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The influence of the graphite mechanical properties on the constitutive response of ferritic ductile cast iron - A 
micromechanical FE analysis
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Abstract. In the present paper a micro-mechanical approach is used to investigate the 
influence of the graphite mechanical properties on the loading response in the early 
deformation range of ductile cast iron. A periodic unit cell composed by a single graphite 
nodule embedded in a uniform ferritic matrix is considered and elasto-plastic behavior of both 
constituents is assumed; damage evolution in the ductile matrix is taken into account via 
Lemaitre’s isotropic model. Full 3D and 2D plane-stress finite element analyses are 
performed to simulate the loading conditions experienced by nodules located in the bulk as 
well as on the material surface. The effects of residual stresses arising during the 
manufacturing process are also accounted for. It is shown that the constitutive response of the 
equivalent composite medium can match ductile cast iron only if the graphite Young’s 
modulus value lies within a certain interval, which differs from that reported in previous 
works on the subject. Experimental support for the numerical results is provided. 

1 INTRODUCTION 
From a metallurgical viewpoint, ductile cast iron (DCI) is a ternary Fe-C-Si alloy 

composed by graphite nodules embedded in a metallic matrix, which may have different 
microstructures according to chemical composition, cooling rate and heat treatment. In the 
last decades, the demand for DCI products has increased steadily, mainly due to the excellent 
combination of ductility, strength and castability that such material can offer at a very 
competitive price [1].      

Traditionally, at least from a mechanical perspective, DCI has almost always been assumed 
to behave as a porous material, where the graphite nodules are simply considered to act as 
voids. This assumption stems primarily from the low hardness values characterizing such 
graphitic morphologies [2][3] and the weak strength of the matrix-nodule interface [4], which 
have often motivated the application of Gurson’s model [5] and its various modifications [6] 
for the study of the DCI constitutive response. Examples of such analyses may be found in the 
work of Steglich & Brocks [7] and Berdin et al. [4]. Micromechanical unit cell models based 
on spherical cavities embedded in a matrix of pearlite and ferrite have also been proposed [8]. 
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Nomenclature 
ε̅ij  Volume average of total strain tensor D Damage variable 
σ�ij Volume average of the stress tensor S,    s  Lemaitre’s damage evolution parameters 
Rv Triaxiality function Y  Energy release rate 
sij  Deviatoric part of the stress tensor f  Yield function 
δij Kronecker delta k,    n  Isotropic hardening parameters 
εij

tot,   εij
e ,   εij

p  Total, elastic, plastic strain tensor p  Equivalent Von Mises plastic strain 
σij  Stress tensor pcrit  Critical effective plastic strain for damage

evolution σe  Equivalent Von Mises stress 
σy,    σy

0 Actual, initial yield stress r Hardening variable 
E  Young’s modulus α Thermal expansion coefficient 
ν  Poisson’s ratio λ Plastic multiplier 

Nevertheless, there are clear indications suggesting that the voided matrix assumption is 
likely to be overly simplified and unable to capture some peculiar phenomena observed for 
DCI, as discussed in [9] and in [10]. A partial explanation for the lack of analyses taking the 
behavior of both microscopic constituents into account is probably the absence of valid 
experimental data for the material properties of the graphitic phase. One of the very few 
attempts to characterize the non-linear mechanical response of DCI without invoking the 
voided matrix assumption was made by Bonora & Ruggiero [11]. In their axisymmetric 
micromechanical analysis, graphite spheroids were modeled as isotropic linear elastic spheres, 
whose Young’s modulus was determined as the value providing the closest agreement 
between the composite equivalent stiffness and the experimentally measured stiffness for 
DCI. The influence of residual stresses driven by the thermal expansion coefficient mismatch 
between the matrix and the nodules during manufacturing was also accounted for by these 
authors, and turned out to have a great impact on the overall analysis.  

