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Squeezing-enhanced feedback cooling of a microresonator

Abstract Since its inception, quantum mechanics have not ceased to fascinate the

scientific world, and especially the fundamental question about the famous Schrödinger’s

cat being alive or dead, or both, is still far from being answered. Although superposition

states have been achieved with small particles, such as photons or atoms, they have not

yet been observed on large and massive objects consisting of billions of atoms. With the

advance of cavity optomechanics, the quantum behavior of massive mechanical oscilla-

tors is becoming accessible and a major key requirement in this direction is the ability to

cool such oscillators into their quantum ground state. In the present work we investigate

a cold damping scheme relying on the ultra-sensitive measurement of mechanical dis-

placements, provided by a cavity-enhanced optomechanical interaction with quadrature

squeezed states of light, to control strong dielectric gradient forces actuating the motion

of a toroidal microresonator within a feedback loop. We first determine theoretically the

conditions and limits to squeezing-enhanced measurement sensitivity of mechanical mo-

tion in a cavity optomechanical system, and perform experimentally a proof-of-principle

on our microtoroids. Secondly we model the dielectric gradient force actuation scheme

and investigate its capabilities in controlling the vibrations of a microtoroid acoustic

mode.



Squeezing-forstærket feedback køling a fen mikroresonator

Dansk resumé Kvantemekanikken har siden sit indtog konstant fascineret den vi-

denskabelige verden, og nogle af de mest grundlæggende aspekter af teorien, relateret

til Schrödingers famøse kat, der er død og levende p̊a samme tid, er endnu uafklarede.

S̊adanne superpositionstilstande er blevet realiseret for sm̊a partikler, s̊asom fotoner og

atomer, men de er endnu ikke observeret for store og massive objekter indeholdende mil-

liarder af atomer. Takket være den hastige udvikling af det optomekaniske forskningsfelt,

er studier af makroskopiske mekaniske oscillatorers kvantemekaniske egenskaber imidler-

tid ved at være inden for rækkevidde. En central betingelse for dette er dog, at oscilla-

torerne kan køles til deres kvantemekaniske grundtilstand. I denne afhandling studeres

en metode til køling via mekanisk dæmpning, hvor optiske m̊alinger af den mekaniske

oscillators udsving udnyttes til at dæmpe disse gennem et feedbackkredsløb. Konkret

betragtes en mikrotoroidal oscillator, hvor ultra-følsomme m̊alinger af de mekaniske sv-

ingninger realiseres ved at kombinere kvantestøjsreduceret – squeezed – laserlys med

en kavitetsforstærket optomekanisk vekselvirkning. Betinget heraf, p̊avirkes og dæm-

pes oscillatorens dynamik ved at p̊atrykke en kraftig dielektrisk gradientkraft. Vi be-

handler indledningsvist de teoretiske betingelser og begrænsninger for sensitiviteten af

squeezing-forstærkede m̊alinger af mikromekaniske svingninger i kavitetsbaserede op-

tomekaniske systemer. Teknikken demonstreres dernæst gennem et proof-of-principle

eksperiment med mikrotoroidale oscillatorer. Endelig opstiller vi en model for køling via

mekanisk dæmping baseret p̊a dielektriske gradientkræfter, og metodens potentiale og

begræsninger med henblik p̊a manipulation af akustiske egensvingninger i mikrotoroidale

oscillatorer undersøges i detaljer.
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for regularly sharing with me the most appreciated lunch breaks at the cafeteria.

Besides my coworkers I am grateful to my awesome flatmates, Diego Gardini and

Davide Deiana, with who I have shared most of my time away from the office, when I

was not traveling to enjoy the company of Sarah El-Achachi to whom I am grateful to

have supported my absence during the completion of my thesis. Finally I would like to

thank my parents for their constant support during my studies event though they kept

me far away from them.

iv



Contents

Abstract ii

Dansk resumé iii
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Introduction

Overview

The field of cavity optomechanics involves the study of physical systems that combine

the properties of mechanical and optical resonators. This kind of hybrid systems have

drawn the attention of the scientific communities due to their potential and actual use

to solve a wide range of scientific and technological issues, from investigations into the

fundamental laws of nature as the test bench of coherence collapse models [1, 2] and

quantum gravity models [3], to applications in future technologies such as quantum

computers and quantum communication networks [4].

Mechanical oscillators such as a simple mass-on-a-string pendulum are long- and

well-known physical systems that have been studied and used extensively across the

human history. In the first century, Chinese scientists used pendulums to sens acous-

tic vibrations from earthquakes, which was an early implementation of a force sensing

scheme employing a mechanical oscillator. Many centuries later, famous experiments

involved massive mechanical oscillators for sensing applications, among which is the

experiment of Foucault for sensing the rotation of the Earth via the oscillations of a

mass-on-a-string pendulum, or the experiment of Cavendish for measuring the grav-

itational constant from the oscillations of a torsional pendulum. A more day-to-day

utilization of mechanical oscillators is in keeping pace of time. The harmonic properties

of mechanical oscillators were recognized in the first half of the seventeenth century by

Galileo who designed the first known pendulum clock, and were a few decades later

harvested by Huygens who built the first pendulum clock. Nowadays most of our clock

systems are still based on the periodic oscillations of mechanical resonators, although no

longer in the form of pendulums but as the harmonic vibrations of piezoelectric crystals,

such as quartz crystal resonators.

An optical cavity is a key component within the field of optics, and especially

quantum optics, as it is essential for the production of coherent laser beams. More

generally it is of particular interest for enhancing optical fields and consequently increase

the interaction of light with other physical systems, such as small particles, nonlinear

media, or, in the case of optomechanical systems, mechanical oscillators. The interaction

1



2 Introduction

of light with massive objects was initially noticed by Kepler in the early seventeenth

century, who observed that the tails of comets were deviated away from the sun. The

radiation pressure force exerted by the light was later described by Maxwell in its theory

of electromagnetic radiation, but it was not experimentally demonstrated before the

beginning of the twentieth century.

The field of cavity optomechanics grew in the second half of the twentieth century

when scientists started looking for the gravitational waves predicted by Einstein’s theory

of general relativity, by using large-scale interferometers [5]. Optical interferometric

measurements enable the detection of small variations of the position of a massive object

but it was soon recognized that the radiation pressure force exerted by the light affects

the measurement [6, 7]. The need to understand and control the effects of radiation

pressure on massive bodies lead to the development of a general theory of quantum

measurements which set the basis of the field of optomechanics [8].

Whereas the radiation pressure force was first thought of as a nuisance for the

optical interferometric measurement of the position of a massive body, scientists later

realized that they could use it to control the motion of small objects, and they suc-

ceeded in trapping and manipulating nanometer-size particles such as atoms and ions.

Trapped particles could subsequently be cooled to their ground state of motion where

they revealed a purely quantum behavior [9]. From there the question remained as to

weather more massive objects constituted of a large amount of atoms could be cooled

to their ground state of motion and display a non classical behavior.

The quest for cooling a mechanical oscillator into its quantum ground state faces a

number of challenges. The inherent weakness of radiation pressure forces is compensated

by the use of an optical cavity to enhance the interaction of the light with the mechanical

oscillator, but the high optical power circulating in a cavity generates thermal and

nonlinear effects [10–13] that are detrimental to the stability of the optomechanical

system, and renders difficult the control over the oscillator motion. As a consequence,

alternative methods of actuating a mechanical oscillator have been investigated, and

notably the use of dielectric gradient forces [14] which provide a strong influence over

the oscillator dynamics.

Thesis structure

In this thesis we investigate the use of dielectric gradient forces within a cold damping

scheme to cool the motion of a micromechanical resonator. Our approach combines

squeezing-enhanced optomechanical transduction [15, 16], and strong dielectric gradient

force actuation [17, 18] within a cavity optomechanical system.
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In the first chapter we introduce the reader to relevant concepts within the field

of classical and quantum optics. We review a classical representation of light from

Maxwell’s theory of electromagnetic radiation, and introduce the notions of carrier fields

and sidebands which are particularly important in the context of optical communication

and optical measurements. We follow with a quantum representation of light in close

analogy to its classical counterpart. We explain the origin of quantum noise and provide a

representation of light in a semi-classical picture where the optical field can be separated

into a classical part and quantum fluctuations. We expand the notion of sidebands by

considering the field operators in the Fourier space. The spectral description of field

fluctuations is given by the power spectral density which is the frequency-dependent

autocorrelation function. We end our introduction to the quantum representation of

light by listing the most common quantum states of light. The end of the first chapter

is dedicated to the theoretical description of the detection of light within a quantum

optics framework, and introduces a major measurement tool, the balanced homodyne

detector.

The first two sections of the second chapter treat separately of the two main com-

ponents of an optomechanical system, namely the optical cavity and the mechanical

oscillator. We develop each section with theoretical models illustrated by experimental

results. We start with a general description of the properties of optical and mechanical

resonators before focusing on the particularities of the microtoroid resonator. We also

present a part of our experimental setup that is employed for the characterization of the

whispering gallery modes of our microtoroid resonators. In the third section we combine

the properties of optical and mechanical resonators within a general theory of optome-

chanical interactions. We explain the nature of the optomechanical coupling between an

optical cavity mode and a mechanical oscillator, and describes the reciprocal action of

each system on the other. We finally introduce the quantum Langevin equations that

describe the evolution of the cavity optomechanical system.

In the third chapter we develop the theory of continuous displacement sensing by

transforming and solving the quantum Langevin equations in the Fourier domain. We

investigate the limits of mechanical displacement measurements with coherent and bright

quadrature squeezed optical probe fields. The notions of imprecision noise and backac-

tion noise are introduced which lead to the definition of the standard quantum limit in

a cavity optomechanical system.

In the fourth and last chapter of this thesis we present the electrical feedback cooling

scheme that we employed to damp the motion of a microtoroid resonator. We explain

the origin of the dielectric gradient forces and their ability to actuate the motion of a

mechanical resonator. We introduce our dielectric gradient force actuation setup and

characterize it by analyzing experimental results. In a second part of the chapter we
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present the theory of cold damping, and analyze our electrical feedback cooling scheme

within this framework. We compare theoretically the in-loop and out-of-loop operation

of a feedback actuation scheme. Finally we present experimental results showing the

control of a mechanical mode of our microtoroid resonator.



Chapter 1

Basic concepts

The theory and experiments presented in this thesis are based on the principles of quan-

tum optics. The aim of this chapter is to introduce the basic concepts of quantum optics

along with the theoretical framework and notations necessary for a good understanding

of the content of this thesis. Curious readers may find a more detailed description of

the concepts introduced in this chapter, from a broad range of textbooks, e.g. [19–22].

1.1 Classical representation of light

Light is the first and foremost element of optics, and a prominent and omnipresent

tool for the experimental work presented in this thesis. We start here by reviewing the

classical properties of light that are relevant to this thesis.

1.1.1 Maxwell’s and constitutive equations

In the classical picture developed in the nineteenth century, light is represented by the

electromagnetic field, solution of Maxwell’s equations [23]. In the context of this thesis

we are only concerned with the propagation of light in vacuum or dielectric media which

we assume non-magnetic and containing no free electric charges nor free currents. Under

these conditions, Maxwell’s equations read,

~∇ · ~D = 0 , ~∇ · ~B = 0 , (1.1)

~∇× ~E = −∂
~B

∂t
, ~∇× ~H =

∂ ~D

∂t
, (1.2)

where ~E and ~H denote the electric and magnetic fields, and ~D and ~B represent the

electric and magnetic field densities. The constitutive equations relating the electric

5



6 Chapter 1. Basic concepts

and magnetic fields to their respective field densities read,

~D = ε0
~E + ~P , ~B = µ0

~H , (1.3)

where the constants ε0 and µ0 are the vacuum permittivity and vacuum permeability.

The vector field ~P represents the density of electric dipole moments induced by the

presence of an electric field in a dielectric material, and is referred to as the induced

electric polarization. The electric polarization captures both the linear and nonlinear

response of a medium to an applied electric field, and constitutes the starting point of

most textbooks treatment of nonlinear optics[24]. For a linear, isotropic and lossless

medium, the polarization can be written

~P = ε0χ
(1)(t) ∗ ~E(t) , (1.4)

where the scalar quantity χ(1)(t) is the linear electric susceptibility of the medium,

and the convolution accounts for the non-instantaneous response of the medium to the

electric field, i.e. the dispersion of the medium. In the following we will omit dispersion

for simplicity of notations in the time domain, and come back to it in the Fourier domain

where the convolution transforms into a multiplication operation. Finally we can write

the electric flux density, ~D = ε0εr ~E, with the relative permittivity of the medium,

εr = 1 + χ(1).

1.1.2 The wave equation

In classical electrodynamics, it is customary to express the electric and magnetic fields

in terms of a vector potential ~A(~r, t),

~E = −∂
~A

∂t
, ~B = ~∇× ~A , (1.5)

satisfying the Coulomb gauge, ~∇ · εr ~A = 0. From Maxwell’s equations (1.1) and (1.2)

and the constitutive relations (1.3) , we derive the wave equation satisfied by the vector

potential

∇2 ~A− n2

c2

∂2 ~A

∂t2
= 0 , (1.6)

where we have defined the speed of light in vacuum c = 1/
√
ε0µ0, and the refractive

index of the medium n =
√
εr. In the above we further assumed that the medium is

homogeneous, i.e. ~∇εr = ~0, what is reasonable when considering the propagation of

light in a bulk uniform material. Precautions must however be taken when considering

the electromagnetic field at the boundary between two materials. Maxwell’s equations

provide two simple boundary conditions for the electric and magnetic fields on each side
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of a surface with no charge nor current, delimiting two homogeneous media. Equation

(1.1) implies the continuity of the component of the electric and magnetic field densities

normal to the surface, while Equation (1.2) implies the continuity of the component of

the electric and magnetic fields tangent to the surface.

A general solution of the wave equation in an infinite homogeneous medium is

obtained by Fourier decomposition of the vector potential with respect to its space

variables [19]. We consider the discrete three-dimensional Fourier decomposition in a

large cube of volume V , which we write in terms of plane waves in the form

~A(~r, t) =
∑

~k

Ak~α~k(t)e
i~k.~r , (1.7)

where the factors Ak = (2ωkε0εr(ωk)V/~)−1/2 are normalization constants which makes

the field amplitude vectors ~α~k(t) dimensionless. We have introduced the wavevector ~k

whose magnitude, also known as the wavenumber, obeys the dispersion relation |~k| =

2π/λ = n(ωk)ωk/c, with λ the wavelength of the plane wave in the medium, and ωk

its angular frequency. We have reintroduced here the dispersion of the medium in the

frequency dependence of the relative permittivity.

Inserting the Fourier decomposition of the vector potential (1.7) into the wave

equation (1.6) yields the harmonic oscillator equation for the plane wave amplitude

vectors, (
∂2

∂t2
+ ωk

)
~α~k(t) = ~0 , (1.8)

whose general solutions are given by

~α~k(t) =
∑

s=1,2

(
~$~k,sα~k,se

−iωkt + ~$−~k,sα
∗
−~k,se

iωkt
)
. (1.9)

The vector form of the plane wave amplitude is resolved into a pair of two orthonormal

polarization vectors, ~$~k,s (s = 1, 2), satisfying, ~$~k,s · ~$~k,s′ = δs,s′ . Maxwell’s equations

impose two additional conditions, transversality with the wavevector ~k · ~$~k,s = 0, and

right-handedness ~$~k,1 × ~$~k,2 = ~k/|~k|.

Finally, the general decomposition of the vector potential into plane waves reads

~A(~r, t) =
∑

~k

∑

s

Ak ~$~k,s
(
α~k,se

i(~k.~r−ωkt) + α∗~k,se
−i(~k.~r−ωkt)

)
, (1.10)

which leads to the decomposition of the electric field into plane waves via Equation (1.5),

~E(~r, t) = i
∑

~k

∑

s

Ek ~$~k,s
(
α~k,se

i(~k.~r−ωkt) − α∗~k,se
−i(~k.~r−ωkt)

)
, (1.11)
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with the normalization factor Ek = (2ε0εrV/~ωk)−1/2. It is also straightforward to derive

a similar expression for the magnetic field. However the present thesis deals with light-

matter interactions involving the electric field essentially, so we will omit the magnetic

field in the representation of light fields for the rest of this thesis.

1.1.3 Spatial modes

In the decomposition of the electric field (1.11), the plane waves are identified by a

wavevector ~k and a polarization index s, and correspond to distinct spatial modes of the

electric field referred to as transverse electromagnetic (TEM) plane waves. In general,

spatial modes are shaped according to inhomogeneities and anisotropies of the medium,

which are represented by the relative permittivity εr(~r). A spatial mode is described by

a complex mode function

~u~k,s(~r) = Ek(~r)~$~k,s(~r)e
i(~k.~r) . (1.12)

Inserting the electric field (1.11) into the wave equation (1.6) reveals that the mode

function obeys the Helmholtz equation,

(∇2 + k2)~u~k,s = ~0 . (1.13)

Common examples of spatial modes obtained by solving the Helmholtz equation are

the Laguerre-Gaussian modes and the Hermite-Gaussian modes [23]. The Laguerre-

Gaussian modes provide a convenient description of TEM modes propagating in a

medium with a radial symmetry, such as an optical fiber. On the other hand, the

Hermite-Gaussian modes are better suited to represent TEM modes in a medium with

no radial symmetry, but rather a distinction between its horizontal and vertical axis,

such as in a rectangular waveguide.

