

Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber - DTU Orbit (08/11/2017)

Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber

We demonstrated a simple and cost-effective method to fabricate all fiber Mach-Zehnder interferometer (MZI) based on cascading a short section of liquid crystal (LC)-filled hollow-optic fiber (HOF) between two single mode fibers by using automatically splicing technique. The transmission spectra of the proposed MZI with different LC-infiltrated length were measured and the temperature-induced wavelength shifts of the interference fringes were recorded. Both blue shift and red shift were observed, depending the temperature range. Based on our experimental results, interference fringe was observed with a maximum interferometric contrast over 35dB. The temperature-induced resonant wavelength blue-shifts 70.4 nm for the MZI with an LC length of 9.79 mm and the wavelength temperature sensitivity of -1.55 nm/degrees C is easily achieved as the temperature increases from 25 degrees C to 77 degrees C. (C)2015 Optical Society of America

General information

State: Published

Organisations: Department of Photonics Engineering, Optical Sensor Technology, Technical University of Denmark,

National United University, University of Central Florida

Authors: Ho, B. (Ekstern), Su, H. (Ekstern), Tseng, Y. (Intern), Wu, S. (Ekstern), Hwang, S. (Ekstern)

Pages: 33588-33596 Publication date: 2015

Main Research Area: Technical/natural sciences

Publication information

Journal: Optics Express

Volume: 23

Issue number: 26 ISSN (Print): 1094-4087

Ratings:

BFI (2017): BFI-level 2

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 2

Scopus rating (2016): CiteScore 3.48 SJR 1.487 SNIP 1.589

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 2

Scopus rating (2015): SJR 1.976 SNIP 1.755 CiteScore 3.78

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 2

Scopus rating (2014): SJR 2.349 SNIP 2.166 CiteScore 4.18

Web of Science (2014): Indexed yes

BFI (2013): BFI-level 2

Scopus rating (2013): SJR 2.358 SNIP 2.226 CiteScore 4.38

ISI indexed (2013): ISI indexed yes Web of Science (2013): Indexed yes

BFI (2012): BFI-level 2

Scopus rating (2012): SJR 2.587 SNIP 2.145 CiteScore 3.85

ISI indexed (2012): ISI indexed yes Web of Science (2012): Indexed yes

BFI (2011): BFI-level 2

Scopus rating (2011): SJR 2.579 SNIP 2.606 CiteScore 4.04

ISI indexed (2011): ISI indexed yes Web of Science (2011): Indexed yes

BFI (2010): BFI-level 2

Scopus rating (2010): SJR 2.943 SNIP 2.466

Web of Science (2010): Indexed yes

BFI (2009): BFI-level 2

Scopus rating (2009): SJR 3.092 SNIP 2.669

Web of Science (2009): Indexed yes

BFI (2008): BFI-level 2

Scopus rating (2008): SJR 3.195 SNIP 2.393

Web of Science (2008): Indexed yes

Scopus rating (2007): SJR 3.27 SNIP 2.032

Web of Science (2007): Indexed yes

Scopus rating (2006): SJR 3.233 SNIP 2.326

Web of Science (2006): Indexed yes

Scopus rating (2005): SJR 3.334 SNIP 2.379

Web of Science (2005): Indexed yes

Scopus rating (2004): SJR 2.833 SNIP 2.499

Web of Science (2004): Indexed yes

Scopus rating (2003): SJR 2.688 SNIP 2.193

Web of Science (2003): Indexed yes

Scopus rating (2002): SJR 1.547 SNIP 1.673

Web of Science (2002): Indexed yes

Scopus rating (2001): SJR 1.442 SNIP 1.39

Web of Science (2001): Indexed yes

Scopus rating (2000): SJR 1.246 SNIP 0.714

Web of Science (2000): Indexed yes

Scopus rating (1999): SJR 1.381 SNIP 0.838

Original language: English

OPTICS, REFRACTIVE-INDEX, OPTICAL-FIBER

Electronic versions:

oe_23_26_33588_1_.pdf

DOIs:

10.1364/OE.23.033588

Source: FindIt

Source-ID: 2289949711

Publication: Research - peer-review > Journal article - Annual report year: 2016