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Abstract

In the present thesis we study di�erent aspects of concentration polarization, with emphasis
on nonlinear transport phenomena and rami�ed electrode growth. We aim at extracting
the essential features which characterize the problems, and to that end we employ a variety
of numerical and analytical methods.

The initial study concerns a fundamental problem in the study of concentration polar-
ization at overlimiting current, namely the emergence of an extended space-charge region
near the ion-selective interface. Based on the so-called quasi-uniform charge density as-
sumption (QCD), we develop an analytical model for the transport in a system with an
extended space-charge region. By comparison with numerical simulations, we show that
the analytical model captures all of the essential features of the problem. We use the model
to derive a range of results characterizing the extended space-charge region.

Secondly, we investigate concentration polarization in a microchannel with charged
walls. We provide full numerical solutions to the transport problem, including the e�ects
of advection and surface conduction in the electric double layers. We show that in large
areas of the relevant parameter space the transport can be understood in terms of a group
of simple analytical models. Some of these are generalizations of a previously published
analytical model. In addition to the full numerical model, we employ a numerical boundary
layer model with a slip velocity. By carefully comparing the full model and the boundary
layer model, we reveal a number of issues, which invalidate most previous attempts at
modeling microchannel concentration polarization using a slip model.

Returning to concentration polarization in a bulk system, we study the e�ects of water
splitting at a permselective membrane. We investigate this coupled chemical and transport
e�ect using two simple models of the reaction kinetics. The principal investigations are
performed using numerical simulations, but in addition we derive an analytical model for
the transport in the system. The analytical model reveals an important link between the
current of salt ions and the current of water ions. This link seemingly exists independent
of the speci�c reaction kinetics, and could help in furthering the understanding of the
water splitting process. A �t of the model to experimental data from the literature shows
quite good agreement, and provides some hints about the reaction kinetics in the given
experiment.

In the �nal part of the thesis we investigate electrodeposition, and speci�cally the
tendency of a cathode to become morphologically unstable and develop rami�ed growth.
Firstly, we consider the stability of a �at metal electrode during electrodeposition. Using
linear perturbation theory, we develop numerical and analytical models for the instability
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growth rate as a function of the instability wavelength. In contrast to previous work on
the stability problem, our models apply at both under- and overlimiting current.

Secondly, we develop a numerical sharp-interface model describing the electrode growth.
This model di�ers from the established phase-�eld models, in that it is applicable at
overlimiting current and implements electrode reactions in a consistent way. Comparison
of the sharp-interface model to the results of the stability analysis, provides a validation
of the model behavior in the initial stages of the growth. Some preliminary results of the
numerical simulations indicate that the electrodeposit morphology might be explainable in
terms of a few key parameters.



Resumé

I denne afhandling undersøger vi forskellige aspekter af koncentrationspolarisation, med
særligt fokus på ikke-lineære transportfænomener og forgrenet elektrodevækst. Vores mål
er at uddrage de essentielle elementer som karakteriserer de undersøgte problemer, og til
dette formål anvender vi en række numeriske og analytiske metoder.

Det indledende studie omhandler et fundamentalt problem i studiet af koncentra-
tionspolarisation i det overbegrænsede regime, nemlig udviklingen af en udvidet ladningsre-
gion nær den ion-selektive over�ade. Med afsæt i den såkaldte 'quasi-uniform charge den-
sity assumption' (QCD) udvikler vi en analytisk model for ion-transporten i et system med
en udvidet ladningsregion. Ved sammenligning med numeriske simuleringer viser vi, at den
analytiske model inkluderer alle de vigtigste elementer af problemet. Vi anvender modellen
til at udvide en række resultater some karakteriserer den udvidede ladningsregion.

Dernæst undersøger vi koncentrationspolarisation i en mikrokanal med ladede vægge.
Vi præsenterer fulde numeriske løsninger til transportproblemet, inlusiv e�ekterne af ad-
vektion og over�adestrømme i de elektriske dobbeltlag. Vi viser, at i store områder af
det relevante parameterrum kan ion-transporten rationaliseres via en lille gruppe ana-
lytiske modeller. Nogle af disse er generaliseringer af en tidligere publiceret analytisk
model. Udover den fulde numeriske model anvender vi en numerisk randlagsmodel med
en slip-hastighed. Ved omhyggeligt at sammenligne den fulde model og randlagsmodellen,
afdækker vi en række forhold, som invaliderer tidligere forsøg på at modellere mikrokanal
koncentrationspolarisation med en randlagsmodel.

Det tredje studie omhandler e�ekterne af koncentrationspolarisation og vandsplitning
ved en ion-selektiv membran. Vi undersøger denne koblede kemiske- og transporte�ekt
ved hjælp af to simple modeller for reaktionskinetikken. Hovedundersøgelserne udføres
ved brug af numeriske simuleringer, men derudover udleder vi en analytisk model for
transporten i systemet. Den analytiske model afslører et vigtigt bindeled mellem strøm-
men af salt-ioner of vand-ioner. Dette bindeled eksiterer tilsyneladende uafhængigt af den
speci�kke reaktionsmodel, og det kunne dermed være en hjælp i arbejdet med at forstå-
vandsplitningsprocessen. Et �t af modellen til eksperimentelle data fra litteraturen viser
en rimelig god overenstemmelse, og giver nogle ledetråde angående reaktionskinetikken i
det speci�kke eksperiment.

I den sidste del af afhandlingen undersøger vi elektrodeponering, og speci�kt en ka-
todes tendens til at blive morfologisk ustabil og udvikle forgrenet vækst. Først betragter vi
stabiliteten af en plan metalelektrode under elektrodeponering. Ved brug af lineær pertur-
bationsteori udvikler vi numeriske og analytiske modeller for perturbationsvækstraten som
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funktion af perturbationens bølgelængde. I modsætning til tidligere arbejde omhandlende
stabilitetsproblemet er vores modeller anvendelige både over og under den begrænsede
strøm.

Derefter udvikler vi en numerisk brat-grænse�ademodel, som beskriver væksten af elek-
troden. Denne model afviger fra de etablerede fasefeltsmodeller, i og med at vores model
er anvendelig i det overbegrænsede regime og implementerer elektrodereaktioner på en
konsistent måde. Ved at sammenligne vores brat-grænse�ademodel med resultaterne fra
stabilitetsanalysen, opnår vi en validering af modelopførslen i de indledende stadier af væk-
sten. Nogle foreløbige resultater indikerer at elektrodemorfologien muligivs kan forklares
ved hjælp af nogle få nøgleparametre.
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Chapter 1

Introduction

1.1 Concentration polarization and electrodeposition

Ion transport across an ion-selective interface, such as a nanochannel, a metal electrode
or a permselective membrane, has found numerous applications in, e.g., electrodialysis,
desalination, electroplating, battery and fuel cell technology, chemical separation, electro-
chemistry, and micro�uidic systems [89, 57, 95, 129, 73, 118, 32, 59, 58, 15, 56, 96, 36,
70, 95, 105, 88]. A characteristic feature of ion transport across ion-selective interfaces
is the phenomenon known as concentration polarization, in which the concentration of
charge carriers next to the interface depletes, leading to a decrease in conductivity. In
the classical linear modeling of the problem, the conductivity goes to zero as the voltage
drop over the system is increased, and the current approaches the so-called limiting cur-
rent. However, when the driving force becomes su�ciently large, the system may enter
a nonlinear regime with additional transport phenomena, which give rise to an overlim-
iting current. Examples of these nonlinear transport phenomena are the development of
an extended space-charge region [113, 98, 133, 134, 16, 8], electro-osmotic instabilities
[99, 100, 101, 102, 104, 25, 20], water splitting [97, 54, 90, 4], current-induced membrane
discharge [5], and surface conduction in microstructures [27, 136, 26, 22]. Understand-
ing these complex transport phenomena is of fundamental scienti�c interest, but also of
great importance to the many applications in which concentration polarization plays a
role. Both experimentally and theoretically there are, however, signi�cant obstacles to the
development of this understanding. Experimentally, it is di�cult to study concentration
polarization in a controlled way, due to the small length scales involved and the intermixing
of diverse chemical and physical e�ects. Theoretically, the nonlinearities in the governing
equations, the disparate length scales, and the large number of coupled physical e�ects
conspire to create problems which are di�cult to treat using standard analytical methods.

In this thesis we use a combination of numerical and analytical methods to study three
of the listed nonlinear transport phenomena, namely the development of an extended space-
charge region, water splitting, and transport in a microchannel. The two modeling methods
complement each other very well, as the full numerical simulations deliver valuable input
to the analytical models, which in turn helps structure and interpret the numerical results.
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Also, the analytical models provide a generalization of the speci�c numerical results to a
broader class of systems.

In the �nal two chapters of the thesis we go beyond merely studying the transport in
the electrolyte, and extend our treatment to include growth at metal electrodes during
electrodeposition. Electrodeposition is a particularly interesting and challenging concen-
tration polarization problem, due to the tendency of the electrode interface to become
morphologically unstable and develop rami�ed growth patterns [39, 91, 122, 51, 86]. It has
been pointed out that the nonlinear overlimiting regime is highly relevant for these growth
processes [14, 96]. However, due to limitations of the established modeling methods, ram-
i�ed electrode growth has, so far, primarily been investigated in the linear underlimiting
regime [106, 17, 67, 31]. To include the nonlinear e�ects occurring at overlimiting current,
as well as some important e�ects pertaining to reaction kinetics, we develop a numerical
sharp-interface model of electrodeposition and rami�ed growth. This model, we believe,
could aid in the development of a more quantitative understanding of electrodeposits and
their morphology.

1.2 Outline of the thesis

This thesis is based on my four research papers listed in Section 1.3.1. Some of the mate-
rial, in particular from my �rst paper, has been reworked to create a more cohesive and, I
think, readable thesis. The research papers themselves are included in Chapters E to H.
Below follows a short outline of the contents of each chapter.

Chapter 2: Basic theory In this chapter we present the basic theory employed in the
remainder of the thesis. This includes the �eld equations governing ion transport, electro-
statics, and �uid �ow, as well as some simple concepts and results, which follow from the
�eld equations. We also give a basic treatment of concentration polarization and discuss
some important classes of ion-selective interfaces.

Chapter 3: Numerical techniques Concentration polarization often involves several
nonlinearly coupled physical e�ects. This makes the typical concentration polarization
problem exceedingly di�cult to solve by analytical means, and we therefore rely on nu-
merical simulations to solve many of the problems in this thesis. These simulations are
made using the commercial �nite element method (FEM) software COMSOL Multi-

physics 4.3a. In this chapter we give a brief introduction to the �nite element method.

Chapter 4: Concentration polarization: Beyond the local electroneutrality as-

sumption In the most basic treatment of concentration polarization the electrolyte is
treated as locally electroneutral. This constrains the concentration of charge carriers to ex-
actly follow the concentration of the stationary ion-species, and it entails that the current
can not exceed the limiting current. In this chapter we go beyond the local electroneu-
trality assumption, and derive an analytical model for concentration polarization valid at
both under- and overlimiting current.
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Chapter 5: Concentration polarization in a microchannel Due to the importance
of surface e�ects, ion transport in a microchannel di�ers markedly from transport in a bulk
system. Even in the depleted region, a current can run inside the electric double layers,
leading to an overlimiting current. The transport properties of the system can be further
modi�ed by �uid �ow, resulting from the force which the electric �eld exerts on the elec-
tric double layers. In this chapter we set up a full numerical model to study concentration
polarization in a microchannel, and we derive analytical models valid in the limit of long
and narrow microchannels.

Chapter 6: Water splitting at permselective membranes Besides the salt ions,
an aqueous electrolyte contains hydronium and hydroxide ions deriving from the autodis-
sociation of water. Ordinarily, the concentration of these water ions is so low that they
do not give a signi�cant contribution to the current in a system. During concentration
polarization at a permselective membrane, the concentration of water ions may, however,
become so large that they start a�ecting the transport in the system. In this chapter we
provide a combined numerical and analytical analysis of this water splitting problem.

Chapter 7: Electrodeposition: Stability analysis When metal ions are deposited
onto a metal electrode the, initially, plane electrode interface may go unstable, resulting
in a rami�ed growth pattern. Just when the initial instabilities develop the problem can
be treated in terms of a classical linear stability analysis. In this chapter we provide such
an analysis.

Chapter 8: Sharp-interface model of electrodeposition The numerical modeling
of electrodeposition and rami�ed growth is a challenging problem, involving both elec-
trolyte transport, reaction kinetics, and moving interfaces. The conventional phase-�eld
methods include much of the important physics, but they are not suitable at overlimiting
current and they have a questionable treatment of the electrode reactions. In this chapter
we present a novel method of modeling electrodeposition, which implements electrode re-
actions in a consistent way and is valid at overlimiting current.

Chapter 9: Conclusion and outlook We summarize our work and provide some
directions for future research.

1.3 Publications during the PhD studies

I have, together with my advisor Henrik Bruus, published two peer reviewed journal pa-
pers (two more are submitted) and three peer reviewed conference contributions. I have
presented my work at �ve international conferences (four oral, one poster).
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1.3.1 Peer reviewed journal papers

� C. P. Nielsen and H. Bruus, Transport-limited water splitting at ion-selective inter-
faces during concentration polarization, Phys Rev E 89 (2014), 042405. Enclosed in
Chapter E.

� C. P. Nielsen and H. Bruus, Concentration polarization, surface currents, and bulk
advection in a microchannel, Phys Rev E 90 (2014), 043020. Enclosed in Chapter F.

� C. P. Nielsen and H. Bruus, Morphological Instability during steady electrodeposition
at overlimiting currents, (submitted to Phys Rev E). Enclosed in Chapter G.

� C. P. Nielsen and H. Bruus, A sharp-interface model of electrodeposition and rami�ed
growth, (submitted to Phys Rev E). Enclosed in Chapter H.

1.3.2 Peer reviewed conference contributions

� C. P. Nielsen and H. Bruus, Dynamics of surface charges and water splitting in mi-
crochannels containing nanoporous ion-selective membranes, MicroTAS, Conference
on microsystems, 27-31 Oct 2013, Freiburg, Germany, poster presentation.

� C. P. Nielsen and H. Bruus, Models of hydrodynamic dispersion in an electrolyte mov-
ing through a microchannel during concentration polarization, ELKIN, International
Symposium, 20-23 May 2014, Ghent, Belgium, oral presentation.

� C. P. Nielsen and H. Bruus, Sharp-interface model of electrodeposition and dendritic
growth, ISE 17th topical meeting, 31 May - 3 June 2015, Saint-Malo, France, oral
presentation.

1.3.3 Other scienti�c contributions

� C. P. Nielsen and H. Bruus, Overlimiting current in systems with water splitting and
an extended space-charge region, Complex motion in Fluids, International Summer
School, 4-10 Aug 2013, Denmark, oral presentation.

� C. P. Nielsen and H. Bruus, Di�usion-limited current to an ion-selective membrane:
The role of water splitting and an extended space-charge region, APS Division of
Fluid Dynamics meeting, 24-26 Nov 2013, Pittsburgh, USA, oral presentation.

� C. P. Nielsen and H. Bruus, Numerical and analytical models of concentration po-
larization in a microchannel, APS Division of Fluid Dynamics meeting, 23-25 Nov
2014, San Francisco, USA, oral presentation.



Chapter 2

Basic theory

In this chapter we present the basic theory employed in the remainder of the thesis. This
includes the �eld equations governing ion transport, electrostatics, and �uid �ow, as well
as some simple concepts and results, which follow from the �eld equations. We also give
a basic treatment of concentration polarization and discuss some important classes of ion-
selective interfaces.

2.1 Field equations

Throughout the thesis we make use of the continuum hypothesis to describe the motion
of the liquid and of dissolved particles. In essence this means that instead of tracking the
position of each and every particle in a system, we characterize the state of the system
using �elds, which represent the average value of a quantity in a small probe volume within
a short time interval. For more on the continuum hypothesis see Ref. [13]

2.1.1 Transport equations

Consider a chemical species of concentration ci = ci(r, t), which depends on both space
and time. The concentration at a given place can change in two ways: either if there is a
net particle current to or away from that place, or if a chemical reaction takes place which
consumes or produces the chemical species. Thus, the concentration �eld ci is governed by
the conservation equation

∂tci = −∇ · Ji +Ri, (2.1)

where Ji is the current density of the chemical species and Ri is the reaction rate for the
production of the chemical species. Frequently, the reaction rate can be neglected and
Eq. (2.1) takes on the simpler form

∂tci = −∇ · Ji. (2.2)
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We always assume that dissolved salts dissociate completely, and consequently we model
the transport of salt ions using Eq. (2.2). The current density Ji is given as

Ji = − Di

kBT
ci∇µi + ciu, (2.3)

where Di is the di�usivity of the i'th chemical species, µi is its electrochemical potential,
and u is the velocity �eld of the liquid. For dilute solutions the electrochemical potential
is just the sum of an ideal gas entropic term and the electrostatic energy

µi = µ0
i + kBT ln(ci/c0) + zieφ. (2.4)

Here, µ0
i is a reference chemical potential, c0 is a reference concentration, zi is the valence

of the chemical species, e is the unit charge, and φ is the electrostatic potential. Since
it is mainly di�erences in electrochemical potential that matter, the reference chemical
potential µ0

i is often unimportant and simply set to zero. Inserting Eq. (2.4) in Eq. (2.3)
yields

Ji = −Di∇ci −Di
zie

kBT
ci∇φ+ ciu, (2.5)

where the di�usive, electromigrative, and advective currents now occur as separate terms.
It depends on the given problem which of the two forms Eq. (2.3) and Eq. (2.5) is more
convenient.

2.1.2 Electrostatics

In electrokinetics induced magnetic �elds are usually negligible. This means that the
electric �eld can be written in terms of the electrostatic potential E = −∇φ, which is
governed by the Poisson equation,

∇ · (−ε∇φ) = ρel. (2.6)

Here, ε is the permittivity of the medium, which we will always assume to be constant,
and ρel is the space charge density

ρel =
∑

i

zieci. (2.7)

2.1.3 Hydrodynamics

Like the previously introduced �eld equations, the equations governing the motion of a
�uid are continuity equations, expressing the conservation of mass and momentum. The
�rst of these is simply called the continuity equation and reads

∂tρ = −∇ · (ρu), (2.8)
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where ρ is the mass density of the �uid. Liquids are only weakly compressible, and for the
velocity �elds encountered in this thesis they can to a good approximation be treated as
incompressible. Eq. (2.8) therefore simpli�es to

0 = −∇ · u. (2.9)

The momentum density at a given point in a �uid can change by advection of momentum
or by application of external forces. The momentum conservation equation therefore has
the form

∂t(ρu) = ∇ · [−ρuu− pI + σ′
]

+ f , (2.10)

where ρuu is the advection term, p is the pressure in the �uid, σ′ is the viscous stress
tensor, and f is the sum of any other body force densities. The body forces encountered in
this work are gravity ρg and the electrostatic force density −ρel∇φ. For an incompressible
�uid the viscous stress tensor has the simple form

σ′ = η
[∇u+ (∇u)T

]
, (2.11)

where η is the dynamic viscosity and (·)T denotes the transpose of (·). We only investigate
systems with small length scales and velocities, meaning that the Reynolds number is much
smaller than unity. The nonlinear term in Eq. (2.10) is thus negligible, and the equation
reduces to

ρ∂tu = ∇ · [−pI + σ′
]

+ f . (2.12)

Inserting Eq. (2.11) in Eq. (2.12) and applying Eq. (2.9) we �nally arrive at the Stokes
equation,

ρ∂tu = −∇p+ η∇2u+ f . (2.13)

For analytical calculations we generally make use of Eq. (2.13), while Eq. (2.12) is preferable
for numerical calculations.

2.2 Nondimensionalization

Throughout this thesis we shall frequently make use of nondimensional variables and equa-
tions. This has the dual purpose of putting the equations and expressions in a more succinct
form, which at the same time better reveals the important physics of the problem. We
denote nondimensional variables by a tilde ∼.

Considering the ion current density Eq. (2.5), we see that the thermal voltage VT =
kBT/e is a natural scale for the electrostatic potential. Likewise, we identify the thermal
energy kBT as the natural scale for the electrochemical potential. There is no intrinsic
scale for the ion concentrations, so typically the concentration �elds are normalized with
a reference concentration c0. This could for instance be the initial concentration in the
studied system or the concentration in a connected reservoir. Typically, we normalize
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the spatial coordinates with a characteristic system dimension L. The dimensional and
nondimensional variables are thus related as

φ = VTφ̃, (2.14)

µi = kBT µ̃i, (2.15)

ci = c0c̃i, (2.16)

r = Lr̃, (2.17)

∇ =
1

L
∇̃. (2.18)

Plugging these into Eq. (2.5) and rearranging we �nd

L

Dic0
Ji = −∇̃c̃i − zic̃i∇̃φ̃ +

U0L

Di
c̃iũ, (2.19)

where a velocity scale U0 was also introduced. This expression suggests the introduction
of normalized currents

J̃i =
L

2D+c0
Ji, (2.20)

where the factor of 2 was included for reasons that will soon become clear. Also, we
introduce the Péclet numbers

Pei =
U0L

Di
, (2.21)

which measures the strength of advection relative to di�usion. With these de�nitions
Eq. (2.19) becomes

2
D+

Di
J̃i = −∇̃c̃i − zic̃i∇̃φ̃ + Peic̃iũ. (2.22)

The factor of D+/Di in front is a result of using the same normalization for all the currents.
Inserting the current densities in Eq. (2.2) yields

∂t̃ c̃i = −∇̃ · J̃i, (2.23)

where the time was normalized with the di�usive time scale tdiff = L2/(2D+).
The remainder of the governing equations can be nondimensionalized in similar fashion.

At this point we proceed with the electrostatic problem, and postpone the nondimension-
alization of the hydrodynamic problem to Chapter 5.

2.3 The electric double layer

Normalizing the Poisson equation yields some insights into the coupling between concentra-
tion �elds and the electric potential. It also serves as a good starting point for discussing
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the so-called electric double layer. Inserting φ = VTφ̃ and ci = c0c̃i in Eq. (2.6) and
rearranging we �nd

∇2φ̃ = − e2c0

kBTε

∑

i

zic̃i = − 1

2λ2
D

∑

i

zic̃i. (2.24)

In the last expression we introduced the so-called Debye length

λD =

√
kBTε

2e2c0
, (2.25)

which is a characteristic length scale for the coupling between electrostatics and the ion
concentrations. For most systems the Debye length is tiny. For instance, in the case of
a binary monovalent salt (e.g. sodium chloride) of concentration c0 = 1 mM in water at
room temperature the Debye length is just 9.6 nm. Because the Debye length is so small,
any small deviation from charge neutrality will cause the right hand side in Eq. (2.24) to be
huge. This in turn creates a very large electric �eld, which tends to restore charge neutral-
ity. For this reason, the majority of an electrokinetic system is practically electroneutral
in most cases.

One exception to this rule is when the electric potential varies over a distance com-
parable to the Debye length. In that case the Laplacian in Eq. (2.24) balances the 1/λ2

D

term, and it is possible to build up a non-negligible charge density. As a concrete example
of this, we consider a binary monovalent salt in a quiescent liquid in contact with a planar
wall at y = 0 with surface charge σ < 0, as seen in Fig. 2.1. To screen the surface charges,
the cations move towards the interface and the anions move away from the interface. The
hydration shell of the ions, as well as an adsorbed monolayer of solvent molecules at the
wall, prevent the ions from moving closer to the wall than the so-called outer Helmholtz
plane (OHP). The region between the wall and the outer Helmholtz plane is called the
compact layer, and since it is close to electroneutral it can be modeled as having a con-
stant capacitance, the Stern capacitance CS. In addition to the potential variation in the
compact layer, the potential varies outside the OHP in the di�use layer. Here, the stan-
dard transport equations from Section 2.1.1 apply, and since the system is in equilibrium
Eq. (2.23) yields a simple Boltzmann distribution of the ions,

c̃± = e∓φ̃ . (2.26)

Here, c̃+ is the cation concentration and c̃− is the anion concentration. Both are normalized
with the concentration far away from the wall, where the electric potential is zero. Inserting
in Eq. (2.24) yields the so-called Poisson�Boltzmann equation,

∂2
y φ̃ = − 1

2λ2
D

[
e−φ̃ − eφ̃

]
=

1

λ2
D

sinh(φ̃). (2.27)

In the Debye�Hückel limit |φ̃| . 1 Eq. (2.27) simpli�es to a simple linear equation,

∂2
y φ̃ =

1

λ2
D

φ̃, (2.28)
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Figure 2.1: Sketch of the electric double layer and
potential distribution outside a negatively charged
wall. A layer of solvent and ions is directly ad-
sorbed on the wall, and their locus de�nes the inner
Helmholtz plane (IHP). The ions in solution have a
distance of closest approach to the wall, due to the
adsorbed layer end the hydration shell of the ions.
This closest distance of approach de�nes the outer
Helmholtz plane (OHP).

Figure 2.2: Plot of the concentration and poten-
tial distribution in the di�use part of the electric
double layer for ζ̃ = −2.

with the solution

φ = ζe−y/λD . (2.29)

The zeta-potential ζ is the potential at the OHP relative to the bulk liquid. Since the
compact layer is charge neutral, the surface charge at the OHP is the same as at the wall.
Applying the electrostatic boundary condition n · εE = σ, the zeta-potential can therefore
be related to the surface charge density,

ζ =
λD

ε
σ. (2.30)

In the general case, outside the Debye�Hückel limit, a solution to the nonlinear Poisson-
Boltzmann equation can also be obtained. This solution is given as

φ = 4VTartanh

{
tanh

(
ζ

4VT

)
e−y/λD

}
, (2.31)

and is known as the Gouy-Chapman solution. In Fig. 2.2 the electric potential and the
concentration �elds are plotted in the di�use layer for ζ̃ = −2.

Together, the compact layer and the di�use layer form what is known as the electric
double layer (EDL). However, in the systems treated in this thesis it is only necessary to
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consider the di�use part of the electric double layer. Thus, we shall exclusively use EDL
and 'electric double layer' to refer to the di�use part of the electric double layer.

Ostensibly, the above treatment relies on the EDL being in equilibrium. However, even
if a current is running in the system the EDL may be well described by an equilibrium
model. Considering the normalized cation current density,

2J̃+ = −c̃+∂ỹ µ̃+ = −∂ỹ c̃+ − c̃+∂ỹ φ̃, (2.32)

we see that in equilibrium (J̃+ = 0) the terms ∂ỹ c̃+ and c̃+∂ỹ φ̃ cancel each other. Inside
the EDL, the �elds vary over the Debye length λD, and the terms in Eq. (2.32) therefore
scale as

2J̃+ ∼ 2, (2.33a)

∂ỹ c̃+ ∼
L

λD

=
1

λ̄D
, (2.33b)

c̃+∂ỹ φ̃ ∼
L

λD

=
1

λ̄D
, (2.33c)

where we introduced the scaled Debye length λ̄D = λD/L. For most systems, λD is tiny
compared to the system dimension L, so each of the terms ∂ỹ c̃+ and c̃+∂ỹ φ̃ are very much
larger than their di�erence 2J̃+. Thus, the dominant balance remains ∂ỹ c̃+ + c̃+∂ỹ φ̃ ≈ 0,
and a current only gives a small perturbation to the equilibrium distribution. A similar
scaling argument shows that the change in electrochemical potential across the EDL is of
order ∆µ̃+ ∼ 2J̃+λ̄D, i.e. basically negligible.

2.4 Electro-osmotic �ow

The net charge density in the EDL makes a coupling from the ion transport problem to
the hydrodynamic problem possible. The �ow resulting from this coupling is called an
electro-osmotic �ow.

Consider the problem from before, where an in�nite planar wall is located at y = 0.
The wall is held at the potential ζ relative to the bulk liquid at in�nity. The electrostatic
force density will pull the liquid towards the wall, but since the liquid cannot pass through
the wall a pressure distribution builds up, which exactly cancels the electrostatic force.
The result is that the liquid remains quiescent. Now, we alter the system by applying a
constant electric �eld in the x-direction,

E = Eex. (2.34)

In the x-direction there are no obstacles which hinder the �ow of the liquid, so there is no
pressure build up that can counteract the electric force. For simplicity, we assume that the
system has reached a steady state, so that the time derivative in Eq. (2.13) disappears. We
have already argued that there is no y-component of the velocity �eld, so we only consider
the x-component of, Eq. (2.13)

0 = −∂xp+ η∇2u+ ρelE, (2.35)
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where u is the x-component of u. The x-derivatives vanish since the system is invariant in
the x-direction. Using Eq. (2.6) to express ρel in terms of φ we �nd

0 = η∂2
yu− εE∂2

yφ, (2.36)

which upon application of the boundary conditions u(0) = 0, φ(0) = ζ and ∂yu|∞ = 0,
φ(∞) = 0 yields

u =
εE

η
(φ− ζ). (2.37)

We see that far away from the wall, compared to the Debye length, the velocity takes on
a constant value,

ueo = −εζE
η
. (2.38)

This velocity is known as the Helmholtz�Smoluchowski velocity or, simply, the electro-
osmotic velocity. In any real system of �nite size there will of course be deviations from
the idealized behavior outlined above. For more on this see Chapter 5.

2.5 Concentration polarization

All of the phenomena investigated in this thesis have in common that they occur in systems
exhibiting concentration polarization. Concentration polarization takes place when an ion
current is driven towards an interface, which blocks one ion species and allows the other to
pass. Such an interface could for instance be an electrode made of the cation metal, or it
could be a permselective membrane which derives its ion-selectivity from charged surface
groups in the membrane matrix.

We consider a simple model system composed of a binary monovalent electrolyte,
bounded by a reservoir of salt concentration c0 on one side and an ion-selective inter-
face at the other. At this stage we will not worry about why the interface is ion-selective,
but merely state that, for some reason or another, it blocks the negative ions while al-
lowing the positive ions to pass. Also, it is possible to control the electrostatic potential
at the ion-selective interface relative to the reservoir. A sketch of the system is shown in
Fig. 2.3. In simple terms, what happens during concentration polarization is the following:
The anions are transported away from the interface by the electric �eld, and since the
interface blocks the anions, they can not be resupplied from the right. The anion con-
centration therefore decreases gradually, until a concentration distribution where di�usion
compensates electromigration is established. The cations, on the other hand, can freely
pass through the interface, but to preserve local electroneutrality their concentration dis-
tribution follows that of the anions. The decrease in anion concentration therefore leads to
a decrease in cation concentration, and eventually the cation conductivity vanishes entirely
and the current saturates at the limiting current. Below we put these notions into more
quantitative terms.
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Figure 2.3: Simple concentration polarization
model system. To the left is a reservoir of salt con-
centration c0 and to the right is an ideal cation
selective interface. In between is a compartment of
length L.

Figure 2.4: Concentration and potential dis-
tributions in the simple model system for J̃+ =
{0.5, 0.9, 0.99}.

As discussed in Section 2.3 an electrokinetic system tends toward a state of local elec-
troneutrality, so as a �rst approximation we assume that c̃+ = c̃− = c̃ everywhere. Local
electroneutrality implies a vanishing velocity �eld, since there is no force to drive a �uid
�ow. Because the system is translationally invariant in the yz-plane, the problem is e�ec-
tively one dimensional and the normalized current densities from Eq. (2.22) reduce to

2J̃+ = −∂x̃ c̃ − c̃∂x̃ φ̃, (2.39a)

2
D+

D−
J̃− = −∂x̃ c̃ + c̃∂x̃ φ̃. (2.39b)

The anions can not pass through the ion-selective interface, so in the simple case of steady-
state the anion current J− is zero everywhere in the system. In that case Eq. (2.39b) yields
a Boltzmann distribution of the ions,

c̃ = eφ̃ . (2.40)

Inserting this expression in Eq. (2.39a) we �nd that

2J̃+ = −2∂x̃ c̃ ⇒ c̃ = 1− J̃+x̃, (2.41)

where the integration constant is due to the �xed reservoir concentration c̃(0) = 1. The
potential in the system follows from Eq. (2.40),

φ̃ = ln(1− J̃+x̃). (2.42)
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In Fig. 2.4 the concentration c̃ and potential φ̃ are plotted for J̃+ = {0.5, 0.9, 0.99}.
Setting the potential at the ion-selective interface to −Ṽ0 we �nd the current-voltage

characteristic

Ṽ0 = − ln(1− J̃+). (2.43)

It is seen that as the current approaches unity, the voltage needed to drive the current
diverges. Thus, according to this treatment, the dimensional current can not exceed the
so-called limiting current

Jlim =
2D+c0

L
. (2.44)

The reason for this limitation is that the ion concentration at the interface, and thus also
the conductivity, vanishes when J̃+ = 1. Such a singular behavior is obviously unphysical
and indicates that the model assumptions are no longer valid when J̃+ approaches unity.
Speci�cally, it is the local electroneutrality (LEN) assumption that breaks down at high
currents. This is easily seen by evaluating the charge density from the Poisson equation.
The nondimensional Poisson equation (2.24) reads

2λ̄2
D∂

2
x̃ φ̃ = −(c̃+ − c̃−), (2.45)

where the position was normalized with L. Inserting the potential expression (2.42) in the
left hand side of Eq. (2.45) we �nd

2λ̄2
D∂

2
x̃ φ̃ = −2λ̄2

D

J̃2
+

(1− J̃+x̃)2
. (2.46)

The charge density at x̃ = 1 is comparable to the cation density when

2λ̄2
D

J̃2
+

(1− J̃+)2
= 1− J̃+ ⇒ J̃+ ≈ 1− 21/3λ̄

2/3
D , (2.47)

so when J̃+ comes within λ̄
2/3
D of unity, the LEN assumption starts to break down.

In the analysis above, we omitted the transient period after the application of a voltage,
in which the system approaches the new steady-state. Adding the currents (2.39) together
we �nd that the electromigrative terms vanish, and we are left with a simple di�usion
current,

2J+ + 2
D+

D−
J− = −2∂xc̃. (2.48)

Inserting this current in the conservation equation (2.23) yields the so-called ambipolar
di�usion equation for the ions,

(
1 +

D+

D−

)
∂t̃ c̃ = ∂2

xc̃. (2.49)
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Figure 2.5: Evolution of the concentration distribution in time. At time t̃ = 0 a bias voltage of Ṽ0 = 10 is
applied across the system. The times indicated on the curves are normalized with the ambipolar di�usion
time.

Consistent with the previous analysis, the steady-state solution is seen to be a simple linear
concentration pro�le. The characteristic time scale is the ambipolar di�usion time,

tambi =
L2

2

(
1

D+
+

1

D−

)
, (2.50)

meaning that the transients will die out on that time scale. In Fig. 2.5 concentration
pro�les at di�erent times after applying a voltage Ṽ0 = 10 are shown. Just after the
voltage is applied only the region close to the ion-selective interface is a�ected, but as time
passes the e�ect of the applied voltage propagates through the entire system.

2.6 Ion-selective interfaces

In this thesis we consider two types of ion-selective interfaces; permselective membranes and
metal electrodes. We begin by describing the permselective membrane, as it is conceptually
simpler than the electrode.

2.6.1 Permselective membranes

Permselective membranes come in many forms and are widely applied in industry for
�ltration and separation purposes [46, 77, 132, 89]. Typically, they consist of a polymer
matrix with chemically stable charged surface groups, and large enough pores that water
and ions can pass through. The charged surface groups repel ions of like charge, the co-
ions, and attract ions of opposite charge, the counter-ions. Here, and in the remainder of
the thesis, we assume that the membrane has a negative charge, meaning that the co-ions
are anions and the counter-ions are cations. We also assume that the membrane is close
to ideal, meaning that the concentration of charged surface groups is much higher than
typical ion concentrations.

In a simple model, we can describe an ion-selective membrane as a region with a �xed
background charge density ρm < 0, a �xed porosity 0 ≤ εP ≤ 1, and a �xed permittivity
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Figure 2.6: Sketch of a simple system exhibiting concentration polarization due to a permselective
membrane. To the left and right are reservoirs of salt concentration c0. In between is a compartment of
length L and a permselective membrane.

εm. To account for the meandering paths taken by the ions inside the membrane the
current densities are modi�ed by the so-called tortuosity τ ≥ 1,

J± = −εP
τ
D±c±∂xµ±. (2.51)

Due to the �xed negative background charge the concentration of cations is large inside the
membrane and the concentration of anions is small. Outside the membrane the concentra-
tion of either ion is roughly the same, and much lower than the cation concentration inside
the membrane. The transition between these two concentration distributions happens just
around the membrane interface over the characteristic length λD. In essence this transition
region is simply a variant of the quasi-equilibrium double layer described in Section 2.3.
We can therefore relate the ion concentration cin

± inside the membrane to the concentration
cout
± just outside the membrane via a Boltzmann factor,

cin
± = cout

± e∓∆φ̃ , (2.52)

with ∆φ̃ being the potential di�erence from outside to inside the membrane. Using these
expressions, the charge density inside the membrane can be written as

ρel = ρm + εPe(c
in
+ − cin

−) = ρm + εPe(c
out
+ e−∆φ̃ − cout

− e∆φ̃). (2.53)

Requiring local electroneutrality and using that cin
− � cin

+ , we �nd the potential di�erence
over the interface,

∆φ̃ = − ln

( |ρm|
εPecout

+

)
. (2.54)

By assumption |ρm| � ecout
+ , so this can be a substantial potential di�erence. Since cin

− de-

pends exponentially on ∆φ̃, the anion concentration, and thus also the anion conductivity,
will be tiny inside the membrane. That is, the membrane e�ectively prevents the anions
from passing.
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Now, let us consider the role of the permselective membrane in a system undergoing
concentration polarization. The system is sketched in Fig. 2.6, and is composed of a
reservoir with salt concentration c0 to the left, a compartment of length L, a permselective
membrane, and a reservoir to the right. Using the LEN assumption, the concentration
�eld and electric potential in the compartment are given as Eqs. (2.41) and (2.42),

c̃ = 1− J̃+x̃, (2.55a)

φ̃ = ln(1− J̃+x̃). (2.55b)

We normalize the charge density as ρm = ec0ρ̃m, and write the potential di�erences over
the left and right membrane interface as

∆φ̃L = − ln

( |ρ̃m|
εPc̃(1)

)
= − ln

( |ρ̃m|
εP(1− J̃+)

)
, (2.56a)

∆φ̃R = − ln

( |ρ̃m|
εPc̃(2)

)
= − ln

( |ρ̃m|
εP

)
. (2.56b)

Due to the high cation conductivity inside the membrane, the potential drop over the
membrane interior is nearly negligible. The total potential drop Ṽ0 over the system is
therefore

−Ṽ0 = φ̃(2) = φ̃(1) + ∆φ̃L −∆φ̃R

= ln(1− J̃+)− ln

( |ρ̃m|
εP(1− J̃+)

)
+ ln

( |ρ̃m|
εP

)

= 2 ln(1− J̃+). (2.57)

In the �nal result, we notice that the membrane speci�c parameters ρ̃m and εP have
vanished. Super�cially, it thus seems that the membrane does not in�uence the electric
potential drop over the system. While this is not entirely the case, the electric potential
at x̃ = 2 is actually two times the potential at x̃ = 1, it does hint at an important
feature of ideal permselective membranes, namely that the electrochemical potential µ̃+

is constant across the membrane. This conclusion follows from the vanishing resistivity of
the membrane interior and the quasi-equilibrium nature of the interfacial double layers.
Eq. (2.57) can therefore be obtained much easier as

µ̃+(2) = µ̃+(1)

⇒ ln[c̃(2)] + φ̃(2) = ln[c̃(1)] + φ̃(1)

⇒ −Ṽ0 = ln(1− J̃+) + ln(1− J̃+) = 2 ln(1− J̃+). (2.58)

It turns out, that in many situations the electrochemical potential is a much more conve-
nient variable than the electric potential. The reason for this, is that the electrochemical
potential is the real driving force in the transport equations, whereas the electric potential
is only a part of the driving force.
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Figure 2.7: Sketch of the electric dou-
ble layer outside a metal electrode. As
we approach the electrode, the potential
changes from the bulk potential φb outside
the EDL to the di�use layer potential φd

at the OHP. The potential changes further
over the compact layer to the electrode po-
tential φe.

Figure 2.8: Sketch of excess electrochemical potential as
a function of reaction coordinate. In the initial and �nal
con�guration the excess electrochemical potential has a lo-
cal minimum. In order to get from one con�guration to the
other, the reaction complex has to go through the transition
state, which is the reaction limiting step.

2.6.2 Metal electrodes

When a metal is brought into contact with an aqueous electrolyte electrochemical reac-
tions can happen at the interface. This either leads to deposition of metal ions from the
electrolyte onto the solid metal or dissolution of the solid metal. Exactly how this reaction
process proceeds is a matter of much debate, but it is undoubtedly a very complicated
process which, among other things, depends on the structure of the interface, the chemical
species in solution, and the voltage di�erence between metal and the aqueous electrolyte
[7, 76, 81, 126, 10, 94, 143] . Many of the important features of surface reactions can conve-
niently be described in the framework of nonequilibrium thermodynamics. The following
is based on the account given in Ref. [7].

Consider a system composed of a solid metal electrode in contact with an aqueous
electrolyte, which is made by dissolving a salt of the electrode metal. Due to molecules
adsorbed onto the electrode surface and the solvation shell of the cations, there is always
a small distance which separates the electrode from cations in solution. A sketch of the
system is shown in Fig. 2.7. Here, the bulk potential φb, the di�use layer potential φd,
and the electrode potential φe were introduced. The bulk potential is the potential outside
the EDL, the di�use layer potential is the potential at the outer Helmholtz plane, and
the electrode potential is the potential in the electrode. The zeta potential ζ, which we
encountered in Section 2.3, is related to these potentials as ζ = φd − φb.

The quantities we are interested in are the rate at which cations deposit onto the metal
electrode, and the rate at which solid metal dissolves and goes into solution. That is, the
rate of the reaction

MZ+ + Ze− �M, (2.59)
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where the metal ions MZ+ with valence Z react with Z electrons to form a metal atom
M in the solid phase. In order for the reaction to occur, the metal ions must shed their
solvation shell, move into the adsorbed layer, meet up with electrons coming from the solid
metal, and �nally deposit onto the metal electrode. While these partial reaction steps are
going on, the reaction complex explores a landscape of excess electrochemical potential,

µ̃ex
i = µ̃i − ln(c̃i), (2.60)

as sketched in Fig. 2.8. The con�guration with the highest excess electrochemical potential
is rate limiting for the reaction and is denoted the transition state. According to transition
state theory, the reaction rate of the forward reaction in Eq. (2.59) depends exponentially
on the di�erence in electrochemical potential between the initial state and the transition
state,

R→ ∝ eµ̃++Zµ̃e−µ̃‡ . (2.61)

Here, µ̃+ is the electrochemical potential of cations MZ+ in solution, µ̃e is the electrochem-
ical potential of electrons in the metal electrode, and µ̃‡ is the electrochemical potential of
the transition state. Similarly, the backwards reaction rate is

R← ∝ eµ̃M−µ̃‡ , (2.62)

with µ̃M being the electrochemical potential of metal atoms in the solid phase. The total
reaction rate of Eq. (2.59) is therefore

R = k0

[
eµ̃++Zµ̃e−µ̃‡ − eµ̃M−µ̃‡

]
, (2.63)

where k0 is the rate constant for the reaction. The electrochemical potentials are

µ̃+ = µ̃0
+ + ln(a+) + Zφ̃d, (2.64a)

µ̃M = µ̃0
M + ln(aM), (2.64b)

µ̃e = µ̃0
e + ln(ae)− φ̃e, (2.64c)

where µ̃0
i are reference electrochemical potentials and ai are the activities of the chemical

species. For an ideal gas ai = c̃i.
In equilibrium the electrochemical potential of reactants and product is the same,

µ̃+ + Zµ̃e = µ̃M, (2.65)

and the potential di�erence over the interface is

∆φ̃eq = (φ̃e − φ̃d)eq =
µ̃0

+ + Zµ̃0
e − µ̃0

M

Z
+

1

Z
ln

(
a+a

Z
e

aM

)
. (2.66)

Thus, even when no net reaction is taking place there is a potential drop over the electrode-
electrolyte interface. When the system is biased, and a current made to run in the system,
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it is therefore natural to express the potential drop across the interface relative to the
equilibrium potential. This so-called overpotential η̃ is de�ned as

η̃ = ∆φ̃ −∆φ̃eq =
µ̃M − µ̃+ − Zµ̃e

Z
=

∆µ̃

Z
. (2.67)

We model the transition state as an activity term ln(a‡) plus a linear mixing of the excess
(i.e. disregarding entropic contributions) electrochemical potentials of initial and �nal
state,

µ̃‡ = ln(a‡) + αa

[
Zφ̃d + µ̃0

+ + Zµ̃0
e − Zφ̃e

]
+ αcµ̃

0
M (2.68)

= ln(a‡) + αa

[
−∆µ̃ − ln

(
a+a

Z
e

aM

)
+ µ̃0

M

]
+ αcµ̃

0
M (2.69)

= ln(a‡)− αa∆µ̃ − αa ln

(
a+a

Z
e

aM

)
+ µ̃0

M. (2.70)

Here, the cathodic, αc, and anodic, αa, charge-transfer coe�cients measure how close the
transition state is to the initial or �nal state. The charge-transfer coe�cients sum to unity,
αa + αc = 1. Inserting the transition state energy in Eq. (2.63) yields

R = k0
(a+a

Z
e )αaaαc

M

a‡

[
e−αcZη̃ − eαaZη̃

]
. (2.71)

In this thesis, we only consider cases where the cations can be modeled as an ideal gas,
a+ = c̃+, and where the electron and metal activities are constant, ae = 1, aM = 1. The
reaction rate therefore simpli�es to

R = k0
c̃αa

+

a‡

[
e−αcZη̃ − eαaZη̃

]
, (2.72)

known as the Butler�Volmer model of electrode kinetics. By allowing the charge-transfer
coe�cients to vary with η, this expression could also represent the more elaborate reaction
model known as Marcus kinetics [7, 17]. Writing out the overpotentials and introducing
the bias voltage Ṽ0,

Ṽ0 = −φ̃e +
µ̃0

+ + Zµ̃0
e − µ̃0

M

Z
, (2.73)

Eq. (2.72) can be rewritten as

R = k0
1

a‡

[
c̃+eαcZ(φ̃d+Ṽ0) − e−αaZ(φ̃d+Ṽ0)

]
. (2.74)

To model the activity a‡ of the transition state, we consider the path of the reaction
complex during the deposition reaction. Although the detailed path is unknown, it is clear
that the reaction complex must in some way adsorb onto the electrode and then merge
into the crystal structure. These processes are going on at the metal surface, so the energy
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of the reaction complex must be increased by the energy Esurf of an atom at the surface.
Assuming that the transition state is one of these surface states, we can write the activity
of the transition state as

a‡ = eEsurf/kBT = eκa
3γ/kBT . (2.75)

Here, we expressed Esurf as

Esurf = κa3γ, (2.76)

where κ is the surface curvature, γ is the surface energy, and a3 is the volume of an ion.
Frequently, the Butler�Volmer model (2.74) is applied outside the EDL without distin-

guishing between φ̃b and φ̃d, and without accounting for the variations in c̃+ in the EDL.
The concentration c̃+ at the interface can be related to the concentration c̃out

+ outside the
double layer as

c̃+ = c̃out
+ e−Z∆φ̃EDL , (2.77)

where ∆φ̃EDL = φ̃d − φ̃b is the potential di�erence over the EDL. The total potential
di�erence ∆φ̃tot = −(φ̃b + Ṽ0) is the sum of the potential di�erences over the EDL ∆φ̃EDL

and the electrode ∆φ̃el = −Ṽ0 − φ̃d,

∆φ̃tot = ∆φ̃EDL + ∆φ̃el. (2.78)

Since ∆φ̃EDL is smaller than ∆φ̃tot, there exists some function 0 ≤ f(∆φ̃tot, c̃
out
+ ) ≤ 1

which allows us to write

∆φ̃EDL = f(∆φ̃tot, c̃
out
+ )∆φ̃tot. (2.79)

Inserting these de�nitions in Eq. (2.74) and rewriting a bit we obtain the Butler�Volmer�
Frumkin model,

R = k0e
−κa3γ/kBT

[
c̃out

+ eα
∗
cZ(φ̃b+Ṽ0) − e−α

∗
aZ(φ̃b+Ṽ0)

]
, (2.80)

which depends on quantities evaluated outside the EDL. The modi�ed charge transfer
coe�cients α∗c and α∗a are de�ned as

α∗c = αc + αaf(∆φ̃tot, c̃
out
+ ), (2.81a)

α∗a = αa

[
1− f(∆φ̃tot, c̃

out
+ )
]
. (2.81b)

The modi�ed coe�cients still satisfy 0 ≤ α∗ ≤ 1, but their sum is no longer unity,

α∗c + α∗a = 1− αcf(∆φ̃tot, c̃
out
+ ) ≤ 1. (2.82)

Obviously, in order to use the Butler�Volmer�Frumkin model a supplementary model is
needed to determine the function f , see for instance Refs. [126, 16, 10]. The main thing
we want to stress is that although f does in�uence the reaction rate, the fundamental
exponential behavior is retained after applying the Frumkin correction to the Butler�
Volmer model.
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Figure 2.9: Concentration distribution out-
side an ion-selective interface during concentra-
tion polarization with λ̄D = 0.01. At the in-
terface the cation concentration is varied between
c̃+ = {20, 102, 103, 105, 108}, while the di�erence in
electrochemical potential across the system is kept
constant µ̃+ = 10. The �ve di�erent concentration
distributions nearly collapse on one line.

Figure 2.10: Electrochemical potential out-
side an ion-selective interface during concentra-
tion polarization with λ̄D = 0.01. At the in-
terface the cation concentration is varied between
c̃+ = {20, 102, 103, 105, 108}, while the di�erence in
electrochemical potential across the system is kept
constant µ̃+ = 10. The �ve di�erent distributions
of electrochemical potential nearly collapse on one
line.

2.7 Framework for modeling concentration polarization

Both of the ideal ion-selective interfaces treated above put speci�c demands on the con-
centration �elds and the electric potential just at the interface. In order to meet these
demands, a quasi-equilibrium electric double layer forms near the interface, in which the
concentration and electric potential vary rapidly over a few Debye lengths. The electro-
chemical potential is, however, almost constant through the double layer. It turns out,
that because the adaptation to the interface boundary conditions happen in this particular
way, it is possible to solve the transport problem in the remainder of the domain, without
reference to the speci�c interface boundary conditions. The only requirement is that the
cation concentration at the interface is larger than the bulk cation concentration.

In Fig. 2.9 we plot the cation concentration in a domain bounded by a reservoir at
x̃ = 0 and an ion-selective interface at x̃ = 1. An electrochemical potential di�erence of
∆µ̃+ = 10 is applied across the system, and the cation concentration at the interface is
varied between c̃+ = {20, 102, 103, 105, 108}. It is seen, that despite the huge di�erences in
concentration inside the EDL, the concentration distributions are nearly identical outside
the EDL. In Fig. 2.10 the electrochemical potentials are plotted, and we see that the
graphs nearly coincide. Thus, the behavior outside the EDL is very nearly independent of
the interface values of c̃+ and φ̃. Only the value of µ̃+ is important.

This observation leads us to suggest a general concentration polarization framework
(GCP) for modeling concentration polarization problems: We cut the EDL out of the
problem and only solve the transport equations in the remaining parts of the system.
Then, if we are interested in the current-voltage curve of a speci�c ion-selective interface,
we can just add an interface speci�c correction to the general result. To uniquely specify
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the boundary conditions of the trimmed system, we make use of the fact that the cation
concentration has a local minimum at the entrance to the EDL. The boundary conditions
therefore are

n · ∇̃c̃+ = 0, n · J̃− = 0, µ̃+ = −Ṽ0. (2.83)

As an example, let us assume that we have used the GCP framework to solve the
1D transport problem from a reservoir to a general ion-selective interface. As input to the
problem we have given the di�erence in electrochemical potential ∆µ̃+ over the system, and
as output we have found the current J̃+ in the system and the concentration distribution c̃+.
We are now told, that the ion-selective interface is in fact an electrode obeying the Butler�
Volmer�Frumkin model (2.80), with some auxiliary model for the function f(∆φ̃tot, c̃

out
+ ),

R = k0e
−κa3γ/kBT

[
c̃out

+ e−α
∗
cZ∆φ̃tot − eα

∗
aZ∆φ̃tot

]
= F (c̃out

+ ,∆φ̃tot). (2.84)

The function F may be fairly complicated, but the main point is that it allows us to express
∆φ̃tot in terms of the quantities c̃out

+ and J̃+ known from the general problem,

∆φ̃tot = F−1(c̃out
+ , R) = F−1(c̃out

+ , J̃+). (2.85)

Thus, the total voltage drop over a speci�c system has, at least in principle, been recovered
from the solution to the general concentration polarization problem.
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Chapter 3

Numerical techniques

As we have seen in Chapter 2, a proper model of concentration polarization involves several
nonlinearly coupled partial di�erential equations. This makes the typical concentration
polarization problem exceedingly di�cult to solve by analytical means, and we therefore
rely on numerical simulations to provide solutions to many of the problems in this thesis.
Often, these numerical solutions provide some insight into the behavior of a system, which
then enables us to derive analytical results in some important limits.

In the numerical simulations we use the commercial �nite element model (FEM) soft-
ware COMSOL Multiphysics 4.3a. Below we give a brief introduction to numerical
modeling using the �nite element method [93, 18, 12].

3.1 The �nite element method

The core idea in the �nite element method is to discretize the problem by expanding the
physical �elds in a set of localized basis functions. In COMSOL these basis functions are
called test functions. The concept of using basis functions in the study of boundary value
problems is familiar from Fourier analysis, where harmonic functions are used as a basis
on high symmetry geometries like rectangles, cylinders, and spheres.

In the �nite element method, the basis functions are constructed by placing a grid over
the computational domain and associating a localized function with each grid node. The
value of each basis function varies in some speci�ed (usually polynomial) way between 1 at
its own node and 0 on the neighboring nodes. See Fig. 3.1 for a sketch of a test function
on the domain Ω.

We consider an inhomogeneous boundary value problem for the dependent variable
g(r), de�ned by a set of boundary conditions plus the PDE

L{g(r)} = F (r). (3.1)

Here L is a di�erential operator and F is a forcing term. We also de�ne the defect

d(r) ≡ L{g(r)} − F (r), (3.2)
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Figure 3.1: Sketch of the test function ĝn on the domain Ω.

which is zero when Eq. (3.1) is satis�ed. It is assumed that g can be approximately
expressed in terms of a �nite basis {ĝn}

g(r) =
∑

n

cnĝn(r), (3.3)

where cn are the expansion coe�cients. Since the basis functions nearly span the function
space, Eq. (3.1) is approximately satis�ed if the projection of the defect d(r) on every basis
function vanishes,

〈ĝm, d〉 = 0, for all m. (3.4)

Here, the inner product is de�ned as 〈a(r), b(r)〉 =
∫

Ω a(r)b(r) dV for real functions.
A solution satisfying Eq. (3.4) is called a weak solution of the boundary value problem.
In contrast a solution satisfying Eq. (3.1) is called a strong solution of the boundary
value problem. An important feature of this weak formulation of the problem is that the
smoothness of g is not of critical importance. The reason for this is that any singularities
in the defect, resulting from kinks in g, are immediately integrated away. Inserting the
defect in Eq. (3.4) we obtain

〈
ĝm,L

∑

n

cnĝn

〉
= 〈ĝm, F 〉 , for all m, (3.5)

which, in the important case where L is linear, reduces to

∑

n

cn 〈ĝm,Lĝn〉 = 〈ĝm, F 〉 , for all m. (3.6)
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This system of equations can be written as a matrix problem,

Kc = f , (3.7)

where the so-called sti�ness matrixK has elementsKmn = 〈ĝm,Lĝn〉, the vector c contains
the coe�cients cn and the elements in f are given as 〈ĝm, F 〉. Obtaining the weak solution
to Eq. (3.1) is thus just a matter of solving the matrix equation Eq. (3.7) for the coe�cient
vector c.

So far we made no mention of the boundary conditions, although they are an essential
part of a boundary value problem. A quite natural way of implementing the boundary
conditions is provided by rewriting Eq. (3.4) a bit. To do this we will assume that Eq. (3.1)
can be written as a continuity equation

∇ · Γ = F, (3.8)

where Γ is a generalized �ux. This may seem restrictive, but in reality most governing
equations encountered in �eld theories of physics can be formulated as continuity equations.
Inserting Eq. (3.8) in Eq. (3.4) and integrating by parts, we obtain

〈ĝm,∇ · Γ− F 〉 =

∫

Ω

[
ĝm∇ · Γ− ĝmF

]
dV = 0 (3.9a)

⇒
∫

∂Ω
ĝmn · Γ dA+

∫

Ω

[
−∇ĝm · Γ− ĝmF

]
dV = 0. (3.9b)

In Eq. (3.9b) Neumann boundary conditions can be implemented by simply replacing
n · Γ in the surface integral with the appropriate condition. Another advantage of the
formulation in Eq. (3.9b) is that it does not include derivatives of Γ, and as a consequence
shape functions of a lower order can be used to construct the basis functions.

Dirichlet boundary conditions are not as straight-forward to implement, and requires
the introduction of a Lagrange multiplier �eld λ(r) on the domain boundary. The Lagrange
multiplier can be expanded in a set of basis functions {λ̂m}. A given boundary constraint,

g(r)−D(r) = 0, (3.10)

is then satis�ed if its projection on all the basis functions λ̂m vanishes,

〈
λ̂m, g(r)−D(r)

〉
= 0, for all m. (3.11)

We add this term to the surface integral in Eq. (3.9b). To allow the Dirichlet condition to
a�ect the bulk problem, we also substitute the term n · Γ with the Lagrange multiplier,

∫

∂Ω
ĝmλ(r) + λ̂m[g(r)−D(r)] dA+

∫

Ω

[
−∇ĝm · Γ− ĝmF

]
dV = 0. (3.12)

This formulation of the problem ensures that the boundary �ux n · Γ = λ(r) varies until
the Dirichlet condition g(r)−D(r) is satis�ed.
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In COMSOL the construction of the sti�ness matrix K and inversion of the matrix
problem Eq. (3.7) is all handled automatically. As users, we only have to provide the
weak form of the governing equations and boundary conditions Eqs. (3.9b) and (3.12). In
addition, we have to choose a mesh on which to discretize the boundary value problem.
This is an important part in setting up the problem, as the numerical solution is only
reliable if the important physics is well-resolved by the mesh. To ascertain that the mesh
does indeed resolve the relevant physics, we test the model in a variety of ways, including
mesh convergence tests and visual inspection of the �elds.



Chapter 4

Concentration polarization: Beyond

the local electroneutrality

assumption

The possible mechanisms behind overlimiting current are many and diverse in nature, in-
cluding both symmetry breaking and chemical e�ects. However, as Smyrl and Newman
realized as early as 1967 [113], even the simple one-dimensional model of concentration
polarization admits an overlimiting current. A careful analysis shows that as the current
approaches the limiting current, the LEN model outlined in Section 2.5 breaks down, and
a non-equilibrium extended space charge region (ESC) develops near the ion-selective in-
terface. The extended space-charge region has a �nite, albeit small, conductivity, enabling
an overlimiting current to run in the system.

The standard approach to solving the 1D transport problem is to employ the method
of matched asymptotic expansions [113, 16, 8, 134, 98, 94, 80]. While this method gives
important insight into the structure of the expanded double layer, it has the quite serious
issue that both the inner and outer expansions diverge at the matching point. Conse-
quently, a proper matching of the expansions is not possible, and an analytical I-V curve
can not be obtained.

In this chapter we use an alternate method to derive a uniformly valid solution to the
transport problem. Besides being free from any divergences our solution has the advantage
of having a comparatively simple form. This chapter is based on work from our paper
Ref. [83], which can be found in Appendix E.

4.1 Model

We consider one-dimensional transport of a binary symmetric electrolyte from a reservoir
at x = 0 to an ion-selective interface at x = L. The ions are assumed monovalent and
their reservoir concentration is c0. A sketch of the system is shown in Fig. 4.1. Using the

29
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Figure 4.1: The simple concentration polarization model system used in this chapter. To the left is a
reservoir of salt concentration c0 and to the right is a cation selective interface. In between is a compartment
of length L.

standard normalization from Section 2.2 the currents become

2J̃+ = −∂x̃ c̃+ − c̃+∂x̃ φ̃, (4.1a)

2
D+

D−
J̃− = −∂x̃ c̃− + c̃−∂x̃ φ̃. (4.1b)

Similarly, the Poisson equation becomes

2λ̄2
D∂

2
x̃ φ̃ = c̃− − c̃+. (4.2)

In the numerical simulations we model the ion-selective interface using two di�erent ap-
proaches. In one approach we model the interface as a membrane with ρ̃m = 1000, and in
another we employ the GCP framework from Section 2.7 and apply the boundary condition

∂x̃ c̃+ = 0, (4.3)

at the interface.

4.2 Analysis

In steady state the anion current vanishes and the cation current is a constant. Adding
Eq. (4.1b) to Eq. (4.1a) and subtracting Eq. (4.1b) from Eq. (4.1a) thus yields

2J̃+ = −∂x̃(c̃+ + c̃−)− (c̃+ − c̃−)∂x̃ φ̃, (4.4a)

2J̃+ = −∂x̃(c̃+ − c̃−)− (c̃+ + c̃−)∂x̃ φ̃, (4.4b)

which upon insertion of Eq. (4.2) becomes

2J̃+ = −2∂x̃ c̃+ − 2λ̄2
D∂

3
x̃ φ̃ + 2λ̄2

D∂
2
x̃ φ̃∂x̃ φ̃, (4.5a)

2J̃+ = 2λ̄2
D∂

3
x̃ φ̃ − 2λ̄2

D∂
2
x̃ φ̃∂x̃ φ̃ − 2c̃+∂x̃ φ̃. (4.5b)
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Figure 4.2: Numerically obtained concentration
distributions for a system with λ̄D = 0.01 and
ρ̃m = 1000. The system can be divided into three
regions: a locally electroneutral di�usion bound-
ary layer (DBL), a nonequilibrium extended space-
charge region (ESC), and a quasi-equilibrium elec-
tric double layer (EDL).

Figure 4.3: Numerically obtained electric and
electrochemical potentials for a system with λ̄D =
0.01 and ρ̃m = 1000. The electrochemical potential
only varies little inside the EDL.

The �rst of these equations is easily integrated,

J̃+x̃ − 1 = −c̃+ − λ̄2
D∂

2
x̃ φ̃ +

λ̄2
D

2

(
∂x̃ φ̃

)2
, (4.6)

where the integration constant was set to unity, since the terms involving φ̃ are very small
at the reservoir x̃ = 0. Multiplying Eq. (4.6) by ∂x̃ φ̃ and subtracting it from Eq. (4.5b)
yields an ordinary di�erential equation for the potential φ̃,

J̃+ − [J̃+x− 1]∂x̃ φ̃ = λ̄2
D∂

3
x̃ φ̃ −

λ̄2
D

2

(
∂x̃ φ̃

)3
. (4.7)

This equation, sometimes referred to as the master equation for the electric �eld, has
previously been derived in various forms, see for instance Refs. [113, 16, 125].