From an experimental point of view, it is of prime importance to identify and

control the spatial modes because the spreading of electromagnetic energy into high-

order modes is often associated with loss. For the experiments conducted during this

thesis we prepared and maintained the optical beams in their fundamental spatial modes,

namely the Gaussian TEM00 mode in free-space and in optical fibers.

1.1.4 Modulation and sidebands

The starting point of every optics experiment conducted during this thesis, is a continu-

ous electromagnetic wave produced by a laser. It is ideally represented by a monochro-

matic single mode with wavevector ~kcw and frequency ωcw. Mathematically the spec-

tral envelope of a purely monochromatic wave is related to a Dirac delta function, i.e.
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α~k,s ∝ δ(ωcw − ωk), what corresponds to a wave with infinite duration. This is obvi-

ously unphysical but provides a good approximation that simplifies the representation

of optical laser beams.

In itself a classical monochromatic optical beam does not carry any information as

it is simply a sinusoidal signal with a constant amplitude and a cyclic phase. However

by interacting with its environment a monochromatic optical beam may experience a

modification of its amplitude or phase, thereby acquiring information about its environ-

ment.This is the basic principle behind continuous variable optical communication where

information is deliberately encoded onto an optical beam by modulating its amplitude

or phase. Similarly optical measurements rely on the extraction of information from an

optical beam after interaction with the system under measurement.

In general terms the modulation of a sinusoidal signal consists of a particular time

dependence m(t) imposed on its amplitude or phase. The modulation is generally much

slower than the period of the sinusoidal signal, which is called the carrier signal. For

simplicity we may consider a sinusoidal modulation with amplitude M and frequency

Ωmod, i.e. m(t) = M sin(Ωmodt). Starting with a monochromatic optical beam repre-

sented by a complex field amplitude Ee−iωcwt, where ωcw is the carrier frequency and E

the amplitude, the result of amplitude modulation (AM) is given by

EAM (t) = [E +M sin(Ωmodt)] e
−iωcwt

= E

[
e−iωcwt − ξ

2i
e−i(ωcw+Ωmod)t +

ξ

2i
e−i(ωcw−Ωmod)t

]
, (1.14)

where we define the modulation depth ξ as the ratio of the modulation amplitude to

the carrier amplitude, i.e. ξ = M/E. The modulation results in the generation of two

new monochromatic waves oscillating at symmetric frequencies ωcw ± Ωmod around the

carrier frequency. They are referred to as the upper and lower sidebands of the carrier

signal.

In a similar fashion, phase modulation (PM) results in a time dependence of the

carrier phase which can be expressed as

EPM (t) = Ee−i(ωcwt+ξ sin(Ωmodt))

= E

+∞∑

n=−∞
Jn(ξ)e−i(ωcw+nΩmod)t (1.15)

≈ E
[
e−iωcwt +

ξ

2
e−i(ωcw+Ωmod)t − ξ

2
e−i(ωcw−Ωmod)t

]
. (1.16)

We have expanded the complex modulated field into Bessel functions of the first kind,

Jn (n ∈ Z), by using the identity exp(−iξ sin(Ωmt)) =
∑+∞

n=−∞ Jn(ξ) exp(−inΩmodt)
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Figure 1.1: Spectrally resolved phase space representation of classical field amplitudes in a
frame rotating at the carrier frequency ωcw. The field amplitudes are represented by vectors
in a complex plane, and their temporal evolution is depicted by dashed lines. The lower
sideband at ωcw −Ωmod is cycling at a lower frequency than the carrier wave, thus appears
rotating in an anticlockwise direction, whereas the upper sidebands at ωcw +Ωmod is cycling
at a higher frequencies, and is shown rotating in a clockwise direction. The vector sum
of the lower and upper sideband complex field amplitudes is equivalent to a harmonically
oscillating carrier amplitude in case of AM (left), or carrier phase in case of PM (right).

[25], then assumed the modulation depth to be small, ξ � 1, to derive a simpler ap-

proximation of the phase modulated field in (1.16). PM, like AM, creates upper and

lower sidebands equally separated from the carrier frequency by an integer number of

the modulation frequency. The small-modulation approximation in (1.16) yields an ex-

pression for the modulated field amplitude very much alike AM, but with the notable

difference that the upper and lower sidebands are respectively advanced and delayed by

a quarter of the modulation period.

It is convenient to visualize the evolution of carrier and sidebands in a spectrally

resolved phase space rotating at the carrier frequency, where each frequency component

is represented by its complex field amplitude. In this representation shown in Fig. 1.1,

the real and imaginary parts of the complex field amplitude are coined the amplitude

quadrature and the phase quadrature of the field.

1.2 Quantum representation of light

The necessity for the development of a quantum model of the electromagnetic field be-

yond the classical frame of Maxwell’s equations arose from the unsatisfactory explanation

of physical phenomena such as blackbody radiation and the photo-electric effect. Light

presents a dual wave-particle behavior that cannot be explained within the framework

of classical physics, but is deeply embedded into the foundation of quantum mechanics.
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1.2.1 Quantization of the electromagnetic field

The transition from a classical to a quantum description of a physical system is per-

formed via Dirac’s canonical quantization procedure [26], where the set of canonical

conjugate variables, {qi, pj} = δij , representing the observable quantities of the system,

are replaced by Hermitian Hilbert space operators obeying the canonical commutation

relation [q̂i, p̂j ] = i~δij . In Equation (1.11), the field amplitudes α~k,s are complex quan-

tities that do not represent physical observables of the system, therefore they cannot

be directly associated with Hilbert space operators. A formal implementation of the

canonical quantization procedure starts with the derivation of the classical energy of the

electromagnetic field,

H =
1

2

∫ (
~E · ~D + ~B · ~H

)
dV (1.17)

=
1

2

∑

~k

∑

s

~ωk
∣∣∣α~k,s

∣∣∣
2

(1.18)

=
1

2

∑

~k

∑

s

[
p2
~k,s

+ ω2
kq

2
~k,s

]
, (1.19)

where we obtained Equation (1.18) by injecting Equations (1.5) and (1.10) into (1.17).

Equation (1.19) gives the energy of a system of independent harmonic oscillators, each

described by a pair of real canonical variables,

q~k,s(t) =

√
~

2ωk

(
α~k,se

−iωkt + α∗~k,se
iωkt
)
, (1.20)

p~k,s(t) = −i
√

~ωk
2

(
α~k,se

−iωkt − α∗~k,se
iωkt
)
. (1.21)

We may now follow the canonical quantization procedure [19, 21] and transform the

real canonical variables of the system into Hilbert space operators, q̂~k,s(t) and p̂~k,s(t)

satisfying the commutation relations

[
q̂~k,s(t), p̂~k′,s′(t)

]
= i~δ3

~k~k′
δss′ ,

[
q̂~k,s(t), q̂~k′,s′(t)

]
= 0 ,

[
p̂~k,s(t), p̂~k′,s′(t)

]
= 0 . (1.22)

From there the electric field may finally be expressed as a Hermitian Hilbert space

operator

~̂E(~r, t) = i
∑

~k

∑

s

√
~ωk

2ε0εr(~r)V
~$~k,s(~r)

(
â~k,se

i~k.~r − â†~k,se
−i~k.~r

)
, (1.23)
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where we have defined the non-Hermitian creation and annihilation operators,

â~k,s(t) =
1√

2~ωk

(
ωkq̂~k,s(t) + ip̂~k,s(t)

)
, (1.24)

â†~k,s(t) =
1√

2~ωk

(
ωkq̂~k,s(t)− ip̂~k,s(t)

)
, (1.25)

obeying the bosonic commutation relations

[
â~k,s(t), â

†
~k′,s′

(t)
]

= δ3
~k~k′
δss′ ,

[
â~k,s(t), â~k′,s′(t)

]
= 0 ,

[
â†~k,s(t), â

†
~k′,s′

(t)
]

= 0 . (1.26)

In the rest of this thesis we will most often consider a single optical field with an

unambiguously determined spatial mode, and will therefore drop the indexing to the

wavevector ~k and the polarization index s for simplicity of notations. The field energy

of a single continuous wave at frequency ω is given by Equation (1.19) using the Hilbert

space operators instead of the classical observables, and can be written in terms of the

creation and annihilation operators as the Hamiltonian,

Ĥ = ~ω
(
â†â+

1

2

)
(1.27)

where the contribution ~ω/2 is the zero-point energy and reflects the fact that a quantum

field always carries fluctuations, even when its mean amplitude is null. The Hermitian

product of annihilation and creation operators, n̂ = â†â, is the number operator, count-

ing the number of quanta of energy, the so-called photon, in the optical mode.

1.2.2 Field quadrature operators

The creation and annihilation operators do not represent real observables and are there-

fore not measurable. It is then customary to describe the optical field observables in

terms of the dimensionless conjugate Hermitian operators,

X̂ =

√
ω

~
q̂ =

1√
2

(
â+ â†

)
, (1.28)

P̂ =
1√
~ω

p̂ = − i√
2

(
â− â†

)
, (1.29)

referred to as the amplitude and phase quadrature operators. In a more general way, we

introduce a pair of rotated quadrature operators,

(
X̂θ

P̂ θ

)
=

1√
2

(
âe−iθ + â†eiθ

−iâe−iθ + iâ†eiθ

)
= R(−θ)

(
X̂

P̂

)
, (1.30)
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where we have introduced the rotation matrix

R(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
. (1.31)

From Equation (1.22), it is straightforward to show that the field quadrature oper-

ators satisfy the following commutation relation,

[
X̂θ, P̂ θ

]
= i . (1.32)

1.2.3 Quantum statistics

We have seen that real system observables correspond to Hilbert space operators in

quantum mechanics. This representation is better understood in the light of how mea-

surements of the system observables are performed and what information they provide

about the physical system [27].

Within the framework of quantum mechanics, system states are described by vectors

in a Hilbert space |ψ〉, called ket, which are quantum states of maximal knowledge.

According to the spectral theorem, the Hermitian Hilbert space operator X̂ associated

with a physical quantity X, can be decomposed into a sum

X̂ =
∑

j

xjΠ̂j , (1.33)

where {xj} is the set of real eigenvalues of the observable X̂ which correspond to the

possible outcome of a measurement of the physical quantity X. The operator Π̂j =

|ψj〉〈ψj | is the projection operator (or projector) onto the subspace of eigenstates |ψj〉 of

X̂ with eigenvalue xj . The set of projectors form an orthonormal basis of the observable’s

Hilbert space.

When measuring the physical quantity X for an arbitrary a priori state |Ψ〉, the

probability that the result would be the eigenvalue xj is given by

Pr(X = xj) =
〈Ψ|Π̂j |Ψ〉
〈Ψ|Ψ〉

. (1.34)

This probability does not depend on the normalization of the state vector, thus we may

consider only normalized states, i.e. 〈Ψ|Ψ〉 = 1, for simplicity. Because the set {|ψj〉}
of eigenstates of X̂ forms an orthonormal basis of the system states’ Hilbert space, any

arbitrary normalized state can be written as a linear combination of eigenstates |Ψ〉 =
∑

j λj |ψj〉, with the normalization 〈Ψ|Ψ〉 =
∑

j |λj |2 = 1, such that the probability for

the measurement to yield the result xj is given by Pr(X = xj) = |λj |2. The measurement
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yielding the result xj projects the system into a conditional a posteriori state

|Ψ′〉 =
Π̂j |Ψ〉√

Pr(X = xj)
=

λj
|λj |
|ψj〉 . (1.35)

According to quantum mechanics, the result of a measurement cannot be predicted

with certainty, except if the system is prepared in an eigenstate of the measured ob-

servable. Otherwise a measurement can only be expected to result in an eigenstate of

the observable with a certain probability determined by the a priori state of the sys-

tem. This probabilistic nature of measurement outcomes is inherent to the foundations

of quantum mechanics, through the key principle known as Born’s rule, and stands in

stark contrast with classical physics where the result of a measurement can be predicted

with certainty given prior complete knowledge of the system. As a consequence, it is

of little interest to consider the result of a single probabilistic measurement, but rather

the probability distribution of results obtained from an ensemble of measurements per-

formed on identically prepared systems. The statistical properties of the measurement

of an observable X̂ can be characterized by the mean and variance, respectively given

by

〈X̂〉 =
∑

j

xj Pr(X = xj) =
∑

j

xj〈Ψ|Π̂j |Ψ〉 = 〈Ψ|X̂|Ψ〉 , (1.36)

Var(X̂) = 〈(X̂ − 〈X̂〉)2〉 = 〈X̂2〉 − 〈X̂〉2 . (1.37)

In the case of Gaussian states, which are the most readily available states in quantum

optics experiments, the mean and variance fully characterize the probability distribution

of measurement results.

1.2.4 Semi-classical picture

When considering the fluctuations associated with a bright monochromatic field, such

as a strong laser beam, it is often advantageous to separate the field amplitude operator

into its scalar mean 〈â〉 = α, corresponding to the classical carrier field amplitude, and

a noise operator δâ(t), representing the fluctuations and modulations of the field, such

that [20]

â(t) = α+ δâ(t) . (1.38)

These substitutions have the merit of simplifying the calculation of the quadrature vari-

ances, which then read

Var(X̂) =
1

2
〈(δâ+ δâ†)2〉 = 〈δX̂2〉 , Var(P̂ ) = −1

2
〈(δâ− δâ†)2〉 = 〈δP̂ 2〉 (1.39)
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Moreover the reference to a bright field implies that the carrier mean field amplitude is

much larger than any noise component, so that we may linearize any product of bright

field amplitude operators by neglecting quadratic terms of the field fluctuations. A

useful example is the linearization of the photon number operator that enters into the

Hamiltonian giving the electromagnetic field energy in Equation (1.27). Moreover the

photon number corresponds to the quantity measured by an ideal photodetector, and

is therefore used in many theoretical description of measurements. The linearization of

the photon number operator reads

n̂ = â†â = (α∗ + δa†)(α+ â)

= |α|2 + |α|(δâe−iφα + δâ†eiφα) + δâ†δâ

≈ |α|2 +
√

2|α|δX̂φα , (1.40)

where we used the notation α = |α|eiφα and the definition of the field quadratures given

in Equation (1.30).

A bright field in the semi-classical picture is best visualized in a ball-on-stick figure,

where the mean carrier field amplitude is represented by a vector in phase space, and the

field fluctuations are depicted as a ball with diameter given by the quadrature variances,

positioned at the tip of the vector. A few examples of the representation of quantum

states of light are given at the end of this Section (Figure 1.2).

1.2.5 Carrier and sideband noise

In 1.1.4 we introduced the classical sideband representation of a modulated field, where

modulations applied onto a carrier field are depicted by a pair of upper and lower

sideband frequency modes positioned at equal distance from the carrier mode on the

frequency axis. Even in the absence of a modulation, quantum mechanics imposes that

all sidebands of a carrier field are filled with non-null fluctuations due to the zero-point

energy of the sideband mode fields ~Ω/2. As a consequence the carrier field carries a

broadband (white) amplitude and phase noise at sideband frequencies.

Considering a pair of upper and lower sideband modes at frequencies ωcw±Ω, with

ωcw the carrier frequency, the linearized field amplitude operator reads

â(t) = αe−iωcwt +
1√
2

(
δâ+e

−i(ωcw+Ω)t + δâ−e−i(ωcw−Ω)t
)
, (1.41)

where the sideband fluctuation operators δâ± obey the bosonic commutation relation

(1.26), and the factor of 1/
√

2 ensures that â(t) does too. By assuming that the am-

plitude of the carrier field is much larger than the amplitude of the fluctuations in the
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sidebands, we may use the linearization of the photon number operator (1.40) to write

n̂ = |α|2 +
|α|√

2

[
(δâ+e

−iΩt + δâ−eiΩt)e−iφα + (δâ†+e
iΩt + δâ†−e

−iΩt)eiφα
]

= |α|2 + |α|
[
δX̂φα

+ cos(Ωt) + δP̂ φα+ sin(Ωt) + δX̂φα
− cos(Ωt)− δP̂ φα− sin(Ωt)

]

= |α|2 + |α|
[
(δX̂φα

+ + δX̂φα
− ) cos(Ωt) + (δP̂ φα+ − δP̂ φα− ) sin(Ωt)

]
, (1.42)

where it appears that the fluctuation in the photon number at a frequency Ω is a result of

the simultaneous beating of the carrier with the upper and lower sidebands at frequencies

ωcw ± Ω. Identification of the noise terms in Equations (1.40) and (1.42) further shows

that the carrier field quadrature fluctuations arise from a cyclic mixing of conjugate

sideband field quadrature fluctuations,

δX̂φα(t) =
δX̂φα

+ + δX̂φα
−√

2
cos(Ωt) +

δP̂ φα+ − δP̂ φα−√
2

sin(Ωt) . (1.43)

1.2.6 Frequency domain and power spectra

In the preceding subsection we have observed that the carrier field quadrature fluctua-

tions are composed of the cyclic mixing of conjugate quadrature fluctuations from the

sidebands. In order to study the contribution of each sideband to the carrier field fluctu-

ations, it i convenient to resolve the field fluctuations in the frequency domain. We start

by describing the sidebands as a continuum of optical modes with frequency dependent

field amplitude operators, â(Ω), where the frequency Ω is defined relative to the carrier

frequency ωcw. Given the commutation relations (1.26), the two-frequency commutation

relation of sideband modes can be derived [22],

[
â(Ω), â†(Ω′)

]
= δ(Ω− Ω′) . (1.44)

The time dependent creation and annihilation operators are related to the frequency

dependent operators via the Fourier transform,

â(t) =
1√
2π

∫ +∞

−∞
â(Ω)e−iΩtdΩ , (1.45)

