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Abstract
Analytical formulae for the velocity field induced by a cylindrical vortex wake model are

applied to assess the induction zone in front of aligned and yawed rotors. The results are
compared to actuator disk (AD) simulations for different operating conditions, including
finite tip-speed ratios. The mean relative error is estimated in the induction zone and found
to be below 0.4% for the aligned flows tested and below 1.3% for the yawed test cases. The
computational time required by the analytical model is in the order of thousands of times
less than the one required by the actuator disk simulation.

1 Introduction
The interest in the flow behaviour inside the induction zone, which develops in front of a wind
turbine rotor, has re-emerge over the last decade. Simley compared lidar measurements with
Computational Fluid Dynamics (CFD) simulations [14]. A better knowledge of the induction
zone can improve control strategies. In recent work, the possibility that the wind turbine in-
fluences the turbulence characteristics in the induction zone has been investigated [4]. Based
on analyses of the turbulence spectrum, it appeared that the approximation that the turbu-
lence characteristics remained unaffected by the turbine was fair upstream of the turbine. The
standards recommend a distance of 2.5 diameters to locate a meteorological mast and measure
the representative free-stream velocity [10]. The possible effect of the turbine induction at this
location can be quantified as mentioned in previous work by the authors [2].

The current paper uses the cylindrical rotor model of Joukowski [11] to determine the velocity
field developing in the induction zone. The model was recently applied by the authors to
aligned [2] and yawed conditions [3], where closed form expressions or semi-empirical expressions
can be obtained for the entire flow field, respectively. Superposing such models can add further
detail to the flow [5].

The paper briefly presents the analytical models needed to assess the velocity field upstream
of the rotor. Results are then compared to CFD - actuator disk (AD) simulations in aligned
and yawed conditions.

2 Model for the velocity field in the induction zone

2.1 Presentation of the model

The vortex cylinder (VC) model represents an actuator disk and its wake by assuming a pre-
scribed support of vorticity in line with the cylindrical model of Joukowski [11]. The rotor and
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its wake are assumed to be contained within a cylinder. The cylinder axis forms an angle χ
with respect to the normal of rotor disk in case of a yawed inflow. This angle is referred to as
the “skew” angle and is usually higher than the yaw angle [7]. The term “aligned flow” will be
used when χ = 0. When the circulation is constant along the span of the rotor disk, the model
is said to be an “elementary" model. The model for a radial variation of circulation is detailed
in subsection 2.4. The azimuthal variation of circulation is not accounted for in the current
study. That the assumption of constant circulation produces satisfying results has been proven
by many Blade Element Momentum (BEM) codes relying on this simplification for their yaw
models [9, 6]. The elementary model consists of the following components of vorticity: a root
vortex, a semi-infinite vortex cylinder with tangential γt and longitudinal vorticity γl, and a
bound vortex disk with radial vorticity γb. The elementary cylindrical vortex model considered
and the coordinate system used are shown in Figure 1. The generation of this vortex system
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Figure 1: Vortex model and coordinate system. (a) Elementary system. (b) Positive definition
of the skew angle χ. (c) Concentric superposition of elementary systems.

behind an actuator disk is discussed by van Kuik [16]. For simplicity, the current models ne-
glects wake expansion. This assumption is discussed in detail in [5]. The notation u•,� will refer
to the •-component of the velocity induced by the vortex element �, where • ∈ {r, ψ, z} and
� ∈ {r, t, l, b}. The velocity field induced by the full vortex system is: ur = ur,t + [ur,l + ur,r],
uz = uz,t + [uz,l + uz,r], uψ = uψ,l + uψ,r + uψ,b + [uψ,t] where the terms in square brackets
are zero in the aligned case. The following notations are further introduced: Γtot is the total
circulation of the rotor, R is the rotor radius, and h is the pitch of the helical wake formed by
the combination of the two tip-vorticity components γt and γl.