Before trying to derive analytical solutions to Eq. (4.7) we solve the problem numerically
to get an impression of the important features in the solution. In Fig. 4.2 we plot c̃+, c̃−,
and ρ̃el for a system with λ̄D = 0.01, where the ion-selective interface is a permselective
membrane with ρ̃m = 1000. In Fig. 4.3 we plot φ̃ and µ̃+ in the same system. Starting with
Fig. 4.2 it is seen that the system can be divided into three regions: a locally electroneutral
di�usive boundary layer (DBL) to the left, a quasi-equilibrium electric double layer (EDL)
to the right, and a nonequilibrium extended space-charge region (ESC) in between. The
same three regions are marked in Fig. 4.3, and it is seen that the electric potential φ̃ varies
signi�cantly in all three regions. The electrochemical potential, on the other hand, has a
quite small variation inside the electric double layer, as indeed we would expect from the
considerations in Section 2.6.1. Since the electrochemical potential is the relevant driving
force in the transport problem, this means that we can choose to disregard the electric
double layer in the solution of Eq. (4.7). That is, we apply the GCP framework outlined
in Section 2.7.
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In order to simplify Eq. (4.7) we look for terms which are negligible in the two relevant
regions. The terms on the left-hand side represent the simple LEN solution to the problem,
so they are obviously non-negligible. The terms on the right-hand side derive from the
Poisson equation, and as such they are associated with the charge in the system. We
therefore expect these terms to only matter in the ESC. Inside the ESC the right-hand
side terms scale as

λ̄2
D∂

3
x̃ φ̃ ∼ λ̄2

D

∆φ̃

∆x̃3 , (4.8a)

λ̄2
D

2

(
∂x̃ φ̃

)3
∼ λ̄2

D

2

∆φ̃
3

∆x̃3 , (4.8b)

where ∆φ̃ is the potential drop over the ESC and ∆x̃ is the width of the ESC. The amount
of charge carriers is small in the ESC, so the potential drop ∆φ̃ over the ESC is large.
Consequently, Eq. (4.8b) will dominate over Eq. (4.8a) and it is reasonable to neglect
λ̄2

D∂
3
x̃ φ̃ in Eq. (4.7),

J̃+ − [J̃+x− 1]∂x̃ φ̃ = − λ̄
2
D

2

(
∂x̃ φ̃

)3
. (4.9)

Since 2λ̄2
D∂

3
x̃ φ̃ = −∂x̃ ρ̃el the above assumption corresponds to assuming a quasi-uniform

distribution of the charge density. As seen by the smooth variation of ρ̃el in Fig. 4.2 this is
indeed a reasonable way of characterizing the charge density in the ESC. Inside the EDL,
on the other hand, the charge density is far from uniform, so the fact that we can disregard
the EDL is crucial for this solution approach.

We are not the �rst to come up with this way of simplifying Eq. (4.7). It has previously
been used by Urtenov et al. [125] and dubbed the assumption of quasi-uniform charge den-
sity distribution (QCD). In their work they are, however, only using the QCD assumption
as a means of simplifying numerical simulations. While this is certainly worthwhile in
itself, it seems to us that they are missing out on the biggest incentive for using the QCD
assumption, namely the abundance of useful analytical results which can be derived from
Eq. (4.9).

To simplify the analysis we introduce a scaled electric �eld Ê and a scaled position x̂,
de�ned by

Ê = −B∂x̃ φ̃, with B =

(
λ̄2

D

2J̃+

)1/3

, (4.10)

and

x̂ =
1

B

[
x̃ − 1

J̃+

]
. (4.11)

We can then rewrite Eq. (4.9) as

1 + x̂Ê = Ê3. (4.12)
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Before actually solving this equation we can use it to derive some results characterizing the
ESC. The scaled charge density ρ̂el = ∂x̂Ê is found by implicit di�erentiation of Eq. (4.12)

Ê + x̂∂x̂Ê = 3Ê2∂x̂Ê ⇒ ρ̂el = ∂x̂Ê =
Ê

3Ê2 − x̂
=

Ê2

2Ê3 + 1
. (4.13)

Di�erentiating ρ̂el again, it is found that the point of maximum charge density is at x̂ = 0
and that

max(ρ̂el) = ρ̂el(0) =
1

3
. (4.14)

The simple form of this result is due to Eq. (4.12) being trivial for x̂ = 0. From the scaled
charge density ρ̂el we can easily recover the unscaled charge density ρ̃el,

ρ̃el = −2λ̄2
D∂

2
x̃ φ̃ =

2λ̄2
D

B
∂x̃ x̂∂x̂Ê =

(
32λ̄2

DJ̃
2
+

)1/3
ρ̂el. (4.15)

In Fig. 4.2 it is seen that the point of maximum charge density roughly marks the left
edge of the ESC. Inserting x̂ = 0 in Eq. (4.11) we �nd that the beginning of the ESC is at
x̃ρ = 1/J̃+, so the width of the ESC is l̃ESC = 1− 1/J̃+.

To proceed beyond this point, we write up the general solution to Eq. (4.12)

Ê =− 1

21/3

(
−1 +

√
1− 4

27
x̂3

)1/3

eiω

− 21/3

3
x̂

(
−1 +

√
1− 4

27
x̂3

)−1/3

e−iω, (4.16)

where ω = 0, 2π
3 or 4π

3 . We require that the solution is real and �nd

Ê =

{
Ê−, for x̂ ≤ 0,

Ê+, for x̂ ≥ 0,
(4.17a)

which is continuous and di�erentiable at x̂ = 0 and where

Ê± =± 1

21/3

(
±1∓

√
1− 4

27
x̂3

)1/3

± 21/3

3
x̂

(
±1∓

√
1− 4

27
x̂3

)−1/3

. (4.17b)

In Fig. 4.4 the scaled electric �eld Ê is plotted for −10 < x̂ < 10 along with the asymptotic
expressions. It is seen that both of the far �eld asymptotics diverge at x̂ = 0, whereas
Ê itself is well behaved for all values of x̂. We note that although this approach, like
the method of matched asymptotic expansions [8, 16, 53], deals with di�erent expressions
inside and outside the ESC, the expressions used here are di�erent branches of the same
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Figure 4.4: Plot of the scaled electric �eld Ê versus x̂. The dashed lines show the asymptotic behavior
for x̂→ −∞, x̂→ 0, and x̂→∞

solution and as such they are matched by construction. This is a distinct advantage of the
present approach, and it allows for an integration of the electric �eld to �nd the potential
drop over the system.

Looking at the rather unpleasant form of Eq. (4.17), one might easily conclude that
it is simply to cumbersome to work with to be worth the e�ort. For instance, how are
we ever going to integrate Ê given on this form? Indeed, mathematical software packages
like Maple and Mathematica come up short when tasked with integrating Eq. (4.17b).
Luckily, there is a work around. Because the QCD master equation (4.12) is a simple
algebraic equation for Ê, we can derive all the results we need without ever having to
perform explicit operations on Eq. (4.17). The explicit form Eq. (4.17) is only needed for
evaluating the end results.

In order to �nd the potential φ̃ we use Eq. (4.13) to make a change of variable,

φ̃ =

∫
∂x̃ φ̃ dx̃ = − 1

B

1

∂x̃ x̂

∫
Ê dx̂ = −

∫
Ê dx̂

= −
∫
Ê

1

∂x̂Ê
dÊ = −

∫
2Ê2 +

1

Ê
dÊ

= −2

3

[
Ê3 − Ê3(x̂0)

]
− ln

(
Ê

Ê(x̂0)

)
, (4.18)

with x̂0 = −1/(BJ̃+) (Eq. (4.11) with x̃ = 0). Equivalently, we de�ne x̂1 = (J̃+−1)/(BJ̃+)
(Eq. (4.11) with x̃ = 1). At the reservoir Ê is small, so we can make the approximations
Ê3(x̂0) ≈ 0 and Ê(x̂0) ≈ − 1

x̂0
,

φ̃ ≈ −2

3
Ê3 − ln(−Êx̂0). (4.19)

The cation concentration is obtained from Eq. (4.6),

c̃+ =
λ̄2

D

B2

[
1

2Ê
+ ∂x̂Ê

]
=
λ̄2

D

B2

[
1

2Ê
+

Ê2

2Ê3 + 1

]
=
λ̄2

D

B2

4Ê3 + 1

4Ê3 + 2

1

Ê
, (4.20)
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Figure 4.5: The space-charge density in a system
with λ̄D = 0.001 and J̃+ = {1.1, 1.3, 1.5}. The gray
lines show the results from numerical simulations
with a membrane, the black lines show the results
from a numerical simulation with GCP boundary
conditions, and the blue dashed lines show the an-
alytical results.

Figure 4.6: The cation concentration in a system
with λ̄D = 0.001 and J̃+ = {1.1, 1.3, 1.5}. The gray
lines show the results from numerical simulations
with a membrane, the black lines show the results
from a numerical simulation with GCP boundary
conditions, and the blue dashed lines show the an-
alytical results.

and since the anions are Boltzmann distributed,

c̃− = eφ̃ . (4.21)

In Fig. 4.5 we plot the charge density for λ̄D = 0.001 and J̃+ = {1.1, 1.3, 1.5}. The
analytical result (4.15) is shown with a blue dashed line and the numerical results are
shown in gray for the membrane boundary condition and in black for the GCP boundary
condition. Comparing the analytical results with those from the numerical membrane
model, we see that they di�er markedly in the EDL. Here, the numerically obtained charge
density increases rapidly, while the analytical charge density is una�ected. This is as
expected, since the EDL was intentionally removed from the analytical treatment. In
the ESC there are also slight deviations between the results, but both models agree on
the essential behavior. In Fig. 4.6 we plot the ion concentrations for the same set of
parameter values. Also here, there is excellent agreement between the analytical and
numerical models.

To �nd the current-voltage characteristic of the system, we need an expression for the
electrochemical potential. Such an expression is easily obtained from Eqs. (4.19) and (4.20),

µ̃+ = ln(c̃+) + φ̃ = −2

3
Ê3 − ln

(
−B

2

λ̄2
D

4Ê3 + 2

4Ê3 + 1
Ê2x̂0

)
. (4.22)

In Fig. 4.7 we plot the electrochemical potential in the system for λ̄D = 0.001 and J̃+ = 1.5.
Both the analytical and numerical results are shown. The numerical and analytical models
are seen to be in good agreement except inside the EDL. Here, µ̃+ from the numeri-
cal membrane model levels o�, while µ̃+ continues with an approximately constant slope
through the EDL in the two other models. Thus, if we base the analytical I-V curve on
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Figure 4.7: The electrochemical potential µ̃+ in
a system with λ̄D = 0.001 and J̃+ = 1.5. The gray
line shows the result from a numerical simulation
with a membrane, the black line shows the result
from a numerical simulation with GCP boundary
conditions, and the blue dashed line shows the an-
alytical result.

Figure 4.8: Current-voltage curves for λ̄D =
{0.001, 0.005, 0.01}. The gray lines show the results
from numerical simulations with a membrane, the
black lines show the results from a numerical sim-
ulation with GCP boundary conditions, the blue
dashed lines show the analytical results, and the
red dashed lines show the corrected analytical re-
sults.

the electrochemical potential at x̃ = 1, we will slightly overestimate the voltage required
to drive a given current. Alternatively, we can evaluate the analytical µ̃+ at the beginning
of the EDL, to avoid part of the spurious potential drop inside the EDL. i.e. rather than
evaluating µ̃+ at x̃ = 1, we evaluate it at x̃ = 1− l̃EDL. Assuming that l̃EDL corresponds
to the local Debye length we have

l̃EDL ≈
λ̄D√
c̃+
. (4.23)

In the overlimiting regime the cation concentration in the ESC almost equals the charge
density. The scale of the charge density is set by the peak charge density ρ̃el(x̃ρ), so we
can express the width of the EDL as

l̃EDL ≈
λ̄D√
ρ̃el(x̃ρ)

= 31/22−5/6λ̄
2/3
D J̃

−1/3
+ . (4.24)

In Fig. 4.8 we plot analytical and numerical I-V curves for λ̄D = {0.001, 0.005, 0.01}. The
numerical results are shown in full gray lines for the membrane boundary condition and in
full black lines for the GCP boundary condition. The dashed blue lines denote analytical
results evaluated at x̃ = 1 and the dashed red lines denote the corrected analytical results
evaluated at x̃ = 1− l̃EDL. Both of the analytical models are seen to capture the essential
behavior of the I-V curve, with the results evaluated at x̃ = 1− l̃EDL doing slightly better
than those evaluated at x̃ = 1.
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4.3 Characterizing the extended space charge region

The accurate I-V curve is a key result of the analytical model. However, the true strength
of the model lies in its ability to predict quantities which are inaccessible to experimental
measurements. For instance, results characterizing the ESC are of great theoretical and
practical interest. We already derived one such result, namely the value of the peak charge
density,

max(ρ̃el) =
1

3

(
32λ̄2

DJ̃
2
+

)1/3
. (4.25)

Likewise, the total charge Q̃ in the system is easily obtained from Eq. (4.15)

Q̃ =

∫ 1

0
ρ̃el dx̃ =

(
32λ̄2

DJ̃
2
+

)1/3
∫ x̂1

x̂0

ρ̂el
1

∂x̃ x̂
dx̂ =

(
16λ̄4

DJ̃+

)1/3 [
Ê(x̂1)− Ê(x̂0)

]
(4.26)

≈
(

16λ̄4
DJ̃+

)1/3
Ê(x̂1), (4.27)

since Ê(x0)� Ê(x1). The charge is only signi�cant in the overlimiting regime, and in this
regime we can approximate Ê ≈

√
x̂,

Q̃ ≈
(

16λ̄4
DJ̃+

)1/3
√

1

B

(
1− 1

J̃+

)
= 23/2λ̄D

√
J̃+ − 1. (4.28)

Surprisingly, the total charge Q̃ has a di�erent scaling with λ̄D than the peak charge density
max(ρ̃el).

In the last 15 years the so-called electro-osmotic instability of the second kind has
attracted considerable attention. Rubinstein and Zaltzman showed that under certain
conditions the ESC can go unstable leading to periodic �ow patterns in the liquid [99, 100,
101, 102, 104]. A key step in their analysis is the derivation of an e�ective slip velocity,
applicable just outside the ESC. However, this is a fairly laborious derivation requiring
quite a few approximations along the way. In the following we re-derive the e�ective slip
velocity using our much simpler, and more accurate, model of the extended space-charge
region.

We investigate the geometry shown in Fig. 4.9, in which current runs in the x̃ direction
from a reservoir to a planar ion-selective interface lying in the ỹ z̃ plane. Due to the
symmetry breaking electro-osmotic instability, our analytical QCD model is not applicable
in the entire geometry. However, close to the interface advection plays a comparatively
small role, and we expect the QCD model to give a reasonable description of the transport.
We de�ne a slip plane at the transition point x̃ = x̃s between the ESC and the locally
electroneutral, partially advection driven bulk system. By applying the QCD model in the
region between x̃ = x̃s and x̃ = 1, we can then derive a slip velocity for the bulk part of the
system. To simplify matters, we only consider transverse variations along the ỹ direction.

The starting point for deriving an e�ective slip velocity is the normalized Stokes equa-
tion

0 = −∇̃p̃ + ∇̃2ũ + ∇̃2φ̃∇̃φ̃, (4.29)
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Figure 4.9: Sketch of a system with electro-osmotic instability. To the left is a reservoir and to the
right is an ion-selective interface. The blue line shows the slip plane at the transition point between the
electroneutral, partially advection driven bulk system and the ESC. The position x̃s of the slip plane, the
concentration c̃s at the slip plane, and the slip velocity ṽs are indicated.

where the velocity was normalized by U0 = εwV
2

T/(ηL) and the pressure was normalized
by p0 = ηU0/L. The potential variations are much larger in the x̃-direction than in the
ỹ-direction, so we can approximate ∇̃2φ̃ ≈ ∂2

x̃ φ̃. Since the ion-selective interface blocks
the �uid �ow, the x̃ component of Eq. (4.29) yields

0 = −∂x̃ p̃ + ∂2
x̃ φ̃∂x̃ φ̃ ⇒ p̃ =

1

2
(∂x̃ φ̃)2 + constant. (4.30)

Inserting this in the ỹ component of Eq. (4.29) we �nd

0 = −1

2
∂ỹ

{
(∂x̃ φ̃)2

}
+ ∂2

x̃ ṽ + ∂2
x̃ φ̃∂ỹ φ̃. (4.31)

Because we only apply the QCD model between x̃ = x̃s and x̃ = 1 the scaled coordinate x̂
takes the form

x̂ =
1

B

[
x̃ − x̃s −

c̃s

J̃+

]
(4.32)

where c̃s is the ion concentration at x̃s. We note that since the symmetry is broken both
c̃s, J̃+, and B depend on the ỹ coordinate. Evaluating the pressure term in Eq. (4.31) we
�nd

1

2
∂ỹ

{
(∂x̃ φ̃)2

}
=

1

2
∂ỹ

{
Ê2

B2

}
= − 1

B2
Ê2∂ỹ ln(B) +

1

B2
Ê∂ỹ x̂∂x̂Ê, (4.33)

and from the electrostatic force term,

∂2
x̃ φ̃∂ỹ φ̃ = − 1

B2
∂x̂Ê∂ỹ x̂∂x̂φ̃ =

1

B2
∂ỹ x̂Ê∂x̂Ê. (4.34)
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Inserting these expressions in Eq. (4.31) the electrostatic terms cancel and we are left with

∂2
x̃ ṽ = − 1

B2
Ê2∂ỹ ln(B) = − 1

B2
Ê2∂ỹ ln

([
λ̄2

D

2J̃+

]1/3
)

=
1

3

Ê2

B2
∂ỹ ln(J̃+). (4.35)

Integrating this result twice with ∂x̃ ṽ(x̃s) = 0 and ṽ(1) = 0 we �nd

ṽs = ṽ(x̃s) ≈ −
1

3
∂ỹ ln(J̃+)

[
1

6
Ê6 +

5

6
Ê3

]
, (4.36)

where Ê should be evaluated at x̃ = 1. For clarity some lower order terms have been
omitted from this result. From Eq. (4.19) we see that to leading order the potential is
given as φ̃ ≈ −2

3Ê
3. Inserting this in Eq. (4.36) we �nd

ṽs ≈ −∂ỹ ln(J̃+)

[
1

8
φ̃

2 − 5

12
φ̃

]
. (4.37)

If the velocity �eld in the x̃-direction vanishes at the slip plane, the current at the slip
plane is given as J̃+ = −∂x̃ c̃, and the leading order behavior of Eq. (4.37) is identical to
the slip model in Ref. [100]. The correction 5

12 φ̃ is new, and for the voltages |φ̃| . 10
investigated in Ref. [100], it does give a signi�cant contribution to the slip velocity.

In Ref. [100] the ESC is treated as being decoupled from the bulk system. That is,
the voltage over the ESC is treated as an independent tunable variable. In reality, the
voltage over the ESC is, however, determined by the current into the ESC and the salt
concentration at the edge of the ESC. This coupling is apparent in our model, and the
inclusion of this e�ect might help to provide a better understanding of the electro-osmotic
instability and maybe even the transition to chaotic behavior [25, 20].

4.4 Conclusion

Based on an assumption of a quasi-uniform distribution of the charge density, we have
derived an analytical model (QCD) for concentration polarization in 1D. The QCD model
improves on existing analytical models both in predictive power and in ease of use, cf.
Refs. [113, 98, 133, 134]. The main limitation of the presented model is that it does not
consider the role of the EDL. However, as discussed in Section 2.7, the quasi-equilibrium
EDL usually does not a�ect the transport problem in a decisive way. For instance, in the
case of a membrane boundary condition, the EDL only a�ects the problem by a slight
modi�cation of the e�ective compartment length. As an example of the versatility of
the analytical model, we rederive an important result in the study of the electro-osmotic
instability [100], namely the e�ective slip velocity outside the ESC. To leading order our
result agrees with Ref. [100], but we also �nd signi�cant corrections to the slip model.
These corrections may help to improve the understanding of electro-osmotic instabilities.

The extended space-charge region is a fundamental feature of problems involving con-
centration polarization, and it is a feature which we encounter in all of the remaining
chapters. We shall therefore make frequent use of the QCD model to rationalize results,
and as a part in analytical models applicable to the physics studied in those chapters.
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Chapter 5

Concentration polarization in a

microchannel

In recent years, concentration polarization in the context of microsystems has gathered
increasing interest [59, 58, 74, 75, 142, 15, 56]. This interest has been spurred both by the
implications for battery [71] and fuel cell technology [119, 127, 30] and by the potential
applications in water desalination [57] and solute preconcentration [128, 63, 60]. In mi-
crosystems, surface e�ects are comparatively important, and for this reason their behavior
is fundamentally di�erent from bulk systems [135, 137]. For instance, an entirely new mode
of overlimiting current enabled by surface conduction, has been predicted by Dydek et al.
[27, 26]. In this mode, the current exceeding the di�usion-limited current runs through
the depletion region inside the electric double layers, which screen the surface charges.
This gives rise to an overlimiting current depending linearly on the surface charge, the
surface-to-bulk ratio, and the applied potential. In addition to carrying a current, the
moving ions in the electric double layers exert a force on the liquid medium, and thereby
they create an electro-di�usio-osmotic �ow in the channel. This �uid �ow does in turn
a�ect the transport of ions, and the resulting Poisson�Nernst�Planck�Stokes problem has
strong nonlinear couplings between di�usion, electromigration, electrostatics, and advec-
tion. While di�erent aspects of the problem can be, and has been, treated analytically
[27, 135, 139, 103], the fully coupled system is in general too complex to allow for a simple
analytical description.

In this chapter we investigate concentration polarization in a microchannel using three
complementary approaches. Firstly, we carry out full numerical simulations of the cou-
pled Poisson�Nernst�Planck�Stokes problem. Secondly, we derive an accurate boundary
layer model for the transport in the system. Thirdly, in the limit of low aspect ratio, we
derive simple analytical expressions for the current-voltage characteristic, which includes
electromigration, di�usion, and advection in the electric double layers. The latter two
models include some important e�ects which are absent from similar models published in
the literature, and which we were able to identify by comparison with the full numerical
model. For instance, the overlimiting conductance in our analytical model is 2 + 4Pe0

+

times larger than the conductance found in Ref. [27], where di�usion and advection in the

41
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Figure 5.1: A sketch of the axisymmetric 2D system studied in this chapter. A microchannel of
normalized length and radius unity connects a reservoir to the left to an ion-selective interface. The
electric double layer adjoining the wall is shown as a shaded blue area, and the arrows indicate a velocity
�eld deriving from electro-di�usio-osmosis with back-pressure.

double layers is neglected.
The content in this chapter is based on work from our paper Ref. [82], which can be

found in Appendix F.

5.1 Model system

Our model system consists of a straight cylindrical microchannel of radius R and length L,
which is �lled with a binary and symmetric monovalent electrolyte. To the left the channel
is attached to a reservoir with �xed electrolyte concentration c0 and to the right the channel
is attached to an ion-selective interface. The channel walls have a uniform negative surface
charge density σ, which is screened by ions in the liquid over the characteristic distance
λD. In Fig. 5.1 a sketch of the system is shown. The electric double layer adjoining the
wall is shown as a shaded blue area, and the arrows indicate a velocity �eld deriving from
electro-di�usio-osmosis with back-pressure. We assume cylindrical symmetry and we can
therefore reduce the full three-dimensional problem to a two-dimensional problem.

5.2 Governing equations

Due to the presence of two di�erent length scales in the geometry, R and L, the normal-
ization in this chapter di�ers slightly from the normalization in previous chapters. We
normalize the radial coordinate by R and the axial coordinate by L, and introduce the
aspect ratio α and the nondimensional gradient operator ∇̃,

α =
R

L
, (5.1a)

∇̃ = αex∂x̃ + er∂r̃ . (5.1b)

Since the double layers vary in the transverse direction, we de�ne the normalized Debye
length as

λ̄D =
λD

R
. (5.2)
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We normalize the �uid velocity u by the electro-osmotic velocity scale U0, the pressure by
the corresponding micro�uidic pressure scale p0, and the body force density by f0,

U0 =
εwV

2
T

ηL
, p0 =

ηU0

R
, f0 =

c0kBT

R
. (5.3a)

The remaining normalizations are as in Section 2.2. The steady-state transport equations
for the ions then are

0 = −∇̃ · J̃±, (5.4a)

2α
D+

D±
J̃± = −c̃±∇̃µ̃± + αPe0

±c̃±ũ, (5.4b)

Pe0
± =

LU0

D±
=
εwV

2
T

ηD±
. (5.4c)

The Poisson equation takes the form

2λ̄2
D∇̃2φ̃ = −(c̃+ − c̃−), (5.5)

and the Stokes and continuity equations become

0 = −∇̃p̃ + ∇̃2ũ +
1

2αλ̄2
D

f̃ , (5.6a)

0 = ∇̃ · ũ. (5.6b)

5.2.1 The thermodynamic driving force

In Section 2.7 we made the case that it is more convenient to use the electrochemical
potential µ̃+ as control variable than the electric potential φ̃. The main reason that µ̃+

is the preferable variable is that it does not vary signi�cantly across electric double layers.
We can apply a similar reasoning to the body force density f̃ occurring in the Stokes
equation (5.6a).

Conventionally, the body force density is set to be the electrostatic force density
−ρ̃el∇̃φ̃ = −(c̃+− c̃−)∇̃φ̃. By considering the forces on each constituent we can, however,
formulate the problem in a way that is more convenient and better reveals the physics of
the problem. The force acting on each particle is minus the gradient of its electrochemical
potential. The force density can therefore be written as

f̃ = −c̃+∇̃µ̃+ − c̃−∇̃µ̃− − c̃H2O∇̃µ̃H2O, (5.7)

where c̃H2O � c̃± and µ̃H2O is the concentration and chemical potential of water, respec-

tively. As opposed to µ̃± given by the ideal gas expression µ̃± = ln(c̃±)± φ̃, µ̃H2O depends
linearly on c̃± [64],

µ̃H2O = − c̃+ + c̃−
c̃H2O

, (5.8a)

f̃ = −c̃+∇̃µ̃+ − c̃−∇̃µ̃− + ∇̃(c̃+ + c̃−). (5.8b)
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If we insert the expressions for µ̃±, the force density reduces, as it should, to the usual
electrostatic force density. It is, however, advantageous to keep the force density on this
form, because it reveals the origin of each part of the force. For instance, if we insert a
membrane which is impenetrable to ions, only the last term ∇̃(c̃+ + c̃−) in the force, can
drive a �ow across the membrane, because the other forces are transmitted to the liquid
via the motion of the ions. It is thus easy to identify −(c̃+ + c̃−) as the osmotic pressure in
the solution. Inserting Eq. (5.8b) for the force f̃ in Eq. (5.6a) and absorbing the osmotic
pressure into the new pressure p̃′ = p̃ − (c̃+ + c̃−), we obtain

0 = −∇̃p̃′ + ∇̃2ũ − 1

2αλ̄2
D

[
c̃+∇̃µ̃+ + c̃−∇̃µ̃−

]
. (5.9)

It is seen, that when the Stokes equation is given in this form, the body force density is
guaranteed to vanish in equilibrium. This is in stark contrast to the conventional electro-
static body force −ρ̃el∇̃φ̃, which can be very large in the electric double layers, even in
equilibrium. This feature of Eq. (5.9) simpli�es both the numerical and analytical treat-
ment of the problem.

5.2.2 Boundary conditions

To supplement the �eld equations (5.4a), (5.5), (5.6b), and (5.9) we specify boundary
conditions on the channel walls, at the reservoir, and at the ion-selective interface. At the
reservoir x̃ = 0 we require that the �ow is unidirectional along the x̃ axis. At the channel
wall r̃ = 1 and at the ion-selective interface x̃ = 1 we impose a no-slip boundary condition,

ũ = ũex, at x̃ = 0, (5.10a)

ũ = 0, at r̃ = 1 or x̃ = 1. (5.10b)

We assume that the ions are in local transverse equilibrium at the reservoir, so that the
electric potential is determined by the Poisson�Boltzmann equation

λ̄2
D

1

r̃
∂r̃(r̃∂r̃ φ̃) = sinh(φ̃), at x̃ = 0. (5.11a)

The boundary conditions for φ̃ are a symmetry condition on the cylinder axis r̃ = 0, and
a surface charge boundary condition at the wall r̃ = 1,

∂r̃ φ̃ = 0, at r̃ = 0, (5.11b)

er · ∇̃φ̃ = − Rσ

VTεw
=
ρs

4

1

λ̄2
D

, at r̃ = 1. (5.11c)

The parameter ρs is de�ned as

ρs = − 2σ

ec0R
, (5.11d)
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and physically it is the average charge density in a channel cross-section, which is required
to compensate the surface charge density. As explained in Ref. [27], ρs is closely related to
the overlimiting conductance in the limit of negligible advection.

The boundary conditions for the ions are impenetrable channel walls at r̃ = 1, and the
ion-selective interface at x̃ = 1 is impenetrable to anions while it allows cations to pass,

er · J̃± = 0, at r̃ = 1, (5.12a)

ex · J̃− = 0, at x̃ = 1. (5.12b)

The assumption of transverse equilibrium at the reservoir entail that both the electrochem-
ical potentials µ̃± and the pressure p̃′ are constant here,

µ̃± = 0, at x̃ = 0, (5.13a)

p̃′ = 0, at x̃ = 0. (5.13b)

In order to keep the analysis as general as possible, we use the GCP framework outlined
in Section 2.7 to model the ion-selective interface. The remaining boundary conditions at
x̃ = 1 therefore are

ex · ∇̃c̃+ = 0, at x̃ = 1, (5.14a)

µ̃+ = −Ṽ0, at x̃ = 1. (5.14b)

The above governing equations and boundary conditions completely specify the problem
and enable a numerical solution of the full Poisson�Nernst�Planck�Stokes problem with
couplings between advection, electrostatics, and ion transport. In the remainder of this
text we refer to the model speci�ed above as the full model (FULL). See Table 5.1 for a list
of all numerical and analytical models employed in this chapter. While the full numerical
model provides an excellent tool to study the microchannel system, it may not be su�cient
to give us the desired insight into the transport properties of the system. To obtain that
insight, we develop a number of simpli�ed models which separate the various transport
mechanisms from each other.

5.3 Boundary layer models

To simplify the problem, we divide the system into a locally electroneutral bulk system
and a thin region near the walls, comprising the electric double layer. The in�uence of
the double layers on the bulk system is included via a surface current inside the boundary
layer and an electro-di�usio-osmotic slip velocity.

5.3.1 Ion transport

To properly divide the variables into surface and bulk variables, we again consider the
electrochemical potentials. In the limit of long and narrow channels the electrolyte is in
transverse equilibrium, and the electrochemical potentials vary only along the x̃ direction,
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Table 5.1: The numerical and analytical models employed in this chapter.

Abbreviation Name Described in

FULL Full model (numerical) Section 5.2
BNDF Boundary layer model, full Section 5.3

(numerical)
BNDS Boundary layer model, slip Section 5.3

(numerical)
ASCA Analytical model, Section 5.4.2

surface conduction-advection
ASC Analytical model, Section 5.4.2

surface conduction
QCD Analytical model, Section 5.4.3

bulk conduction through the ESC

µ̃±(x̃) = ln[c̃±(x̃, r̃)]± φ̃(x̃, r̃). (5.15)

Since the left hand side is independent of r̃, it must be possible to pull out the x̃ dependent
parts of c̃± and φ̃. We denote these parts c̄±(x̃) and φ̃b(x̃),

µ̃±(x̃) = ln[c̄±(x̃)] + ln

[
c̃±(x̃, r̃)

c̄±(x̃)

]
± φ̃b(x̃)± φ̃eq(x̃, r̃), (5.16)

where the equilibrium potential φ̃eq(x̃, r̃) is the remainder of the electric potential, φ̃eq =

φ̃− φ̃b. The r̃ dependent parts must compensate each other, and this implies a Boltzmann
distribution of the ions in the r̃-direction,

c̃±(x̃, r̃) = c̄±(x̃)e∓φ̃eq(x̃,r̃). (5.17)

The electrochemical potentials can then be written

µ̃±(x̃) = ln[c̄±(x̃)]± φ̃b(x̃). (5.18)

For further simpli�cation, we assume that electroneutrality is only violated to compensate
the surface charges, i.e. c̄+ = c̄− = c̄. As long as surface conduction or electro-di�usio-
osmosis causes some overlimiting current this is a quite good assumption, because in that
case the bulk system is not driven hard enough to cause any signi�cant deviation from
charge neutrality. For thin double layers, c̄ corresponds to the ion concentration at r̃ = 0.
However, if the Debye length is larger than the radius, c̄ does not actually correspond to
a concentration which can be found anywhere in the cross-section, and for this reason c̄ is
often called the virtual salt concentration [135, 138].

To describe the general case, where transverse equilibrium is not satis�ed in each cross-
section, we allow the bulk potential φ̃b to vary in both x̃ and r̃ direction. Then, however,
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the simple picture outlined above fails partially, and consequently, we make the ansatz

c̃±(x̃, r̃) = c̄(x̃)e∓φ̃eq(x̃,r̃) + c̃′(x̃, r̃), (5.19)

where c̃′(x̃, r̃) accounts for the deviations from transverse equilibrium. Close to the walls,
i.e. in or near the double layer, we therefore have c̃′(x̃, r̃) ≈ 0. Rearranging Eq. (5.19) we
�nd

c̃±(x̃, r̃) = c̄(x̃) + c̃′(x̃, r̃) + c̄(x̃)
[
e∓φ̃eq(x̃,r̃) − 1

]

= c̃(x̃, r̃) + c̃ex
± (x̃, r̃), (5.20)

where we have introduced the bulk salt concentration c̃ and the excess ion concentration
c̃ex
± ,

c̃(x̃, r̃) = c̄(x̃) + c̃′(x̃, r̃), (5.21)

c̃ex
± (x̃, r̃) = c̄(x̃)

[
e∓φ̃eq(x̃,r̃) − 1

]
. (5.22)

In the ion transport problem, the main signi�cance of the excess ion concentration is
that it allows an extra cation current to run inside the double layers. The excess anion
concentration c̃ex

− , on the other hand, is largely unimportant.
Inserting Eq. (5.20) in Eq. (5.4b) we �nd

2αJ̃+ = −∇̃c̃ − c̃∇̃φ̃b + αPe0
+c̃ũ − c̃′∇̃φ̃eq

− c̃ex
+ ∇̃{ln(c̄) + φ̃b}+ αPe0

+c̃
ex
+ ũ, (5.23)

where c̃′∇̃φ̃eq can be neglected, since φ̃eq is only signi�cant in the double layer where
c̃′ ≈ 0. The terms involving c̃ex

+ are only signi�cant near the walls, so it is natural to divide
Eq. (5.23) into a bulk current and a surface current,

2αJ̃bulk
+ = −∇̃c̃ − c̃∇̃φ̃b + αPe0

+c̃ũ, (5.24a)

2αJ̃ surf
+ = −c̃ex

+ ∇̃{ln(c̄) + φ̃b}+ αPe0
+c̃

ex
+ ũ. (5.24b)

For the anions we only de�ne a bulk current, since the excess anion concentration c̃ex
− plays

a minor role for the transport problem,

2α
D+

D−
J̃bulk
− = −∇̃c̃ + c̃∇̃φ̃b + αPe0

−c̃ũ. (5.25)

From the bulk currents Eq. (5.24a) and Eq. (5.25) we construct the linear combinations
J̃bulk

sum and J̃bulk
dif ,

αJ̃bulk
sum = α

(
J̃bulk

+ +
D+

D−
J̃bulk
−

)
= −∇̃c̃ + αPe0c̃ũ, (5.26a)

αJ̃bulk
dif = α

(
J̃bulk

+ − D+

D−
J̃bulk
−

)
= −c̃∇̃φ̃b + α

D− −D+

D− +D+
Pe0c̃ũ, (5.26b)
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Figure 5.2: Sketch indicating the two regions in the boundary layer model. In the bulk region (lightly
shaded) the boundary driven velocity �eld u (black line), the salt concentration pro�le c (gray line),
and the bulk advection 〈cu〉 is shown. In the boundary region (shaded and top zoom-in) the excess ion
concentrations c̃ex

± , the velocity �eld u, and the surface advection 〈c̃ex
+ u〉 is shown.

with Pe0 =
(
Pe0

+ + Pe0
−
)
/2. Like the constituent currents, both of the currents J̃bulk

sum and

J̃bulk
dif obey a continuity equation,

0 = ∇̃ · J̃bulk
sum , 0 = ∇̃ · J̃bulk

dif . (5.26c)

The surface current in Eq. (5.24b) is tightly bound to the wall, so we can describe it as a
scalar current,

2Ĩsurf
+ = 2〈ex · J̃ surf

+ 〉
= −

〈
c̃ex

+

〉[
∂x̃ ln(c̄) + ∂x̃ φ̃b

]
+ Pe0

+

〈
c̃ex

+ ũ
〉

= −
(
ρs +

〈
c̃ex
−
〉)[

∂x̃ ln(c̄) + ∂x̃ φ̃b

]
+ Pe0

+

〈
c̃ex

+ ũ
〉
, (5.27)

where the cross-sectional average is given as
〈
f(r̃)

〉
=
∫ 1

0 f(r̃)2r̃ dr̃, and we used that
ρs =

〈
c̃ex

+ − c̃ex
−
〉
. The �rst term in Eq. (5.27) we denote the surface conduction and the

second term the surface advection. Equivalently, we call the terms proportional to Pe0 in
Eqs. (5.26a) and (5.26b) the bulk advection. In Fig. 5.2 the division of the system into a
bulk region and a surface region is illustrated. The sketch also highlights the distinction
between bulk and surface advection.

The surface current couples to the bulk problem through a boundary condition at r̃ = 1,

n · J̃bulk
sum = n · J̃bulk

dif =
1

2
α∂x̃ Ĩ

surf
+ , (5.28)

where the factor of a half comes from the channel cross section divided by the circumference.
Rather than resolve the double layers, we can therefore include their approximate in�uence
through the boundary condition Eq. (5.28).

Before we proceed with the analysis there is an issue we need to address: Several steps
in the above derivations rely on the double layers being thin compared to the channel
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Figure 5.3: Plot of the charge density ρ̃el and the potential φ̃ near the channel wall for a system with
λ̄D = 0.01, ρs = 1, and c̃ = {1, 0.01, 0.0001}. At low values of c̃ the EDL extends across the channel, but
the charge density is still con�ned to a small region near the wall.

radius. For typical system parameters this is a reasonable assumption in much of the
system, but due to the low ion concentration in the depletion region, the double layers are
in general not thin in that region. However, the method is saved by the structure of the
double layer. Since the Debye length λ̄D is large in the depletion region the negative zeta
potential is also large, −ζ̃ � 1. The majority of the screening charge is therefore located
within the Gouy length λ̄G, which can be considerably smaller than the Debye length
[6, 92]. In Fig. 5.3, the charge density and the potential are plotted near the channel wall
for a system with λ̄D = 0.01, ρs = 1, and c̃ = {1, 0.01, 0.0001}. For c̃ = 1 the charge
density and the electric potential both decay at the same length scale. For lower values of
c̃, the electric potential decays on a much longer length scale than the charge density. The
normalized Gouy-length is given as

λ̄G =
λ̄D√
c̄

asinh

(
8
λ̄D

√
c̄

ρs

)
≤ 8

λ̄2
D

ρs

, (5.29)

where the upper limit is a good approximation when
√
c̄ � ρs/λ̄D. The boundary layer

method is therefore justi�ed provided that

λ̄D � 1 or 8
λ̄2

D

ρs

� 1. (5.30)
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5.3.2 Flow problem

Using a procedure similar to the one used above, the �ow problem is decomposed into bulk
and surface contributions

0 = −∇̃p̃′ + ∇̃2ũ, bulk, (5.31a)

0 = ∇̃ · ũ, bulk, (5.31b)

0 = −α∂x̃ p̃′ +
1

r̃
∂r̃
(
r̃∂r̃ ũ

)
− 1

2

1

λ̄2
D

(
c̄e−φ̃eq∂x̃ µ̃+ + c̄eφ̃eq∂x̃ µ̃−

)
, surface. (5.31c)

Since Eq. (5.31c) is linear in ũ we can calculate the electro-osmotic velocity ũeo, the di�usio-
osmotic velocity ũdo, and the pressure-driven velocity ũp individually,

ũ = ũeo + ũdo + ũp

=
[
ũu

eo − 2
〈
ũu

eo

〉
(1− r̃2)

]
∂x̃ φ̃b +

[
ũu

do − 2
〈
ũu

do

〉
(1− r̃2)

]
∂x̃ ln(c̄)

= ũup
eo ∂x̃ φ̃b + ũup

do∂x̃ ln(c̄), (5.32a)

1

r̃
∂r̃
(
r̃∂r̃ ũ

u
eo

)
= − c̄

λ̄2
D

sinh(φ̃eq), (5.32b)

1

r̃
∂r̃
(
r̃∂r̃ ũ

u
do

)
=

c̄

λ̄2
D

cosh(φ̃eq). (5.32c)

Here, we introduced the unit velocity �elds ũu
eo and ũu

do, which both have driving forces
of unity. We also introduced the unit velocities ũup

eo and ũup
do , which include back-pressure

driven �ow. The surface advection term in Eq. (5.27) can therefore be written

〈
c̃ex

+ ũ
〉

= I2∂x̃ φ̃b + I3∂x̃ ln(c̄), (5.33a)

I2 =
〈
c̃ex

+ ũ
up
eo

〉
, (5.33b)

I3 =
〈
c̃ex

+ ũ
up
do

〉
. (5.33c)

Equivalently, we de�ne

I1 =
〈
c̃ex
−
〉
, (5.33d)

so that we can write Eq. (5.27) as

2Ĩsurf
+ = −(ρs + I1)

[
∂x̃ φ̃b + ∂x̃ ln(c̄)

]
+ Pe0

+

[
I2∂x̃ φ̃b + I3∂x̃ ln(c̄)

]
, (5.34)

in close analogy with the surface part of the current in Ref. [135].
The velocity �eld Eq. (5.32a) is also used to de�ne a slip velocity for the bulk �ow

problem. In similar boundary layer models, the slip velocity is frequently taken to be the
velocity outside the double layer, meaning that the slip velocity is proportional to the zeta
potential [145, 144, 135, 27]. However, in the depletion region this approach often yields a
slip velocity which signi�cantly overestimates the actual velocity �elds. The issue is that,
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Figure 5.4: Plot of the transverse electro-osmotic unit velocity in a microchannel for λ̄D = 0.01, ρs = 0.1,
and c̄ = 0.001. The black dashed line indicates the velocity �eld ũu

eo without backpressure and the red line
indicates the velocity �eld ũup

eo with backpressure. The e�ective boundary velocity ũup
eo,bnd is also indicated.

unlike the charge density, the electric potential always decays on the Debye length scale.
In the depletion region the Debye length typically exceeds the channel width, so there is
no place in the channel cross section which is truly outside the double layer. Also, since
the electro-di�usio-osmotic velocity can vary across the entire channel width, the back-
pressure driven �ow enters into the de�nition of the slip velocity. In Fig. 5.4 we show the
electro-osmotic unit velocity with and without back-pressure for λ̄D = 0.01, ρs = 0.1, and
c̄ = 0.001.

It is seen from Fig. 5.4, that even when the Debye length is large the peak velocity
is found pretty close to the wall at r̃ = 1. We use this peak velocity as the e�ective slip
velocity, meaning that the bulk �ow problem Eqs. (5.31a) and (5.31b) is subject to the
boundary condition

ũ =
[
ũup

eo,bnd∂x̃ φ̃b + ũup
do,bnd∂x̃ ln(c̄)

]
ex, at r̃ = 1, (5.35)

where ũup
eo,bnd and ũup

do,bnd are the minimum values of ũup
eo and ũup

do . The model developed
in this section we refer to as the full boundary layer model (BNDF). We also introduce
the slip boundary layer (BNDS) model, in which the bulk couples to the boundary layers
only through a slip velocity, while the boundary condition (5.28) for the normal current
is substituted by n · J+ = 0. In other words, the BNDS and BNDF models are identical,
except the BNDS model does not include the surface current. These models are listed in
Table 5.1 along with the other models used in this chapter.

5.4 Analysis

5.4.1 Scaling of bulk advection

To estimate the in�uence of bulk advection we consider the cross-sectional average of the
bulk current J̃bulk

sum ,

J̃bulk
sum =

〈
ex · J̃bulk

sum

〉
= −∂x̃

〈
c̃
〉

+ Pe0
〈
c̃ũ
〉
. (5.36)
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Since the ion-selective interface blocks the �ow in one end, the net �ow in a channel cross
section is zero. This means that

〈
c̃ũ
〉

=
〈
[c̄(x̃) + c̃′(x̃, r̃)]ũ

〉
=
〈
c̃′(x̃, r̃)ũ

〉
. (5.37)

Now, the source of the deviation c̃′ between c̄ and c̃ is the �ow itself. Considering the
dominant balance in 0 = ∇̃ · J̃bulk

sum ,

1

r̃
∂r̃
(
r̃∂r̃ c̃

)
≈ α2Pe0∂x̃

(
c̃ũ
)
, (5.38)

we �nd that c̃′ must scale as

c̃′ ∼ α2Pe0∂x̃
(
c̄ũ
)
. (5.39)

Inserting this expression in Eq. (5.36) we �nd the following scaling of J̃bulk
sum

J̃bulk
sum ∼ −∂x̃

〈
c̃
〉

+
(
αPe0

)2〈
∂x̃
(
c̄ũ
)
ũ
〉
. (5.40)

This approximate expression reveals an essential aspect of the transport problem: With
the chosen normalization neither the velocity, the di�usive current, the electromigration
current, nor the surface current depend on the aspect ratio α. The only term that depends
on α, is the bulk advection, and we see that for long slender channels (α � 1) bulk
advection vanishes, whereas it can be signi�cant for short broad channels (α ∼ 1).

5.4.2 Local equilibrium models for small aspect ratio α

In the limit α � 1, where bulk advection has a negligible e�ect, the system is nearly in
local equilibrium in each cross section. The bulk concentration c̃(x̃, r̃) therefore equals the
virtual concentration c̄(x̃), and the area averaged bulk currents are

J̃bulk
sum = −∂x̃ c̄(x̃), (5.41a)

J̃bulk
dif = −c̄(x̃)∂x̃ φ̃b(x̃). (5.41b)

In steady state these currents are equal and can only change if there is a current into or
out of the boundary layer. The conserved current J̃+ is therefore

J̃+ = −∂x̃ c̄(x̃) + Ĩsurf
+ = −c̄(x̃)∂x̃ φ̃b(x̃) + Ĩsurf

+ . (5.42)

It is readily seen that c̄ = eφ̃b = eµ̃+/2 is a solution to this equation. To proceed we need
expressions for the integrals I1, I2, and I3 occurring in Ĩsurf

+ .
First, let us consider I1 =

〈
c̃ex
−
〉
. Outside the depletion region the Debye length is

small, so in most of the channel cross section c̃ex
− = c̄

(
eφ̃eq − 1

)
≈ 0. Inside the depletion

region the negative zeta potential is large −ζ̃ � 1. This means that most of the charge
density is due to excess cations ρs ≈ c̃ex

+ � c̃ex
− , and I1 is therefore also negligible in this

region. To a good approximation we thus have

I1 ≈ 0. (5.43)
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For the surface advection we consider �rst the electro-osmotic unit velocity without
any pressure contributions,

1

r̃
∂r̃
(
r̃∂r̃ ũ

u
eo

)
= − c̄

λ̄2
D

sinh(φ̃eq). (5.44)

Integrating twice and employing the boundary conditions φ̃eq(1) = ζ̃ and ũu
eo(1) = 0 we

�nd,

ũu
eo = (ζ̃ − φ̃eq). (5.45)

Because the excess cation concentration c̃ex
+ is located within the Gouy length λ̄G � 1 from

the wall, the back-pressure driven �ow is not an important factor for the surface advection.
When calculating I2 we can therefore neglect the pressure driven velocity �eld,

I2 =
〈
c̃ex

+ ũ
up
eo

〉
≈
〈
c̃ex

+ ũ
u
eo

〉
=
〈
c̃ex

+ (ζ̃ − φ̃eq)
〉
. (5.46)

Furthermore, since r̃ ≈ 1 whenever the integrand is nonnegligible,

I2 ≈
∫ 1

0
c̃ex

+ (ζ̃ − φ̃eq)2r̃ dr̃ ≈
∫ 1

0
c̃ex

+ (ζ̃ − φ̃eq)2 dr̃, (5.47)

and we can approximate the equilibrium potential with the Gouy�Chapman solutionn
Eq. (2.31),

φ̃eq ≈ 4 artanh

{
tanh

[
ζ̃

4

]
exp

[
− ỹ

λ̄D/
√
c̄

]}
, (5.48)

ζ̃ = −2 arsinh

[
ρs

8λ̄D

√
c̄

]
≈ −2 ln

[
ρs

4λ̄D

√
c̄

]
. (5.49)

Here, ỹ is the distance from the wall, and the last approximation is valid when −ζ̃ & 2.
We then �nd

I2 ≈ c̄
∫ 1

0
(e−φ̃eq − 1)(ζ̃ − φ̃eq)2 dỹ

≈ c̄
∫ ∞

0
(e−φ̃eq − 1)(ζ̃ − φ̃eq)2 dỹ

= 8λ̄D

√
c̄

(
1− 1

2
ζ̃ − e−

1
2
ζ̃

)

≈ −8λ̄D

√
c̄e−

1
2
ζ̃ ≈ −2ρs, (5.50)

where we used that −ζ̃ � 1. Since the zeta potential is large and negative the fac-
tor cosh(φ̃eq), appearing in the di�usioosmotic velocity, is nearly identical to the factor

− sinh(φ̃eq), appearing in the electro-osmotic velocity. We therefore have

I3 ≈ I2 ≈ −2ρs, (5.51)
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and the current in the system Eq. (5.42) becomes

J̃+ = −∂x̃ c̄(x̃)− ρs

2
∂x̃ µ̃+ − ρsPe0

+∂x̃ µ̃+ (5.52)

⇒ J̃+x̃ = 1− e−µ̃+/2 −
(

1

2
+ Pe0

+

)
ρsµ̃+. (5.53)

Applying the boundary condition µ̃+(1) = −Ṽ0, we obtain the current-voltage relation

J̃+ = 1− e−
1
2
Ṽ0 +

(
1

2
+ Pe0

+

)
ρsṼ0. (5.54)

While this expression was derived with a cylindrical geometry in mind, it applies to most
channel geometries. The only requirement is that the local radius of curvature of the
channel wall is much larger than the Gouy length λ̄G, so that the potential is well ap-
proximated by the Gouy-Chapman solution. We call this analytical model the surface
conduction-advection (ASCA) model. As shown in Section 5.5, it is very accurate in the
limit of long slender channels, α� 1.

For a system with a Gouy length on the order of unity, the screening charges are
distributed across the channel in the depletion region. Advection therefore transports ap-
proximately as many cations towards the ion-selective interface as away from the interface,
and there is no net e�ect of surface advection. In this limit, Eq. (5.54) reduces to the pure
surface conduction expression

J̃+ = 1− e−
1
2
Ṽ0 +

ρs

2
Ṽ0, (5.55)

which we refer to as the analytical surface conduction (ASC) model. See Table 5.1 for a
list of the models employed in this chapter.

Both of the models Eq. (5.54) and Eq. (5.55) have a constant overlimiting conductivity,
and in this respect they agree with the Dydek model of surface conduction in a microchan-
nel [27]. However, because we consistently apply the local equilibrium condition we �nd
an overlimiting conductivity that is either 2 times larger (ASC) or 2 + 4Pe0

+ times larger
(ASCA) than the Dydek conductivity.

5.4.3 Bulk conduction through the extended space-charge region

In the limit of low surface charge and high λ̄D, neither surface conduction nor advection
matter much. However, this does not mean that there can not be an overlimiting current.
As described in Chapter 4 an extended space-charge region (ESC) can develop under these
conditions, in which an overlimiting current can run in the bulk of the microchannel. This
e�ect is not captured by the numerical boundary layer model (BNDF), since it assumes
local electroneutrality, but it is captured in the FULL numerical model. The analytical
QCD model from Chapter 4 describes the transport in the bulk of the microchannel and
the in�uence of the ESC. From Eq. (4.22) we �nd the leading order behavior of the QCD
model at overlimiting current,

−Ṽ0 = µ̃+(1) ≈ −2
√

2

3

(J̃+ − 1)3/2

αλ̄DJ̃+

+ 2 ln(αλ̄D), (5.56)
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Table 5.2: Parameters and their values or range of values. To simplify the analysis, Pe0 and D+/D−
are �xed.

Parameter Symbol Value/Range

Normalization Péclet number Pe0 0.235
Di�usivity ratio D+/D− 1
Aspect ratio α 0.01�0.2
Normalized Debye length λ̄D 0.0001�0.1
Average surface charge density ρs 0.001�1

Bias voltage Ṽ0 0�100

where the factors of α enter the expression due to the di�erent de�nition of λ̄D in Chapter 4.
The QCD model is listed in Table 5.1 along with the other models employed in this chapter.

5.5 Numerical analysis

5.5.1 Numerical implementation

Following the methods outlined in Section 3.1 the governing equations of the FULL model
and the BNDF model are written in weak form and implemented in COMSOL. The cross-
sectional averages I1, I2, and I3 [Eq. (5.33)] as well as the slip velocity [Eq. (5.35)] are
calculated and tabulated in a separate model.

In the theoretical treatment we found seven dimensionless numbers, which govern the
behaviour of the system. These are the normalization Péclet number Pe0, the di�usivity
ratio D+/D−, the aspect ratio α, the normalized Debye length λ̄D, the cross-sectionally
averaged charge density ρs, and the applied bias voltage Ṽ0. To further limit the parameter
space, we have chosen �xed and physically reasonable values for a few of the parameters.
The ionic di�usivities are assumed to be equal. For a solution of potassium chloride
with DK+ = 1.96 m2/s and DCl− = 2.03 m2/s, this is actually nearly the case. The
normalization Péclet number is set to Pe0 = 0.235, which is a realistic number for potassium
ions in water at room temperature. This leaves us with four parameters, α, λ̄D, ρs and
Ṽ0, which govern the system behavior. We mainly present our results in the form of I-V
characteristics, i.e. sweeps in Ṽ0, since the important features of the transport mechanisms
can most often be inferred from these. We vary the other parameters as follows: the
aspect ratio α takes on the values {0.01, 0.05, 0.1, 0.2}, the normalized Debye length λ̄D

takes the values {0.0001, 0.001, 0.01, 0.1}, and the averaged charge density ρs takes the
values {0.001, 0.01, 0.1, 1}. The parameters and their values or range of values are listed
in Table 5.2. The λ̄D = 0.0001 systems are only solved in the BNDF model, since a full
numerical solution with resolved electric double layers is computationally costly in this
limit λ̄D � 1. The boundary layer model is quite accurate in the small λ̄D limit, so the
lack of a full numerical solution for λ̄D = 0.0001 is not a concern.
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Figure 5.5: Directions of increase of the various mechanisms of overlimiting current. Bulk advection
increases with α and ρs and decreases with λ̄D. Surface conduction and surface advection increases with
ρs, and bulk conduction through the ESC increases with αλ̄D.

5.5.2 Parameter dependence of I-V characteristics

The results of the simulations are presented in the following way: For each α value a
(λ̄D, ρs) grid is made, and in each grid point the corresponding I-V characteristic is shown.
The I-V characteristics obtained from the simulations are supplemented with relevant
analytical results. To aid in the interpretation of the results, Fig. 5.5 shows the trends we
expect on the basis of the governing equations and our analysis. Based on Eq. (5.54) we
expect surface conduction and surface advection to increase with ρs. Based on the simple
expression (5.49) for the zeta potential and the scaling result in Eq. (5.40), we expect bulk
advection to increase with ρs and α and decrease with λ̄D. As outlined in Section 5.4.3
the bulk conduction through the extended space-charge region is expected to increase with
αλ̄D.

In Figs. 5.6 and 5.7 the numerically calculated I-V characteristics are plotted for a
long slender channel (α = 0.05) and a short broad channel (α = 0.2), respectively. In
Appendix A additional results for α = 0.01 and α = 0.1 are given. The results for
the FULL model with resolved double layers (de�ned in Section 5.2) are shown in a full
black line. The results for the BNDF model (de�ned in Section 5.3) are shown in a
dashed red line. The gray long-dash-short-dash line is obtained from the QCD model
speci�ed in Chapter 4. The blue dash-dot line is the analytical curve from the ASC
model, and the green dash-diamond line is the analytical curve from the ASCA model. To
help structure the results the I-V characteristics have been given a colored background
pattern, which indicate the dominant conduction mechanisms. A green cross-hatched
background indicates that the dominant mechanisms are surface conduction and surface
advection. A red horizontally-hatched background indicates that bulk advection is the
dominant mechanism. Blue with vertical hatches indicates that surface conduction without
surface advection is the dominant mechanism and gray with skewed hatches indicates that
the dominant mechanism is bulk conduction through the extended space-charge region.
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Figure 5.6: I-V characteristics for α = 0.05, λ̄D = {0.0001, 0.001, 0.01, 0.1}, and ρs = {0.001, 0.01, 0.1, 1}.
The full black lines show the characteristics obtained from the FULL model. The dashed red curves are
obtained from the BNDF model. The blue dash-dot curves are from the ASC model, and the green dash-
diamond curves are from the ASCA model. The gray long-dash-short-dash curves are obtained from the
QCD model. The background patterns indicate the dominant overlimiting conduction mechanism. The
green cross-hatched pattern indicates that surface advection and surface conduction are the dominant
mechanisms. The blue vertically hatched pattern indicates that surface conduction without surface ad-
vection is the dominant mechanism. The red horizontally hatched pattern indicates that bulk advection
is the dominant mechanism. The gray skew-hatched pattern indicates that bulk conduction through the
ESC is the dominant mechanism. Intermediate cases are indicated with mixed background patterns.

A split background indicates that the overlimiting current is the result of two di�erent
mechanisms. In the case of a split cross-hatched/vertically-hatched background, the split
indicates that surface conduction is important, and that surface advection plays a role, but
that this role is somewhat reduced due to back�ow along the channel axis.

We �rst consider the case α = 0.05 shown in Fig. 5.6. Here, the aspect ratio α is so low
that the e�ects of bulk advection are nearly negligible. As a consequence the numerical
(red dashed and full black lines) and analytical (green dash-diamond line) curves nearly
match each other in a large portion of the parameter space (green cross-hatched region).
Although there is a small region in which bulk advection does play a role (red horizontally-
hatched region), the overlimiting current due to bulk advection is small for all of the
investigated λ̄D and ρs values. In the right part (high λ̄D) of Fig. 5.6 the e�ects of bulk
and surface advection are negligible. For high ρs values surface conduction dominates (blue
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Figure 5.7: Same I-V characteristics as Fig. 5.6, except that here α = 0.2 instead of 0.05.

vertically-hatched region) and for low ρs bulk conduction through the ESC dominates (gray
skew-hatched region).

The case of α = 0.2, shown in Fig. 5.7, follows the same basic pattern as the α = 0.05
case. As expected from Fig. 5.5, the regions where bulk advection (red horizontal hatches)
or bulk conduction (gray skewed hatches) dominates grow as α is increased. Inside the
regions an increase in magnitude of both e�ects is also seen. The picture that emerges,
is that in the long channel limit α . 0.05 the e�ects of bulk advection are negligible,
and for small λ̄D the overlimiting current is entirely due to surface conduction and surface
advection. For bulk advection to cause a signi�cant overlimiting current the channel has to
be relatively short, α & 0.1, and the normalized Debye length has to be small, λ̄D . 0.001.

5.5.3 Field distributions

In Fig. 5.8 some of the important �elds are plotted for two di�erent sets of parameter
values. The �elds are obtained from the BNDF model. To the left, in panel (a), (b), and
(c), the �elds are given for a system with λ̄D = 0.0001, ρs = 0.01, α = 0.2, Ṽ0 = 60, and
to the right, in panel (d), (e), and (f), the �elds are given for a system with λ̄D = 0.001,
ρs = 0.1, α = 0.05, Ṽ0 = 60. The colors indicate the relative magnitude (blue low value,
red high value) of the �elds within each panel. Comparing panel (c) and (f) we see that
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Figure 5.8: For a system with λ̄D = 0.0001, ρs = 0.01, α = 0.2, and Ṽ0 = 60 is plotted (a) the cation
current J̃+, (b) the velocity ũ, and (c) the salt concentration c̃. For a system with λ̄D = 0.001, ρs = 0.1,
α = 0.05, and Ṽ0 = 60 is plotted (d) the cation current J̃+, (e) the velocity ũ, and (f) the salt concentration
c̃. The �elds are obtained from the BNDF model, and the colors indicate the relative magnitude (blue low
and red high) of the �elds within each panel, while arrows represent vector �elds.

the depletion region is bigger in panel (f) than panel (c), which is as expected since the
current in panel (f) is larger than in panel (c) (cf. Figs. 5.6 and 5.7). It is also noted that
the transverse distribution of the concentration is much less uniform in the (c) panel than
in the (f) panel. Due to this nonuniformity (see Section 5.4.1), system (a)-(b)-(c) has a net
current contribution from bulk advection, whereas bulk advection contributes negligibly to
the current in the transversally uniform system (d)-(e)-(f).

5.5.4 Coupling between bulk advection and the surface current

As seen in Figs. 5.6 and 5.7, the limits where the overlimiting current is due to either
surface advection and surface conduction, surface conduction alone, or bulk conduction
through the ESC, are well described by our analytical models. The analytical models
do not describe the transitions between the limiting behaviours, but the essentials of the
involved mechanisms are well understood. It is thus mainly the bulk advection which
requires a more thorough investigation. As pointed out in Refs. [145, 144, 40, 139], the
e�ects of bulk advection can to some extent be understood in terms of a Taylor�Aris-
like model of hydrodynamic dispersion. However, in those papers surface conduction and
surface advection is neglected on account of their small contribution to the total current in
the investigated limits. It turns out that in the context of concentration polarization, the
surface currents do in fact play a crucial role for the bulk advection, even when the surface
currents themselves only give a minute contribution to the total current. Our boundary
layer model is ideally suited to demonstrate just that point, since it allows us to arti�cially
turn o� the surface currents while keeping the electro-di�usio-osmotic �ow.

In Fig. 5.9 I-V characteristics obtained from the BNDF (dashed red line) and BNDS
(dotted purple line) models are plotted for α = 0.2, λ̄D = 0.0001, and ρs = 0.001. For com-
parison the I-V characteristic from the ASCA model, which includes surface conduction
and surface advection but excludes bulk advection, is also plotted. In Fig. 5.10 the same
curves are plotted with ρs = 0.1 instead of 0.001. Comparing the BNDF model (dashed
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Figure 5.9: I-V characteristics highlighting the
role of the surface current for bulk advection. α =
0.2, λ̄D = 0.0001, and ρs = 0.001. The dashed
red curve is obtained from the BNDF model and
the green dash-diamond curve is from the ASCA
model. The dotted purple curve is obtained from
the BNDS model, in which the surface current has
been arti�cially removed while the electro-di�usio-
osmotic slip velocity is kept.

Figure 5.10: Same as Fig. 5.9 but with ρs = 0.1.

red) with the ASCA model (green dash-diamond), it is seen that bulk advection plays a
signi�cant role in these regimes. In light of this it is remarkable that the BNDS model,
which includes bulk advection but excludes surface currents, (dotted purple line) exhibits
no overlimiting current at all. We conclude that the surface current is, in some way, a
prerequisite for signi�cant bulk advection.

