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simulation of spread of african 
swine Fever, including the effects of 
residues from Dead animals
Tariq Halasa1* , Anette Boklund1 , Anette Bøtner1 , Nils Toft1 and Hans-Hermann Thulke2

1 National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark, 2 Department of Ecological Modeling, 
Helmholtz Center for Environmental Research (UFZ), Leipzig, Germany

To study the spread of African swine fever (ASF) within a pig unit and the impact of 
unit size on ASF spread, a simulation model was created. In the model, an animal can 
be in one of the following stages: susceptible, latent, subclinical, clinical, or recovered. 
Animals can be infectious during the subclinical stage and are fully infectious during the 
clinical stage. ASF virus (ASFV) infection through residues of dead animals in the slurries 
was also modeled in an exponentially fading-out pattern. Low and high transmission 
rates for ASFV were tested in the model. Robustness analysis was carried out in order to 
study the impact of uncertain parameters on model predictions. The results showed that 
the disease may fade out within the pig unit without a major outbreak. Furthermore, they 
showed that spread of ASFV is dependent on the infectiousness of subclinical animals 
and the residues of dead animals, the transmission rate of the virus, and importantly 
the unit size. Moreover, increasing the duration of the latent or the subclinical stages 
resulted in longer time to disease fade out. The proposed model is a simple and robust 
tool simulating the spread of ASFV within a pig house taking into account dynamics of 
ASFV spread and the unit size. The tool can be implemented in simulation models of 
ASFV spread between herds.

Keywords: african swine fever, model, asF, simulation, virus

inTrODUcTiOn

African swine fever (ASF) is an infectious disease of pigs, caused by the ASF virus (ASFV), which is 
a DNA virus from the family Asfarviridae, genus Asfivirus (1). The disease has high relevance to the 
pig health and pig industry and is one of the most important emerging diseases of domestic pigs (2, 
3). Infection with ASF is associated with a wide range of clinical symptoms from almost unapparent 
to severe clinical signs and death with mortality ranging from 3 to 100% (3). In the recent outbreaks 
observed in Eastern and Central Europe, a high mortality has occurred, in which approximately 95% 
of the infected animals have died following the appearance of clinical symptoms (4). The disease is 
endemic in Africa and is considered one of the biggest hurdles for the development of the pig sector 
in African countries, such as Uganda (5).

The disease has been persistent in Russia since 2008 (6), and since then it has caused many 
cases and outbreaks in wild boar and domestic pigs in eastern European countries, such as 
Poland, Estonia, Latvia, and Lithuania (4, 7). Recent studies have pointed out routes of ASF 
spread (8–10). Oganesyan et  al. (10) pointed out the importance of anthropogenic factors 
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TaBle 1 | Parameters used in a model simulating within-unit spread of 
african swine fever in 4,000 units of varying sizes.

Parameter Value explanation and source

Probability of death 
following infection

0.95 Gallardo et al. (4)

The relative half-life time of 
ASF virus in slurries (γ)

1 Assumed to be as robust as the 
foot-and-mouth disease virus as 
derived from Bøtner and Belsham 
(29) and Haas et al. (30)

Maximum virus survival 
time in slurries (dmax)

5 Davis et al. (28)

Infectiousness of residues 
from a dead animal relative 
to a clinical case (ϵ)

0–1 Not available

Infectiousness of a 
subclinically infected animal 
relative to a clinical case (μ)

0–1 Not available

Transmission rate per 
day (β)

0.30 or 0.60 Guinat et al. (27)

Number of animals per 
pig unit

Danish CHRa data from 2014

Small units 2–300 The values are the minimum and 
the maximum limits in uniform 
distributions, with random 
selection of 1,000 pig units per 
category assuming all animals 
within a herd are located in one 
house (unit)

Medium size units 301–1,200
Large units 1,201–2,250
Very large units 2,251–10,000

aThe Central Husbandry Register data provided by the Veterinary, Food and Drug 
Administration.
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for farm to farm spread of ASF and the necessity of correct 
implementation of biosecurity and control measures to limit 
the spread of ASF. Vergne et  al. (8) indicated a potential 
spillover of infection between domestic pigs and wild boar, 
and recommended strict biosecurity measures and the culling 
of detected herds. Korennoy et al. (9) indicated that the risk 
of ASF spread is a function of socio-economic and geographic 
factors.