2.2 Formulae in the aligned case for the elementary model

The different strengths of the root vortex, the bound vorticity, the tangential and longitudinal
vorticity are respectively [2]:

Γr = −Γtot ez, γb(r) = Γtot
2πr er, γt = −Γtot

h
eψ, γl = Γtot

2πR ez, (1)
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The expressions of the different components were obtained by direct integration of the Biot-
Savart law as [2]:

ur(r, z) = − γt2π

√
R

r

[
2− k2(r, z)

k(r, z) K
(
k2(r, z)

)
− 2

k(r, z)E
(
k2(r, z)

)]

uz(r, z) = γt
2

[
R− r + |R− r|

2|R− r| + zk(r, z)
2π
√
rR

(
K
(
k2(r, z)

)
+ R− r
R+ r

Π
(
k2(r, 0), k2(r, z)

))]
(2)

uψ(r, z) =


−Γtot

/
4πr, r < R and z = 0 , or, r = R and z > 0

−Γtot
/
2πr, r < R and z > 0

0, otherwise

where E, K and Π are the complete elliptic integrals of the first, second and third kind respec-
tively, where the elliptic parameter k is given by

k2(r, z) = 4rR
(R+ r)2 + z2 , n1 = 2r

r +
√
r2 + z2

, n2 = 2r
r −
√
r2 + z2

. (3)

and where n1 and n2 are used below. The different components forming the tangential velocity
are:

uψ,l(r, z) = γl
2
R

r

[
r −R+ |R− r|

2|R− r| + zk(r, z)
2π
√
rR

(
K
(
k2(r, z)

)
− R− r
R+ r

Π
(
k2(r, 0), k2(r, z)

))]
(4)

uψ,r(r, z) = −Γtot
4πr

[
1 + z√

r2 + z2

]
(5)

uψ,b(r, z) = Γtot
4π

{1
r

[
z√

r2 + z2
− |z|

z

]
− 1
πz

√
r

R

z2

r2 k
[
K(k2) + T1 Π(n1, k2)− T2 Π(n2, k2)

] }
(6)

T1 =

(√
r2 + z2 − r

)
(r +R)− z2

2z2 , T2 =

(√
r2 + z2 + r

) (√
r2 + z2 +R

)
2z2 , (7)

2.3 Formulae in the yawed case for the elementary model

The different strengths of the root vortex, the bound vorticity, the tangential and longitudinal
vorticity are respectively [3]:

Γr = −Γtot ez, γb(r) = Γtot
2πr er, γt = − Γtot

h/ cosχ eψ, γl = Γtot
2πR eζ (8)

Velocities induced by the tangential vorticity The velocity induced by the tangential
vorticity was first studied by Coleman [9], then extended by Castles and Durham [8] and recently
generalized by Branlard and Gaunaa [3]. The velocity is obtained using an analytical integration
over z and a numerical integration over ψ to give:

u•,t(r, ψ, z) = γt
4π

∫ 2π

0

2 (a′•
√
c+ b′•

√
a)√

a (2
√
ac+ b) dθ′ (9)

{a′z, b′z} = R
{
R− r cos(θ′ − ψ), m cos θ′

}
{a′r, b′r} = R

{
z cos(θ′ − ψ), − cos(θ′ − ψ)

}
{a′ψ, b′ψ} = R

{
z sin(θ′ − ψ), − sin(θ′ − ψ)

}
{a, b, c} =

{
R2 + r2 + z2 − 2rR cos(θ′ − ψ), 2mR cos θ′ − 2mr cosψ − 2z, 1 +m2

}
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where the symbol • stands indifferently for r, ψ, z and where m = tanχ. In the rotor plane,
and for ψ = 0 the integration over the azimuthal variable can be carried on analytically. An
analytical formula was given by Coleman et al. [9] for the velocity inside the rotor and by the
first author for the velocity outside of the rotor [1]:

uz,t(r > R,ψ = 0, z = 0) = γt
2 (1 +Ki +Ko) (10)

Ki(r, χ) = 2Ft(r, χ) tan χ2

Ko(r, χ) = − r
√

1 +m2

2m2 (r2 −R2)

r
(√

C −B +
√
B + C

)
√
r2 +m2R2

+
√
C −B −

√
B + C√

1 +m2


with Ft(r, χ) = Ki(r,χ)

2 tan χ
2
≈ r/2R and

B = 2r
√

(1 +m2)(r2 +m2R2), C = (2 +m2)r2 +m2R2

The exact expression for Ki is given in the article of Coleman et al. Equation 10 can be used to
verify the numerical integration performed in Equation 9 for the axial induction. The azimuthal
variation of the axial velocity is modelled based on the value at the fore-aft diameter as:

uz,t(r < R,ψ, z = 0) ≈ γt
2 [1 +Ki(r) cos(ψ)] (11)

uz,t(r > R,ψ, z = 0) ≈ γt
2 [(1 +Ko(r)) cos(2ψ) +Ki(r) cosψ] (12)

The model values are exact for ψ = 0◦ and ψ = 90◦.