Our investigations suggest that the reason for this highly nonlinear coupling between
bulk advection and the surface current is that the surface current sets the length of the
depletion region before bulk advection sets in. The large gradients in electrochemical
potentials, and thereby the large electro-di�usio-osmotic velocities, exist in the depletion
region, so a wide depletion region implies a wide region with signi�cant advection. In the
limit of zero surface current, the depletion region only extends over a tiny region next
to the ion-selective interface. In this region there is a huge electro-di�usio-osmotic �ow
towards the interface, but the e�ects of that �ow are not felt very far away, because it is
compensated by the back-pressure driven �ow over a quite small distance. When there is
a surface current, the depletion region will eventually, as the driving potential is increased,
extend so far away from the ion-selective interface that back-pressure does not immediately
compensate the electro-di�usio-osmotic �ow. In that situation, bulk advection may begin
to play a role. The need for a su�ciently large depletion region is seen by the plateau in
the BNDF I-V characteristic in Fig. 5.9. What happens is that as a function of voltage,
the current increases to the limiting current, remains there for a while, and then, once the
depletion region is su�ciently developed, increases further due to bulk advection.
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5.6 Conclusion

In this chapter, we have presented a thorough combined numerical and analytical study of
the transport mechanisms in a microchannel undergoing concentration polarization. We
have rationalized the behavior of the system and identi�ed four mechanisms of overlimit-
ing current: surface conduction, surface advection, bulk advection, and bulk conduction
through the extended space-charge region. In the limits where surface conduction, surface
advection, or bulk conduction through the ESC dominates we have derived accurate an-
alytical models for the ion transport and veri�ed them numerically. In the limit of long,
narrow channels these models are in excellent agreement with the numerical results. We
have found that bulk advection is mainly important for short, broad channels, and using
numerical simulations we have quanti�ed this notion and outlined the parameter regions
with signi�cant bulk advection. A noteworthy discovery is that the development of bulk
advection is strongly dependent on the surface current, even in cases where the surface
current contributes much less to the total current than bulk advection.

Our treatment con�rms the basics of the analytical surface conduction model from
Ref. [27], while providing a signi�cant correction to the overlimiting conductivity. Re-
garding the treatment of electro-osmosis in Ref. [27], we have, as discussed in Section 5.3,
identi�ed some issues with the employed slip model. We are therefore skeptical about the
detailed scaling relation for electro-osmosis presented in that paper. Nevertheless, there is
little doubt that the essential feature predicted in Ref. [27], the existence of a conductance
minimum as a function of channel height, is a real e�ect. Indeed, this has recently been
con�rmed in an experimental study [79].

Recently, so-called shock electrodialysis in microporous media has been proposed as a
method of water desalination and electrochemical separation [26, 22, 21, 88]. These sys-
tems are typically analyzed in terms of a volume averaged leaky membrane model, where
the surface-charge density on the microchannel walls provide an average background space-
charge density [136, 26, 22]. However, as pointed out in Ref. [22], the volume averaged
models fail to take �ow loops forming among the irregular microstructures into account.
These loops provide increased hydrodynamic dispersion in the system, and presumably
a�ect the transport quite signi�cantly. It seems, that to include these loop e�ects, an ex-
plicit model of the microporous geometry is required. This approach has been tentatively
explored in Ref. [1], where the transport through a network of microchannels was consid-
ered. Our simple analytical models could simplify such network models considerably, as
they would remove the need for solving a set of ODE's on each of the many individual
microchannels.
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Chapter 6

Water splitting at permselective

membranes

As seen in the preceding chapters, there are a variety of physical e�ects, which can in�u-
ence the transport properties of a system exhibiting concentration polarization. However,
for many types of systems chemical reactions may play an important role as well. For
instance, the autoprotolytic reaction of water can either produce or consume hydronium
and hydroxide in the system. Since hydronium and hydroxide are charged species, they
in�uence the transport of salt ions by a�ecting the electric �eld. Also, in the context
of microchannels or microporous systems, reactions between hydronium ions and surface
groups can alter the local surface-charge density, and thereby modify the transport in the
system [49, 5, 3, 2, 9, 48].

In bulk systems containing permselective membranes, water splitting has long been
investigated as a possible cause of overlimiting current [97, 11, 114, 54, 55, 111, 90, 141,
117, 78, 110, 111]. A central result is the prediction by Kharkats, that besides adding to
the total current, a water-ion current is also able to increase, or exalt, the current of salt
ions above the limiting current [54]. It is reasonably well understood that the origin of the
water-ion current is water dissociation taking place in a region close to the permselective
membrane. In many experiments, the magnitude of the water-ion current does, however,
indicate a reaction rate much larger than what should be possible, considering only the
bulk dissociation rates [108, 110, 89, 116]. A number of models have been suggested
to explain this remarkable feature. Some of these ascribe the increased reaction rate to
catalytic interactions with membrane surface groups [108, 111, 50], while others use that
the dissociation rate is increased in strong electric �elds, and employ a phenomenological
function with one or more �tting parameters to describe this dependence [110, 19, 90, 116].

In this work we attempt to avoid the subject of the detailed reaction kinetics, by
focusing on the transport mechanisms rather than the reaction. Initially, we assume that,
for one reason or another, the rate constant for the reaction is so large that the water-ion
current is transport limited rather than reaction limited. Put in another way, we assume
local equilibrium of the water ions everywhere in the system as done in Refs. [140, 5]. This
simple view of the reaction process allow us to derive an accurate analytical model for the
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Figure 6.1: Sketch of the simple model system used in the problem. Two reservoirs with identical
salt concentrations c0 and neutral pH are connected by a compartment of length L and a cation-selective
membrane.

transport in the system.

Going beyond the assumption of transport-limitation, we investigate the behavior of
the system with �nite values of the reaction constant. Surprisingly, we �nd that the
analytical model derived in the transport-limited case still captures some essential features
of the problem. To test these universal features of the analytical model, we compare the
experimental results of Ref. [90] with the predictions of our model.

This chapter includes material from our paper Ref. [83], which can be found in Ap-
pendix E. In addition, the chapter contains some unpublished work about water splitting
at �nite reaction rates.

6.1 Model

As in Chapter 4 we consider one-dimensional transport of a monovalent and binary sym-
metric electrolyte. However, due to the need for well de�ned boundary conditions on the
water ions, we can not use the GCP framework from Section 2.7. Instead, we have to
explicitly include a permselective membrane in the modeling domain, which is therefore
composed of two reservoirs connected by a compartment and a permselective membrane,
see Fig. 6.1. The permselective membrane is modeled as outlined in Section 2.6.1, using
the parameter values ρ̃m = 1000, εP = 0.4 [28], τ = (2− εP)2/εP [72], and εm = 33ε0. Since
ρ̃m � 1, the exact values taken by these parameters is unimportant.

6.2 Governing equations

As in Chapter 4 the cation and anion currents are given as

2J̃+ = −∂x̃ c̃+ − c̃+∂x̃ φ̃, (6.1a)

2
D+

D−
J̃− = −∂x̃ c̃− + c̃−∂x̃ φ̃. (6.1b)
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The concentration of hydronium and hydroxide ions are normalized by the reservoir salt
concentration c0,

cH = c0c̃H, cOH = c0c̃OH, (6.2)

and the current densities are normalized by 2DOHc0/L. The normalized current densities

of hydronium c̃H and hydroxide cOH can then be written

2J̃H = −δH∂x̃ c̃H − δH c̃H∂x̃ φ̃, (6.3a)

2J̃OH = −∂x̃ c̃OH + c̃OH∂x̃ φ̃, (6.3b)

where we have introduced the di�usivity ratio δH = DH/DOH = 1.75. In steady-state the
conservation equations for the water ions read

0 = −∂x̃ J̃H + R̃, (6.4)

0 = −∂x̃ J̃OH + R̃, (6.5)

where the reaction term R̃ derives from the autoprotolytic reaction of water. The reaction
rates are identical in both conservation equations, since the reaction

H3O+ + OH− −−⇀↽−− 2 H2O, (6.6)

produces or consumes one unit of each species. Introducing the water-ion current J̃w =
J̃H − J̃OH we obtain a single transport equation for the water ions,

∂x̃ J̃w = 0. (6.7)

When the reaction Eq. (6.6) is in equilibrium, the concentrations of hydronium and hy-

droxide are simply related via the equilibrium constant Kw = cHcOH. Deviations from
equilibrium leads to a reaction rate given as [89]

R̃ = k̃w

[
1− c̃Hc̃OH

n2

]
. (6.8)

Here, we introduced the parameter n =
√
Kw/c0 and the nondimensional reaction constant

k̃w, which is related to the dimensional reaction constant kw as

k̃w =
L2

2DHc0
kw. (6.9)

In bulk the reaction constant kw has the approximate value kw ≈ 1 mM/s [89]. It has
however been reported that the value of the reaction constant can increase several orders
of magnitude in a thin reaction layer next to the membrane [108, 109, 110, 50]. Initially, we
shall assume that for whatever reason, the reaction rate is so large that the autoprotolytic
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Figure 6.2: Numerically calculated concentra-
tion distributions for J̃+ = 1.5, λ̄D = 0.001, and
n = 0.0002, assuming local equilibrium of the water
dissociation reaction. The inset shows the behavior
in the ESC.

Figure 6.3: Sketch of the water-splitting reac-
tion in the system. In a region to the left of the
membrane water splits into hydronium and hydrox-
ide. The hydroxide generated near the membrane
is swept left by the electric �eld and the hydronium
is swept right.

reaction (6.6) can be considered to be in equilibrium at all times. The concentrations of

c̃H and c̃OH are then related as

c̃Hc̃OH = n2. (6.10)

More elaborate time-dependent simulations have recently shown that this is a relevant
limit, at least for some systems [4]. The Poisson equation takes the form

2λ̄2
D∂

2
x̃ φ̃ = −ρ̃el = −c̃+ + c̃− − c̃H + c̃OH, (6.11)

with appropriate modi�cations inside the membrane. Both reservoirs are taken to have
the same salt concentration,

c̃±(0) = c̃±(2) = 1, (6.12)

and they are assumed to be in equilibrium, so that

c̃H(0) = c̃H(2) = c̃OH(0) = c̃OH(2) = n. (6.13)

6.3 Analysis

As a starting point for the analysis, we show numerically obtained concentration distri-
butions in Fig. 6.2. The results are obtained for J̃+ = 1.5, λ̄D = 0.001, and n = 0.0002,
assuming local equilibrium of the water dissociation reaction. The charge density in the
system is seen to resemble the one in Chapter 4, with both a visible ESC and an EDL. The
behavior of the concentration �elds outside the ESC is, however, markedly changed due
to the presence of a rather large concentration of hydroxide in this region. This large hy-
droxide concentration is tied to a signi�cant current of hydroxide ions in the compartment.
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Thus, even though the permselective membrane blocks the passage of hydroxide ions, it
is possible to sustain a hydroxide current in the system. The reason for this, is that the
autoprotolytic reaction at the membrane interfaces allow the hydroxide ions to run in the
system without actually passing the permselective membrane. A sketch of this is shown in
Fig. 6.3.

Obviously, the present system has many similarities with the system studied in Chap-
ter 4. We will therefore try a similar solution approach, in which we only consider the LEN
region and the ESC region. A major di�culty in dealing with the water splitting problem

comes from the nonlinear coupling Eq. (6.8) or Eq. (6.10) between c̃H and c̃OH. However,
because we are disregarding the EDL we can get around this nonlinearity by introducing
the e�ective water-ion concentration c̃w,

c̃w = δH c̃H + c̃OH, (6.14a)

2J̃w = ∂x̃ c̃w − c̃w∂x̃ φ̃ − 2δH∂x̃ c̃H ≈ ∂x̃ c̃w − c̃w∂x̃ φ̃. (6.14b)

Here, we can discard the 2δH∂x̃ c̃H term because the hydroxide concentration is very much
larger than the hydronium concentration in the entire LEN region, and in the ESC region,
where this may not be the case, di�usion plays a negligible role compared to electromigra-
tion. Since the membrane is impenetrable to anions J̃− = 0, and we �nd

2J̃w = 2J̃w − 2
D+

D−
J̃− = ∂x̃(c̃w + c̃−)− (c̃w + c̃−)∂x̃ φ̃ (6.15)

= ∂x̃
[
c+ + 2λ̄2

D∂
2
x̃ φ̃ + (1 + δH)c̃H

]
−
[
c+ + 2λ̄2

D∂
2
x̃ φ̃ + (1 + δH)c̃H

]
∂x̃ φ̃ (6.16)

≈ ∂x̃ c̃+ − c̃+∂x̃ φ̃ + 2λ̄2
D∂

3
x̃ φ̃ − 2λ̄2

D∂
2
x̃ φ̃∂x̃ φ̃, (6.17)

where we used Eq. (6.11) and approximated (1+δH)c̃H ≈ 0. This might introduce an error

as cw � cH does not necessarily hold in the ESC. The majority of the charge density in the
ESC does however derive from the salt ions, so reasonable results can still be obtained with
this approximation. In analogy with Eq. (4.5) we construct the two linear combinations
J̃+ − J̃w and J̃+ + J̃w,

J̃+ − J̃w = −∂x̃ c̃+ − λ̄2
D∂

3
x̃ φ̃ + λ̄2

D∂
2
x̃ φ̃∂x̃ φ̃, (6.18a)

J̃+ + J̃w = λ̄2
D∂

3
x̃ φ̃ − λ̄2

D∂
2
x̃ φ̃∂x̃ φ̃ − c̃+∂x̃ φ̃. (6.18b)

Using the same arguments which lead to Eq. (4.9), we then arrive at the following equation
governing the electric �eld

1 +
λ̄2

D(∂x̃ φ̃)3

2(J̃+ + J̃w)
=

[
J̃+ − J̃w

J̃+ + J̃w

x̃ − 1

J̃+ + J̃w

]
∂x̃ φ̃. (6.19)

Rescaling the variables in this equation we �nd

1 + x̂Ê = Ê3, (6.20)
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where the only di�erence to the treatment in Chapter 4 is that the de�nitions of x̂ and B
are slightly altered,

Ê = −B∂x̃ φ̃, with B =

[
λ̄2

D

2(J̃+ + J̃w)

]1/3

, (6.21)

and

x̂ =
1

B

[
x̃

j
− 1

J̃+ + J̃w

]
, with j =

J̃+ + J̃w

J̃+ − J̃w

. (6.22)

The water-ion current J̃w changes the expressions for the potential and concentration
distributions slightly,

φ̃ ≈ −2

3
jÊ3 − j ln

(
− Êx̂0

)
, (6.23a)

ρ̃el =
2λ̄2

D

jB2
ρ̂el =

[
32λ̄2

D

(
J̃+ − J̃w

)3

J̃+ + J̃w

]1/3

ρ̂el, (6.23b)

c̃+ =
λ̄2

D

jB2

2(1 + j)Ê3 + j

4Ê3 + 2

1

Ê
, (6.23c)

c̃− = eφ̃ . (6.23d)

The e�ective water-ion concentration c̃w can be found from the Poisson equation. To make

the calculations internally consistent, we again use (1 + δH)c̃H ≈ 0, and �nd

c̃w = c̃+ − c̃− − ρ̃el =
λ̄2

D

jB2

2(j − 1)Ê3 + j

4Ê3 + 2

1

Ê
− eφ̃ . (6.24)

Finally, the electrochemical potential in the system is found from Eqs. (6.23a) and (6.23c),

µ̃+ = ln(c̃+) + φ̃ = −2

3
jÊ3 − ln

[
jB2

λ̄2
D

4Ê3 + 2

2(1 + j)Ê3 + j
Ê
(
− Êx̂0

)j
]
. (6.25)

Given values of the salt current J̃+ and the water-ion current J̃w, the above analysis yields
analytical expressions for all the relevant �elds in both the LEN region and the ESC region.

6.4 The water-ion current

The preceding analysis is independent of the chosen reaction model, and only assumes that
hydroxide is the dominant water ion in the compartment. To �nd a relation between J̃w

and J̃+ it is however necessary to introduce a reaction expression into the model. Below, we
consider two speci�c models of the water-splitting reaction. We �nd that, regardless of the
speci�c reaction expression, the transport model derived above imposes some restrictions
on the relation between J̃w and J̃+.
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6.4.1 Transport-limited water splitting

Initially, we shall assume that the system is transport limited so that the water-ion con-
centrations are related via Eq. (6.10). Even with this constraint, it is not apparent how
J̃w and J̃+ are related to each other. In the numerical simulations, the magnitude of the
water-ion current is determined self-consistently by requiring continuity of the �elds across
the permselective membrane. But, since the analytical model does not apply inside the
EDL's, this method of constraining J̃w can not be employed here.

As a starting point, we note that there is only signi�cant water-splitting in the overlim-
iting regime, so we can restrict our attention to that regime. Inside the ESC, di�usion is
small compared to electromigration, meaning that the water-ion current Eq. (6.14b) takes
the form

2J̃w ≈ −c̃w∂x̃ φ̃. (6.26)

There is a positive charge density in the ESC, so the electric �eld increases for increasing
x̃. Because J̃w is constant, this in turn means that c̃w must decrease for increasing x̃.
However, because of the relation Eq. (6.10), c̃w has a minimum value,

min(c̃w) = 2
√
δHn, (6.27)

so at x̃ = 1 we must always have J̃w ≥ −
√
δHn∂x̃ φ̃. Since there is no reason for J̃w to

take on values larger than what is required, we use the lower bound on this inequality as
the constraint on J̃w. That is, we determine the water-ion current from

∂x̃ φ̃|x̃=1 = − J̃w√
δHn

. (6.28)

Inserting this condition in Eq. (6.20) and solving for J̃+ we �nd

J̃+ = J̃w

1 + J̃w +
λ̄2

D
2δHn2 J̃

2
w√

δHn+ J̃w

. (6.29)

Together with Eq. (6.20) this relation completely speci�es the problem and allow for the
computation of I-V curves as well as �eld distributions.

In Fig. 6.4 we plot numerical and analytical concentration distributions for a transport-
limited system with J̃+ = 1.5, λ̄D = 0.001, and n = 0.0002. The analytical water-ion
current J̃w is determined from Eq. (6.29). Outside the EDL there is seen to be very good
agreement between the analytical and numerical concentration distributions. In Fig. 6.5
and Fig. 6.6 the analytical and numerical salt currents J̃+ and water-ion currents J̃w are
plotted versus bias voltage Ṽ0 for λ̄D = {10−4, 10−5} and n = {10−5, 10−4, 3 × 10−4}.
Also here, the agreement between analytical and numerical results is quite good. Like in
Chapter 4 part of the discrepancy between the results is due to the �nite width of the EDL
adjoining the membrane.
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Figure 6.4: Numerical (full colored lines) and analytical (gray dashed) concentration distributions
assuming transport-limited reactions. The parameter values are J̃+ = 1.5, λ̄D = 0.001, n = 0.0002, and
the analytical water-ion current J̃w is determined from Eq. (6.29).

Figure 6.5: Numerical (full) and analytical
(dashed) salt and water-ion currents plotted ver-
sus bias voltage Ṽ0 for λ̄D = 10−4. The dark lines
denote the salt current J̃+ and the bright lines de-
note the corresponding water-ion current J̃w. The
results assume transport-limited reactions.

Figure 6.6: Numerical (full) and analytical
(dashed) salt and water-ion currents plotted ver-
sus bias voltage Ṽ0 for λ̄D = 10−5. The dark lines
denote the salt current J̃+ and the bright lines de-
note the corresponding water-ion current J̃w. The
results assume transport-limited reactions.

6.4.2 Water splitting at �nite reaction rate

At �nite reaction rates the reasonably simple picture from above breaks down. Rather than

being related via Eq. (6.6), c̃H and c̃OH are now determined from the transport equations
Eq. (6.3) with the reaction rate Eq. (6.8). In general, we have to solve the transport-
reaction problem numerically, but in the case of slow reactions k̃w � 1 it is possible to
derive some simple analytical results.

When the reaction rate is the limiting factor, the water-ion concentrations just to the

left of the membrane are very much out of equilibrium, c̃Hc̃OH � 1. Thus, in a signi�cant
part of the ESC the reaction rate is given as

R̃ ≈ k̃w. (6.30)
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Figure 6.7: Numerically calculated water-ion
concentration c̃w for k̃w = 0.1, λ̄D = 10−3, n =
10−3, and J̃+ = {1.2, 1.5, 2, 2.5, 3}. The shade
of the lines indicate the magnitude of J̃+, with
J̃+ = 1.2 having the lightest shade and J̃+ = 3
the darkest.

Figure 6.8: Numerically calculated values of
Ω plotted versus c̃fac for λ̄0

D = 10−3 and n0 =
10−3. The reaction constant k̃0

w takes on the values
0.1 (short dashes), 10 (alternating short and long
dashes), and 1000 (long dashes). For each value of
k̃0

w, Ωnum was calculated for both J̃+ = 1.5 (red)
and J̃+ = 3 (blue). Also shown are the reaction
limited scalings Eq. (6.34) (gray) and the transport-
limited expression Eq. (6.27) (black).

At the left membrane interface the hydroxide is swept left by the electric �eld, but no new
hydroxide is supplied from the membrane interior at the right. The hydronium is swept
right by the electric �eld, and since there is a signi�cant reaction in much of the ESC,

some new hydronium is supplied from the left. It follows that c̃H � c̃OH just to the left of
the membrane.

Since di�usion is small in the ESC, we can write the divergence of J̃H as

R = ∂x̃ J̃H ≈ −
δH
2
∂x̃

{
c̃H∂x̃ φ̃

}
≈ −δH

2
c̃H∂

2
x̃ φ̃ =

δH
2
c̃H

ρ̃el

2λ̄2
D

, (6.31)

which means that

c̃w(1) ≈ δH c̃H(1) ≈ 4k̃w
λ̄2

D

ρ̃el(1)
≈ 4k̃w

B2

j

√
x̂1. (6.32)

In the overlimiting regime this expression varies quite slowly with the currents J̃+ and J̃w.
It therefore provides an almost constant boundary condition for the water-ion transport,
in much the same way as Eq. (6.27) did in the transport limited case. In Fig. 6.7 numerical
results for c̃w are plotted for k̃w = 0.1, λ̄D = 10−3, n = 10−3, and varying J̃+. The water-
ion concentration at the entrance to the EDL is seen to vary very little with J̃+. Because
the water-ion concentration at the entrance to the EDL is an important parameter, we
introduce a separate symbol for this concentration,

Ω = c̃w, At the entrance to the EDL. (6.33)

In the numerical calculations Ω equals the minimum value of c̃w in the system, and in the
analytical calculations it equals the water-ion concentration c̃w(1) evaluated at x̃ = 1. We
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introduce appropriate subscripts Ωnum and Ωanl to distinguish between the numerical and
analytical cases.

The water-ion concentration (6.32) scales with the system parameters as

Ωanl = c̃w(1) ∼ k̃wB
3/2 ∼ k̃wλ̄D. (6.34)

Interestingly, the reaction-limited water-ion concentration (6.32) scales with system con-

centration as Ωanl ∼ c
−3/2
0 , whereas the transport-limited expression (6.27) scales as

Ωanl ∼ c−1
0 . To test these scalings we introduce a scale factor c̃fac for the reservoir concen-

tration, so that

λ̄D =
λ̄0

D√
c̃fac

, (6.35a)

n =
n0

c̃fac

, (6.35b)

k̃w =
k̃0

w

c̃fac

. (6.35c)

In Fig. 6.8, numerical results for Ω are plotted versus c̃fac, for a reaction constant of
k̃0

w = {0.1, 10, 103} and a cation current of J̃+ = {1.5, 3}. For large k̃0
w, Ωnum follows the

analytical expression (6.27), and at low k̃0
w it follows the scaling from Eq. (6.34). At the

intermediate value k̃0
w = 10, there is a transition between the high and low k̃0

w behavior.
It is also seen that in all three reaction regimes Ωnum varies very little between J̃+ = 1.5
and J̃+ = 3.

One of the main points we want to stress, is that at overlimiting current the water-
ion concentration just outside the EDL varies slowly with J̃+. This seems to be true
regardless of how fast the reactions are, and is found even in simulations with a spatially
varying reaction constant. The implication of this is that an expression similar to Eq. (6.29)
may apply even for systems that are not transport limited. At overlimiting current this
generalized form of Eq. (6.29) is

J̃+ = 1 + J̃w +
2λ̄2

D

Ω2
J̃2

w, (6.36)

or equivalently,

log 10
[
J̃+ − J̃w − 1

]
= log 10

(
2λ̄2

D

Ω2

)
+ 2 log 10

(
J̃w

)
. (6.37)

Thus, we expect that a double logarithmic plot of J̃+−J̃w−1 versus J̃w will yield a straight
line with slope 2. Also, we expect that the extension of the line crosses the vertical axis at

log 10
(

2λ̄2
D

Ω

)
.

In Fig. 6.9 we show double logarithmic plots of J̃+ − J̃w − 1 versus J̃w for n = 10−3,
λ̄D = 10−3, and k̃w = {0.1, 1, 100}. It is seen, that the lines do deviate somewhat from the
straight lines we were expecting. The reason for this is that Ω does in fact have a slight
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Figure 6.9: Double logarithmic plot of J̃+−J̃w−1
versus J̃w obtained from numerical simulations with
λ̄D = 10−3 and n = 10−3 at �nite reaction rate.
Due to slow variations in Ω the lines deviate slightly
from the expected straight lines.

Figure 6.10: Same as Fig. 6.9, but now plot-
ted versus J̃w/Ωnum instead of versus J̃w. In this
plot, where the variations in Ω are factored out, the
curves nearly collapse on the same straight line.

J̃+ dependence. In Fig. 6.10 the same lines are plotted, but with the x-axis scaled with
Ωnum. Now the three lines collapse on one approximately straight line. This con�rms that
Eq. (6.36) does apply to the numerical results.

Because we know that the currents behave as Eq. (6.36), we can estimate the average
value of the prefactor 2λ̄2

D/Ω
2 from the values of J̃+ and J̃w,

〈
2λ̄2

D/Ω
2
〉

=

〈
J̃+ − J̃w − 1

J̃2
w

〉
, (6.38)

where we only average over values with J̃+ − J̃w − 1 > 0.05. In Fig. 6.11 we show plots of
J̃+− J̃w−1 (full lines) and

〈
(J̃+− J̃w−1)/J̃2

w

〉
J̃2

w (dashed lines) versus J̃w. The expression〈
(J̃+− J̃w−1)/J̃2

w

〉
J̃2

w is seen to capture the average behavior of J̃+− J̃w−1 to a reasonable
degree.

Since the currents in Fig. 6.9, Fig. 6.10, and Fig. 6.11 come from a numerical simulation,
we have access to the true value of the prefactor 2λ̄2

D/Ω
2. In Fig. 6.12 the prefactor

2λ̄2
D/Ω

2
num normalized by its approximate value Eq. (6.38) is plotted versus J̃w in the

region where J̃+ − J̃w − 1 > 0.05. It is seen that Eq. (6.38) gives a decent estimate of the
average value of the prefactor. Also, we see that the prefactor varies at most by a factor
of three over a decade. In comparison J̃w varies by a factor of 100 over a decade.

To summarize, we have found that the currents in the system approximately follow
Eq. (6.36), and given a dataset of J̃+ and J̃w we can approximate the mean value of the
prefactor 2λ̄2

D/Ω
2. In the following section we apply these results to a set of experimental

data.
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Figure 6.11: Same as Fig. 6.9, but now with the
addition of dashed lines with the expression

〈
(J̃+−

J̃w − 1)/J̃2
w

〉
J̃2

w.

Figure 6.12: Plot of the prefactor 2λ̄2
D/Ω

2
num nor-

malized by
〈
(J̃+ − J̃w − 1)/J̃2

w

〉
. The parameter

values are still λ̄D = 10−3 and n = 10−3.

Figure 6.13: Sketch of a desalting compartment and a concentration compartment. The compartments
are divided by cation and anion-selective membranes. The concentration distribution in the desalting
compartment forms a di�usion boundary layer (DBL) near the cation-selective membrane.

6.5 Relation to experiments

The simple reservoir-compartment-membrane system used in the analysis is convenient for
theoretical work, but the somewhat idealized nature of the system makes it unsuitable
for experiments. A typical experimental setup consists of a periodic structure of desalt-
ing and concentration compartments, separated by anion and cation-selective membranes
[87, 89]. To �ush out the desalinated or concentrated liquid a velocity �eld is applied
in the compartments parallel to the membrane interfaces. A sketch of a part of such a
setup is seen in Fig. 6.13, where a typical concentration pro�le is also shown. It is seen
that even though there is no reservoir in the desalting compartment, a di�usion boundary
layer (DBL) has formed, in which the transport approximates the transport in the sim-
ple reservoir-compartment-membrane system. With appropriate de�nitions of equivalent
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Figure 6.14: Experimental hydroxide current iOH

plotted versus the salt current i. The data points
are extracted from Fig. 5 in Ref. [90].

Figure 6.15: Plot of
[

i
ilim
− D+

DOH

iOH
ilim

]
X−1 ver-

sus
D+

DOH

iOH
ilim

for X = {1, 2, 3}. The degree to which
the experimental data points collapse on a straight
line varies with X.

reservoir concentration c0 and the equivalent compartment length L, the simple analy-
sis given above therefore still gives a good description of the transport in the di�usion
boundary layer. As an example of how to apply this, we consider the experimental data
in Fig. 6.14. The data is extracted from Fig. 5 in Ref. [90]. The currents seen in Fig. 6.14
are the dimensional hydroxide current density iOH, the dimensional cation current density
i, and the limiting current ilim obtained from a model of di�usion with a cross �ow. As
seen in the original �gure in Ref. [90] the data points are from 10 di�erent measurement
series with di�erent parameter values. Equating the dimensional current densities in our
model with the experimental current densities we �nd

J̃w =
Jw

2DOHc0
L

=
ilim

2DOHc0
L

iOH

ilim
=

ilim
2D+c0
L

D+

DOH

iOH

ilim
, (6.39)

J̃+ =
J+

2D+c0
L

=
ilim

2D+c0
L

i

ilim
. (6.40)

The term J̃+ − J̃w − 1 occurring in Eq. (6.36) can therefore be written

J̃+ − J̃w − 1 =

[
i

ilim
− D+

DOH

iOH

ilim

]
X − 1, (6.41)

with

X =
ilim

2D+c0
L

. (6.42)

Since the equivalent reservoir concentration c0 and compartment length L are not entirely
well de�ned in the experimental system, it is in general di�cult to calculate the value of
X. However, for properly de�ned c0 and L we expect that ilim ∝ c0/L, so the value of X
will be largely independent of c0 and L. We can therefore use X as a �tting parameter.



76 Water splitting at permselective membranes

Figure 6.16: Plot of
[

i
ilim
− D+

DOH

iOH
ilim

]
X − 1 versus

D+

DOH

iOH
ilim

for the best value of X = 1.75. The slope

of the �tted line 1.96 is quite close to the theoretical value of 2.

In Fig. 6.15 is shown a double logarithmic plot of
[

i
ilim
− D+

DOH

iOH
ilim

]
X−1 versus D+

DOH

iOH
ilim

for X = {1, 2, 3}. The degree to which the data points conform to a straight line is seen
to vary with the value of X. To determine the optimal value of X we �t a straight line
to the data points and quantify the goodness of �t by the R2-value. R2 has its maximum
R2 = 0.988 at X = 1.75. For X = 1.75 the slope of the straight line is 1.96, which is quite
close to the slope of 2 predicted by the analytical model, see Fig. 6.16. It is important to
note that in �tting the value of X we did not make any requirements on the slope of the
�tted line. Thus, the slope of 1.96 truly is something that emerges from the analysis.

A result of the above analysis is the value of the prefactor,

2λ̄2
D

Ω2
≈ 45.9. (6.43)

Oddly, all of the data points, some of them with salt concentrations di�ering from each
other, seem to have roughly the same value of the prefactor. In contrast, the transport-
limited prefactor scales with c0 as c1

0 and the reaction limited prefactor scales as c2
0. We

can therefore conclude that the reaction kinetics in the experiment di�ers from these two
simple models. The true reaction model must give a prefactor which does not scale with
the reservoir concentration c0.

6.6 Addition of an acid or base

So far we have investigated systems where the ions derive from a dissolved salt. We will
now proceed with a more general treatment, where we allow for some concentration of acid
c̃a or base c̃b in the reservoirs in analogy with Ref. [55]. The acid or base is assumed to be
strong so that it dissociates completely, and for simplicity we assume that the conjugate
base to the acid is the same as the negative salt ion and that the conjugate acid to the
base is the same as the positive salt ion. For instance the salt could be NaCl, the acid HCl
and the base NaOH.

Firstly, we consider a system where some concentration c̃b of base is added to the
system. The ion concentrations are normalized with the total cation concentration at the
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Figure 6.17: Numerical result for the concentra-
tion distribution in a transport-limited system with
λ̄D = 0.001, n = 0.001, c̃a = 0.1, and J̃+ = 1.1. To
the left of the transition point x̃† hydronium is the
dominant water ion, and to the right of x̃† hydrox-
ide is the dominant water ion.

Figure 6.18: The critical acid concentration plot-
ted versus n2/λ̄2

D in a transport-limited system.
At large n2/λ̄2

D the critical acid concentration ap-
proaches its asymptotic value 1/(1 + δH).

inlet, i.e. the sum of the salt and the base concentrations. We thus have c̃+(0) = 1,

c̃−(0) = 1− c̃b and c̃OH(0) = c̃b. Like in Section 6.3 hydroxide dominates over hydronium,
so the relevant transport equation for the water ions is Eq. (6.14b),

2J̃w ≈ ∂x̃ c̃w − c̃w∂x̃ φ̃, (6.44)

but with the di�erence that c̃w(0) = c̃b rather than c̃w(0) = (1 + δ)n ≈ 0. We can rewrite
the transport equation

2J̃w ≈ ∂x̃ c̃w − c̃w∂x̃ φ̃

= ∂x̃(c̃w − c̃be
φ̃)− (c̃w − c̃be

φ̃)∂x̃ φ̃

= ∂x̃ c̃
′
w − c̃′w∂x̃ φ̃, (6.45)

where c̃′w = c̃w − c̃be
φ̃ and c̃′w(0) = 0. The c̃be

φ̃ term behaves exactly like the stationary

salt anions, suggesting the introduction of c̃′− = c̃− + c̃be
φ̃ with c̃′−(0) = 1. In conclusion

the present problem can be mapped onto the problem in Section 6.3. Adding a base to a
system is therefore equivalent to adding a salt of its conjugate acid.

The situation becomes more complex when an acid is added to the reservoir. In this
case two quite di�erent situations can result, depending on the amount of added acid. For
high acid concentrations the amount of hydronium ions suppress water splitting at the
membrane, and the hydronium ions essentially act as a conserved cation. For low acid
concentrations hydroxide may begin to dominate the water ion transport at some point
and water splitting can occur as in the treatment in Section 6.3. In Fig. 6.17 this situation
is illustrated.

To quantify what is meant by 'high' and 'low' acid concentrations we analyze the system
in more detail. From Fig. 6.17 it is seen that there are two distinct regions in the solution.
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To the left hydronium dominates and there is local electroneutrality, while the right part
of the channel is equivalent to the system analyzed in Section 6.3. In the left part of the
channel the system is locally electroneutral, and it is easily found that the concentration
�elds are given as

c̃− = eφ̃ = 1− (J̃+ + J̃w/δH)x̃, (6.46a)

c̃H =
J̃w/δH

J̃+ + J̃w/δH
eφ̃ +

[
c̃a −

J̃w/δH

J̃+ + J̃w/δH

]
e−φ̃ , (6.46b)

c̃+ =
J̃+

J̃+ + J̃w/δH
eφ̃ +

[
1− c̃a −

J̃+

J̃+ + J̃w/δH

]
e−φ̃ , (6.46c)

where the concentration �elds are normalized with the sum of the acid and salt concentra-
tions at the inlet and c̃a is the normalized acid concentration at the inlet.

In the limit where there is no water splitting at the membrane, the currents are just
related via the reservoir concentrations of hydronium and salt cation,

J̃w/δH

J̃+

=
c̃a

1− c̃a
, no water splitting. (6.47)

If there is water splitting there will be a transition point x̃† where the hydronium concen-
tration vanishes. Solving Eq. (6.46a) and Eq. (6.46b) for x̃† we �nd

x̃† =
1

J̃+ + J̃w/δH

[
1−

√
1− J̃+ + J̃w/δH

J̃w/δH
c̃a

]
, (6.48)

and at that point the salt concentration is

c̃† = c̃+(x̃†) = c̃−(x̃†) =

√
1− J̃+ + J̃w/δH

J̃w/δH
c̃a. (6.49)

At x̃ = 1 the electric �eld is determined by Eq. (6.19) corrected with the new boundary
conditions Eq. (6.48) and Eq. (6.49)

1 +
λ̄2

D(∂x̃ φ̃)3

2(J̃+ + J̃w)
=

[
J̃+ − J̃w

J̃+ + J̃w

(1− x̃†)− c̃†

J̃+ + J̃w

]
∂x̃ φ̃. (6.50)

Just when water splitting is initiated J̃w and J̃+ are still related via Eq. (6.47), and we
can approximate

c̃†+ ≈ 0, (6.51)

x̃† ≈ 1

J̃+ + J̃w/δH
. (6.52)
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Furthermore, since water splitting is only signi�cant in the overlimiting regime we can
neglect the 1 term in Eq. (6.50) and obtain

λ̄2
D(∂x̃ φ̃)2

2
= J̃+ − J̃w −

J̃+ − J̃w

J̃+ + J̃w/δH
. (6.53)

Inserting the boundary condition Eq. (6.26) with Eq. (6.33), and using J̃w/δ

J̃+
= c̃a

1−c̃a we

�nd a quadratic equation for J̃w,

2δH λ̄
2
D

Ω2
J̃2

w = J̃w
1− (1 + δH)c̃a

c̃a
− 1 + (1 + δH)c̃a. (6.54)

This equation has a solution when the determinant is non-negative, i.e. when

c̃a ≤ c̃crit
a =

−(1 + δH) +

√
(1 + δH)2 + 32δH

λ̄2
D

Ω2

16δH
λ̄2

D
Ω2

(6.55)

For values of c̃a higher than the critical value c̃
crit
a there are no solutions which allow for wa-

ter splitting. In Fig. 6.18 analytical and numerical results for the critical acid concentration
c̃crit

a are plotted versus Ω2

4δH λ̄
2
D

= n2

λ̄2
D
in a transport-limited system. Numerically the critical

concentration is determined as follows. When there is no water splitting the currents are
related as in Eq. (6.47). The critical concentration is then de�ned to be the minimum

value of c̃a for which J̃w/δH
J̃+

≥ 1.01 c̃a
1−c̃a , within the voltage sweep interval 0 < Ṽ0 < 100.

While the speci�c results in Fig. 6.18 are only valid for a transport-limited system, the
expression (6.55) does not rely on a particular reaction expression. We therefore expect the
existence of a critical acid concentration to be a valid prediction regardless of the reaction
mechanism. In fact, since Ω enters in the expression (6.55), measuring the critical acid
concentration could be yet another way of probing the reaction kinetics of a system.

6.7 Conclusion

We have generalized the analytical model in Chapter 4 to account for the in�uence of
water ions. Given values of the cation current J̃+ and the water-ion current J̃w, the model
yields analytical expressions for all the relevant �elds and concentration distributions. In
general, the link between J̃+ and J̃w depends on the kinetics of the water dissociation
reaction. However, regardless of reaction kinetics the analytical transport model puts
some quite speci�c restrictions on the relationship between J̃+ and J̃w. Besides improving
our understanding of water-splitting at permselective membranes, this relationship can be
used to probe the water-ion concentration in the ESC, and maybe even say something
about the reaction kinetics in an experimental system. The model is successfully �tted to
experimental data from Ref. [90]. Finally, we investigated the e�ect of adding an acid or
a base to the reservoir.
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Chapter 7

Electrodeposition: Stability analysis

In the systems we have encountered so far the ion-selective interfaces play an important
role, but they are not themselves a dynamic part of the system. That is, in those systems
the behavior of the ion-selective interface is una�ected by the behavior of the remainder of
the system. While this is a reasonable way of describing transport across a chemically stable
permselective membrane, it does not necessarily apply when the ion-selective interface is
a metal electrode. The reason for this di�erence is that the ions deposit onto an electrode
surface, whereas they pass straight through a permselective membrane. At long time scales
the morphology of the electrode may therefore change appreciably.

In some circumstances, the ions deposit uniformly onto the electrode, so that an initially
�at electrode stays �at during the growth process. However, like many systems involving
transport between matter in di�erent phases, the electrode interface is prone to morpho-
logical instabilities which can break the symmetry and lead to rami�ed growth patterns
[39, 91, 122, 51, 86]. Besides the basic interest we might have in studying these interesting
patterns, a better understanding of the rami�cation process could be hugely important
for the many technological applications where electrodeposition plays a role. These appli-
cations include battery technology, electroplating, and production of metal powders and
microstructures [36, 96, 37, 70, 95, 105, 120, 129, 45, 107, 24].

Super�cially, electrodeposition belongs to the large class of di�usion-limited aggregation
(DLA) problems, in which the interface growth can be modeled in terms of a simple
solute di�usion model and a probability of sticking to the interface [131, 130]. However,
while a simple di�usion model may give an adequate description of the transport in the
linear underlimiting regime, it is clearly inadequate in the nonlinear overlimiting regime.
Furthermore, simple DLA models totally fail to take the complicated reaction kinetics
occurring at the electrode into account.

In the related interfacial problem of metal solidi�cation, phase-�eld models have been
applied widely and with considerable success [52, 61]. In recent years those phase-�eld
models have been adapted to model electrolyte transport and applied to the electrode-
position problem [106, 17, 67, 31]. This adaptation has, however, met with some major
obstacles. In the simplest form of metal solidi�cation one only has to deal with two �elds;
a phase-�eld parameter ξ and a temperature �eld T . On the other hand, a phase-�eld

81



82 Electrodeposition: Stability analysis

model of electrodeposition must, as a minimum, include the cation concentration c+, the
anion concentration c−, the electron concentration ce, a phase-�eld parameter ξ, and the
electric potential φ [41, 42]. In addition, the model has to take the nonlinear reaction
kinetics into account. So far, no phase-�eld model of electrodeposition has succeeded in
properly implementing all these �elds. For instance, only the 1D models of Guyer et al.
[41, 42] and Deng et al. [23] allow for deviations from electroneutrality, and that comes at
a computational cost which is prohibitive for 2D simulations. In some other models, which
assume local electroneutrality, nonlinear reaction models are tentatively included [17, 67].
However, it is unclear how these reaction models relate to their sharp-interface equivalents.
Also, the behavior of these models is sensitive to the width of the interface region and to
the interpolation function used in that region [68].

To circumvent the shortcomings of the established models we pursue a di�erent solu-
tion strategy. Rather than de�ning the interface via a smoothly varying time-dependent
parameter as in the phase-�eld models, we employ a sharp-interface model, in which the
interface is moved for each discrete time step. In this model the nonlinear electrode reac-
tions are easily implemented, and as seen in the preceding chapters it is straight-forward
to account for non-zero space-charge densities.

In this chapter we study the stability of a �at electrode interface under perturbations of
varying wavelength. Numerous studies of morphological stability during electrodeposition
already exist, but so far none has taken the e�ects of an extended space-charge region into
account [115, 43, 29]. Intuitively, we expect the electrode to become increasingly unstable
as the magnitude of the �eld gradients at the interface increases. The overlimiting regime,
which is omitted in the existing models, might therefore be the regime which is most
relevant to the stability problem. In fact, this point has already been argued by Chazalviel
in his 1990 paper [14].

We follow the approach of Sundstrom and Bark [115], and investigate steady electrode-
position in a system composed of an electrolyte sandwiched between two planar metal
electrodes. We �nd both numerical and analytical solutions to the stability problem. In
the numerical solution we assume that the reaction rates follow a standard Butler�Volmer
expression with constant charge-transfer coe�cients. However, our analytical solutions
cover a more general class of reaction kinetics, including e.g. Marcus kinetics and Butler�
Volmer�Frumkin kinetics [76, 7, 126, 10].

This chapter is based on material from our paper Ref. [84], which can be found in
Appendix G.

7.1 Model system

Following Sundstrom and Bark [115], we consider a binary electrolyte trapped between two
co-planar metal electrodes at x = 0 and x = 2L. The electrolyte has initial concentration
c0 and is assumed symmetric with valence Z. The coordinate system is moving in the
negative x-direction with velocity U , which is related to the average deposition rate on
the electrodes. We consider the dilute solution limit, in which the e�ect of the moving
coordinate system is negligible everywhere except in the surface evolution equation. A
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Figure 7.1: Sketch of the studied system with lower and upper electrode surfaces at x̃ = f̃ `(ỹ , t̃) and
x̃ = 2+f̃ u(ỹ , t̃), respectively. The coordinates are given relative to the moving frame of reference, following
the mean rate of deposition on the electrode surfaces.

sketch of the system is shown in Fig. 7.1.

In the analysis, we investigate the stability of the electrodes under y-dependent pertur-
bations along the x-direction. However, our analysis is general and applies to perturbations
along any direction in the yz plane.

7.2 Governing equations

Using the standard normalizations, see Section 2.2, the equations governing the ion trans-
port are

D+

D±
J̃± = −c̃±∇̃µ̃±, (7.1)

∂t̃ c̃± = −∇̃ · J̃±, (7.2)

where the time-derivative was included, since the growth of the electrode makes the problem
unsteady. At the electrodes, the current of anions vanishes, while the current of cations is
given by a reaction expression

np · J̃− = 0, (7.3a)

np · J̃+ = −R̃p, (7.3b)

where R̃p is the normalized reaction rate at the lower and upper electrode, respectively, as
indicated by the subscript p = `, u. As discussed in Section 2.6.2, we model the reaction
rates R̃u and R̃` using a reaction expression with the general form

R̃p = K0

[
c̃+e−γ̄κ̃+αc(φ̃,c̃+)Z(φ̃+Ṽp) − e−γ̄κ̃−αa(φ̃,c̃+)Z(φ̃+Ṽp)

]
, (7.4)

Here, K0 is the dimensionless version of the dimensionfull rate constant k0 for the electrode
reaction,

K0 =
k0

2D+c0/L
, (7.5)
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Ṽp is the normalized electrode potential, κ̃ is the normalized curvature of the surface, and
γ̄ is the non-dimensionalized version of the dimensionfull surface energy γ,

γ̄ =
a3γ

kBTL
. (7.6)

The factor a3 which was introduced in this expression is the volume of a single cation.
The γ̄κ̃ term in Eq. (7.4) therefore measures the surface energy per ion, and constitutes an
energy barrier for the reaction. At under-coordinated sites with a large positive curvature
κ̃, the surface energy acts to reduce the reaction rate. Conversely, at over-coordinated
sites with a large negative curvature κ̃, the surface energy acts to increase the reaction
rate. The surface energy γ̄κ̃ therefore has a stabilizing in�uence on perturbations to the
electrode surface.

We allow the cathodic and anodic charge-transfer coe�cients αc and αa to vary with
the potential φ̃ and the cation concentration c̃+. As discussed in Section 2.6.2, this means
that Eq. (7.4) can represent a wide range of reaction models from classical Butler�Volmer
kinetics to Marcus kinetics and Butler�Volmer�Frumkin kinetics [115, 126, 7]. In agreement
with most realistic reaction models, we do impose one restriction on the charge transfer
coe�cients, namely that they vary slowly as a function of φ̃ and ln(c̃+),

∂φ̃

{
αc(φ̃, c̃+)φ

}
≈ αc(φ̃, c̃+), (7.7)

∂ln(c̃+)

{
αc(φ̃, c̃+) ln(c̃+)

}
≈ αc(φ̃, c̃+). (7.8)

The electrostatic part of the problem is governed by the standard Poisson equation,

2λ̄2
D∇̃2φ̃ = −Zc̃+ + Zc̃−. (7.9)

Rather than explicitly modeling the electric double layers adjoining the electrodes we
employ the GCP framework from Section 2.7 and implement the boundary condition

nu · ∇̃c̃+ = 0, (7.10)

at the upper electrode. Also, since the anions can not enter or leave the system, the total
number of anions is conserved,

∫

Ω
(c̃− − 1) dV = 0. (7.11)

We introduce functions x̃ = f̃ p(ỹ) describing the position of the upper and lower

electrode u and `. The time evolution of f̃ p is determined by the single-ion volume a3 and
the current into the electrode,

(
∂t̃ f̃ ` − Ũ

)
ex · n` = −a3c0n` · J̃+, Anode, (7.12a)

(
∂t̃ f̃ u − Ũ

)
ex · nu = −a3c0nu · J̃+, Cathode. (7.12b)
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Here, the �lling factor a3c0 is much less than unity, since we are dealing with dilute
solutions. The normalized velocity Ũ of the coordinate system accounts for the mean
current into or out of the electrodes, and ∂t̃ f̃ p accounts for local deviations from the mean

current. The curvature κ̃ and the normal vectors are related to the surface function f̃ p by

n` =
ex − ey∂ỹ f̃ `√

1 + (∂ỹ f̃ `)
2
, nu =

−ex + ey∂ỹ f̃ u√
1 + (∂ỹ f̃ u)2

, (7.13a)

κ̃` =
∂2
ỹ f̃ `√

1 + (∂ỹ f̃ `)
2
, κ̃u = −

∂2
ỹ f̃ u√

1 + (∂ỹ f̃ u)2
. (7.13b)

7.3 Perturbation

The stability of the electrode growth is investigated using linear perturbation theory. That
is, we impose a small perturbation on a steady-state base state, and investigate how the
perturbation evolves. The base state is identi�ed by a superscript ”0” and the �rst-order
perturbation by superscript ”1”,

f̃ p(ỹ , t̃) ≈ f̃
1
p(ỹ , t̃), (7.14a)

c̃±(x̃, ỹ , t̃) ≈ c̃0
±(x̃) + c̃1

±(x̃, ỹ , t̃), (7.14b)

φ̃(x̃, ỹ , t̃) ≈ φ̃0
(x̃) + φ̃

1
(x̃, ỹ, t̃). (7.14c)

In �rst-order perturbation theory, we substitute the second-order factor
√

1 + (∂ỹ f̃ p)
2 in

Eq. (7.13) by unity,

n` ≈ ex − ey∂ỹ f̃
1
` , nu ≈ −ex + ey∂ỹ f̃

1
u, (7.15a)

κ̃` ≈ ∂2
ỹ f̃

1
` , κ̃u ≈ −∂2

ỹ f̃
1
u. (7.15b)

To �nd the �eld values at the perturbed surface, we Taylor expand to �rst order and obtain

φ̃(f̃
1
` , ỹ , t̃) ≈ φ̃

0
(0) + ∂x̃ φ̃|0f̃

1
` (ỹ , t̃) + φ̃

1
(0, ỹ , t̃), (7.16a)

∇̃φ̃(f̃
1
` , ỹ , t̃) ≈ ∂ỹ φ̃

1|0eỹ +
(
∂x̃ φ̃

0|0 + ∂2
x̃ φ̃

0|0f̃
1
` + ∂x̃ φ̃

1|0
)
ex.

Similar expressions apply for c̃± and at the upper electrode. Evaluating the reaction rate
at the lower electrode and expanding to �rst order, we �nd

R̃` ≈ R̃0
` + R̃1

` , (7.17a)

R̃0
`

K0
= c̃0

+eαcZ(φ̃
0
+Ṽ`) − e−αaZ(φ̃

0
+Ṽ`), (7.17b)

R̃1
`

K0
= eαcZ(φ̃

0
+Ṽ`)

[
c̃1

+ + ∂x̃ c̃
0
+f̃

1
` + c̃0

+(αa + αc)Z
[
φ̃

1
+ ∂x̃ φ̃

0
f̃

1
`

]]
(7.17c)

+
R̃0
`

K0

[
− γ̄∂2

ỹ f̃
1
` − αaZ

[
φ̃

1
+ ∂x̃ φ̃

0
f̃

1
`

]]
,
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where all �elds are evaluated at x̃ = 0, and the expression for R̃0
` was used to simplify

the expression for R̃1
` . Since the charge transfer coe�cients vary slowly with φ̃ and ln(c̃+),

we have neglected their �rst order contributions. Similar expressions apply at the upper
electrode. Hence, the full zeroth-order problem becomes

0 = −∂x̃ J̃0
±, (7.18a)

2
D+

D±
J̃0
± = −∂x̃ c̃0

± ∓ Zc̃0
±∂x̃ φ̃

0
, (7.18b)

2λ̄2
D∂

2
x̃ φ̃

0
= −Z(c̃0

+ − c̃0
−) = −ρ̃0

el, (7.18c)

with the following boundary conditions and constraints

J̃0
−(0) = 0, J̃0

−(2) = 0, (7.19a)

J̃0
+(0) = −R̃0

` , J̃0
+(2) = R̃0

u, (7.19b)
∫ 2

0

(
c̃0
− − 1

)
dx̃ = 0, ∂x̃ c̃

0
+(2) = 0, (7.19c)

and the mean growth velocity Ũ derived from Eq. (7.12),

Ũ = a3c0J̃
0
+. (7.20)

Similarly, the �rst-order problem is given by

∂t̃ c̃
1
± = −∇̃ · J̃1

±, (7.21a)

2
D+

D±
J̃1
± = −∇̃c̃1

± ∓ Zc̃0
±∇̃φ̃

1 ∓ Zc̃1
±∇̃φ̃

0
, (7.21b)

2λ̄2
D∇̃2φ̃

1
= −Z(c̃1

+ − Zc̃1
−), (7.21c)

and the boundary conditions,

ex · J̃1
−(2) = 0, ex · J̃1

−(0) = 0, (7.22a)

ex · J̃1
+(2) = R̃1

u, ex · J̃1
+(0) = −R̃1

` , (7.22b)

∂2
x̃ c̃

0
+(2)f̃

1
u + ∂x̃ c̃

1
+(2) = 0, (7.22c)

together with the �rst-order electrode growth rates ∂t̃ f̃
1
` and ∂t̃ f̃

1
u derived from Eq. (7.12),

∂t̃ f̃
1
` = a3c0R̃

1
` , ∂t̃ f̃

1
u = −a3c0R̃

1
u. (7.23)

To �nd the eigenmodes, we make the following harmonic ansatz for the �rst-order �elds,

c̃1
±(x̃, ỹ , t̃) = c̃∗±(x̃)eΓ̃t̃+ik̃ỹ , (7.24a)

φ̃
1
(x̃, ỹ , t̃) = φ̃

∗
(x̃)eΓ̃t̃+ik̃ỹ , (7.24b)

f̃
1
p(ỹ , t̃) = Fpe

Γ̃t̃+ik̃ỹ , (7.24c)
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where Γ̃ is the nondimensional growth rate of the perturbation, and k̃ is the wavenumber
of the transverse eigenmode. For convenience we also de�ne

R̃1
p = R̃∗pe

Γ̃t̃+ik̃ỹ . (7.24d)

With this ansatz, the �rst-order bulk equations become

2
D+

D±
Γ̃c̃∗± = −k̃2(c̃∗± ± Zc̃0

±φ̃
∗
) + ∂x̃

{
∂x̃ c̃
∗
± ± Zc̃∗±∂x̃ φ̃

0 ± Zc̃0
±∂x̃ φ̃

∗}
(7.25a)

2λ̄2
D(∂2

x̃ φ̃
∗ − k̃2φ̃

∗
) = −Z(c̃∗+ − c̃∗−), (7.25b)

and the �rst-order reaction rate at the lower electrode is

R̃∗`
K0

= eαcZ(φ̃
0
+Ṽ`)

[
c̃∗+ + ∂x̃ c̃

0
+F` + c̃0

+(αa + αc)Z
[
φ̃
∗

+ ∂x̃ φ̃
0
F`
]]

+
R̃0
`

K0

[
− γ̄k̃2F` − αaZ

[
φ̃
∗

+ ∂x̃ φ̃
0
F`
]]
. (7.26)

Inserting the ansatz in the growth equations (7.23) yields

Γ̃F` = a3c0R̃
∗
` , Γ̃Fu = −a3c0R̃

∗
u. (7.27)

Since the stability problem is linear we can set Fu to unity, meaning that the magnitude of
the remaining �rst-order �elds are given relative to the amplitude of the upper electrode
perturbation.

7.4 Analysis

The lower electrode does not go unstable by itself, so as long as the perturbation wavelength
is considerably smaller than the distance between the electrodes, i.e. when k̃ & 1, we can
disregard the lower electrode from the stability problem. In that case analytical solutions
can be derived in both the underlimiting regime and in the overlimiting regime.

7.4.1 Underlimiting regime

At currents below the limiting current J̃0
+ < 1 the electrolyte is locally electroneutral,

c̃ = c̃+ = c̃−. (7.28)

Assuming that the time derivative in the �rst-order problem (the left hand side in Eq. (7.25a))
is negligible, we can express the salt concentration c̃ via a Boltzmann factor,

c̃ = eZφ̃ = eZ(φ̃
0
+φ̃

1
) ≈ eZφ̃

0

+ eZφ̃
0

Zφ̃
1

= c̃0 + c̃1. (7.29)

The zero-order solutions are well known,

c̃0 = 1− J̃0(x̃ − 1), Zφ̃
0

= ln
[
1− J̃0(x̃ − 1)

]
, (7.30)
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and using the electroneutrality assumption in Eq. (7.25a) we �nd that c̃∗ is determined by

0 = ∂2
x̃ c̃
∗ − k̃2c̃∗. (7.31)

This equation has two solutions, but as long as the perturbation wavelength is considerably
smaller than the electrode spacing, the solution which increases with x̃ is dominant,

c̃∗ ≈ Cek̃(x̃−2), (7.32)

where C is a constant to be determined. Eq. (7.29) then yields

φ̃
∗

=
1

Z

c̃∗

c̃0 =
1

Z

Cek̃(x̃−2)

1− J̃0(x̃ − 1)
. (7.33)

At the upper electrode the �rst-order reaction rate is

R̃∗u
K0

= eαcZ(φ̃
0
+Ṽu)

[
c̃∗+ + ∂x̃ c̃

0
+ + c̃0

+(αa + αc)Z
[
φ̃
∗

+ ∂x̃ φ̃
0]]

+
R̃0
u

K0

[
γ̄k̃2 − αaZ

[
φ̃
∗

+ ∂x̃ φ̃
0]]

, (7.34)

and evaluating the �elds at x̃ = 2, this expression becomes

R̃∗u
K0

= (1 + αa + αc)(C − J̃0)eαcZ(φ̃
0
+Ṽu) +

J̃0

K0

[
γ̄k̃2 − αa

C − J̃0

1− J̃0

]
. (7.35)

Inserting the �rst-order current into the upper electrode R̃∗u = J̃∗ = −∂x̃ c̃∗ = −k̃C and
solving for C, we obtain

C = J̃0
(1 + αa + αc)K0eαcZ(φ̃

0
+Ṽu) − αa

J̃0

1−J̃0
− γ̄k̃2

(1 + αa + αc)K0eαcZ(φ̃
0
+Ṽu) − αa

J̃0

1−J̃0
+ k̃

. (7.36)

From Eq. (7.27) the growth rate Γ̃ can be expressed as

Γ̃ = −a3c0J̃
∗ = a3c0k̃C, (7.37)

so we have

Γ̃ = a3c0k̃J̃
0β − γ̄k̃2

β + k̃
, (7.38)

with the parameter β given as

β = (1 + αa + αc)K0eαcZ(φ̃
0
+Ṽu) − αa

J̃0

1− J̃0
. (7.39)

To test whether the time derivatives in the �rst-order problem really are negligible,
we compare the time derivative term 2Γ̃c̃∗ with the transverse di�usion term k̃2c̃∗. Since
Eq. (7.38) implies that Γ̃ ≤ a3c0k̃J̃

0, our assumption is justi�ed if

2a3c0J̃
0 � k̃. (7.40)

Consequently, because a3c0 � 1 for dilute systems and J̃0 is of order unity, it is justi�ed
to neglect the time derivative, unless the perturbation wavelength is comparable to the
electrode spacing.
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7.4.2 Overlimiting regime

For currents exceeding the limiting current the �eld gradients are large close to the upper
electrode, and this makes the electrode interface much more unstable. It follows that a
larger k̃ value will be needed for the surface tension to stabilize the system, so the most
unstable k̃ value will be larger than for less driven systems. We might therefore expect
that Eq. (7.25b) primarily is a balance between ∂x̃ φ̃

∗
and k̃2φ̃

∗
in the region of interest.

This leads us to making the ansatz

φ̃
∗

= Φek̃(x̃−2), (7.41)

where Φ is a constant. We now consider Eq. (7.25a) for the cation concentration, neglecting
the left hand side,

0 = −∂x̃
{
−∂x̃ c̃∗+ − Zc̃∗+∂x̃ φ̃

0 − Zc̃0
+∂x̃ φ̃

∗}− k̃2
(
c̃∗+ + Zc̃0

+φ̃
∗)
. (7.42)

We assume that the terms ∂x̃ c̃
∗
+ and Zc̃∗+∂x̃ φ̃

0
are negligible and insert the ansatz Eq. (7.41),

0 ≈ Z∂x̃ c̃0
+k̃φ̃

∗
+ Zc̃0

+k̃
2φ̃
∗ − k̃2

(
c̃∗+ + Zc̃0

+φ̃
∗)

= Z∂x̃ c̃
0
+k̃φ̃

∗ − k̃2c̃∗+, (7.43)

implying that

c̃∗+ ≈
Z

k̃
∂x̃ c̃

0
+φ̃
∗
. (7.44)

In the overlimitign regime the �rst-order current is approximately

2J̃∗+ ≈ −Zc̃0
+∂x̃ φ̃

∗
= −Zk̃c̃0

+Φ, (7.45)

at the upper electrode. The zeroth-order di�usive contribution is also very small at the
upper electrode, meaning that the reaction rate Eq. (7.34) simpli�es as

R̃∗u ≈ K0eαcZ(φ̃
0
+Ṽu)c̃0

+(αa + αc)Z
[
φ̃
∗

+ ∂x̃ φ̃
0]

+ R̃0
u

[
γ̄k̃2 − αaZ

(
φ̃
∗

+ ∂x̃ φ̃
0)]

≈ K0eαcZ(φ̃
0
+Ṽu)(αa + αc)

[
c̃0

+ZΦ− 2J̃0
]

+ R̃0
u

[
γ̄k̃2 − αa

(
ZΦ− 2J̃0

c̃0
+

)]
. (7.46)

Inserting R̃∗u = J̃∗+ ≈ −1
2Zk̃c̃

0
+Φ and using Γ̃ = −a3c0J̃

∗
+, we �nd

Γ̃ = a3c0k̃J̃
0β − γ̄k̃2

β + k̃
, (7.47a)

with

β = 2(αa + αc)K0eαcZ(φ̃
0
+Ṽu) − αa

2J̃0

c̃0
+

, (7.47b)

c̃0
+ ≈

λ̄D

Z

√√√√ 2J̃0

1− 1
J̃0

. (7.47c)
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Here, the cation concentration at the electrode was obtained from the analysis in Chapter 4.
The solution from Chapter 4 can also be used to validate the assumptions leading to
Eq. (7.47a), see Ref. [84].

7.4.3 Uni�ed analysis

The instability growth rate in both regimes is given by the same expression,

Γ̃ = a3c0k̃J̃
0β − γ̄k̃2

β + k̃
, (7.48)

where only the expression for β di�ers slightly between the two regimes. We can therefore
derive some general expressions, which apply in both regimes.