As discussed earlier (11, 12), there is a risk of ASF spreading 
further throughout Europe. An outbreak of ASF in a country 
with a large export of swine and swine products, such as 
Denmark, Germany, or the Netherlands, may have devastating 
economic consequences on the swine industry of that country 
due to export restrictions. Given the current situation of ASF in 
Europe, there is a need for studies that investigate the impact of 
control strategies to limit the spread of ASF within the European 
Union countries.

Simulation models have previously been widely used to 
study the spread of animal diseases within a country and to 
propose effective control strategies to limit their spread [e.g., 
Ref. (13–19)]. Some of the widely used between-herds spread 
models do not simulate disease spread within the unit of inter-
est (the herd) mechanistically (modeling individual animals 
separately). This is reasonable if, e.g., for contingency planning 
purposes the landscape scale is of interest in the modeling and 
individual-based representation may overcharge technical 
capacities. Moreover, some of the existing model environments 
(e.g., NAADSM; InterSpread Plus; DTU-DADS; Be-FAST) do not 
allow integration of individual-based within-herd simulations in 
their current version, although these model environments are 
applied in decision support (13, 18, 20–23). On the other hand, 
some herd-level model environments (e.g., InterSpread Plus and 
NAADSM) use pre-defined cumulative probability functions to 
represent disease progress within the animal unit. For diseases 
such as foot-and-mouth disease, which can spread airborne 
over long distances, using the same function for all herds seems 
reasonable. For slower spreading diseases, such as ASF, the time 
period, during which the infection is present in an infectious unit 
(i.e., herd-level infectious period), is expected to depend on the 
unit size. Therefore, the infectious period may vary depending on 
the number of animals present. When modeling between-herd 
spread of ASF, the variation of infectious periods of the infectious 
herds may impact the risk of transmission to other herds and the 
probability of detection. Particularly, the spread of ASF may vary 
depending on the stage of infection and whether the infectious 
animals bled, as blood is one of the major sources for ASF spread 
(24, 25). Thus, it is important to propose a within-unit spread 
model that is capable to cover the dynamics of the disease spread 
within units of different size, and that can be implemented in 
between-herd spread models.

The objectives of this study were: (1) to propose a within-
standard pig holding unit (house/barn/stable) spread model 
that can be applied to between-herds spread models, taking into 
account unit size and the epidemiological characteristics of the 
modeled infection; (2) to model a plausible spread of ASF within 
the unit given the experimental knowledge on the virus type; and 
(3) study the impact of unit size on disease spread.

MaTerials anD MeThODs

simulation study
A dynamic Monte Carlo simulation model was developed in 
order to simulate the spread of ASF within a domestic pig unit 
(representing house/barn/stable). The discrete time step was 1 day 
and the model was developed using the freeware R (version 3.1.3) 
“smooth sidewalk” (26). The model was built and parameterized 
to represent the Georgian ASF strain (4, 12, 27, 28).

The numbers of units to be modeled is defined at the begin-
ning of each run, and the numbers of animals within each unit 
are drawn from distributions of different unit sizes (Table  1). 
Animals are modeled deterministically within the unit and the 
model assumes random mixing of animals within each unit. The 
start of the infection process in each unit is assumed to be the 
introduction of one animal in the latent stage.