 As recent microscopy investigations confirm [12], real graphite nodules are by all means 
non-homogeneous and non-isotropic. However, given the almost total absence of data 
concerning their mechanical properties, it still makes sense to determine their “best 
approximation” in terms of a simple isotropic material on the basis of the response generated 
at the macroscopic level.  

It is hence the purpose of the present study to extend and improve Bonora & Ruggiero’s 
findings by examining aspects initially overlooked by the former authors. Specifically, 
nodules located on the surface as well as in the bulk of the material are considered and a 
threshold is set on the maximum graphite load carrying capacity. The quality of the isotropic 
approximation is evaluated by comparing values of equivalent macroscopic Young’s modulus 
and Poisson’s ratio with those typical for ferritic DCI in the early deformation range. 

2 MICROMECHANICAL UNIT CELL MODEL 
The DCI microstructure is assumed to be constituted by spherical graphite particles of 

equal size regularly dispersed in a homogeneous ferritic matrix. The bulk material is therefore 
schematized as a periodic cubic unit cell with a single central spherical nodule, as shown in 
figure 1. The ratio between nodule diameter and cell side is set to 0.61, in order to achieve a 
volumetric graphite concentration of 12 %. This is approximately the value found in GJS 400-
15 DCI, which will be taken as reference material throughout the analysis.  
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Figure 1: Micromechanical periodic unit cell 
representing the microstructure of DCI.  

Figure 2: Geometry and mesh used in the numerical 
simulations.    

Due to geometrical considerations, only 1/8 of the unit cell is analyzed, as figure 2 shows. 
Symmetry boundary conditions are applied on the three faces of the cube intersecting the 
graphite nodule, whereas periodic boundary conditions are imposed on the other faces 
according to the procedure described in [13], in order to fulfill continuity of displacements 
and surface tractions with the surrounding microstructure. Similarly to Bonora & Ruggiero, 
the boundary between the nodule and the matrix is modeled as a frictionless contact interface, 
with no tensile strength in the normal direction, as a consequence of the weak bonding 
between ferrite and graphite.  

The mesoscopic initial Young’s modulus EDCI and Poisson’s ratio νDCI for the periodic unit 
cell upon loading are defined as: 

𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝜀𝜀𝜀𝜀�11→0

�
𝜕𝜕𝜕𝜕𝜎𝜎𝜎𝜎�11
𝜕𝜕𝜕𝜕𝜀𝜀𝜀𝜀1̅1

� ,  𝜈𝜈𝜈𝜈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = −
𝜀𝜀𝜀𝜀2̅2
𝜀𝜀𝜀𝜀1̅1

(1) 

where σ�11 , ε̅11 and ε̅22 denote normal components of the mesoscopic stress and strain tensor, 
given by the average over the unit cell volume of the corresponding microscopic quantities: 

𝜎𝜎𝜎𝜎�11 =
1
𝑉𝑉𝑉𝑉
� 𝜎𝜎𝜎𝜎11𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉

,       𝜀𝜀𝜀𝜀1̅1 =
1
𝑉𝑉𝑉𝑉
� 𝜀𝜀𝜀𝜀11𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉

,      𝜀𝜀𝜀𝜀2̅2 =
1
𝑉𝑉𝑉𝑉
� 𝜀𝜀𝜀𝜀22𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉

 (2) 

In addition to the 3D cell just described, a similar 2D square periodic unit cell with a 
circular central nodule subjected to plane-stress conditions has also been developed. It is 
supposed to be representative of the material behavior close to the stress-free surface of a 
generic DCI component. Further details may be found in [10].  