The critical wavenumber k̃c, where the electrode interface is marginally stable, is found
by setting the nominator in Eq. (7.48) equal to zero,

k̃c =

√
β

γ̄
. (7.49)

To �nd the wavenumber k̃max, at which Γ̃ attains its maximum Γ̃max, we set the derivative
of Γ̃ equal to zero and solve for k̃,

k̃max =
β

2

[(
2− βγ̄ + 2

√
1− βγ̄

βγ̄

)1/3

+

(
2− βγ̄ + 2

√
1− βγ̄

βγ̄

)−1/3

− 1

]
, (7.50)

with the asymptotic solutions,

k̃max ≈





(
β
3γ̄

)1/2
, for γ̄β � 1,

(
β2

2γ̄

)1/3
− β

2 , for γ̄β � 1.
(7.51)

The factors K0eαcZ(φ̃
0
+Ṽu) appearing in both expressions for β are found by solving the

zero order reaction expression

J̃0 = R̃0
u = K0

[
c̃0

+eαcZ(φ̃
0
+Ṽu) − e−αaZ(φ̃

0
+Ṽu)

]
. (7.52)

Since the charge-transfer coe�cients αa and αc may depend on φ̃
0
and c̃0

+ there is no
general solution to Eq. (7.52). In the limit K0 � 1 the deposition term in Eq. (7.52)
dominates, and we simply have

K0eαcZ(φ̃
0
+Ṽu) ≈ J̃0

c̃0
+

. (7.53)
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In that limit β becomes

β ≈ (1 + αc)
J̃0

1− J̃0
, Underlimiting regime, (7.54a)

β ≈ 2αc
J̃0

c̃0
+

Overlimiting regime. (7.54b)

In the case of simple Butler�Volmer kinetics with constant charge transfer coe�cients
αc = αa = 1

2 , it is also possible to obtain simple solutions to Eq. (7.52). In that case we
�nd

β =
J̃0

1− J̃0


1

2
+

√
1 + 4

(
K0

J̃0

)2

(1− J̃0)


 , Underlimiting regime, (7.55a)

β =
J̃0

c̃0
+

√
1 + 4

(
K0

J̃0

)2

c̃0
+, Overlimiting regime. (7.55b)

7.5 Numerical solution

In the numerical simulations we choose to model the reaction using simple Butler�Volmer
kinetics with αa = αc = 1

2 . To limit the parameter space, we choose �xed, physically rea-
sonable values for the parameters listed in Table 7.1. The values are chosen to correspond
to copper electrodes in a copper sulfate solution. We note that the surface tension is quite
di�cult to determine experimentally, and most measurements are carried out at temper-
atures around 1000 ◦C [124, 62]. Ab initio calculations can give some impression of the
behaviour at lower temperatures [112], but these can hardly stand alone. Extrapolating
the linear �t of Ref. [124] down to 0 K yields surface tension values close to those obtained
from ab initio calculations in Ref. [112]. This makes it somewhat plausible to apply the

Table 7.1: Fixed parameter values used in the numerics. a: Calculated using the exchange current
I0 = 30 Am−2 from Ref. [123] and k0 = I0/(Ze). b: The cube root of the volume per atom in solid copper
[69].

Parameter Symbol Value

Cation di�usivity[69] D+ 0.714× 10−9m2 s−1

Anion di�usivity[69] D− 1.065× 10−9m2 s−1

Ion valence Z 2
Surface energy γ 1.85 J m−2

Temperature T 300 K
Permittivity of water εw 6.90× 10−10F m−1

Charge-transfer coe�cients αc, αa
1
2

Reaction constanta k0 9.4× 1019m−2 s−1

Diameter of a copper atomb a 0.228 nm



92 Electrodeposition: Stability analysis

Figure 7.2: Zeroth-order cation concentrations c̃0+ shown in full black lines and zeroth-order charge
densities ρ̃0

el/Z shown in dashed red lines. The inset shows the �elds close to the electrode. In the
simulation the parameter values c0 = 10 mM, L = 10 µm, and Ṽ0 = {1, 5, 12, 30} were used.

model from Ref. [124] in the region of interest around 300 K. This yields a copper-gas
surface energy of 1.92 J/m2. The contact angle at the copper-water interface is very small
[121], so �nding the copper-water surface energy is just a matter of subtracting the surface
energy of water from that of copper. The resulting surface energy is Γ̃ ≈ 1.85 J/m2, as
listed in Table 7.1. These choices leave us with three free parameters, which are the bias
voltage Ṽ0, the electrolyte concentration c0, and the system length L.

The solution procedure is as follows: First, the zeroth-order problem is solved for a
given set of parameters. Then the �rst-order problem is solved for a range of wavenumbers
k̃. For each k̃ value, the corresponding growth rate Γ̃ and perturbation amplitude of the
lower electrode, F`, are obtained. In Fig. 7.2, the zeroth-order cation concentration c̃0

+

and space-charge density ρ̃0
el are shown for c0 = 10 mM, L = 10 µm and varying bias

voltage Ṽ0. It is seen, that when the bias voltage exceeds Ṽ0 ' 12, local electroneutrality
is violated near the cathode. For Ṽ0 = 30 the nonequilibrium space-charge region extends
far (0.04) into the electrolyte.

7.6 Results

For plotting purposes we introduce the dimensionfull perturbation wavelength λ = 2πL/k̃.
In Fig. 7.3, the growth rate Γ̃ is plotted versus λ for Ṽ0 = 30, c0 = 10 mM, and L = 10 µm.
Visible in the �gure is a stable region for wavelengths smaller than the critical wavelength
λc = 51 nm, and an unstable region for larger wavelengths. The most unstable wavelength
we denote λmax, and the corresponding growth rate we denote Γ̃max.

To enable a more compact representation of the data, we introduce a gray-scale con-
tour plot of the magnitude of Γ̃, as illustrated in Fig. 7.4. Here, Γ̃ is plotted versus the
wavelength λ for Ṽ0 = {5, 10, 15, 20, 25, 30}. The gray scale in the λ-Ṽ0 plane is created
by projecting the Γ̃ values from the above curves onto the plane. The solid blue line in the
(λ, Ṽ0)-plane marks the crest of the hill, thus representing the most unstable wavelength
for each value of Ṽ0.

In Fig. 7.5, we make use of the contour plots to show results for twelve sets of (c0, L)-
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Figure 7.3: The growth rate Γ̃ plotted versus
the perturbation wavelength λ for Ṽ0 = 30, c0 =
10 mM, and L = 10 µm. The full black line shows
the growth rate obtained from numerical simula-
tions, and the dashed red line shows the growth rate
according to the analytical model Eq. (7.48) with
Eq. (7.55b). For perturbation wavelengths smaller
than the critical wavelength λc = 51 nm the system
is stable and for larger wavelengths it is unstable.
At the most unstable wavelength λmax = 110 nm
the growth rate is Γ̃max = 0.0193.

Figure 7.4: The growth rate Γ̃ plotted ver-
sus the perturbation wavelength λ and voltage
Ṽ0 for c0 = 10 mM, and L = 10 µm. The
cyan space curves are plots of Γ̃ versus λ for
Ṽ0 = {5, 10, 15, 20, 25, 30}. The shade of the
in plane contour plot is based on the logarithm of
Γ̃, which is why there are no contours in the low λ
limit where Γ̃ is negative. The thick blue in plane
line marks the crest of the hill, i.e. it marks the
most unstable wavelength for each value of Ṽ0.

values. In each contour plot, Γ̃ is normalized by its maximum value, which is given above
each plot. Shown in thick lines are λmax in yellow and λc in black. The corresponding
analytical results are shown in dashed blue and dotted green lines, respectively. The thin
black lines show contours, where Γ̃ equals {0.01, 0.2, 0.7} times the maximum value. There
is a clear tendency in all of the panels that the growth rate Γ̃ increases rapidly with Ṽ0, and
the most unstable wavelength decreases as Ṽ0 increases. Across the panels, the maximum
growth rate is seen to increase for increasing c0 and increasing L. Also, the most unstable
wavelength λmax and the critical wavelength λc become smaller as c0 increases and as L
decreases.

A common feature seen in all of the panels, is the kink in the Ṽ0-versus-λmax and Ṽ0-
versus-λc lines. At this kink, the slope of the lines changes markedly. The kink is located at
the voltage, where the current reaches the limiting current, and it thus signi�es that there
is a qualitatively di�erent behavior for over- and underlimiting current. This qualitative
di�erence between the two regimes is in accordance with the analytical models. We also
see that the kink voltage changes with c0 and L. Speci�cally, it increases with c0 and
decreases with L. The main reason for this behavior is easily understood with reference
to the zeroth-order Butler-Volmer reaction expression (7.17b). Setting the current in the
system to the limiting current J̃0 = 1, the reaction rates at the electrodes become

ex · np = −K0

[
c̃0

+e
αcZ(φ̃

0
+Ṽp) − e−αaZ(φ̃

0
+Ṽp)

]
. (7.56)

At the cathode, the �rst term in the bracket dominates, and at the anode the other.
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Figure 7.5: Contour plots of Γ̃ plotted versus wavelength λ and voltage Ṽ0 for c0 =
{1 mM, 10 mM, 100 mM} and L = {1 µm, 10 µm, 100 µm, 1 mm}. In each plot, Γ̃ is normalized by
its maximum value, and the contours are logarithmically spaced. The maximum value Γ̃max of Γ̃ is given
on top of each plot, and the point where the maximum value is attained is indicated with a red circle. The
three thin black lines in each plot indicate contours where Γ̃ equals 0.01, 0.2, and 0.7 times Γ̃max. The
thick yellow line marks λmax for each value of Ṽ0, and the dashed blue lines mark the two corresponding
analytical limits. The thick black line marks λc for each value of Ṽ0, and the dotted green lines mark the
two corresponding analytical limits.

Therefore, both potential drops over the electrode interfaces scale as

∆Ṽ ∼ − ln(K0) = ln

(
2D+c0

k0L

)
, (7.57)

which increases monotonically with increasing c0/L. As a consequence, the total potential
drop at the limiting current also increases with increasing c0/L, just as observed in Fig. 7.5.

In addition to the instability growth rate Γ̃, which gives a time scale for the develop-
ment of instabilities, it is useful to have a measure for the characteristic instability length
scale. For instance, we would like to estimate the thickness of the deposited layer, when
instabilities start to develop. We de�ne this instability length scale as the product of the
zeroth-order growth rate Eq. (7.20) and the instability time scale at the most unstable
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Figure 7.6: The instability length scale LΓ (full line) and most unstable wavelength λmax (dashed line)
plotted versus bias voltage Ṽ0. The concentration varies between the values c0 = {1 mM, 10 mM, 100 mM}
and the length L = 100 µm was used.

wavelength

LΓ = L
a3c0J̃

0
+

Γ̃max

, (7.58)

where the pre-factor L ensures a dimensionfull expression. In Fig. 7.6, we plot the in-
stability length LΓ versus applied voltage Ṽ0 for L = 100 µm and varying c0. The most
unstable wavelength λmax is also plotted in the same �gure (dashed lines). It is seen that
LΓ decreases as Ṽ0 increases, but for small voltages LΓ is largest for high concentrations,
while the opposite is true for high voltages. The reason for this reversal is that the inter-
facial voltage drops are largest for large c0. At small voltages the bulk driving force in the
systems with large c0 is therefore small, and this causes the system to be less unstable than
the low c0 systems. We also see that λmax scales in the same way as LΓ. While the reason
for this is not immediately obvious, it is seen to follow from the analytical expressions.
Inserting Eq. (7.48) in Eq. (7.58) yields

LΓ =
λmax

2π

β + 2πL
λmax

β − γ̄
(

2πL
λmax

)2 , (7.59)

which con�rms the approximate scaling between LΓ and λmax. The connection between
LΓ and λmax implies that λmax sets the scale, not only for the variations in the horizontal
direction, but also for variations in the vertical direction. We might therefore expect that
the rami�ed electrodeposits, emerging at much longer times than Γ̃−1

max, have a universal
length scale roughly set by λmax.

7.7 Conclusion

The main feature which distinguishes our stability analysis form previous stability analy-
ses is the inclusion of the overlimiting regime [115, 43, 29]. As shown in Refs. [39, 45] the
overlimiting regime is highly relevant for rami�ed growth, so the inclusion of this regime
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is a signi�cant extension of the previous studies. Indeed, as seen in Fig. 7.5, the insta-
bility growth rate is markedly increased in the overlimiting regime, as compared to the
underlimiting regime.

An important motivation for the present study is that it provides a means of validating
the behavior of more elaborate numerical models in the initial stages of the growth. In
Chapter 8 we make such a validation of the sharp-interface model employed in that chapter.

In the numerical model we employ the widely used Butler�Volmer model with equal
cathodic and anodic charge-transfer coe�cients. The analytical model is, however, not
restricted to this particular reaction model. In deriving the analytical results we only
required that the charge-transfer coe�cients vary slowly with the interfacial potential drop
and the cation concentration. Thus, we expect the analytical model to apply equally well to
Marcus kinetics and Butler�Volmer kinetics with asymmetric charge-transfer coe�cients.
Also, the e�ects of an electric double layer can be included implicitly by applying the
Frumkin correction.



Chapter 8

Sharp-interface model of

electrodeposition

In this chapter we present a sharp-interface model of two-dimensional rami�ed growth
during quasi-steady electrodeposition. The development of this new model of electrodepo-
sition is motivated by the shortcomings of the established phase-�eld models, namely their
failure to take charge densities into account and to properly implement nonlinear electrode
reactions [41, 42, 106, 68, 67, 17, 31]. Originally, our interest in the electrodeposition
problem was motivated by the work of Han and Bazant on electrodeposition in charged
porous media [45, 44]. In these systems, the space-charge density is an indispensable part
of the relevant physics, even at underlimiting currents. This very much served to highlight
the inadequacies of the conventional electroneutral models, and prompted us to search for
alternate modeling approaches.

The presented sharp-interface model relies on two basic assumptions. Firstly, like
most previous models, we only model the electrode growth in two dimensions. This is
consistent with some experiments in which rami�ed growth is con�ned to a single plane
and is e�ectually two dimensional [122, 33, 66, 65]. However, for most systems the growth
occurs in all three dimensions. There will obviously be some discrepancy between our 2D
results and the 3D reality, but we are hopeful that our 2D model does in fact capture much
of the essential behavior. Secondly, the sharp-interface model is only applicable once the
initial transients in the concentration distribution have died out. In its current form the
model is therefore mainly suitable for small systems, in which the di�usive time scale is
reasonably small.

This chapter is based on material from our paper Ref. [85], which can be found in
Appendix H.

8.1 Model system

The model system consists of two initially �at parallel metal electrodes of widthW placed a
distance of 2L apart. In the space between the electrodes is a binary symmetric electrolyte
of concentration c0, in which the cation is identical to the electrode material. The electrodes

97
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Figure 8.1: Sketch of the initial geometry of the
system. Two co-planar metal electrodes of widthW
are placed a distance of 2L apart. The gap between
them is �lled by an electrolyte with cation concen-
tration c+ and anion concentration c−. A voltage
di�erence of Ṽ0 is applied between the electrodes.

Figure 8.2: Sketch of the electrode growth. The
electrode surface at time ti is indicated with a full
line. In the time step ti+1−ti an amount of material
∆L, which may vary with position, is deposited on
the electrode. On basis of the deposited material
the geometry at time ti+1 is created (indicated with
a dashed line).

can thus act as both sources and sinks for the cation, whereas the anion can neither enter
nor leave the system. A voltage di�erence Ṽ0 is applied between the two electrodes, driving
cations towards the top electrode and anions toward the bottom electrode. A sketch of the
system is shown in Fig. 8.1.

By depositing onto the top electrode we ensure that the ion concentration increases from
top to bottom, so we do not have to take the possibility of gravitational convection into
account. To limit the complexity of the treatment, we also disregard any electro-osmotic
motion, which may arise in the system. We note, however, that the sharp-interface model
would be well suited to investigate the e�ects of electro-osmosis, since the space charge
density is an integral part of the model.

8.2 Solution method

The basic idea in our solution method is to solve the transport-reaction problem for each
time step, and then use the calculated currents to �nd the amount of material deposited
at each point on the electrode. Based on this deposition rate the geometry is updated, and
the transport-reaction problem is solved for a new time step, as illustrated in Fig. 8.2.

The major di�culty in employing this method is that when the geometry is updated the
computational domain is also remeshed, so there is no straight-forward way of continuing
from the old solution of the transport-reaction problem. One way of getting around this
issue is to separate the time scales in the problem. More to the point, we assume that
the growth of the electrode happens so slowly, compared to the transport time scales, that
the transport problem always is in quasi steady-state. By treating the transport-reaction
problem as being in steady state in each time step, a solution can be computed without
reference to solutions at previous time steps.



Solution method 99

Obviously, the quasi steady-state assumption is �awed in the initial time after a voltage
is applied to the system, as the application of a voltage gives rise to some transients in
the transport problem. However, after the initial transients have died out the assumption
is quite reasonable, except for the case of very concentrated electrolytes. To see that, we
consider the thickness ∆L of the electrode growth in a time interval ∆t,

∆L = a3∆tJ+, (8.1)

where a3 is the volume of a metal atom in the solid phase and J+ is the current density
of metal ions entering the electrode. The current density is on the order of the limiting
current 2c0D+/L, so the time scale associated with an electrode growth of ∆L is

∆t =
∆L

a3J+
∼ L∆L

2D+c0a3
. (8.2)

On the other hand, the transport time scale t∆Ldiff associated with the distance ∆L is

t∆Ldiff ∼
∆L2

2D+
. (8.3)

The ratio of the transport time scale to the growth time scale is thus

t∆Ldiff

∆t
∼ ∆L

L
c0a

3, (8.4)

which is indeed very much smaller than unity.
As mentioned above, our model does not apply to the initial time after the voltage is

applied. To estimate how this impacts our results, we make a comparison of the important
time scales. The time it takes for the transients to die out is given by the di�usion time,

tLdiff =
L2

2D+
. (8.5)

We de�ne an instability time scale tinst, in terms of the growth rate Γmax of the most
unstable harmonic perturbation to the electrode surface,

tinst ∼
1

Γmax
. (8.6)

It is apparent that if

tLdiff . tinst, (8.7)

then nothing interesting happens to the electrode surface in the time it takes the transients
to disappear. In this case our quasi-steady approach is therefore justi�ed.

Even if tLdiff � tinst our approach may be justi�ed. If the total deposition time is much
larger than tLdiff , then what happens in the time before the transients die out is largely
unimportant for the growth patterns observed in the end. Thus, though the quasi-steady
assumption seems restrictive, it actually allows us to treat a fairly broad range of systems.
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8.3 Governing equations

Unlike in the previous chapters we retain the dimensional form of the governing equations,
and only nondimensionalize a few select �elds. The ion-transport is determined by the
usual Nernst�Planck equations,

J± = −D±c0c̃±∇µ̃±, (8.8a)

µ± = ln(c̃±)± Zφ̃, (8.8b)

0 = −∇ · J±. (8.8c)

The electrostatic part of the problem is governed by the Poisson equation,

2λ2
D∇2φ̃ = −ρ̃el = −Zc̃+ + Zc̃−, (8.9)

At the electrodes the anion �ux vanishes,

n · J− = 0, (8.10)

and the cation �ux is given by a reaction expression

n · J+ = −R. (8.11)

Rather than explicitly modeling the quasi-equilibrium electric double layers at the elec-
trodes, we employ the GCP framework from Section 2.7, and implement a condition of
vanishing cation gradient at the cathode,

n ·∇c̃+ = 0. (8.12)

The last degree of freedom is removed by requiring global conservation of anions,

∫

Ω

(
c̃− − 1

)
dV = 0. (8.13)

In dimensional form the reaction rate from the previous chapter is

R = k0

[
c̃+e
−γ̄∗κ+αcZ(φ̃+Ṽ ) − e−γ̄∗κ−αaZ(φ̃+Ṽ )

]
, (8.14)

where we assume constant charge-transfer coe�cients. The de�nition of γ̄∗ used in Eq. (8.14)
di�ers slightly from the de�nition of γ̄ encountered in the previous chapter,

γ̄∗ =
a3γ

kBT
. (8.15)

The sharp-interface reaction expression (8.14) is one of the features which sets our model
apart from previous modeling approaches. In Appendix B we give a brief overview of the
relation between sharp-interface reaction expressions like Eq. (8.14), and the nonlinear
reaction expressions employed in phase-�eld models like Refs. [68, 67, 17, 31].
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8.4 Numerical stability

Due to the surface energy term in the reaction expression, the surface is prone to numerical
instability. In an attempt to reach the energetically favorable surface shape, the solver will
sequentially overshoot and undershoot the correct solution. The fundamental issue we are
facing is that the problem at hand is numerically sti�. As long as we are using an explicit
time-integration method we are therefore likely to encounter numerical instabilities.

8.4.1 Updating the interface position

The straight-forward way of updating the position r of the interface is to use the explicit
Euler method,

r(t+ ∆t) = r(t) + na3∆tR(t), (8.16)

where R(t) is the (position dependent) reaction rate at time t. To avoid numerical insta-
bilities, we should instead use the implicit Euler method,

r(t+ ∆t) = r(t) + na3∆tR(t+ ∆t), (8.17)

where the reaction rate is evaluated at the endpoint instead of at the initial point. This
is however easier said than done. R(t + ∆t) depends on r(t + ∆t) as well as on the
concentration and potential distribution at t + ∆t. Even worse, through the curvature
R(t+ ∆t) also depends on the spatial derivatives of r(t+ ∆t).

The way forward is to exploit that only part of the physics give rise to numerical
instabilities. It is therefore su�cient to evaluate the problematic surface energy at t+ ∆t
and evaluate the remaining terms at t. For our purposes we can therefore make the
approximation

R(t+ ∆t) ≈ R
(
t, κ(t+ ∆t)

)
, (8.18)

where κ is the curvature. This does still make for a quite complicated nonlinear PDE, but
we are getting closer to something tractable. The di�erence in curvature between t and
t+ ∆t is small (otherwise we are taking too big time steps), so we can approximate

R
(
t, κ(t+ ∆t)

)
≈ R

(
t, κ(t)

)
+R′

(
t, κ(t)

)
∆κ, (8.19)

where R′ denotes R di�erentiated with respect to κ and ∆κ = κ(t + ∆t) − κ(t). The
curvature can be written as

κ =
∂θ

∂s
, (8.20)

where θ is the tangential angle of the interface and s is the arc length along the interface.
We therefore have

∆κ = κ(t+ ∆t)− κ(t) =
∂θ2

∂s2
− ∂θ1

∂s1
, (8.21)
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where we have adopted the shorthand notation 1 and 2 for time t and t+ ∆t, respectively.
The arc lengths s1 and s2 will obviously di�er for any nonzero displacement, but this is
a small e�ect compared to the angle di�erence. As an approximation we therefore use
s2 ≈ s1 and obtain

∆κ ≈ ∂(θ2 − θ1)

∂s1
. (8.22)

The tangential angle is a function of the surface parametrization,

tan(θ1) =
∂y1

∂x1
. (8.23)

For small displacements we can approximate

tan(θ2) =
∂y2

∂x2
=
∂(y1 + ∆y)

∂(x1 + ∆x)
≈ tan(θ1) +

∂∆y

∂x1
− tan(θ1)

∂∆x

∂x1
. (8.24)

The di�erence in tangential angles can then be written

θ2 − θ1 = arctan

[
tan(θ1) +

∂∆y

∂x1
− tan(θ1)

∂∆x

∂x1

]
− θ1

≈ 1

1 + tan2(θ1)

[
∂∆y

∂x1
− tan(θ1)

∂∆x

∂x1

]
. (8.25)

Returning to the implicit Euler method Eq. (8.17), we project it onto the normal vector
to obtain

∆L = a3∆tR(t+ ∆t) ≈ a3∆t
[
R
(
t, κ(t)

)
+R′

(
t, κ(t)

)
∆κ
]
, (8.26)

where ∆L = n ·
[
r(t + ∆t) − r(t)

]
. The increments in the x and y directions are related

to ∆L via

∆x = nx∆L, ∆y = ny∆L. (8.27)

Inserting these in Eq. (8.25) and writing out the curvature di�erence ∆κ, we obtain a
linear PDE for the displacement ∆L

∆L− a3∆tR
(
t, κ(t)

)

a3∆tR′
(
t, κ(t)

) = ∆κ =
∂

∂s1

{
ny − nx tan(θ1)

1 + tan2(θ1)

∂∆L

∂x1

}
. (8.28)

In the limit ∆κ = 0 this equation reduces to the original forward Euler method (8.16).

8.4.2 Correction for the curvature

In the previous derivation, we did not take into account that the local curvature slightly
changes the relation between amount of deposited material and surface displacement ∆L.
The deposited area in an angle segment dθ can be calculated as

dA =
dθ

2π

[
π

(
1

κ
+ ∆L

)2

− π 1

κ2

]
=
dθ

2

[
∆L2 + 2

∆L

κ

]
. (8.29)
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Figure 8.3: Three-dimensional extension of our two-dimensional model. The electrode interface can vary
in the xy-plane according to the calculated ion-currents, but it has a �xed depth ∆h in the z-direction.
The interface is also divided into a number of bins of width ∆s in the xy-plane. Each bin thus has the
area ∆h∆s.

The line segment ds is related to the angle segment as ds = dθ/κ. This means that

a3∆tR(t+ ∆t) =
dA

ds
=
κ

2

[
∆L2 + 2

∆L

κ

]
= ∆L+

κ

2
∆L2. (8.30)

Using this expression in Eq. (8.26) yields the slightly nonlinear PDE, with the term 1
2κ∆L2,

∆L+ κ
2 ∆L2 − a3∆tR

(
t, κ(t)

)

a3∆tR′
(
t, κ(t)

) =
∂

∂s1

{
ny − nx tan(θ1)

1 + tan2(θ1)

∂∆L

∂x1

}
, (8.31)

in place of Eq. (8.28).

8.5 Noise

An important part of the problem is the noise in the system, since the noise is what triggers
the morphological instability and leads to formation of dendrites. Exactly how the noise
should be de�ned is however a matter of some uncertainty. Most previous work uses a
thermal white noise term with a small, but seemingly arbitrary amplitude. In this work we
use a slightly di�erent approach, in which we assume that the noise is entirely attributed
to shot noise.

As it turns out, this approach requires us to be more speci�c about how our 2D model
is related to the three-dimensional reality. In Fig. 8.3 a sketch of the tree-dimensional
electrode is shown. The electrode interface is free to vary in the xy-plane, but has a
�xed depth ∆h in the z-direction. Obviously, most real electrodeposits will have a more
complicated behavior in the z-direction, but for electrodeposits grown in a planar con�ned
geometry this is actually a reasonable description.

Solving the transport-reaction problem yields the current density at each point along
the electrode surface, that is the average number of ions arriving per surface area per time.
The mean number Q of ions arriving in an electrode section of size ∆h∆s in a time interval
∆t is thus

Q = J+∆h∆s∆t. (8.32)

Since the ions are discrete entities, the actual number of arriving ions will, however, �uc-
tuate randomly around the mean Q with some spread σ. We assume that within the time
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interval ∆t, the arrival of each ion is statistically uncorrelated with the arrival of each
other ion. It can then be shown that, as long as Q & 10, the number of arriving ions follow
a normal distribution with mean Q and standard deviation

σ =
√
Q. (8.33)

This corresponds to an extra random current density

Jrand =

√
Q

∆h∆s∆t
qrand =

√
J+

∆h∆s∆t
qrand, (8.34)

where qrand is a random number taken from a normal distribution with mean 0 and standard
deviation 1. This in turn corresponds to a random electrode growth of

∆Lrand = a3

√
J+∆t

∆h∆s
qrand. (8.35)

Now, there is something slightly weird about this expression for the random growth: it
seems that the random growth becomes larger the smaller the bin size ∆s is. However,
as the bin size becomes smaller the weight of that bin in the overall behavior is also
reduced. The net e�ect is that the bin size ∆s does not matter for the random growth,
see Appendix C for a more thorough treatment.

The bin depth ∆h, on the other hand, does matter for the random growth. Since our
model is not concerned with what happens in the z-direction, we simply have to choose a
physically reasonable value of ∆h, and accept that our choice will have some impact on
the simulations. This is a price we pay for applying a 2D model to a 3D phenomenon.

8.6 Numerical solution

Following Chapter 3, the governing equations and boundary conditions Eqs. (8.8a), (8.8b),
(8.8c), (8.9), (8.10), (8.11), (8.12), (8.13), (8.14), and (8.31) are rewritten in weak form and
implemented in the mathematics module of COMSOL. For each time step the following
steps are carried out: First, a list of points de�ning the current electrode surface is loaded
into COMSOL, and the surface is created using a cubic spline interpolation between the
given points. The computational domain is meshed using a mesh size of ∆s at the electrode
surface, a mesh size of l in a small region next to the electrode, and a much coarser mesh
in the remainder of the domain. Next, the curvature of the surface is calculated at each
point. The solution from the previous time step is then interpolated onto the new grid,
to provide a good initial guess for the transport-reaction problem. Then the transport-
reaction problem is solved. Based on the solution to the transport-reaction problem the
electrode growth ∆L is calculated by solving Eq. (8.31) on the electrode boundary. At each
mesh point a small random contribution ∆Lrand = a3∆tJrand is then added to ∆L. Finally,
the new x and y positions are calculated by adding nx(∆L+∆Lrand) and ny(∆L+∆Lrand)
to the old x and y positions.

The new x and y positions are exported toMATLAB. InMATLAB any inconsistencies
arising from the electrode growth are resolved. If, for instance, the electrode surface
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Figure 8.4: Electrode interface at two di�erent
time steps for c0 = 1 mM and V0 = 10. In this sim-
ulation no part of the domain was rendered passive
at any time. The gray area indicates the electrode
after 30 hours and 22 minutes, and the black lines
indicates the electrode interface after 24 hours and
2 minutes. In the upper part of the domain the
electrode interface is virtually unchanged between
the two times.

Figure 8.5: Division of the computational domain
into a passive and an active region. The reduced
interface (thick black line) divides the domain into
an active region (white) and a passive region (light
gray). The dark gray area shows the real cathode.
The example is taken from a simulation with c0 =
1 mM and Ṽ0 = 10 after deposition for 31 hours
and 28 minutes.

intersects on itself, the points closest to each other at the intersection position are merged
and any intermediate points are discarded. This corresponds to creating a hollow region
in the electrode which is no longer in contact with the remaining electrolyte. The points
are then interpolated so that they are evenly spaced, and exported to COMSOL so that
the entire procedure can be repeated for a new time step.

8.6.1 Reduction of the computational domain

At the cathode the mesh is much �ner than in the remainder of the domain. The number of
mesh points, and hence the computation time, therefore roughly scales with the length of
the electrolyte-cathode interface. This has the unfortunate consequence that the computa-
tion time for each time step increases drastically, when branching structures emerge at the
cathode. To lower the computation time we exploit the fact that the vast majority of the
current enters near the tips of the dendritic structures. The parts of the cathode which are
not near the tips can therefore be left �xed in time and thus removed from the simulation,
without changing the results appreciably. This part of the domain is denoted the passive
region. In regions where the current density is less than 0.001 times the maximum value,
we thus substitute the real, rami�ed electrode with a smooth line connecting the parts of
the electrode with larger currents. The procedure is carried out in such a way that the
real electrode surface can always be recovered from the reduced surface. For a few select
examples we have veri�ed that the results are unchanged by this simplifying procedure.
An example of this is shown in Fig. 8.4. Here, the electrode interface is plotted at two dif-
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Figure 8.6: Example of domain meshing at varying magni�cation. The example is taken from a simu-
lation with c0 = 1 mM and Ṽ0 = 10 after deposition for 7 hours and 50 minutes. The wiggly black line
is the cathode surface. The light gray lines are the mesh boundaries and the red lines show the sections
that are magni�ed. The mesh elements above the cathode surface are only used for storing the solution
between time steps.

ferent time steps for c0 = 1 mM and Ṽ0 = 10. In the simulation no part of the domain was
rendered passive. It is seen that a big part of the domain is virtually unchanged between
the two times. It would therefore not have changed the results appreciably if part of the
domain had been kept passive.

In Fig. 8.5 is shown an example electrode surface together with the reduced surface. It
is seen that the length of the electrolyte-cathode interface is heavily reduced by excluding
parts of the electrode from the computation.

8.6.2 Parameter values

Like in Chapter 7 we limit the parameter space by choosing �xed, physically reasonable
values for the parameters listed in Table 7.1.

From the analysis in Chapter 7 we expect the critical wavelength to be the smallest
feature in the problem, so we choose the mesh size accordingly. We set the mesh size at
the electrode to ∆s = 0.1λc, since our investigations, see Section 8.6.3, show that this is a
suitable resolution. We also require that the mesh size does not exceed 0.1 times the local
radius of curvature. In the bulk part of the system we use a relatively coarse triangular
mesh with mesh size W/6. Close to the cathode, in a region l = 0.5 µm from the electrode
surface, we use a triangular mesh with mesh size l/4. See Fig. 8.6 for a meshing example.
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Figure 8.7: Power spectra averaged over 50 runs for three di�erent mesh sizes, ∆s = {0.1λc, 0.2λc, 0.4λc}.
In each run we usedM = 100 time steps of ∆t = 0.64 s and the parameter values c0 = 10 mM, L = 100 µm,
and Ṽ0 = 30. The full black line shows the analytical result and the dashed black lines show the analytical
standard error on the mean. The result for ∆s = 0.1λc is shown in dark red, the result for ∆s = 0.2λc is
shown in medium red, and the result for ∆s = 0.4λc is shown in bright red.

We choose a �xed value for the bin depth ∆h = 0.2λc. In accordance with the analysis
in Appendix C the time step ∆t is chosen so that it is always smaller than 0.5/Γmax. In
addition, the time step is chosen so that at each point on the cathode, the growth during
the time step is smaller than the local radius of curvature.

We �x the length L to 100 µm. According to the time-scale analysis in Section 8.2 and
the instability growth rates found in Chapter 7, the quasi-steady state approximation is
valid for L = 100 µm. The width W of the system is set to W = 200λc, rounded to the
nearest micrometer. This makes for a system that is broad enough to exhibit interesting
growth patterns, while having a reasonable computation time. The growth is somewhat
a�ected by the symmetry boundaries at y = 0 and y = W , especially at later times.

These choices leave us with two free parameters, which are the bias voltage Ṽ0 and the
electrolyte concentration c0. We solve the system for c0 = {1 mM, 10 mM, 100 mM} and
Ṽ0 = {10, 20, 30}.

8.6.3 Validation

The random nature of the phenomena we are investigating poses obvious challenges when
it comes to validating the numerical simulations. The individual steps in the computation
can be, and have been, thoroughly tested and validated, but testing whether the aggregate
behavior after many time steps is correct is a much taller order. At some level, we simply
have to trust that, if the individual steps are working correctly, then the aggregate behavior
is also correct. To support this view, there is one test we can make of the aggregate behavior
in the very earliest part of the simulation.

In the early stages of the simulation the electrode surface is deformed so little, that the
linear stability analysis from Chapter 7 should still be valid. We thus have an analytical
expression for the wavelength dependent growth rate Γ, which we can compare with the
growth rates found in the numerical simulations. In Appendix C we calculate an expression
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for the average power spectrum of the cathode interface after deposition for a time ttot,
given the type of noise described in Section 8.5,

〈Pn〉 = a6 J+

2∆hWΓn

[
e2Γnttot − 1

]
, (8.36)

where Γn is the growth rate of the n'th wavelength λn = W/n component in the noise
spectrum. We also �nd the standard deviation SD(Pn) of the power spectrum

SD(Pn) ≈
√

2〈Pn〉. (8.37)

Because the standard deviation of Pn is so large compared to the mean value, it is necessary
to average over many runs before a meaningful comparison with Eq. (8.36) can be made.
Averaging the power spectrum over 50 simulations brings the standard error on the mean
down to 20 percent times the mean value, at which point a reasonable comparison can be
made. In Fig. 8.7 the power spectrum averaged over 50 runs is shown for three di�erent
mesh sizes, ∆s = {0.1λc, 0.2λc, 0.4λc}. In each run we used M = 100 time steps of
∆t = 0.64 s and the parameter values c0 = 10 mM, L = 100 µm, and Ṽ0 = 30. The chosen
step size corresponds to 0.01/Γmax. The analytical result (8.36) is also shown together
with the standard error on the mean. The power spectra are normalized with the power
P 0 obtained for Γ = 0,

P 0 = a6J+ttot

∆hW
. (8.38)

It is seen that for ∆s = 0.4λc some of the power in the small wavelength components
is �ltered out. As the mesh size is decreased to ∆s = 0.2λc and ∆s = 0.1λc the low
wavelength components are represented increasingly well.

In the above treatment, the time step was chosen very small compared to the instability
time scale, ∆t = 0.01/Γmax. This was done to approach the limit of continuous time, and
thus enable the best possible comparison with the analytical theory. Such a short time
step is, however, impractical for the much longer simulations in the remainder of the paper.
In those simulations we use time steps as large as ∆t = 0.5/Γmax. Due to the coarser
time resolution employed in the remaining simulations, we expect their power spectrum to
deviate somewhat from the almost ideal behavior seen in Fig. 8.7.

8.7 Results

We let the simulations run until the cathode has grown 25 µm. The time t0 it takes to
reach this point varies greatly with the parameters, mainly because the limiting current
scales with c0. In Fig. 8.8 the cathode surfaces are shown along with heat plots showing
the relative magnitude of the current density at the last time step. The white line shows
the position of the reduced interface at the last time step, and the gray area shows the
actual position and shape of the cathode. The gray electrodeposits have di�erent shades
corresponding to 0.25t0, 0.5t0, 0.75t0, and t0. The heat plot shows the value of Jnorm

+ ,
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Figure 8.8: Electrodeposits in the Ṽ0-c0 plane obtained for L = 100 µm, c0 = {1 mM, 10 mM, 100 mM}
and Ṽ0 = {10, 20, 30}. The aspect ratio varies between the panels, since the width W of the simulated
region is always set to 200λc. The gray area has di�erent shades corresponding to times t0 (light), 0.75t0
(darker), 0.5t0 (darker yet), 0.25t0 (darkest). The white line indicates the reduced surface at time t0. The
contours in the liquid represent the relative magnitude of the cation current.

Figure 8.9: Three simulations of electrodeposits using the same parameter values L = 100 µm, c0 =
1 mM, and Ṽ0 = 10. The electrodeposits are clearly di�erent from one another, but they do share some
general features.

which is the magnitude of the cation current density normalized with its maximum value.
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Figure 8.10: Extended electrodeposits in the Ṽ0-c0 plane obtained by mirroring those from Fig. 8.8 in
their symmetry axes until the width equals 100 µm. The dashed line indicates the �rst mirror plane, i.e.
the part between the dashed line and y = 100 µm are obtained by repeating the part marked by a black
line. Here, in contrast to Fig. 8.8, the aspect ratio is constant across the panels.

In each panel Jnorm
+ thus varies from 0 to 1.

To investigate the reproducibility of the results we have repeated the simulation of the
c0 = 1 mM, Ṽ0 = 10 system two times. All three electrodeposits are seen in Fig. 8.9. The
electrodeposits are clearly di�erent from one another, as expected for a random process,
but they are also seen to share some general features. These shared features are most easily
appreciated by comparing the electrodeposits in Fig. 8.9 to the electrodeposits in Fig. 8.8.
It is seen that the electrodeposits in Fig. 8.9 are much more similar to each other, than to
any of the remaining electrodeposits in Fig. 8.8. Thus, the results are reproducible in the
sense, that the random electrodeposits have some general features that are determined by
the parameter values.

When interpreting the plots in Fig. 8.8, we should be mindful that the aspect ratio is
not the same in each panel. The reason for this is that the vertical axis has the same length,
30 µm, in each panel, while the length of the horizontal axis, W , varies between panels. In
Fig. 8.10 we show adapted versions of the panels from Fig. 8.8. The sub�gures in Fig. 8.10
are created by repeatedly mirroring the sub�gures from Fig. 8.8 until their horizontal length
is 100 µm. Obviously, the resulting extended cathodes are somewhat arti�cial, since we
have imposed some symmetries, which would not be present in a simulation of a system
with W = 100 µm. Nevertheless, we �nd the sub�gures in Fig. 8.10 useful, since they give
a rough impression of the appearance of wider systems and allow for easier comparison of
length scales between panels.

8.7.1 Rationalizing the cathode morphologies

The cathode morphologies observed in Fig. 8.8 and Fig. 8.10 are a function of several
factors, some of which we attempt to outline below. First, we consider the time t0 it takes
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before part of the cathode reaches x = 175 µm. As seen from Eq. (8.1), this time is mainly
a function of the limiting current. This explains the approximately inverse scaling with c0,
which the times in Fig. 8.8 have. The current density also increases with Ṽ0, which is why
the time t0 decreases slightly as Ṽ0 increases. Finally, the time t0 scales with the �lling
factor. This is the reason why t0 is much larger in the upper left panel of Fig. 8.8, than in
either of the two other top row panels.

It is apparent from the lack of rami�ed growth, that the cathode in the upper left panel
in Fig. 8.8 is considerably more stable than the other systems in the leftmost column. To
explain this variation in stability, we refer to Fig. 7.6. There it is shown that the instability
length scale is on the order of 50 µm for c0 = 100 mM at Ṽ0 = 10, while it is considerably
lower for c0 = 10 mM and c0 = 1 mM. Fig. 7.6 also shows that for Ṽ0 > 18 the instability
length scale decreases in size as the concentration increases. The same tendency is observed
in Fig. 8.10.

From the sub�gures in Fig. 8.10 it appears that there is a connection between the
thickness of the layer deposited before the instabilities develop, and the characteristic
length scale of the rami�ed electrodeposits. The analysis in Chapter 7 suggests that there
is indeed such a connection and, moreover, that both lengths should scale with the most
unstable wavelength for the given parameters, see Eq. (7.59). To test this assertion, we
plot the thickness δinst of the layer deposited before the instabilities develop, versus the
most unstable wavelength λmax. We exclude the c0 = 100 mM, Ṽ0 = 10 system, since
instabilities have not yet developed in this system. The resulting plot is seen in Fig. 8.11
together with a linear �t. Although there is a good amount of scatter around the linear
�t, it is seen to capture the general trend reasonably well.

We would like to make a similar plot with the characteristic length scale δchar of the
rami�ed electrodeposits on the y-axis. To extract δchar, we follow the approach in Ref. [38]
and calculate the so-called Minkowski dimension of each electrodeposit. In doing this we
only consider the part of the electrodeposit lying between 170 µm and 190 µm, and as
before we exclude the c0 = 100 mM, Ṽ0 = 10 system. In this work we are actually not
interested in the Minkowski dimension itself, but rather in a partial result that follows
from the analysis. In a range of length scales the electrodeposits appear roughly fractal,
but below a certain length scale the electrodeposits are locally smooth. The length scale
at which this transition occurs can be extracted from the analysis, and we use this length
as the characteristic length scale δchar of the electrodeposit, see Appendix D. In Fig. 8.12
we plot δchar versus λmax, together with a linear �t of the data. While it is clear from the
plot that δchar and λmax are correlated to some degree, this is a more tenuous correlation
than the one between δinst and λmax.

Evidently, λmax plays an important role for the morphology of the electrodeposits.
However, δinst and δchar alone are not su�cient to characterize the electrodeposits. As seen
in the top row of Fig. 8.10, the characteristic length scale δchar varies very little between
Ṽ0 = 20 and Ṽ0 = 30. Yet, the morphology still changes appreciably.
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Figure 8.11: The instability length scale δinst

obtained from the simulations, plotted versus the
most unstable wavelength λmax. Also, a linear
�t highlighting the roughly linear dependence is
shown.

Figure 8.12: The characteristic length scale δchar

obtained from the simulations, plotted versus the
most unstable wavelength λmax. Also, a linear
�t highlighting the roughly linear dependence is
shown.

8.7.2 Decoupling of the factors a�ecting the electrode morphology

The observations in the previous section suggest, that the electrodeposit morphology may
be rationalized in terms of a few simple quantities. The wavelength λmax of the most
unstable perturbation is an obvious candidate for such a quantity, due to its connection with
the characteristic length scale of the electrodeposits. The other quantity is less apparent,
but since λmax is a length scale, we search among the remaining length scales in the
problem. It turns out, that besides the system dimension there is only one other length
scale, namely the width lESC of the extended space-charge region. Like λmax, we estimate
this length from the unperturbed problem lESC = (1− 1/J̃0

+)L. It is in fact reasonable to
expect that lESC in�uences the morphology of the electrodeposits. Outside the ESC, the
ion-transport is governed by a simple linear ambipolar di�usion equation. The ambipolar
di�usion equation has no built-in length scale, and the transport only depends on the ion
concentration at the domain boundaries. However, the ESC modi�es the location of these
domain boundaries by laying as an envelope around the electrodeposits. See Fig. 8.13 for
an illustration. Thus, seen from the electroneutral bulk system the structure of the cathode
becomes smeared out by the ESC. The amount of smearing is determined by the width
lESC of the ESC.

Our hypothesis is that the scale of the electrodeposits is set by λmax and that lESC

modi�es the appearance in a more qualitative sense. To test this hypothesis we vary λmax

and lESC independently and calculate electrodeposits for nine sets of parameter values. In
Fig. 8.14 we show contours of λmax and lESC in the Ṽ0-c0 plane. These contours de�ne
a new coordinate system, in which λmax and lESC are orthogonal to one another. The
nine intersection points of the gray lines indicate the nine sets of parameter values we
investigate.

In each of the nine simulations we set the width of the domain to W = 200λmax,
and we let the electrodeposits grow until they reach a distance of W = 200λmax from
their starting point. In Fig. 8.15 the resulting electrodeposits are shown in the λmax-lESC

coordinate system. In each plot the axis is scaled to W = 200λmax, so the real physical
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Figure 8.13: Plot of the space-charge density
near a dendrite tip. The outer edge of the ESC
forms an envelope around the electrodeposit.

Figure 8.14: Contours of constant λmax and lESC

in the Ṽ0-c0 plane. The contours de�ne a new λmax-
lESC coordinate system.

dimensions vary by a factor of three from λmax = 100 nm to λmax = 300 nm. This result
is part of work in progress, and this is the reason why the λmax = 150 nm, lESC = 50 nm
system is still missing. Also, the λmax = 300 nm, lESC = 50 nm system is not fully grown.

First and foremost, we notice that the smallest characteristic dimensions have more or
less the same size in all the panels of Fig. 8.15. Since the axes are scaled by W = 200λmax

this is in agreement with the considerations in Section 8.7.1. Secondly, we see that the
qualitative appearance is not only a function of lESC. For instance, the morphology varies
quite a lot along the top row in Fig. 8.15. On the other hand, the systems along the diag-
onal seem to share some qualitative features. In hindsight, the reason for this is painfully
obvious: We have hypothesized that the scale of the electrodeposits is set by λmax, yet
we have expressed lESC in SI units. In order to obtain a proper orthogonalization of the
e�ects, we should of course have expressed lESC in units of λmax. Along the diagonal in
Fig. 8.15 lESC/λmax has comparatively small variations, and this presumably explains why
the deposits are relatively similar there. Thus, although we have not succeeded in decou-
pling the factors which determine the electrode morphology, this preliminary investigation
points out some promising directions for future work.

8.8 Conclusion

Our model improves on existing models in three important ways: it can treat systems
at overlimiting current including the extended space-charge region, it allows for a proper
reaction boundary condition, and it can be tested against results from sharp-interface
stability analyses. Our model is, however, not without issues of its own. Perhaps the
most apparent of these is the quasi-steady-state assumption. This assumption limits the
applicability of the model to short systems, in which the di�usion time is small compared
to the deposition time, as discussed in Section 8.2. In principle the phase-�eld models are
superior to our model in this aspect, since they do not have this limitation. However, it is
not of practical relevance, as all of the published phase-�eld simulations are for systems so
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Figure 8.15: Electrodeposits in the λmax-lESC plane. The axes are scaled with W = 200λmax, so the
real physical dimensions vary along the λmax axis. In the scaled units shown here, the smallest features of
the electrodeposits are seen to have roughly the same size in all the panels.

short that the quasi-steady-state assumption is valid anyway [106, 67, 17].

It is well known, that the strong electric �elds at the dendrite tips give rise to electro-
osmotic velocity �elds in the system [34, 35, 47]. To simplify the treatment and bring out
the essential physics of electrodeposition, we have chosen not to include �uid dynamics
and advection in our model. However, as seen in Chapter 5 it is straightforward to include
these e�ects.

The standard Butler�Volmer model used in this work is a �rst step towards realistic
boundary conditions. As discussed in Section 2.6.2 a more elaborate model might in-
clude Marcus kinetics and an explicit or implicit inclusion of the electric double layer.
However, any of these reaction models can be easily implemented in the framework of the
sharp-interface model, and as such the speci�c Butler�Volmer model employed in this work
does not constitute a fundamental limitation. Furthermore, the preliminary investigations
in Section 8.7.1 and Section 8.7.2 indicate, that the electrode morphology might be ex-
plainable in terms of the simple parameters λmax and lESC/λmax. If that is the case, the
in�uence of the speci�c reaction expression will mainly enter through its e�ect on λmax

and lESC/λmax.
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Since our sharp-interface model includes, or allows for the easy inclusion of, most e�ects
which are important for electrodeposition in 2D, a natural next step is to see how our results
compare to experimental eleectrodeposits. Unfortunately, most such experimental data
are viewed at the millimeter or centimeter scale, whereas our simulation results are at the
micrometer scale. In one paper, Ref. [70], the electrodeposits are probed at the micrometer
scale, but the results do not make for the best comparison, since the morphology of their
electrodeposits was a result of adding a surface active molecule. We hope that as more
experimental results become available, it will be possible to perform rigorous tests of our
model. In the meantime, further investigations into the factors determining the electrode
morphology seem a fruitful endeavor.



116 Sharp-interface model of electrodeposition



Chapter 9

Conclusion and outlook

9.1 Conclusion

In this thesis we have investigated a range of nonlinear transport and growth phenomena
occurring during concentration polarization at overlimiting current. In the studies we have
employed a complementary combination of numerical and analytical methods. The detailed
numerical simulations have provided insight into the important physical mechanisms, while
the analytical models have generalized the speci�c numerical results, as well as aided in
the interpretation of the numerical results.

First, we investigated the fundamental concentration polarization problem of an over-
limiting current running through the extended space-charge region. Building on an as-
sumption of a quasi-uniform charge density distribution (QCD), we derived an analytical
model for the transport in a system with an extended space-charge region. The model is
distinguished by being highly accurate as well as easy to use. We demonstrated the versatil-
ity of the model by deriving a selection of results characterizing the extended space-charge
region. We believe that this model is an important theoretical tool, as it gives a simple and
quite accurate description of a frequently encountered feature of concentration polarization.

Second, we investigated concentration polarization in a microchannel with charged
channel walls. Our work on this problem was inspired by a previous paper [27], which
treated some of the important mechanisms while leaving a few open questions. Principal
among these questions was the role of advection in the microchannel. To answer this
question we employed a hierarchy of models including a full numerical model, a boundary
layer model, and a selection of analytical models. We found that the advective transport
can be divided into a bulk contribution and a surface contribution. The �rst of these
vanishes for su�ciently long and thin channels, while the latter is present regardless of
channel aspect ratio. In the limit of long, thin channels we derived an accurate analytical
models, which extends the model published in Ref. [27] by including surface advection as
well as surface di�usion.

Third, we investigated water splitting at a permselective membrane during concentra-
tion polarization. We �rst employed a very simple reaction model, where we assumed
that the reactions were so fast, that the autodissociation reaction was in equilibrium at
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all times. For this simple system we were able to derive a reasonably accurate analytical
model for the combined transport-reaction problem. Surprisingly, the analytical model had
a more general applicability than initially thought. Thus, in a slightly modi�ed form, the
model gave a good description of the transport in systems with more complicated reaction
models. We believe that this analytical model could prove a valuable tool in the study and
interpretation of water splitting at permselective membranes. As an example of this, we
�tted experimental data from the literature to the analytical model.

Fourth, we studied the morphological stability of an electrode during electrodeposition.
We developed both numerical and analytical models for the instability growth rate as a
function of the perturbation wavelength. These models extended previous studies of the
stability problem by applying in the important overlimiting regime, as well as the commonly
studied underlimiting regime. From the analytical results we derived an expression for the
instability length scale, which indicated that the most unstable wavelength obtained from
the stability problem, might also set the length scale of the electrodeposits after the rami�ed
deposits have developed.

Finally, we investigated the development of rami�ed electrodeposits using a novel sharp-
interface model. The development of this new model was motivated by the shortcomings
of the established phase-�eld models, which only apply in the underlimiting regime and
implement the nonlinear electrode reactions in a contentious way. Our model was validated
in the initial stages of the growth by comparison with the results of the stability analysis.
The sharp-interface model includes, or allows for the easy inclusion of, most e�ects which
are important for electrodeposition in two dimensions. We are therefore hopeful that this
model could aid in developing a more quantitative understanding of electrodeposition and
rami�ed growth.

9.2 Outlook

The work presented in this thesis answers some important questions in the �eld of concen-
tration polarization, but it also points out some promising directions for future work.

With our work in Chapter 5 the important transport phenomena in a microchannel
during concentration polarization are well understood. However, since the channel wall
charge can be modi�ed by chemical reactions, these transport phenomena may change
depending on the dynamics of water splitting and the character of the chemical groups at
the channel walls [49, 5, 3, 2, 9, 48]. This constitutes a very rich problem with couplings
between chemical reactions, ion-transport, �uid �ow, and electrostatics. The problem is
quite di�cult to treat, and in particular to rationalize in terms of few parameters, but
nevertheless it is interesting direction for future work. Perhaps of greater interest is the
generalization from one microchannel to a network of interconnected channels, representing
a microporous material. Currently, this generalization is being pursued in the group of Ali
Mani at Stanford [1].

Pertaining to the water splitting problem, our analytical model seems a promising tool
for rationalizing the ion transport and reaction kinetics. The simple analytical connection
between the salt current and the water-ion current provides a convenient probe of the
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water-ion concentration at the entrance to the EDL. Since the behavior of this water-ion
concentration depends on the reaction model, this also happens to be an indirect probe of
the reaction kinetics. For instance, we found that the choice of reaction kinetics impacts
the way the water-ion concentration at the EDL entrance scales with the salt concentration.
Further numerical work with varying reaction models, could provide more such connections
between water-ion concentration and reaction kinetics. In an experimental setting, these
relations would enable us to draw conclusions about the reaction kinetics, based on the
measured salt and water-ion currents.

The sharp-interface model employed in the work on electrodeposition lends itself to
several extensions and generalizations. These include an extension to a more elaborate
reaction model, inclusion of crystal anisotropy in the surface energy, and inclusion of �uid
�ow and advection. An obvious direction to take, is to generalize the current quasi-steady
model to a fully time-dependent model. We have in fact already made this generalization,
but since the time-dependent model is associated with greater computational costs, we
have only carried out a few simulations with this model. The most promising direction to
pursue at this time, is probably a more thorough study of the factors a�ecting the electrode
morphology. The investigations we have already carried out, suggest that the most unstable
wavelength λmax and the width lESC of the ESC measured in units of λmax, may be the
main factors determining the electrode morphology. Further numerical simulations could
reveal whether that is indeed the case.
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Appendix A

Additional results for Chapter 5

To supplement the results in Chapter 5, we include here the I-V characteristics for α = 0.01
and α = 0.1. For the �rst case, the FULL model is left out, and only the boundary layer
(BNDF) model and the analytical (ASCA, ASC and ABLK) models are included.
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Figure A.1: I-V characteristics for α = 0.01, λ̄D = {0.0001, 0.001, 0.01, 0.1}, and ρs =
{0.001, 0.01, 0.1, 1}. The dashed (red) curves are obtained from the BNDF model. The (blue) dash-
dot curves are from the ASC model, and the (green) dash-diamond curves are from the ASCA model. The
(gray) long-dash-short-dash curves are obtained from the ABLK model. The background patterns indicate
the dominant overlimiting conduction mechanism. The (green) cross-hatched pattern indicate that surface
advection and surface conduction are the dominant mechanisms. The (blue) vertically hatched pattern
indicate that surface conduction without surface advection is the dominant mechanism. The (gray) skew-
hatched pattern indicate that bulk conduction through the ESC is the dominant mechanism. Intermediate
cases are indicated with mixed background patterns.
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Figure A.2: I-V characteristics for α = 0.1, λ̄D = {0.0001, 0.001, 0.01, 0.1}, and ρs = {0.001, 0.01, 0.1, 1}.
The full (black) line show the characteristics obtained from the FULL model. The dashed (red) curves
are obtained from the BNDF model. The (blue) dash-dot curves are from the ASC model, and the
(green) dash-diamond curves are from the ASCA model. The (gray) long-dash-short-dash curves are
obtained from the ABLK model. The background patterns indicate the dominant overlimiting conduction
mechanism. The (green) cross-hatched pattern indicate that surface advection and surface conduction are
the dominant mechanisms. The (blue) vertically hatched pattern indicate that surface conduction without
surface advection is the dominant mechanism. The (red) horizontally hatched pattern indicate that bulk
advection is the dominant mechanism. The (gray) skew-hatched pattern indicate that bulk conduction
through the ESC is the dominant mechanism. Intermediate cases are indicated with mixed background
patterns.
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Appendix B

Phase-�eld models of reaction

kinetics

An important feature of the eletrodeposition model presented in Chapter 8 is that it allows
for a proper nonlinear reaction model at the electrode interface. The reaction model
Eq. (8.14) is equivalent to the expression (2.72)

R = i0
[
e−αcZη̃ − eαaZη̃

]
, (B.1)

i0 = k0c
1−α
+ e−γ̄

∗κ, (B.2)

where i0 is the exchange current density.
In phase-�eld models a phase-�eld parameter ξ ∈ [0; 1] is used to distinguish between

the solid phase (ξ = 1) and the aqueous phase (ξ = 0). In the interface region the phase-
�eld parameter ξ varies smoothly between 0 and 1. To determine the dynamics of the
system a free energy F [ξ, ci, φ] (or grand free energy Ω[ξ, µi, φ]) is introduced, which, as a
function of ξ, interpolates between the free energy of a pure electrolyte and the free energy
of a pure electrode. Using a variational approach the ion-currents can be found from the
free energies,

Ji = −Dici∇
δF

δci
, (B.3)

and together with the relevant conservation equations this de�nes the ion-transport prob-
lem.

The fundamental assumption in phase-�eld models of reaction kinetics is, that a similar
variational approach can be used to de�ne the overpotential as a local �eld quantity,

η̃ l[ξ, ci, φ] ∝ δF

δξ
, or η̃ l[ξ, µi, φ] ∝ δΩ

δξ
, (B.4)

where we have omitted the proportionality constants, and the subscript in η̃ l denotes that
it is a local overpotential. The total overpotential η̃ is de�ned as the integral of the local
overpotential η̃ l over the interface region,

η̃ =
1

δ

∫
η̃ l[ξ, ci, φ] dx, (B.5)
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126 Phase-�eld models of reaction kinetics

where δ is the width of the interface region and we have assumed the system to be one-
dimensional. The phase-�eld parameter ξ is then assumed to evolve according to the
Butler�Volmer like expression

∂tξ ∝
[
e−αcZη̃ l[ξ,ci,φ] − eαaZη̃ l[ξ,ci,φ]

]
, (B.6)

where, again, we omitted the proportionality constant. The current into the electrode
corresponds to the phase-�eld growth rate ∂tξ integrated over the interface region,

I ∝
∫
∂tξ dx

∝
∫ [

e−αcZη̃ l[ξ,ci,φ] − eαaZη̃ l[ξ,ci,φ]
]

dx. (B.7)

Super�cially, this expression looks fairly similar to the Butler�Volmer model Eq. (B.1).
However, in general the two expressions are not identical. The reason for this is that the
total overpotential η̃ occurring in Eq. (B.1) is the integral over the local overpotential η̃ l

occurring in Eq. (B.7). Thus, Eq. (B.1) and Eq. (B.7) yield identical results if, and only
if, the local overpotential η̃ l has a form which makes it indi�erent to the order in which
integration and exponentiation are performed. Although this condition is satis�ed for small
or constant overpotentials, there is no way of guaranteeing it in general. Consequently, we
expect Eq. (B.7) to di�er from Eq. (B.1) in most cases.

Another issue with the phase-�eld models of reaction kinetics is, that the connection
between the electric potential φ̃ and the total overpotential η̃ is not apparent. From
Eq. (2.67) we expect that

η̃ = ∆φ̃ −∆φ̃eq, (B.8)

where ∆φ̃ is the potential di�erence across the electrode interface, and ∆φ̃eq is the poten-
tial di�erence in equilibrium. However, there does not seem to be any guarantee that this
is true for phase-�eld reaction kinetics. In general, since most phase-�eld models of elec-
trodeposition lack a simple sharp-interface limit [68], it is di�cult to relate the parameters
in a phase-�eld reaction model to those in the corresponding sharp-interface model.

The above objections to the phase-�eld reaction models do not necessarily mean that
those models are wrong. After all, the Butler�Volmer model or similar nonlinear reaction
models are by no means exact, so it is entirely possible that phase-�eld reaction models
approximate the true reaction kinetics equally well. However, in lack of convincing reasons
to believe that this is the case, the various sharp-interface reaction models remain the
preferable way of modeling electrode reactions.



Appendix C

Initial growth of the electrode

In the initial part of the simulation the electrode is so �at that the linear stability analysis
from Chapter 7 gives a good description of the growth. We parameterize the cathode
position as

x = X(t) + f(y, t), (C.1)

where f(y, t) is the y-dependent deviation from the mean electrode position X(t). Accord-
ing to the linear stability analysis each mode grows exponentially in time with the growth
factor Γ. After a time t an initial perturbation,

f(y, 0) =
N∑

n=1

ane
ikny, (C.2)

has therefore evolved to

f(y, t) =
N∑

n=1

ane
Γnteikny. (C.3)

We note that some of the growth rates Γn can be negative. In our simulation we add new
perturbations with small time intervals, which we, for the purpose of this analysis, assume
to be evenly spaced. After M time intervals ∆t the surface is therefore described by

f(y,M∆t) =

M∑

m=0

N∑

n=1

anme
Γn(M−m)∆teikny. (C.4)

We are interested in the average power of each mode

〈Pn〉 =

〈∣∣∣∣∣
M∑

m=0

anme
Γn(M−m)∆t

∣∣∣∣∣

2〉
. (C.5)
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128 Initial growth of the electrode

The coe�cients are random and uncorrelated with zero mean. On average the cross-terms
in the sum therefore cancel and we can simplify,

〈Pn〉 =

〈
M∑

m=0

|anm|2e2Γn(M−m)∆t

〉

= 〈|an|2〉
M∑

m=0

e2Γn(M−m)∆t

= 〈|an|2〉
e2Γn(M+1)∆t − 1

e2Γn∆t − 1
. (C.6)

The variance of the power is given as

Var(Pn) = 〈P 2
n〉 − 〈Pn〉2. (C.7)

The �rst of these terms is

〈P 2
n〉 =

〈

∣∣∣∣∣
M∑

m=0

anme
Γn(M−m)∆t

∣∣∣∣∣

2



2〉

= e4ΓnM∆t

〈

∣∣∣∣∣
M∑

m=0

anmq
m

∣∣∣∣∣

2



2〉
, (C.8)

where q = e−Γn∆t. Writing out the absolute value

〈P 2
n〉 = e4ΓnM∆t

〈(
M∑

m′=0

M∑

m=0

anma
∗
nm′q

m+m′
)2〉

, (C.9)

where superscript ∗ denotes complex conjugation. Because the coe�cients are uncorrelated
with mean 0, only the terms including |anm|2|anm′ |2 survive in the average of the square,

〈P 2
n〉 = e4ΓnM∆t

〈
1

2

M∑

m′=0

M∑

m=0

6|anm|2|anm′ |2q2(m+m′)

〉

= 3e4ΓnM∆t
M∑

m′=0

M∑

m=0

〈
|anm|2|anm′ |2

〉
q2(m+m′). (C.10)

Here, the factor of six comes from the binomial coe�cient and the factor of a half takes
into account that the double sum counts each combination twice. Now, there are two
possibilities; eitherm 6= m′ orm = m′. In the �rst case |anm|2 and |anm′ |2 are uncorrelated,
meaning that

〈
|anm|2|anm′ |2

〉
=
〈
|an|2

〉2
. (C.11)
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Whereas if m = m′, then

〈
|anm|2|anm′ |2

〉
=
〈
|an|4

〉
. (C.12)

This means that

〈P 2
n〉 = 3e4ΓnM∆t

〈
|an|2

〉2
M∑

m′ 6=m

M∑

m=0

q2(m+m′)

+ 3e4ΓnM∆t
〈
|an|4

〉 M∑

m=0

q4m

= 3e4ΓnM∆t
〈
|an|2

〉2
M∑

m′=0

M∑

m=0

q2(m+m′)

+ 3e4ΓnM∆t
(〈
|an|4

〉
−
〈
|an|2

〉2
) M∑

m=0

q4m

= 3〈Pn〉2

+ 3e4ΓnM∆t
(〈
|an|4

〉
−
〈
|an|2

〉2
) q4(M+1) − 1

q4 − 1
. (C.13)

The variance of the power is thus given as

Var(Pn) = 2〈Pn〉2 +
(〈
|an|4

〉
−
〈
|an|2

〉2
) e4Γn(M+1)∆t − 1

e4Γn∆t − 1
. (C.14)

If Γn∆t � 1 we can expand the denominators of 〈Pn〉2 and the last term. We �nd that
they scale as 4(Γn∆t)2 and 4Γn∆t, respectively. In the limit Γn∆t� 1 the �rst term thus
dominates over the second, so to a good approximation we have

Var(Pn) ≈ 2〈Pn〉2, (C.15)

SD(Pn) ≈
√

2〈Pn〉. (C.16)

In the simulations the surface perturbations have the form

f(y, 0) =
N∑

n=1

bnh(y − n∆y), (C.17)

where,

h(y) =

{
1, 0 ≤ y ≤ ∆s,
0, else.