â†(t) = [â(t)]† =
1√
2π

∫ +∞

−∞
â†(Ω)eiΩtdΩ , (1.46)

and obey the two-time commutation relation,

[
â(t), â(t′)

]
= δ(t− t′) . (1.47)
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The field quadrature operators then satisfy the commutation relations in frequency and

time domain, respectively,

[
X̂ (Ω), P̂ (Ω′)

]
= iδ(Ω + Ω′) , (1.48)

[
X̂(t), P̂ (t′)

]
= iδ(t− t′) . (1.49)

Experimentally, the fluctuations of each optical sideband mode are resolved by

Fourier decomposition of the photocurrent obtained by directing the carrier beam onto a

photodetector. However the Fourier transform of a time-dependent stochastic observable

δX̂(t) does not exist in general, but we may define a truncated Fourier transform,

δX̂τ (Ω) =
1√
2τ

∫ τ

−τ
δX̂(t)eiΩtdt. (1.50)

The truncated Fourier transform makes more sense from an experimental point of view

than the Fourier transform, as real measurement times are finite. Averaging over in-

dependent measurements gives the spectral variance 〈|δX̂τ (Ω)|2〉. Under the condition

that δX̂(t) is a weak-sense stationary process, and in the limit of very long measurement

times, i.e. τ → ∞, the Wiener-Khinchin theorem relates this spectral variance to the

Fourier transform of the autocorrelation function [19],

SδX̂(Ω) = lim
τ→∞
〈|δX̂τ (Ω)|2〉 =

∫ +∞

−∞
〈δX̂(t)δX̂(0)〉eiΩtdt, (1.51)

which is called the power spectral density (PSD). The PSD is linked to the expectation

value of the product of frequency modes, i.e. the frequency correlation function, by the

relation

〈δX̂ (Ω)δX̂ (Ω′)〉 = SδX̂(Ω)δ(Ω + Ω′) . (1.52)

Furthermore, using the inverse Fourier transform on the PSD leads to a direct relation

between the area under the PSD and the variance of the observable,

1

2π

∫ +∞

−∞
SδX̂(Ω)dΩ = 〈δX̂2〉 . (1.53)

Coming back to Equation (1.43), we calculate the spectral variance at frequency Ω

of the carrier field quadrature fluctuations,

〈|δX̂ φα(Ω)|2〉 =
1

4

[
〈(δX̂φα

+ + δX̂φα
− )2〉+ 〈(δP̂ φα+ − δP̂ φα− )2〉

]
(1.54)

=
1

4

[
〈(δX̂φα

+ )2〉+ 〈(δX̂φα
− )2〉+ 〈(δP̂ φα+ )2〉+ 〈(δP̂ φα− )2〉

]

+
1

2

[
〈(δX̂φα

+ δX̂φα
− )2〉 − 〈(δP̂ φα+ δP̂ φα− )2〉

]
, (1.55)
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which results in a combination of the variances of upper and lower sideband conju-

gate quadrature fluctuations. The last line in Equation (1.55) contains the possible

correlations between upper and lower sideband fluctuations, and is a key term for the

understanding and realization of quantum-enhanced sensing as developed in Chapter 3

of this thesis.

1.2.7 Quantum states of light

In the language of quantum mechanics, physical systems are characterized by a state

which determines the expectation values of the system’s observables, and consequently

the result of measurements of these observables on the system. Here we present a few

categories of quantum states that are relevant for a good understanding of this thesis.

Fock states

First and foremost are the energy eigenstates of an harmonic oscillator, which are called

Fock states, and represents the occupancy of the system by quanta of energy. In the

present thesis we primarily deal with mechanical and optical resonators in which the

quanta of energy are the well-known phonon and photon, respectively. Following upon

the quantization of the electromagnetic field, the set of Fock states |n〉 (n ∈ N) describing

systems with n photons is an orthonormal set of eigenstates of the number operator n̂,

defined by

n̂|n〉 = nn̂ , 〈n|n′〉 = δnn′ ,
∑

n

|n〉〈n| = 1 . (1.56)

Because of this definition Fock states are also called number states.

The annihilation and creation operators, â and â†, remove and add a quantum of

energy to a number state such that

â|n〉 =
√
n|n− 1〉 , â†|n〉 =

√
n+ 1|n+ 1〉 . (1.57)

The orthogonality of number states therefore imposes that the expectation value of the

annihilation and creation operators, and consequently of the field quadrature operators,

is null, i.e.

〈â〉 = 〈n|â|n〉 = 〈â†〉 = 0 , 〈X̂θ〉 = 〈P̂ θ〉 = 0 . (1.58)

Furthermore the variance of the field quadratures increases with the occupation number,

reading

〈(δX̂θ)2〉 = 〈(δP̂ θ)2〉 = n+
1

2
, (1.59)
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which is explained by the fact that the phase of a number state is not defined.

The state with zero occupation |0〉 is coined the vacuum state and represents the

zero-point energy state of the system. The non-zero variance of the field quadrature

operators indicates that the vacuum state is not free of fluctuations. The vacuum state

is a state of minimum uncertainty in the sense that the magnitude of its fluctuations is at

the minimum level allowed by the uncertainty principle. The noise induced by vacuum

fluctuations on the measurement of a system observable is often referred as quantum

noise or shot noise.

Coherent states

Due to its undefined phase and zero mean, it appears unlikely that a Fock state could

represent the state of a classical sinusoidal monochromatic wave such as a laser beam,

even in the limit of high number of photons which is often considered the classical limit.

For this purpose it is more convenient to employ the so-called coherent states which are

said to be the “most classical” quantum states of a harmonic oscillator.

Coherent states are defined as the normalized eigenstates of the annihilation oper-

ator,

â|α〉 = α|α〉 , 〈α|â† = α∗〈α| , 〈α|α〉 = 1 . (1.60)

In this way the classical electric field in Equation (1.11) can be interpreted as the ex-

pectation value of the quantized electric field in Equation (1.23), for a system in a

coherent state. The complex eigenvalue α can then be related to the electromagnetic

field amplitude.

By evaluating the expectation value and the variance of the number operator,

〈n̂〉 = 〈α|â†â|α〉 = |α|2 , (1.61)

Var(n̂) = 〈α|â†ââ†â|α〉 − 〈α|â†â|α〉2 = |α|2 , (1.62)

we notice that they are equal which is characteristic of a Poisson distribution. Indeed

it can be shown that the photon number probability distribution of a coherent state

follows a Poisson distribution

Pr(n) = |〈n|α〉|2 =
|α|2n

n!
e−|α|

2
. (1.63)

The coherent states are quantum states that closely resemble classical states, but

they display their quantum features in the form of quantum fluctuations. Coherent

states are states of minimum uncertainty as the variances of their field quadratures
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equal those of a vacuum state,

〈(δX̂θ)2〉 = 〈(δP̂ θ)2〉 =
1

2
. (1.64)

In a phase space representation, the coherent state can be viewed as a vacuum state

displaced in amplitude and phase quadratures by amounts given by the expectation

value of the field quadrature operators,

〈X̂〉 =
1√
2

(α+ α∗) =
√

2 Re(α) , 〈P̂ 〉 =
1

i
√

2
(α− α∗) =

√
2 Im(α) , (1.65)

as pictured on Figure 1.2.

Thermal states

An harmonic oscillator in thermal equilibrium with its environment is described by a

thermal state. This situation applies to the radiation of a black body, and is famously

known for the derivation of the Planck radiation law. More relevant to this thesis, the

thermal state is the state of a mechanical resonator in thermal equilibrium with its

environment.

The thermal state is not a pure state, meaning that it cannot be described by a

state vector but rather by a density operator [21],

ρ̂th =
exp

(
− ~ω
kBT

[n̂+ 1
2 ]
)

Tr
[
exp

(
− ~ω
kBT

[n̂+ 1
2 ]
)] , (1.66)

where T is the temperature of the environment, kB is the Boltzmann constant, and ω is

the natural frequency of the harmonic oscillator (cf. Equation (1.27)). The expectation

value of an observable X̂ for a state described by a density operator ρ̂ is given by

〈X̂〉 = Tr(ρ̂X̂). Using this formula the mean and variance of the number operator for a

thermal state can be calculated [21], resulting in

〈n̂〉 =
1

exp(~ω/kBT )− 1
, Var(n̂) = 〈n̂〉+ 〈n̂〉2 . (1.67)

We may also calculate the expectation value and variance of the field quadrature oper-

ators

〈X̂θ〉 = 〈P̂ θ〉 = 0 , (1.68)

〈(δX̂θ)2〉 = 〈(δP̂ θ)2〉 = 〈n̂〉+
1

2
. (1.69)
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Similar to the number state, the thermal state has no defined phase (cf. Figure 1.2). In

the limit of high thermal excitation of the harmonic oscillator, kBT � ~ω, the mean

number of quanta can be approximated by 〈n̂〉 ≈ kBT/~ω. This is usually the case

for a macroscopic mechanical resonator at room temperature. On the other hand for a

system where the thermal energy provided by the environment is much smaller than the

quantum of energy of the harmonic oscillator, kBT � ~ω, the expected occupancy is

much lower than one, i.e. 〈n̂〉 ≈ exp(−~ω/kBT )� 1, and the thermal state approaches

the vacuum state. This is the case for optical fields in thermal equilibrium at room

temperatures (〈n̂〉 ∼ 10−7) which is the reason why the optical sidebands in the absence

of modulation can be considered to be in a vacuum state.

Quadrature squeezed states

Quadrature squeezed states are quantum states that possess a reduced noise variance

below the shot noise level in one quadrature, coined the squeezed quadrature. In order

to not violate Heisenberg uncertainty principle, quadrature squeezed states must com-

pensate with excess noise above the shot noise level in the conjugate quadrature, also

referred to as the anti-squeezed quadrature. Mathematically, this translates into

〈(δX̂θ)2〉 < 1

2
, 〈(δP̂ θ)2〉 > 1

2
, 〈(δX̂θ)2〉〈(δP̂ θ)2〉 ≥ 1

4
, (1.70)

for an arbitrary squeezed quadrature X̂θ.

Squeezed states are generated mathematically by the action of the squeezing oper-

ator [21],

Ŝ(ξ) = e
1
2

(ξ∗â2−ξâ†2) = e
irs
2

(X̂θs P̂ θs+X̂θs P̂ θs ) , (1.71)

where ξ = rse
2iθs , with rs ∈ R+ the squeeze parameter and θs the squeezing angle. The

squeezing operator describes a nonlinear process that creates correlations between pairs

of quanta, e.g. photons. We will refer to amplitude and phase quadrature squeezing

when θs = 0 and θs = π/2, respectively.

Squeezing of an arbitrary quadrature X̂θ reads

Ŝ†(ξ)X̂θŜ(ξ) = X̂θ cosh(rs)− X̂2θs−θ sinh(rs) , (1.72)

and the conjugate quadrature variances of a squeezed vacuum state Ŝ|0〉 are given by

〈(δX̂θ)2〉 =
1

2

[
cosh2(rs) + sinh2(rs)− 2 cos(2θ − 2θs) cosh(rs) sinh(rs)

]
, (1.73)

〈(δP̂ θ)2〉 =
1

2

[
cosh2(rs) + sinh2(rs) + 2 cos(2θ − 2θs) cosh(rs) sinh(rs)

]
. (1.74)
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Figure 1.2: Ball-on-stick representation of quantum states in phase space. (a) Vacuum
state , (b) coherent state, (c) thermal state, (d) bright quadrature squeezed state. The black
dashed circle indicates the quadrature variance of the vacuum state.

Unlike the coherent and vacuum states, quadrature squeezed states may possess corre-

lations between conjugate quadrature fluctuations, yielding

〈δX̂θδP̂ θ + δP̂ θδX̂θ〉 = 2 cosh(rs) sinh(rs) sin(2θ − 2θs) , (1.75)

for a squeezed vacuum state. The quadrature angles for which the variances of conjugate

quadratures reaches a minimum and a maximum, and are uncorrelated, are θ = θs and

θ = θs + π/2.

1.3 Detection of light

Along with the development of quantum mechanics, and quantum optics in particular,

numerous sophisticated experimental techniques have been developed to put the theory
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to the test and observe the quantum behavior of light [20]. A few of these techniques

have been employed for the experiments presented in this thesis and are reviewed in this

section.

In quantum optics experiment, light is the main tool that gathers, carries and de-

livers information about a quantum system, which could be, for example, the light itself,

a solid state system, or a mechanical oscillator. It is therefore essential to employ ef-

fective and efficient means to extract this information. There exist various ways that

information can be encoded and carried by the light, and there exist as many optical

detection techniques to collect it. For example, one might be interested in the pho-

ton statistics of the light field, requiring single photon or photon resolving detectors,

i.e. intensity detection techniques, while another might want to measure the phase or

amplitude modulations imprinted onto an optical field, thus needing a broadband phase-

sensitive detector, i.e. a field detection technique. In general an optical field cannot be

measured and processed directly due to its high frequency, much faster than conven-

tional electronic measurement devices, but it can be measured indirectly by interfering

it with a known reference optical field, commonly called the local oscillator (LO), such

that modulations of the amplitude or phase are mixed down to lower frequencies that

can be resolved with an intensity detector and processed with conventional electronic

devices.

1.3.1 Intensity detector

The most basic intensity detector employed in the experiments presented in this thesis

is a reverse-biased semiconductor PIN photodiode that relies on the photo-electric effect

to convert the optical field energy into a photocurrent. It is a destructive detector in

the sense that extracting information from the optical field irremediably destroys the

carrier of information due to absorption of the optical energy.

Practically, an intensity photodetector is characterized by a quantum efficiency ηQE

which describes the probability for a photon impinging onto the detector to be converted

into a measurable signal. For a photodiode, the quantum efficiency is obtained as the

ratio of the rate of electron generation over the rate of photon absorption. It can be

calculated from the value of the spectral responsivity Rλ (in A/W) specified by the

manufacturer of the photodiode, ηQE = (hc/qe) ·Rλ/λ, with qe the electron charge. The

quantum efficiency represents the loss experienced by the optical field upon detection.

As the name indicates, an intensity detector measures the intensity of an optical

field, which is proportional to the square of the field amplitude. An intensity detector

is therefore able to measure amplitude modulations of the optical field due to the beat-

ing of the carrier field with the modulated sidebands, which mixes down the sideband
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component to an AC component of the photocurrent which can be processed by conven-

tional electronic devices. This is easily seen by deriving the classical photocurrent from

Equation (1.14),

idet(t) ∝ |EAM (t)|2 ≈ E2 + 2EM sin(Ωmodt) , (1.76)

where we have neglected quadratic terms of the sideband modulation. The result of the

intensity detection is quite different in case of a phase modulation because the lower

and upper sideband beat signals interfere destructively, thus the photocurrent carries no

modulation.

In the language of quantum mechanics the photocurent produced by an intensity

detector is proportional to the photon number operator (cf Equation (1.40))

idet(t) = gdetn̂(t) ≈ gdet
(
|α|2 +

√
2|α|δX̂φα

)
, (1.77)

with gdet the gain of the detector. In accordance with the classical case, the intensity

detector can only measure the amplitude quadrature of the light field, and a phase

sensitive detection scheme, such as homodyne detection, is necessary to measure an

arbitrary quadrature.

1.3.2 Optical loss

In a classical picture, optical loss results in a reduction of the optical power that is mod-

eled by an input-output relation Pout = ηPin, with η < 1. However this representation

turns out to be incomplete in the quantum picture, as scaling down the field operators

âout =
√
ηâin does not preserve the commutation relations, [âout, â

†
out] = η[âin, â

†
in] =

η 6= 1. The solution to this problem comes by adding vacuum fluctuations from a loss

mode, what is equivalent to modeling the loss by the interference of the optical field

with a vacuum field on a beam splitter with transmittivity η [21].

The input-output relations for a (lossless) beam splitter with input fields âin and

b̂in, and transmittivity η (Figure 1.3(a)) are given by

âout =
√
ηâin +

√
1− ηb̂in , (1.78)

b̂out =
√
ηb̂in −

√
1− ηâin , (1.79)

where the minus sign in Equation (1.79) accounts for the π/2 phase shift experienced by

the fields upon reflection. It is straightforward to check that the canonical commutation

relations are now obeyed by the two output fields, [âout, â
†
out] = [b̂out, b̂

†
out] = 1.

The classical representation of optical loss holds for the mean photon number of a

bright field, which is proportional to the optical power. For example, the output mean
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photon number of a coherent state |α〉, is given by,

〈n̂out〉 = 〈â†outâout〉 = η〈â†inâin〉 = η|α|2 . (1.80)

The quantum representation is particularly relevant when looking at the small fluctua-

tions of the fields, whose quadrature variances suffer from loss in accordance with,

〈(δX̂θ
out)

2〉 = η〈(δX̂θ
in)2〉+

(1− η)

2
. (1.81)

For an input coherent state, the variances of the field quadrature fluctuations are not

affected by loss because the field fluctuations of the coherent and vacuum state are both

completely uncorrelated. On the other hand, the noise correlations carried by a squeezed

state are blurred by the uncorrelated noise introduced by the vacuum state, which leads

to a reduction of the squeezing strength (cf. Figure 1.3(b)). For this reason, it is essential

to reduce loss in quantum optics experiments which make use of field correlations, such

as the quantum-enhanced sensitivity measurements that are described in Chapter 3.