3 CONSTITUENTS MATERIAL BEHAVIOR 

3.1 Mechanical behavior of the ferritic matrix 
Ferrite in DCI is a soft metallic phase characterized by high ductility and moderate yield 

strength, especially in the vicinity of nodules due to migration of carbon atoms to the 
graphitic phase. Therefore, it seems appropriate to describe its constitutive response on the 
basis of Lemaitre’s isotropic damage model [14] with isotropic hardening, whose equations in 
Cartesian components are summarized as follows: 

• additive strain decomposition:
𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 + 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝 + 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 (3) 
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• elastic constitutive law:
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

1 − 𝐷𝐷𝐷𝐷
=

𝐸𝐸𝐸𝐸
1 + 𝜈𝜈𝜈𝜈

�𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 +
𝜈𝜈𝜈𝜈

1 − 2𝜈𝜈𝜈𝜈
𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒 � (4) 

• flow rule:

𝜀𝜀𝜀𝜀�̇�𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝 =

3𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
2𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒

�̇�𝜆𝜆𝜆
1 − 𝐷𝐷𝐷𝐷

(5) 

• yield function:

𝑓𝑓𝑓𝑓 =
𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒

1 − 𝐷𝐷𝐷𝐷
− 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦(𝑟𝑟𝑟𝑟) ≤ 0,  𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = �

3
2
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

1/2
(6) 

• isotropic hardening rule:

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝑘𝑘𝑘𝑘(𝑟𝑟𝑟𝑟 + 𝑟𝑟𝑟𝑟0)𝑛𝑛𝑛𝑛,        𝑟𝑟𝑟𝑟0 = �
𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦0

𝑘𝑘𝑘𝑘
�
1/𝑛𝑛𝑛𝑛

(7) 

• effective plastic strain increment and hardening parameter increment:
�̇�𝑝𝑝𝑝 =

�̇�𝑟𝑟𝑟
1 − 𝐷𝐷𝐷𝐷

,  �̇�𝑟𝑟𝑟 = �̇�𝜆𝜆𝜆 (8) 

• damage evolution law:
�̇�𝐷𝐷𝐷 = �

𝑌𝑌𝑌𝑌
𝑆𝑆𝑆𝑆
�
𝑠𝑠𝑠𝑠

�̇�𝑝𝑝𝑝,  𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝 > 𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (9) 

• energy release rate:

𝑌𝑌𝑌𝑌 =
𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒2𝑅𝑅𝑅𝑅𝑣𝑣𝑣𝑣

2𝐸𝐸𝐸𝐸(1 − 𝐷𝐷𝐷𝐷)2 ,  𝑅𝑅𝑅𝑅𝑣𝑣𝑣𝑣 =
2
3

(1 + 𝜈𝜈𝜈𝜈) + 3(1 − 2𝜈𝜈𝜈𝜈) �
𝜎𝜎𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
3𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒

�
2

(10) 

• consistency condition:
𝑓𝑓𝑓𝑓 ≤ 0, �̇�𝜆𝜆𝜆 ≥ 0,       𝑓𝑓𝑓𝑓�̇�𝜆𝜆𝜆 = 0 (11) 

It may be noticed that 9 material parameters are required: 3 thermo-elastic (𝐸𝐸𝐸𝐸, 𝜈𝜈𝜈𝜈,𝛼𝛼𝛼𝛼), 3 
related to plastic flow (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦0,𝑘𝑘𝑘𝑘,𝑛𝑛𝑛𝑛) and finally 3 related to damage (𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑆𝑆𝑆𝑆, 𝑠𝑠𝑠𝑠). In principle, an 
additional parameter specifying the conditions at which crack nucleation occurs would be 
necessary: however, in the present analyses damage never exceeds 0.1, which is well below 
the critical fracture initiation threshold for common metals and alloys. 

In table 1 values for Young’s modulus, thermal expansion coefficient and initial yield 
stress are reported over a wide range of temperatures; Poisson’s ratio is assumed to have a 
constant value of 0.3 [15]. The remaining five parameters have been determined on the basis 
of the experimental stress-strain curve at room temperature for ferrite reported in [15] as 
follows: 

- an analytical solution to equations (3)-(11) for uniaxial tensile loading has been 
calculated; 

- by means of an inverse analysis performed using MATLAB, the best set of parameters 
has been selected according to a least square fitting of the experimental data. 

