob-
ability of running away as a function of the initial angle θ0. The 
results of the full Monte Carlo model are compared with the 
results of the Fokker–Planck model with the forward scattering 
assumption and with the Monte Carlo model with the forward 
assumption as described in preceding sections. We observe 
a radical change between the full Monte Carlo model that 
includes the complete description of the scattering processes 
and the other models where the assumption of forward scatter-
ing is employed. Even when shot forward, i.e., for θ π=0  and 
with an initial energy of more than ten times the threshold ε th, 
15% of electrons are lost from the runaway population by dif-
fusion. On the other hand, about 15% of electrons shot antifor-
ward will turn back inside the runaway regime due to diffusion.

If we integrate the results presented in figure 5 over all inci-
dent angles, we find that 31%, 33%, and 49.8% of electrons 
are lost from the runaway population for the Fokker–Planck 
model with the forward scattering assumption, for the Monte 
Carlo model with the forward scattering assumption, and for 
the full Monte Carlo model, respectively. This indicates that 
a significant number of electrons will abandon the runaway 
regime due to the angular diffusion from scattering.

In the second simulation, we initiated several beams of 
monoenergetic electrons injected forward with different initial 
energies around the threshold ε th

eq, see table 1. Figure 8 shows 
the converged probability to run away as a function of the 
initial energy for electrons drifting in different electric fields. 
This time, the Monte Carlo results are compared with those 
from the Fokker–Planck model without the forward scattering 
assumption but with the angular equilibrium assumption.

Once again, we observe good agreement for the probability 
to run away between the two models. Again, for the Fokker–
Planck model, the probability to run away is, by definition, 
0 when the electron is below the energy threshold ε th

eq and 1 
above. Clearly, introducing the stochastic nature of collisions 
in the Monte Carlo model simply smooths the probability 
curve, indicating that the runaway threshold ε th

eq is adequate 
for both models.

It is interesting to see that the probabilities obtained from 
the models with and without forward scattering are extremely 
different. This was expected according to the differences in 
runaway threshold ε th and ε th

eq presented in table 1. For instance, 
it shows that less than 10% of electrons initiated at 10 keV 
(i.e., five times above the runaway threshold ε th), really will 
run away in a field of 2Ek (i.e., meaning that 90% of electrons 
will abandon the runaway regime due to the angular diffusion 
from the scattering).

Finally, we have carried out simulations to calculate the 
rate of runaways in the absence of ionization, following the 
approach of [34]. With our model, in air, we obtain ×1.05 102, 
×6.04 103, ×4.8 104, ×8.36 106, and × −s9.67 107 1, respec-

tively, for the electric fields 7.5, 8.4, 9, 10.9, and 12.5Ek. Our 
results give lower rates than those obtained by [34] in pure N2 
with ×1.3 104, ×1 106, ×6.62 106, ×4.7 108, and × −s4 109 1, 
respectively. These differences are due to the differences in 
the cross sections used in the different models.

4. Conclusion

In this paper, we have used several models describing the 
motion of electrons in a velocity space drifting in a constant 

Figure 7. Trajectory of the angular equilibrium distribution p fp
2  

around the runaway threshold th
eqε  for an applied electric field of 4Ek.

Figure 8. Probability to run away for a forward beam of electrons 
as a function of the initial electron energy for models without the 
forward scattering assumption, (solid curves): Monte Carlo model 
and (dashed lines): Fokker–Planck model with angular equilibrium.
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background electric field. The first class of models is con-
structed around the Fokker–Planck equation describing scat-
tering with a friction force and a diffusion coefficient. After 
reduction, these models allow for defining the runaway 
threshold energy in an intuitive manner. The second class 
of models is constructed around the classical Monte Carlo 
method including the stochastic nature of the scattering. The 
latter models do not allow for defining the runaway threshold 
simply but are used to test the thresholds obtained by the 
Fokker–Planck model. Plotting the probability to run away 
for test cases assuming a forward scattering and not, we 
have found good agreement in the definition of the runaway 
threshold for both model classes. The assumption of forward 
scattering leads to the simple definition of the threshold.

Without this assumption, the Fokker–Planck model also 
allows for defining a threshold to run away if we assume an 
angular equilibrium. The threshold is found to be 5 to 26 times 
higher than the one with the forward scattering assumption, 
depending on the magnitude of the ambient electric field. The 
runaway threshold values are 1.6 to 1.8 times higher than 
those derived in Lehtinen et al [1] and Celestin et al [19]. For 
high electric fields, the runaway rates in air obtained with a 
Monte Carlo model by following the method of Bakhov et 
al [34] that deviates significantly from those derived in pure 
N by [34]. Both deviations are attributed to differences in the 
cross-sectional data between models and indicate that our 
model is more diffusive than the others. Furthermore, we have 
shown that the assumption of forward scattering should not 
be used below 1 MeV where the runaway threshold usually 
is obtained.

Those results suggest that the definition for the runaway 
threshold energy ε th

eq, based on the Fokker–Planck model 
assuming angular equilibrium, is more appropriate than one 
assuming forward scattering. The outcome is particularly 
important for the acceleration of thermal electrons to the run-
away regime and to the runaway electron avalanche. Those 
processes are suggested to participate as a source of runaway 
electrons that are vital for theories explaining observations of 
recently discovered terrestrial Γ-ray flashes.
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