Disease Stages and Distribution
The infection model follows the susceptible-latent-subclinical-
clinical-removed (SLSCR) model. This model follows the findings 
from Guinat et  al. (12), but with the infectious stage split into 
subclinical and clinical stages. This split was introduced, as it has 
been shown that the virus can be isolated from the blood and 
organs of affected pigs before clinical symptoms are observed 
(4). Splitting into subclinical and clinical stages facilitates the 
possibility of infection through subclinically infected animals 
and the possibility to vary infectiousness depending on factors, 
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FigUre 1 | Disease stages used for simulating african swine fever. 
Proportion of animals within a pig unit (y-axis) that will spend the defined 
number of days (x-axis) in each infection stage (latent, subclinical, and 
clinical). For instance, 48% of the animals will be latent for 1 day, while 45% 
will be latent for 2 days.
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such as virus excretion and contact type (biting). The removed 
stage defines pigs that are no longer able to receive or transmit the 
infection. This stage includes dead animals and animals that have 
recovered and became immune. The distribution of the duration 
of the different stages is presented in Figure 1. These distribu-
tions were derived by an expert, with profound experience in 
ASF, based on the quantifications from Guinat et  al. (12). This 
derivation was necessary, as the referenced study did not estimate 
the different stages on daily basis, nor did it split the infectious 
period into subclinical and clinical periods. Furthermore, experi-
mental studies include limited numbers of animals, which limits 
the range of the duration of the different stages. Based on the 
distributions in Figure 1, the model distributes newly infected 
pigs to be latently infected for different time periods. For instance, 
48% of the infected pigs will be latent for 1 day. Once a pig has 
finished the latent stage, it moves to the subclinical stage. Again, 
the model defines the length of the subclinical period, based on 
the distribution in Figure 1, and thereby, 80% of the pigs will be 
subclinical for 1 day, etc. After the subclinical period, pigs become 
clinical, and thereby infectious, and they will stay in this stage 
until they either die or recover and become immune. The impact 
of these distributions on model results was examined by changing 
the distribution of the latent or subclinical periods as shown in 
Figures S1A,B in Supplementary Material. The model parameters 
are summarized with their sources in Table 1.

Disease Spread
For each individual susceptible animal, the probability of infection 
(PIt) at each time step t was calculated based on the numbers of 
and the infectiousness of subclinical and clinical animals within 
the individual unit and based on the virus survival in residues 
from dead animals, i.e., blood, liquids, and feces, as follows:
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where PIt is the probability of infection for susceptible unit-mates 
at time step t, β is the daily transmission rate of the infection by 

clinical cases, with Clt−1 being the number of clinical cases during 
the previous day, Subt-1 is the number of subclinical cases during 
the previous day, μ is a parameter to address the infectiousness of 
a subclinical animal relative to a clinical animal, ϵ is a parameter 
to represent the infectiousness of the residues from a dead animal 
relative to a clinical animal, γ is a parameter related to the half-life 
of the virus in the residues. ( )*( )*max

e t i
− −

−= ( )∑ i
i

d 1
1

γ dead  is the contribution 
of the infectiousness of residues from animals that died during 
either of the last dmax days prior to today; with ( )

( )*
e

i− −1 γ  being the 
infectiousness of certain residues after i days and deadt−i being the 
number of animals that were found dead at day t − i, i.e., dying i 
days prior to today. Nt−1 is the total number of live animals within 
the unit during the previous day and normalizes the probability 
of contact between animals by unit size.

Transmission Parameter
From Guinat et al. (27), the transmission rates (β) within (0.6) 
and between (0.3) pen were used to represent a low and high 
transmission within the pig unit (Table  1), as no transmission 
rate is available measuring the joint within- and between-pen 
transmission within a pig unit. Therefore, we used these extreme 
values in two different scenarios.

Virus Survival in and Infection from the Environment
The model implies that the infectiousness of residues from dead 
animals is exponentially fading over time. Previous studies have 
shown that the survivability of some swine viruses (e.g., foot-and-
mouth disease) in slurries fades out in an exponential pattern 
(29). Davis et  al. (28) showed as well that the ASFV fades out 
exponentially in feces and urine at 21°C (survived up to 3 and 
5 days, respectively). Therefore, we assume an exponential fade 
out of the infectiousness over time ending 5 days following the 
death of the animal.