A detailed discussion of the abovementioned procedure is reported in [16]; calculated 
values are given in table 2. As no information is available for the post-yielding behavior of the 
ferritic matrix at higher temperatures, plastic flow and damage evolution parameters are 
assumed to be constant, except for the temperature dependence of the initial yield stress 
previously mentioned. Time-dependent deformation mechanisms are also neglected. 
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Table 1: Material properties for ferritic matrix (after Bonora & Ruggiero [11]). 

Temperature 
(°C) 

Young’s modulus 
(GPa) 

Thermal exp. coefficient 
(x10-5 °C-1) 

Initial yield stress 
(MPa) 

25 210.0 1.25 297 
250 153.8 1.50 194 
500 102.5 1.60 137 
750 41.4 - 96 
900 20.0 - 70 

1000 0.1 2.40 60 

Table 2: Plastic flow and damage evolution parameters for ferritic matrix. 

Plastic flow factor k 
(MPa) 

Plastic flow 
exponent n 

Damage factor S 
(MPa) 

Damage 
exponent s 

Critical eff. plastic 
strain pcrit (mm/mm) 

818.0 0.245 0.357 0.167 5.33x10-3 

3.2 Mechanical behavior of the graphite nodules 
As already stated in the introduction, the purpose of the present study is to determine the 

best possible approximation of the graphite nodules achievable using a homogeneous 
isotropic material model. In order to keep the number of unknown parameters at a reasonable 
level, a simple time-independent linear elastic-perfectly plastic material behavior is assumed, 
based on the J2-flow theory of plasticity. Similarly to Bonora & Ruggiero, Poisson’s ratio and 
thermal expansion coefficient are set to be the same as for bulky reactor graphite, namely νg = 
0.15 and αg = 2.5x10-6 °C-1

 respectively; the other two missing parameters, Young’s modulus 
and yield stress, are varied systematically to obtain different equivalent constitutive responses 
of the unit cell. It is worth remarking that no temperature dependence of any of the material 
properties is considered.  

4 NUMERICAL ANALYSIS SETUP 
Finite element analyses of the micromechanical unit cell are performed using the 

commercial software ABAQUS. The mesh adopted is shown in figure 2 and it is constituted 
by approximately 15000 hexahedral 2nd order elements with reduced integration. A small-
strain formulation in combination with a non-linear numerical solution procedure based on the 
full Newton-Raphson scheme is chosen, and the contact condition at the matrix-nodule 
interface is enforced via the augmented-Lagrange method. Integration of the Lemaitre’s 
damage equations at the local level in the ferritic matrix is accomplished by a user-defined 
material subroutine, according to the implicit scheme proposed in [17], where a suitable 
expression for the consistent tangent modulus is also suggested. 

Each numerical analysis is run by initially applying a uniform temperature decreased from 
Ti = 1000 °C down to room temperature to the entire unit cell, with the aim of simulating the 
cooling process occurring during manufacturing of a generic DCI component. The specific 
choice of Ti is made primarily to make the results comparable with Bonora & Ruggiero’s 
findings; it is the authors’ belief, however, that a lower temperature, below the eutectoid 
transformation, should be more appropriate. 

After cooling, an equivalent mesoscopic strain ε̅11 of 5x10–3 is progressively imposed to 

636



Tito Andriollo, Jesper Thorborg and Jesper Hattel 

investigate the unit cell behavior during “uniaxial” tension. This is achieved in 50 increments 
by displacing the unit cell face pointing in the negative x-direction by the amount needed.  

A first set of simulations is performed by varying the graphite Young’s modulus in the 
range 0.1 to 500 GPa, while keeping its yield strength very high, which is equivalent to 
assuming linear elastic behavior of the nodules. After that, the procedure is repeated setting 
the graphite yield strength σy,g in sequence to 100, 50 and 25 GPa, which span the range of 
tensile strengths recorded for reactor graphite [18]. 