(C.18)
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We take the absolute square of f(y, 0) given as both Eq. (C.2) and Eq. (C.17), and integrate
over the domain to obtain

∫ W

0
|f(y, 0)|2 dy =

N∑

n=1

|bn|2
∫ W

0
|h(y − n∆y)|2 dy

= ∆s
N∑

n=1

|bn|2, (C.19)

∫ W

0
|f(y, 0)|2 dy =

N∑

n=1

|an|2
∫ W

0
|eikny|2 dy

= W
N∑

n=1

|an|2. (C.20)

The mean square of bn is thus related to the mean square of an as

〈|an|2〉 =
∆s

W
〈|bn|2〉 =

1

N
〈|bn|2〉. (C.21)

From Eq. (8.35) we have that

〈|bn|2〉 = a6 J+∆t

∆h∆s
. (C.22)

Inserting in Eq. (C.6) we �nd

〈Pn〉 =
1

N
a6 J+∆t

∆h∆s

e2Γn(M+1)∆t − 1

e2Γn∆t − 1
(C.23)

= a6 J+∆t

∆hW

e2Γn(ttot+∆t) − 1

e2Γn∆t − 1
, (C.24)

which is seen to be independent of the bin size ∆s. We also introduced the total time
ttot = M∆t. In a consistent scheme the power spectrum should of course only depend on
the total time, and not on the size ∆t of the time steps. For small values of Γn∆t we can
expand the denominator and neglect the ∆t in the nominator,

〈Pn〉 ≈ a6 J+

2∆hWΓn

[
e2Γnttot − 1

]
. (C.25)

So, as long as 2Γn∆t � 1 the power spectrum does not depend on the size of the time
step.

For larger values of 2Γn∆t the power spectrum does depend on the size of the time
step. However, as long as 2Γn∆t . 1, we do not expect the overall morphology of the
electrode to have a signi�cant dependence on the time step.



Appendix D

Characteristic length scale of

electrodeposits

To �nd the characteristic length scale δchar of the rami�ed electrodeposits we follow Ref. [38]
and use the box-counting method to calculate the Minkowski dimension of the deposit
perimeter. As a �rst step in calculating the Minkowski dimension, we place a square grid
with side length ε over each deposit, and count the number N(ε) of boxes it takes to
completely cover the perimeter of the part of the deposit lying between x = 170 µm and
x = 190 µm. An example is shown in Fig. D.1.

For a proper fractal geometry, the Minkowski dimension is de�ned as

δM = − lim
ε→0

ln
[
N(ε)

]

ln(ε)
. (D.1)

The electrodeposits we are investigating are not fractal at all length scales, but in a range
of length scales, we can calculate an approximate Minkowski dimension as the negative
slope in a ln

[
N(ε)

]
vs ln(ε) plot. In Fig. D.2 such a plot is seen, together with linear �ts

in each of the two approximately linear regions. The Minkowski dimension at small ε is
nearly unity, indicating that the deposit perimeter is locally smooth at this length scale.
For larger values of ε the Minkowski dimension deviates from unity, because the deposit is
approximately fractal in this size range. At the transition point between these two regions
is the smallest length scale, which is related to the morphology of the electrodeposit. This
length scale we denote the characteristic length δchar. Technically, we de�ne δchar as the
point where the linear �ts from each region cross each other, as indicated in Fig. D.2.
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Figure D.1: The box-counting method illustrated
on the electrodeposit obtained for c0 = 10 mM and
V0 = 20. The boxes that cover part of the de-
posit perimeter are shown in gray and the remain-
ing boxes are shown in white. In this example the
grid size is ε = 0.85 µm and the number of boxes it
takes to cover the perimeter is N(ε) = 234.

Figure D.2: The number N(ε) of boxes it takes
to cover the electrodeposit plotted vs the box side
length ε. A linear �t is shown in each of the two
approximately linear regions, and the Minkowski
dimension in each region is indicated. The crossing
point between the linear �ts is marked by an arrow,
and the characteristic dimensions δchar = 0.50 µm
is calculated based on this crossing point.



Appendix E

Paper published in Phys Rev E

Title: Transport-limited water splitting at ion-selective interfaces during concentration

Authors: Christo�er P. Nielsen and Henrik Bruus.

Reference: Published in Physical Review E 89, 042405 (2014) (14 pages)

133



PHYSICAL REVIEW E 89, 042405 (2014)
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We present an analytical model of salt- and water-ion transport across an ion-selective interface based
on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage
characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with
experimental results published in the literature. The analytical results are furthermore in agreement with direct
numerical simulations. As part of the analysis, we find approximate solutions to the classical problem of
pure salt transport across an ion-selective interface. These solutions provide closed-form expressions for the
current-voltage characteristics, which include the overlimiting current due to the development of an extended
space-charge region. Finally, we discuss how the addition of an acid or a base affects the transport properties of
the system and thus provide predictions accessible to further experimental tests of the model.
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I. INTRODUCTION

Ion transport across an ion-selective interface, such as a
nanochannel, an electrode, or an ion-selective membrane, has
found numerous applications in, e.g., dialysis, desalination,
battery and fuel cell technology, electrochemistry, and mi-
crofluidic systems [1–7]. A common feature of ion transport
across ion-selective interfaces is the phenomenon known as
concentration polarization, in which the ion concentration
undergoes depletion next to the interface leading to a de-
crease in conductivity [1]. In the classical one-dimensional
local electroneutrality (LEN) modeling of the problem, the
conductivity goes to zero as the voltage drop over the system
is increased, and the current approaches the so-called limiting
current. Experimentally it has, however, been found that many
concentration-polarized systems can sustain a significant over-
limiting current [1,8,9]. A number of mechanisms have been
suggested as explanation for this overlimiting current: these
include the development of an extended space-charge region
(ESC) [10–12], electro-osmotic instabilities (EOI) [13,14],
water splitting [15,16], current-induced membrane discharge
(CIMD) [17], and surface conduction in microchannels [18].
Increasing amounts of evidence points to EOI as the primary
mechanism in systems where advection is not suppressed by
the geometry [9,14]. However, because of the experimen-
tal and theoretical difficulties associated with investigating
concentration polarization, no unified picture describing the
relative importance of mechanisms in different regimes has
yet emerged. Concentration polarization is therefore still very
much an open problem, warranting additional investigations
into the underlying mechanisms.

In this paper, we investigate the effect of water splitting
and an extended space-charge region on systems exhibiting
concentration polarization. Apart from being relevant for
classical concentration polarization in macroscopic systems,
our investigation of water splitting is motivated by the recent
studies which highlight the importance of reactions between
hydronium and surface groups in microsystems [19–22].

Water splitting has long been investigated as a possible
cause of overlimiting current in systems exhibiting concentra-
tion polarization [15,23,24]. In 1979, Kharkats predicted that

besides adding to the total current in the system, a water-ion
current is also able to increase, or exalt, the current of salt ions
above the limiting current [16]. Since then, the effect and origin
of the water-ion current has drawn considerable attention,
and experiments have largely confirmed the fundamentals of
Kharkats prediction [25–29]. It is reasonably well understood
that the origin of the water-ion current is water dissociation
taking place in a region close to the ion-selective interface.
In many experiments, the magnitude of the water-ion current
does, however, indicate a reaction rate much larger than what
should be possible, considering only the bulk dissociation rates
[1,30]. A number of models have been suggested to explain
this remarkable feature. Some of these ascribe the increased
reaction rate to catalytic interactions with membrane surface
groups [25,31,32], while others use that the dissociation rate
is increased in strong electric fields and employ a phenomeno-
logical function with one or more fitting parameters to describe
this dependence [26,30,33,34]. In lack of conclusive evidence
in support of either theory, the only thing that can be said with
some confidence is that the actual reaction kinetics is probably
exceedingly complicated.

In this work, we avoid the subject of the detailed reaction ki-
netics altogether by simply assuming that the dissociation rate
is so large that the water-ion current is transport limited rather
than reaction limited. Put in another way, we assume local
equilibrium of the water ions everywhere in the system as done
in Refs. [17,35]. Since the analysis given in this paper is based
on this assumption, experiments supporting our conclusions
would serve to corroborate the underlying assumption of local
equilibrium of the water-dissociation reaction. In particular,
the techniques allowing for individual measurements of salt
current and water-ion current, such as titration-based methods
[26,27], are highly relevant, as many of our results and
predictions depend explicitly on both these currents.

Even for systems where the water-equilibrium assumption
is not justified, the presented analysis is valuable since it
provides an upper bound to the currents which can be obtained
(assuming that the equilibrium constant Kw remains fixed).
Also, since the developed model employs a minimum of
assumptions about the system, it is an excellent model to
benchmark more detailed reaction models against. It has

1539-3755/2014/89(4)/042405(14) 042405-1 ©2014 American Physical Society
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FIG. 1. (a) Normalized concentrations of salt ions (c+ and c−) and water ions (cOH and cH) plotted versus normalized position x. The curves
are obtained from a numerical simulation (see Sec. V). The top left inset is a zoom of the space-charge region (SCR) in front of the membrane.
The SCR is composed of an extended space-charge region (ESC) from around xρ to L∗, and a quasiequilibrium electric double layer (EDL)
from L∗ to 1. The center inset is a plot of the normalized cation concentration c+ showing the very high concentration inside the membrane
1 < x < 1 + α (gray). (b) Sketch of the studied system with salt ions (+ and −) and water ions (H+ and OH−). An inlet compartment
(0 < x < 1) and an outlet compartment (1 + α < x < 1 + α + β) separated by an ion-selective nanoporous membrane. To the left (x = 0) and
right (x = 1 + α + β), the system is connected to reservoirs of well-defined salt concentration and pH. The system is translationally invariant
in the yz plane parallel to the membrane.

for instance been a success criterion for reaction models
that they are able to replicate the characteristic S shape
(increase-plateau-increase, see Sec. V B) of the experimental
current-voltage curves [34]. However, such S-shaped current-
voltage curves are found even in our simple model, which
suggests that they are a result of the transport properties of the
system rather than the detailed reaction kinetics.

To simplify the treatment and bring forth the fundamental
physics of water splitting, we study a system which is transla-
tionally invariant parallel to the ion-selective interface, and we
use a one-dimensional (1D) model to describe this essentially
one-dimensional system. By employing a 1D model, we
disregard the possibility of spontaneous symmetry breaking,
occurring at higher voltages in the form of electro-osmotic
instabilities (EOI) [13,14], as this effect can only be described
in a full three-dimensional (3D) model. For a number of
systems where advection is suppressed by gels, microchannels,
or porous structures, disregarding EOI is actually justified, and
even when that is not the case our model provides a way to
study the behavior before EOI sets in as well as the transition
to EOI.

As a concrete realization of a system exhibiting concen-
tration polarization, we investigate transport between two
reservoirs across an ion-selective membrane. We have chosen
this particular system for our study because the boundary
conditions provided by the reservoirs are both simple and
well defined. These features render the analysis conceptually
simple, and for the water-splitting part of the problem,
a reservoir is the simplest way of providing well-defined
boundary conditions on the hydronium and hydroxide ions.
Although the ideal reservoir boundary condition is a theoretical
construct, it is possible to realize systems resembling the
model system. An example of this is an electrodialysis cell as
illustrated in Ref. [1]. Moreover, the simple solutions obtained
from the studied system can be transformed into solutions

for systems with more complicated boundary conditions. In
Sec. VII we give examples of such transformations.

II. MODEL SYSTEM

The one-dimensional model system stretching along the
x axis is shown in Fig. 1. It consists of a central ion-
selective membrane of length αL connected to two well-mixed
reservoirs, to the left and right, through two compartments of
lengths L and βL, respectively. The membrane is assumed
to be much thicker than the local Debye length, so that
the interior of the membrane can be treated as locally
electroneutral. The reservoirs have well-defined pH, and there
is a potential difference V0 between them. The left reservoir
has salt concentration c0 and the right reservoir has salt
concentration cRc0. The system is translationally invariant
in the yz plane parallel to the membrane. In Fig. 1(a) are
shown typical normalized concentration distributions versus
normalized position. These are obtained from the numerical
simulations described in Sec. V. The top left inset shows
the ion and charge concentrations in the space-charge region
(SCR) near the membrane and two points xρ and L∗ are
defined for later use: xρ denotes the position of the peak in
space-charge density and L∗ denotes the beginning of the
quasiequilibrium electric double layer (EDL). The part of
the SCR lying outside the EDL, i.e., from around xρ to L∗,
we denote the extended space-charge region (ESC). Inside
the membrane, the concentration of anions vanishes while the
concentration of cations becomes very large (∼ 103 times the
reservoir concentration, depending on system parameters). In
Fig. 1(b) is shown a sketch of the model system. The ions in the
model are positive and negative salt ions with concentration
c+ and c−, respectively, as well as hydronium and hydroxide
ions (water ions) with concentration cH and cOH, respectively.
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III. GOVERNING EQUATIONS

We consider monovalent ions and normalize the ion con-
centrations by the reservoir salt concentration c0 = c+(0) =
c−(0). The electrical potential φ is normalized by the thermal
voltage VT = kBT /e and the position by the length L.
The cation current is normalized by the classical limiting
current Jlim = 2D+c0/L, the anion current is normalized
by 2D−c0/L, while JH and JOH are both normalized by
2DOHc0/L. The nondimensionalized ion currents are

2J+ = −∂xc+ − c+∂xφ, (1a)

2J− = −∂xc− + c−∂xφ, (1b)

2JH = −δ∂xcH − δcH∂xφ, (1c)

2JOH = −∂xcOH + cOH∂xφ, (1d)

where we have introduced the diffusivity ratio δ ≡ DH/DOH =
1.75. In the remainder of the paper, we are primarily concerned
with nondimensional quantities. For the rare exceptions of
dimensionful quantities, these will be indicated by a tilde.

In steady state the relevant Nernst-Planck equations for the
salt ions are

∂xJ± = 0. (2)

Similar equations govern the motion of hydronium and
hydroxide, with the addition of a reaction term R, which
derives from the autoprotolytic reaction of water

0 = −∂xJH + R, (3a)

0 = −∂xJOH + R. (3b)

Here, the reaction rates are identical since the reaction

H3O+ + OH− � 2H2O (4)

produces or consumes one unit of each species. Introducing the
water-ion current Jw ≡ JH − JOH we obtain a single transport
equation for the water ions

∂xJw = 0. (5)

The fundamental assumption in this work is that the time scale
of the autoprotolysis is much shorter than the transport time of
hydronium and hydroxide. That is, we work in the limit of high
Damköhler number, for which the hydronium and hydroxide
concentrations are simply related via the equilibrium constant
Kw = c̃OHc̃H, which for dimensionless concentrations can be
written as

cOH cH = n2, with n =
√

Kw

c0
. (6)

The final governing equation is the Poisson equation

2λ̄2
D∂2

xφ = −c+ + c− − cH + cOH, (7a)

λ̄D ≡ λD

L
= 1

L

√
εwVT

2ec0
, (7b)

where the nondimensionalized Debye length λ̄D has been in-
troduced, with e being the unit charge and εw the permittivity of
water. Since λ̄2

D is a small parameter, any small deviation from
charge neutrality will greatly affect the potential in a manner

which tends to restore charge neutrality. This observation
is the basis of the often used local electroneutrality (LEN)
assumption, where the bulk liquid is assumed electroneutral
and the only deviation from electroneutrality is in the Debye
layer.

The membrane is modeled as having a high density Nm of
frozen negative charges (normalized by c0), a porosity εP, a
permittivity εm, and a tortuosity τ . Inside the membrane, the
currents and the Poisson equation are therefore modified as

2Ji = εP

τ
(−∂xci ± ci∂xφ), (8a)

εm

εw
2λ̄2

D∂2
xφ = εP(−c+ + c− − cH + cOH) + Nm. (8b)

Most ion-selective membranes have a complex structure [36–
38] making it difficult to properly determine the values of Nm,
εP, εm, and τ . In this work we will, however, only consider
cases with Nm � 1, for which the potential drop over the
membrane is negligible regardless of the membrane width αL

and the value of the membrane parameters Nm, εP, εm, and τ .
The problem is closed by appropriate boundary conditions

at either reservoir. At the left reservoir, the potential is set to
zero and the normalized concentrations take the values c± = 1,
cH = cOH = n. At the right reservoir, the potential is set to −V0

and the normalized concentrations take the values c± = cR,
cH = cOH = n.

IV. ANALYTICAL TREATMENT

In this section, we derive analytical expressions for the
potential φ and concentration fields ci given as functions of
the salt- and water-ion currents J+ and Jw. As a result of
the analysis, we find simple scaling laws for some of the
characteristic features in the problem.

A. Basic analysis

For the simple system without water ions we know from
Refs. [1,10,39] and numerical simulations that the left com-
partment is composed of three regions: a locally electroneutral
diffusion layer, and a space-charge region (SCR), which can
be subdivided into an extended space-charge region (ESC) and
a quasiequilibrium electric double layer (EDL). This situation
is sketched in Fig. 1(a).

Initially, we only consider the left compartment outside the
EDL, i.e., the region extending from 0 to L∗ in the inset of
Fig. 1(a). In the analysis we will assume that L∗ = 1, which
as analyzed in the Supplemental Material, Sec. I A [40], is a
good assumption for a wide range of parameter values. We
introduce the effective water-ion density cw and write

cw ≡ δcH + cOH, (9a)

2Jw = ∂xcw − cw∂xφ − 2δ∂xcH ≈ ∂xcw − cw∂xφ. (9b)

We can discard the 2δ∂xcH term because the hydroxide concen-
tration is very much larger than the hydronium concentration
in the entire LEN region, and in the ESC region, where this
may not be the case, diffusion plays a negligible role compared
to electromigration.

We assume that the membrane is completely impenetra-
ble to anions, so that J− = 0. The results can readily be
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generalized to the case of J− �= 0. Subtracting Eq. (1b) from
Eq. (9b) we obtain

2Jw = ∂x(cw + c−) − (cw + c−)∂xφ (10a)

≈ ∂xc+ − c+∂xφ + 2λ̄2
D∂3

xφ − 2λ̄2
D∂xφ∂2

xφ, (10b)

where Eq. (7a) with (1 + δ)cH ≈ 0 has been used. This might
introduce an error as we have just argued that cw � cH

does not necessarily hold in the ESC. The majority of the
charge density in the ESC does, however, derive from the
salt ions, so reasonable results may still be obtained with this
approximation, as verified by our numerical simulations in
Sec. V.

Adding (subtracting) Eq. (10b) to (from) Eq. (1a) we obtain

J+ + Jw = −c+∂xφ + λ̄2
D∂3

xφ − λ̄2
D∂xφ∂2

xφ, (11a)

J+ − Jw = −∂xc+ − λ̄2
D∂3

xφ + λ̄2
D∂xφ∂2

xφ. (11b)

The second of these equations is easily integrated

(J+ − Jw)x − κ = −c+ − λ̄2
D∂2

xφ + λ̄2
D

2
(∂xφ)2, (12)

where we have introduced the integration constant κ =
c+(0) + λ̄2

D∂2
xφ|x=0 − λ̄2

D
2 (∂xφ)2|x=0. For the studied system κ

is very close to unity since c+(0) = 1 and −λ̄2
D∂2

xφ|x=0 +
λ̄2

D
2 (∂xφ)2|x=0 	 1 for most relevant parameter values. In

the following analysis, we keep κ as an arbitrary constant.
However, when plotting analytical results we have used the
approximation κ = 1. The validity of this approximation is
studied in the Supplemental Material, Sec. I B [40].

Multiplying Eq. (12) by ∂xφ and subtracting it from
Eq. (11a), we obtain a single ordinary differential equation
for the potential φ:

J+ + Jw − [(J+ − Jw)x − κ]∂xφ = λ̄2
D∂3

xφ − λ̄2
D

2
(∂xφ)3.

(13)

This equation has previously been derived in various forms,
for instance, in Refs. [10,39,41]. A common way of deriving
solutions to this equation is to use the method of matched
asymptotic expansions [12,39,42,43]. We will use a slightly
simpler approach which omits the EDL, while still capturing
the essential physics of the problem.

Let us consider the magnitude of the terms in Eq. (13)
in each of the distinct regions. In the electroneutral diffusion
layer, only the terms on the left of Eq. (13) matter since the
entire right-hand side stem from the Poisson equation. In the
ESC, the charge density can obviously not be neglected, and
the terms on the right-hand side come into play. The right-hand
side terms scale as λ̄2

D∂3
xφ ∼ λ̄2

D
�φ

�x3 and λ̄2
D(∂xφ)3 ∼ λ̄2

D
�φ3

�x3 ,
where �x and �φ is the width of the ESC and the potential
drop over the ESC, respectively. Because the conductivity in
the ESC is small (few charge carriers), the potential drop over
the ESC will be large. It follows that λ̄2

D(∂xφ)3 � λ̄2
D∂3

xφ, and
as discussed in the Supplemental Material, Sec. I C [40], it is
therefore reasonable to neglect the λ̄2

D∂3
xφ term in Eq. (13). We

then end up with a simple algebraic equation for the electric

field, valid in the left compartment outside the EDL:

1 + λ̄2
D

2(J+ + Jw)
(∂xφ)3 =

[
J+ − Jw

J+ + Jw
x − κ

J+ + Jw

]
∂xφ.

(14)

Since 2λ̄2
D∂3

xφ = −∂xρel the above assumption corresponds to
assuming a quasiuniform distribution of the charge density.
This method of simplifying the problem has previously been
used by Urtenov et al. [41] and dubbed the assumption of
quasiuniform charge density distribution. However, so far
this assumption has only been used to simplify numerical
calculations, and not to obtain analytical solutions.

To simplify the analysis, we introduce a scaled electric field
Ê and a scaled position x̂, defined by

Ê ≡ −B∂xφ, with B ≡
[

λ̄2
D

2(J+ + Jw)

]1/3

(15)

and

x̂ ≡ 1

B

[
J+ − Jw

J+ + Jw
x − κ

J+ + Jw

]
. (16)

This enables us to recast Eq. (14) as

−1 + Ê3 = x̂Ê. (17)

Before actually solving this equation, we can use it to derive
some results characterizing the ESC. The scaled charge density
ρ̂el = ∂x̂Ê is found by implicit differentiation 3Ê2∂x̂Ê = Ê +
x̂∂x̂Ê, which results in

∂x̂Ê = Ê

3Ê2 − x̂
. (18)

Differentiating ∂x̂Ê again, it is found that the point of
maximum charge density is at x̂ = 0 and that

max(ρ̂el) = ρ̂el(0) = 1
3 . (19)

The simple form of this result is due to Eq. (17) being trivial
for x̂ = 0. The scaled charge density can be related to the
unscaled charge density using

ρel = −2λ̄2
D∂2

xφ = 2λ̄2
D

B
∂xx̂∂x̂Ê

=
[

32λ̄2
D

(J+ − Jw)3

J+ + Jw

]1/3

ρ̂el. (20)

From Fig. 1 it is seen that the point of maximum charge density
marks the left edge of the ESC. Inserting x̂ = 0 in Eq. (16) we
find that the beginning of the ESC is at xρ = κ/(J+ − Jw), and
therefore it has the width 1 − xρ . For the studied system κ ≈ 1,
so for J+ − Jw exceeding unity the extended space-charge
region can make up a significant part of the channel. Inside the
ESC, Eq. (17) yields Ê ∼ √

x̂ and the electric field scales as

−∂xφ = Ê

B
∼

√
x̂

B
=

√
2

λ̄D

√
(J+ − Jw)x − κ. (21)

To leading order, these scalings are equivalent to others
reported in the literature [12,39,44].
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FIG. 2. Plot of scaled electric field Ê versus scaled position x̂

(full line) from Eq. (23). The dashed lines show the limiting behavior
for x̂ → −∞, x̂ → 0, and x̂ → ∞.

To proceed beyond this point, we write the general solution
to Eq. (17):

Ê = − 1

21/3

(
− 1 +

√
1 − 4

27
x̂3

)1/3

eiω

− 21/3

3
x̂

(
− 1 +

√
1 − 4

27
x̂3

)−1/3

e−iω, (22)

where ω = 0, 2π
3 , or 4π

3 . We require that the solution is real
and find

Ê =
{
Ê− for x̂ � 0,

Ê+ for x̂ � 0,
(23)

which is continuous and differentiable at x̂ = 0 and where

Ê± = ± 1

21/3

(
± 1 ∓

√
1 − 4

27
x̂3

)1/3

± 21/3

3
x̂

(
± 1 ∓

√
1 − 4

27
x̂3

)−1/3

. (24)

In Fig. 2, the scaled electric field Ê is plotted for −10 < x̂ <

10 along with the asymptotic expressions.
It is noted that although this approach, like the method of

matched asymptotic expansions [39,44,45], deals with differ-
ent expressions inside and outside the ESC, the expressions
used here are different branches of the same solution and
as such they are matched by construction. This is a distinct
advantage of the present approach, and it allows for an
integration of the electric field to find the potential drop over
the system.

We would like to relate the currents to the potential drop
rather than the electric field. The task of integrating Ê is
simplified considerably by using Eq. (18) to make a change of
variable:

φ̂ = −
∫

Ê dx̂ = −
∫

Ê
1

∂x̂Ê
dÊ = −

∫
2Ê2 + 1

Ê
dÊ

= −2

3
[Ê3 − Ê3(x̂0)] − ln

(
Ê

Ê(x̂0)

)
, (25a)

where x̂0 ≡ −κ/[B(J+ + Jw)] [Eq. (16) with x = 0]. Equiva-
lently, we define x̂1 ≡ (J+ − Jw − κ)/[B(J+ + Jw)] [Eq. (16)
with x = 1].

The unscaled potential φ is related to the scaled potential φ̂

as

φ =
∫

∂xφ dx = − 1

B

1

∂xx̂

∫
Ê dx̂ = j φ̂, (25b)

where j ≡ (J+ + Jw)/(J+ − Jw) has been introduced for
convenience. At the inlet Ê is small so we can make the
approximations Ê3(x̂0) ≈ 0 and Ê(x̂0) ≈ − 1

x̂0
and find the

simpler expression

φ ≈ − 2
3jÊ3 − j ln(−Êx̂0). (25c)

The cation concentration is obtained from Eq. (12),

c+ = λ̄2
D

B2

[
1

2Ê
+ 1

j
∂x̂Ê

]
, (26a)

and since the anions are Boltzmann distributed,

c− = eφ = ejφ̂ . (26b)

To make the further calculation internally consistent, we again
use (1 + δ)cH ≈ 0, and find from the Poisson equation that

cw = c+ − c− − ρel = λ̄2
D

B2

[
1

2Ê
− 1

j
∂x̂Ê

]
− ejφ̂ . (26c)

In conclusion, our model gives analytical expressions for all
the relevant fields φ, c±, and cw as a function of the position x

and the salt- and water-ion currents J+ and Jw. This part of the
analysis is completely general and does not rely on the specific
type of ion-selective interface; the nature of the ion-selective
interface is only important for the behavior inside the EDL.

In the Supplemental Material [40], we provide an analysis
of the limitations of the approximations employed in this
section. We find that the derived expressions are valid when
λ̄2

DJ 2
+ 	 1 and λ̄D 	 1. In the overlimiting regime, it also has

to be the case that λ̄
2/3
D J

−1/3
+ 	 1. We also find corrections to

the theory which can extend its validity beyond these limits.
However, for typical system parameters these corrections are
minute, and for that reason we have chosen just to state them
in the Supplemental Material [40].

B. Case without water-ion current

Initially, we consider the simple case of zero water-ion
current Jw = 0. In this limit, the problem only depends on the
parameter λ̄D and the potential is given by Eq. (25). Since this
result gives a closed-form expression for the potential, valid at
both underlimiting and overlimiting currents, we consider it to
be an extension of earlier asymptotic expressions, valid only
in the overlimiting regime, given in Refs. [11,12].

To find the approximate dependence on λ̄D we consider the
limit Ê3(x̂1) � 1, for which Ê(x̂1) is given by Ê(x̂1) ≈ √

x̂1

and the potential at x = 1 becomes

φ(1) ≈ −2

3
x̂

3/2
1 − ln(−

√
x̂1x̂0)

= −2

3

[
2(J+ − κ)3

λ̄2
DJ 2+

]1/2

− 1

2
ln

[
2(J+ − κ)

λ̄2
DJ 2+

]

≈ −2
√

2

3

(J+ − κ)3/2

λ̄DJ+
+ ln(λ̄D). (27)
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FIG. 3. Salt current J+ plotted versus voltage V0 in the case
of vanishing water-ion current Jw and for κ = 1. Full line is the
analytical expression (25), and the dashed line is the asymptotic
expression (27). Only near the limiting current J+ � 1 do the two
cases deviate appreciably (see the inset).

The first term on the right-hand side dominates, so for a given
overlimiting current, the potential drop will roughly scale with
λ̄

−1
D . This agrees well with the intuitive picture, that the more

strictly electroneutrality is enforced, the greater is the potential
drop required to create the ESC and drive a current. In Fig. 3,
the current is plotted versus the voltage difference for varying
λ̄D and κ = 1. The full analytical solution is shown with a full
line and the asymptotic solution is shown with a dashed line
(only for J+ > 1).

C. Influence of water ions

To find a relation between J+ and Jw, when water ions are
taken into account, we need another constraint on one of the
fields. It is, however, not apparent which constraint we should
use or, for that matter, that a simple and physically justified
constraint even exists. In the numerical simulations, as we
shall later see, the value of Jw is determined self-consistently
by simply requiring continuity of the fields through the
membrane. The analytical model does, however, break down
in the EDL, so this method of constraining Jw can not be
employed here.

Instead, we use a boundary condition which is not entirely
rigorous, but does have the appeal of being very simple. Let us
consider Eq. (9b) in the ESC where diffusion is small compared
to electromigration:

2Jw ≈ −cw∂xφ. (28)

There is a positive charge density in the ESC so the electric
field increases for increasing x. Because Jw is divergence free,
this in turn means that cw must decrease for increasing x.
However, cw has a minimum value min(cw) = 2

√
δn because

of the relation Eq. (6), so at x = 1 we must always have Jw �
−√

δn∂xφ. For all but the lowest currents (whose contributions
are negligible), it seems that this is indeed the constraint which
creates the water-ion current, i.e., we determine the water-ion
current from

∂xφ|x=1 = − Jw√
δn

. (29)

By inserting this in Eq. (14) and solving for J+, we find a
relation between J+ and Jw:

J+ = Jw
κ + Jw + λ̄2

D
2δn2 J

2
w√

δn + Jw

. (30)

Using this relation together with Eq. (25), the current-voltage
characteristic for the system can be evaluated for any set of
parameters. We note that this boundary condition is the only
place where the equilibrium constant enters in the analysis, so
a more general treatment allowing the equilibrium constant to
vary can be implemented by an appropriate modification of n

in Eq. (30).
It is instructive to consider some limiting cases. For

overlimiting currents, where Jw � √
δn, Eq. (30) yields a

simple expression for Jw in terms of J+:

Jw ≈ δn2

λ̄2
D

(
−1 +

√
1 + 2λ̄2

D

δn2
(J+ − κ)

)
. (31)

Expanding this in the two limits 2λ̄2
D

δn2 (J+ − κ) ∼ λ̄2
D

n2 	 1 and
2λ̄2

D
δn2 (J+ − κ) ∼ λ̄2

D
n2 � 1, we find

Jw ≈
⎧⎨
⎩

J+ − κ for λ̄2
D

n2 	 1,
√

2δn

λ̄D

√
J+ − κ for λ̄2

D
n2 � 1.

(32)

The first of these limits we denote the Kharkats limit
since he studied exactly the situation J+ = 1 + Jw where the
overlimiting current is only due to screening by water ions
[16]. The potential drop over the system is given by Eq. (25c),
and using that Ê(x̂1) = −B∂xφ|x=1 = B Jw√

δn
we find

φ(1) ≈ − 2

3
j

(
B

Jw√
δn

)3

− j ln

(
−B

Jw√
δn

x̂0

)

= − λ̄2
D

3(J+ − Jw)

(
Jw√
δn

)3

− j ln

(
Jw√
δn

κ

J+ + Jw

)
.

(33)

An interesting feature of this result is that even in the Kharkats
limit λ̄2

D/n2 	 1, where the entire overlimiting current is due
to water-ion screening, the potential depends on λ̄D.

In the case of overlimiting current, the potential drop is
determined by inserting Eq. (31) in Eq. (33). In the Kharkats
limit λ̄2

D/n2 	 1 given in Eq. (32), we obtain

φ(1) ≈ − λ̄2
D

3

(
J+ − κ√

δn

)3

−
(

2

κ
J+ − 1

)
ln

(
J+ − κ√

δn

1

2J+ − κ

)
, (34a)

while in the opposite limit λ̄2
D/n2 � 1 we find

φ(1) ≈ −2
√

2

3

(J+ − κ)3/2

λ̄DJ+
+ ln(λ̄D). (34b)

A remarkable conclusion can immediately be drawn from
these expressions. In the limit λ̄2

D/n2 	 1, the potential drop
for a given normalized current J+ is seen to increase with λ̄D.
This is opposite to the conclusion in the Jw = 0 analysis, and
it can be viewed as a result of the coupling between Jw and
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FIG. 4. (Color online) Salt current J+ from Eqs. (25) and (30)
plotted versus voltage V0 for n = 10−4, κ = 1, and λ̄D varying
from 10−7 (thin) to 0.019 (thick). The curved arrow indicates the
nonmonotonous dependence on λ̄D.

∂xφ, which is brought about by the boundary condition (29).
We also see that the potential drop scales inversely with n as
expected.

In the other limit λ̄2
D/n2 � 1, we recover the λ̄

−1
D scaling

from the Jw = 0 analysis as well as the φ expression (27). The
potential drop over the system will thus have a nonmonotonous
dependence on λ̄D. This behavior is seen in Fig. 4, where the
salt current J+ is plotted versus voltage for fixed n and varying
λ̄D. It is seen that for some parameter values, e.g., λ̄D = 10−5

we obtain the characteristic S-shaped current-voltage curve
found in experiments [8,26,46,47]. This indicates, at least on a
qualitative level, that the developed model captures the relevant
physics of the problem.

D. Concentration fields

The concentration fields found in our analysis exhibit a
very rich structure, and it is generally difficult to describe their
behavior in simple terms.

In Fig. 5, the concentration fields are shown for a given set
of parameters. Outside the ESC, the fields behave as in the
simple LEN theory, with c+ decreasing linearly with x, c−
scaling as (c+)j , and cw given by the difference c+ − c−:

c+ ≈ κ − (J+ − Jw)x, (35a)

c− ≈ [κ − (J+ − Jw)x]j , (35b)

cw ≈ κ − (J+ − Jw)x − [κ − (J+ − Jw)x]j . (35c)

Since Jw is determined via Eq. (30), these seemingly simple
relations do in fact have a quite complicated dependence on all
of the parameters J+, λ̄D, and n. It is seen that the expressions
break down inside the extended space-charge region x > xρ =
κ/(J+ − Jw).

In the ESC, the existence of a nonzero charge density
complicates matters further. The charge density has a peak
at the beginning of the ESC,

ρel

(
xρ

) = 2
3 22/3λ̄

2/3
D (J+ − Jw) (J+ + Jw)−1/3 , (36a)

and in the ESC it decays as

ρel ≈ 21/2λ̄D(J+ − Jw) [(J+ − Jw)x − κ]−1/2 . (36b)

FIG. 5. The analytical expression [Eq. (26)] for the concentration
fields c+, c−, cw, and ρel plotted versus position x for n = 10−4,
λ̄D = 10−4, κ = 1, and Jw = 0.3. The corresponding salt current is
found from Eq. (30) to be J+ = 1.325. The inset shows the behavior
in the ESC close to the membrane.

In the limit λ̄2
D/n2 � 1, where the influence of water ions is

negligible, the expressions simplify as

ρel(xρ) ≈ 2
3 22/3λ̄

2/3
D J

2/3
+ , (37a)

ρel ≈ 21/2λ̄DJ+ (J+x − κ)−1/2 . (37b)

In this case, both the peak charge density and the charge density
inside the ESC increase with J+.

In the Kharkats limit λ̄2
D/n2 	 1, where J+ ≈ κ + Jw, the

charge density at xρ simplifies as

ρel(xρ) ≈ 2
3 22/3λ̄

2/3
D κ (2J+ − κ)−1/3 . (38a)

Here, the peak charge density surprisingly decreases with
increasing J+. Also, in this limit the ESC will be very
small since xρ = κ/(J+ − Jw) ≈ 1. The reduction in width
and magnitude of the ESC will act to suppress EOI in the
λ̄2

D/n2 	 1 limit. This is similar to the effect of current-
induced membrane discharge as described in Ref. [17]. In the
literature it has been reported that EOI sets in around V0 = 20
[48]. As seen from Fig. 4 and the results in Sec. V B, water
splitting sets in at a lower voltage, which leads us to believe
that a suppression of EOI will in fact occur in this limit.

E. Total potential drop

The developed analytical model gives a general description,
valid for any ion-selective interface, of the inlet compartment
outside the EDL. To enable comparison with the numerical
simulations of a membrane system, a simple model for the
potential drop over the remainder of the system is developed.

Inside the membrane there is a very large density Nm

of immobile negative charges. To screen these charges, an
equally large density of positive ions accumulates. It follows
that the conductivity in the membrane is very large, so that the
potential drop over the membrane is negligible compared to the
other potential drops in the system. While the potential drop
inside the membrane can safely be neglected, the potential
drops �φm1 and �φm2 over the two membrane interfaces
are in general non-negligible. To determine them, we use the
assumption of quasiequilibrium to relate the concentrations
just outside the membrane to the concentrations inside the
membrane via a Boltzmann factor. Charge neutrality in the
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membrane then gives

0 = −Nm + εP(c+ − c− + cH − cOH)

≈ −Nm + εP[c+(1) + cH(1)] e−�φm1 , (39)

where we used that the concentration of anions in the
membrane is negligible. The same argument applies to both
membrane interfaces, so the total potential change across
the membrane is

�φm = ln

(
c+(1) + cH(1)

c+(1 + α) + cH(1 + α)

)
. (40)

In the outlet channel, local charge neutrality is an excellent
approximation and the water-ion current is totally dominated
by hydronium. From the transport equations [Eqs. (1) and (2)],
we therefore find

c+ + cH = c− = cReφ+V0 , (41a)

cR +
(

J+ + Jw

δ

)
(1 + α + β − x) = cReφ+V0 . (41b)

Here, we used that 1 + α < x < 1 + α + β in the outlet
channel and φ(1 + α + β) = −V0. In conclusion, the total
potential drop across the entire system is

V0 = − [φ(1) − φ(0)] − �φm − [φ(1 + α + β) − φ(1 + α)]

= − φ(1) − ln[c+(1) + cH(1)]

+ 2 ln

[
cR + β

(
J+ + Jw

δ

)]
, (42)

where φ(1) is given in Eq. (25), c+ and cH are given in Eq. (26),
and the relation between the currents is given in Eq. (30). It
is seen that in the limit β = 0 and cR = 1, the potential drop
is just the change in electrochemical potential of the positive
ions from inlet reservoir to membrane.

V. NUMERICAL SIMULATIONS

A. Numerical implementation

The numerical simulations are carried out in the commer-
cially available finite element software COMSOL MULTIPHYSICS

(ver. 4.3a). Following Gregersen et al. [49], the equations (1),
(2), (5), (6), (7a), and (8) are rewritten in weak form and
implemented in the mathematics module of COMSOL. In the
numerical simulations and in the comparisons with theory we
have used α = β = 1 and cR = 1. This choice only gives a
small loss of generality since the results are weakly sensitive
to these values, as seen from Eq. (42). We use the following
boundary conditions: c±(0) = 1, cH(0) = cOH(0) = n, φ(0) =
0 and c±(3) = 1, cH(3) = cOH(3) = n, and φ(3) = −V0. To
improve the numerical stability of the problem, we have made
a change of variable, so that the logarithm of the concentration
fields have been used as dependent variables instead of the
concentration fields themselves.

The code has been successfully validated both against
known analytical results in various special cases, and by
performing careful mesh-convergence analyses as in Ref. [49].
Subsequently, the model system has been solved for c0

increasing from 0.1 to 100 mM in six steps and for L

increasing from 1 μm to 10 mm in eight steps. Thus, a total

FIG. 6. (Color online) Salt current J+ plotted versus voltage V0

for varying λ̄D neglecting the water-ion current Jw. The full lines
are numerical simulations and the dashed lines are the corresponding
analytical results from Eq. (42) for κ = 1 and with Eqs. (25) and (26)
inserted.

of 63 configurations have been investigated. For each set of
parameters, the bias voltage V0 was varied from 0 to 100 in
160 steps (smaller steps at small V0). In total, this resulted in
10 080 data points of which 8056 have an overlimiting current
J+ > 1.

B. Numerical results

First, we present the results for the case without water ions.
In this case, the problem only depends on one parameter,
namely, λ̄D. In Fig. 6, the salt current J+ is plotted versus
the bias voltage V0 for three values of λ̄D (full lines). It should
be noted that the normalization current is different for the
three cases. The analytical expression from Eq. (42) with Eqs.
(25) and (26) inserted is also shown (dashed lines). For small
λ̄D, the current saturates at the limiting current as found in
the LEN analysis, while significant deviation from the LEN
expression is found for larger λ̄D values. The seen deviations
from the LEN expression agree well with our expectation
that in the limit of very large λ̄D, a linear I -V curve should
result.

The analytical I -V curves are seen to agree well with the
numerical results. The main reason for the small discrepancy
is that the width of the EDL becomes non-negligible for large
λ̄D, and therefore the length L∗ begins to deviate significantly
from the assumed value L∗ = 1. The wide range of values of
λ̄D, where the approximation L∗ = 1 is valid, is determined in
the Supplemental Material, Sec. I A [40].

When water ions are taken into account, the problem
depends on the normalized equilibrium constant n = √

Kw/c0

and the normalized Debye length λ̄D. In Fig. 7, the current-
voltage curves are plotted for varying n and for two different
values of λ̄D. The analytical expression Eq. (42) with Eqs. (25),
(26), and (30) inserted is also shown with dashed lines. The
light curves shown in the figures are the water-ion currents Jw,
and it is seen that the salt currents J+ nearly equal the classical
limiting current plus the water-ion current. This is as expected
from Eq. (32) since all the considered cases are in the Kharkats
limit λ̄2

D/n2 	 1. It is seen that several of the curves exhibit
the characteristic S shape found in experiments [8,26,46,47].
An interesting observation is that there is a family of curves, an
example being the n = 3.2 × 10−4 curve in Fig. 7(a), for which
the overlimiting current closely resembles the overlimiting
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FIG. 7. (Color online) (a) Salt current J+ (dark) and water-ion
current Jw (light) plotted versus voltage V0 for λ̄D = 1.2 × 10−6

and n = 3.2 × 10−6, 3.2 × 10−5, and 3.2 × 10−4. The full lines are
numerical simulations and the dashed lines are the corresponding
analytical results from Eq. (42) for κ = 1 and with Eqs. (25), (26),
and (30) inserted. (b) Same as above, but with λ̄D = 3.8 × 10−5.

current caused by EOI [9,14]. These curves are, however,
found in the λ̄2

D/n2 	 1 limit where EOI is suppressed.
During a measurement series, where the concentration is
varied, one might therefore go from a EOI dominated regime
to a water-ion current dominated regime, without observing
significant qualitative differences in the I -V curves.

From the analysis in Sec. IV C, it is clear that the
overlimiting current may be due to either screening by water
ions or the development of an extended space-charge region.
Which effect is dominant depends on the parameters of the
problem. To illustrate this dependence, the overlimiting current

FIG. 8. (Color online) Numerically calculated color plot from 0
(black) to 10.8 (white) of the overlimiting salt current J+ − 1 = Jρ +
Jw at V0 = 100 as a function of the reservoir concentration c0 and
the compartment length L. The full lines indicate contours Jw = 0.1,
0.5, 1.5, and 4.0. The dashed lines are contours for the current due
to the extended space-charge region Jρ = 0.1, 0.5, 1.5, and 4.0. The
slope indications (triangles) show the approximate scalings L ∼ c

−1/2
0

for the Jρ contours and L ∼ c0 for the Jw contours from Eqs. (34b)
and (34a), respectively. The following parameter values were used
in converting from n and λ̄D to c0 and L: εw = 6.90 × 10−10 F/m,
VT = 25.8 mV, e = 1.602 × 10−19 C, and Kw = 10−14 M2.

FIG. 9. (a) The analytical water-ion current J anl
w from Eq. (30)

with κ = 1 plotted versus the simulated water-ion current J sim
w for the

8056 sets of values for λ̄D, n, and J+, as defined in the last paragraph
of Sec. V A, all having an overlimiting current J+ > 1. The inset
zooms in on the zero-current limit. (b) Same as above, except that
J anl

w is substituted by the Kharkats expression J Kha
w = J sim

+ − 1.

at V0 = 100 is plotted in Fig. 8 along with contour lines
showing the current due to water-ion screening Jw (white),
and charge neutrality violation Jρ = J+ − 1 − Jw (dark).

In the following, we make a more systematic comparison
between the analytical model and the results of the numerical
simulation. We begin by evaluating the model for water
splitting. For each set of parameters λ̄D, n, and J+ used in
the simulations the water-ion current Jw was calculated using
Eq. (30), and in Fig. 9(a) it is plotted versus the water-ion
current which was actually observed in the simulations. Only
the cases J+ > 1 are shown since Jw nearly vanishes in the
underlimiting regime. It is seen that the developed model
captures the majority of the dependence. To better appreciate
the level of agreement, the simple Kharkats result J Kha

w =
J+ − 1 is shown in Fig. 9(b).

The total model giving the current-voltage relation for the
system has also been evaluated. In Fig. 10, the salt current has
been calculated according to Eqs. (25), (26), (30), and (42)
and plotted versus the salt current obtained from simulations
using the same parameter values. There is seen to be some
scatter around perfect agreement between the two models, but
the overall behavior is definitely captured by the analytical
model.

VI. ADDITION OF ACID OR BASE

So far, we have investigated systems where the ions derive
from a dissolved salt. We will now proceed with a more general
treatment, where we allow for some concentration of acid ca or
base cb in the reservoirs in analogy with Ref. [50]. The acid or
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FIG. 10. The analytical salt current J anl
+ from Eqs. (25), (26),

(30), and (42) with κ = 1 plotted versus the simulated salt current
J sim

+ for all 1080 sets of values for λ̄D, n, and V0, as defined in the last
paragraph of Sec. V A.

base is assumed to be strong so that it dissociates completely,
and for simplicity we assume that the conjugate base to the acid
is the same as the negative salt ion and that the conjugate acid
to the base is the same as the positive salt ion. For instance,
the salt could be NaCl, the acid HCl, and the base NaOH. We
use κ = 1 throughout this section.

First, we consider a system where some concentration cb

of base is added to the system. The ion concentrations are
normalized with the total cation concentration at the inlet, i.e.,
the sum of the salt and the base concentrations. We thus have
c+(0) = 1, c−(0) = 1 − cb, and cOH(0) = cb. Like in Sec. IV,
hydroxide dominates over hydronium, so the relevant transport
equation for the water ions is [Eq. (9b)]

2Jw ≈ ∂xcw − cw∂xφ, (43)

but with the difference that cw(0) = cb rather than cw(0) =
(1 + δ)n ≈ 0. We can rewrite the transport equation

2Jw ≈ ∂xcw − cw∂xφ

= ∂x(cw − cbe
φ) − (cw − cbe

φ)∂xφ

= ∂xc
′
w − c′

w∂xφ, (44)

where c′
w ≡ cw − cbe

φ and c′
w(0) = 0. The cbe

φ term behaves
exactly like the stationary salt anions, suggesting the introduc-
tion of c′

− ≡ c− + cbe
φ with c′

−(0) = 1.
In conclusion, the present problem can be mapped onto the

problem in Sec. IV. Adding a base to a system is therefore
equivalent to adding a salt of its conjugate acid. It is noted
that to the right of the membrane hydronium dominates the
water-ion transport, so in this region it will make a slight
difference to add a base to the reservoir.

The situation becomes more complex when an acid is added
to the reservoir. In this case, two quite different situations can
result, depending on the amount of added acid. For high acid
concentrations, the amount of hydronium ions suppress water
splitting at the membrane, and the hydronium ions essentially
act as a conserved cation. For low acid concentrations,
hydroxide may begin to dominate the water-ion transport at
some point and water splitting can occur as in the treatment in
Sec. IV. In Fig. 11, this situation is illustrated.

To quantify what is meant by “high” and “low” acid
concentrations, we analyze the system in more detail. From
Fig. 11 it is seen that there are two distinct regions in

FIG. 11. Numerical simulation of the concentrations of salt ions
(c+ and c−) and water ions (cOH and cH) plotted versus position x in
a system with acid concentration ca = 0.135 and voltage drop V0 =
100. For x < x∗ (left of the vertical gray line), hydronium behaves
as a conserved cation, and the system is well described by a LEN
model. For x > x∗ hydroxide is the dominant water ion, and the
system behaves as the aqueous salt solution analyzed in Sec. IV.

the solution. To the left hydronium dominates and there is
local electroneutrality, while the right part of the channel is
equivalent to the system analyzed in Sec. IV. In the left part
of the channel, it is easily found that the concentration fields
are given as

c− = eφ = 1 − (J+ + Jw/δ)x, (45a)

cH = Jw/δ

J+ + Jw/δ
eφ +

[
ca − Jw/δ

J+ + Jw/δ

]
e−φ, (45b)

c+ = J+
J+ + Jw/δ

eφ +
[

1 − ca − J+
J+ + Jw/δ

]
e−φ, (45c)

where the concentration fields are normalized with the sum
of the acid and salt concentrations at the inlet and ca is the
normalized acid concentration at the inlet. In the limit where
there is no water splitting at the membrane, the currents are
just related via the reservoir concentrations of hydronium and
salt cation

Jw/δ

J+
= ca

1 − ca

, no water splitting. (46)

If there is water splitting, there will be a transition point
x∗ where the hydronium concentration vanishes. Solving
Eqs. (45a) and (45b) for x∗ we find

x∗ = 1

J+ + Jw/δ

[
1 −

√
1 − J+ + Jw/δ

Jw/δ
ca

]
. (47)

At that point, the salt concentration is

c∗ ≡ c+(x∗) = c−(x∗) =
√

1 − J+ + Jw/δ

Jw/δ
ca. (48)

In the right part of the channel, the electric field is determined
by Eq. (14) corrected with the new boundary conditions (47)
and (48):

1 + λ̄2
D(∂xφ)3

2(J+ + Jw)
=

[
J+ − Jw

J+ + Jw
(x − x∗) − c∗

J+ + Jw

]
∂xφ.

(49)
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FIG. 12. The critical value ccrit
a of the acid concentration, corre-

sponding to the onset of water-splitting suppression, plotted versus
λ̄2

D/n2. The full line is the analytical expression given in Eq. (52),
and the points “+” denote results from numerical simulations.

Inserting the boundary condition (29) and introducing G ≡
Jw/δ

J+
this equation can be recast as a quadratic equation for J+:

λ̄2
D

2

(√
δG

n

)3

J 2
+ − (1 − δG)

(√
δG

n

)
J+

= −
[

1 − δG

1 + G
(1 − c∗) + c∗

](√
δG

n

)
+ (1 + δG). (50)

Just at the point where water splitting begins, G will still equal
ca

1−ca
as in Eq. (46) and c∗ will be very close to 0. Furthermore,

the terms with (
√

δG
n

) dominate over the term 1 + δG, so near
that point we can simplify the equation as

λ̄2
D

2

(√
δG

n

)2

J 2
+ − (1 − δG)J+ ≈ −1 − δG

1 + G
. (51)

This equation has a solution when the determinant is non-
negative, i.e., when

ca

1 − ca

= G �
1 − δ +

√
(1 − δ)2 + 4δ

(
1 + 2λ̄2

D

/
n2

)
2δ

(
1 + 2λ̄2

D

/
n2

) .

(52)

For higher values of ca, there are no solutions which allow for
water splitting. The value of ca for which there is an equal
sign in Eq. (52), corresponding to the onset of water-splitting
suppression, is denoted the critical acid concentration ccrit

a .
In Fig. 12, analytical and numerical results for the critical
acid concentration are plotted versus λ̄2

D/n2. Numerically, the
critical concentration is determined as follows. When there is
no water splitting, the currents are related as in Eq. (46). The
critical concentration is then defined to be the minimum value
of ca for which Jw/δ

J+
� 1.01 ca

1−ca
, within the voltage sweep

interval 0 < V0 < 100.
The existence of a critical acid concentration, and its

approximate value, is expected to be a robust prediction, which
is valid even under circumstances where the assumption of an
equilibrated water-dissociation reaction breaks down.

VII. GENERALIZATION TO OTHER SYSTEMS

The analysis in this paper has so far been concerned with
the reservoir-compartment-membrane-compartment-reservoir

system sketched in Fig. 1. The difficult part of the analysis,
carried out in Sec. IV A, is however largely system indepen-
dent, and in this section we show examples of generalizations
to other systems.

In Sec. IV A, we find the potential drop over the inlet
compartment as a function of the currents. The only other
parameters we use in the analysis are the reservoir salt
concentration c+(0) = c−(0) = 1 and water-ion concentra-
tion cH(0) = cOH(0) = n ≈ 0. By modifying these boundary
conditions appropriately, the results for the already studied
system can be related to other systems exhibiting concentration
polarization. We give two such examples in the following.

A. Membrane-compartment-membrane system

We consider a system composed of a compartment of
normalized length unity with cation-selective membranes on
either side. In the compartment is an electrolyte of normalized
concentration unity.

Whereas the membranes in an electrodialysis cell alternate
between cation and anion selectivity [1], both membranes in
this system have the same selectivity. We can thus regard
this system as the symmetrical counterpart to the asymmetric
electrodialysis cell. With respect to the symmetry, the system
has similarities to those studied in Refs. [39,45,51], except
for the fact that they have electrodes as ion-selective elements
rather than membranes.

Due to the ion-selective membranes, the anions can not
leave the compartment, and we have the constraint

∫ 1

0
c− dx = 1, (53)

instead of the boundary condition c−(0) = 1 from before. As
in the original analysis, we only consider the part of the system
lying outside the quasiequilibrium EDL’s adjoining the mem-
branes. Since hydronium dominates inside the membranes and
hydroxide dominates in the compartment, there is a crossover
approximately at x = 0 where the concentrations are equal
cH(0) = cOH(0) = n ≈ 0 as in the earlier analysis. Our task is
now to find a value of κ which is consistent with the constraint
in Eq. (53). We use that the anion concentration is negligible
outside the LEN region, and to a good approximation we
therefore have

∫ 1

0
c−dx =

∫ 1

0
cLEN
− dx. (54)

Inserting from Eq. (35b) we obtain

∫ 1

0
cLEN
− dx

=
∫ min{1,κ/(J+−Jw)}

0
[κ − (J+ − Jw)x]j dx

=
⎧⎨
⎩

κj+1

2J+
for κ � (J+ − Jw),

κj+1

2J+
− [κ−(J+−Jw)]j+1

2J+
for κ � (J+ − Jw).

(55)
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The lower case corresponds to the underlimiting case where
water splitting is negligible. In that case, we can simplify as

∫ 1

0
cLEN
− dx ≈ κ − J+

2
for κ � (J+ − Jw). (56)

From the constraint we then find

κ =
{

(2J+)
J+−Jw

2J+ for 2 � J+,

1 + J+
2 for 2 � J+.

(57)

With this expression for κ the boundary condition (29) yields
a transcendental equation for the relation between J+ and Jw.
Using this relation together with Eq. (25), the I -V curve for
the system can be found. In the case of negligible water-ion
current, the I -V curve can be obtained directly by inserting
Eq. (57) in Eq. (25).

B. Electrode-compartment-electrode system

We consider a system composed of a compartment of
normalized length unity with electrodes on either side. In
the compartment is an electrolyte of normalized concentration
unity. The electrolyte is formed by dissolving a salt of the
electrode metal, which in the case of copper electrodes could
be CuSO4. Since only the metal ions can enter or leave
the electrodes, the electrodes act as ion-selective elements
similarly to the previously studied membranes. This system
is similar to those studied in Refs. [39,45,51]. However, we
do not consider the potential drops in the EDL’s adjoining the
electrodes. As before, the anions (here SO−

4 ) can not leave the
system so we have the constraint

∫ 1

0
c−dx = 1. (58)

So far, the system is equivalent to the membrane-compartment-
membrane system. However, whereas the membranes are only
sensitive to the charge of the ions, the electrodes also select
based on the ion species. This implies that the hydronium ions
can not leave the system either, and they will accumulate in
the left part of the compartment while hydroxide accumulates
to the right. We can put this in terms of a constraint by noting
that hydronium and hydroxide are created in equal amounts

∫ 1

0
cHdx =

∫ 1

0
cOHdx. (59)

In Sec. VI, we treated a system where hydronium dominates
to the left due to the addition of an amount of acid ca to the
reservoir. By letting ca vary to satisfy Eq. (59) and letting
κ vary to satisfy Eq. (58), we can therefore map the present
problem onto the original reservoir-compartment-membrane-
compartment-reservoir problem. Because of the need to split
the system into a hydronium dominated part and a hydroxide
dominated part, this mapping is however significantly more
involved than the one in Sec. VII A. For this reason, we will
not bring the full analysis here, but we note that it is in principle
a simple matter which mainly requires some bookkeeping with
the different regions.

VIII. DISCUSSION

The results presented in this paper are based on the as-
sumption of a locally equilibrated water-dissociation reaction.
Whether this assumption is correct is at present not known, but
since our theoretical predictions rely on this assumption, an
experimental test of our predictions would constitute a (partial)
test of the underlying assumptions.

From the analytical model, several useful results are
obtained. Our main theoretical result Eq. (25) provides the
potential φ(1) at the beginning of the EDL, for a general
ion-selective interface with both a water-ion current and the
extended space-charge region taken into account. In certain
limits, this result can be simplified to Eq. (34). The effects of
water splitting are accounted for by Eq. (30), which provides
a relation between the salt current J+ and the water-ion
current Jw.

The potential drop across the EDL and the rest of the system
depends on the specific ion-selective interface and gives a
small correction to the potential. For the specific ion-selective
membrane system studied in this work, these corrections are
included in Eq. (42), and in Sec. VII we show examples of
generalizations to other systems. The model also provides
the detailed structure of the extended space-charge region
and yields the simple expression Eq. (20) for the maximum
value of the charge density ρel. The analytical model has been
successfully tested against direct numerical simulations (see,
e.g., Fig. 10 containing a plot of J anl

+ versus J sim
+ ).

Even if the fundamental assumption of a locally equili-
brated water-dissociation reaction is not entirely correct, the
analytical model is still useful since it provides an upper bound
to the water-ion current, as long as the equilibrium constant
Kw does not change appreciably. For instance, Fig. 8 shows
that in a large portion of the parameter space the influence
of water ions is negligible. Since this is an upper bound,
we can conclude that water splitting is unimportant for these
parameter values regardless of the reaction speed. As described
in Sec. IV C, it would be a relatively simple matter to extend
the analysis to allow for a varying Kw.

A strength of the analysis given in this paper is that several
of the derived expressions are comparatively easy to test
experimentally since they only depend on a few parameters
which can either be estimated or fitted. Consider, for instance,
Eq. (31) for the water-ion current Jw, which in dimensionful
terms can be rewritten as J̃w:

J̃w ≈ 2DOH

γD+

[
−1 +

√
1 + γ

(
J̃+
Jlim

− 1

)]
Jlim, (60)

where Jlim = 2D+c0/L is the limiting current, and where γ =
(DOH/DH) c0εwkBT/(L2Kwe2) is a dimensionless parameter.
Given knowledge of the reservoir concentration c0 and the
length L of the diffusive boundary layer, it is possible to
calculate γ and Jlim from the definitions. Since Eq. (60)
is derived under the assumption of an equilibrated water-
dissociation reaction, a set of experimental data which fits
it would corroborate that assumption and our model.

Another prediction which can be experimentally tested
is the existence of a critical acid concentration ccrit

a for the
onset of water-splitting suppression, which may be tested
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experimentally using the titration method [26,27]. For acid
concentrations ca above ccrit

a , we predict that the water-ion
current and the salt current will be proportional. When ca is
reduced below ccrit

a , given by Eq. (52), the water-ion current
will begin to exceed the value given by Eq. (46). If, instead,
a base is added to the system, we predict that there will be
no such critical concentration, and adding an amount of base
will in fact be equivalent to adding the same amount of salt.
It should be noted that these predictions assume that an added
acid or base does not significantly alter the properties of the
membrane through chemical reactions. For a chemically stable
membrane such as nafion, this should be a good assumption.

In the analytical treatment, it was found that water splitting
will act to suppress EOI in the limit of λ̄2

D/n2 	 1. We have
not verified this prediction by full 3D numerical simulations
of EOI, but since water splitting begins at a lower voltage than
EOI, it is likely that a suppression of EOI will in fact occur.

Lastly, we emphasize the simplicity and versatility of the
employed mathematical method. The reduction of the problem
to the simple algebraic equation (17) for the electric field
hugely simplifies the analysis and gives a good description of
the ESC not involving singularities: unlike in the method of
matched asymptotic expansions, the fields in this approach do
not diverge at the entrance to the ESC, and for this reason
closed-form expressions for every relevant quantity can be
obtained with ease.