The parameter γ was added to address the uncertainty of 
the half-life time of the ASFV, which reflects the speed of virus 
decay in slurry relative to virus decay in, for instance, tissue. To 
our knowledge, no such data are available about the currently 
circulating strains in Eastern Europe. Nevertheless, the data 
presented by Haas et al. (30) show interesting and useful results 
in the sense that ASF, classical swine fever, and foot-and-mouth 
disease virus survived in the same pattern using the same method 
of deactivation. Using this information and the information from 
Bøtner and Belsham (29), who showed that foot-and-mouth 
disease virus can survive in the slurries in a similar pattern, as 
it can in cell culture medium on a temperature of 20°C. This was 
also the case for ASFV in data presented by Haas et al. (30) at a 
temperature of 17°C during the first 2 weeks following deactiva-
tion, the parameter (γ) was set to 1.

Lethality
Based on Gallardo et al. (4), approximately 95% of the infected 
pigs would die following infection.

Model Output, run, and robustness 
analysis
The output of the model was the time to clearance (TTC), which 
represents the time between disease introduction and disease 
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TaBle 2 | results of the within-herd outbreak simulation.

Value of β Value of μ Value of ϵ Proportion of major outbreaksa

0.3 0 0 0.49
0 0.5 0.64
0 1 0.74

0.1 0.1 0.57
0.5 0 0.61
0.5 0.5 0.72
1 0 0.71
1 1 0.83

0.6 0 0 0.90
0 0.5 0.94
0 1 0.96

0.1 0.1 0.92
0.5 0 0.93
0.5 0.5 0.96
1 0 0.95
1 1 0.98

Depending on the values of the infectiousness parameters μ and ϵ, we show the 
proportion of major outbreaks for low (0.3) and high (0.6) transmission rate (β).
aProportion of herds where >50% of the animals within the herds were infected 
following the introduction of infection to the herd.
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fade out within the unit. Disease fade-out was defined as neither 
infected animals nor infectious virus existed in the unit. The time 
until virus fade out would then be the time until the last animal 
died or recovered plus the maximum number of days the virus 
could survive after the death or recovery of the infected animals.

The model was run in 4,000 hypothetic units of varying size. 
Initial runs showed that this number of units would be sufficient 
to cover stochastic variability. Pig units were categorized in four 
hypothetical size categories (Table 1), in order to represent struc-
tural variations in housings of domestic pigs. For each category, 
disease spread was simulated in 1,000 hypothetic units, and 
the size of each unit was selected from a uniform distribution 
described by the minimum and maximum numbers of animals 
in the unit (Table 1). In the model simulations, the unreferenced 
parameters ϵ and μ were varied systematically from 0 to 1, in steps 
of 0.1 (i.e., 11 values of ϵ combined with 11 values of μ, leading to 
121 different combinations).

statistical analyses
The correlation between unit size and TTC was tested using 
Spearman correlation coefficient, because the data were not nor-
mally distributed. The difference in TTC between the different 
unit size categories was tested for statistical significance using the 
Kruskal–Wallis Test (kruskal.test function) in R (26).

resUlTs

Descriptive results
The median value of incubation period (time between infection 
and appearance of clinical signs) was 4 days and varied with 5th 
and 95th percentiles of 3 and 5 days, respectively, for the different 
values of ϵ, μ, and β. Table 2 shows the proportion of units with 
major epidemics (at least 50% of the animals were infected) for 
different values of ϵ and μ and assuming low and high virus trans-
mission. For instance, with low transmission and when ϵ and μ 
were both 0, about 49% of the units are predicted to experience 
major epidemics before the disease fades out. Furthermore, when 
the values of ϵ and/or μ were increased, the proportion of units 
with major epidemics increased. For the same values of ϵ and μ, 
but with a high virus transmission, the proportion of units with 
major epidemics was 90% (Table 2). Table 2 also shows that with 
a high transmission, regardless of the value of ϵ and μ, the vast 
majority of the units will experience major epidemics following 
introduction of the virus.