Figure 1.3: (a) Model of a beam splitter with transmittivity η. In quantum optics, optical

loss are represented by interfering the optical field âin with a vacuum field b̂in on a beam
splitter. The mixing of uncorrelated vacuum field fluctuations with the input field fluctua-
tions damages any correlation on the input noise, such as squeezed quadrature fluctuations.
(b) Degradation of the squeezed quadrature variance, Var(X̂θs

out), for increasing optical loss
(1− η), and for various initial squeezing strength. The dashed line indicates the minimum
squeezed variance achievable in the presence of loss.
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Figure 1.4: Schematic of a balanced homodyne detector.

1.3.3 Balanced homodyne detector

Direct detection of an optical field intensity cannot provide information about the phase

quadrature fluctuations of the field, and alternative detection techniques are therefore

needed. Homodyne detection allows measurements on an arbitrary field quadrature by

interfering a signal field with a reference field whose phase and amplitude are known,

and which is called the local oscillator (LO). Both the signal field and the LO have the

same carrier frequency such that the intensity of the combined optical fields presents

modulations of the signal and LO sidebands in a quadrature determined by the relative

phase between the signal field and the LO. Balanced homodyne detection further implies

that the signal field and the LO are interfered onto a 50:50 beam splitter, then both

outputs of the beam splitter are directly detected. By taking the difference of the two

detector outputs, it is possible to cancel the classical noise carried by the LO while

boosting the signal measured from the modulation of the signal field.

A schematic of a typical balanced homodyne detection setup is shown on Figure 1.4.

The LO and the signal field are commonly derived from the same laser beam, so that

they oscillate at the same frequency and occupy the same spatial mode. Information

is then encoded onto the signal field by some process Ĥ, which could be an unknown

measurement interaction with a physical system, or a chosen modulation for optical

communication, for example. Formally we consider both the LO and the signal field to
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be bright fields represented in the semi-classical picture by

ŝsig(t) = s̄sig + δŝsig(t) , (1.82)

ŝlo(t) = [s̄lo + δŝlo(t)] e
iφlo , (1.83)

where s̄sig = 〈ŝsig〉 and s̄lo = |〈ŝlo〉| are the mean field amplitudes chosen to be real such

that the phase of the LO relative to the signal field is φlo. The LO phase can be controlled

by tuning the optical path-length of the local oscillator, what can be achieved in free

space by displacing a mirror mounted on a piezoelectric element, or in optical fibers

by altering the refractive index via the Pockel effect with an electro-optic modulator

(EOM).

Considering first the case of an unbalanced homodyne detector, the signal and the

LO fields are interfered on a beam splitter with transmittivity ε, resulting in the fields

ŝ+(t) =
√
εŝsig(t) +

√
1− εŝlo(t) , (1.84)

ŝ−(t) =
√
εŝlo(t)−

√
1− εŝsig(t) . (1.85)

Each field is directed toward a photodetector which provides a current signal propor-

tional to the photon flux in the field. Imperfect mode matching of the LO with the

signal field and nonunity detection efficiency of the photodetectors can be modeled as

loss through a beam splitter, such that the detected fields read

ŝd±(t) =
√
η±ŝ±(t) +

√
1− η±δŝv±(t) , (1.86)

where η± represent the detection loss in each detection path, and δŝv± represent the ad-

mixed vacuum field fluctuations. The photocurrents produced by the two photodetectors

are proportional to the intensity of the detected fields and can be written,

î±(t) = G±ŝ
†
d±(t)ŝd±(t) , (1.87)

where G± represent the gain of the photodetectors, including the transformation of a

photon flux into an electron current.

The two photocurrents are subtracted, and split into a DC and AC components by

use of frequency filters. The resulting DC current is proportional to the intensity of the

interference between the LO and the signal field, and is given by

īhd =〈̂i+ − î−〉

= η+G+

[
(1− ε)s̄2

lo + εs̄2
sig

]
− η−G−

[
εs̄2
lo + (1− ε)s̄2

sig

]

+ 2s̄los̄sig (η+G+ + η−G−)
√
ε(1− ε) cos(φlo) , (1.88)
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It is dependent on the phase of the LO relative to the signal field, and can be used as

an error signal to lock the phase of the LO.

The AC component of the difference current is given by

δîhd =î+ − î− − 〈̂i+ − î−〉 (1.89)

≈ [G+η+(1− ε)−G−η−ε]
√

2s̄loδX̂lo + [G+η+ +G−η−]
√

2ε(1− ε)s̄loδX̂φlo
sig

+G+

√
2η+(1− η+)(1− ε)s̄loδX̂φlo

v+ +G−
√

2η−(1− η−)εs̄loδX̂
φlo
v− , (1.90)

where we used the bright field assumption to neglect second order noise terms, and

assumed that the LO is much brighter than the output signal, i.e. s̄lo � s̄out, in order

to remove linear contributions in the mean signal field amplitude s̄sig. This condition

is essential for enhancing the measurement of the signal field quadrature δX̂φlo
sig over the

signal amplitude noise and the LO noise.

To further suppress the LO noise contribution to the difference current, the homo-

dyne detector must be balanced by fulfilling the condition,

G+η+(1− ε) = G−η−ε . (1.91)

In practice the detection efficiencies and gains of the photodetectors are fixed by their

design and fabrication, what leaves little room for the tuning of G± and η±. On the

other hand the beam splitting ratio ε of the homodyne detector can be easily adjusted

by using a combination of two polarizing beam splitters (PBS) and a half-wave plate

(HWP). In such a configuration, the signal and LO fields are combined on an initial

PBS in orthogonal polarization modes, s and p. Then their respective polarizations are

rotated by the HWP such that both fields have components in the s and p polarizations.

These components are finally interfered on the second PBS by projection onto the s and

p polarization modes. The splitting ratio of the LO and signal fields can therefore be

controlled by turning the HWP. Balancing the homodyne detector is then easily achieved

by canceling the DC part of the difference current while blocking the signal field, i.e.

īhd = 0 for s̄sig = 0.

For a balanced homodyne detector the DC and AC difference currents simplify to

īhd =(η+G+ − η−G−)s̄2
sig + 2ηhdGhds̄los̄sig cos(φlo) , (1.92)

δîhd =
√

2Gs̄lo

[
ηδX̂φlo

sig +
√

(1− η+)η−εδX̂
φlo
v+ +

√
η+(1− η−)(1− ε)δX̂φlo

v−
]
. (1.93)

where we have introduced the homodyne detection loss and gain parameters, ηhd =
√
η+η− and Ghd =

√
G+G−, respectively. It is now clear that the difference current

carries the signal field fluctuations (including detection loss) in the quadrature deter-

mined by the phase φlo. The power spectral density of the signal field fluctuations in an
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arbitrary quadrature can then be extracted from the difference current,

〈|δîhd(Ω)|2〉 = ηhdG
2
hds̄

2
lo

[
2ηhd〈|δX̂φlo

sig (Ω)|2〉+ σ − ηhd
]
, (1.94)

where σ = (1 − ε)
√
η+/η− + ε

√
η−/η+ is unity for equal detection loss at the two

photodiodes, or equivalently equal gain of the photodetectors. Eventually the balanced

homodyne detector is equivalent to a detector that measures the signal field quadrature

δX̂φlo
sig , with quantum efficiency ηhd and gain 2ηhdG

2
hds̄

2
lo.

Visibility of interference

Homodyne detection relies on the interference of the LO and signal fields to measure

an arbitrary quadrature of the signal field fluctuations. The quality of the interference

depends on the efficient mode matching of the LO and signal fields, i.e. the spatial overlap

of their mode profiles and the accordance of their polarization vectors. Any deviation

from a perfect mode matching translates into an increase in detection loss. In practice

the interference can hardly be perfect due to slight misalignment and astigmatism of

optical components such as mirrors or lenses, that distort the spatial profile of the

optical fields.

Considering the interference of classical LO and signal fields on a beam splitter with

transmittivity ε, the efficiency of the mode matching can be represented by a parameter

ηm such that the LO and signal vector field amplitudes can be written

~slo(~r) = s̄loe
iφlo~u‖(~r) , ~ssig =

√
ηms̄sig~u‖(~r) +

√
1− ηms̄sig~u⊥(~r) , (1.95)

where ~u‖(~r) represents the spatial mode profile of the LO, and ~u⊥(~r) is a spatial mode

vector that describes the part of the signal field mode profile that does not interfere with

the LO.

The intensity of the interference is given by the spatial scalar product of the vector

fields at the output of the beam splitter (cf. Equations (1.84) and (1.85)),

I+ = ~s ∗+ · ~s+ = εIsig + (1− ε)Ilo + 2
√
ε(1− ε)ηmIsigIlo cosφlo , (1.96)

I− = ~s ∗− · ~s− = (1− ε)Isig + εIlo − 2
√
ε(1− ε)ηmIsigIlo cosφlo , (1.97)

where Isig = |~ssig|2 and Ilo = |~slo|2 are the intensities of the signal field and the LO,

respectively. Assuming equal intensities in the signal and LO fields, and a 50:50 beam

splitting ratio, we obtain a measure of the quality of the interference at each beam
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splitter outputs, called the visibility.

V =
Imax − Imin

Imax + Imin
=
√
ηm , (1.98)

with Imax = max
φlo

I± , and Imin = min
φlo

I± .

Prior to every homodyne detection measurement, a direct evaluation of the visibility

can be easily performed by setting equal powers in the LO and signal fields, and mea-

suring the minimum and maximum intensities of the interference fringe while scanning

the phase of the LO. A low visibility indicates a poor alignment of the optical setup or

a poor adjustment of the field polarizations, that should then be corrected.



Chapter 2

Cavity optomechanics with

microtoroid resonators

During this thesis work, an essential part of our experimental setup has been a tiny,

mushroom-looking, silica structure (cf. Figure 2.1) with excellent optical and mechanical

properties, the so-called microtoroid resonator. Combining the behavior of both a high-

quality optical cavity and a high-quality mechanical resonator, it is a particularly suitable

candidate for experiments in cavity optomechanics.

Due to recent progress in nano- and microfabrication, a wide variety of cavity op-

tomechanical system have been investigated [28]. The range of system parameters that

they offer covers several order of magnitudes, e.g. cavity resonance frequency from

microwave to optical frequency, mechanical resonance frequencies from kilohertz to gi-

gahertz, and resonator mass from femtogram to gram scales. Some of the most studied

optomechanical systems are optical cavities with cantilevers [29], suspended micromir-

rors [30, 31], and membranes [32–35], optomechanical crystals [36, 37], whispering-gallery

mode microresonators [38, 39], and microwave nanomechanical cavities [40–42].

In the first part of this chapter we review the characteristics and properties of a

general optical cavity, before focusing on the specificities of our microtoroid cavities.

We describe the operation of a microtoroid cavity within our experimental setup, and

provide a characterization of its parameters. In the second part we turn our attention

to the mechanical properties of the microtoroid resonator. We introduce the theoretical

framework necessary to represent and understand the mechanical motion from a classical

to a quantum picture. Finally we combine both the optical and the mechanical degrees

of freedom of our microtoroid resonator in a general quantum theory of optomechanical

interactions. This chapter thus forms the common basis from which to build up our

understanding of the specific theoretical and experimental work presented in this thesis.

31
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Figure 2.1: Scanning electron microscope (SEM) image of a microtoroid resonator.

2.1 Microtoroids as optical resonators

2.1.1 Introduction to optical cavities

The simplest representation of an optical cavity is a Fabry-Pérot resonator [43], consist-

ing of two mirrors separated by a distance L facing each other (cf. Figure 2.2). Light

entering the Fabry-Pérot optical cavity will reflect multiple times from the mirrors and

produce interference patterns. In the ideal case where the two mirrors are perfectly

reflecting, only a discrete set of standing wave patterns can be sustained by the cavity.

This spatial modes of the optical cavity can be identified by their wavelength which is

an integer fraction of the round-trip length of the light into the cavity, i.e. λl = 2L/l,

where l is the integer mode number. In the frequency domain the cavity modes are

evenly separated by the free spectral range (FSR) of the cavity, given by

∆νFSR =
c

2ngL
, (2.1)

where ng is the group index of the constituent media within the optical cavity.

In practice, light may escape the Fabry-Pérot optical cavity through one of the

mirrors, or be absorbed or scattered, which is described by a total energy decay rate κ,

thereby spreading the discrete set of cavity mode frequencies into continuous resonance

spectra. The spreading of the resonance spectra may lead to an overlap of optical modes

in frequency what is indicated by the finesse of the cavity, F = 2π ×∆νFSR/κ, which

gives the average number of round-trips that a photon can complete before escaping
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Figure 2.2: Single-sided Fabry-Perot optical cavity with length L. An input field ŝin at
frequency ωd is coupled to an optical cavity mode field â at an energy coupling rate κex.
The cavity mode field suffers optical loss described by the coupling to a loss channel field
ŝloss at a rate κc. The optical cavity has a resonance frequency ωc and a width κ = κex +κc.

the cavity. High-finesse cavities are commonly used to enhance the interaction between

optical fields and other physical systems such as atoms and ions in cavity quantum

electrodynamics, or mechanical oscillators in cavity optomechanics. Another quantity

of interest is the ratio of energy stored in the optical cavity mode over the energy loss,

coined the quality factor (or Q factor), and given by Q = ωc/κ, where ωc is the angular

frequency of the optical resonance. High-Q cavities are best suited for preserving the

coherence of optical states over extended periods of time and gather interests for the

development of optical quantum memories.

2.1.2 Input-output formalism

The practical observation of the evolution of an optical cavity mode field can only be

achieved by monitoring the energy leaking out of the cavity. The input-output theory

describes the time-evolution of the field amplitude of a cavity mode, â, coupled to one

or many external systems constituting its environment. One may distinguish different

loss ports through which energy escapes the optical cavity mode, e.g. the light escaping

via one of the two mirrors, the light absorbed within the cavity, or the light scattered

into other optical modes. Here we will restrain ourselves to a cavity sustaining a single

optical mode coupled to one input-output channel at an energy exchange rate κex, and

one loss channel at a rate κc, such as the single-sided Fabry-Pérot cavity depicted in

Figure 2.2. In a frame rotating at the input (or drive) field frequency, ωd, Heisenberg
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equation of motion describing the time-evolution of the cavity field amplitude reads [22],

˙̂a =
(
i∆− κ

2

)
â+
√
κexŝin +

√
κcŝloss, (2.2)

where ∆ = ωd−ωc is the detuning of the input field with respect to the cavity resonance.

ŝin and ŝloss are the field amplitudes of the input and loss channels, respectively. The

input and cavity field amplitudes are normalized such that Pin = ~ωd〈ŝ†inŝin〉 is the

input power launched to the cavity, and nc = 〈â†â〉 is the mean number of photons in

the cavity mode.

The output field ŝout is a linear combination of the input field and the cavity field

leaking through the output port, which can be derived from energy conservation [43]

ŝout = ŝin −
√
κexâ (2.3)

The output field follows the same normalization as the input field, where Pout = ~ωd〈ŝ†outŝout〉
is the output power from the cavity.

A follow up question is now, how to consider more input and output fields. Input

fields must enter as additional driving sources in Equation (2.2) with their respective

coupling rates, and each output field would obey a linear relation with the input and cav-

ity fields similar to Equation (2.3). Such a representation is required for a double-sided

Fabry-Pérot cavity or for a microtoroid with coupled counter-rotating optical modes.

One must keep in mind that the total energy decay rate κ is always the sum of all

energy decay rates, e.g. κ = κex + κc in the case of a single-sided Fabry-Pérot cavity.

2.1.3 Classical field dynamics

The classical amplitudes of the fields are given by the mean of the optical field ampli-

tudes, e.g. a = 〈â〉, so we may rewrite Equations (2.2) and (2.3) in terms of the classical

field amplitudes,

ȧ =
(
i∆− κ

2

)
a+
√
κexsin, sout = sin −

√
κexa. (2.4)

Here we have chosen the loss channel field to be in a vacuum state, such that 〈ŝloss〉 = 0.

This is a reasonable assumption given that at optical frequencies the photon occupation

of the environment at room temperature is (very close to) zero.
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For a monochromatic drive field with constant amplitude s̄in, the steady-state am-

plitudes of the cavity and output fields are calculated to be,

ā =

√
κex

κ/2− i∆
s̄in , (2.5)

s̄out =

(
1− κex

κ/2− i∆

)
s̄in . (2.6)

We may chose the phase of the cavity field, φc = arg(ā), to be the zero reference in

the frame rotating at the drive field frequency, such that ā = |ā| =
√
nc, therefore the

phases of the input and output fields are given by φin = − arctan[2∆/κ], and φout =

− arctan[2∆/(κc − κex)]. The cavity imposes a phase shift on fields that are detuned

from the cavity resonance, while fields on resonance with the cavity remain in phase

with the cavity mode field.

The field amplitudes are not easily accessible experimentally as photodetectors mea-

sure the energy of an electromagnetic field. Therefore it is interesting to calculate the

power of the field circulating in the cavity and the power of the field at the output of

the cavity, yielding

Pc =
~ωdā2

τrt
=
F
π

2η

1 + ∆̄2
Pin , (2.7)

Pout = ~ωd|s̄out|2 =

(
1− 4η(1− η)

1 + ∆̄2

)
Pin , (2.8)

where τrt = ∆ν−1
FSR is the round-trip time of a photon inside the cavity. The optical

coupling parameter, η = κex/κ, indicates the proportion of the energy escaping the cavity

that leaks into the output channel. The frequency spectrum of the circulating power

and output power have Lorentzian profiles with full width at half-maximum (FWHM)

equal to the overall energy decay rate κ. The normalized detuning, ∆̄ = 2∆/κ, then

indicates how strongly detuned the driving field is with respect to the spectral width of

the cavity resonance.