5 RESULTS 

5.1 Linear elastic graphite 
The influence of the nodule stiffness on the macroscopic Young’s modulus calculated 

according to equation (1) is shown in figure 3, where curves corresponding to the 3D and 2D 
plane-stress unit cell formulations are compared with the axisymmetric model of Bonora & 
Ruggiero. It is worth mentioning that reference values for GJS 400-15 DCI are assumed here 
to lie in the interval 167-170 GPa [19], which is deemed more appropriate than the range 148-
155 GPa considered by the former authors for this type of alloy.  

Focusing on the curve corresponding to the 3D formulation, 3 different stages can be 
identified as the graphite Young’s modulus is gradually increased: a very first one in which 
EDCI exhibits a small growth with Eg, a second one in which EDCI drops abruptly to 
approximately 60 % of its initial value, and finally a third one in which EDCI returns to 
increase monotonically. As pointed out in [10], this particular behavior is related to the 
twofold effect played by an increase in the graphite stiffness: from one side, it makes the 
entire unit cell stiffer, as the nodule offers greater resistance to being deformed to a horizontal 
“oval” shape by the surrounding matrix during tensile loading; from the other side, it drives 
higher residual stresses at the end of the cooling stage, increasing the risk of promoting plastic 
deformation in the matrix, with consequent loss of stiffness.   

Figure 3: Predicted equivalent macroscopic Young’s 
modulus as a function of the graphite stiffness, for 

different unit cell geometries. Linear elastic graphite 
behavior is assumed. 

Figure 4: Predicted equivalent macroscopic Poisson’s 
ratio as a function of the graphite stiffness, for the 3D 
unit cell geometry. Linear elastic graphite behavior is 

assumed. 
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The reason behind this 3-stage behavior can be better understood by looking at figure 5. As 
long as Eg < 20 GPa, the entire unit cell behaves elastically under initial loading. However, as 
Eg is increased further, the higher residual stresses arising from the thermal expansion 
coefficient mismatch between ferrite and graphite become sufficient to promote plastic 
yielding and damage evolution in the matrix, causing the dramatic macroscopic stiffness drop 
visible in the second stage. Once plasticity has spread through the entire cell cross-section, 
further matrix yielding produces a much less detrimental effect on EDCI, which starts growing 
again due to the increase in the nodule elastic stiffness.  

(a) (b) (c) (d) 

Figure 5: Plastic yielding and damage evolution in the ferritic matrix after the first load increment, for selected 
values of graphite Young’s modulus Eg: (a) 20 GPa, (b) 30 GPa, (c) 40 GPa and (d) 50 GPa. Linear elastic 

graphite behavior is assumed. 

With focus again on figure 3, it is clear that the axisymmetric formulation is in very good 
agreement with the 3D model, except for the absence of the initial elastic stage at low Eg 
values, which is neglected in Bonora & Ruggiero’s analysis. The 2D plane-stress formulation 
provides results similar to those obtained for the full 3D case, the only difference being the 
vertical shift of the corresponding curves. This is probably due to the fact that a graphite 3D 
volume fraction of 12 % does not correspond, mechanically speaking, to a graphite 2D area 
fraction of the same value (which was the criterion used for setting up the 2D plane-stress unit 
cell).  

Turning now the attention to figure 4, it may be recognized that the predicted macroscopic 
Poisson’s ratio shows the same kind of 3-stage behavior discussed in the previous paragraphs. 
As figure 5 shows, plasticity initially develops mainly perpendicularly to the loading 
direction, giving little contribution to the lateral unit cell contraction: this is why νDCI exhibits 
a marked decrease in the range Eg ≈ 20-40 GPa. At higher Eg values, plastic incompressibility 
takes over, and νDCI increases monotonically well beyond the reference value for GJS 400-15 
DCI.  