Other components In the current paper, yawed simulations will be performed for an infinite
tip-speed ratios so that only the tangential component of vorticity contributes to the flow. The
induced velocities originating from other components were already derived in previous work [3]
and will be tested against actuator disk simulations in the future.

2.4 Extension to a varying circulation along the span

The velocity field of a rotor with varying circulation along its span is obtained using a super-
position of the velocity fields given in the previous sections. The superposition of cylinders is
illustrated in Figure 1c. The determination of the cylinder strengths from the thrust distribution
is done according to previous work published on this topic [5].

3 Results
Actuator disk simulations were carried out using the in-house 3D flow solver EllipSys3D, devel-
oped by Michelsen and Sørensen [13, 15]. Results from these simulations are used as a reference
to assess the quality of the velocity field obtained from the analytical model.

3.1 Aligned case, without swirl

The results presented in this paragraph were performed for a constant thrust coefficient pre-
scribed along the span. Further, the actuator disk is not rotating. This which is similar to
λ = ∞ for which only the tangential vorticity component is present. In the absence of swirl,
a constant thrust coefficient implies a constant circulation distribution. As a result of this,
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one vortex cylinder is enough to model the flow. For ease of comparison, the value of γt was
obtained by extracting the induced velocity at the middle of the rotor plane from the Actuator
disk simulation. Indeed according to the vortex cylinder model, u(r = 0, z = 0) = γt/2. The
axial and radial velocities along the rotor’s axis x = 0 and along the rotor radius z = 0 are
shown in Figure 2 for two different CT values. The coefficients of determination R2 between the
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Figure 2: Axial and radial velocities along the rotor’s axis (left) and along the rotor radius
(right) for two different CT values.

curves are also shown in the figure. It is reminded that along the z axis, Equation 2 reduces to
(see e.g. [2]):

uz(r = 0, z) = γt
2

[
1 + z√

R2 + z2

]
(13)

The figure shows that the AD and VC results are in strong agreement for low values of the
thrust coefficient, where the omission of the wake expansion is indeed justifiable. Discrepancies
arises at higher thrust coefficients. In particular, the axial induction obtained from the AD
simulations are not constant over the rotor span as opposed to what is predicted by the VC
theory. On the other hand, the velocity norm on the rotor plane is close to constant. These
observations were also presented by van Kuik and Lignarolo [17].

The full velocity fields for the challenging case of CT = 0.95 are compared for the numerical
and analytical model in Figure 3.

3.2 Aligned case with swirl

Simulations including swirl cannot be carried out with a constant thrust coefficient along the
span, as it would result in infinite tangential velocities at the root [5]. In line with the work
of Madsen et al. [12], the thrust coefficient is prescribed to a constant CT0 along most of the
span and drops linearly to zero from the radial position r/R = 0.11 towards the root. For
convenience the subscript 0 is dropped in the rest of the document. For the VC model, the
circulation is determined by solving the following equation for k at each radial position [5]:

k(r)
(

1 + k(r)
4λ2

r

)
− Ct,in(r) = 0 (14)

The vortex cylinder strengths are then determined using the pitch angle of the helix [5]. An
example of the axial velocity contours obtained for CT = 0.4 is shown in Figure 4. The two
models strongly agree in the induction zone, and predict the high velocity core towards the root
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Figure 3: Contours of axial (left) and radial (right) velocities normalized by the free stream for
a thrust coefficient CT = 0.95 and for both the actuator disk and vortex cylinder model. The
lack of wake expansion in the vortex cylinder model is the main source of discrepancy between
the two models.
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Figure 4: Axial velocity contours for an aligned flow with swirl CT = 0.4, λ = 2. The contours
for the vortex cylinder are plotted in black while the ones from the actuator disk are plotted in
gray.

of the blade. Progressively downstream of the rotor the discrepancies keep increasing, due to
the wake expansion present in the CFD simulation.

A parametric study is performed to quantify the error of the axial induction predicted by the
vortex cylinder model for different operating conditions (CT , λ). Results are reported in Table 1.
The induction zone was defined as the rectangular area delimited by r, z ∈ [−0.9R, 0.9R] ×

Table 1: Relative error in axial velocity in the induction zone for different operating conditions.