Several points merit to be emphasized so far. First of all Equation (2.7) shows

that the circulating power of the cavity field is strongly enhanced over the input power

in high-finesse cavities, with a maximum power enhancement achieved by driving the

cavity on resonance. On one hand the build-up of optical power in the cavity is beneficial

for applications requiring high pump power in nonlinear media such as lasers [44], and

optical parametric oscillators (OPO) [13]. On the other hand, high circulating power

may lead to undesired thermal effects due to the absorption of light into the cavity

medium [11], or unwanted nonlinear effects due to the Kerr nonlinearity [45].

A second interesting point is that the power spectrum of the output field is symmet-

ric with respect to the detuning of the drive field from the cavity resonance, whereas the
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phase shift induced by the cavity is not. The asymmetry in the phase response of the

cavity with respect to the frequency detuning may be used in elaborate phase locking

schemes (e.g. Pound-Drever-Hall (PDH) frequency stabilization [46, 47]) to preserve the

detuning of the drive field from the cavity resonance despite frequency drifts of the drive

field or the cavity resonance.

2.1.4 Cavity coupling regimes

From Equations (2.5) and (2.6), we observe that the amplitude and phase response of

a cavity to an input field is completely determined by the normalized quantity η and

∆. We may distinguish three regimes depending on the values of the optical coupling

parameter η:

• η < 1/2 : When the energy exchange rate at the input-output port of the cavity

is lower than the energy decay rate to the loss channel, the cavity is undercoupled.

The amplitude of the field leaving the cavity from the output port is then smaller

than the amplitude of the input field, and most of the energy of the cavity is lost

to the environment.

• η = 1/2 : When the energy injected into the cavity match the energy lost to the

environment, the cavity is critically coupled. The amplitude of the field leaving the

cavity from the output port is equal to the amplitude of the input field giving rise

to complete destructive interference on resonance. This situation is also referred

to in more general terms as impedance matching.

• η > 1/2 : When the energy exchange rate at the input-output port of the cavity

is larger than the energy decay rate to the loss channel, the cavity is overcoupled.

The amplitude of the field leaving the cavity from the output port is larger than

the amplitude of the input field, and most of the energy of the cavity is coupled

to the output field.

In the case of a single-sided Fabry-Pérot cavity, where the energy can exit the

cavity only through one of the two mirrors (neglecting scattering and absorption loss),

the three coupling regimes are accessed by tuning the transmittivity of the mirrors.

Undercoupling corresponds to the transmittivity of the input-output mirror being lower

than the one of the back mirror. Critical coupling corresponds to equal transmittivity

of the two mirrors. Overcoupling corresponds to the transmittivity of the input-output

mirror being higher than the one of the back mirror.

Figure 2.3 shows the amplitude and phase of the cavity and output fields as a

function of normalized detuning, and for three values of the optical coupling parameter,

η = 0.1, 0.5, and 0.8, showing the three coupling regimes. The phases of the cavity
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and output fields are plotted relative to the phase of the input field. Assuming that

the energy decay rate to the loss channel is kept constant, only the coupling rate to the

output is varied. Recalling that the finesse of the cavity is inversely proportional to the

total energy decay rate, we may recast Equation (2.7) into

Pc
Pin

=
4η(1− η)

(1 + ∆̄2)

Qc
lπ
, (2.9)

where Qc = ωc/κc is the intrinsic quality factor of the cavity resonance and l is the

integer mode number. It is clear that the maximum circulating power enhancement in

the cavity is reached at critical coupling, on resonance. It results in all the power of the

input field being absorbed and dissipated within the cavity, resulting in a zero output

power. The critical coupling regime is of interest for applications that require strong

pump powers, however the absence of measurable output on resonance complicates its

experimental implementation. In the undercoupled regime the properties (phase, field

fluctuations) of the output field are inherited in majority from the input field, whereas

in the overcoupled regime the properties of the output field derive essentially from the

properties of the cavity field. The overcoupled regime provides the highest interaction

between the input field and the cavity as most of the input field is coupled into the

cavity and most of the cavity field is coupled to the output field. It results in a very

pronounced phase response to small deviations of the input field frequency from the

resonance. We will see in Chapter 3 that this resonance effect allows for an efficient

transduction of mechanical displacements onto the optical phase of the output field in

cavity optomechanical systems. We must also point out that increasing the input-output

coupling rate while keeping the loss rate fixed widens the frequency bandwidth of the

resonance, what is not visible on Figure 2.3 due to the scaling of the abscissae.

2.1.5 Whispering-gallery modes

The electromagnetic modes of a microtoroid or a microsphere resonator are called

whispering-gallery modes (WGM) in analogy to the propagation of acoustic waves along

the wall of St Paul’s Cathedral, first described by Lord Rayleigh at the end of the

nineteenth century. The longitudinal and transverse profiles of WGM in microspheres

can be fully derived analytically from the wave equation by separation of variables [48].

For toroidal cavities, however, exact analytical solutions to the wave equation are not

derivable as the wave equation in toroidal coordinates is not separable. Approximate so-

lutions have been obtained [49–53] and show that optical WGM of toroids are not pure

transverse electric (TE) or transverse magnetic (TM) modes, i.e. neither the electric

nor the magnetic fields are perpendicular to the direction of propagation. Nevertheless

microtoroid cavities exhibit TE-like and TM-like modes whose transverse profiles and



38 Chapter 2. Cavity optomechanics with microtoroid resonators

−20 −15 −10 −5 0 5 10 15 20

∆̄

0

1

2

3

4

5
C

av
it

y
fie

ld
am

pl
it

ud
e
[ √

P
c

P
i
n

] Undercoupling
Critical coupling
Overcoupling

−20 −15 −10 −5 0 5 10 15 20

∆̄

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
ut

pu
t

fie
ld

am
pl

it
ud

e
[ √

P
o
u
t

P
i
n

]

Undercoupling
Critical coupling
Overcoupling

−20 −15 −10 −5 0 5 10 15 20

∆̄

-180

-135

-90

-45

0

45

90

135

180

C
av

it
y

ph
as

e
sh

if
t

[◦
]

Undercoupling
Critical coupling
Overcoupling

−20 −15 −10 −5 0 5 10 15 20

∆̄

-180

-135

-90

-45

0

45

90

135

180

O
ut

pu
t

ph
as

e
sh

if
t

[◦
]

Undercoupling
Critical coupling
Overcoupling

Figure 2.3: Illustration of the field amplitude (Top) and phase (Bottom) of the cavity
(Left) and output (Right) as a function of the normalized detuning, ∆̄ = 2∆/κ, for the three
coupling regimes, undercoupling (Red), critical coupling (Green) and overcoupling (Blue)
represented by the values of the coupling parameter, η = 0.1, 0.5 and 0.8, respectively. The
maximum amplitude of the cavity field is achieved on resonance at critical coupling and is
given by the square root of the intrinsic Q-factor of the resonance, here Qc/lπ = 16.

resonance frequencies can be obtained via the approximation of a toroid to an oblate

spheroid under the conditions of large cavity optical path length to mode wavelength

ratio and large major to minor diameters ratio [52], or via finite element method (FEM)

simulations [54].

Figure 2.4 shows the transverse mode profiles of the first two quasi-TE and quasi-

TM WGMs, and two higher order WGMs of a fused-silica toroid cavity with major

radius Rtor = 29 μm, and minor radius rtor = 2.5 μm. The transverse mode profiles

are calculated via FEM simulations following the method in [54]. The black arrows

indicate the orientation of the electric field and the color gradient shows the intensity of

the cavity mode field. The dimension of the toroids are chosen to resemble the typical

dimensions of our microtoroid resonators.

At a frequency around 282 THz corresponding to a free-space wavelength around

1064 nm, and for a microtoroid with the dimensions given above, the FSR of the

fundamental quasi-TE00 and quasi-TM00 modes is calculated via FEM simulations,

∆νFSR ≈ 1.060 THz, and corresponds to a shift in the WGM free-space wavelength,
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Figure 2.4: Transverse mode profile of optical whispering-gallery modes in a microtoroid
resonator obtained via FEM simulations [54]. The black arrows indicate the orientation of
the electric field and the color gradient shows the intensity of the cavity mode field. The
toroid cavity has major radius Rtor = 29 μm, and minor radius rtor = 2.5 μm, and is made
of fused-silica, nSiO2 = 1.4496 [55]. The dimensions of the microtoroid cavity reflect typical
geometries of the microtoroids we operate in our laboratory.

∆λFSR ≈ 4.0 nm. A similar result can be obtained analytically by calling Equation

(2.1) with the refractive index ng ≈ 1.4496 [55] and the mode radius R ≈ 31 μm.

This corresponds to the WGM being localized near the outer edge of the toroid cavity

(Rtor < R < Rtor + rtor), what matches with the optical modes shown on the left panels

of Figure 2.4.

2.1.6 Evanescent near-field coupling

There exist several ways of coupling light in and out of a WGM cavity, e.g. prism

couplers [10], side-polished fiber couplers [56–58], and fiber tapers [59]. All rely on the

evanescent near-field coupling between the modes of the input-output coupler and the

WGM resonator [60]. When light undergoes total internal reflection at the boundary

from a high (e.g. silica) to a low (e.g. air) refractive index material, a part of the optical

field penetrates into the low index medium and remains confined as an evanescent wave

along the boundary. If a third medium with high refractive index is positioned within a

few wavelengths from the interface between the two initial mediums, the evanescent field
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from the first medium will “feel” the third medium and electromagnetic energy will be

transferred from the optical mode of the first medium to the optical mode of the third

medium, and vice versa. This process is also called frustrated total internal reflection.

Prism couplers have been used to couple free-space laser beams to WGM [10].

It is a versatile and efficient method as the phase and mode matching between the

coupler and the WGM resonator mode can be easily controlled by tuning the input

beam parameters. However, it requires a rather bulky setup that is hardly suitable for

probing micron scale cavities such as our microtoroids. Side-polished fiber couplers are

made by partial removal of the cladding in a bent section of the fiber, thereby giving

access to the evanescent field of the fiber guided mode. This type of fiber coupler has

the practical advantage of single-mode fiber operation but achieves comparatively poor

phase matching and low coupling [56–58].

Tapered fiber coupling enables high-efficiency coupling of more than 99% [61] from a

single-mode fiber to a single WGM, and is suitable for probing micron scale cavities due

to the small dimensions and handiness of optical fibers. Tapered fibers are fabricated by

locally heating and stretching a section of a single-mode optical fiber in order to form

a region with reduced diameter which remains connected to the unaltered part of the

fiber by a gradual taper transition. In the waist region the optical mode is no longer

guided by the waveguide formed by the core and cladding of the fiber as the former

becomes negligibly small, but is guided by the waveguide formed by the cladding and

the air. Therefore, the mode guided through the waist region becomes evanescent, and

the evanescent field becomes more delocalized out of the fiber as the waist diameter

is reduced to a size on the order of the mode wavelength. Energy can be transferred

between the guided mode of the tapered fiber and the WGM of the optical cavity by

overlapping their evanescent fields, which translates into bringing the microtoroid and

waist region of the tapered fiber close to each other.

Coupled mode theory gives the coupling strength between the fiber mode and the

WGM as an overlap integral of their electric fields [62–64]. Analytical approximate

representations of the electric fields can be derived for the microtoroid cavity mode [49–

53] and for the tapered fiber mode [62, 65]. However calculating the three-dimensional

overlap integral is not trivial and holds little interest in our discussion so we will only

provide a qualitative understanding of the dependency of the coupling strength over

relevant system parameters.

First of all, the integral of the overlapping fields along the direction of propagation of

the optical modes provide a phase-matching condition in the form
√
κex ∝ 1−cos(βc−βf )

[59, 64], where βc ≈ ntorωc/c is the phase constant of the WGM and βd = (nfibωd/c)×√
1− δ2 is the phase constant of the fiber mode (input mode). Here ntor and nfib denote

the refractive indexes of the microtoroid cavity and the tapered fiber, respectively. δ
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is a term proportional to the ratio of the mode wavelength to the mode field diameter

of the tapered fiber and becomes significant for fiber radii on the order of the mode

wavelength [65]. Phase-matching depends essentially on the radius of the of the tapered

fiber, and on the refractive indexes of the fiber and microtoroid. In order to be able to

reach a perfect phase-matching the refractive index of the taper must be higher than the

refractive index of the microtoroid, then the radius of the taper waist must be adjusted

to match the phase constants. In a coupling experiment the refractive indexes are fixed

by the choice of fiber and microtoroid but the radius of the tapered fiber at the coupling

region can be tuned by moving the fiber along the taper gradient.

Once the condition for phase-matching are reached, the optical coupling strength

can be enhanced by increasing the overlap between the mode fields of the tapered fiber

and the WGM cavity. As the evanescent field amplitudes decay exponentially out of the

guiding mediums with high refractive indexes, the overlap integral gives an exponential

dependence of the coupling strength with the separation d between the tapered fiber and

the WGM resonator, which can be approximated by
√
κex ∝ exp(αcd), where the decay

length of the evanescent field out of the WGM cavity is given by α−1
c = (c/ωc)/

√
n2
tor − 1.

Last but not least the polarizations of the mode fields of the toroid and tapered

fiber must match in order to achieve maximum coupling. Indeed it is clear from Figure

2.4 that the eigenmodes of a microtoroid cavity have a definite linear polarization and

therefore cannot accept orthogonal polarizations of the input field. On the other hand it

might be desirable to place part of the input field into an orthogonal polarization to the

WGM polarization as it will pass through the fiber without feeling the presence of the

cavity and may thus serve as a phase reference to the field that is coupled in and out of

the optical cavity, such as in a Hänsch-Couillaud polarization spectroscopy scheme [66].

2.1.7 Optical spectroscopy of whispering-gallery modes

The characteristics of an optical cavity are obtained by measuring its frequency spec-

trum. The resonance spectrum of a cavity is obtained by recording the power of the

cavity output field while scanning the frequency of the input field coupled into the cavity.

Figure 2.5 shows the experimental setup we operate to characterize optical resonances

of our microtoroid cavities. We use a free-space diode laser1 in a Littman-Metcalf con-

figuration [67] which allows for wide mode-hop-free operation at wavelengths between

1050 nm and 1068 nm. The laser provides a coarse and a fine tuning of its frequency by

controlling the orientation of a pivoting tuning mirror with a DC motor or a piezoelectric

transducer, respectively. The power of the input beam probing the cavity resonances

is controlled by the combination of a half-wave plate (HWP) and a polarizing beam

1New Focus VelocityTMTLB6721 Widely Tunable Laser. Mode-hop free operation from 1050 nm to
1068 nm.
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splitter (PBS). The collimated free-space laser beam is focused by an aspheric lens2 into

a single-mode optical fiber3. An identical aspheric lens is used at the output of the

fiber. A single mode fused fiber optic coupler (FFOC) splits the optical power towards

a fiber-loop cavity (FLC) in one path and the microtoroid resonator in the other path.

The resonance spectrum of the FLC is recorded by a photodetector4 and serves as a

reference to calibrate the resonance spectrum of the microtoroid cavity. The fiber opti-

cal field is coupled to the microtoroid cavity via a tapered fiber. The silica microtoroid

can be selected among twenty microtoroids sitting on a silicon chip. The position of

the tapered fiber in the setup is fixed but the chip sits on a 3-axis stage5 with manual

and piezoelectric actuators, that provides a precise control over the position of the mi-

crotoroid resonator relative to the fiber, thus a control over the optical mode coupling.

Additionally the chip is mounted on a Peltier element6 driven by a feedback PID tem-

perature controller7 which allows the tuning and stabilization of the temperature of the

microtoroid WGM. The polarization of the optical fields at the input of the FLC and

microtoroid cavity is tuned by fiber polarization controllers8 (FPC) in order to optimize

the optical coupling to the cavity modes.

In order to identify the high-Q resonances of our microtoroid cavities we must first

tune the laser frequency continuously over a range larger than one FSR (∆νscan > 1 THz,

or equivalently ∆λscan > 4 nm) by using the coarse tuning capability of the laser. The

coarse tuning can operate at a maximum speed of 12 nm.s−1 which limits the scanning

rate over one FSR to about 1.5 Hz, therefore we operate our oscilloscope in roll-mode

to get a faster display of the resonance spectrum of the cavity. The optical coupling to

the WGMs is tuned by adjusting the position of the microtoroid relative to the tapered

fiber, and by adjusting the polarization of the input field. While sweeping the frequency

of the laser, high-Q resonances are identified by sharp dips in the measured output

power, as illustrated on the top right panel of Figure 2.3. Once a suitable resonance is

found the scanning frequency range is reduced to a few hundreds of megahertz in order

to increase the resolution of the measured resonance spectrum. The laser frequency is

henceforth modulated by applying a triangular wave signal from a signal generator to

the piezoelectric transducer of the tuning mirror. A maximum frequency range of about

30 GHz around the cavity resonance can be scanned at rates up to 200 Hz.
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Figure 2.5: Experimental setup for optical spectroscopy of microtoroid WGMs. An optical
beam from a widely tunable diode laser is coupled into a fiber to probe the resonances of a
fiber-loop cavity (FLC) and of a microtoroid cavity. The resonance spectra are recorded by
sweeping the frequency of the laser and measuring the optical power at the output of the
FLC and microtoroid cavities. The FLC serves as a reference for the frequency calibration
of the WGMs spectra. The polarization of the input fields coupled into the optical cavities is
tuned by fiber polarization controllers (FPC) in order to optimize the coupling strength. The
resonance properties of the microtoroid cavity are tuned by varying the thermal expansion
of the microtoroid with a Peltier element. HWP - Half-wave plate, PBS - Polarizing beam
splitter, FFOC - Fused fiber optic coupler.