Figures 2 and 3 show the unit-frequency of TTC for selected 
values of ϵ and μ when low (high) virus transmission is modeled 
(more data are presented in Figures S2A,B in Supplementary 
Material). These figures translate Table 2 into time. The majority 
of outbreaks that did not end up in a major epidemic were finished 
within 20 days corresponding to the sum of the disease stage peri-
ods. For instance, when ϵ and μ were both 0, the disease died out 
in 11% (3%) of the epidemics without spreading to other animals 
within the unit. Both figures show that increasing the values of 
ϵ and/or μ resulted of course in shorter TTC both with low and 
high virus transmission. This is due to the increased probability of 
disease spread, when ϵ and/or μ values are increased. On the other 

hand, TTC seems to vary more when a low transmission rate is 
modeled, compared to a high transmission rate. Furthermore, 
when high transmission rate is modeled, TTC is of course much 
shorter than when low transmission is modeled. It is important 
to mention that the variation in these figures is due to unit size.

Extending the latent or the subclinical stages (Figures S1A,B 
in Supplementary Material) would result in only a slight increase 
to the TTC compared to the default distribution presented in 
Figure 1 using all combinations of μ and ϵ at low and high virus 
transmission rates (Figures 4 and 5).

impact of Unit size on TTc
The relationship between unit size and TTC for selected values 
of ϵ and μ and under a low (high) transmission rate is shown in 
Figures  6 and 7. More data are presented in Figures  S3A,B in 
Supplementary Material. Under low virus transmission rate and 
in units with TTC > 50, the correlation between unit size and TTC 
varied between 0.80 and 0.85 for all the different combinations of 
ϵ and μ. This shows that unit size had a large impact on TTC, 
regardless of the values of ϵ and μ. When a high transmission 
rate was modeled (Figure  7 and Figure S3B in Supplementary 
Material), the correlation between unit size and TTC varied 
between 0.71 and 0.87 for the different combinations of ϵ and μ, 
and the correlation increased with increasing values of ϵ and/or 
μ. In units with TTC > 20 days, the correlation varied between 
0.87 and 0.89 for the different combinations of ϵ and μ. In all 
combinations of ϵ and μ and for the low and high transmission 
rates, the correlation coefficients were statistically significant 
(P-values <0.001). Furthermore, there was statistically signifi-
cant difference in TTC between the different unit size categories 
(categories are based on distributions presented in Table 1) for 
all combinations of ϵ and μ and under the low and high virus 
transmission (P-values <0.001). Naturally, the larger the unit size 
is, the longer the TTC is.
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FigUre 3 | Distribution of the time it takes until african swine fever has died off or infected all animals in a domestic pig unit [time to clearance 
(TTc)] for different values of μ (M) and ϵ (e) at a high virus transmission rate (β = 0.6).

FigUre 2 | Distribution of the time it takes until african swine fever has died off or infected all animals in a domestic pig unit [time to clearance 
(TTc)] for different values of μ(M) and ϵ (e) at a low virus transmission rate (β = 0.3).
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Figure 8 shows the median and range values of TTC for differ-
ent values of ϵ and μ and different unit size categories with a low 
transmission rate for units where at least 50% of the animals were 
infected. Figure 9 shows the same relationship but with a high trans-
mission rate. The two figures clearly show that the transmission rate 
parameter has substantial impact on TTC. Furthermore, the impact 
of ϵ, μ, and unit size is consistent with low and high transmission.