CT = 0.4 CT = 0.95
λ = 2 λ = 6 λ = 10 λ =∞ λ = 2 λ = 6 λ = 10 λ =∞

Mean 0.1% 0.1% 0.1% 0.0% 0.1% 0.2% 0.3% 0.4%
Max 0.2% 0.2% 0.2% 0.2% 1.8% 2.5% 2.7% 3.3%

[−3R, 0R]. The vortex cylinder singularity towards R = 1 was avoided in this manner. A
regularized vortex cylinder formulation can also be used to avoid this singularity [1]. The error
is highest, as expected, for high thrust coefficients, due to the lack of wake expansion in the
vortex model. Overall the induction zone is predicted with an average accuracy of 0.4%.
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3.3 Yawed case

Simulations of a yawed rotor without swirl are presented in this paragraph. The actuator disk
simulations were run for a yaw angle of θyaw = 30◦. The loading on the actuator disk was
prescribed using a constant thrust coefficient. The vortex cylinder model assumed a constant
circulation along the span. The skew angle required by the vortex cylinder model is determined
using the following empirical relation [7, p. 105]:

χ = θyaw [1 + 0.6 a] = θyaw
[
1 + 0.3

(
1−

√
1− CT

)]
(15)

where the mean induction was estimated as a = 1
2
(
1−
√

1− CT
)
. An azimuthal variation of

the loading and circulation is expected in a realistic simulation of an actuator disk in yawed
inflow. The assumption made here was discussed in subsection 2.1. Figure 5 presents the same
axial velocity profiles as Figure 2 but for θyaw = 30◦. In the left of this figure, the induction is
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Figure 5: Axial velocity along the rotor’s axis (left) and along the rotor radius (right) for two
different values of CT . The curve labelled ’VC (straight)’ corresponds to the evaluation of
Equation 13 with z = ζ.

plotted along the wake axis ζ. The curve labelled ’VC (straight)’ corresponds to the evaluation
of Equation 13 with z = ζ. It is seen that along the wake axis this formula is still of reasonable
accuracy even for a yaw angle as large as 30◦. The agreement between the AD and VC for the
yawed case is slightly less than in the non-yawed case. The induction agrees to a high degree for
the thrust coefficient CT = 0.4. The same conclusions are drawn for the axial induction within
the rotor plane as plotted in the right of the figure.

Axial velocity contours for two values of the thrust coefficients are shown in Figure 6. The
agreements is fair for the low thrust coefficient case, whereas the marked differences in wake
expansion observed in the right of the figure for CT = 0.95 lead to visible differences in the
velocity contours. These differences are further quantified. The absolute value of the relative
error, scaled with the free-stream velocity, between the actuator disk and vortex cylinder models
is shown in Figure 7. The induction zone as defined earlier is marked on the figure using a dashed
box. The mean and maximum relative error within the induction zone is computed and shown
on the figure. The mean relative error in the challenging case of high thrust coefficient CT = 0.95
is 1.3%. The differences are the strongest close to the rotor where the effect of expansion has
more impact.
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Figure 6: Axial velocity contours obtained with the two models for two values of the thrust
coefficients. (left:) CT = 0.4, (right:) CT = 0.95
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Figure 7: Absolute value of the relative error in axial induction obtained by the vortex cylinder
model compared to the actuator disk simulation for two thrust coefficients. (left:) CT = 0.4,
(right:) CT = 0.95. The area marked with a dashed box refers to the “induction zone” for
which the mean and maximum error are computed.

3.4 Computational time

The computational time on one CPU of the full velocity field for the vortex cylinder model
takes approximately 1s using a non-compiled scripting language. The actuator disk simulations
were run on 8 CPUs using a compiled language. If these simulations were run on one CPU the
simulation times would be 2400s and 6000s for the simulations with swirl and without swirl
respectively. In light of this difference of computational time the accuracy obtained by the
vortex cylinder model are remarkable.

4 Conclusions
The velocity field from the analytical formulae of the cylindrical vortex wake model agreed to
a high degree with the ones obtained from actuator disk simulations. For the aligned flow, a
mean relative error of 0.4% was obtained in the induction zone. In the yawed condition tested,
a mean relative error of 1.3% was obtained in the induction zone for the challenging case of
CT = 0.95 and χ = 30◦. The computational time required by the analytical model is in the
order of thousands of times less than the one required by the actuator disk simulation. The
model can be used for rapid estimates of the induction zone with a remarkable accuracy.
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