Frequency calibration of the cavity spectrum

The measurement result we obtain by sweeping the laser frequency across the resonances

of the microtoroid cavity shows the transmission through the tapered fiber as a function

of scanning time. It is not straightforward to relate the scanning time to the laser fre-

quency as the precise conversion from the voltage applied to the piezoelectric transducer

of the tuning mirror to the laser frequency is not provided by the manufacturer of the

diode laser. A well-known technique for calibrating the frequency response of a cavity

resonance uses optical sidebands as frequency references. The phase of the input field

is modulated at a known frequency ωmod larger than the width of the cavity resonance

such that two optical sidebands are generated at frequencies ωd ± ωmod. As the laser

frequency is swept over the cavity resonance the sidebands couple to the cavity what

2Thorlabs C240TME-1064, f = 8.07 mm, NA = 0.5.
3Thorlabs SM980-5.8-125.
4Thorlabs PDA10CF-EC
5Thorlabs MAX311D/M
6Thorlabs TEC1.4-6
7Wavelength Electronics LFI-3751
8Thorlabs FPC030 and FPC020
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Figure 2.6: Frequency scan of a cavity resonance on critical coupling. The frequency scan

is calibrated via the FSR, ∆ν
(FLC)
FSR = 119 MHz, of FLC resonances (black). A Lorentzian

fit (yellow and magenta) to the cavity resonance (red) gives a resonance width κ/2π = 265
MHz.

generates two additional dips in the output power scan which are each separated from

the main cavity resonance by ωmod.

The sharpest resonances we measure from our microtoroid cavities are typically in

the order of 300 MHz wide which means that the use of optical sidebands for calibration

requires a phase modulator and a signal generator with high bandwidths. We use instead

a FLC with a known FSR to calibrate the frequency scan of the microtoroid cavity. The

FLC is simply made by joining an output port of a FFOC9 to one input port. The FSR

of our FLC was first measured by two different means which gave similar results. With

a fiber coupled phase modulator10 we generated optical sidebands at a few megahertz to

measure the FWHM of the FLC, κFLC/2π = 1.30 MHz, then the FSR, ∆ν
(FLC)
FSR = 119

MHz. Alternatively we measured the length of the fiber loop cavity, LFLC = 171 cm

and estimated the refractive index of the fiber11 from the manufacturer’s spec sheet,

n = 1.472, to calculate the FSR using Equation (2.1). We found very good agreement

between the values obtained from the two methods.

9Thorlabs FC1064-99B-APC
10Photline NIR-MPX-LN-0.1
11Corningr HI 1060 FLEX
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Figure 2.6 shows a frequency scan of one resonance of a microtoroid cavity. The scan

is calibrated by using the resonances of a FLC (black trace), and gives a resonance width

of the WGM at critical coupling, κ/2π = 265 MHz. Optical resonances are measured

close to room temperature, here 28.23◦C, and at atmospheric pressure. The sharpest

resonances we measured on various microtoroids have intrinsic optical Q factors around,

Qc ≈ 2× 106, and an estimated finesse, F ≈ 4000.

2.1.8 Effect of the taper-toroid separation on resonances

We have already noted that reducing the gap between the fiber and the toroid leads

to an increase in the coupling rate which itself translates into a widening of the cavity

resonance spectrum. However not only the bandwidth but also the frequency of the

resonance is affected by a change in the taper-toroid separation. Indeed as the fiber is

brought closer to the microtoroid, the effective refractive index surrounding the WGM

cavity increases. Therefore the shape of the WGM is pulled toward the tapered fiber

and the optical path length of the WGM becomes longer. As a result the wavelength of

the WGM increases, or equivalently its resonance frequency decreases.

The resonance frequency shift can be analytically derived by including the (small)

variation of the refractive index induced by the fiber into the wave equation of the WGM,

and solving to first order using perturbation theory [38]. It results that the amplitude of

the resonance frequency shift increases exponentially with the reduction of the separation

between the tapered fiber and the microtoroid, ∆ωc(d) ∝ − exp(−2αcd), with d the

taper-toroid separation. It must be noted that the dependency of the frequency shift

and the dependency of the optical coupling rate on the taper-toroid separation are

approximately the same.

Figure 2.7(a) shows six frequency scans of a resonance of a microtoroid cavity at

various separations of the tapered fiber and microtoroid. As the separation is reduced

the central frequency of the resonance is shifted towards lower values and the width of

the resonance increases. Each resonance spectrum was fitted with a Lorentzian function

according to Equation (2.8) and the resonance frequency and bandwidth were retrieved

from the fit, as wells as the normalized power transmission on resonance. The intrinsic

energy decay rate of the cavity was obtained from the bandwidth of a cavity resonance

in the undercoupled limit, κc ≈ κ = 2π × 142MHz. The taper-toroid coupling rate

was calculated by subtracting the intrinsic energy decay rate from the fitted Lorentzians

FWHM, and is plotted on Figure 2.7(b) alongside the resonance frequency shift and the

normalized power transmission on resonance as a function of the separation between

the tapered fiber and the microtoroid cavity. We fitted two exponential functions to

the measured resonance frequency shifts and coupling rates which gave us two values

for the decay length of the evanescent field, (α
(1)
c )−1 = 0.43 μm and (α

(2)
c )−1 = 0.26
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Figure 2.7: (a) Frequency scans of a microtoroid resonance at various taper-toroid separa-
tions with lower values of x corresponding to smaller gaps. The dashed curves are Lorentzian
fits to the toroid resonance. As the taper-toroid gap is reduced the resonance frequency de-
creases and the resonance width increases, moving from an undercoupled cavity resonance
(x > 0.45 μm) to an overcoupled cavity resonance (x 6 0.30 μm). (b) Taper-toroid coupling
rates (blue dots), resonance frequency shifts (red dots) and output powers on resonance
(green dots) at various taper-toroid separations. Exponential fits to the taper-toroid cou-
pling rates (blue dashed curve) and resonance frequency shifts (red dashed curve) gives a

decay length of the evanescent field of the WGM, (α
(1)
c )−1 = 0.43 μm and (α

(2)
c )−1 = 0.26

μm, respectively. The output power on resonance as a function of the taper-toroid gap is
calculated via Equation (2.8) by using the parameters of the exponential fit to the optical
coupling rate. The results (green dashed curve) show a good agreement with measurements
(green dots).
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μm, respectively. The higher value of α
(2)
c may be explained by the contribution of the

evanescent field from the tapered fiber. Nevertheless both values show a discrepancy to

the theoretical decay length (αc)
−1 = 0.16 μm calculated for a refractive index of the

fused silica microtoroid ntor = 1.4496 [55] and a cavity mode wavelength λc = 2πc/ωc =

1064 nm, indicating that the evanescent fields from the toroid and the fiber are less

confined than predicted by theory.

In order to check the coherence of the values obtained from the exponential fit to

the measured coupling rates with the model of the coupled cavity, we used these values

in Equation (2.8) to calculate the output power on resonance (∆ = 0) as a function of

the taper-toroid gap. The results show a good agreement with measurements as shown

by the green dot and dashed curves on Figure 2.7(b).

2.1.9 Nonlinear effects in fused silica microtoroids

The power circulating in high finesse cavities is several orders of magnitude higher than

the power launched into the cavity. The concentration of this optical power into the

small volume of a micrometer-scale resonator enhances optical nonlinearities [10]. Our

microtoroids are made of fused silica which is an amorphous isotropic material with

no χ(2)-nonlinearities, therefore the lowest order nonlinearities that may arise are χ(3)-

nonlinearities such as the Raman or Kerr nonlinearities. Additionally thermal nonlin-

earities may arise due to the absorption of optical power by the medium of the optical

cavity [11, 12]. The nonlinear effects induced by variations of the temperature of the

resonator usually dominate the optically-induced nonlinear effects.

Optical nonlinearities

The Raman nonlinearity concerns the inelastic scattering of optical photons onto vibra-

tional phonons in the silica structure, commonly known as Raman scattering. The high

powers circulating in the WGM of silica microcavities enhance the Raman gain leading

to stimulated Raman scattering when the Raman gain exceeds the losses of a neighbor-

ing WGM. Ultra-high-Q WGM resonators have been used to achieve Raman lasing and

even cascaded Raman scattering at very low threshold pump power [44, 68–71]. Com-

pared to Q-factors of the WGM cavities used in previous achievements of stimulated

Raman scattering, our microtoroid cavities achieve Q-factors two orders of magnitude

below, therefore we do not exceed the threshold power for stimulated Raman scattering

in our experiments.

The Kerr nonlinearity causes a modification of the refractive index of a medium

dependent on the intensity of the light circulating in this medium, n(I) = n0 + n2I

where n2 is the second-order nonlinear refractive index with values in the order of 10−20
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m2.W−1 for typical glass materials. A change in the refractive index of a WGM cavity

means an elongation of the optical path length of the cavity resulting in a red-shift

of the cavity resonance frequencies. Assuming small variations of the refractive index,

n2I � n0, the Kerr-induced resonance frequency shift is given to first order by,

∆ωc(n) ≈ n2I
dωc
dn

(n0) ≈ −ωc(n0)
n2I

n0
. (2.10)

With sufficiently high optical intensities, the Kerr effect may generate parametric

gain and oscillations [13, 72], and also lead to an optical bistability in the steady-state

of the optical cavity mode [45]. However the Kerr-nonlinearity is usually dominated by

thermal nonlinearities, although is has been observed experimentally at room tempera-

ture for high power modulation frequencies [73] as the response of the Kerr-nonlinearity

is faster than the thermal effects in silica.

Our typical fundamental WGM with a finesse of 4000 and a mode diameter around

2 μm achieves circulating intensities up to 4 MW/cm2 for an input power of a 100 μW.

Given a linear refractive index n0 = 1.45 and a nonlinear refractive index n2 = 2.7×10−16

cm2/MW at an optical wavelength of 1064 nm [55], the expected Kerr-induced frequency

shift in our microtoroids amount to ∆ωc ≈ −7.4× 10−10 · ωc ≈ 0.21MHz what is three

orders of magnitude smaller than the sharpest widths of our cavity resonances. It results

that for an input optical power on the order of or less than a hundred microwatts,

the circulating optical intensities in our microtoroids are too low for producing any

significant effect via Raman or Kerr nonlinearities, therefore we do not consider optical

nonlinearities in our work.

Thermal nonlinearities

Variations of the temperature of the medium constituting a WGM cavity affects the

resonance frequency of the WGM in two manners, by a change in the refractive index

of the medium, known as the thermo-refractive effect, and by the thermal expansion of

the cavity. The resonance frequencies of a microtoroid cavity are inversely proportional

to its dimensions and refractive index, therefore the resonance frequency shift induced

by a (small) temperature variation δT is to first order,

∆ωc(T + δT ) ≈ −ωc(T )

(
αT +

1

n

dn

dT

)
δT, (2.11)

where αT is the thermal expansion coefficient. For a fused silica microtoroid with pa-

rameters n = 1.45, αT = 5.5× 10−7 K−1 and dn/dT = 9.6× 10−6 K−1 [55], we calculate

a resonance frequency shift of -2.02 GHz/K at 1064 nm. Note that the thermo-refractive

effect has a bigger impact than the thermal expansion of silica. Figure 2.8(a) shows five

resonance scans of a microtoroid WGM at critical coupling for various temperature of
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the microtoroid. The temperature of the microtoroid is controlled by a feedback loop

consisting of a Peltier element, a thermistor and a PID controller. We extract a res-

onance frequency shift of -1.72 GHz/K at a scan wavelength around 1064 nm (Figure

2.8(b)). The deviation from the calculated value may result from an incomplete ther-

malization of the silica torus in the ambient air, meaning that the temperature of the

torus may differ from the temperature measured by the thermistor, or from different

values of the silica material parameters which are not precisely known for microtoroids.

Besides direct tuning of the temperature of the microtoroid by controlling the tem-

perature of the environment, the temperature of the toroid cavity may change due to

absorption of light by the silica. The part of the light circulating in the high-Q WGM

cavity which is absorbed by the silica, leads to an increase of the temperature by an

amount δT following the heat equation,

ρcp ˙δT (~r, t) = k~∇2δT (~r, t) + |ā(t) · ~e(~r)|2 κabs, (2.12)

where κabs is the loss rate at which optical energy is absorbed by the medium, ρ is the

density of the medium, cp its specific heat capacity, k its thermal conductivity, ~e(~r)

represents the field distribution of the WGM, and ā(t) its classical field amplitude. The

first term on the second hand side of the equation accounts for the heat diffusion in

the medium and the second represents the heat absorbed by the medium. Due to the

local and non-uniform repartition of the mode field energy within the toroid cavity, the

temperature distribution in the toroid cavity for a steady-state equilibrium ( ˙δT = 0

and ˙̄a = 0) is not uniform, and the contribution of the thermo-refractive effect and

thermal expansion is higher where the optical field is stronger. For simplicity however,

it is reasonable to model the spatial distribution of temperature variations δT (~r) as a

uniform effective temperature δT across the WGM volume, which is proportional to the

absorbed power,

δT = βκabs~ωd|ā|2 = β
4ηηabs
1 + ∆̄2

Pin, (2.13)

where ηabs = κabs/κ is the absorption fraction of the cavity power loss, i.e the power lost

by the cavity mode due to absorption relative to the total power lost. We measured a

dependence of the resonance frequency on input power of -0.8 MHz/μW by looking at

the resonance frequency shifts of a WGM at critical coupling for various input powers,

as shown on Figure 2.8(c). Assuming that the red-shift of the resonance with increasing

input power is due to the photothermal effect only we calculate a temperature increase

with input power of 2βηabs ≈ 0.5 K/mW.

The resonance frequency shift induced by a variation of the temperature may cause

a thermal bistability [10–12] as the system of interdependent equations (2.5), (2.11) and
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Figure 2.8: Frequency scans of a microtoroid resonance at critical coupling for various
temperatures (a) and input power (c). The dashed curves are Lorentzian fits to the toroid
resonances. As the temperature is increased by heating the microtoroid with a Peltier ele-
ment (a), the resonance frequency decreases due to the thermo-refractive effect and thermal
expansion. A similar behavior is observed when the input power is increased (c) due to the
absorption of optical power by the silica, leading to heating of the microtoroid cavity. The
duration of a frequency scan is around 15 ms what is long enough to let the microtoroid
heat up and thermalize following the absorption of optical power. Resonance frequency
shifts (red dots) at various temperatures (b) and input powers (d). A linear fit to the res-
onance frequency shifts (red dashed curve) gives a dependence of the resonance frequency
on the temperature of -1.72 GHz/K (b). Similarly a dependence of the resonance frequency
on the input power of -0.8 MHz/μW is found from (d).
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(2.13), which combines into

~ωd|ā|2 =
4η/κ

1 +
(
∆̄ + 2ωc

(
αT + 1

n
dn
dT

)
βηabs~ωd|ā|2

)2Pin, (2.14)

admits three solutions when the input power exceeds a threshold given by

Pthresh =

[
3
√

3

(
αT +

1

n

dn

dT

)
βηabsη(1− η)Qc

]−1

. (2.15)

For typical parameters of our silica microtoroids ( (αT + 1
n
dn
dT ) = −6.1 × 10−6 K−1,

βηabs = 250 K/W, Qc = 2 × 106 ) the lowest threshold power, achieved at critical

coupling (η = 1/2), is around 250 μW. We usually perform the experiments presented in

this thesis at input powers lower than this threshold power therefore avoiding thermal

bistabilities.

2.2 Microtoroids as mechanical resonators

2.2.1 Classical representation of a mechanical oscillator

The simplest way of picturing a mechanical oscillator is as a mass on a spring. It consists

of an object with mass m subjected to a restoring force, ~F = −kx~x when displaced by

a distance ~x from its equilibrium position. Considering displacements in one dimension

only the equation of motion for such a system is given by mẍ + kxx = 0, and has the

solutions x(t) = A cos(
√
kx/mt + φ) where the amplitude A and the phase φ depends

on the initial conditions of the system. The periodic motion of this simple mechanical

oscillator corresponds to the evolution of a classical harmonic oscillator with frequency

Ωm =
√
kx/m. In order to get a feeling for the dependence of the oscillator’s frequency

on the oscillator’s characteristics, it is convenient to make an analogy with the string of a

guitar. Increasing the tension on a guitar string increases the pitch of the note produced

when plucking the string. This is equivalent to getting a higher oscillation frequency by

increasing the spring constant of the oscillator. Following the analogy, reducing the size

of the oscillator increases the oscillator’s frequency, in the same way as shortening the

guitar string by fretting it gives access to higher pitched notes.

A guitar string cannot sustain a note forever though, and the reason is that its

vibration is damped by the contact to the body of the guitar and to the surrounding air.

Taking into account the damping of oscillations, the equation of motion of a mechanical

oscillator becomes, mẍ + kvẋ + kxx = 0, where kv is the viscous damping coefficient

which quantifies the frictional force opposing the motion of the oscillator. The equation

of motion of the damped mechanical oscillator may be recast in more general terms that

characterize any kind of damped harmonic oscillator, then reading ẍ+ Γmẋ+ Ω2
mx = 0,
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where Γm = kv/m is the energy damping rate, i.e. the rate at which the mechanical

oscillator loses energy via friction. We can define a quality factor of the mechanical

oscillator, Qm = Ωm/Γm, which represents the ratio of energy stored by the oscillator

over the energy lost per cycle due to the damping of its oscillations.