DiscUssiOn

This study simulates ASFV spread between animals within a pig 
unit (house/barn/stable). The model has the advantage that it 

takes into account unit size and important factors on animal level, 
such as duration of the different disease stage periods, despite 
that it does not model individual animals mechanistically. The 
model considers the different stages of disease, which contributes 
to the transmission dynamics (e.g., subclinical, clinical, and dead 
animals). Moreover, latency period was considered following the 
results of Guinat et al. (12); while Gallardo et al. (4) indicated that 
the virus was detected in the blood by PCR prior to the appearance 
of clinical signs. This indicates that the animals maybe infectious 
prior to clinical symptom appearance (subclinical period). Pigs 
may be detected in the subclinical stage, as the virus is shed in the 
blood, despite that they may not be infectious. This is important 
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FigUre 5 | Time to clearance (TTc) following changing the 
distributions of the latent (latent-ext) or the subclinical (subcinical-
ext) periods compared to the default distributions (Default) under 
high virus transmission rate (β = 0.6) and for all combinations of μ 
and ϵ.

FigUre 4 | Time to clearance (TTc) following changing the 
distributions of the latent (latent-ext) or the subclinical (subcinical-
ext) periods compared to the default distributions (Default) under low 
virus transmission rate (β = 0.3) and for all combinations of μ and ϵ.
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for modeling surveillance by blood samples when modeling 
disease spread between herds. The model also addresses the 
potential spread of the virus through residues from dead animals 
in slurries. The ASFV is a robust virus that is capable of surviving 
in organic materials for some days (28, 31). Although infection 
leads to the death of most of the affected animals [approximately 
95% according to Gallardo et al. (4)], and hence a limiting factor 
for disease spread, virus in blood, feces, and liquids from infected 

animals can persist in the slurry following biting by other pigs or 
from hemorrhagic diarrhea (4), and hence be a potential risk for 
disease spread.

The results show that TTC varies depending on ϵ and μ. 
The infectious potential of subclinical animals (μ) is unknown, 
despite that scientific evidence has shown that animals may have 
viremia before clinical symptoms appear, as discussed above (4), 
indicating the potential of virus spread from these animals. From 
a practical standpoint, it is possible that subclinically infected pigs 
have scratches or small bites, which might lead to access to blood 
for the pen mates, and hence lead to disease spread. Nevertheless, 
this theory needs testing. However, for the predictive TTC quan-
tification, this possible extra time of infectiousness had limited 
influence.

As recent work has shown that infectious virus was isolated 
from feces and urine up to 5 days after storage (28), it was impor-
tant to model virus survivability in the slurry and the potential 
spread of virus through this path. Nevertheless, from practical 
standpoint, despite that infectious virus exists in the slurry, it is 
unknown how much it may contribute to disease spread and, 
thus, the parameter ϵ was added. The results show that ϵ has a 
considerable impact on the results, indicating the importance of 
quantifying it in an experimental framework. This could be done 
experimentally by, for instance, introducing susceptible pigs to 
an area where infectious pigs had been staying. Although less 
relevant for the TTC quantification, ϵ might have considerable 
impact on the risk of ASF transmission out of an infected unit.

Changing the distribution of the latent or subclinical periods 
to increase the probability that animals having longer latent or 
subclinical periods resulted in a slight increase to the median 
TTC using both low and high transmission rates (Figures 4 and 
5). Samples are usually not collected on daily basis from animals 
during the experiments, perhaps due to ethical reasons. This 
makes it difficult to extract exact durations of these stages and, 
hence, can create variability in model outcomes. Thus, accurate 
assessment of the duration of these stages is necessary for accurate 
simulation of ASF spread.

Unit size has a significant impact on disease spread within 
a unit (Figures 8 and 9). This clearly shows the importance of 
considering the number of animals; when simulating ASF spread 
between herds. It is clear that a contact infection spreading 
through a unit will take longer, the larger the house population is. 
However, for the purpose of developing models useful to support 
control planning, it was important to understand what impact 
different unit sizes may have on TTC compared to other debated 
aspects, likewise the infectivity of subclinical cases or carcasses 
residues. Thus, when simulating the spread of ASF between herds, 
the use of pre-defined cumulative probability functions that result 
in a similar disease progress pattern regardless the unit size may 
mis-estimate the infectiousness of the infected herds, which may 
result in inappropriate disease spread between herds.