IX. CONCLUSION

In this paper, we have developed analytical and numerical
models for the current through and the voltage drop across
an ion-selective interface, taking into account both the effect
of the extended space-charge region adjoining the interface as
well as the effect of water splitting and screening by water
ions. Specifically, we have investigated the transport through
an ion-selective membrane, but the fundamental results apply
to any ion-selective interface.

The fundamental assumption in the analysis is that the
autodissociation of water happens on a much shorter time scale
than the transport of water ions, i.e., we study transport-limited
processes. The validity of this assumption is dependent on the
particular system under study, but in general the model gives
an upper bound to the currents which can be obtained, given a
fixed equilibrium constant Kw, for the water-splitting reaction.

In the analytical model, the assumption of quasiuniform
charge density distribution has been used to simplify the
treatment. The analytical and the numerical models compare
favorably and both models exhibit some of the characteristic
behavior observed in experiments. The developed analytical
model is readily testable in experiments, as it gives both
detailed expressions for the current-voltage characteristics,
simple scaling laws with few parameters, and predictions about
the system behavior upon addition of an acid or a base.
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We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during
concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-
Stokes problem governing the transport and rationalized the behavior of the system. A remarkable outcome of
the investigations is the discovery of strong couplings between bulk advection and the surface current; without a
surface current, bulk advection is strongly suppressed. The numerical simulations are supplemented by analytical
models valid in the long channel limit as well as in the limit of negligible surface charge. By including the
effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published
analytical model of overlimiting current due to surface conduction.
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I. INTRODUCTION

Concentration polarization at electrodes or electrodialysis
membranes has been an active field of study for many decades
[1–3]. In particular, the nature and origin of the so-called
overlimiting current, exceeding the diffusion-limited current,
has attracted attention. A number of different mechanisms
have been suggested as an explanation for this overlimiting
current, most of which are probably important for some system
configuration or another. The suggested mechanisms include
bulk conduction through the extended space-charge region
[4,5], current induced membrane discharge [6], water-splitting
effects [7,8], electro-osmotic instability [9,10], and, most
recently, electrohydrodynamic chaos [11,12].

In recent years, concentration polarization in the context
of microsystems has gathered increasing interest [13–17].
This interest has been spurred both by the implications for
battery [18] and fuel cell technology [19–21] and by the
potential applications in water desalinization [22] and solute
preconcentration [23–25]. In microsystems, surface effects are
comparatively important, and for this reason their behavior
fundamentally differs from bulk systems. For instance, an
entirely new mode of overlimiting current enabled by surface
conduction has been predicted by Dydek et al. [26,27], for
which the current exceeding the diffusion-limited current
runs through the depletion region inside the diffuse double
layers screening the surface charges. This gives rise to an
overlimiting current depending linearly on the surface charge,
the surface-to-bulk ratio, and the applied potential. In addition
to carrying a current, the moving ions in the diffuse double
layers exert a force on the liquid medium, and thereby they
create an electro-diffusio-osmotic flow in the channel. This
fluid flow in turn affects the transport of ions, and the resulting
Poisson-Nernst-Planck-Stokes problem has strong nonlinear
couplings among diffusion, electromigration, electrostatics,
and advection. While different aspects of the problem can
be, and have been, treated analytically [28–30], the fully
coupled system is in general too complex to allow for a simple
analytical description.

*chnie@fysik.dtu.dk
†bruus@fysik.dtu.dk

In this paper we carry out full numerical simulations of
the coupled Poisson-Nernst-Planck-Stokes problem, and in
this way we are able to give a comprehensive description
of the transport properties and the role of electro-diffusio-
osmosis in microchannels during concentration polarization.
To supplement the full numerical model, and to allow for fast
computation of large systems, we also derive and solve an
accurate boundary layer model. We rationalize the results in
terms of three key quantities: the Debye length λ̄D normalized
by the channel radius, the surface charge ρs averaged over
the channel cross section, and the channel aspect ratio α. In
the limit of low aspect ratio we derive and verify a simple
analytical expression for the current-voltage characteristic,
which includes electromigration, diffusion, and advection
in the diffuse double layers. The overlimiting conductance
found in this model is approximately 3 times larger than the
conductance found in Ref. [26], where diffusion and advection
in the diffuse double layers is neglected. In the limit of
negligible surface charge the numerical results agree with our
previous analytical model [8] for the overlimiting current due
to an extended space-charge region.

It has been shown in several papers that reactions between
hydronium ions and surface groups can play an important
role for the surface charge density and for the transport
in microsystems [31–34]. This is especially true in systems
exhibiting concentration polarization, as strong pH gradients
often occur in such systems. However, in this work we limit
ourselves to the case of constant surface charge density and
defer the treatment of surface charge dynamics to future work.

II. THE MODEL SYSTEM

Our model system consists of a straight cylindrical mi-
crochannel of radius R and length L filled with an aqueous
salt solution, which for simplicity is assumed binary and
symmetric with valences Z and concentration fields c+ and
c−. A reservoir having salt concentration c0 is attached to one
end of the channel and a cation-selective membrane to the
other end. On the other side of the cation-selective membrane
is another reservoir, but due to its relatively simple properties,
this part of the system needs not be explicitly modeled and
is only represented by an appropriate membrane boundary
condition. The channel walls have a uniform surface charge

1539-3755/2014/90(4)/043020(14) 043020-1 ©2014 American Physical Society
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FIG. 1. (Color online) A sketch of the axisymmetric 2D system
studied in this work. A microchannel of normalized length and radius
unity connects a reservoir to the left to a cation-selective membrane
to the right. To the right of the membrane is another reservoir, but
this part of the system is only modeled through boundary conditions.
The diffuse double layer adjoining the wall is shown as a shaded
(blue) area and the arrows indicate a velocity field deriving from
electro-diffusio-osmosis with back-pressure.

density σ , which is screened by the salt ions in the liquid
over the characteristic length λD. In Fig. 1 a sketch of the
system is shown. The diffuse double layer adjoining the wall
is shown as a shaded (blue) area, and the arrows indicate
a velocity field deriving from electro-diffusio-osmosis with
back-pressure. We assume cylindrical symmetry and we can
therefore reduce the full three-dimensional (3D) problem to a
two-dimensional (2D) problem.

III. GOVERNING EQUATIONS

A. Nondimensionalization

In this work we use nondimensional variables, which are
listed in Table I together with their normalizations. We further
introduce the channel aspect ratio α and the nondimensional
gradient operator ∇,

α = R

L
, (1a)

∇ = αex∂x + er∂r . (1b)

TABLE I. Normalizations used in this work. c0 is the reservoir
concentration, Z is the valence of the ions, VT is the thermal voltage,
kB is the Boltzmann constant, U0 is a characteristic electro-osmotic
velocity, εw is the permittivity of water, η is the viscosity of water,
and D+ and D− are the diffusivities of the negative and positive ions,
respectively.

Variable Symbol Normalization

Ion concentration c± c0

Electric potential φ VT = kBT/(Ze)
Electrochemical potential μ± kBT

Current density J± 2D+c0/L

Velocity u U0 = εwV 2
T /(ηL)

Pressure p ηU0/R

Body force density f c0kBT/R

Radial coordinate r R

Axial coordinate x L

Time t R2/(2D+)

B. Bulk equations

The nondimensional current density J± of each ionic
species of concentration c± is given by the electrochemical
potentials μ± and normalization Péclet numbers Pe0

±,

2α
D+
D±

J± = −c±∇μ± + αPe0
±c±u, (2a)

Pe0
± = LU0

D±
= εwV 2

T

ηD±
. (2b)

For dilute solutions, μ± can be written as the sum of an ideal
gas contribution and the electrostatic potential φ,

μ± = ln(c±) ± φ. (2c)

In the absence of reactions, the ions are conserved, and the
nondimensional Nernst-Planck equations read

∂tc± = −α∇ · J±. (3)

The Poisson equation governs φ,

∇2φ = −1

2

R2

λ2
D

(c+ − c−) = − 1

2λ̄2
D

(c+ − c−), (4)

where λ̄D = λD/R is the normalized Debye length, for
which λD = √

kBT εw/(2Z2e2c0) is evaluated for the reservoir
concentration c0. Finally, we have the Stokes and continuity
equations governing the velocity field u, with x and r

components u and v and the pressure p,

1

Sc
∂t u = −∇p + ∇2u + 1

2αλ̄2
D

f , (5a)

0 = ∇ · u. (5b)

Here Sc = η/(ρD+) is the Schmidt number and f is the body
force density acting on the fluid.

C. Thermodynamic forces

In an electrokinetic problem, there are essentially two ways
of treating the thermodynamic forces driving the ion transport:
The transport is viewed either as a result of diffusive and
electric forces or as a result of gradients in the electrochemical
potential. While the outcome of both approaches is the same,
there are some advantages in choosing a certain viewpoint for
a specific problem. As the form of Eq. (2a) suggests, we favor
the electrochemical viewpoint in many parts of this paper.

In Fig. 2, a sketch of the model system is shown. The
system consists of a reservoir on the left, which is connected
to another reservoir to the right through a microchannel and
an ion-selective membrane. An electric potential difference V0

is applied between the two reservoirs. Typically, the electrical
potential drop in the membrane interior is negligible due to
the large number of charge carriers in this region, while it
varies significantly across the quasiequilibrium double layers
at the membrane interfaces, an effect known as Donnan
potential drops [35]. In contrast, the cation electrochemical
potential is nearly constant across the quasiequilibrium double
layers and thus also across the entire membrane. Unless we
want to explicitly model the membrane and the adjoining
double layers, it is therefore much more convenient to use

043020-2



CONCENTRATION POLARIZATION, SURFACE CURRENTS, . . . PHYSICAL REVIEW E 90, 043020 (2014)

FIG. 2. (Color online) Sketch of the full physical system includ-
ing both reservoirs of equal salt concentration. An electric potential
difference V0 is applied between the reservoirs, and the changes in
electrochemical and electrical potential across the membrane and
adjoining Donnan layers are indicated.

the electrochemical potential as control parameter than the
electric potential.

Inside the microchannel there are also some advantages
of emphasizing the electrochemical potentials. The diffuse
double layers screening the surface charges are very close to
local equilibrium, meaning that the electrochemical potentials
are nearly constant across them. The gradients ∇μ± in electro-
chemical potentials therefore only have components tangential
to the wall, and these components do not vary significantly
with the distance from the wall. In contrast, diffusion and
electromigration have components in both directions which
vary greatly in magnitude through the diffuse double layers.

The electrochemical potentials also offer a convenient way
of expressing the body force density f from Eq. (5a). Con-
ventionally, the body force density is set to be the electrostatic
force density −ρel∇φ = −(c+ − c−)∇φ. By considering the
forces on each constituent we can, however, formulate the
problem in a way that is more convenient and better reveals
the physics of the problem. The force acting on each particle is
minus the gradient of its electrochemical potential. The force
density can therefore be written as

f = −c+∇μ+ − c−∇μ− − cw∇μw, (6)

where cw � c± and μw is the concentration and chemical
potential of water, respectively. As opposed to μ± given by
the ideal gas Eq. (2c), μw depends linearly on c± [36],

μw = −c+ + c−
cw

, (7a)

f = −c+∇μ+ − c−∇μ− + ∇(c+ + c−). (7b)

If we insert the expressions for μ±, the force density reduces, as
it should, to the usual electrostatic force density. It is, however,
advantageous to keep the force density on this form, because
it reveals the origin of each part of the force. For instance,
if we insert a membrane which is impenetrable to ions, only
the last term ∇(c+ + c−) in the force can drive a flow across
the membrane, because the other forces are transmitted to the
liquid via the motion of the ions. It is thus easy to identify
−(c+ + c−) as the osmotic pressure in the solution. Inserting
Eq. (7b) for the force f in Eq. (5a) and absorbing the osmotic
pressure into the new pressure p′ = p − (c+ + c−), we obtain

1

Sc
∂t u = −∇p′ + ∇2u − 1

2αλ̄2
D

[c+∇μ+ + c−∇μ−] . (8)

We could of course have absorbed any number of gradient
terms into the pressure, but we have chosen this particular
form of the Stokes equation due to its convenience when
studying electrokinetics. In electrokinetics, electric double
layers are ubiquitous, and since the electrochemical potentials
are constant through the diffuse part of the electric double
layers, the driving force in Eq. (8) is comparatively simple.
Also, in this formulation there is no pressure buildup in the
diffuse double layers. Both of these features simplify the
numerical and analytical treatment of the problem.

D. Boundary conditions

To supplement the bulk equations (3), (4), (5b), and (8),
we specify boundary conditions on the channel walls, at the
reservoir, and at the membrane.

At the reservoir x = 0 we require that the flow u is
unidirectional along the x axis, and at the channel wall r = 1
as well as at the membrane surface x = 1 we impose a no-slip
boundary condition,

u = u ex, at x = 0, (9a)

u = 0, at r = 1 or x = 1. (9b)

To find the distribution of the potential φ at the reservoir
x = 0, we use the assumption of transverse equilibrium in the
Poisson equation (4),

1

r
∂r (r∂rφ) = 1

λ̄2
D

sinh φ, at x = 0. (10a)

Here α2∂2
xφ in ∇2φ is neglected in comparison with the

large curvature 1
r
∂r (r∂rφ) in the r direction. The boundary

conditions for φ are a symmetry condition on the cylinder axis
r = 0, and a surface charge boundary condition at the wall
r = 1,

∂rφ = 0, at r = 0, (10b)

er · ∇φ = − Rσ

VTεw
= ρs

4

1

λ̄2
D

, at r = 1. (10c)

The parameter ρs is defined as

ρs = − 2σ

zec0R
, (10d)

and physically it is the average charge density in a channel
cross section, which is required to compensate the surface
charge density. As explained in Ref. [26], ρs is closely related
to the overlimiting conductance in the limit of negligible
advection.

The boundary conditions for the ions are impenetrable
channel walls at r = 1, and the membrane at x = 1 is
impenetrable to anions while it allows cations to pass,

er · J± = 0, at r = 1, (11a)

ex · J− = 0, at x = 1. (11b)

Next to the membrane there is a quasiequilibrium diffuse
double layer, in which the cation concentration increases
from the channel concentration to the concentration inside
the membrane. Right where this double layer begins, there is
a minimum in cation concentration, and we chose this as the
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TABLE II. The models employed in this paper.

Abbreviation Name Described in

FULL Full model (numerical) Sec. III
BNDF Boundary layer model, full Sec. IV

(numerical)
BNDS Boundary layer model, slip Sec. IV

(numerical)
ASCA Analytical model, Sec. VC

surface conduction-advection
ASC Analytical model, Sec. VD

surface conduction
ABLK Analytical model, Sec. VE

bulk conduction

boundary condition on the cations, i.e.,

ex · ∇c+ = 0, at x = 1. (11c)

The last boundary conditions relate to μ± and p′. At the
reservoir x = 0, we require transverse equilibrium of the ions,
which also leads to the pressure being constant,

μ± = 0, at x = 0, (12a)

p′ = 0, at x = 0. (12b)

Finally, as discussed in Sec. III C, μ+ at the membrane x = 1
is set by V0,

μ+ = −V0, at x = 1. (12c)

The above governing equations and boundary conditions
completely specify the problem and enable a numerical
solution of the full Poisson-Nernst-Planck-Stokes problem
with couplings between advection, electrostatics, and ion
transport. In the remainder of the paper we refer to the model
specified in this section as the full model (FULL). See Table II
for a list of all numerical and analytical models employed
in this paper. An issue with the FULL model is that for
many systems the computational costs of resolving the diffuse
double layers and solving the nonlinear system of equations are
prohibitively high. We are therefore motivated to investigate
simpler ways of modeling the system, and this is the topic of
the following section.

IV. BOUNDARY LAYER MODELS

To simplify the problem, we divide the system into a locally
electroneutral bulk system and a thin region near the walls
comprising the charged diffuse part of the double layer. The
influence of the double layers on the bulk system is included
via a surface current inside the boundary layer and an electro-
diffusio-osmotic slip velocity.

To properly divide the variables into surface and bulk
variables, we again consider the electrochemical potentials.
In the limit of long and narrow channels the electrolyte is in
transverse equilibrium, and the electrochemical potentials vary
only along the x direction,

μ±(x) = ln[c±(x,r)] ± φ(x,r). (13a)

Since the left-hand side is independent of r , it must be possible
to pull out the x-dependent parts of ln[c±(x,r)] and φ(x,r). We
denote these parts c̄±(x) and φbulk(x), respectively, and find

μ±(x) = ln[c̄±(x)] + ln

[
c±(x,r)

c̄±(x)

]
± φbulk(x) ± φeq(x,r),

(13b)

where the equilibrium potential φeq(x,r) is the remainder
of the electric potential, φeq = φ − φbulk. The r dependent
parts must compensate each other, which implies a Boltzmann
distribution of the ions in the r direction,

c±(x,r) = c̄±(x)e∓φeq(x,r). (13c)

The remainder of the electrochemical potentials is then

μ±(x) = ln[c̄±(x)] ± φbulk(x). (13d)

For further simplification, we assume that electroneutrality is
only violated to compensate the surface charges, i.e., c̄+ =
c̄− = c̄. As long as surface conduction or electro-diffusio-
osmosis causes some overlimiting current this is a quite good
assumption, because in that case the bulk system is not driven
hard enough to cause any significant deviation from charge
neutrality. For thin diffuse double layers, c̄ corresponds to
the ion concentration at r = 0. However, if the Debye length
is larger than the radius, c̄ does not actually correspond to
a concentration which can be found anywhere in the cross
section, and for this reason c̄ is often called the virtual salt
concentration [28].

To describe the general case, where transverse equilibrium
is not satisfied in each cross section, we must allow the bulk
potential φbulk to vary in both the x and r directions. Then,
however, the simple picture outlined above fails partially, and,
consequently, we make the ansatz

c±(x,r) = c̄(x)e∓φeq(x,r) + c′(x,r), (14a)

where c′(x,r) accounts for the deviations from transverse
equilibrium. Close to the walls, i.e., in or near the diffuse
double layer, we therefore have c′(x,r) ≈ 0. Inserting this
ansatz in Eqs. (2a) and (2c), the currents become

2α
D+
D±

J± = −∇c± ∓ c±∇φ + αPe0
±c±u

= −∇c′ − e∓φeq∇c̄ ∓ c̄e∓φeq∇φbulk

∓ c′∇(φbulk + φeq) + (c̄e∓φeq + c′)αPe0
±u

= −∇(c̄ + c′) ∓ (c̄ + c′)∇φbulk (14b)

+ (c̄ + c′)αPe0
±u

− (e∓φeq − 1)∇c̄ ∓ c̄(e∓φeq − 1)∇φbulk

∓ c′∇φeq + c̄(e∓φeq − 1)αPe0
±u.

From J±, we construct two useful linear combinations, J sum

and Jdif , as follows:

α J sum = α

(
J+ + D+

D−
J−

)

= −∇(c̄ + c′) + α
Pe0

+ + Pe0
−

2
(c̄ + c′)u

043020-4



CONCENTRATION POLARIZATION, SURFACE CURRENTS, . . . PHYSICAL REVIEW E 90, 043020 (2014)

− (cosh φeq − 1)∇c̄ + c̄ sinh φeq∇φbulk

+ α

[
Pe0

+
2

(e−φeq − 1) + Pe0
−

2
(eφeq − 1)

]
c̄u, (15a)

α Jdif = α

(
J+ − D+

D−
J−

)

= −(c̄ + c′)∇φbulk + α
Pe0

+ − Pe0
−

2
(c̄ + c′)u

+ sinh φeq∇c̄−(cosh φeq−1) c̄∇φbulk − c′∇φeq

+ α

[
Pe0

+
2

(e−φeq − 1) − Pe0
−

2
(eφeq − 1)

]
c̄u. (15b)

The gradient of φeq is only significant in the diffuse double
layer, where, by construction, c′ ≈ 0. We therefore neglect the
−c′∇φeq term in the expression for Jdif . It is seen that for thin
diffuse double layers the terms involving exponentials of φeq
are much larger near the wall than in the bulk. For this reason
we divide the currents into bulk and surface currents,

J sum = Jbulk
sum + J surf

sum, (16a)

Jdif = Jbulk
dif + J surf

dif . (16b)

Here the bulk currents are just the electroneutral parts,

α Jbulk
sum = −∇c + αPe0cu, (17a)

α Jbulk
dif = −c∇φbulk + α

1 − δD

1 + δD
Pe0cu, (17b)

with Pe0 = (Pe0
+ + Pe0

−)/2 and δD = D+/D−. In addition, we
have introduced the bulk salt concentration,

c(x,r) = c̄(x) + c′(x,r), (18)

which reduces to c̄(x) on the channel walls. We identify the
term −∇c in Eq. (17a) as the bulk diffusion and the term
αPe0cu as the bulk advection. The Nernst-Planck equations
corresponding to Eq. (17) are

(1 + δD)∂tc = ∇2c − αPe0∇ · (cu), (19a)

(1 − δD)∂tc = ∇ · (c∇φbulk) − α
1 − δD

1 + δD
Pe0∇ · (cu). (19b)

The surface currents are given by the remainder of the
terms. Because the current of anions in the diffuse double
layer is so much smaller than the current of cations, the two
surface currents J surf

sum and J surf
dif are practically identical and

equal to the cation current,

2α J surf
+ = −c̄(e−φeq − 1)[∇ ln(c̄) + ∇φbulk]

+ c̄(e−φeq − 1) αPe0
+u. (20)

In Fig. 3, the division of the system into a surface region
and a bulk region is illustrated. The sketch also highlights
the distinction between bulk and surface advection. The first
term on the right-hand side of Eq. (20) we denote the surface
conduction and the second term the surface advection. Since
the surface currents are mainly along the wall we can describe

FIG. 3. (Color online) Sketch indicating the two regions in the
boundary layer model. In the bulk region (lightly shaded) the
boundary-driven velocity field u (black line), the salt concentration
profile c (gray line), and the bulk advection 〈cu〉 are shown. In
the boundary region (shaded and top zoom-in) the excess ion
concentrations c± − c̄, the velocity field u, and the surface advection
〈(c± − c̄)u〉 are shown.

them as scalar currents,

2αI surf
+ = 2α〈ex · J surf

+ 〉
= −αc̄〈e−φeq − 1〉[∂x ln(c̄) + ∂xφbulk]

+αPe0
+c̄〈(e−φeq − 1) u〉, (21)

where the cross-sectional average of any function f (r) is given
by the integral 〈f (r)〉 = ∫ 1

0 f (r) 2r dr . The first average is
simplified by introducing the mean charge density ρs = 〈c+ −
c−〉 in the channel needed to screen the wall charge. We then
find

c̄〈e−φeq − 1〉 = ρs + I1, (22a)

I1 = c̄〈eφeq − 1〉, (22b)

where I1 is introduced for later use.
Before we proceed with a treatment of the remaining terms

in the surface current, there is an issue we need to address:
Because of the low concentration in the depletion region, the
diffuse double layers are in general not thin in that region.
However, the method is saved by the structure of the diffuse
double layer in the depletion region. Since the Debye length
λ̄D is large in the depletion region the negative ζ potential is
also large, −ζ � 1. The majority of the screening charge is
therefore located within the smaller Gouy length, λ̄G 	 λ̄D
[37,38]. In Fig. 4, the charge density and the potential are
plotted near the channel wall for a system with λ̄D = 0.01
and ρs = 1. The charge density is seen to decay on the much
smaller length scale λ̄G than that of the potential, λ̄D. The
normalized Gouy length is given as

λ̄G = λ̄D√
c

asinh

(
8
λ̄D

√
c

ρs

)
� 8

λ̄2
D

ρs

, (23)
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FIG. 4. (Color online) Normalized charge density ρel/ρel(0)
(full) and potential φ/φ(0) (dashed) as a function of distance from a
charged wall for λ̄D = 0.01 and ρs = 1. The Gouy length λ̄G and the
Debye length λ̄D are indicated.

where the upper limit is a good approximation when
√

c 	
ρs/λ̄D. The boundary layer method is therefore justified
provided that

λ̄D 	 1 or 8
λ̄2

D

ρs

	 1. (24)

To determine the velocity field u, we consider the Stokes
equation inside the diffuse double layer. In this region the
flow is mainly along the wall, and velocity gradients along this
direction can be neglected for most cases. The Stokes equation
is therefore largely the balance,

1

Sc
∂tu = −α∂xp

′ + 1

r
∂r (r∂ru)

− 1

2

1

λ̄2
D

(c+∂xμ+ + c−∂xμ−). (25a)

Dimensional analysis shows that the characteristic time scale
for the flow inside the diffuse double layer is given by λ̄2

D/Sc.
For typical systems, where Sc � 1 and λ̄2

D 	 1, this time is
very much shorter than the bulk diffusion time ∼1, the bound-
ary diffusion time ∼λ̄2

D, and the time scale for the bulk flow
∼1/Sc. It is therefore reasonable to neglect the time-derivative
term in Eq. (25a). Assuming Boltzmann distributed ions,
c± = c̄e∓φeq , and writing out the electrochemical potentials,
we obtain

0 = −α∂xp
′ + 1

r
∂r (r∂ru)

+ c̄

λ̄2
D

[sinh φeq∂xφbulk − cosh φeq∂x ln(c̄)]. (25b)

Absorbing the bulk diffusive contribution into the new pressure
p′′ we find

0 = − α∂xp
′′ + 1

r
∂r{r∂ru} + c̄

λ̄2
D

sinh φeq∂xφbulk

− c̄

λ̄2
D

[cosh φeq − cosh(φeq(0))] ∂x ln(c̄). (25c)

This equation is linear in u, so we can calculate the electro-
osmotic velocity ueo, the diffusio-osmotic velocity udo, and the

pressure-driven velocity up individually,

u = ueo + udo + up (25d)

= uu
eo∂xφbulk + uu

do∂x ln(c̄) + up,

1

r
∂r

(
r∂ru

u
eo

) = − c̄

λ̄2
D

sinh φeq, (25e)

1

r
∂r

(
r∂ru

u
do

) = c̄

λ̄2
D

[cosh φeq − cosh(φeq(0))], (25f)

1

r
∂r (r∂rup) = α∂xp

′′. (25g)

Here, we also introduced the unit velocity fields uu
eo and uu

do,
which both have driving forces of unity. The electro-osmotic
unit velocity uu

eo is found by inserting sinh φeq from the Poisson
equation and integrating twice,

uu
eo = (ζ − φeq). (26)

In the limit −ζ � 1, cosh φeq − cosh(φeq(0)) ≈ − sinh φeq
and the diffusio-osmotic unit velocity uu

do equals uu
eo

udo = (ζ − φeq), for − ζ � 1. (27)

In general, the diffusio-osmotic velocity is not as easy to
compute, and in practice it is most convenient just to solve
Eq. (25f) numerically along with the φeq problem. The
role of the pressure-driven velocity fields up is to ensure
incompressibility of the liquid. Rather than dealing with this
extra velocity field, we incorporate a pressure-driven flow into
uu

eo and uu
do just large enough to ensure no net flux of water

through a cross section,

uup
eo = uu

eo − 2
〈
uu

eo

〉
(1 − r2), (28)

u
up
do = uu

do − 2
〈
uu

do

〉
(1 − r2). (29)

The velocity field thus can be written

u = u
up
do ∂x ln(c̄) + uup

eo ∂xφbulk, (30)

with 〈u〉 = 0. Using this, we can express the averaged
advection term in the surface current Eq. (21) as

c̄〈(e−φeq − 1) u〉 = I2 ∂xφbulk + I3 ∂x ln(c̄), (31a)

I2 = c̄
〈
(e−φeq − 1) uup

eo

〉
, (31b)

I3 = c̄
〈
(e−φeq − 1) u

up
do

〉
. (31c)

The surface current can then be written as

2αI surf
+ = −α(ρs + I1)[∂xφbulk + ∂x ln(c̄)]

+αPe0
+[I2∂xφbulk + I3∂x ln(c̄)]. (32)

The current into the diffuse double layer from the bulk system
is

n · J+ = 1
2α∂xI

surf
+ , (33)

where the factor of a half comes from the channel cross section
divided by the circumference. Rather than resolve the diffuse
double layers, we can therefore include their approximate
influence through the boundary condition Eq. (33).
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FIG. 5. (Color online) The electro-osmotic flow uu
eo and the

electro-osmotic flow u
up
eo with backpressure for ρs = 10 and λ̄D =

0.05. The effective boundary velocity u
up
eo,bnd is also indicated.

In the locally electroneutral bulk system the Stokes and
continuity equations become

1

Sc
∂t u = −∇p′ + ∇2u, (34a)

0 = ∇ · u. (34b)

The effects of electro-osmosis and diffusio-osmosis are in-
cluded via a boundary condition at the walls

u = ubndex = [
u

up
eo,bnd∂xφbulk + u

up
do,bnd ∂x ln(c̄)

]
ex,

at r = 1, (35)

where u
up
eo,bnd and u

up
do,bnd are the minimum values of u

up
eo

and u
up
do, i.e., the velocity at the point where the back-

pressure-driven flow becomes significant. In Fig. 5 some of
the discussed velocity fields are illustrated for ρs = 10 and
λ̄D = 0.05. Note that ∂xφbulk and ∂x ln(c̄) will most often be
negative, so the actual velocities in the channel differ from the
plotted velocities with a sign and a numeric factor.

In the remainder of the paper we refer to the model
developed in this section as the full boundary layer (BNDF)
model. We also introduce the slip boundary layer (BNDS)
model, in which the bulk couples to the boundary layers only
through a slip velocity, while the boundary condition (33) for
the normal current is substituted by n · J+ = 0. In other words,
the BNDS and BNDF models are identical, except the BNDS
model does not include the surface current. These models are
listed in Table II along with the other models of the paper.

V. ANALYSIS

A. Scaling of bulk advection

To estimate the influence of bulk advection we consider the
bulk current for a system in steady state,

α Jbulk
sum = −∇c + αPe0cu. (36)

The average of this current in the x direction is

J bulk
sum = 〈ex · Jbulk

sum 〉 = −∂x〈c〉 + Pe0〈cu〉. (37)

Since the membrane blocks the flow in one end, the net flow 〈u〉
in a channel cross section is zero and thus 〈c̄(x)u〉 = c̄(x)〈u〉 =
0, which leads to

〈cu〉 = 〈[c̄(x) + c′(x,r)]u〉 = 〈c′(x,r)u〉. (38)

Now the source of the deviation c′ between c̄ and c is the flow
itself. In steady state, the dominant balance in Eq. (19a) is

1

r
∂r (r∂rc) ≈ α2Pe0∂x(cu), (39a)

so c′ must scale as

c′ ∼ α2Pe0∂x(c̄u), (39b)

which, on insertion in Eq. (37), yields

J bulk
sum ∼ −∂x〈c〉 + (αPe0)2〈∂x(c̄u)u〉. (39c)

This approximative expression reveals an essential aspect of
the transport problem: With the chosen normalization the
velocity, the diffusive current, the electromigration current,
and the surface current do not depend on the aspect ratio α.
The only term that depends on α is the bulk advection, and
we see that for long slender channels (α 	 1) bulk advection
vanishes, whereas it can be significant for short broad channels
(α � 1).

B. Local equilibrium models for small α

In the limit α 	 1, where bulk advection has a negligible
effect, we can derive some simple analytical results. There
the bulk concentration c(x,r) equals the virtual concentration
c̄(x), and the area-averaged bulk currents are

J bulk
sum = − ∂xc̄(x), (40a)

J bulk
dif = − c̄(x)∂xφbulk(x). (40b)

In steady state, these currents are equal and can change only
if there is a current into or out of the boundary layer. The
conserved current J+ is therefore

J+ = − ∂xc̄(x) + Isurf

= − c̄(x)∂xφbulk(x) + Isurf . (41)

It is readily seen that c̄ = eφbulk is a solution to the equation. To
proceed we need expressions for the integrals I1, I2, and I3.

Initially, we neglect advection in the boundary layer as well
and this leaves us with the equation

J+ = −eφbulk∂xφbulk − 1
2 (ρs + I1)2∂xφbulk. (42)

If the Debye-Hückel limit is valid in the diffuse double layer,
we can make the approximations

ρs = c〈e−φeq − eφeq〉 ≈ −2c〈φeq〉, (43a)

I1 = c〈eφeq − 1〉 ≈ c〈φeq〉 ≈ − 1
2 ρs, (43b)

in which case J+ reduces to the expression in Ref. [26],

J+ = −
(
eφbulk + ρs

2

)
∂xφbulk. (44)

If, on the other hand, the diffuse double layer is in the strongly
nonlinear regime, then the surface charge is compensated
almost entirely by cations and to a good approximation,

I1 ≈ 0. (45)

In that limit the current is

J+ = −(eφbulk + ρs)∂xφbulk, (46)
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i.e., the overlimiting conductance is twice the conductance
found in Ref. [26]. Since the Debye length is large in the
depletion region, we have −ζ � 1, and the diffuse double
layer is in the strongly nonlinear regime. Surface conduction is
mainly important in the depletion region, so for most parameter
values Eq. (46) is a fairly accurate expression for the current.

We now make a more general treatment, which is valid
when the characteristic dimension of the diffuse double layer
is much smaller than the channel curvature. In that limit we
can approximate the equilibrium potential with the Gouy-
Chapman solution,

φGC = 4artanh

{
tanh

[
ζ

4

]
exp

[
− √

c̄
y

λ̄D

]}
, (47a)

ζ = −2arsinh

[
ρs

4dλ̄D

√
c̄

]
≈ −2 ln

[
ρs

2dλ̄D

√
c̄

]
, (47b)

where the last approximation is valid for −ζ � 2. In the
following we assume that we are in this limit. The parameter
d is the ratio of circumference to area of the channel (d = 2
for a cylindrical channel). Using the Gouy-Chapman solution
we find an expression for I1,

I1 = c̄〈eφeq − 1〉 ≈ dc̄

∫ ∞

0
(eφeq − 1) dy

= −2dλ̄D

√
c̄ (1 − e

1
2 ζ )

≈ 4d2 λ̄2
D

ρs

c̄ − 2dλ̄D

√
c̄. (48)

In the limit of large potentials, −φGC � 1, we can approx-
imate cosh φGC ≈ − sinh φGC and obtain

ueo = (ζ − φGC) ∂xφbulk, (49a)

udo ≈ (ζ − φGC) ∂x ln(c). (49b)

From this we find

〈c̄(ζ − φGC)(e−φGC − 1)〉

≈ dc̄

∫ ∞

0
(ζ − φGC)(e−φGC − 1) dy

= 4dλ̄D

√
c̄

(
1 − 1

2
ζ − e− 1

2 ζ

)

≈ 4dλ̄D

√
c̄ + 4dλ̄D

√
c̄ ln

(
ρs

2d
√

c̄λ̄D

)
− 2ρs. (50)

Inserting Eq. (50) in Eqs. (32) and (41) we obtain

J+ = −eφbulk∂xφbulk

−
(

ρs + 4d2 λ̄2
D

ρs

eφbulk − 2dλ̄De
1
2 φbulk

)
∂xφbulk

− Pe0
+

[
2ρs − 4dλ̄De

1
2 φbulk

− 4dλ̄De
1
2 φbulk ln

(
ρs

2d

e− 1
2 φbulk

λ̄D

) ]
∂xφbulk. (51a)

Integration of this expression with respect to x leads to

J+x =
(

1 + 4d2 λ̄2
D

ρs

)
(1 − eφbulk ) − ρs

(
1 + 2Pe0

+
)
φbulk

− 4dλ̄D(1 + 2Pe0
+)

(
1 − e

1
2 φbulk

)
− 8dPe0

+λ̄D

{(
1 + ln

[
ρs

2dλ̄D

])
(1 − e

1
2 φbulk )

+ 1

2
φbulk e

1
2 φbulk

}
. (51b)

C. Analytical surface conduction and surface
advection (ASCA) model

For λ̄D 	 1, the leading-order behavior of Eqs. (51a) and
(51b) is

J+ = −eφbulk∂xφbulk − ρs(1 + 2Pe0
+)∂xφbulk, (52a)

J+x = 1 − eφbulk − ρs(1 + 2Pe0
+)φbulk. (52b)

In Eq. (52a) it is seen that the bulk conductivity eφbulk varies
with the electric potential, whereas the surface conductivity
ρs(1 + 2Pe0

+) is constant. At x = 1, the boundary condition
for the potential is μ+ = ln(c̄) + φbulk = 2φbulk = −V0, and
from Eq. (52b) we obtain the current-voltage relation

J+ = 1 − e− 1
2 V0 + ρs

(
1
2 + Pe0

+
)
V0. (52c)

While this expression was derived with a cylindrical geometry
in mind, it applies to most channel geometries. The only
requirement is that the local radius of curvature of the channel
wall is much larger than the Gouy length λ̄G, so the potential
is well approximated by the Gouy-Chapman solution.

This analytical model is called the surface conduction-
advection (ASCA) model. As shown in Sec. VI B, it is very
accurate in the limit of long slender channels, α 	 1.

D. Analytical surface conduction (ASC) model

For a system with a Gouy length on the order of unity,
the screening charges are distributed across the channel in
the depletion region. Advection therefore transports approxi-
mately as many cations towards the membrane as away from
the membrane, and there is no net effect of surface advection.
In this limit, Eq. (52c) reduces to the pure surface conduction
expression

J+ = 1 − e− 1
2 V0 + ρs

2
V0, (53)

which we refer to as the analytical surface conduction (ASC)
model.

E. Analytical bulk conduction (ABLK) model

In the limit of low surface charge and high λ̄D, neither
surface conduction nor advection matter much. In that limit
the dominant mechanism of overlimiting current is bulk con-
duction through the extended space-charge region (ESC). This
effect is not captured by the derived boundary layer model,
since it assumes local electroneutrality. The development of
an extended space-charge region can, however, be captured in
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an analytical 1D model, and from Ref. [8] we have the limiting
expression

−V0 = μ+(1) ≈ −2
√

2

3

(J+ − 1)3/2

αλ̄DJ+
+ 2 ln(αλ̄D), (54)

giving the overlimiting current-voltage characteristic due
to conduction through the extended space-charge region.
Expressions which are uniformly valid both at under- and
overlimiting current are also derived in our previous work
Ref. [8], but since these are rather lengthy we will not show
them here. We refer to the full model from Ref. [8] as the
analytical bulk conduction (ABLK) model, see Table II.

VI. NUMERICAL ANALYSIS

A. Numerical implementation

The numerical simulations are carried out in the com-
mercially available finite element software COMSOL MUL-
TIPHYSICS, version 4.3a. Following Gregersen et al. [39],
the governing equations of the FULL, BNDF, and BNDS
models are rewritten in weak form and implemented in the
mathematics module of COMSOL. To improve the numerical
stability of the problem we have made a change of variable,
so the logarithm of the concentration fields have been used as
dependent variables instead of the concentration fields them-
selves. The cross-sectional averages I1, I2, and I3 [Eqs. (22b)
and (31b)] as well as the slip velocity [Eq. (35)] are calculated
and tabulated in a separate model.

In the theoretical treatment we found seven dimensionless
numbers, which govern the behavior of the system. These
are the Schmidt number Sc, the normalization Péclet number
Pe0, the diffusivity ratio δD, the aspect ratio α, the normalized
Debye length λ̄D, the cross-sectionally averaged charge density
ρs, and the applied bias voltage V0. In the numerical simula-
tions, we only consider steady-state problems, so Sc does not
matter for the results. To further limit the parameter space, we
have chosen fixed and physically reasonable values for a few of
the parameters. The ionic diffusivities are assumed to be equal,
i.e., δD = 1. For a solution of potassium chloride with DK+ =
1.96 m2/s and DCl− = 2.03 m2/s, this is actually nearly the
case. The normalization Péclet number is set to Pe0 = 0.235,
which is a realistic number for potassium ions in water at
room temperature. This leaves us with four parameters, α,
λ̄D, ρs, and V0, which govern the system behavior. We mainly
present our results in the form of I -V characteristics, i.e.,
sweeps in V0, since the important features of the transport
mechanisms can most often be inferred from these. We vary
the other parameters as follows: the aspect ratio α takes on the
values {0.01,0.05,0.1,0.2}, the normalized Debye length λ̄D
takes the values {0.0001,0.001,0.01,0.1}, and the averaged
charge density ρs takes the values {0.001,0.01,0.1,1}. The
parameters and their values or range of values are listed in
Table III. The λ̄D = 0.0001 systems are only solved in the
BNDF model, since a full numerical solution with resolved
diffuse double layers is computationally costly in this limit
λ̄D 	 1. The boundary layer model is very accurate in the
small λ̄D limit, so the lack of a full numerical solution for
λ̄D = 0.0001 is not a concern.

TABLE III. Parameters and their values or range of values. The
Schmidt number is irrelevant since we are considering steady-state
problems. To simplify the analysis, Pe0 and δD are fixed.

Parameter Symbol Value/range

Schmidt number Sc N/A
Normalization Péclet number Pe0 0.235
Diffusivity ratio δD 1
Aspect ratio α 0.01–0.2
Normalized Debye length λ̄D 0.0001–0.1
Average surface charge density ρs 0.001–1
Bias voltage V0 0–100

To verify the numerical scheme we have made comparisons
with known analytical results in various limits and carried
out careful mesh convergence analyses for selected sets of
parameter values.

B. Parameter dependence of I-V characteristics

The results of the simulations are presented in the following
way: For each α value a (λ̄D,ρs) grid is made, and in each
grid point is shown the corresponding I -V characteristic.
The I -V characteristics obtained from the simulations are
supplemented with relevant analytical results. To aid in the
interpretation of the results, Fig. 6 shows the trends we expect
on the basis of the governing equations and our analysis.
Surface conduction and surface advection is expected to
increase with ρs and bulk advection is expected to increase
with ρs and α and decrease with λ̄D. Bulk conduction through
the extended space-charge region is expected to increase with
αλ̄D.

In Figs. 7 and 8 the numerically calculated I -V charac-
teristics are plotted for a long slender channel (α = 0.05)
and a short broad channel (α = 0.2), respectively. In the
Supplemental Material [40] additional results for α = 0.01
and α = 0.1 are given. The results for the FULL model with
resolved diffuse double layers (defined in Sec. III) are shown in

FIG. 6. Directions of increase of the various mechanisms of over-
limiting current. Bulk advection increases with α and ρs and decreases
with λ̄D. Surface conduction and surface advection increases with ρs,
and bulk conduction through the ESC increases with αλ̄D.
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FIG. 7. (Color online) I -V characteristics for α = 0.05, λ̄D = {0.0001,0.001,0.01,0.1}, and ρs = {0.001,0.01,0.1,1}. The full (black) line
show the characteristics obtained from the FULL model. The dashed (red) curves are obtained from the BNDF model. The (blue) dash-dot
curves are from the ASC model, and the (green) dash-diamond curves are from the ASCA model. The (gray) long-dash-short-dash curves are
obtained from the ABLK model. The background patterns indicate the dominant overlimiting conduction mechanism. The (green) cross-hatched
pattern indicate that surface advection and surface conduction are the dominant mechanisms. The (blue) vertically hatched pattern indicate that
surface conduction without surface advection is the dominant mechanism. The (red) horizontally hatched pattern indicate that bulk advection
is the dominant mechanism. The (gray) skew-hatched pattern indicate that bulk conduction through the ESC is the dominant mechanism.
Intermediate cases are indicated with mixed background patterns.

a full (black) line. The results for the BNDF model (defined in
Sec. IV) are shown in a dashed (red) line. The long-dash-short-
dash (gray) line is obtained from the ABLK model [note that
Eq. (54) gives the asymptotic version of this curve]. The dash-
dot (blue) line is the analytical curve from the ASC model,
and the dash-diamond (green) line is the analytical curve
from the ASCA model. To help structure the results the I -V
characteristics have been given a background pattern (colored),
which indicate the dominant conduction mechanisms. A light
cross-hatched (green) background indicates that the dominant
mechanisms are surface conduction and surface advection.
A dark horizontally hatched (red) background indicates that
bulk advection is the dominant mechanism. Dark with vertical
hatches (blue) indicate that surface conduction without surface
advection is the dominant mechanism and light with skewed
hatches (gray) indicates that the dominant mechanism is
bulk conduction through the extended space-charge region.
A split background indicates that the overlimiting current
is the result of two different mechanisms. In the case of a
split cross-hatched/vertically hatched background, the split

indicates that surface conduction is important and that surface
advection plays a role, but that this role is somewhat reduced
due to backflow along the channel axis.

We first consider the case α = 0.05 shown in Fig. 7. Here
the aspect ratio α is so low that the effects of bulk advection
are nearly negligible. As a consequence, the numerical [dashed
(red) and full (black) lines] and analytical [dash-diamond
(green) line] curves nearly match each other in a large portion
of the parameter space [light cross-hatched (green) region].
Although there is a small region in which bulk advection
does play a role [dark horizontally hatched (red) region], the
overlimiting current due to bulk advection is small for all
of the investigated λ̄D and ρs values. In the right part (high
λ̄D) of Fig. 7 the effects of bulk and surface advection are
negligible. For high ρs values surface conduction dominates
[dark vertically hatched (blue) region] and for low ρs bulk
conduction through the ESC dominates [light skew-hatched
(gray) region].

The case of α = 0.2, shown in Fig. 8, follows the same
basic pattern as the α = 0.05 case. As expected from Fig. 6, the
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FIG. 8. (Color online) Same I -V characteristics as Fig. 7, except that here α = 0.2 instead of 0.05.

regions where bulk advection [dark (red) horizontal hatches] or
bulk conduction [light (gray) skewed hatches] dominates grow
as α is increased. Inside the regions an increase in magnitude
of both effects is also seen. The picture that emerges is that in
the long channel limit α � 0.05 the effects of bulk advection
are negligible, and for small λ̄D the overlimiting current is
entirely due to surface conduction and surface advection. For
bulk advection to cause a significant overlimiting current the
channel has to be relatively short, α � 0.1, and the normalized
Debye length has to be small, λ̄D � 0.001.

C. Field distributions

In Fig. 9 some of the important fields are plotted for two
different sets of parameter values. The fields are obtained from
the BNDF model. To the left, in Figs. 9(a), 9(b), and 9(c), the
fields are given for a system with λ̄D = 0.0001, ρs = 0.01,
α = 0.2, and V0 = 60, and, to the right, in Figs. 9(d), 9(e),
and 9(f), the fields are given for a system with λ̄D = 0.001,
ρs = 0.1, α = 0.05, and V0 = 60. The colors indicate the
relative magnitude (black, low value; white, high value) of
the fields within each panel. Comparing Figs. 9(c) and 9(f)
we see that the depletion region is bigger in Fig. 9(f) than
Fig. 9(c), which is as expected since the current in Fig. 9(f) is
larger than in Fig. 9(c) (cf. Figs. 7 and 8). It is also noted that
the transverse distribution of the concentration is much less

uniform in Fig. 9(c) than in Fig. 9(f). Due to this nonuniformity
(see Sec. V A), system (a)-(b)-(c) has a net current contribution
from bulk advection, whereas bulk advection contributes
negligibly to the current in the transversally uniform system
(d)-(e)-(f). In Fig. 9(a), we see that the majority of the current
is carried in the bulk until x ∼ 0.9, at which point it enters the
boundary layer. In Fig. 9(d), on the other hand, the current
enters the boundary layer already at x ∼ 0.3, because the
amount of bulk advection is insufficient to carry a bulk current
into the depletion region.

D. Coupling between bulk advection and the surface current

As seen in Figs. 7 and 8, the limits of surface advection
and surface conduction, of surface conduction, and of bulk
conduction through the ESC are well described by our
analytical models. The analytical models do not describe the
transitions between the limiting behaviors, but the essentials
of the involved mechanisms are well understood. It is thus
mainly the bulk advection which requires a more thorough
investigation. As pointed out in Refs. [29,41–43], the effects of
bulk advection can to some extent be understood in terms of a
Taylor-Aris-like model of hydrodynamic dispersion. However,
in those papers surface conduction and surface advection is
neglected on account of their small contribution to the total
current in the investigated limits. It turns out that in the context
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FIG. 9. (Color online) For a system with λ̄D = 0.0001, ρs = 0.01, α = 0.2, and V0 = 60 is plotted (a) cation current J+, (b) velocity u,
and (c) salt concentration c. For a system with λ̄D = 0.001, ρs = 0.1, α = 0.05, and V0 = 60 is plotted the (d) cation current J+, (e) velocity
u, and (f) salt concentration c. The fields are obtained from the BNDF model, and the colors indicate the relative magnitude (black, low; white,
high) of the fields within each panel, while arrows represent vector fields.

of concentration polarization the surface currents do in fact
play a crucial role for the bulk advection, even when the
surface currents themselves only give a minute contribution
to the total current. Our boundary layer model is ideally
suited to demonstrate just that point, since it allows us to
artificially turn off the surface currents while keeping the
electro-diffusio-osmotic flow. In Fig. 10(a) I -V characteristics
obtained from the BNDF [dashed (red) line] and BNDS [dotted
(purple) line] models are plotted for α = 0.2, λ̄D = 0.0001,
and ρs = 0.001. For comparison the I -V characteristic from
the ASCA model, which includes surface conduction and
surface advection but excludes bulk advection, is also plotted.
In Fig. 10(b) the same curves are plotted with ρs = 0.1 instead
of 0.001. Comparing the BNDF model [dashed (red)] with
the ASCA model [dash-diamond (green)], it is seen that bulk
advection plays a significant role in these regimes. In light
of this it is indeed remarkable that the BNDS model, which
includes bulk advection but excludes surface currents [dotted

FIG. 10. (Color online) (a) I -V characteristics highlighting the
role of the surface current for bulk advection. α = 0.2, λ̄D = 0.0001,
and ρs = 0.001. The dashed (red) curve is obtained from the BNDF
model and the dash-diamond (green) curve is from the ASCA model.
The dotted (purple) curve is obtained from the BNDS model, in
which the surface current has been artificially removed while the
electro-diffusio-osmotic slip velocity is kept. (b) Same as in (a) but
with ρs = 0.1.

(purple) line], exhibits no overlimiting current at all. We
conclude that the surface current is, in some way, a prerequisite
for significant bulk advection.

Our investigations suggest that the reason for this highly
nonlinear coupling between bulk advection and the surface
current is that the surface current sets the length of the depletion
region before bulk advection sets in. The large gradients
in electrochemical potentials, and thereby the large electro-
diffusio-osmotic velocities, exist in the depletion region, so a
wide depletion region implies a wide region with significant
advection. In the limit of zero surface current, the depletion
region only extends over a tiny region next to the membrane.
In this region there is a huge electro-diffusio-osmotic flow
towards the membrane, but the effects of that flow are
not felt very far away, because it is compensated by the
back-pressure-driven flow over a quite small distance. When
there is a surface current the depletion region will eventually,
as the driving potential is increased, extend so far away
from the membrane that back-pressure does not immediately
compensate the electro-diffusio-osmotic flow. In that situation,
bulk advection may begin to play a role. The need for a
sufficiently large depletion region is seen by the plateau in
the BNDF I -V characteristic in Fig. 10(a). What happens
is that, as a function of voltage, the current increases to the
limiting current, remains there for a while, and then, once the
depletion region is sufficiently developed, increases further
due to bulk advection. To quantify these notions we derive a
simple estimate of the extent of the depletion region.

Before bulk advection sets in, the overlimiting current is
entirely due to the surface current, and in this regime the
behavior is well described by the ASCA model Eqs. (52b) and
(52c). There is some ambiguity in defining exactly which parts
of the system constitute the depletion region. By definition,
the depletion region comprises the parts of the system, which
are depleted of charge carriers. However, since there are
always some charge carriers present, we have to decide on a
concentration which counts as sufficiently depleted. There are
a number of legitimate choices for this concentration, but for
the purposes of this analysis, we define the depletion region as
the part of the system where the surface conductivity exceeds
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the bulk conductivity. Consequently, at the beginning of the
depletion region, we have from Eq. (52a)

eφbulk = ρs(1 + 2Pe0
+). (55)

From Eq. (52c), we find the current in the overlimiting case as

J+ ≈ 1 + ρs

(
1
2 + Pe0

+
)
V0, (56)

and from Eq. (52b) the relation between position x and bulk
potential φbulk is

J+x ≈ 1 − eφbulk − ρs(1 + 2Pe0
+)φbulk. (57)

Inserting Eqs. (55) and (56) into Eq. (57) we find the position
x0 where the depletion region begins,

x0 = 1 − ρs(1 + 2Pe0
+)

{
1 + ln[ρs(1 + 2Pe0

+)]
}

1 + ρs

(
1
2 + Pe0+

)
V0

. (58)

For a small overlimiting current, the denominator is close to
unity, and this implies that before bulk advection becomes
important, the width 1 − x0 of the depletion region is approx-
imately given by

1 − x0 ≈ ρs(1 + 2Pe0
+)

{
V0

2
+ 1 + ln

[
ρs(1 + 2Pe0

+)
]}

. (59)

We can use this expression for the width of the depletion region
to test our hypothesis that the extent of the depletion region
determines the onset of bulk advection. If the hypothesis is true,
we should find that the overlimiting current J overlim

+ = J+ −
(1 − e− 1

2 V0 ) only depends on ρs and V0 through the expression
for 1 − x0,

J overlim
+ (ρs,V0) → J overlim

+ (1 − x0[ρs,V0]). (60)

In Fig. 11(a) and 11(b) the overlimiting current J overlim
+

obtained from the BNDF model is plotted for ρs =
{0.0001,0.0002,0.0003,0.0004,0.0005}, λ̄D = 0.0001, and
α = 0.05 versus V0 and 1 − x0, respectively. The characteristic
features in the curves are seen to coincide when the curves

FIG. 11. (Color online) (a) The overlimiting current J overlim
+ ob-

tained from the BNDF model for λ̄D = 0.0001, α = 0.05, and
ρs = {0.0001,0.0002,0.0003,0.0004,0.0005} plotted versus V0. (b)
Same as in (a) but plotted versus 1 − x0.

are plotted versus 1 − x0. In contrast, no unifying behavior
is seen when the curves are plotted versus V0. The numerical
results thus corroborate our hypothesis that the initiation of
significant bulk advection is determined by the extent of the
depletion region.

E. Issues with the numerical models

Before concluding, we are obligated to comment on the
shortcomings of the numerical models, i.e., the FULL model
and the BNDF model. In the ρs = 0.001, λ̄D = 0.001 panel
of Fig. 8 the FULL model [full (black) line] is seen to break
down right around V0 ∼ 40. The reason for this breakdown
is that electro-diffusio-osmosis is relatively weak and that
the ESC is prone to electro-osmotic instability at this λ̄D
value. The employed steady-state model is not well suited for
modeling instabilities and therefore the model breaks down
at this relatively low voltage. Because the magnitude of the
ESC charge density scales as (αλ̄D)2/3 we do not expect this
to be an issue for the λ̄D = 0.0001 or α = 0.05 cases [8].
Another issue seen in Figs. 7 and 8 is that in the upper right
quadrant (ρs � 0.1 and λ̄D � 0.01) the BNDF model [dashed
(red) curve] breaks down somewhere between V0 ∼ 40 and
V0 ∼ 70. The reason for this breakdown is that the Gouy length
is not small in this region, as is required by the boundary
layer model. The BNDF model breaks down, even though
the systems in question are close to the simple transverse
equilibrium configuration. The reason for this is that when the
Gouy length is large, the boundary layer model underestimates
the transverse transport in the system, and this eventually leads
to a breakdown, when the transverse bulk transport cannot keep
up with the longitudinal surface transport.

VII. CONCLUSION

In this paper, we have made a thorough combined nu-
merical and analytical study of the transport mechanisms in
a microchannel undergoing concentration polarization. We
have rationalized the behavior of the system and identified
four mechanisms of overlimiting current: surface conduc-
tion, surface advection, bulk advection, and bulk conduction
through the extended space-charge region (ESC). In the
limits where surface conduction, surface advection, or bulk
conduction through the ESC dominates we have derived
accurate analytical models for the ion transport and verified
them numerically. In the limit of long, narrow channels these
models are in excellent agreement with the numerical results.
We have found that bulk advection is mainly important for
short, broad channels, and using numerical simulations we
have quantified this notion and outlined the parameter regions
with significant bulk advection. A noteworthy discovery is that
the development of bulk advection is strongly dependent on
the surface current, even in the cases where the surface current
contributes much less to the total current than bulk advection.
The numerical simulations have been carried out using both a
full numerical model with resolved diffuse double layers and
an accurate boundary layer model suitable in the limit of small
Gouy lengths.
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Morphological instability during steady electrodeposition at overlimiting currents

Christoffer P. Nielsen and Henrik Bruus
Department of Physics, Technical University of Denmark,
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We present a linear stability analysis of a planar metal electrode during steady electrodeposition.
We extend the previous work of Sundstrom and Bark by accounting for the extended space-charge
density, which develops at the cathode once the applied voltage exceeds a few thermal voltages.
In accordance with Chazalviel’s conjecture, the extended space-charge region is found to greatly
affect the morphological stability of the electrode. To supplement the numerical solution of the
stability problem, we have derived analytical expressions valid in the limit of low and high voltage,
respectively.

I. INTRODUCTION

One of the most interesting aspects of systems, involv-
ing transport between matter in different phases, is their
tendency to become morphologically unstable and de-
velop ramified growth patterns. Well known examples
include snow flake formation and dendritic growth dur-
ing metal solidification [1, 2]. A particularly interesting
and challenging growth problem is encountered in elec-
trodeposition from an electrolyte onto an electrode [3–
11]. Whereas snow flake formation and solidification are
mainly driven by diffusion of water vapour and heat, re-
spectively [1, 2], electrodeposition is driven by electromi-
gration in addition to diffusion [12, 13]. For this reason,
the electrodeposition rate can be driven to exceed the
diffusion limit, at which point the system enters a nonlin-
ear regime not encountered in the purely diffusion-driven
systems. One of the features of this nonlinear regime
is the development of a nonequilibrium space-charge re-
gion, which extends from the cathode into the electrolyte
[12, 14–16]. This extended space-charge region signifi-
cantly affects the transport in the system, and it is a
central component in the well known electroosmotic in-
stability [17–19]. Already in 1990, Chazalviel realized
that the extended space-charge region is crucial to the
understanding of ramified growth during electrodeposi-
tion [12]. Nevertheless, there has been very little work
which actually takes this effect into account.

In this paper we investigate the morphological stability
of the cathode during electrodeposition in both the lin-
ear and the nonlinear regime. We follow the approach of
Sundstrom and Bark [20], and investigate steady elec-
trodeposition in a system composed of an electrolyte
sandwiched between two, initially planar, metal elec-
trodes. We solve the stability problem numerically and
find that the higher the applied voltage difference is, the
more unstable the electrode surface becomes. Also, the
most unstable wavelength becomes smaller as the voltage
bias is increased. In the numerical solution we employ
the widely used Butler–Volmer reaction expression with

∗ chnie@fysik.dtu.dk and bruus@fysik.dtu.dk

FIG. 1. (Color online) Sketch of the studied system with
lower and upper electrode surfaces at x = fℓ(y, t) and x =
2 + fu(y, t), respectively. The coordinates are given relative
to the moving frame of reference, following the mean rate of
deposition on the electrode surfaces. The coordinates are also
normalized by half the electrode spacing L.

constant charge-transfer coefficients. Apart from the ex-
tensive use of this model in the literature, the main rea-
son for choosing it here, is its conceptual simplicity and
reliance on only a few reaction parameters from which,
allowing for a basic understanding of the system. Also,
while the model may not describe reaction kinetics as well
as some more elaborate models, it nevertheless correctly
captures the exponential dependence on overpotential,
which is an almost universal feature in reaction models
[21, 22].

In addition to solving the stability problem numeri-
cally, we derive analytical expressions for the perturba-
tion growth rate, valid in the low and high voltage limit,
respectively. In deriving these expressions, we make use
of an accurate analytical model for the extended space-
charge region, which we presented in a recent paper [16].
While our numerical results are restricted to the stan-
dard Butler–Volmer model, our analytical models cover
a more general class of reaction models, including e.g.
Marcus kinetics and Butler–Volmer–Frumkin kinetics.

II. MODEL SYSTEM

Following Sundstrom and Bark [20], we consider a bi-
nary electrolyte trapped between two co-planar metal
electrodes at x = 0 and x = 2L. The electrolyte has
initial concentration c0 and is assumed symmetric with

Resubmitted to Phys. Rev. E
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valence Z. The coordinate system is moving in the neg-
ative x-direction with velocity U , which is the rate of
deposited layer growth and thus related to the average
deposition rate on the electrodes. We consider the dilute
solution limit, in which the effect of the moving coordi-
nate system is negligible everywhere except in the surface
evolution equation. A sketch of the system is shown in
Fig. 1.

In the analysis, we investigate the stability of the
electrodes under y-dependent perturbations along the x-
direction. However, our analysis is general and applies
to perturbations along any direction in the yz plane.

III. GOVERNING EQUATIONS

The current densities of either ion are given as

2J± = −c±∇µ±, (1a)

µ± = ln(c±) ± Zϕ, (1b)

where we have non-dimensionalized the currents J± by
the limiting currents 2D±c0/L, the electrochemical po-
tentials µ± by kBT , the electric potential ϕ by the ther-
mal voltage VT = kBT/e, the coordinates by half the
electrode spacing L, and the concentrations c± by the
initial concentration c0. Normalizing the time by the
diffusion time t0 = L2/(2D+), the non-dimensionalized
ion-conservation equations become

D+

D±
∂tc± = −∇ · J±. (2)

At the electrodes, the current of anions vanishes, while
the current of cations is given by a reaction expression

np · J− = 0, (3a)

np · J+ = −Rp, (3b)

where Rp is the reaction rate at the lower and upper
electrode, respectively, as indicated by the subscript p =
ℓ, u. We model the reaction rates Ru and Rℓ using a
reaction expression of the general form

Rp = K0

[
c+e−γ̄κ+αc(ϕ,c+)Z(ϕ+Vp) − e−γ̄κ−αa(ϕ,c+)Z(ϕ+Vp)

]
.

(4)

Here, K0 is the dimensionless version of the dimensionfull
rate constant k0 for the electrode reaction,

K0 =
k0

2D+c0/L
, (5)

Vp is the normalized electrode potential, κ is the nor-
malized curvature of the surface, and γ̄ is the non-
dimensionalized version of the dimensionfull surface en-
ergy γ,

γ̄ =
a3γ

kBTL
. (6)

We allow the cathodic and anodic charge-transfer coef-
ficients αc and αa to vary with the potential ϕ and the
cation concentration c+. In this way, Eq. (4) represents
a wide range of reaction models from classical Butler–
Volmer kinetics to Marcus kinetics and Butler–Volmer–
Frumkin kinetics [20–22]. In agreement with most realis-
tic reaction models, we do impose one restriction on the
charge transfer coefficients, namely that they vary slowly
as a function of ϕ and ln(c+),

∂ϕ {αc(ϕ, c+)ϕ} ≈ αc(ϕ, c+), (7)

∂ln(c+) {αc(ϕ, c+) ln(c+)} ≈ αc(ϕ, c+). (8)

The electrostatic part of the problem is governed by the
Poisson equation,

2λ̄2
D∇2ϕ = −ρ = −Zc+ + Zc−, (9)

where the non-dimensional Debye length λ̄D is given as

λ̄D =
λD

L
, with λD =

√
kBTϵw
2e2c0

. (10)

For simplicity, and to be in accordance with most previ-
ous work, we choose not to explicitly model the Debye
layers adjoining the electrodes. Instead, we apply the
boundary conditions (3) just outside the Debye layer.
Following Ref. [23] we implement the boundary condi-
tion

nu · ∇c+ = 0, (11)

at the upper electrode, to indicate the minimum in c+

at the outer edge of the Debye layer. We note that the
Debye layers can be included implicitly by including the
Frumkin correction to the reaction model. This correc-
tion can be implemented by an appropriate choice of the
charge-transfer coefficients [22]. Together with Eq. (3b),
condition (11) corresponds to ascribing the entire current
into the upper electrode to electromigration.