In order to finalize the modeling of the mechanical oscillator dynamics we must

look at the response of the oscillator to an external force Fex, what is described by the

equation of motion,

m
d2x(t)

dt2
+mΓm

dx(t)

dt
+mΩ2

mx(t) = Fex(t). (2.16)

Assuming that the force applied to the oscillator is periodic, the above equation is best

solved in the Fourier domain 12 with solutions given by,

x (Ω) = χm(Ω)Fext(Ω), (2.17)

where we introduced the mechanical susceptibility of the oscillator,

χ−1
m = m

(
Ω2
m − Ω2 − iΩΓm

)
. (2.18)

At low frequencies, Ω � Ωm, the linear response of the oscillator to a sinusoidal force

is simply given by its spring constant as χm(Ω � Ωm) ≈ (mΩ2
m)−1 = 1/kx. When the

frequency of the external force is on the order of the oscillator’s frequency (Ω ≈ Ωm) the

response of the oscillator is resonant with a maximum gain at the resonance frequency

Ωres = Ωm

√
1− 1/2Q2

m. The mechanical oscillators we consider in this thesis have

high Q factors, Qm � 1, so that we can safely identify the resonance frequency with

the oscillator’s frequency, i.e. Ωres ≡ Ωm, and the resonance response is then given by

χm(Ωm) = (mΩmΓm)−1 = Qm/kx. At high frequencies, Ω� Ωm, the oscillator cannot

follow fast changing driving forces so its response drops by 1/mΩ2. The oscillator

do not respond instantaneously to an external force but with a phase delay given by

arg(χm) = arctan[ΩΓm/(Ω
2
m − Ω2)].

2.2.2 Quantum representation of a mechanical oscillator

We now consider the oscillator’s position and momentum as Hermitian Hilbert space

operators, x̂ and p̂, respectively. In the quantum framework the position and momentum

operators do not commute but rather obey the commutation relation, [x̂, p̂] = i~. The

Hamiltonian of the mechanical harmonic oscillator is given by

Ĥ =
p̂2

2m
+

1

2
mΩ2

mx̂
2 (2.19)

12The Fourier transform of a time-dependent function f(t) is defined by, f (Ω) =
∫ +∞
−∞ f(t)eiΩtdt.
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where the first term represents the kinetic energy of the quantum mechanical oscillator

and the second term represents its potential energy.

We define a phonon annihilation and creation operators,

b̂ =
1

2

(
x̂

xzpf
+ i

p̂

pzpf

)
, b̂† =

1

2

(
x̂

xzpf
− i p̂

pzpf

)
, (2.20)

respectively, so that we may recast the Hamiltonian of the quantum harmonic oscillator

in the form

Ĥ = ~Ωm

(
b̂†b̂+

1

2

)
. (2.21)

We have introduced the zero-point motion and the zero-point momentum of the me-

chanical harmonic oscillator,

xzpf =

√
~

2mΩm
, pzpf = mΩmxzpf , (2.22)

respectively, which indicate the standard deviation of the position and momentum of

the oscillator in its quantum ground state. The creation and annihilation operators

satisfy the commutation relation, [b̂, b̂†] = 1, and the operator n̂m = b̂†b̂ is the phonon

number operator, whose average, 〈b̂†b̂〉 = nm, is the mean phonon occupation of the

mechanical oscillator. In the following we will discard the last term in Equation (2.21)

which represents the constant zero-point energy of the oscillator, i.e. the ground state

energy of the oscillator 〈0|Ĥ|0〉 = ~Ωm/2, where |0〉 represents the vacuum state of the

mechanical oscillator.

2.2.3 A mechanical oscillator in thermal equilibrium

A mechanical oscillator in equilibrium with its environment is naturally driven by the

thermal energy of its environment which couples via the damping rate Γm. The motion

of a mechanical oscillator in thermal equilibrium with its environment is associated with

Brownian motion, i.e. a non-Markovian random process, and follows sinusoidal oscilla-

tions with random amplitude and phase varying on a time scale set by the damping rate

Γ−1
m [74]. Furthermore the motion of real mechanical resonators, such as microtoroids,

combines the vibrations of a collection of quantum harmonic oscillators, which makes it

difficult to directly analyze this motion in real-time. Therefore it is common to analyze

the spectral components of the oscillator’s motion in the frequency domain, where the

contribution of each harmonic oscillator can be distinguished from the others.

The motion of the mechanical oscillator is best described in the frequency domain

by the power spectral density (cf. 1.2.6) of the position operator,

Sδx̂(Ω) =

∫ +∞

−∞
〈δx̂(t)δx̂(0)〉eiΩtdt . (2.23)
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In the quantum regime, the time-evolutions of the position operator do not commute

therefore the PSD is not symmetric [75]. This asymmetry has even been observed

experimentally for a mechanical resonator near its quantum ground state [76]. It is

however common to define a symmetric or single-sided PSD,

Sδx̂(Ω) =
1

2
(Sδx̂(Ω) + Sδx̂(−Ω)) , (2.24)

which is equal to the double-sided PSD in the classical limit. In the following we consider

single-sided PSD of the mechanical position operators.

For a mechanical oscillator in thermal equilibrium with its environment at a tem-

perature T , the fluctuation-dissipation theorem connects the PSD of the oscillator’s

position to the dissipative part of the oscillator’s susceptibility [75],

Sδx̂(Ω) = ~ coth

(
~Ω

2kBT

)
Im(χm(Ω)) −→

kBT�~Ω

2kBT

Ω
Im(χm(Ω)). (2.25)

The last part of Equation (2.25) represents the classical high-temperature case where

the thermal energy from the environment drives the oscillator to a high mean phonon

occupation (nm � 1). For a single high-Q mechanical oscillator the PSD shows a

Lorentzian-like resonance with width Γm at frequency Ωm, and by integrating over the

frequency spectrum we find the variance of the oscillator’s position to be

〈δx̂2〉 = x2
zpf coth

(
~Ωm

2kBT

)
−→

kBT�~Ω
x2
zpf

2kBT

~Ωm
. (2.26)

This relates the variance of the oscillator’s position to the temperature of the environ-

ment when the oscillator is only thermally excited. We may generalize the notion of

the temperature of a mechanical oscillator to any oscillator in an equilibrium state, by

defining an effective temperature associated to the variance of the oscillator’s position,

Teff =
〈δx̂2〉
x2
zpf

~Ωm

2kB
=
nm~Ωm

kB
, (2.27)

which can be calculated from the area under the PSD.

2.2.4 Mechanical modes of a microtoroid resonator

In a similar way as an optical resonator may sustain a variety of spectral and spatial

modes, mechanical resonators as well display a variety of mechanical modes oscillating

at different frequencies. The mechanical modes of a mechanical resonator are intrinsic

acoustic modes determined by the geometry and mechanical properties of the resonator.

The three-dimensional motion of an acoustic mode is represented by a vector field ~u(~r, t)

which indicates the displacement at time t of an infinitesimally small cubic volume
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(a) (b)

Figure 2.9: (a) Half-plane geometry of a macrotoroid with relevant parameters used in
the FEM simulations. The complete three-dimensional model of a microtoroid is obtained
by revolving the half-plane around its left-axis. The silica disk and torus are colored in light
blue and the silicon pillar is colored in dark blue. (b) SEM micrographs of a microtoroid
with major radius around 37.5 μm and pillar radius around 22 μm. The dimensions of the
microtoroid measured with a SEM provide an indication on the typical dimensions of the
microtoroids we use in our experiments.

element at position ~r. Considering an isotropic homogeneous material in the absence of

external forces, the displacement field obeys the following elastodynamics wave equation

ρ
∂2~u

∂t2
(~r, t) = (λ+ µ)~∇

(
~∇ · ~u(~r, t)

)
+ µ

(
~∇ · ~∇

)
~u(~r, t), (2.28)

where the density of the material constituting the mechanical resonator is denoted by

ρ, and its Lamé constants by

λ =
σE

(1 + σ)(1− 2σ)
(2.29)

µ =
E

2(1 + σ)
, (2.30)

with σ its Poisson’s ratio and E its Young modulus. Due to the finite dimensions of real

mechanical resonators the wave equation accepts a discrete spectrum of solutions which

form the set of orthonormal13 mechanical modes of the resonator {~un(~r, t) = ~un(~r)e−iΩnt,

n ∈ N} with eigenfrequencies Ωn. Any elastic deformation of the resonator can then be

written as a linear combination of the mechanical modes,

~u(~r, t) =
∑

n

dn(t)~un(~r), (2.31)

where dn(t) = 〈~u(~r, t), ~un(~r)〉 is the time-dependent displacement amplitude of the n-th

mode.

13In the sens of the spatial scalar product defined by

〈 ~A(~r), ~B(~r)〉 =
1

V

∫
V

~A(~r) ~B(~r)d3r.
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The complex geometry and composition of a microtoroid, i.e. a silica torus built

around a silica disk supported by a silicon pillar, prevents the direct analytical derivation

of the mechanical modes from the elastodynamics wave equation. Therefore we resort

to FEM simulations to determine the mechanical eigenfrequencies and eigenmodes of

our microtoroids. The geometry of the toroid used in our simulations is depicted in

Figure 2.9(a). The parameters that we may vary are the major and minor radii of the

torus, the radius of the pillar, the thickness of the disk, and the offset of the plane of the

torus relative to the plane of the disk. We assume a rotational symmetry of the toroid

around the central axis of the torus and pillar for facilitating the simulations. This is a

reasonable assumption given the precision achieved in microtoroid fabrication, as can be

seen on the scanning electron microscope (SEM) pictures in Figure 2.9(b). Even though

the design geometry is rotationally symmetric the discrete mesh consisting of more than

10,000 nodes is not evenly distributed across the microtoroid geometry what leads to a

lift of degeneracy between mechanical modes. The lift of degeneracy is also observed

experimentally as our microtoroids are obviously not perfectly symmetric.

Figure 2.10 shows the displacement field of the 21 lowest-frequency mechanical

eigenmodes obtained by solving Equation (2.28) via a FEM simulation. The microtoroid

used in the simulation has major radius 38.1 μm, minor radius 3.1 μm, pillar radius

18.4 μm, disk thickness 2.86 μm, and offset 1.57 μm. This parameters were selected

following the prior knowledge of the typical dimensions of our microtoroids measured

with a SEM, and in order to match the simulated eigenfrequencies with the mechanical

resonance frequencies obtained from the recorded noise power spectrum shown on Figure

2.11. This noise spectrum results from the transduction of mechanical displacements

onto the optical field of the microtoroid cavity, thus providing an indication on the

optomechanical coupling strength of the various mechanical mode to the optical cavity

mode. Details on the measurement procedures will be given in a later part of this thesis.

Most of the peaks displayed on the noise power spectrum corresponds to thermally

excited mechanical resonances of the microtoroid, and by comparing their frequencies

with the one obtained by FEM simulations we may identify each measured resonance

with their displacement field.

Among the variety of mechanical modes shown in Figure 2.10 we may distinguish

a family of modes known as crown modes [77] characterized by sinusoidal oscillations in

the vertical direction along the torus perimeter (1, 3, 4, 6, 8, 12, 16, 21). Each crown

mode possess a frequency degenerate pair mode for which the nodes and antinodes are

swapped. Other modes involve a deformation of the silicon pillar, such as modes 7 and

15, or of both the silicon pillar and the silica torus, such as modes 10 and 13. The

majority of these modes however couple poorly to the toroid optical cavity field and are

therefore of little interest in the context of this thesis, namely optomechanics.
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Figure 2.10: Mode shapes of the 21 lowest-frequency modes of a microtoroid resonator
obtained from FEM simulations. The color code indicates the amplitude of the deformation
of the microtoroid, from white to dark red. The initial geometry of the microtoroid at rest
is represented by black wires. Modes 1, 3, 4, 6, 8, 12, 16, and 21 are crown modes. Mode
5 is a torsion mode. Mode 17 is the radial breathing mode and mode 2 is the fundamental
flexural mode.

The most interesting modes for experiments in optomechanics are the mechanical

modes displaying a radially symmetric displacement field, such as modes 2, 9 and 17.

Mode 17 shows the highest coupling to the optical cavity mode of the microtoroid, as

seen on Figure 2.11, and consists mainly of a radial expansion and contraction of the

silica torus, thus its name, the radial breathing mode (RBM). Mode 2 involves the flexural

motion of the silica disk, thereby making the torus oscillating in the vertical direction,

and it is referred to as the fundamental flexural mode (FFM). The resonance frequency

of the FFM lies in a frequency range more easily accessible by common laboratory

electronics (e.g. electronic amplifiers, signal generators) and optical components (e.g.

optical modulators, high-efficiency photo-diodes) compared to the frequency of the RBM

which is one order of magnitude higher. In this thesis we focus our interest onto the

FFM.

2.2.5 From a 3D displacement field to a scalar displacement

The three-dimensional displacement field of a mechanical modes constitutes a rather

complex and cumbersome analytical model for studying the dynamics of a microres-

onator. It is preferable to describe the time-dependent motion of a mechanical resonator

as a scalar displacement field x(t), and recover the formalism introduced in the beginning

of this thesis’ section.
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Figure 2.11: Noise power spectrum showing mechanical resonances. Each resonance is
identified with a mechanical mode obtained by FEM simulation. Peaks appearing on the
power spectrum at 11 MHz, 16.5 MHz, 22MHz, 27.5 MHz, 33 MHz, 38.5 MHz are artifacts
of the fast Fourier transform algorithm used in the measurement procedure that will be
presented in a later part of this thesis. The peak at 12 MHz comes from a modulation internal
to the laser unit of our experimental setup. The modes 6, 8, 12 and 16, corresponding to
crown modes, do not appear on the noise spectrum as they couple poorly to our measurement
apparatus.

We may define the scalar displacement x(t) to be the scalar projection of the dis-

placement field ~u(~r, t) onto a weighting vector ~w(~r), readily

x(t) = 〈~w(~r), ~u(~r, t)〉 ,

=
∑

n

dn(t) 〈~w(~r), ~un(~r)〉 ,

=
∑

n

xn(t), (2.32)
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where xn(t) represents the time-dependent scalar displacement of the n-th mechanical

eigenmode of the resonator. The weighting function can be chosen such that the scalar

displacement corresponds to a particular displacement of the microresonator, e.g. dis-

placements along the vertical or radial direction of a microtoroid resonator, or more

specifically in relation to a physical process dependent on the mechanical displacements

such as optomechanical or electromechanical coupling. For example, in the framework of

optomechanics involving a Fabry-Pérot cavity with a movable mirror, a judicious choice

of the weighting function connects the scalar displacement to the center-of-mass mirror

movement if it was displaced as a whole [78].

Effective mass of a mechanical oscillator

In order to complete the representation of the microresonator’s displacement as a scalar

displacement we must define an effective mass for each mechanical eigenmode. Starting

with the displacement field of Equation (2.31), the potential energy of the mechanical

resonator is given by [78]

U =
∑

n

1

2
mnΩ2

n|dn(t)|2, (2.33)

where we have introduced the moving mass of the n-th mechanical eigenmode as mn =
∫
V ρ|~un(~r)|2d3r, with ρ the mass density of the microresonator’s constituent medium.

For an isotropic medium and because of the normalization of the mechanical eigenmodes,

the moving masses of all eigenmodes are equal and given by the mass of the volume over

which the integral is performed. The definition of the effective mass of the mechanical

eigenmodes ensues from the preservation of the potential energy when projecting the

displacement field onto a scalar displacement, i.e.

U =
∑

n

1

2
meff,nΩ2

n|xn(t)|2, (2.34)

implying that the effective mass reads,

meff,n =
mn

〈~w(~r), ~un(~r)〉2
. (2.35)

Scalar projection of external forces

In the representation of the resonator’s displacement as a scalar displacement, forces

acting on the resonator must also be projected onto the scalar space such that we can

describe the motion of the resonator with Equation (2.16). The total energy of the

mechanical resonator subjected to an external force ~Fex(~r, t) is given by [78],

H =
∑

n

1

2
mn

(
ddn
dt

(t)

)2

+
1

2
mnΩ2

n (dn(t))2 − dn(t)
〈
~Fex(~r, t), ~un(~r)

〉
, (2.36)
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which is the sum of the energies of all mechanical eigenmode where the first term denotes

the kinetic energy of the n-th mechanical eigenmode, the second its potential energy,

and the last term represents the work of internal constraints opposed to the external

force acting on the resonator. The equation of motion for each mechanical mode are

then derived from Hamilton’s equations, and reads

mn
d2dn
dt2

(t) +mnΩ2
ndn(t) =

〈
~Fex(~r, t), ~un(~r)

〉
. (2.37)

By using the definitions of the scalar displacement and effective mass introduced in

Equations (2.32) and (2.35), respectively, we may recast Equation (2.37) into scalar

space, i.e.

meff,n
dxn
dt

(t) +meff,nΩ2
nxn(t) = Fex,n(t), (2.38)

where the external scalar force acting on the n-th mechanical eigenmode is equal to

Fex,n(t) =
〈
~Fex(~r, t), ~un(~r)

〉
〈~w(~r), ~un(~r)〉 . (2.39)

Note that the scalar force contributing to the dynamics of the n-th mechanical eigenmode

of the resonator is the projection of the external vector force onto the n-th component

of the weighting vector decomposed in the orthonormal basis {~un(~r), n ∈ N}, therefore

the total external scalar force acting on the resonator’s displacement x(t) is the scalar

projection of the vector force on the weighting vector, i.e

Fex(t) =
∑

n

Fex,n(t),

=

〈
~Fex(~r, t),

∑

n

〈~w(~r), ~un(~r)〉 ~un(~r)

〉
,

=
〈
~Fex(~r, t), ~w(~r)

〉
, (2.40)

which is consistent with the definition of the scalar projection of the displacement field

in Equation (2.32).