The TTC changed dramatically under low and high transmis-
sion with similar ϵ and μ values (Figures  8 and 9). According 
to Guinat et  al. (27), virus transmission rates for within- and 
between-pen transmission were 0.6 and 0.3, respectively, 
assuming a latent period of 4  days. The information provided 
by Guinat et al. (27) is inconclusive concerning the magnitude 
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FigUre 7 | association between unit size and the time until african swine fever has either died off or all animals has become infected [time to 
clearance (TTc)] for different values of μ (M) and ϵ (e), and with a high virus transmission rate (β = 0.6).

FigUre 6 | association between unit size and the time until african swine fever has either died off or all animals has become infected [time to 
clearance (TTc)] for different values of μ (M) and ϵ (e), and with a low virus transmission rate (β = 0.3).
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of the potential difference between both transmission rates due 
to the strong overlap of the confidence intervals of both param-
eters. Thus, a more sophisticated approach that disentangles 
within- and between-pen spread mechanistically is of low value 
here. Basically, any supposedly assumed difference between 
the transmission within or between pens would multiply with 
the size of the unit, thus, bringing not much greater precision 
regarding the comparative assessment of ϵ, μ, and unit size on 
TTC in the maximum range spanned by the average β within or 
between pens. Pietschmann et al. (25) estimated the reproduction 
number (R0) of within pen transmission of ASFV (the Caucasian 
strain) for domestic pigs, and wild boar to be 6.1 (95% confidence 
interval of 0.6–14.5) and 5 (95% confidence interval of 1.4–10.6), 

respectively. The between-pen R0 was estimated to be 0.5 (95% 
confidence interval of 0.1–1.3). In comparison, the R0 corre-
sponding to the β-estimates of Guinat et al. (27) are 2.8 (1.3–4.8) 
within and 1.4 (0.6–2.4) between pens. Thus, the knowledge on 
ASF transmission parameters available from animal experiments 
is associated with rather huge uncertainty. In order to improve 
precision of predictive ASF modeling within herds, the more 
precise estimation of the transmission parameters will provide 
the greatest improvement, compared to the impact of chosen ϵ 
and μ values. Most important here, the impact of μ, ϵ, and unit 
size was consistent for the wide range of β.

de Carvalho Ferreira et  al. (1) estimated the transmission 
rate of the Malta78 and Netherlands86 strains of ASFV based on 
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FigUre 8 | Time until african swine fever would either died off or all animals would be infected [time to clearance (TTc)] for different domestic pig 
unit size categories and different values of μ (M) and ϵ (e) at a low virus transmission (β = 0.3) for major outbreaks, in which at least 50% of the 
animals within the unit were infected. TTC estimates for all μ values (from 0 to 1) were summarized for each value of ϵ. Similarly, TTC estimates for all ϵ values 
(from 0 to 1) were also summarized each value of μ.
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detection through RT-PCR in OPF fluid or 1 or 2 days following 
occurrence of pyrexia. When detection based on PCR was the cri-
teria, the transmission rates were considerably higher than those 
estimated by Guinat et al. (27) for the Georgian strain. However, 
when estimated based on onset of pyrexia, the transmission 
rates were close to those estimated by Guinat et al. (27). In the 
simulation study of Guinat et al. (27), the probability of outbreak 
failure (disease does not spread to other animals within the unit) 
varied between 7 and 22%, and the probability of not all animals 
in the unit become infected varied between 10 and 65% depend-
ing on the duration of the latent period. In our simulations, the 
disease faded out in 1–11% of the units and the probability of 
not all animals in the unit become infected varied between 6 and 
99%, depending on the values of β, ϵ, and μ, before spreading 
to other animals. From the eastern European epidemics, it has 
been estimated that ASF outbreaks could go extinct within a pig 
unit with 10–17% probability and small-scale epidemics were 
observed in 18–45% of the epidemics (11, 27). In our simula-
tions, small-scale epidemics (at most 10% of the animals within 
the unit were infected) were observed in approximately 2–50% of 