Finally, since the anions can not enter or leave the
system the total number of anions is conserved,

∫

Ω

(
c− − 1

)
dV = 0. (12)

We introduce functions x = fp(y) describing the posi-
tion of the upper and lower electrode u and ℓ. The time
evolution of fp is determined by the single-ion volume a3

and the current into the electrode,

(∂tfℓ − U) ex · nℓ = −a3c0nℓ · J+, Anode, (13a)

(∂tfu − U) ex · nu = −a3c0nu · J+, Cathode. (13b)

Here, the filling factor a3c0 is much less than unity, since
we are dealing with dilute solutions. The normalized
velocity U of the coordinate system accounts for the mean
current into or out of the electrodes, and ∂tfp accounts
for local deviations from the mean current.
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The curvature κ and the normal vectors are related to
the surface function fp by

nℓ =
ex − ey∂yfℓ√

1 + (∂yfℓ)2
, nu =

−ex + ey∂yfu√
1 + (∂yfu)2

, (14a)

κℓ =
∂2

yfℓ√
1 + (∂yfℓ)2

, κu = − ∂2
yfu√

1 + (∂yfu)2
. (14b)

In defining the above equations and boundary condi-
tions, we have chosen slightly different normalizations
than in Ref. [20], the main difference being that we allow
for a non-zero space charge density.

IV. PERTURBATION

The stability of the electrodes is investigated using lin-
ear perturbation theory. That is, we impose a small per-
turbation on a steady-state base state, and investigate
how the perturbation evolves. The base state is identi-
fied by a superscript ”0” and the first-order perturbation
by superscript ”1”,

fp(y, t) ≈ f1
p (y, t), (15a)

c±(x, y, t) ≈ c0
±(x) + c1

±(x, y, t), (15b)

ϕ(x, y, t) ≈ ϕ0(x) + ϕ1(x, y, t). (15c)

In first-order perturbation theory, we substitute the
second-order factor

√
1 + (∂yfp)2 in Eq. (14) by unity,

nℓ ≈ ex − ey∂yf1
ℓ , nu ≈ −ex + ey∂yf1

u, (16a)

κℓ ≈ ∂2
yf1

ℓ , κu ≈ −∂2
yf1

u. (16b)

To find the field values at the perturbed surface, we Tay-
lor expand to first order and obtain

ϕ(f1
ℓ , y, t) ≈ ϕ0(0) + ∂xϕ|0f1

ℓ (y, t) + ϕ1(0, y, t), (17a)

∇ϕ(f1
ℓ , y, t) ≈ ∂yϕ1|0ey (17b)

+
(
∂xϕ0|0 + ∂2

xϕ0|0f1
ℓ + ∂xϕ1|0

)
ex.

Similar expressions apply for c± and at the upper elec-
trode. Evaluating the reaction rate at the lower electrode
and expanding to first order, we find

Rℓ ≈ R0
ℓ + R1

ℓ , (18a)

R0
ℓ

K0
= c0

+eαcZ(ϕ0+Vℓ) − e−αaZ(ϕ0+Vℓ), (18b)

R1
ℓ

K0
= eαcZ(ϕ0+Vℓ)

[
c1
+ + ∂xc0

+f1
ℓ

+ c0
+(αa + αc)Z

[
ϕ1 + ∂xϕ0f1

ℓ

]]

+
R0

ℓ

K0

[
− γ̄∂2

yf1
ℓ − αaZ

[
ϕ1 + ∂xϕ0f1

ℓ

]]
, (18c)

where all fields are evaluated at x = 0, and the expression
for R0

ℓ was used to simplify the expression for R1
ℓ . Since

the charge-transfer coefficients vary slowly with ϕ and
ln(c+), we have neglected their first order contributions.
Similar expressions apply at the upper electrode.

Hence, the full zeroth-order problem becomes

0 = −∂xJ0
±, (19a)

2J0
± = −∂xc0

± ∓ Zc0
±∂xϕ0, (19b)

2λ̄2
D∂2

xϕ0 = −Z(c0
+ − c0

−) = −ρ0, (19c)

with the following boundary conditions and constraints

J0
−(0) = 0, J0

−(2) = 0, (20a)

J0
+(0) = −R0

ℓ , J0
+(2) = R0

u, (20b)
∫ 2

0

(
c0
− − 1

)
dx = 0, ∂xc0

+(2) = 0, (20c)

and the mean growth velocity U derived from Eq. (13),

U = a3c0J
0
+. (21)

Similarly, the first-order problem is given by

D+

D±
∂tc

1
± = −∇ · J1

±, (22a)

2J1
± = −∇c1

± ∓ Zc0
±∇ϕ1 ∓ Zc1

±∇ϕ0, (22b)

2λ̄2
D∇2ϕ1 = −Z(c1

+ − Zc1
−), (22c)

and the boundary conditions,

ex · J1
−(2) = 0, ex · J1

−(0) = 0, (23a)

ex · J1
+(2) = R1

u, ex · J1
+(0) = −R1

ℓ , (23b)

∂2
xc0

+(2)f1
u + ∂xc1

+(2) = 0, (23c)

together with the first-order electrode growth rates ∂tf
1
ℓ

and ∂tf
1
u derived from Eq. (13),

∂tf
1
ℓ = a3c0R

1
ℓ , ∂tf

1
u = −a3c0R

1
u. (24)

To find the eigenmodes, we make the following har-
monic ansatz for the first-order fields,

c1
±(x, y, t) = c∗

±(x)eΓt+iky, (25a)

ϕ1(x, y, t) = ϕ∗(x)eΓt+iky, (25b)

f1
p (y, t) = Fpe

Γt+iky, (25c)

where Γ is the nondimensional growth rate of the per-
turbation, and k is the wavenumber of the transverse
eigenmode. For convenience we also define

R1
p = R∗

pe
Γt+iky. (25d)

With this ansatz, the first-order bulk equations become

2
D+

D±
Γc∗

± = −k2(c∗
± ± Zc0

±ϕ∗) (26a)

+ ∂x

{
∂xc∗

± ± Zc∗
±∂xϕ0 ± Zc0

±∂xϕ∗
}

2λ̄2
D(∂2

xϕ∗ − k2ϕ∗) = −Z(c∗
+ − c∗

−), (26b)
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and the first-order reaction rate at the lower electrode is

R∗
ℓ

K0
= eαcZ(ϕ0+Vℓ)

[
c∗
+ + ∂xc0

+Fℓ

+ c0
+(αa + αc)Z

[
ϕ∗ + ∂xϕ0Fℓ

]]

+
R0

ℓ

K0

[
− γ̄k2Fℓ − αaZ

[
ϕ∗ + ∂xϕ0Fℓ

]]
. (27)

Inserting the ansatz in the growth equations (24) yields

ΓFℓ = a3c0R
∗
ℓ , ΓFu = −a3c0R

∗
u. (28)

V. ANALYTICAL RESULTS

For large wavenumbers, k & 1, we can neglect fℓ and
the left hand side in Eq. (26a). Analytical expressions
for the growth rate can then be obtained in the limit of
overlimiting and underlimiting current, respectively. In
Appendices A and B we find that the growth rate can be
expressed as

Γ = a3c0kJ0 ξ − γ̄k2

ξ + k
. (29)

Here, in the linear underlimiting regime, ξ is given as

ξ = (1 + αa + αc)K0e
αcZ(ϕ0+Vu) − αa

J0

c0
+

, (30)

c0
+ = 1 − J0, Linear case, (31)

while in the nonlinear overlimiting regime ξ is

ξ = 2(αa + αc)K0e
αcZ(ϕ0+Vu) − αa

2J0

c0
+

, (32a)

c0
+ ≈ λ̄D

Z

√
2J0

1 − 1
J0

, Nonlinear case. (32b)

The factors K0e
αcZ(ϕ0+Vu) are found by solving the zero

order reaction expression,

J0 = R0
u = K0

[
c0
+eαcZ(ϕ0+Vu) − e−αaZ(ϕ0+Vu)

]
. (33)

The charge-transfer coefficients αc and αa may depend
on ϕ0 and c0

+, so there is no general solution to Eq. (33).
In the limit K0 ≪ 1 the deposition term in Eq. (33)
dominates, and we simply have

K0e
αcZ(ϕ0+Vu) =

J0

c0
+

. (34)

In that limit ξ becomes

ξ = (1 + αc)
J0

c0
+

, Linear case, (35)

ξ = 2αc
J0

c0
+

, Nonlinear case. (36)

In the case of simple Butler–Volmer kinetics with con-
stant charge transfer coefficients αc = αa = 1

2 , it is also
possible to obtain simple solutions to Eq. (33). In that
case we find

ξ =
J0

c0
+


1

2
+

√
1 + 4

(
K0

J0

)2

c0
+


 , Linear, (37)

ξ =
J0

c0
+

√
1 + 4

(
K0

J0

)2

c0
+, Nonlinear. (38)

The critical wavenumber kc, where the perturbation is
marginally stable, is found to be

kc =

√
ξ

γ̄
, (39a)

and the wavenumber kmax, at which the growth rate is
maximum, is given as

kmax =
ξ

2

[(
2 − ξγ̄ + 2

√
1 − ξγ̄

ξγ̄

)1/3

+

(
2 − ξγ̄ + 2

√
1 − ξγ̄

ξγ̄

)−1/3

− 1

]
. (39b)

We note that the analytical model takes the zeroth-
order current density J0 as input variable through ξ. If
one wants the results as a function of the potential drop
instead, a model of the system’s current-voltage charac-
teristic is needed. For simplicity, we just use the nu-
merically calculated current-voltage characteristic in the
following.

To compute the results without reference to a numeri-
cal solution, an analytical model for the system’s current-
voltage characteristic is required. Such a model can be
found in our previous work [16]. To obtain the total volt-
age drop over the system, the interfacial voltages from
Eq. (18b) should also be taken into account.

TABLE I. Fixed parameter values used in the numerics.

Parameter Symbol Value

Cation diffusivity[24] D+ 0.714 × 10−9m2 s−1

Anion diffusivity[24] D− 1.065 × 10−9m2 s−1

Ion valence Z 2
Surface energy γ 1.85 J m−2

Temperature T 300 K
Permittivity of water ϵw 6.90 × 10−10F m−1

Charge-transfer coefficients αc, αa
1
2

Reaction constanta k0 9.4 × 1019m−2 s−1

Diameter of a copper atomb a 0.228 nm

a Calculated using the exchange current I0 = 30 A m−2 from
Ref. [25] and k0 = I0/(Ze).

b The cube root of the volume per atom in solid copper [24].
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VI. NUMERICAL SOLUTION

The numerical simulations are carried out in the com-
mercially available finite element software COMSOL
Multiphysics ver. 4.3a. Following our previous work
[16, 23, 26], the zeroth- and first-order problems are
rewritten in weak form and implemented in the math-
ematics module of COMSOL. In the first-order prob-
lem we set the parameter Fu to unity, meaning that the
magnitude of the remaining first-order fields are given
relative to the amplitude of the upper electrode pertur-
bation. We choose to model the reaction using simple
Butler–Volmer kinetics with αc = αa = 1

2 . To limit the
parameter space, we choose fixed, physically reasonable
values for the parameters listed in Table I. The values
are chosen to correspond to copper electrodes in a copper
sulfate solution. We note that the surface tension is quite
difficult to determine experimentally, and most measure-
ments are carried out at temperatures around 1000 ◦C
[27, 28]. Ab initio calculations can give some impression
of the behaviour at lower temperatures [29], but these
can hardly stand alone. Extrapolating the linear fit of
Ref. [27] down to 0 K yields surface tension values close
to those obtained from ab initio calculations in Ref. [29].
This makes it somewhat plausible to apply the model
from Ref. [27] in the region of interest around 300 K.
This yields a copper-gas surface energy of 1.92 J/m2.
The contact angle at the copper-water interface is very
small [30], so finding the copper-water surface energy is
just a matter of subtracting the surface energy of wa-
ter from that of copper. The resulting surface energy is
γ ≈ 1.85 J/m2, as listed in Table I.

These choices leave us with three free parameters,
which are the bias voltage V0, the electrolyte concentra-
tion c0, and the system length L.

The solution procedure is as follows: First, the zeroth-
order problem is solved for a given set of parameters.
Then the first-order problem is solved for a range of
wavenumbers k. For each k value, the corresponding
growth rate Γ and perturbation amplitude of the lower
electrode, Fℓ, are obtained.

In Fig. 2, the zeroth-order cation concentrations c0
+

and space-charge density ρ0 are shown for c0 = 10 mM,
L = 10 µm and varying bias voltage V0. It is seen, that
when the bias voltage exceeds V0 ≃ 12, local electroneu-
trality is violated near the cathode. For V0 = 30 the
nonequilibrium space-charge region extends far (0.04L)
into the electrolyte.

A. Results

For plotting purposes we introduce the dimension-
full perturbation wavelength λ = 2πL/k. In Fig. 3,
the growth rate Γ is plotted versus λ for V0 = 30,
c0 = 10 mM, and L = 10 µm. Visible in the figure is
a stable region for wavelengths smaller than the critical
wavelength λc = 51 nm, and an unstable region for larger

FIG. 2. (Color online) Zeroth-order cation concentrations c0
+

shown in full (black) lines and zeroth-order charge densities
ρ0/Z shown in dashed (red) lines. The inset shows the fields
close to the electrode. In the simulation the parameter values
c0 = 10 mM, L = 10 µm, and V0 = {1, 5, 12, 30} were used.

FIG. 3. (Color online) The growth rate Γ plotted versus the
perturbation wavelength λ for V0 = 30, c0 = 10 mM, and
L = 10 µm. The full (black) line shows the growth rate
obtained from numerical simulations, and the dashed (red)
line shows the growth rate according to the analytical model
Eq. (29). For perturbation wavelengths smaller than the crit-
ical wavelength λc = 51 nm the system is stable and for larger
wavelengths it is unstable. At the most unstable wavelength
λmax = 110 nm the growth rate is Γmax = 0.0193.

wavelengths. The most unstable wavelength we denote
λmax, and the corresponding growth rate we denote Γmax.

To enable a more compact representation of the data,
we introduce a gray-scale contour plot of the magnitude
of Γ, as illustrated in Fig. 4. Here, Γ is plotted versus
the wavelength λ for V0 = {5, 10, 15, 20, 25, 30}. The
gray scale in the λ-V0 plane is created by projecting the
Γ values from the above curves onto the plane. The solid
(blue) line in the (λ, V0)-plane marks the crest of the hill,
thus representing the most unstable wavelength for each
value of V0.

In Fig. 5, we make use of the contour plots to show
results for twelve sets of (c0, L)-values. In each contour
plot, Γ is normalized by its maximum value, which is
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given above each plot. Shown in thick lines are λmax

in bright (yellow) and λc in black. The corresponding
analytical results are shown in dashed (blue) and dotted
(green) lines, respectively. The thin black lines show con-
tours, where Γ equals {0.01, 0.2, 0.7} times the maximum
value. There is a clear tendency in all of the panels that
the growth rate Γ increases rapidly with V0, and the most
unstable wavelength decreases as V0 increases. Across the
panels, the maximum growth rate is seen to increase for
increasing c0 and increasing L. Also, the most unstable
wavelength λmax and the critical wavelength λc become
smaller as c0 increases and as L decreases.

A common feature seen in all of the panels, is the
kink in the V0-versus-λmax and V0-versus-λc lines. At
this kink, the slope of the lines changes markedly. The
kink is located at the voltage, where the current reaches
the limiting current, and it thus signifies that there is a
qualitatively different behavior for over- and underlimit-
ing current. This qualitative difference between the two
regimes is in accordance with the analytical models. We
also see that the kink voltage changes with c0 and L.
Specifically, it increases with c0 and decreases with L.
The main reason for this behavior is easily understood
with reference to the zeroth-order Butler-Volmer reac-
tion expression (18b). Setting the current in the system
to the limiting current J0

+ = 1, the reaction rates at the
electrodes become

ex · np = −K0

[
c+eαcZ(ϕ+Vp) − e−αaZ(ϕ+Vp)

]
. (40)

At the cathode, the first term in the bracket dominates,
and at the anode the other. Therefore, both potential
drops over the electrode interfaces scale as

∆V ∼ − ln(K0) = ln

(
2D+c0

L

)
− ln(k0), (41)

which increases monotonically with increasing c0/L. As
a consequence, the total potential drop at the limiting
current also increases with increasing c0/L, just as ob-
served in Fig. 5.

In addition to the instability growth rate Γ, which gives
a time scale for the development of instabilities, it is use-
ful to have a measure for the characteristic instability
length scale. For instance, we would like to estimate the
thickness of the deposited layer, when instabilities start
to develop. We define this instability length scale as the
product of the zeroth-order growth rate Eq. (21) and the
instability time scale at the most unstable wavelength

LΓ = L
a3c0J

0
+

Γmax
, (42)

where the pre-factor L ensures a dimensionfull expres-
sion. In Fig. 6, we plot the instability length LΓ ver-
sus applied voltage V0 for L = 100 µm and varying c0.
The most unstable wavelength λmax is also plotted in the
same figure (dashed lines). It is seen that LΓ decreases
as V0 increases, but for small voltages LΓ is largest for

FIG. 4. (Color online) The growth rate Γ plotted versus the
perturbation wavelength λ and voltage V0 for c0 = 10 mM,
and L = 10 µm. The (cyan) space curves are plots of Γ versus
λ for V0 = {5, 10, 15, 20, 25, 30}. The shade of the in plane
contour plot is based on the logarithm of Γ, which is why there
are no contours in the low λ limit where Γ is negative. The
thick (blue) in plane line marks the crest of the hill, i.e. it
marks the most unstable wavelength for each value of V0.

high concentrations, while the opposite is true for high
voltages. The reason for this reversal is that the inter-
facial voltage drops are largest for large c0. At small
voltages the bulk driving force in the systems with large
c0 is therefore small, and this causes the system to be
less unstable than the low c0 systems. We also see that
λmax scales in the same way as LΓ. While the reason for
this is not immediately obvious, it is seen to follow from
the analytical expressions. Inserting Eq. (29) in Eq. (42)
yields

LΓ =
λmax

2π

ξ + 2πL
λmax

ξ − γ̄
(

2πL
λmax

)2 , (43)

which confirms the approximate scaling between LΓ and
λmax. The connection between LΓ and λmax implies that
λmax sets the scale, not only for the variations in the
horizontal direction, but also for variations in the verti-
cal direction. We might therefore expect that the rami-
fied electrodeposits, emerging at much longer times than
Γ−1

max, have a universal length scale roughly set by λmax.

VII. DISCUSSION

The main feature, which sets our work apart from pre-
vious stability analyses of electrodeposition, is the inclu-
sion of the overlimiting regime. Presumably, this regime
has so far been avoided due to the non-linearities arising
at overlimiting current, which necessitate a more com-
plicated treatment. However, the overlimiting regime
is highly relevant for ramified growth problems [7, 8].
As seen in Fig. 5, the instability growth rate increases
markedly in the overlimiting regime, and there is also a
change in qualitative behavior between the two regimes.
Of course, the conclusions we reach, based on our model,
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FIG. 5. (Color online) Contour plots of Γ plotted versus wavelength λ and voltage V0 for c0 = {1 mM, 10 mM, 100 mM} and
L = {1 µm, 10 µm, 100 µm, 1 mm}. In each plot, Γ is normalized by its maximum value, and the contours are logarithmically
spaced. The maximum value Γmax of Γ is given on top of each plot, and the point where the maximum value is attained is
indicated with a dark (red) circle. The three thin black lines in each plot indicate contours where Γ equals 0.01, 0.2, and
0.7 times Γmax. The thick bright (yellow) line marks λmax for each value of V0, and the dashed (blue) lines mark the two
corresponding analytical limits. The thick black line marks λc for each value of V0, and the dotted (green) lines mark the two
corresponding analytical limits.

are only strictly valid for planar electrodes. It does, how-
ever, seem reasonable to expect that the most unstable
wavelength λmax is comparable to the characteristic di-
mensions encountered in a ramified growth experiment.
Our analysis can thus be used to rationalize experimental
results. In this regard, our analytical models are partic-
ularly useful, since they allow for easy computation of
the key quantities for other systems than the one treated
here.

Perhaps the most important application of the stabil-
ity analysis, is as a means of validating more elaborate
numerical models of ramified growth. A model of rami-
fied growth must necessarily deal with a moving interface
and this, as well as other complications, make for highly
complex numerical models. To validate such models it
is very useful to have a comparatively simple model, like
the present one, to benchmark against in the relevant
limit. Indeed, this was what originally motivated us to

treat the stability problem.

An obvious shortcoming of the given analysis, is the
restriction to a steady-state zeroth-order solution. The
principal reason for this choice is that it makes for a
simpler problem. Furthermore, the numerical ramified
growth model, to which we wish to compare our model,
is at present also restricted to quasi-steady state. In time,
we wish to extend both models to the fully transient
regime.

There is, however, some physical justification for mak-
ing the steady-state assumption. As seen in Fig. 5, the
growth rate Γ is considerably smaller than unity in a
large part of the investigated parameter space. The time
it takes the system to reach steady state is given by the
diffusive time, which in our normalization has the value
one. Thus, as long as Γ is much smaller than unity, the
system reaches steady state long before any instabilities
build up. In this case it is therefore justified to assume
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FIG. 6. (Color online) The instability length scale LΓ (full
line) and most unstable wavelength λmax (dashed line) plotted
versus bias voltage V0. The concentration varies between the
values c0 = {1 mM, 10 mM, 100 mM} and the length L =
100 µm was used.

steady state. It should be noted that in this argument
we make the reasonable assumption that the true growth
rate in the transient regime does not significantly exceed
the steady-state value.

In the numerical model we employ the widely used
Butler–Volmer model with equal cathodic and anodic
charge-transfer coefficients. The analytical model is how-
ever not restricted to this particular reaction model. In
deriving the analytical results we only required that the
charge-transfer coefficients vary slowly with the interfa-
cial potential drop and the cation concentration. Thus,
we expect the analytical model to apply equally well to
Marcus kinetics and Butler–Volmer kinetics with asym-
metric charge-transfer coefficients. Also, the effects of an
electric double layer can be included implicitly by apply-
ing the Frumkin correction.

In future work, it would of course be interesting to ex-
tend the implicit general modeling of the electric double
layers to explicit and more specific schemes, such as those
presented in Refs. [31–34]. Also, it would be relevant to
study the influence of advection on the morphological
stability, in particular the effect of electroosmotic insta-
bilities [17–19].

Finally, we hope that our results may inspire experi-
mentalists in the field to analyze electrodeposition exper-
iments in terms of our theoretical framework.

VIII. CONCLUSION

We have successfully solved the stability problem in the
under- and overlimiting regime for the case of a copper
sulfate solution trapped between two copper electrodes.
In addition to the numerical solution of this particular
problem, we have derived analytical solutions valid in
either the overlimiting or the underlimiting limit. The
behavior in the overlimiting regime differs qualitatively
from the behavior in the underlimiting regime, and we
find that the electrode becomes increasingly unstable as

the current is increased above the limiting current. The
stability analysis, and in particular the analytical limits,
are valuable both for rationalizing experimental results
and for validating more elaborate numerical models of
ramified growth.

Appendix A: The electroneutral limit

In the limit where the electrolyte is locally electroneu-
tral and the time derivatives in the first-order transport
problem are negligible, analytical solutions to the prob-
lem can be obtained. Setting the point of zero electro-
static potential at x = 1, it is easily found that

c = c+ = c− = eZϕ. (A1)

It follows that c = eZ(ϕ0+ϕ1) ≈ eZϕ0

+eZϕ0

Zϕ1, and thus

c0 = eZϕ0

and c1 = eZϕ0

Zϕ1. (A2)

Solving the zeroth-order problem yields

c0 = 1 − J0(x − 1), Zϕ0 = ln(1 − J0(x − 1)). (A3)

Using the electroneutrality assumption in Eq. (26a) we
find

0 = ∂2
xc∗ − k2c∗. (A4)

This equation has two solutions, but as long as the per-
turbation wavelength is considerably smaller than the
electrode spacing, the solution which increases with x
is dominant

c∗ ≈ Cek(x−2), (A5)

where C is a constant to be determined. From Eq. (A2)
we then find

ϕ∗ =
1

Z

c∗

c0
=

C

Z

ek(x−2)

1 − J0(x − 1)
. (A6)

At the upper electrode, x = 2, the first-order reaction
rate is (we set Fu = 1)

R∗
u

K0
= eαcZ(ϕ0+Vu)

[
c∗ + ∂xc0 + c0(αa + αc)Z

(
ϕ∗ + ∂xϕ0

)]

+
R0

u

K0

[
γ̄k2 − αaZ

(
ϕ∗ + ∂xϕ0

)]
. (A7)

Evaluating the fields at x = 2, this expression becomes

R∗
u

K0
= (1 + αa + αc)(C − J0)eαcZ(ϕ0+Vu)

+
J0

K0

[
γ̄k2 − αa

C − J0

1 − J0

]
. (A8)
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The first-order current into the upper electrode is J∗ =
−∂xc∗ = −kC, meaning that

−kC = R∗
u = (1 + αa + αc)(C − J0)K0e

αcZ(ϕ0+Vu)

+ J0γ̄k2 − αaJ0
C − J0

1 − J0
, (A9)

and solving for C, we obtain

C = J0
(1 + αa + αc)K0e

αcZ(ϕ0+Vu) − γ̄k2 − αa
J0

1−J0

(1 + αa + αc)K0eαcZ(ϕ0+Vu) + k − αa
J0

1−J0

.

(A10)

The growth rate can be expressed as

Γ = −a3c0J
∗ = a3c0kC, (A11)

so we have

Γ = a3c0kJ0 ξ − γ̄k2

ξ + k
, (A12)

with the parameter ξ given as

ξ = (1 + αa + αc)K0e
αcZ(ϕ0+Vu) − αa

J0

1 − J0
. (A13)

To test whether the time derivatives in the first-
order problem really are negligible, we compare the time
derivative term 2Γc∗ with the transverse diffusion term
k2c∗. Since Eq. (A12) implies Γ ≤ a3c0kJ0, our assump-
tion is justified if

2a3c0J
0 ≪ k. (A14)

Consequently, because a3c0 ≪ 1 for dilute systems and
J0 is of order unity, it is justified to neglect the time
derivative, unless the perturbation wavelength is much
larger than the electrode spacing.

The critical wavenumber kc is found by setting the
nominator in Eq. (A12) equal to zero,

kc =

√
ξ

γ̄
. (A15)

To find the wavenumber kmax, at which Γ attains its max-
imum Γmax, we set the derivative of Γ equal to zero and
solve for k,

kmax =
ξ

2

[(
2 − ξγ̄ + 2

√
1 − ξγ̄

ξγ̄

)1/3

+

(
2 − ξγ̄ + 2

√
1 − ξγ̄

ξγ̄

)−1/3

− 1

]
, (A16)

with the asymptotic solutions,

kmax ≈





(
ξ
3γ̄

)1/2

, for γ̄ξ ≫ 1,
(

ξ2

2γ̄

)1/3

− ξ
2 , for γ̄ξ ≪ 1.

(A17)

Appendix B: The strongly non-linear limit

In the limit where the driving force is very large, some
of the terms in Eqs. (26a) and (26b) become dominant,
which makes an analytical solution of the problem possi-
ble.

If the system is strongly driven, the field gradients are
large close to the upper electrode, and this makes the
electrode surface much more unstable. It follows that a
larger k value is needed for the surface tension to stabilize
the system, so the most unstable value of k will be larger
than for less driven systems. In the strongly driven limit,
we might therefore expect that Eq. (26b) largely is a
balance between ∂2

xϕ∗ and k2ϕ∗ in the region of interest.
This leads us to making the ansatz

ϕ∗ = Φek(x−2), (B1)

where Φ is a constant. We now consider Eq. (26a) for
the cation concentration, neglecting the left hand side

0 = −∂x

{
− ∂xc∗

+ − Zc∗
+∂xϕ0 − Zc0

+∂xϕ∗
}

− k2(c∗
+ + Zc0

+ϕ∗). (B2)

We assume that the terms ∂xc∗
+ and Zc∗

+∂xϕ0 are negligi-
ble compared to Zc0

+∂xϕ∗ and insert the ansatz Eq. (B1)

0 ≈ Z∂xc0
+kϕ∗ + Zc0

+k2ϕ∗ − k2(c∗
+ + Zc0

+ϕ∗) (B3)

≈ Z∂xc0
+kϕ∗ − k2c∗

+, (B4)

implying that

c∗
+ ≈ Z

k
∂xc0

+ϕ∗. (B5)

To test the assumptions leading to this result, we need
expressions for c0

+, ∂xc0
+ and ∂xϕ0. From Ref. [16] we

have such expressions, and in the extended space-charge
region (ESC) they take the simple forms

c0
+(x) ≈

√
2
λ̄D

Z

√
J0

[
x − 1 − 1

J0

]−1/2

, (B6)

∂xc0
+(x) ≈ −

√
2

2

λ̄D

Z

√
J0

[
x − 1 − 1

J0

]−3/2

, (B7)

∂xϕ0(x) ≈ −
√

2

λ̄D

√
J0

[
x − 1 − 1

J0

]1/2

. (B8)

The width of the ESC is given as LESC = 1− 1/J0, so in
the region close to the electrode, compared to the width
of the ESC, the fields can be written as

c0
+(x) ≈

√
2
λ̄D

Z

√
J0L

−1/2
ESC , (B9)

∂xc0
+(x) ≈ − c0

+

2LESC
, (B10)

∂xϕ0(x) ≈ −Zc0
+

λ̄2
D

LESC. (B11)
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Evaluating ∂xc∗
+ we find

∂xc∗
+ ≈ Z

k

3c0
+

4L2
ESC

ϕ∗ − Z
c0
+

2LESC
ϕ∗, (B12)

which is seen to be much smaller than Zc0
+∂xϕ∗ if

2k ≫ 1

LESC
, (B13)

that is, if the perturbation wavelength satisfies

λ̄ ≪ 4πLESC. (B14)

Similarly, we find that Zc∗
+∂xϕ0 is much smaller than

Zc0
+∂xϕ∗ if

λ̄2 ≪ 8π2

Z2

λ̄2
D

c0
+(2)

. (B15)

Finally, the ansatz Eq. (B1) is justified if 2λ̄2
Dk2ϕ∗ ≫

Zc∗
+, which is equivalent to

λ̄3 ≪ 32π3

Z2

λ̄2
D

c0
+(2)

LESC. (B16)

This last requirement is seen to follow if the two first
requirements Eqs. (B14) and (B15) are fulfilled.

In the strongly driven regime, where Eqs. (B14)
and (B15) are satisfied, the first-order current is approx-
imately

2J∗
+ ≈ −Zc0

+∂xϕ∗ = −Zkc0
+Φ, (B17)

at the upper electrode. The zeroth-order diffusive contri-
bution is also very small at the upper electrode, meaning
that we can simplify Eq. (A7)

R∗
u ≈ K0e

αcZ(ϕ0+Vu)c0
+(αa + αc)Z

(
ϕ∗ + ∂xϕ0

)

+ R0
u

[
γ̄k2 − αaZ

(
ϕ∗ + ∂xϕ0

)]
(B18)

≈ K0e
αcZ(ϕ0+Vu)(αa + αc)

(
c0
+ZΦ − 2J0

)

+ R0
u

[
γ̄k2 − αa

(
ZΦ − 2J0

c0
+

)]
. (B19)

Inserting R∗
u = J∗

+ ≈ − 1
2Zkc0

+Φ we find

Z

2
kc0

+Φ = kJ0
2(αa + αc)K0e

αcZ(ϕ0+Vu) − γ̄k2 − αa
2J0

c0
+

2(αa + αc)K0eαcZ(ϕ0+Vu) + k − αa
2J0

c0
+

,

(B20)

and since Γ = −a3c0J
∗
+,

Γ = a3c0kJ0 ξ − γ̄k2

ξ + k
, (B21)

with

ξ = 2(αa + αc)K0e
αcZ(ϕ0+Vu) − αa

2J0

c0
+

. (B22)

Like in the electroneutral limit, neglecting the time
derivative in the first-order problem is justified, unless
the perturbation wavelength is much larger than the elec-
trode spacing. The expressions (A15) and (A16) are also
valid for the strongly nonlinear limit, if we use the non-
linear expression for ξ.

[1] G. Libbrecht, Rep Prog Phys 68, 855 (2005).
[2] R. Trivedi and W. Kurz, Int Mater Rev 39, 49 (1994).
[3] R. M. Brady and R. C. Ball, Nature 309, 225 (1984).
[4] N. Nikolic, K. Popov, L. Pavlovic, and M. Pavlovic, Surf

Coat Technol 201, 560 (2006).
[5] G. Kahanda and M. Tomkiewicz, J electrochem soc 136,

1497 (1989).
[6] C. Leger, J. Elezgaray, and F. Argoul, Phys Rev E 61,

5452 (2000).
[7] G. Gonzalez, M. Rosso, and E. Chassaing, Phys Rev E

78, 011601 (2008).
[8] J.-H. Han, E. Khoo, P. Bai, and M. Bazant, Sci. Rep. 4,

7056 (2014).
[9] P. Trigueros, J. Claret, F. Mas, and F. Sagues, J Elec-

troanal Chem 312, 219 (1991).
[10] O. Devos, C. Gabrielli, L. Beitone, C. Mace, E. Oster-

mann, and H. Perrot, J. Electroanal. Chem 606, 75
(2007).

[11] K. Nishikawa, E. Chassaing, and M. Rosso, J Elec-
trochem Soc 160, D183 (2013).

[12] J.-N. Chazalviel, Phys. Rev. A 42, 7355 (1990).
[13] M. Rosso, Electrochim. Acta 53, 250 (2007).

[14] W. H. Smyrl and J. Newman, Trans Faraday Soc 63, 207
(1967).

[15] M. Rosso, J.-N. Chazalviel, and E. Chassaing, J Elec-
troanal Chem 587, 323 (2006).

[16] C. P. Nielsen and H. Bruus, Phys Rev E 89, 042405
(2014).

[17] I. Rubinstein and B. Zaltzman, Phys Rev E 62, 2238
(2000).

[18] S. M. Rubinstein, G. Manukyan, A. Staicu, I. Rubinstein,
B. Zaltzman, R. G. H. Lammertink, F. Mugele, and
M. Wessling, Phys Rev Lett 101, 236101 (2008).

[19] C. L. Druzgalski, M. B. Andersen, and A. Mani, Phys
Fluids 25, 110804 (2013).

[20] L. Sundstrom and F. Bark, Electrochim Acta 40, 599
(1995).

[21] M. Z. Bazant, Acc. Chem. Res. 46, 1144 (2013).
[22] M. van Soestbergen, Russ J Electrochem 48, 570 (2012).
[23] C. P. Nielsen and H. Bruus, Phys Rev E 90, 043020

(2014).
[24] D. R. Lide, CRC Handbook of Chemistry and Physics,

91st ed., edited by W. M. Haynes, (Internet Version 2011)
(CRC Press/Taylor and Francis, Boca Raton, FL, 2010).



11

[25] D. R. Turner and G. R. Johnson, J Electrochem Soc 109,
798 (1962).

[26] M. M. Gregersen, M. B. Andersen, G. Soni, C. Meinhart,
and H. Bruus, Phys Rev E 79, 066316 (2009).

[27] H. Udin, A. J. Shaler, and J. Wulff, Trans. AIME 185,
186 (1949).

[28] V. K. Kumikov and K. B. Khokonov, J. Appl. Phys. 54,
1346 (1983).

[29] H. L. Skriver and R. N. M, Phys rev B 46, 7157 (1992).
[30] D. J. Trevoy and H. Johnson, J. Phys. Chem. 62, 833

(1958).
[31] L. H. Olesen, M. Z. Bazant, and H. Bruus, Phys Rev E

82, 011501 (2010).
[32] P. M. Biesheuvel, R. Zhao, S. Porada, and A. van der

Wal, J Colloid Interface Sci 360, 239 (2011).
[33] T. R. Ferguson and M. Z. Bazant, J Electrochem Soc

159, A1967 (2012).
[34] M. A. Quiroga, K.-H. Xue, T.-K. Nguyen, M. Tu-

lodziecki, H. Huang, and A. A. Franco, J Electrochem
Soc 161, E3302 (2014).



Appendix H

Paper submitted to Phys Rev E

Title: A sharp-interface model of electrodeposition and rami�ed growth

Authors: Christo�er P. Nielsen and Henrik Bruus.

Reference: Submitted to Physical Review E

177



A sharp-interface model of electrodeposition and ramified growth

Christoffer P. Nielsen and Henrik Bruus
Department of Physics, Technical University of Denmark,

DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark∗

(Dated: 27 August 2015)

We present a sharp-interface model of two-dimensional ramified growth during quasi-steady elec-
trodeposition. Our model differs from previous modeling methods in that it includes the important
effects of extended space-charge regions and nonlinear electrode reactions. The electrokinetics is
described by a continuum model, but the discrete nature of the ions is taken into account by adding
a random noise term to the electrode current. The model is validated by comparing its behavior
in the initial stage with the predictions of a linear stability analysis. The main limitations of the
model are the restriction to two dimensions and the assumption of quasi-steady transport.

I. INTRODUCTION

Electrodeposition is a technologically important pro-
cess with diverse applications and implications, e.g. for
battery technology, electroplating, and production of
metal powders and microstructures [1–11]. For well over
a century it has, however, been known that the layer de-
posited during electrodeposition is prone to morpholog-
ical instabilities, leading to ramified growth of the elec-
trode surface. Over the years, a large number of ex-
perimental, theoretical, and numerical studies have been
devoted to increasing the understanding of this ramified
growth regime [12–20]. Big contributions to our under-
standing of the growth process have come from diffusion-
limited aggregation (DLA) models [21, 22] and, more re-
cently, phase-field models similar to those which have
successfully been applied to solidification problems [23–
29]. However, while both of these approaches capture
parts of the essential behavior of ramified growth, they
have some fundamental shortcomings when applied to
the electrodeposition problem.

The first of these shortcomings has to do with the
ion transport in the system. Typically, the electrolyte
contains a cation of the electrode metal which can both
deposit on the electrodes and be emitted from the elec-
trodes. The anion, on the other hand, is blocked by the
electrodes. The electrodes thus act as ion-selective ele-
ments, and for this reason the system exhibits concen-
tration polarization when a voltage is applied. In 1967,
Smyrl and Newman showed [30] that in systems exhibit-
ing concentration polarization, the linear ambipolar dif-
fusion equation breaks down when the applied voltage
exceeds a few thermal voltages. At higher voltages a
non-equilibrium extended space-charge region develops
next to the cathode, causing the transport properties of
the system to change dramatically. It seems apparent
that this change in transport properties must also lead
to a change in electrode growth behavior. Indeed, this
point was argued by Chazalviel already in his 1990 paper
[12]. Now, the issue with DLA and phase-field models is

∗ chnie@fysik.dtu.dk and bruus@fysik.dtu.dk

that neither of these methods account for non-zero space-
charge densities. It is therefore only reasonable to apply
these methods in the linear regime, where the applied
voltage is smaller than a few thermal voltages.

The other shortcoming of DLA and phase-field meth-
ods is their treatment of the electrode-electrolyte inter-
face. It is well known in electrochemistry that electrode-
position occurs with a certain reaction rate, which is
dependent on the electrode overpotential and typically
modeled using a Butler–Volmer type expression [31, 32].
Thus, since the established reaction models are only de-
fined for sharp interfaces, they cannot be properly imple-
mented in DLA methods or in phase-field methods.

There have been attempts to include finite space-
charge densities in phase-field models, but the resulting
models are only practical for 1D systems because they re-
quire an extremely dense meshing of the computational
domain [23, 24, 33]. Attempts at including electrode
reactions suffer from similar problems, as the proposed
models are sensitive to the width of the interface region
and to the interpolation function used in the interface
region [26, 34]. See Appendix A for a short discussion of
this point.

To circumvent the shortcomings of the established
models we pursue a different solution strategy in this
paper. Rather than defining the interface via a smoothly
varying time-dependent parameter as in the phase-field
models, we employ a sharp-interface model, in which
the interface is moved for each discrete time step. Us-
ing a sharp-interface model has the distinct advan-
tage that electrode reactions are easily implemented as
boundary conditions. Likewise, it is fairly straightfor-
ward to account for non-zero space charge densities in a
sharp-interface model, see for instance our previous work
Refs. [35, 36].

Like most previous models, our sharp-interface model
of electrodeposition models the electrode growth in two
dimensions. There have been some experiments in which
ramified growth is confined to a single plane and is ef-
fectually two dimensional [17, 37–39]. However, for most
systems ramified growth occurs in all three dimensions.
There will obviously be some discrepancy between our
2D results and the 3D reality, but we are hopeful that
our 2D model does in fact capture much of the essential

Resubmitted to Phys. Rev. E



2

FIG. 1. (Color online) Sketch of the initial geometry of the
system. Two co-planar metal electrodes of width W are
placed a distance of 2L apart. The gap between them is filled
by an electrolyte with cation concentration c+ and anion con-
centration c−. A voltage difference of V0 is applied between
the electrodes.

behavior.

At this stage, our sharp-interface model is only ap-
plicable once the initial transients in the concentration
distribution have died out. In its current form the model
is therefore mainly suitable for small systems, in which
the diffusive time scale is reasonably small. We aim at
removing this limitation in future work.

II. MODEL SYSTEM

The model system consists of two initially flat paral-
lel metal electrodes of width W placed a distance of 2L
apart. The system is very thin in the third dimension, so
that the transport and growth can be modeled as quasi
two-dimensional. In the space between the electrodes
is a binary symmetric electrolyte of concentration c0, in
which the cation is identical to the electrode material.
The electrodes can thus act as both sources and sinks
for the cation, whereas the anion can neither enter nor
leave the system. A voltage difference V0 (in units of
the thermal voltage VT = kBT/e) is applied between the
two electrodes, driving cations towards the top electrode
and anions toward the bottom electrode. A sketch of the
system is shown in Fig. 1.

By depositing onto the top electrode we ensure that the
ion concentration increases from top to bottom, so we do
not have to take the possibility of gravitational convec-
tion into account. Since the system is very thin, a similar
convection suppression can be obtained by simply placing
the 2D sample horizontally. To limit the complexity of
the treatment, we also disregard any electroosmotic mo-
tion, which may arise in the system. We note, however,
that the sharp-interface model would be well suited to
investigate the effects of electroosmosis, since the space
charge density is an integral part of the model.

FIG. 2. (Color online) Sketch of the electrode growth. The
electrode surface at time ti is indicated with a full line. In
the time step ti+1 − ti an amount of material ∆L, which may
vary with position, is deposited on the electrode. On basis of
the deposited material the geometry at time ti+1 is created
(indicated with a dashed line).

III. SOLUTION METHOD

The basic idea in our solution method is to solve the
transport-reaction problem for each time step, and then
use the calculated currents to find the amount of ma-
terial deposited at each point on the electrode. Based
on this deposition rate the geometry is updated, and the
transport-reaction problem is solved for a new time step,
as illustrated in Fig. 2.

The major difficulty in employing this method is that
when the geometry is updated the computational domain
is also remeshed, so there is no straightforward way of
continuing from the old solution of the transport-reaction
problem. One way of getting around this issue is to
separate the time scales in the problem. More to the
point, we assume that the growth of the electrode hap-
pens so slowly, compared to the transport time scales,
that the transport problem always is in quasi steady-
state. By treating the transport-reaction problem as be-
ing in steady state in each time step, a solution can be
computed without reference to solutions at previous time
steps. Note, that although the transport is modeled as
quasi steady, the model is not Laplacian, since we ac-
count for deviations from electroneutrality occurring at
overlimiting current.

Obviously, the quasi steady-state assumption is flawed
in the initial time after a voltage is applied to the sys-
tem, as the application of a voltage gives rise to some
transients in the transport problem. However, after the
initial transients have died out the assumption is quite
reasonable, except for the case of very concentrated elec-
trolytes. To see that, we consider the thickness ∆L of
the electrode growth in a time interval ∆t,

∆L = a3∆tJ+, (1)

where a3 is the volume of a metal atom in the solid phase
and J+ is the current density of metal ions entering the
electrode. The current density is on the order of the
limiting current 2c0D+/L, so the time scale associated
with an electrode growth of ∆L is

∆t =
∆L

a3J+
∼ L∆L

2D+c0a3
. (2)
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On the other hand, the transport time scale t∆L
diff associ-

ated with the distance ∆L is

t∆L
diff ∼ ∆L2

2D+
. (3)

The ratio of the transport time scale to the growth time
scale is thus

t∆L
diff

∆t
∼ ∆L

L
c0a

3, (4)

which is indeed very much smaller than unity.
As mentioned above, our model does not apply to the

initial time after the voltage is applied. To estimate how
this impacts our results, we make a comparison of the im-
portant time scales. The time it takes for the transients
to die out is given by the diffusion time,

tLdiff =
L2

2D+
. (5)

The growth rate of the most unstable harmonic per-
turbation to the electrode surface we denote Γmax (see
Ref. [40]), and from this we obtain an instability time
scale,

tinst ∼ 1

Γmax
. (6)

It is apparent that if

tLdiff . tinst, (7)

then nothing interesting happens to the electrode surface
in the time it takes the transients to disappear. In this
case our quasi-steady approach is therefore justified.

Even if tLdiff ≫ tinst our approach may be justified. If
the total deposition time is much larger than tLdiff , then
what happens in the time before the transients die out
is largely unimportant for the growth patterns observed
in the end. Thus, though the quasi-steady assumption
seems restrictive, it actually allows us to treat a fairly
broad range of systems.

IV. GOVERNING EQUATIONS

A. Bulk equations

The ion-current densities in the system are given as

J± = −D±c0c±∇µ±, (8a)

µ± = ln(c±) + z±ϕ, (8b)

where D± are the diffusivities of either ion, c0 is the ini-
tial ion concentration, c± are the concentrations of either
ion normalized by c0, µ± are the electrochemical poten-
tials normalized by the thermal energy kBT , and ϕ is the
electrostatic potential normalized by the thermal voltage

VT = kBT/e. In steady state the Nernst–Planck equa-
tions take the form

0 = −∇ · J±. (9)

The electrostatic part of the problem is governed by the
Poisson equation,

2λ2
D∇2ϕ = −ρ = −z+c+ − z−c−, (10)

where the Debye length λD is given as

λD =

√
kBTϵw
2e2c0

. (11)

At the electrodes the anion flux vanishes,

n · J− = 0, (12)

and the cation flux is given by a reaction expression

n · J+ = −R. (13)

Rather than explicitly modeling the quasi-equilibrium
Debye layers at the electrodes, we follow Ref. [36] and
implement a condition of vanishing cation gradient at
the cathode,

n · ∇c+ = 0. (14)

The last degree of freedom is removed by requiring global
conservation of anions,

∫

Ω

(
c− − 1

)
dV = 0. (15)

B. Reaction expression

We model the reaction rate using the standard Butler–
Volmer expression [14],

R = k0

[
c+e−γ̄κ+αZ(ϕ+V ) − e−γ̄κ−(1−α)Z(ϕ+V )

]
, (16)

where k0 is the rate constant of the reaction, V is the
non-dimensionalized electrode potential, κ is the surface
curvature, α is the charge-transfer coefficient, and γ̄ is
given in terms of the surface energy γ,

γ̄ =
a3γ

kBT
. (17)

Here, a3 is the volume occupied by one atom in the solid
phase. γ̄κ is thus a measure of the energy per atom
relative to the thermal energy.

In Appendix A we discuss how the sharp-interface reac-
tion model Eq. (16) relates to typical phase-field reaction
models.
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V. NUMERICAL STABILITY

Due to the surface energy term in the reaction expres-
sion, the surface is prone to numerical instability. In
an attempt to reach the energetically favorable surface
shape, the solver will sequentially overshoot and under-
shoot the correct solution. The fundamental issue we are
facing is that the problem at hand is numerically stiff. As
long as we are using an explicit time-integration method
we are therefore likely to encounter numerical instabili-
ties.

A. Updating the interface position

The straightforward way of updating the position r of
the interface is to use the explicit Euler method,

r(t + ∆t) = r(t) + na3∆tR(t), (18)

where R(t) is the (position dependent) reaction rate at
time t. To avoid numerical instabilities, we should in-
stead use the implicit Euler method,

r(t + ∆t) = r(t) + na3∆tR(t + ∆t), (19)

where the reaction rate is evaluated at the endpoint in-
stead of at the initial point. This is however easier said
than done. R(t + ∆t) depends on r(t + ∆t) as well as
on the concentration and potential distribution at t+∆t.
Even worse, through the curvature R(t+∆t) also depends
on the spatial derivatives of r(t + ∆t).

The way forward is to exploit that only part of the
physics give rise to numerical instabilities. It is therefore
sufficient to evaluate the problematic surface energy at
t + ∆t and evaluate the remaining terms at t. For our
purposes we can therefore make the approximation

R(t + ∆t) ≈ R
(
t, κ(t + ∆t)

)
, (20)

where κ is the curvature. This does still make for a quite
complicated nonlinear PDE, but we are getting closer to
something tractable. The difference in curvature between
t and t+∆t is small (otherwise we are taking too big time
steps), so we can approximate

R
(
t, κ(t + ∆t)

)
≈ R

(
t, κ(t)

)
+ R′(t, κ(t)

)
∆κ, (21)

where R′ denotes R differentiated with respect to κ and
∆κ = κ(t + ∆t) − κ(t). The curvature can be written as

κ =
∂θ

∂s
, (22)

where θ is the tangential angle of the interface and s is
the arc length along the interface. We therefore have

∆κ = κ(t + ∆t) − κ(t) =
∂θ2

∂s2
− ∂θ1

∂s1
, (23)

where we have adopted the shorthand notation 1 and 2
for time t and t+∆t, respectively. The arc lengths s1 and
s2 will obviously differ for any nonzero displacement, but
this is a small effect compared to the angle difference. As
an approximation we therefore use s2 ≈ s1 and obtain

∆κ ≈ ∂(θ2 − θ1)

∂s1
. (24)

The tangential angle is a function of the surface
parametrization,

tan(θ1) =
∂y1

∂x1
. (25)

For small displacements we can approximate

tan(θ2) =
∂y2

∂x2
=

∂(y1 + ∆y)

∂(x1 + ∆x)

≈ tan(θ1) +
∂∆y

∂x1
− tan(θ1)

∂∆x

∂x1
. (26)

The difference in tangential angles can then be written

θ2 − θ1 = arctan

[
tan(θ1) +

∂∆y

∂x1
− tan(θ1)

∂∆x

∂x1

]
− θ1

≈ 1

1 + tan2(θ1)

[
∂∆y

∂x1
− tan(θ1)

∂∆x

∂x1

]
. (27)

Returning to the implicit Euler method Eq. (19), we
project it onto the normal vector to obtain

∆L = a3∆tR(t + ∆t)

≈ a3∆t
[
R
(
t, κ(t)

)
+ R′(t, κ(t)

)
∆κ
]
, (28)

where ∆L = n ·
[
r(t + ∆t) − r(t)

]
. The increments in

the x and y directions are related to ∆L via

∆x = nx∆L, ∆y = ny∆L. (29)

Inserting these in Eq. (27) and writing out the curvature
difference ∆κ, we obtain a linear PDE for the displace-
ment ∆L

∆L − a3∆tR
(
t, κ(t)

)

a3∆tR′(t, κ(t)
)

= ∆κ =
∂

∂s1

{
ny − nx tan(θ1)

1 + tan2(θ1)

∂∆L

∂x1

}
. (30)

In the limit ∆κ = 0 this equation reduces to the original
forward Euler method (18).

B. Correction for the curvature

In the previous derivation, we did not take into account
that the local curvature slightly changes the relation be-
tween amount of deposited material and surface displace-
ment ∆L. The deposited area in an angle segment dθ can
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FIG. 3. (Color online) Three-dimensional extension of our
two-dimensional model. The electrode interface can vary in
the xy-plane according to the calculated ion-currents, but it
has a fixed depth ∆h in the z-direction. The interface is also
divided into a number of bins of width ∆s in the xy-plane.
Each bin thus has the area ∆h∆s.

be calculated as

dA =
dθ

2π

[
π

(
1

κ
+ ∆L

)2

− π
1

κ2

]

=
dθ

2

[
∆L2 + 2

∆L

κ

]
. (31)

The line segment ds is related to the angle segment as
ds = dθ/κ. This means that

a3∆tR(t + ∆t) =
dA

ds
=

κ

2

[
∆L2 + 2

∆L

κ

]

= ∆L +
κ

2
∆L2. (32)

Using this expression in Eq. (28) yields the slightly non-
linear PDE, with the term 1

2κ∆L2,

∆L + κ
2 ∆L2 − a3∆tR

(
t, κ(t)

)

a3∆tR′(t, κ(t)
)

=
∂

∂s1

{
ny − nx tan(θ1)

1 + tan2(θ1)

∂∆L

∂x1

}
, (33)

in place of Eq. (30).

VI. NOISE

An important part of the problem is the noise in the
system, since the noise is what triggers the morphological
instability and leads to formation of dendrites. Exactly
how the noise should be defined is however a matter of
some uncertainty. Most previous work uses a thermal
white noise term with a small, but seemingly arbitrary
amplitude. In this work we use a slightly different ap-
proach, in which we assume that the noise is entirely
attributed to shot noise.

As it turns out, this approach requires us to be more
specific about how our 2D model is related to the three-
dimensional reality. In Fig. 3 a sketch of the three-
dimensional electrode is shown. The electrode interface is
free to vary in the xy-plane, but has a fixed depth ∆h in
the z-direction. Obviously, most real electrodeposits will

have a more complicated behavior in the z-direction, but
for electrodeposits grown in a planar confined geometry
this is actually a reasonable description.

Solving the transport-reaction problem yields the cur-
rent density at each point along the electrode surface,
that is the average number of ions arriving per surface
area per time. The mean number Q of ions arriving in
an electrode section of size ∆h∆s in a time interval ∆t
is thus

Q = J+∆h∆s∆t. (34)

Since the ions are discrete entities, the actual number of
arriving ions will, however, fluctuate randomly around
the mean Q with some spread σ. We assume that within
the time interval ∆t, the arrival of each ion is statistically
uncorrelated with the arrival of each other ion. It can
then be shown that, as long as Q & 10, the number of
arriving ions follow a normal distribution with mean Q
and standard deviation

σ =
√

Q. (35)

This corresponds to an extra random current density

Jrand =

√
Q

∆h∆s∆t
qrand =

√
J+

∆h∆s∆t
qrand, (36)

where qrand is a random number taken from a normal
distribution with mean 0 and standard deviation 1. This
in turn corresponds to a random electrode growth of

∆Lrand = a3

√
J+∆t

∆h∆s
qrand. (37)

Now, there is something slightly weird about this expres-
sion for the random growth: it seems that the random
growth becomes larger the smaller the bin size ∆s is.
However, as the bin size becomes smaller the weight of
that bin in the overall behavior is also reduced. The net
effect is that the bin size ∆s does not matter for the
random growth, see Appendix B for a more thorough
treatment.

The bin depth ∆h, on the other hand, does matter for
the random growth. Since our model is not concerned
with what happens in the z-direction, we simply have to
choose a physically reasonable value of ∆h, and accept
that our choice will have some impact on the simulations.
This is a price we pay for applying a 2D model to a 3D
phenomenon.

VII. NUMERICAL SOLUTION

To solve the electrodeposition problem we use the
commercially available finite element software COM-
SOL Multiphysics ver. 4.3a together with MATLAB
ver. 2013b. Following our previous work [35, 36, 41], the
governing equations and boundary conditions Eqs. (8a),
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FIG. 4. Example of the simplifying cutting procedure. The
reduced interface (thick black line) divides the domain into
an active region (white) and a passive region (light gray).
The dark gray area shows the real cathode. The example is
taken from a simulation with c0 = 1 mM and V0 = 10 after
deposition for 31 hours and 28 minutes.

(8b), (9), (10), (12), (13), (14), (15), (16), and (33) are
rewritten in weak form and implemented in the mathe-
matics module of COMSOL. For each time step the fol-
lowing steps are carried out: First, a list of points defin-
ing the current electrode surface is loaded into COM-
SOL, and the surface is created using a cubic spline in-
terpolation between the given points. The computational
domain is meshed using a mesh size of ∆s at the elec-
trode surface, a mesh size of l in a small region next to
the electrode, and a much coarser mesh in the remain-
der of the domain. Next, the curvature of the surface
is calculated at each point. The solution from the pre-
vious time step is then interpolated onto the new grid,
to provide a good initial guess for the transport-reaction
problem. Then the transport-reaction problem is solved.
Based on the solution to the transport-reaction problem
the electrode growth ∆L is calculated by solving Eq. (33)
on the electrode boundary. At each mesh point a small
random contribution ∆Lrand = a3∆tJrand is then added
to ∆L. Finally, the new x and y positions are calculated
by adding nx(∆L+∆Lrand) and ny(∆L+∆Lrand) to the
old x and y positions.

The new x and y positions are exported to MATLAB.
In MATLAB any inconsistencies arising from the elec-
trode growth are resolved. If, for instance, the electrode
surface intersects on itself, the points closest to each other
at the intersection position are merged and any interme-
diate points are discarded. This corresponds to creating
a hollow region in the electrode which is no longer in
contact with the remaining electrolyte. The points are
then interpolated so that they are evenly spaced, and ex-
ported to COMSOL so that the entire procedure can be
repeated for a new time step.

The simulations are run on a standard work station

TABLE I. Fixed parameter values used in the simulations.

Parameter Symbol Value

Cation diffusivity [42] D+ 0.714 × 10−9m2/s
Anion diffusivity [42] D− 1.065 × 10−9m2/s
Ion valence Z 2
Surface energy γ 1.85 J/m2

Temperature T 300 K
Permittivity of water ϵw 6.90 × 10−10F/m
Charge-transfer coefficient α 0.5
Reaction constanta k0 9.4 × 1019m−2s−1

Diameter of a copper atomb a 0.228 nm

a Calculated using the exchange current I0 = 30 A/m2 from
Ref. [43] and k0 = I0/(Ze).

b The cubic root of the volume per atom in solid copper [42].

with two 2.67 GHz Intel Xeon processors and 48 GB
RAM. The electrodeposits shown in Section VIII typi-
cally take 2 days to run.

A. Reduction of the computational domain

At the cathode the mesh is much finer than in the
remainder of the domain. The number of mesh points,
and hence the computation time, therefore roughly scales
with the length of the electrolyte-cathode interface. This
has the unfortunate consequence that the computa-
tion time for each time step increases drastically, when
branching structures emerge at the cathode. To lower
the computation time we exploit the fact that the vast
majority of the current enters near the tips of the den-
dritic structures. The parts of the cathode which are not
near the tips can therefore be left fixed in time and thus
removed from the simulation, without changing the re-
sults appreciably. This part of the domain is denoted the
passive region. In regions where the current density is
less than 0.001 times the maximum value, we thus sub-
stitute the real, ramified electrode with a smooth line
connecting the parts of the electrode with larger cur-
rents. The procedure is carried out in such a way that
the real electrode surface can always be recovered from
the reduced surface. For a few select examples we have
verified that the results are virtually unchanged by this
simplifying procedure. One of these examples is shown
in Appendix C. In Fig. 4 is shown an example electrode
surface together with the reduced surface. It is seen that
the length of the electrolyte-cathode interface is heav-
ily reduced by excluding parts of the electrode from the
computation.

B. Parameter values

To limit the parameter space we choose fixed, physi-
cally reasonable values for the parameters listed in Ta-
ble I. The values are chosen to correspond to copper
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FIG. 5. (Color online) Example of domain meshing at varying
magnification. The example is taken from a simulation with
c0 = 1 mM and V0 = 10 after deposition for 7 hours and
50 minutes. The wiggly black line is the cathode surface.
The light gray lines are the mesh boundaries and the dark
(red) lines show the sections that are magnified. The mesh
elements above the cathode surface are only used for storing
the solution between time steps.

electrodes in a copper sulfate solution, see Ref. [40] for
details.

In Ref. [40] we calculate the critical wavelength λc,
i.e. the smallest unstable perturbation wavelength, for
a range of parameters. See Appendix D for a brief out-
line of the results of the stability analysis. We expect
the critical wavelength to be the smallest feature in the
problem, so we choose the mesh size accordingly. We set
the mesh size at the electrode to ∆s = 0.1λc, since our
investigations, see Section VII C, show that this is a suit-
able resolution. We also require that the mesh size does
not exceed 0.1 times the local radius of curvature. In the
bulk part of the system we use a relatively coarse trian-
gular mesh with mesh size W/6. Close to the cathode,
in a region l = 0.5 µm from the electrode surface, we use
a triangular mesh with mesh size l/4. See Fig. 5 for a
meshing example.

We choose a fixed value for the bin depth ∆h = 0.2λc.
In accordance with the analysis in Appendix B, the
time step ∆t is chosen so that it is always smaller than
0.5/Γmax. In addition, the time step is chosen so that at
each point on the cathode, the growth during the time
step is smaller than the local radius of curvature.

FIG. 6. (Color online) Power spectra averaged over 50 runs
for three different mesh sizes, ∆s = {0.1λc, 0.2λc, 0.4λc}. In
each run we used M = 100 time steps of ∆t = 0.64 s and the
parameter values c0 = 10 mM, L = 100 µm, and V0 = 30.
The full black line shows the analytical result and the dashed
black lines show the analytical standard error on the mean.
The result for ∆s = 0.1λc is shown in dark (red), the result
for ∆s = 0.2λc is shown in medium (red), and the result for
∆s = 0.4λc is shown in bright (red).

We fix the length L to 100 µm. According to the time-
scale analysis in Section III and the instability growth
rates found in Ref. [40], the quasi-steady state approx-
imation is valid for L = 100 µm. The width W of the
system is set to W = 200λc, rounded to the nearest mi-
crometer. This makes for a system that is broad enough
to exhibit interesting growth patterns, while having a rea-
sonable computation time. The growth is somewhat af-
fected by the symmetry boundaries at y = 0 and y = W ,
especially at later times.

These choices leave us with two free parameters,
which are the bias voltage V0 and the electrolyte
concentration c0. We solve the system for c0 =
{1 mM, 10 mM, 100 mM} and V0 = {10, 20, 30}.

C. Validation

The random nature of the phenomena we are investi-
gating poses obvious challenges when it comes to vali-
dating the numerical simulations. The individual steps
in the computation can be, and have been, thoroughly
tested and validated, but testing whether the aggregate
behavior after many time steps is correct is a much taller
order. At some level, we simply have to trust that, if the
individual steps are working correctly, then the aggregate
behavior is also correct. To support this view, there is
one test we can make of the aggregate behavior in the
very earliest part of the simulation.