    5.2 Elastic-perfectly plastic graphite 
The effects of finite graphite yield strength values on the predicted macroscopic “elastic” 

constants of the 3D micromechanical unit cell are shown in figure 6 and figure 7. It appears 
that significant deviations in the results are visible only when the graphite Young’s modulus 
is above 100 GPa; below that threshold, the curves are almost indistinguishable. The reason is 
that during the cooling stage the stress field developing in the nodule is mainly hydrostatic. 
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Therefore, no yielding can occur according to the J2-flow theory of plasticity. During 
subsequent loading, deviatoric stress components build up, but they are not sufficient to cause 
appreciable amount of yielding/damage, at least within the small deformation range 
investigated. This finds confirmation in figure 8, which shows that the graphite yield stress 
has a negligible influence on the overall macroscopic stress-strain curves.  

Figure 6: Predicted macroscopic Young’s modulus for 
the 3D unit cell as a function of the graphite stiffness, 

for 3 different values of the graphite yield strength.  

Figure 7: Predicted macroscopic Poisson’s ratio for 
the 3D unit cell as a function of the graphite stiffness, 

for 3 different values of the graphite yield strength. 

The situation is completely different for the 2D plane-stress formulation, where shrinkage 
of the matrix during cooling creates stresses in the nodule with both hydrostatic and deviatoric 
components. As a consequence, when the graphite yield stress is gradually decreased, plastic 
flow occurs in the nodule: this relieves the stress field in the matrix, which at a certain point 
simply remains in the elastic regime, even upon initial loading. The transition is captured in 
figure 9, where for sufficiently low values of the graphite yield stress, the 3-stage behavior is 
replaced by a single stage with monotonic growth of EDCI with Eg. 

It should be kept in mind, however, that the choice of adopting the J2-flow formulation for 
the graphite has been dictated by the necessity of setting, in the simplest way, a maximum 
load carrying capacity for the nodules. There are no solid grounds to sustain that such theory 
really reflects the physical behavior of the graphite nodules. This means that other plasticity 
formulations, perhaps including the hydrostatic term, might be more suitable. In addition, 
only residual stresses arising from differences in the thermal expansion coefficient have been 
considered. To make the analysis more realistic, other sources of stresses, like non-uniform 
cooling conditions, mechanical constraints, etc. should be included, which might lead to the 
occurrence of deviatoric stresses in the nodules as well. Therefore, the results shown in figure 
6 and figure 7 should be taken with care.     

6 CONCLUSIONS 
In the present study the possibility of considering graphite nodules in a ferritic DCI as 

homogenous and isotropic from a micromechanical viewpoint has been investigated. The 
analysis extends previous works on the subject along three main directions: the behavior of 
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bulk and surface material is considered, a threshold is set on the maximum nodule load 
carrying capacity and the predicted properties of the equivalent macroscopic medium are 
compared to the real DCI material in terms of both initial Young’s modulus and Poisson’s 
ratio. 

Assuming the graphite Poisson’s ratio to be fixed at 0.15, an increase of the nodule 
stiffness beyond the critical threshold promoting yielding in the matrix at the beginning of 
loading leads to: A) a too low equivalent stiffness and B) a too large variation of the 
equivalent Poisson’s ratio compared to the reference values for GJS 400-15 DCI. Therefore, it 
seems appropriate to conclude that if an isotropic approximation is sought, the graphite 
Young’s modulus has to lie below the critical threshold for yielding, i.e. below approximately 
20 GPa. 

Figure 8: Macroscopic stress-strain curves up to 0.5% 
deformation, for graphite Young’s modulus values of 
0.1, 10, 100, 500 GPa and yield strength values of 25, 

50, 100 MPa. 

Figure 9: Predicted macroscopic Young’s modulus for 
the 2D plane-stress unit cell as a function of the 

graphite stiffness, for selected values of the graphite 
yield strength. 
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