the simulated units, depending on the values of β, ϵ, and μ. Our 
results overlap with results from Guinat et al. (27) and the field 
observations, but seem to have more extreme values. The overlap 
between our results and Guinat et al. (27) is not surprising as we 
used their data to parameterize our model. On the other hand, 
the differences can be explained by the fact that we use extreme 
values of transmission rates and that we use an extra compart-
ment (subclinical stage). Furthermore, Guinat et al. (27) did not 
model the potential spread of the virus from residues of dead 
animals in the slurries.

Backer et al. (32) simulated the spread of classical swine fever 
in the Netherlands on pen level and assuming 10 animals within a 
pen. The same model structure was used to simulate the spread of 
swine vesicular disease (33). However, these models still assumed 
random mixing between pens, and assumed that all animals 
reside within one unit, as transmission between units was not 
modeled. Given the inconclusive results regarding the difference 
between within- and between-pen transmission and the available 
evidence of the possibility of airborne spread of ASFV within a 
pig unit (34), the random mixing assumption within a unit may 

http://www.frontiersin.org/Veterinary_Science/archive
http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org


FigUre 9 | Time until african swine fever would either died off or all animals would be infected [time to clearance (TTc)] for different domestic pig 
unit size categories and different values of μ (M) and ϵ (e) at a high virus transmission (β = 0.6) for major outbreaks, in which at least 50% of the 
animals within the herds were infected. TTC estimates for all μ values (from 0 to 1) were summarized for each value of ϵ. Similarly, TTC estimates for all ϵ values 
(from 0 to 1) were also summarized each value of μ.
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be acceptable. Thus, the current model can be a reasonable tool to 
simulate the spread of ASFV within a pig unit, given the restric-
tions. Nevertheless, when simulating the spread of infection 
between herds, information about the number of units in very 
large herds may be necessary to obtain. Because of the normally 
high biosecurity in these herds, the transmission between units 
is expected to be slower than the transmission within a unit, and 
hence may be important to simulate. Still data about the number 
of units per herd might be difficult to obtain as such data are 
not normally available in the national registers, as in the case of 
Denmark.

Several widely used models, such as the InterSpread Plus, 
NAADSM, Be-FAST, and DTU-DADS, use detailed data on move-
ments and contacts to simulate disease spread on the regional 
scale (13, 18, 20–23). This limits their capacity to simulate within 
house transmission on individual animal level mechanistically 
considering penning and sectioning within the herd. Therefore, 
the main objective of the study was to provide a within-unit trans-
mission model, which does not require mechanistic modeling of 

individual animals, but, at the same time, does consider the dif-
ferent stages of the disease for the individual animals determin-
istically, given the available experimental evidence of the disease 
stage periods and transmission parameter values on animal level. 
It is inconclusive in the literature, whether or not, or how much, 
the different potentially infectious stages (subclinical, clinical, or 
dead) contribute to the transmission of the virus. To understand 
the expected time ASFV will circulate in a pig herd, we found it 
useful to test the effect of either of the infectious stages on the time 
till fade-off of ASF in infected units. The proposed model can be 
implemented in between-herds spread model without inflating 
the running time of the models, while considering important 
factors that affects disease spread, such as infection stages on the 
individual animal level and unit size.

cOnclUsiOn

The presented model is a robust tool simulating the spread of ASF 
within a pig unit taking into account dynamics of ASF spread 
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and unit size. The tool can be implemented in models simulat-
ing spread of ASF between herds. The larger the unit size is, the 
longer the time until the disease has faded out or all animals are 
infected and, hence, unit size should be considered, when spread 
models of ASF are developed. Experimental studies are needed 
to quantify important parameters for ASF spread within a herd, 
including the transmission rate, the infectiousness of subclini-
cally infected animals, and the infectiousness of residues from 
dead animals in slurries.
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