In the early stages of the simulation the electrode sur-
face is deformed so little, that the linear stability analysis
from [40] should still be valid. We thus have an analyti-
cal expression for the wavelength-dependent growth rate
Γ, which we can compare with the growth rates found
in the numerical simulations. In Appendix B we calcu-
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FIG. 7. (Color online) Electrodeposits in the V0-c0 plane obtained for L = 100 µm, c0 = {1 mM, 10 mM, 100 mM} and
V0 = {10, 20, 30}. The aspect ratio varies between the panels, since the width W of the simulated region is always set to 200λc.
The gray area has different shades corresponding to times t0 (light), 0.75t0 (darker), 0.5t0 (darker yet), 0.25t0 (darkest). The
white line indicates the reduced surface at time t0. The contours in the liquid represent the relative magnitude of the cation
current.

late an expression for the average power spectrum of the
cathode interface after deposition for a time ttot, given
the type of noise described in Section VI,

⟨Pn⟩ = a6 J+

2∆hWΓn

[
e2Γnttot − 1

]
, (38)

where Γn is the growth rate of the n’th wavelength λn =
W/n component in the noise spectrum. We also find the
standard deviation SD(Pn) of the power spectrum

SD(Pn) ≈
√

2⟨Pn⟩. (39)

Because the standard deviation of Pn is so large com-
pared to the mean value, it is necessary to average over
many runs before a meaningful comparison with Eq. (38)
can be made. Averaging the power spectrum over 50 sim-
ulations brings the standard error on the mean down to

20 percent times the mean value, at which point a rea-
sonable comparison can be made. In Fig. 6 the power
spectrum averaged over 50 runs is shown for three dif-
ferent mesh sizes, ∆s = {0.1λc, 0.2λc, 0.4λc}. In each
run we used M = 100 time steps of ∆t = 0.64 s and
the parameter values c0 = 10 mM, L = 100 µm, and
V0 = 30. The chosen step size corresponds to 0.01/Γmax.
The analytical result (38) is also shown together with
the standard error on the mean. The power spectra are
normalized with the power P 0 obtained for Γ = 0,

P 0 = a6 J+ttot
∆hW

. (40)

It is seen that for ∆s = 0.4λc some of the power in
the small wavelength components is filtered out. As the
mesh size is decreased to ∆s = 0.2λc and ∆s = 0.1λc the
low wavelength components are represented increasingly
well.
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In the above treatment, the time step was chosen
very small compared to the instability time scale, ∆t =
0.01/Γmax. This was done to approach the limit of con-
tinuous time, and thus enable the best possible compar-
ison with the analytical theory. Such a short time step
is, however, impractical for the much longer simulations
in the remainder of the paper. In those simulations we
use time steps as large as ∆t = 0.5/Γmax. Due to the
coarser time resolution employed in the remaining simu-
lations, we expect their power spectrum to deviate some-
what from the almost ideal behavior seen in Fig. 6.

VIII. RESULTS

We let the simulations run until the cathode has grown
25 µm. The time t0 it takes to reach this point varies
greatly with the parameters, mainly because the limiting
current scales with c0. In Fig. 7 the cathode surfaces are
shown along with heat plots showing the relative mag-
nitude of the current density at the last time step. The
white line shows the position of the reduced interface
at the last time step, and the gray area shows the ac-
tual position and shape of the cathode. The gray elec-
trodeposits have different shades corresponding to 0.25t0,
0.5t0, 0.75t0, and t0. The heat plot shows the value of
Jnorm

+ , which is the magnitude of the cation current den-
sity normalized with its maximum value. In each panel
Jnorm

+ thus varies from 0 to 1.
To investigate the reproducibility of the results we have

repeated the simulation of the c0 = 1 mM, V0 = 10
system two times. All three electrodeposits are seen in
Fig. 8. The electrodeposits are clearly different from one
another, as expected for a random process, but they are
also seen to share some general features. These shared
features are most easily appreciated by comparing the
electrodeposits in Fig. 8 to the electrodeposits in Fig. 7.
It is seen that the electrodeposits in Fig. 8 are much more
similar to each other, than to any of the remaining elec-
trodeposits in Fig. 7. Thus, the results are reproducible
in the sense, that the random electrodeposits have some
general features that are determined by the parameter
values.

When interpreting the plots in Fig. 7, we should be
mindful that the aspect ratio is not the same in each
panel. The reason for this is that the vertical axis has
the same length, 30 µm, in each panel, while the length of
the horizontal axis, W , varies between panels. In Fig. 9
we show adapted versions of the panels from Fig. 7. The
subfigures in Fig. 9 are created by repeatedly mirroring
the subfigures from Fig. 7 until their horizontal length is
100 µm. Obviously, the resulting extended cathodes are
somewhat artificial, since we have imposed some sym-
metries, which would not be present in a simulation of
a system with W = 100 µm. Nevertheless, we find the
subfigures in Fig. 9 useful, since they give a rough im-
pression of the appearance of wider systems and allow
for easier comparison of length scales between panels.

FIG. 8. Three simulations of electrodeposits using the same
parameter values L = 100 µm, c0 = 1 mM, and V0 = 10.
The electrodeposits are clearly different from one another,
but they do share some general features.

A. Rationalizing the cathode morphologies

The cathode morphologies observed in Fig. 7 and Fig. 9
are a function of several factors, some of which we at-
tempt to outline below. First, we consider the time t0
it takes before part of the cathode reaches x = 175 µm.
As seen from Eq. (1), this time is mainly a function of
the limiting current. This explains the approximately in-
verse scaling with c0. The current density also increases
with V0, which is why the time t0 decreases slightly as
V0 increases. Finally, the time t0 scales with the filling
factor. This is the reason why t0 is much larger in the
upper left panel of Fig. 7, than in either of the two other
top row panels.

It is apparent from the lack of ramified growth, that
the cathode in the upper left panel in Fig. 7 is consider-
ably more stable than the other systems in the leftmost
column. To explain this variation in stability, we refer to
Fig. 6 in Ref. [40]. There it is shown that the instability
length scale is on the order of 50 µm for c0 = 100 mM at
V0 = 10, while it is considerably lower for c0 = 10 mM
and c0 = 1 mM. Fig. 6 in Ref. [40] also shows that for
V0 > 18 the instability length scale decreases in size as
the concentration increases. The same tendency is ob-
served in Fig. 9.

From the subfigures in Fig. 9 it appears that there is
a connection between the thickness δinst of the layer de-
posited before the instabilities develop (the base layer
between 200 µm and the onset of the ramification), and
the characteristic length scale δchar of the ramified elec-
trodeposits (the fineness of the ramification). For exam-
ple, the top-right subfigure has a thin base layer and a
fine ramification (δinst and δchar are both small), while
the middle-left subfigure has a thick base layer and a
coarse ramification (δinst and δchar are both large). In
lack of a full theory for this behavior, a tentative expla-
nation may be found in our recent stability study of the
electrode deposition [40]. There we found that the base-
layer thickness, defined as the instability length scale LΓ

of an initially flat deposition layer, scales approximately
linearly with the most unstable wavelength λmax for a
perturbation in deposition thickness along the surface.
If these initial instabilities are developed into the final
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FIG. 9. The electrodeposits in the V0-c0 plane extended to an equal width of 100 µm by mirror-repetition of the original part
from Fig. 7 (marked by the horizontal black line) between 0 µm and the first mirror-axis (vertical dashed line). Here, in contrast
to Fig. 7, the aspect ratio is constant across the panels.

ramified electrodeposit, we are led to the assertion that
δinst and δchar might be linearly correlated. To test this
assertion, we first plot the thickness δinst versus λmax

FIG. 10. (Color online) (a): The instability length scale δinst

obtained from the simulations, plotted versus the most un-
stable wavelength λmax. Also, a linear fit highlighting the
roughly linear dependence is shown. (b): The characteris-
tic length scale δchar obtained from the simulations, plotted
versus the most unstable wavelength λmax. Also, a linear fit
highlighting the roughly linear dependence is shown.

and observe the outcome. We exclude the system with
c0 = 100 mM and V0 = 10, since instabilities have not
yet developed in this system. The resulting plot is seen
in Fig. 10(a) together with a linear fit. Although there is
a good amount of scatter around the linear fit, it is seen
to capture the general trend reasonably well.

We then make a similar plot with the characteristic
length scale δchar of the ramified electrodeposits on the y-
axis. To extract δchar, we follow the approach in Ref. [44]
and calculate the so-called Minkowski dimension of each
electrodeposit. In doing this we only consider the part
of the electrodeposit lying between 170 µm and 190 µm,
and as before we exclude the system with c0 = 100 mM
and V0 = 10. In this work we are actually not interested
in the Minkowski dimension itself, but rather in a par-
tial result that follows from the analysis. In a range of
length scales the electrodeposits appear roughly fractal,
but below a certain length scale the electrodeposits are
locally smooth. The length scale at which this transition
occurs, can be extracted from the analysis, and we use
this length as the characteristic length scale δchar of the
electrodeposit, for details see Appendix E. In Fig. 10(b)
we plot δchar versus λmax, together with a linear fit of the
data. While the plot suggests that δchar and λmax are lin-
early correlated to some degree, this is a more tenuous
correlation than the one between δinst and λmax.

Evidently, λmax plays an important role for the mor-
phology of the electrodeposits. However, δinst and δchar

alone are not sufficient to characterize the electrode-
posits. As seen in the top row of Fig. 9, the characteristic
length scale δchar varies very little between V0 = 20 and
V0 = 30. Yet, the morphology still changes appreciably.
The reason for this change in morphology is probably
that the gradient in electrochemical potential increases
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near the cathode as the bias voltage is increased. The
larger the electrochemical gradient is, the more the sys-
tem will favor deposition at the most protruding parts of
the electrodeposits. For large voltages we therefore ex-
pect long and narrow electrodeposits, whereas we expect
dense branching electrodeposits for low voltages.

IX. DISCUSSION

Our model improves on existing models in three im-
portant ways: it can treat systems at overlimiting cur-
rent including the extended space-charge region, it allows
for a proper reaction boundary condition, and it can be
tested against results from sharp-interface stability anal-
yses. Our model is, however, not without issues of its
own. Perhaps the most apparent of these is the quasi-
steady-state assumption. This assumption limits the ap-
plicability of the model to short systems, in which the dif-
fusion time is small compared to the deposition time, as
discussed in Section III. In principle the phase-field mod-
els are superior to our model in this aspect, since they do
not have this limitation. However, it is not of practical
relevance, as all of the published phase-field simulations
are for systems so short that the quasi-steady-state as-
sumption is valid anyway [25–27].

It is well known, that the strong electric fields at the
dendrite tips give rise to electroosmotic velocity fields
in the system [45–47]. To simplify the treatment and
bring out the essential physics of electrodeposition, we
have chosen not to include fluid dynamics and advection
in our model. However, it is straightforward to include
these effects, see for instance our previous work [36].

One of the main advantages the sharp-interface model
has over the phase-field models, is that it allows for the
implementation of proper reaction boundary conditions.
The standard Butler–Volmer model used in this paper
is a first step towards realistic reaction boundary condi-
tions. As elaborated by Bazant in Ref. [32], there are
other reaction models, such as Marcus kinetics, which
might better describe the electrode reactions. Also, the
standard Butler–Volmer model has the contentious as-
sumption that the overpotential is the total potential
drop over both the electrode-electrolyte interface and
the Debye layer. A more realistic approach might be to
model the Debye layer explicitly or include the Frumkin
correction to the Butler–Volmer model [48]. Further-
more, a proper reaction expression should take the crystal
structure of the material into account. There are simple
ways of implementing crystal anisotropy in the surface
tension term, see for instance Refs. [27, 49], but again,
to keep the model simple we have chosen not to include
anisotropy at the present stage. Any of the above men-
tioned reaction models can be easily implemented in the
framework of the sharp-interface model, and as such the
specific Butler–Volmer model used in this work does not
constitute a fundamental limitation.

More broadly, our sharp-interface model includes, or

allows for the easy inclusion of, most effects that are im-
portant for electrodeposition in 2D. A natural next step
is therefore to see how our results compare to experi-
mental electrodeposits. Unfortunately, most such exper-
imental data are viewed at the millimeter or centimeter
scale, whereas our simulation results are at the microm-
eter scale. In one paper, Ref. [4], the electrodeposits are
probed at the micrometer scale, but the results do not
make for the best comparison, since the morphology of
their electrodeposits was a result of adding a surface ac-
tive molecule. We hope that as more experimental results
become available, it will be possible to perform rigorous
tests of our model.

X. CONCLUSION

We have developed a sharp-interface model of elec-
trodeposition, which improves on existing models in a
number of ways. Unlike earlier models, our model is able
to handle sharp-interface boundary conditions, like the
Butler–Volmer boundary condition, and it readily deals
with regions with non-zero space-charge densities. A fur-
ther advantage is that our model handles the physical
problem in much the same way as done in various linear
stability analyses. We can thus obtain a partial valida-
tion of our model by comparing its predictions with those
of a linear stability analysis. As of now, the main weak-
ness of our model is that it assumes quasi-steady state
in the transport equations. For the systems studied in
this paper this is a reasonable assumption, since the dif-
fusion time is small compared to the instability time. In
future work we want to extend the model to the transient
regime, so that larger systems can be treated as well.

The main aim of this paper has been to establish
the sharp-interface method, but we have also included
a study of the simulated electrodeposits. An interesting
observation is, that there seems to be a linear correlation
between the characteristic length scale of the electrode-
posits and the size of the most unstable wavelength. This
exemplifies a promising application of our sharp-interface
model, namely as a tool to develop a more quantitative
understanding of electrodeposits and their morphology.
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Appendix A: Phase-field models of reaction kinetics

An important feature of the presented electrode-
position model is that it allows for a proper nonlinear
reaction model at the electrode interface. The reaction
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model Eq. (16) is equivalent to the expression [32]

R = i0

[
e−αnηt − e(1−α)nηt

]
, (A1)

i0 = k0c
1−α
+ e−γ̄κ, (A2)

where i0 is the exchange current density, n is the num-
ber or electrons participating in the reaction, and we in-
troduced the total overpotential ηt (normalized by the
thermal voltage VT).

In phase-field models a phase-field parameter ξ ∈ [0; 1]
is used to distinguish between the solid phase (ξ = 1) and
the aqueous phase (ξ = 0). In the interface region the
phase-field parameter ξ varies smoothly between 0 and 1.
To determine the dynamics of the system a free energy
F [ξ, ci, ϕ] (or grand free energy Ω[ξ, µi, ϕ]) is introduced,
which, as a function of ξ, interpolates between the free
energy of a pure electrolyte and the free energy of a pure
electrode. Using a variational approach the ion-currents
can be found from the free energies,

Ji = −Dici∇
δF

δci
, (A3)

and together with the relevant conservation equations
this defines the ion-transport problem.

The fundamental assumption in phase-field models of
reaction kinetics is, that a similar variational approach
can be used to define the overpotential as a local field
quantity,

η[ξ, ci, ϕ] ∝ δF

δξ
, or η[ξ, µi, ϕ] ∝ δΩ

δξ
, (A4)

where we have omitted the proportionality constants.
The total overpotential ηt is defined as the integral of
the local overpotential η over the interface region,

ηt =
1

δ

∫
η[ξ, ci, ϕ] dx, (A5)

where δ is the width of the interface region and we have
assumed the system to be one-dimensional. The phase-
field parameter ξ is then assumed to evolve according to
the Butler–Volmer like expression

∂tξ ∝
[
e−αnη[ξ,ci,ϕ] − e(1−α)nη[ξ,ci,ϕ]

]
, (A6)

where, again, we omitted the proportionality constant.
The current into the electrode corresponds to the phase-
field growth rate ∂tξ integrated over the interface region,

I ∝
∫

∂tξ dx

∝
∫ [

e−αnη[ξ,ci,ϕ] − e(1−α)nη[ξ,ci,ϕ]
]

dx. (A7)

Superficially, this expression looks fairly similar to the
Butler–Volmer model Eq. (A1). However, in general
the two expressions are not identical. The reason for

this is that the total overpotential occurring in Eq. (A1)
is the integral over the local overpotential occurring in
Eq. (A7). Thus, Eq. (A1) and Eq. (A7) yield identi-
cal results if, and only if, the local overpotential η has
a form which makes it indifferent to the order in which
integration and exponentiation are performed. Although
this condition is satisfied for small or constant overpoten-
tials, there is no way of guaranteeing it in general. Con-
sequently, we expect Eq. (A7) to differ from Eq. (A1) in
most cases.

Another issue with the phase-field models of reaction
kinetics is, that the connection between the electric po-
tential ϕ and the total overpotential ηt is not apparent.
From Ref. [32] we expect that

ηt = ∆ϕ − ∆ϕeq, (A8)

where ∆ϕ is the potential difference across the electrode
interface, and ∆ϕeq is the potential difference in equilib-
rium. However, there does not seem to be any guarantee
that this is true for phase-field reaction kinetics. In gen-
eral, since most phase-field models of electrodeposition
lack a simple sharp-interface limit [34], it is difficult to
relate the parameters in a phase-field reaction model to
those in the corresponding sharp-interface model.

The above objections to the phase-field reaction mod-
els do not necessarily mean that those models are wrong.
After all, the Butler–Volmer model or similar nonlinear
reaction models are by no means exact, so it is entirely
possible that phase-field reaction models approximate the
true reaction kinetics equally well. However, in lack of
convincing reasons to believe that this is the case, the var-
ious sharp-interface reaction models remain the prefer-
able way of modeling electrode reactions.

Appendix B: Initial growth

In the initial part of the simulation the electrode is so
flat that the linear stability analysis from Ref. [40] gives
a good description of the growth. We parameterize the
cathode position as

x = X(t) + f(y, t), (B1)

where f(y, t) is the y-dependent deviation from the mean
electrode position X(t). According to the linear stability
analysis each mode grows exponentially in time with the
growth factor Γ. After a time t an initial perturbation,

f(y, 0) =
N∑

n=1

aneikny, (B2)

has therefore evolved to

f(y, t) =
N∑

n=1

aneΓnteikny. (B3)

We note that some of the growth rates Γn can be nega-
tive. In our simulation we add new perturbations with
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small time intervals, which we, for the purpose of this
analysis, assume to be evenly spaced. After M time in-
tervals ∆t the surface is therefore described by

f(y,M∆t) =

M∑

m=0

N∑

n=1

anmeΓn(M−m)∆teikny. (B4)

We are interested in the average power of each mode

⟨Pn⟩ =

⟨∣∣∣∣∣
M∑

m=0

anmeΓn(M−m)∆t

∣∣∣∣∣

2⟩
. (B5)

The coefficients are random and uncorrelated with zero
mean. On average the cross-terms in the sum therefore
cancel and we can simplify,

⟨Pn⟩ =

⟨
M∑

m=0

|anm|2e2Γn(M−m)∆t

⟩

= ⟨|an|2⟩
M∑

m=0

e2Γn(M−m)∆t

= ⟨|an|2⟩e2Γn(M+1)∆t − 1

e2Γn∆t − 1
. (B6)

The variance of the power is given as

Var(Pn) = ⟨P 2
n⟩ − ⟨Pn⟩2. (B7)

The first of these terms is

⟨P 2
n⟩ =

⟨

∣∣∣∣∣

M∑

m=0

anmeΓn(M−m)∆t

∣∣∣∣∣

2



2⟩

= e4ΓnM∆t

⟨

∣∣∣∣∣

M∑

m=0

anmqm

∣∣∣∣∣

2



2⟩
, (B8)

where q = e−Γn∆t. Writing out the absolute value

⟨P 2
n⟩ = e4ΓnM∆t

⟨(
M∑

m′=0

M∑

m=0

anma∗
nm′qm+m′

)2⟩
,

(B9)

where superscript ∗ denotes complex conjugation. Be-
cause the coefficients are uncorrelated with mean 0, only
the terms including |anm|2|anm′ |2 survive in the average
of the square,

⟨P 2
n⟩ = e4ΓnM∆t

⟨
1

2

M∑

m′=0

M∑

m=0

6|anm|2|anm′ |2q2(m+m′)

⟩

= 3e4ΓnM∆t
M∑

m′=0

M∑

m=0

⟨
|anm|2|anm′ |2

⟩
q2(m+m′).

(B10)

Here, the factor of six comes from the binomial coefficient
and the factor of a half takes into account that the double

sum counts each combination twice. Now, there are two
possibilities; either m ̸= m′ or m = m′. In the first case
|anm|2 and |anm′ |2 are uncorrelated, meaning that

⟨
|anm|2|anm′ |2

⟩
=
⟨
|an|2

⟩2
. (B11)

Whereas if m = m′, then

⟨
|anm|2|anm′ |2

⟩
=
⟨
|an|4

⟩
. (B12)

This means that

⟨P 2
n⟩ = 3e4ΓnM∆t

⟨
|an|2

⟩2 M∑

m′ ̸=m

M∑

m=0

q2(m+m′)

+ 3e4ΓnM∆t
⟨
|an|4

⟩ M∑

m=0

q4m

= 3e4ΓnM∆t
⟨
|an|2

⟩2 M∑

m′=0

M∑

m=0

q2(m+m′)

+ 3e4ΓnM∆t
(⟨

|an|4
⟩

−
⟨
|an|2

⟩2) M∑

m=0

q4m

= 3⟨Pn⟩2

+ 3e4ΓnM∆t
(⟨

|an|4
⟩

−
⟨
|an|2

⟩2) q4(M+1) − 1

q4 − 1
.

(B13)

The variance of the power is thus given as

Var(Pn) = 2⟨Pn⟩2 +
(⟨

|an|4
⟩

−
⟨
|an|2

⟩2) e4Γn(M+1)∆t − 1

e4Γn∆t − 1
.

(B14)

If Γn∆t ≪ 1 we can expand the denominators of ⟨Pn⟩2
and the last term. We find that they scale as 4(Γn∆t)2

and 4Γn∆t, respectively. In the limit Γn∆t ≪ 1 the
first term thus dominates over the second, so to a good
approximation we have

Var(Pn) ≈ 2⟨Pn⟩2, (B15)

SD(Pn) ≈
√

2⟨Pn⟩. (B16)

In the simulations the surface perturbations have the
form

f(y, 0) =

N∑

n=1

bnh(y − n∆y), (B17)

where,

h(y) =

{
1, 0 ≤ y ≤ ∆s,
0, else.

(B18)

We take the absolute square of f(y, 0) given as both
Eq. (B2) and Eq. (B17), and integrate over the domain
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to obtain

∫ W

0

|f(y, 0)|2 dy =
N∑

n=1

|bn|2
∫ W

0

|h(y − n∆y)|2 dy

= ∆s
N∑

n=1

|bn|2, (B19)

∫ W

0

|f(y, 0)|2 dy =
N∑

n=1

|an|2
∫ W

0

|eikny|2 dy

= W
N∑

n=1

|an|2. (B20)

The mean square of bn is thus related to the mean square
of an as

⟨|an|2⟩ =
∆s

W
⟨|bn|2⟩ =

1

N
⟨|bn|2⟩. (B21)

From Eq. (37) we have that

⟨|bn|2⟩ = a6 J+∆t

∆h∆s
. (B22)

Inserting in Eq. (B6) we find

⟨Pn⟩ =
1

N
a6 J+∆t

∆h∆s

e2Γn(M+1)∆t − 1

e2Γn∆t − 1
(B23)

= a6 J+∆t

∆hW

e2Γn(ttot+∆t) − 1

e2Γn∆t − 1
, (B24)

which is seen to be independent of the bin size ∆s. We
also introduced the total time ttot = M∆t. In a consis-
tent scheme the power spectrum should of course only
depend on the total time, and not on the size ∆t of the
time steps. For small values of Γn∆t we can expand the
denominator and neglect the ∆t in the nominator,

⟨Pn⟩ ≈ a6 J+

2∆hWΓn

[
e2Γnttot − 1

]
. (B25)

So, as long as 2Γn∆t ≪ 1 the power spectrum does not
depend on the size of the time step.

For larger values of 2Γn∆t the power spectrum does
depend on the size of the time step. However, as long
as 2Γn∆t . 1, we do not expect the overall morphology
of the electrode to have a significant dependence on the
time step.

Appendix C: Test of the domain reduction

In the numerical simulations we exploit the fact, that
the electrode growth mainly occurs near the dendrite
tips. This allows us to remove part of the domain (the
passive region) from the simulations. To verify that we
do not significantly affect the growth, by rendering part
of the domain passive, we have carried out a simulation
without a passive region. The gray domain in Fig. 11

FIG. 11. Electrode interface at two different time steps for
c0 = 1 mM and V0 = 10. In this simulation no part of the
domain was rendered passive at any time. The gray area
indicates the electrode after 30 hours and 22 minutes, and
the black lines indicates the electrode interface after 24 hours
and 2 minutes. In the upper part of the domain the electrode
interface is virtually unchanged between the two times.

indicates the electrode after deposition for 30 hours and
22 minutes in a system with c0 = 10 mM and V0 = 10.
The black line indicates the electrode interface after de-
position for 24 hours and 2 minutes. It is seen that a
big part of the domain is virtually unchanged between
the two times. It would therefore not have changed the
results appreciably if we had rendered part of the domain
passive.

Appendix D: Stability analysis

In Ref. [40] we investigated the stability of the elec-
trode interfaces under perturbations of varying wave-
lengths. We found numerical and analytical result for
the instability growth rate, Γ, the critical wavelength λc,
and the most unstable wavelength λmax. In Fig. 12 the
instability growth rate Γ is plotted versus perturbation
wavelength for c0 = 10 mM, L = 100 µm, V0 = 30. The
critical wavelength λc and the most unstable wavelength
λmax are indicated in the plot. In Fig. 13 we plot λc and
λmax versus V0 for c0 = {1 mM, 10 mM, 100 mM} and
L = 100 µm.

Appendix E: Characteristic length scale

To find the characteristic length scale δchar of the ram-
ified electrodeposits we follow Ref. [44] and use the box-
counting method to calculate the Minkowski dimension
of the deposit perimeter. As a first step in calculating
the Minkowski dimension, we place a square grid with
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FIG. 12. (Color online) The instability growth rate Γ plot-
ted versus perturbation wavelength λ. The full (black) line is
the numerical result and the dashed (red) line is the analyti-
cal result. The critical wavelength λc and the most unstable
wavelength λmax are indicated in the figure. The parame-
ter values used in the model are those in Table I as well as
c0 = 10 mM, L = 100 µm and V0 = 30.

FIG. 13. (Color online) The critical wavelength λc (full) and
the most unstable wavelength λmax (dashed) plotted versus
V0. In addition to the values listed in Table I the used parame-
ter values are L = 100 µm and c0 = {1 mM, 10 mM, 100 mM}.

side length ϵ over each deposit, and count the number
N(ϵ) of boxes it takes to completely cover the perimeter
of the part of the deposit lying between x = 170 µm and
x = 190 µm. An example is shown in Fig. 14.

For a proper fractal geometry, the Minkowski dimen-
sion is defined as

δM = − lim
ϵ→0

ln
[
N(ϵ)

]

ln(ϵ)
. (E1)

The electrodeposits we are investigating are not fractal
at all length scales, but in a range of length scales, we
can calculate an approximate Minkowski dimension as
the negative slope in a ln

[
N(ϵ)

]
vs ln(ϵ) plot. In Fig. 15

such a plot is seen, together with linear fits in each of
the two approximately linear regions. The Minkowski
dimension at small ϵ is nearly unity, indicating that the
deposit perimeter is locally smooth at this length scale.

FIG. 14. Illustration of the box-counting method leading to
the Minkowski dimension for the electrodeposit obtained for
c0 = 10 mM and V0 = 20. The boxes that cover part of
the deposit perimeter are shown in gray and the remaining
boxes are shown in white. In this example the grid size is
ϵ = 0.85 µm and the number of boxes it takes to cover the
perimeter is N(ϵ) = 234.

FIG. 15. The number N(ϵ) of boxes it takes to cover the
electrodeposit plotted vs the box side length ϵ. A linear fit is
shown in each of the two approximately linear regions, and the
Minkowski dimension in each region is indicated. The crossing
point between the linear fits is marked by an arrow, and the
characteristic dimensions δchar = 0.50 µm is calculated based
on this crossing point.

For larger values of ϵ the Minkowski dimension deviates
from unity, because the deposit is approximately fractal
in this size range. At the transition point between these
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two regions is the smallest length scale, which is related to
the morphology of the electrodeposit. This length scale

we denote the characteristic length δchar. Technically, we
define δchar as the point where the linear fits from each
region cross each other, as indicated in Fig. 15.

[1] V. Fleury, W. Watters, L. Allam, and T. Devers, Nature
416, 716 (2002).

[2] M. Rosso, Electrochim. Acta 53, 250 (2007).
[3] J. W. Gallaway, A. M. Gaikwad, B. Hertzberg, C. K.

Erdonmez, Y.-C. K. Chen-Wiegart, L. A. Sviridov,
K. Evans-Lutterodt, J. Wang, S. Banerjee, and D. A.
Steingart, J. Electrochem. Soc. 161, A275 (2014).

[4] T.-H. Lin, C.-W. Lin, H.-H. Liu, J.-T. Sheu, and W.-H.
Hung, Chem. Commun. 47, 2044 (2011).

[5] M. Park, X. Zhang, M. Chung, G. B. Less, and A. M.
Sastry, J. Power Sources 195, 7904 (2010).

[6] B. Scrosati and J. Garche, Journal of Power Sources, J.
Power Sources 195, 2419 (2010).

[7] J. M. Tarascon and M. Armand, Nature , (2001).
[8] M. Winter and R. J. Brodd, Chem. Rev. 104, 4245

(2004).
[9] J.-H. Han, E. Khoo, P. Bai, and M. Bazant, Sci. Rep. 4,

7056 (2014).
[10] H.-C. Shin, J. Dong, and M. Liu, Adv mater 15, 1610

(2003).
[11] O. Devos, C. Gabrielli, L. Beitone, C. Mace, E. Oster-

mann, and H. Perrot, J. Electroanal. Chem 606, 75
(2007).

[12] J.-N. Chazalviel, Phys. Rev. A 42, 7355 (1990).
[13] M. Z. Bazant, Phys. Rev. E 52, 1903 (1995).
[14] L. Sundstrom and F. Bark, Electrochim Acta 40, 599

(1995).
[15] G. Gonzalez, M. Rosso, and E. Chassaing, Phys Rev E

78, 011601 (2008).
[16] K. Nishikawa, E. Chassaing, and M. Rosso, J Elec-

trochem Soc 160, D183 (2013).
[17] P. Trigueros, J. Claret, F. Mas, and F. Sagues, J Elec-

troanal Chem 312, 219 (1991).
[18] G. Kahanda and M. Tomkiewicz, J electrochem soc 136,

1497 (1989).
[19] N. Nikolic, K. Popov, L. Pavlovic, and M. Pavlovic, Surf

Coat Technol 201, 560 (2006).
[20] C. Lambert, P. Lauque, J.-L. Seguin, G. Albinet, M. Ben-

dahan, J.-M. Debierre, and P. Knauth, ChemPhysChem
3, 107 (2002).

[21] T. A. Witten and L. M. Sander, Phys Rev B 27, 5686
(1983).

[22] T. A. Witten and L. M. Sander, Phys Rev Lett 47, 1400
(1981).

[23] J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B.
McFadden, Phys Rev E 69, 021603 (2004).

[24] J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B.

McFadden, Phys Rev E 69, 021604 (2004).
[25] Y. Shibuta, Y. Okajima, and T. Suzuki, Sci technol adv

mater 8, 511 (2007).
[26] L. Liang and L. Chen, Appl Phys Lett 105, 263903

(2014).
[27] D. A. Cogswell, Phys rev E 92, 011301 (2015).
[28] D. Ely, A. Jana, and R. E. Garcia, J. Power Sources

272, 581 (2014).
[29] D. A. Cogswell and M. Z. Bazant, ACS Nano 6, 2215

(2012).
[30] W. H. Smyrl and J. Newman, Trans Faraday Soc 63, 207

(1967).
[31] J. Dukovic, IBM J. Res. Develop. 34, 693 (1990).
[32] M. Z. Bazant, Acc. Chem. Res. 46, 1144 (2013).
[33] J. Deng, G. J. Wagner, and R. P. Muller, J Electrochem

Soc 160, A487 (2013).
[34] L. Liang, Y. Qi, F. Xue, S. Bhattacharya, S. J. Harris,

and L. Q. Chen, Phys Rev E 86, 051609 (2012).
[35] C. P. Nielsen and H. Bruus, Phys Rev E 89, 042405

(2014).
[36] C. P. Nielsen and H. Bruus, Phys Rev E 90, 043020

(2014).
[37] V. Fleury and D. Barkey, Europhys lett 36, 253 (1996).
[38] C. Leger, L. Servant, J. L. Bruneel, and F. Argoul, Phys-

ica A 263, 305 (1999).
[39] C. Leger, J. Elezgaray, and F. Argoul, Phys Rev E 61,

5452 (2000).
[40] C. P. Nielsen and H. Bruus, Arxiv arXiv:1505.07571

(2015).
[41] M. M. Gregersen, M. B. Andersen, G. Soni, C. Meinhart,

and H. Bruus, Phys Rev E 79, 066316 (2009).
[42] D. R. Lide, CRC Handbook of Chemistry and Physics,

91st ed., edited by W. M. Haynes, (Internet Version 2011)
(CRC Press/Taylor and Francis, Boca Raton, FL, 2010).

[43] D. R. Turner and G. R. Johnson, J Electrochem Soc 109,
798 (1962).

[44] A. Genau, A. Freedman, and L. Ratke, J. Chryst.
Growth 363, 49 (2013).

[45] V. Fleury, J.-N. Chazalviel, and M. Rosso, Phys Rev
Lett 68, 2492 (1992).

[46] V. Fleury, J. Kaufman, and B. Hibbert, Phys rev E 48,
3831 (1993).

[47] J. M. Huth, H. L. Swinney, W. D. McCormick, A. Kuhn,
and F. Argoul, Phys Rev E 51, 3444 (1995).

[48] M. van Soestbergen, Russ J Electrochem 48, 570 (2012).
[49] R. Kobayashi, Physica D 63, 410 (1993).



194 Paper submitted to Phys Rev E



Bibliography

[1] S. Alizadeh and A. Mani, Computational modeling of electrokinetic transport in ran-
dom networks of micro-pores and nano-pores, 67th Annual Meeting of the APS Di-
vision of Fluid Dynamics, 2014.

[2] M. B. Andersen, H. Bruus, J. P. Bardhan, and S. Pennathur, Streaming current and
wall dissolution over 48 h in silica nanochannels, J Colloid Interface Sci 360 (2011),
262�271.

[3] M. B. Andersen, J. Frey, S. Pennathur, and H. Bruus, Surface-dependent chemical
equilibrium constants and capacitances in bare and 3-cyanopropyldimethylchlorosilane
coated silica nanochannels, J Colloid Interface Sci 353 (2011), 301�310.

[4] M. B. Andersen, D. M. Rogers, J. Mai, B. Schudel, A. V. Hatch, S. B. Rempe, and
A. Mani, Spatiotemporal ph dynamics in concentration polarization near ion-selective
membranes, LANGMUIR 30 (2014), no. 26, 7902�7912.

[5] M. B. Andersen, M. van Soestbergen, A. Mani, H. Bruus, P. M. Biesheuvel, and
M. Z. Bazant, Current-induced membrane discharge, Phys Rev Lett 109 (2012),
no. 10, 108301.

[6] A. J. Bard, G. Inzelt, and F. Scholz, Electrochemical dictionary, 2nd ed., Springer,
2012.

[7] M. Z. Bazant, Theory of chemical kinetics and charge transfer based on nonequilib-
rium thermodynamics, Acc. Chem. Res. 46 (2013), no. 5, 1144�1160.

[8] M. Z Bazant, K. T. Chu, and B. J. Bayly, Current-Voltage relations for electrochem-
ical thin �lms, SIAM J Appl Math 65 (2005), no. 5, 1463�1484.

[9] S. H. Behrens and D. G. Grier, The charge of glass and silica surfaces, J Chem Phys
115 (2001), no. 14, 6716�6721.

[10] P. M. Biesheuvel, M. van Soestbergen, and M. Z. Bazant, Imposed currents in gal-
vanic cells, Electrochim Acta 54 (2009), no. 21, 4857�4871.

[11] M. Block and J. A. Kitchener, Polarization phenomena in commercial ion-exchange
membranes, J. Electrochem. Soc. 113 (1966), no. 9, 947�953.

195



196 Bibliography

[12] S.C Brenner and L. R. Scott, The mathematical theory of �nite element methods,
Springer, 1994.

[13] H. Bruus, Theoretical micro�uidics, Oxford master series in physics, no. 18, Oxford
University Press, Oxford, 2008.

[14] J.-N. Chazalviel, Electrochememical aspects of the generation of rami�ed metallic
electrodeposits, Phys. Rev. A 42 (1990), no. 12, 7355�7367.

[15] I. Cho, G. Y. Sung, and S. J. Kim, Overlimiting current through ion concentration
polarization layer: hydrodynamic convection e�ects, Nanoscale 6 (2014), 4620�4626.

[16] K. T. Chu and M. Z. Bazant, Electrochemical thin �lms at and above the classical
limiting current, SIAM J Appl Math 65 (2005), no. 5, 1485.

[17] D. A. Cogswell, Quantitative phase-�eld modeling of dendritic electrodeposition, Phys
rev E 92 (2015), 011301.

[18] COMSOL AB, Comsol multiphysics reference guide, 2012, Version 4.3a.

[19] C.-O. Danielsson, A. Dahlkild, A. Velin, and M. Behm, A model for the enhanced
water dissociation on monopolar membranes, Electrochim Acta 54 (2009), no. 11,
2983�2991.

[20] S. M. Davidson, M. B. Andersen, and A. Mani, Chaotic induced-charge electro-
osmosis, Phys Rev Lett 112 (2014), 128302.

[21] D. Deng, W. Aouad, W. A. Bra�, S. Schlumpberger, M. E. Suss, and M. Z. Bazant,
Water puri�cation by shock electrodialysis: Deionization, �ltration, separation, and
disinfection, Desalination 357 (2015), 77�83.

[22] D. Deng, E. V. Dydek, J.-H. Han, S. Schlumpberger, A. Mani, B. Zaltzman, and M. Z.
Bazant, Overlimiting current and shock electrodialysis in porous media, Langmuir 29
(2013), 16167�16177.

[23] J. Deng, G. J. Wagner, and R. P. Muller, Phase �eld modeling of solid electrolyte
interface formation in lithium ion batteries, J electrochem soc 160 (2013), no. 3,
A487�A496.

[24] O. Devos, C. Gabrielli, L. Beitone, C. Mace, E. Ostermann, and H. Perrot, Growth of
electrolytic copper dendrites. i: Current transients and optical observation, J. Elec-
troanal. Chem 606 (2007), 75�84.

[25] C. L. Druzgalski, M. B. Andersen, and A. Mani, Direct numerical simulation of
electroconvective instability and hydrodynamic chaos near an ion-selective surface,
Phys Fluids 25 (2013), no. 11, 110804.

[26] E. V. Dydek and M. Z. Bazant, Nonlinear dynamics of ion concentration polarization
in porous media: The leaky membrane model, AIChE J 59 (2013), 3539�3555.



Bibliography 197

[27] E. V. Dydek, B. Zaltzman, I. Rubinstein, D. S. Deng, A. Mani, and M. Z. Bazant,
Overlimiting current in a microchannel, Phys Rev Lett 107 (2011), no. 11, 118301.

[28] A. Elattar, A. Elmidaoui, N. Pismenskaia, C. Gavach, and G. Pourcelly, Comparison
of transport properties of monovalent anions through anion-exchange membranes, J
Membr Sci 143 (1998), no. 1-2, 249�261.

[29] J. Elezgaray, C. Leger, and F. Argoul, Linear stability analysis of unsteady galvanos-
tatic electrodeposition in the two-dimensional di�usion-limited regime, J electrochem
soc 145 (1998), no. 6, 2016�2024.

[30] A. ElMekawy, H. M. Hegab, X. Dominguez-Benetton, and D. Pant, Internal re-
sistance of micro�uidic microbial fuel cell: Challenges and potential opportunities,
Bioresource Technol 142 (2013), no. 0, 672 � 682.

[31] D.R. Ely, A Jana, and R. E. Garcia, Phase �eld kinetics of lithium electrodeposits, J.
Power Sources 272 (2014), 581�594.

[32] Vinodkumar Etacheri, Rotem Marom, Ran Elazari, Gregory Salitra, and Doron Au-
rbach, Challenges in the development of advanced Li-ion batteries: a review, Energy
Environ Sci 4 (2011), no. 9, 3243�3262 (English).

[33] V. Fleury and D. Barkey, Runaway growth in two-dimensional electrodeposition, Eu-
rophys lett 36 (1996), no. 4, 253�258.

[34] V. Fleury, J.-N. Chazalviel, and M. Rosso, Theory and experimental evidence of
electroconvection around electrochemical deposits, Phys Rev Lett 68 (1992), no. 16,
2492�2495.

[35] V. Fleury, J. Kaufman, and B. Hibbert, Evolution of the space-charge layer during
electrochemical deposition with convection, Phys rev E 48 (1993), no. 5, 3831�3840.

[36] V. Fleury, W. A. Watters, L. Allam, and T. Devers, Rapid electroplating of insulators,
Nature 416 (2002), 716�719.

[37] J. W. Gallaway, A. M. Gaikwad, B. Hertzberg, C. K. Erdonmez, Y.-C. K. Chen-
Wiegart, L. A. Sviridov, K. Evans-Lutterodt, J. Wang, S. Banerjee, and D. A. Stein-
gart, An in situ synchrotron study of zinc anode planarization by a bismuth additive,
J. Electrochem. Soc. 161 (2014), no. 3, A275�A284.

[38] A. L. Genau, A. C. Freedman, and L. Ratke, E�ect of solidi�cation conditions on
fractal dimension of dendrites, J. Chryst. Growth 363 (2013), 49�54.

[39] G. Gonzalez, M. Rosso, and E. Chassaing, Transition between two dendritic growth
mechnisms in electrodeposition, Phys Rev E 78 (2008), 011601.

[40] S. K. Gri�ths and R. H. Nilson, Electroosmotic �uid motion and late-time solute
transport for large zeta potentials, Anal Chem 72 (2000), no. 20, 4767�4777 (English).



198 Bibliography

[41] J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B. McFadden, Phase �eld
modeling of electrochemistry. i. equilibrium, Phys Rev E 69 (2004), 021603.

[42] , Phase �eld modeling of electrochemistry. ii. kinetics, Phys Rev E 69 (2004),
021604.

[43] M. Haataja, D. J. Srolovitz, and A. B. Bocarsly, Morphological stability during elec-
trodeposition - i. steady states and stability analysis, J electrochem soc 150 (2003),
no. 10, C699�C707.

[44] J.-H. Han and M. Z. Bazant, Shock electrodeposition in charged porous media,
arXiv:1505.05604 [physics.chem-ph] (2015).

[45] J.-H. Han, E. Khoo, P. Bai, and M.Z. Bazant, Over-limiting current and control of
dendritic growth by surface conduction in nanopores, Sci. Rep. 4 (2014), 7056.

[46] C. Heitner-Wirguin, Recent advances in per�uorinated ionomer membranes: struc-
ture, properties and applications, J Membr Sci 120 (1996), no. 1, 1�33.

[47] J M Huth, H L Swinney, W D McCormick, A Kuhn, and F Argoul, Role of convection
in thin-layer electrodeposition, Phys Rev E 51 (1995), no. 4, 3444�3458.

[48] K. G. H. Janssen, H. T. Hoang, J. Floris, J. de Vries, N. R. Tas, J. C. T. Eijkel,
and T. Hankemeier, Solution titration by wall deprotonation during capillary �lling
of silicon oxide nanochannels, Anal Chem 80 (2008), no. 21, 8095�8101.

[49] K. L. Jensen, J. T. Kristensen, A. M. Crumrine, M. B. Andersen, H. Bruus, and
S. Pennathur, Hydronium-dominated ion transport in carbon-dioxide-saturated elec-
trolytes at low salt concentrations in nanochannels, Phys Rev E 83 (2011), no. 5,
056307.

[50] L. Jialin, W. Yazhen, Y. Changying, L. Guangdou, and S. Hong, Membrane catalytic
deprotonation e�ects, J Membr Sci 147 (1998), no. 2, 247�256.

[51] G. L. M. K. S. Kahanda and M. Tomkiewicz, Morphological evolution in zinc elec-
trodeposition, J electrochem soc 136 (1989), no. 5, 1497�1502.

[52] A. Karma and W.-J. Rappel, Quantitative phase-�eld modeling of dendritic growth
in two and three dimensions, Phys rev E 57 (1998), no. 4, 4323�4349.

[53] A. S. Khair, Concentration polarization and second-kind electrokinetic instability at
an ion-selective surface admitting normal �ow, Phys Fluids 23 (2011), 072003.

[54] Y. I. Kharkats, Theory of the exaltation e�ect and the e�ect of correlation exaltation
of migration current, J Electroanal Chem 105 (1979), no. 1, 97�114.

[55] Y. I. Kharkats and A. V. Sokirko, Theory of the e�ect of migration current exaltation
taking into account dissociation-recombination reactions, J Electroanal Chem 303

(1991), no. 1, 27�44.



Bibliography 199

[56] P. Kim, S. J. Kim, J. Han, and K. Y. Suh, Stabilization of ion concentration polar-
ization using a heterogeneous nanoporous junction, Nano Lett. 10 (2010), 16�23.

[57] S. J. Kim, S. H. Ko, K. H. Kang, and J. Han, Direct seawater desalination by ion
concentration polarization, Nat Nanotechnol 5 (2010), no. 4, 297�301.

[58] S. J. Kim, L. D. Li, and J. Han, Ampli�ed electrokinetic response by concentration
polarization near nano�uidic channel, Langmuir 25 (2009), no. 13, 7759�7765.

[59] S. J. Kim, Y.-C. Wang, J. H. Lee, H. Jang, and J. Han, Concentration polariza-
tion and nonlinear electrokinetic �ow near a nano�uidic channel, Phys Rev Lett 99
(2007), no. 4, 044501.

[60] S.H. Ko, Y.-A. Song, S. J. Kim, M. Kim, J. Han, and K. H. Kang, Nano�uidic pre-
concentration device in a straight microchannel using ion concentration polarization,
Lab Chip 12 (2012), no. 21, 4472�4482 (English).

[61] R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Phys-
ica D 63 (1993), 410�423.

[62] V. K. Kumikov and K. B. Khokonov, On the measurement of surface free energy and
surface tension of solid metals, J. Appl. Phys. 54 (1983), 1346.

[63] R. Kwak, S. J. Kim, and J. Han, Continuous-�ow biomolecule and cell concentrator
by ion concentration polarization, Anal Chem 83 (2011), no. 19, 7348�7355 (English).

[64] L. D. Landau and E. M. Lifshitz, Statistical physics, 3rd ed., vol. 1, Elsevier, 1980.

[65] C. Leger, J. Elezgaray, and F. Argoul, Internal structure of dense electrodeposits,
Phys Rev E 61 (2000), no. 5, 5452�5463.

[66] C. Leger, L. Servant, J. L. Bruneel, and F. Argoul, Growth patterns in electrodeposi-
tion, Physica A 263 (1999), 305�314.

[67] L. Liang and L. Q. Chen, Nonlinear phase �eld model for electrodeposition in elec-
trochemical systems, Appl Phys Lett 105 (2014), 263903.

[68] L. Liang, Y. Qi, F. Xue, S. Bhattacharya, S. J. Harris, and L. Q. Chen, Nonlinear
phase-�eld model for electrode-electrolyte interface evolution, Phys Rev E 86 (2012),
051609.

[69] D. R. Lide, CRC handbook of chemistry and physics, 91st ed., (Internet Version
2011), CRC Press/Taylor and Francis, Boca Raton, FL, 2010.

[70] T.-H. Lin, C.-W. Lin, H.-H. Liu, J.-T. Sheu, and W.-H. Hung, Potential-controlled
electrodeposition of gold dendrites in the presence of cysteine, Chem. Commun. 47
(2011), no. 7, 2044�2046.

[71] D. Linden and T. B. Reddy, Handbook of batteries, McGraw-Hill, 2002.



200 Bibliography

[72] J. S. Mackie and P. Meares, The sorption of electrolytes by a cation-exchange resin
membrane, Proceedings of the Royal Society of London 232 (1955), 485�498.

[73] P. Malek, J. M. Ortiz, B. S. Richards, and A. I. Schaefer, Electrodialytic removal
of NaCl from water: Impacts of using pulsed electric potential on ion transport and
water dissociation phenomena, J Membr Sci 435 (2013), 99�109 (English).

[74] A. Mani and M. Z. Bazant, Deionization shocks in microstructures, Phys Rev E 84

(2011), no. 6, �.

[75] A. Mani, T. A. Zangle, and J. G. Santiago, On the propagation of concentration
polarization from Microchannel-Nanochannel interfaces part i: Analytical model and
characteristic analysis, Langmuir 25 (2009), no. 6, 3898�3908.

[76] R. A. Marcus, On the theory of electrontransfer reactions. vi. uni�ed treatment for
homogeneous and electrode reactions, J chem phys 43 (1965), no. 2, 679�701.

[77] K. A. Mauritz and R. B. Moore, State of understanding of na�on, Chem Rev 104
(2004), 4535�4586.

[78] V. Mavrov, W. Pusch, O. Kominek, and S. Wheelwright, Concentration polarization
and water splitting at electrodialysis membranes, Desalination 91 (1993), 225�252.

[79] S. Nam, I. Cho, J. Heo, G. Lim, M. Z. Bazant, D. J. Moon, G. Y. Sung, and S. J.
Kim, Experimental veri�cation of overlimiting current by surface conduction and
electro-osmotic �ow in microchannels, Phys Rev lett 114 (2015), 114501.

[80] J. Newman, The polarized di�use double layer, Trans Faraday Soc 61 (1965), 2229�
2237.

[81] , Current distribution on a rotating disk below the limiting current, J elec-
trochem soc 113 (1966), no. 12, 1235�1241.

[82] C. P. Nielsen and H Bruus, Concentration polarization, surface currents, and bulk
advection in a microchannel, Phys Rev E 90 (2014), 043020.

[83] C. P. Nielsen and H. Bruus, Transport-limited water splitting at ion-selective inter-
faces during concentration polarization, Phys Rev E 89 (2014), 042405.

[84] C. P. Nielsen and H Bruus, Morphological instability during steady electrodeposition
at overlimiting currents, Arxiv arXiv:1505.07571 (2015).

[85] , A sharp-interface model of electrodeposition and rami�ed growth, Arxiv
arXiv:1507.01040 (2015).

[86] N. D. Nikolic, K. I. Popov, L. J. Pavlovic, and M. G. Pavlovic,Morphologies of copper
deposits obtained by the electrodeposition at high overpotentials, Surf Coat Technol
201 (2006), 560�566.



Bibliography 201

[87] V. Nikonenko, V. Zabolotsky, C. Larchet, B. Auclair, and G. Pourcelly, Mathematical
description of ion transport in membrane systems, 147 (2002), no. 1, 369�374.

[88] V. V. Nikonenko, A. V. Kovalenko, M. K. Urtenov, N. D. Pismenskaya, J. Han, P. Si-
stat, and G. Pourcelly, Desalination at overlimiting currents: State-of-the-art and
perspectives, Desalination 342 (2014), no. 0, 85 � 106, Special Issue: Electromem-
brane Processes for Desalination.

[89] V. V. Nikonenko, N. D. Pismenskaya, E. I. Belova, P. Sistat, P. Huguet, G. Pour-
celly, and C. Larchet, Intensive current transfer in membrane systems: Modelling,
mechanisms and application in electrodialysis, Adv Colloid Interface Sci 160 (2010),
no. 1-2, 101�123.

[90] V. V. Nikonenko, N. D. Pismenskaya, and E. I. Volodina, Rate of generation of ions
H+ and OH- at the ion-exchange membrane/dilute solution interface as a function
of the current density, Russ J Electrochem 41 (2005), no. 11, 1205�1210.

[91] K. Nishikawa, E. Chassaing, and M. Rosso, Evolution of the morphology og electrode-
posited copper at the early stage of dendritic growth, J Electrochem Soc 160 (2013),
no. 4, D183�D187.

[92] K. Oldham and J. Myland, Fundamentals of electrochemical science, Elsevier, 1993.

[93] L. H. Olesen, Computational �uid dynamics in micro�uidic systems, Master's thesis,
Technical University of Denmark, 2003.

[94] L. H. Olesen, M. Z. Bazant, and H. Bruus, Strongly nonlinear dynamics of electrolytes
in large ac voltages, Phys Rev E 82 (2010), no. 1, 011501.

[95] M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, A review of conduction
phenomena in li-ion batteries, J. Power Sources 195 (2010), no. 24, 7904�7929.

[96] M. Rosso, Electrodeposition from a binary eleectrolyte: new developments and appli-
cations, Electrochim. Acta 53 (2007), 250�256.

[97] I. Rubinstein, A di�usional model of 'water splitting' in electrodialysis, J Phys Chem
81 (1977), no. 14, 1431�1436.

[98] I. Rubinstein and L. Shtilman, Voltage against current curves of cation exchange
membranes, J Chem Soc, Faraday Trans 2 75 (1979), 231.

[99] I. Rubinstein and B. Zaltzman, Electro-osmotically induced convection at a permse-
lective membrane, Phys Rev E 62 (2000), no. 2, 2238.

[100] I. Rubinstein and B. Zaltzman, Electro-osmotic slip of the second kind and instability
in concentration polarization at electrodialysis membranes, Math. Models Methods
Appl. Sci. 11 (2001), no. 2, 263�300.



202 Bibliography

[101] , Electroconvective instability in concentration polarization and nonequilibrium
electro-osmotic slip, Phys rev E 72 (2005), 011505.

[102] , Electro-convective versus electroosmotic instability in concentration polariza-
tion, 134-135 (2007), 190�200.

[103] , Convective di�usive mixing in concentration polarization: from taylor dis-
persion to surface convection, J Fluid Mech 728 (2013), 239�278 (English).

[104] S. M. Rubinstein, G. Manukyan, A. Staicu, I. Rubinstein, B. Zaltzman, R. G. H.
Lammertink, F. Mugele, and M. Wessling, Direct observation of a nonequilibrium
Electro-Osmotic instability, Phys Rev Lett 101 (2008), no. 23, 236101.

[105] B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power
Sources 195 (2010), no. 9, 2419�2430.

[106] Y. Shibuta, Y. Okajima, and T. Suzuki, Phase-�eld modeling for electrodeposition
process, Sci technol adv mater 8 (2007), 511�518.

[107] H.-C. Shin, J. Dong, and M. Liu, Nanoporous structures prepared by an electrochem-
ical deposition process, Adv mater 15 (2003), no. 19, 1610�1614.

[108] R. Simons, The origin and elimination of water splitting in ion exchange membranes
during water demineralisation by electrodialysis, Desalination 28 (1979), no. 1, 41�42.

[109] , Strong electric �eld e�ects on proton transfer between membrane-bound
amines and water, Nature 280 (1979), no. 5725, 824�826.

[110] , Electric �eld e�ects on proton transfer between ionizable groups and water
in ion exchange membranes, Electrochim Acta 29 (1984), no. 2, 151�158.

[111] , Water splitting in ion exchange membranes, Electrochim Acta 30 (1985),
no. 3, 275�282.

[112] H. L. Skriver and Rosengaard N. M., Surface energy and work function of elemental
metals, Phys rev B 46 (1992), no. 11, 7157.

[113] W. H. Smyrl and J. Newman, Double layer structure at the limiting current, Trans
Faraday Soc 63 (1967), 207�216.

[114] A. A. Sonin and G. Grossman, Ion transport through layered ion exchange mem-
branes, J Phys Chem 76 (1972), no. 26, 3996�4006.

[115] L. G. Sundstrom and F. H. Bark, On morphological instability during electrodeposi-
tion with a stagnant binary electrolyte, Electrochim Acta 40 (1995), no. 5, 599�614.

[116] Y. Tanaka, Water dissociation reaction generated in an ion exchange membrane, J
Membr Sci 350 (2010), no. 1-2, 347�360.



Bibliography 203

[117] Y. Tanaka and M. Seno, Concentration polarization and water dissociation in ion-
exchange membrane electrodialysis. mechanism of water dissociation, J Chem Soc,
Faraday Trans 1 82 (1986), 2065�2077.

[118] Y. Tanaka, H. Uchino, and M. Murakami, Continuous ion-exchange membrane elec-
trodialysis of mother liquid discharged from a salt-manufacturing plant and transport
of Cl- ions and SO42- ions, Membr Water Treat 3 (2012), no. 1, 63�76 (English).

[119] C. W. Tanner, K. Z. Fung, and A. V. Virkar, The e�ect of porous composite electrode
structure on solid oxide fuel cell performance .1. theoretical analysis, J Electrochem
Soc 144 (1997), no. 1, 21�30 (English).

[120] J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium
batteries, Nature (2001), �.

[121] D. J. Trevoy and H. Johnson, The water wettability of metal surfaces, J. Phys. Chem.
62 (1958), no. 7, 833.

[122] P. P. Trigueros, J. Claret, F. Mas, and F. Sagues, Pattern morphologies in zinc
electrodeposition, J Electroanal Chem 312 (1991), 219�235.

[123] D. R. Turner and G. R. Johnson, The e�ect of some addition agents on the kinetics of
copper electrodeposition from a sulfate solution. 1. cathode potential-current density
relation, J Electrochem Soc 109 (1962), no. 9, 798�804.

[124] H. Udin, A. J. Shaler, and J. Wul�, Surface tension of solid copper, Trans. AIME
185 (1949), 186.

[125] M. Urtenov, E. V. Kirillova, N. M. Seidova, and V. V. Nikonenko, Decoupling of the
nernst-planck and poisson equations. application to a membrane system at overlim-
iting currents, J Phys Chem B 111 (2007), 14208�14222.

[126] M. van Soestbergen, Frumkin-butler-volmer theory and mass transfer in electrochem-
ical cells, Russ J Electrochem 48 (2012), no. 6, 570�579.

[127] A. V. Virkar, J. Chen, C. W. Tanner, and J.-W. Kim, The role of electrode mi-
crostructure on activation and concentration polarizations in solid oxide fuel cells,
Solid State Ionics 131 (2000), 189 � 198.

[128] Y.-C. Wang, A. L. Stevens, and J. Han, Million-fold preconcentration of proteins and
peptides by nano�uidic �lter, Anal Chem 77 (2005), no. 14, 4293�4299.

[129] M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?,
Chem. Rev. 104 (2004), no. 10, 4245�4270.

[130] T. A. Witten and L. M. Sander, Di�usion-limited aggregation, a kinetic critical phe-
nomenon, Phys Rev Lett 47 (1981), no. 19, 1400�1403.

[131] , Di�usion-limited aggregation, Phys Rev B 27 (1983), no. 9, 5686�5697.



204 Bibliography

[132] T. Xu, Ion exchange membranes: State of their development and perspective, J
Membr Sci 263 (2005), no. 1�2, 1�29.

[133] E. Yariv, Asymptotic current-voltage relations for currents exceeding the di�usion
limit, Phys Rev E 80 (2009), no. 5, 051201.

[134] E. Yariv, Improved current-voltage approximations for currents exceeding the di�u-
sion limit, SIAM J Appl Math 71 (2011), no. 6, 2131�2150.

[135] A. Yaroshchuk, Transport properties of long straight nano-channels in electrolyte so-
lutions: A systematic approach, Adv Colloid Interface Sci 168 (2011), 278�291.

[136] , Over-limiting currents and deionization "shocks" in current-induced polar-
ization: Local-equilibrium analysis, Adv Colloid Interface Sci 183-184 (2012), 68�81.

[137] , What makes a nano-channel? a limiting-current criterion, Micro�uid
Nano�uidics 12 (2012), no. 1-4, 615�624.

[138] A. Yaroshchuk, Y. Boiko, and A. Makovetskiy, Ion-rejection, electrokinetic and elec-
trochemical properties of a nanoporous track-etched membrane and their interpreta-
tion by means of space charge model, LANGMUIR 25 (2009), no. 16, 9605�9614.

[139] A. Yaroshchuk, E. Zholkovskiy, S. Pogodin, and V. Baulin, Coupled concentration
polarization and electroosmotic circulation near micro/nanointerfaces: Taylor-aris
model of hydrodynamic dispersion and limits of its applicability, Langmuir 27 (2011),
no. 18, 11710�11721 (English).

[140] V. I. Zabolotskii, V. V. Nikonenko, N. M. Korzhenko, R. R. Seidov, and M. K.
Urtenov, Mass transfer of salt ions in an electromembrane system with violated elec-
troneutrality in the di�usion layer: The e�ect of a heterolytic dissociation of water,
Russ J Electrochem 38 (2002), no. 8, 810�818.

[141] V. I. Zabolotsky, V. V. Nikonenko, N. D. Pismenskaya, E. V. Laktionov, M. K.
Urtenov, H. Strathmann, M. Wessling, and G. H. Koops, Coupled transport phe-
nomena in overlimiting current electrodialysis, Sep Purif Technol 14 (1998), no. 1,
255�267.

[142] T. A. Zangle, A. Mani, and J. G. Santiago, On the propagation of concentration
polarization from Microchannel-Nanochannel interfaces part II: numerical and ex-
perimental study, Langmuir 25 (2009), no. 6, 3909�3916.

[143] Y. Zeng, R. B. Smith, P. Bai, and M. Z. Bazant, Simple formula for marcus-hush-
chidsey kinetics, J electroanal chem 735 (2014), 77�83.

[144] E. K. Zholkovskij and J. H. Masliyah, Hydrodynamic dispersion due to combined
pressure-driven and electroosmotic �ow through microchannels with a thin double
layer, Anal Chem 76 (2004), no. 10, 2708�2718 (English).



Bibliography 205

[145] E. K. Zholkovskij, J. H. Masliyah, and J. Czarnecki, Electroosmotic dispersion in mi-
crochannels with a thin double layer, Anal Chem 75 (2003), no. 4, 901�909 (English).


	Abstract
	Resumé
	Preface
	List of figures
	List of tables
	List of symbols
	Introduction
	Concentration polarization and electrodeposition
	Outline of the thesis
	Publications during the PhD studies
	Peer reviewed journal papers
	Peer reviewed conference contributions
	Other scientific contributions


	Basic theory
	Field equations
	Transport equations
	Electrostatics
	Hydrodynamics

	Nondimensionalization
	The electric double layer
	Electro-osmotic flow
	Concentration polarization
	Ion-selective interfaces
	Permselective membranes
	Metal electrodes

	Framework for modeling concentration polarization

	Numerical techniques
	The finite element method

	Concentration polarization: Beyond the local electroneutrality assumption
	Model
	Analysis
	Characterizing the extended space charge region
	Conclusion

	Concentration polarization in a microchannel
	Model system
	Governing equations
	The thermodynamic driving force
	Boundary conditions

	Boundary layer models
	Ion transport
	Flow problem

	Analysis
	Scaling of bulk advection
	Local equilibrium models for small aspect ratio 
	Bulk conduction through the extended space-charge region

	Numerical analysis
	Numerical implementation
	Parameter dependence of I-V characteristics
	Field distributions
	Coupling between bulk advection and the surface current

	Conclusion

	Water splitting at permselective membranes
	Model
	Governing equations
	Analysis
	The water-ion current
	Transport-limited water splitting
	Water splitting at finite reaction rate

	Relation to experiments
	Addition of an acid or base
	Conclusion

	Electrodeposition: Stability analysis
	Model system
	Governing equations
	Perturbation
	Analysis
	Underlimiting regime
	Overlimiting regime
	Unified analysis

	Numerical solution
	Results
	Conclusion

	Sharp-interface model of electrodeposition
	Model system
	Solution method
	Governing equations
	Numerical stability
	Updating the interface position
	Correction for the curvature

	Noise
	Numerical solution
	Reduction of the computational domain
	Parameter values
	Validation

	Results
	Rationalizing the cathode morphologies
	Decoupling of the factors affecting the electrode morphology

	Conclusion

	Conclusion and outlook
	Conclusion
	Outlook

	Additional results for Chapter 5
	Phase-field models of reaction kinetics
	Initial growth of the electrode
	Characteristic length scale of electrodeposits
	Paper published in Phys Rev E
	Paper published in Phys Rev E
	Paper submitted to Phys Rev E
	Paper submitted to Phys Rev E
	Bibliography