In the rest of this thesis we will continue our analysis of a mechanical resonator’s

motion in the scalar representation, and we will mostly focus on the dynamics of a single

mechanical eigenmode of the resonator for simplicity.

2.3 Microtoroids as a cavity optomechanical system

2.3.1 Nature of the optomechanical coupling

A generic cavity optomechanical system is obtained by combining the Fabry-Pérot op-

tical cavity presented in Section 2.1 with the mass-on-a-spring oscillator introduced in



2.3. Microtoroids as a cavity optomechanical system 61

Section 2.2 (Figure 2.12). A light field is coupled through a fixed partially transmitting

mirror on one side of the Fabry-Pérot cavity, and is reflected onto a highly-reflective

movable mirror on the other side. A radiation pressure force resulting from the momen-

tum imparted upon reflection of the optical cavity field drives the motion of the movable

mirror. At the same time the motion of the movable mirror alters the boundary condi-

tions of the optical cavity, thereby changing its resonance properties. The displacement

of the boundary conditions can be represented by a scalar displacement x(t) (cf. 2.2.5),

such that the resonance frequency of an optical mode of the cavity is shifted by

ωc(x(t)) = ω0 + g(x(t)− x0) + o
x→x0

(x(t)− x0), (2.41)

where x0 corresponds to an equilibrium of the system and can be set to an arbitrary

value by an appropriate choice of system coordinates. Equation (2.41) is nothing else

than a Taylor series where ω0 = ωc(x0) is the resonance frequency of the optical cavity

mode in equilibrium, and we have introduced the optomechanical coupling parameter

g =
∂ωc
∂x

(x0). (2.42)

Figure 2.12: Optomechanical Fabry-Perot cavity consisting of a single-sided Fabry-Perot
optical cavity with a highly-reflective movable mirror. The optical cavity has a resonance
frequency ωc and a width κ = κex + κc, and is driven by an input field ŝin at frequency
ωd coupling to the cavity mode field â through a partially transmitting mirror at a rate
κex . The cavity mode field suffers optical loss described by the coupling to a loss channel
field ŝloss at a rate κc. The movable mirror’s position x̂ oscillates at a frequency Ωm with a
dissipation rate Γm.
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The last term in Equation (2.41) is negligible for small displacements, x(t)−x0, relative

to the size of the optical cavity. This is the case when considering the motion of a

microtoroid resonator, so it will be omitted in the rest of this thesis.

We know from Section 2.1 that the frequency of an optical cavity resonance is

inversely proportional to the length of the cavity, therefore it is usual to set g = −ω0/L

for a Fabry-Pérot cavity of length L, and g = −ω0/R for a WGM resonator of radius R,

by an appropriate scaling of the scalar displacement.

2.3.2 Mechanically-induced modulation of the optical field

Taking into account the resonance frequency shift due to the moving boundary of the

cavity, the (classical) time-evolution of the cavity field driven by a monochromatic input

with constant amplitude s̄in and frequency ωd is given by

ȧ(t) =
(
−i(ω0 + gx(t))− κ

2

)
a(t) +

√
κexs̄ine

−iωdt, (2.43)

where we have set x0 = 0 for simplicity. By considering the mechanical displacement as

a classical harmonic oscillation x(t) = δx sin(Ωmt), the solution for the intracavity field

amplitude reads,

a(t) =
√
κexs̄in

+∞∑

n=−∞

(−i)n Jn(ξ)

κ/2− i(∆ + nΩm)
e−i(ωd+nΩm)t+iξ cos(Ωmt) , (2.44)

after all transient have decayed on a timescale of the photon cavity lifetime κ−1 [77].

In the above, we introduced the detuning ∆ = ωd − ω0 of the driving field with respect

to the cavity resonance in the equilibrium position x0, and the modulation depth ξ =

gδx/Ωm. We used the identity, exp(−iξ cos(Ωmt)) =
∑+∞

n=−∞(−i)n Jn(ξ) exp(inΩmt)

[25], to expand a complex modulated exponential into a series of Bessel functions of the

first kind, Jn (n ∈ Z). For a small modulation depth, ξ � 1, the modulated intracavity

field amplitude can be approximated to,

a(t) ≈ āe−iωdt


1 +

Ω̄m

1− i(∆̄ + Ω̄m)

ξ

2
e−iΩmt

︸ ︷︷ ︸
anti-Stokes

− Ω̄m

1− i(∆̄− Ω̄m)

ξ

2
eiΩmt

︸ ︷︷ ︸
Stokes


 , (2.45)

where Ωm = 2Ωm/κ is the sideband resolution parameter, indicating the number of me-

chanical oscillations a photon can experience before escaping the cavity, and ¯Delta = 2∆/κ

is the normalized detuning. ā is the mean intracavity field amplitude in the frame ro-

tating at the input field frequency ωd, and in the absence of mechanical interaction (cf.

Equation (2.5)). Comparing Equation (2.45) with Equations (1.14) and (1.16), it is clear
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that the mechanical oscillator acts as a modulator for the intracavity field amplitude.

Via the optomechanical interaction, intracavity photons at the drive frequency ωd are

scattered into lower and upper sidebands, also referred to as Stokes and anti-Stokes

sidebands, at frequencies ωd − Ωm and ωd + Ωm, respectively. The probability for a

photon to scatter into the Stokes or anti-Stokes sidebands is determined by the cavity

resonance. For non-zero detuning the asymmetries between the amplitudes and phases

of the Stokes and anti-Stokes sideband fields translate in both an amplitude and phase

modulation of the intracavity field. At zero detuning the intracavity field amplitude

reads,

a(t) ≈ āe−iωdt
(

1 +
Ω̄m

1 + Ω̄2
m

ξ

2

[
(1 + iΩ̄m)e−iΩmt − (1− iΩ̄m)eiΩmt

])
, (2.46)

≈ āe−iωdt
(

1 + iξ
Ω̄m

1 + Ω̄2
m

[
Ω̄m cos(Ωmt)− sin(Ωmt)

])
, (2.47)

thus carries only a phase modulation. Figure 2.13 illustrates the optomechanically in-

duced phase modulation of the intracavity field in a phase space picture.

2.3.3 Radiation pressure backaction

While the motion of the cavity boundary affects the phase and amplitude of the optical

intracavity field, at the same time the optical field exerts a radiation pressure force onto

the cavity boundary. In the simple case of a Fabry-Pérot cavity, the radiation pressure

force results from the momentum transfer of the photons upon reflection on the movable

Im

Re

Figure 2.13: Phase space picture of the intracavity field carrying a phase modulation due
to mechanically driven Stokes and anti-Stokes scattering of intracavity photons.
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mirror, what gives

Frp(t) =
|a(t)|2

τrt
2~k = ~

ωd
L
|a(t)|2 = −~g|a(t)|2 , (2.48)

where τrt = 2L/c is the cavity round-trip time, and k = ωd/c is the momentum of the

intracavity photons. Now taking into account the mutual coupling of the optical and

mechanical degrees of freedom via the optomechanical interaction results in the coupled

system of equations (cf. Equations (2.4) and (2.16)),

ȧ(t) =
(
i(∆− gx(t))− κ

2

)
a(t) +

√
κexsin(t) , (2.49)

meffẍ(t) +meffΓmẋ+meffΩ2
mx(t) = −~g|a(t)|2 , (2.50)

for a mechanical oscillator with effective mass meff, natural frequency Ωm and damping

rate Γm.

Optomechanical bistability

By considering an input field with constant amplitude s̄in, stable solutions (ā, x̄) of

the coupled system of nonlinear differential equations can be derived by setting all time

derivatives to zero, resulting in

ā =

√
κexs̄in

(κ/2− i(∆− gx̄))
, x̄ = −~g|a(t)|2

meffΩ2
m

. (2.51)

Figure 2.14 illustrates the solutions of the system of equations as the intersections of

the two curves giving the mean number of intracavity photons nc = |ā|2 as a function

of the mechanical displacement x̄. The system possess at least one stable solution, and

for input powers above the threshold condition [79],

|s̄in|2 ≥
√

3

9

Ω2
mmeffκ

2

η~g2
, (2.52)

the system accepts two additional solutions corresponding to one stable and one unstable

equilibrium state of the optomechanical system. Above the threshold condition the op-

tomechanical system exhibits a bistable behavior, which can be revealed experimentally

in the hysteresis of the cavity transmission when varying the input power [80].

2.3.4 Optomechanical interaction Hamiltonian

Having described the classical phenomena related to radiation pressure interactions in

a cavity optomechanical system, we must now look at the optomechanical coupling be-

tween stochastic fluctuations of the optical field and mechanical displacement. The
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Figure 2.14: Illustration of the solutions of the system of equations (2.51). Each equation
describes a curve mapping the mechanical displacement x̄ onto the mean intracavity photon
number nc. The intersections of the two curves indicate solutions of the system of equations,
i.e. equilibrium states of the optomechanical system. Full circles denote stable equilibrium
states and empty circles denote unstable equilibrium states.

Hamiltonian formulation of a generic optomechanical system [81] considers the interac-

tion of a single optical mode with a single mechanical harmonic oscillator, so that the

Hamiltonian reads

Ĥ =
p̂2

2meff
+

1

2
meffΩ2

mx̂
2 + ~ω0

(
â†â+

1

2

)
+ ~gx̂â†â (2.53)

where x̂ and p̂ are the position and momentum operators of the mechanical oscillator

with effective mass meff and natural frequency Ωm. â† and â are the photon creation

and annihilation operators of the optical mode with photon number operator n̂c = â†â

and resonance frequency ω0. An alternative way of writing the Hamiltonian of the

optomechanical system expresses the mechanical oscillator’s position and momentum

operators in terms of phonon annihilation and creation operators, b̂ and b̂† defined in

Equation (2.20), respectively, such that

Ĥ = ~Ωm

(
b̂†b̂+

1

2

)
+ ~ω0

(
â†â+

1

2

)
+ ~g0

(
b̂+ b̂†

)
â†â, (2.54)

where we have introduced the vacuum optomechanical coupling rate g0 = g · xzpf . The

last two terms in Equations (2.53) and (2.54) represent the energy of the free cavity

field with its resonance frequency shifted by the moving boundary condition according

to Equation (2.41). The other terms represent the energy of the mechanical harmonic

oscillator.
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2.3.5 Quantum Langevin equations

The Hamiltonian representation introduced above describes a closed system with no

addition or dissipation of energy. The dissipative dynamics of the optomechanical system

driven by an input field ŝine
−iωdt is described by a set of quantum Langevin equations

(QLE) [82] written in the frame rotating at the input field frequency,

dâ

dt
(t) =

(
i∆− κ

2

)
â− igx̂(t)â(t) +

√
κexŝin(t) +

√
κcŝloss(t), (2.55)

dx̂

dt
(t) =

p̂(t)

meff
, (2.56)

dp̂

dt
(t) = −meffΩ2

mx̂(t)− ~gâ†â− Γmp̂(t) + F̂ex(t). (2.57)

where ∆ = ωd − ω0 indicates the detuning of the drive field from the cavity resonance,

Γm is the damping rate at which energy is dissipated from the mechanical oscillator, and

the operator F̂ (t) comprises the forces that act on the mechanical oscillator, excluding

the radiation pressure force from the intracavity field. Additionally to the input field,

the intracavity field is driven by field fluctuations from the loss port of the cavity ŝloss(t).

Linearized equations of motion

The optomechanical interaction involves the nonlinear mixing of optical and mechanical

field operators. However since we are interested in the small fluctuations of the optical

and mechanical fields we linearize the QLE by separating the field operators into a mean

value component corresponding to the classical part of the field amplitude, and a noise

operator corresponding to the stochastic fluctuations of the field amplitude around its

mean, e.g.

â(t) = ā+ δâ(t), (2.58)

for the cavity mode field, where 〈â〉 = ā and 〈δâ〉 = 0. The mean values of the field

amplitudes are obtained from the static part of the QLE. By assuming (x̄, ā) to belong

to a stable state of the optomechanical system, the linearized QLE for the fluctuations

of optical and mechanical field amplitudes are obtained by keeping only terms of first

order in the fluctuations, reading

d

d
δâ(t) =

(
i∆− κ

2

)
δâ(t)− igāδx̂(t) +

√
κexδŝin(t) +

√
κcδŝloss(t), (2.59)

d

dt
δx̂(t) =

δp̂(t)

meff
, (2.60)

d

dt
δp̂(t) = −meffΩ2

mδx̂(t)− ~gā
(
δâ†(t) + δâ(t)

)
− Γmδp̂(t) + δF̂ex(t), (2.61)
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where the detuning now takes into account the static frequency shift, ∆ = ωd−ω0− gx̄,

induced by the mean of the radiation pressure and external forces applied to the cavity

boundary, ~gā2 + 〈F̂ext〉.

As the annihilation and creation operators are not Hermitian operators and are

therefore not measurable, it is preferable to write the optomechanical system dynamics

in terms of amplitude and phase quadrature operators which are measurable observables,

resulting in

d

dt
δX̂a(t) = −κ

2
δX̂a(t)−∆δP̂a(t) +

√
κexδX̂in +

√
κcδX̂loss(t) , (2.62)

d

dt
δP̂a(t) = −κ

2
δP̂a(t) + ∆δX̂a(t) +

√
κexδP̂in +

√
κcδP̂loss(t)− gcδx̂(t) , (2.63)

d

dt
δx̂(t) =

δp̂(t)

meff
, (2.64)

d

dt
δp̂(t) = −meffΩ2

mδx̂(t)− ~gcδX̂a(t)− Γmδp̂(t) + δF̂ex(t) , (2.65)

where we have introduced the effective optomechanical coupling rate gc =
√

2gā.

When considering continuous monochromatic fields as input to the cavity optome-

chanical system, the QLEs are most conveniently solved in the Fourier domain. However,

when considering pulsed fields as input, the QLEs must be solved in the time domain.

The QLEs can be solved in the time or frequency domain depending





Chapter 3

Quantum-enhanced

measurements of mechanical

displacements

The interest in ultra high-sensitivity measurements of mechanical displacement was

sparked by the quest for the detection of gravitational waves. Large-scale interfer-

ometers were designed to detect the infinitesimal deformation of space induced by the

passing of a gravitational waves. The relative position of massive mirrors are mea-

sured continuously with a very high precision by detecting the interference of optical

beams reflected off the mirrors. Early studies on the limits of position measurements in

large-scale gravitational-wave detectors [5, 7, 83] set the basis of optical probing of me-

chanical displacements which found applications in spin detection [84], attometer-scale

displacement measurements [30, 77], chip-based room temperature magnetometry [85],

and dynamic biological measurements [86].

Two fundamental quantum noise contributions limit the sensitivity of continuous

measurements of mechanical displacements. The imprecision noise is inherent to ev-

ery optical measurement as it arises upon detection from the quantum fluctuations of

the optical probe field. The quantum backaction noise (QBA) results from the driv-

ing of mechanical motion due to the stochastic radiation pressure force imparted by

amplitude fluctuations of the probe field. The imprecision noise and the QBA noise

follow inverse scalings with the probe power, therefore an optimal sensitivity, called the

standard quantum limit (SQL), is reached when the two noise contributions are equal.

Displacement measurements with an imprecision noise below the SQL have been per-

formed [38, 40, 87, 88], and the QBA noise have also been observed [33, 89], but so far

measurements at the SQL remain elusive.

69
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In this chapter we investigate the use of squeezed light as a quantum sensing re-

source to enhance the sensitivity of displacement measurements. Squeezing-enhanced

measurements have already been performed with Mach-Zehnder [90], Michelson [91–93],

Sagnac [94], and large-scale gravitational-wave interferometers [95], and applied to dis-

placement measurements of particles in biological samples [86], however there is little

study of there applications in the context of cavity optomechanics with micromechanical

resonator.

3.1 Continuous displacement sensing

3.1.1 Cavity optomechanics in the Fourier domain

While considering a cavity optomechanical system driven by a monochromatic laser field

with constant amplitude, the QLEs are most easily solved in the Fourier domain where

the fields are described by their spectral components. Using the Fourier transform on

Equations 2.62, 2.63, 2.64, and 2.65, we obtain

−iΩδX̂a(Ω) = −κ
2
δX̂a(Ω)−∆δP̂a(Ω) +

√
κexδX̂ ′in(Ω) +

√
κcδX̂ ′loss(Ω) , (3.1)

−iΩδP̂a(Ω) = −κ
2
δP̂a(Ω) + ∆δX̂a(Ω) +

√
κexδP̂ ′in(Ω) +

√
κcδP̂ ′loss(Ω)− gcδx̂ (Ω) ,

(3.2)

−iΩδx̂ (Ω) =
δp̂(Ω)

meff
, (3.3)

−iΩδp̂(Ω) = −meffΩ2
mδx̂ (Ω)− ~gcδX̂a(Ω)− Γmδp̂(Ω) + δF̂ex(Ω) . (3.4)

The QLE in the Fourier domain can be conveniently written in matrix form by separating

the noise sources from the field quadratures, such that

(
δX̂a(Ω)

δP̂a(Ω)

)
=

2

κ
Mc

( √
κexδX̂ ′in(Ω) +

√
κcδX̂ ′loss(Ω)

√
κexδP̂ ′in(Ω) +

√
κcδP̂ ′loss(Ω)− gcδx̂ (Ω)

)
, (3.5)

(
δx̂ (Ω)

δp̂(Ω)

)
= χm(Ω)

[
−~gcδX̂a(Ω) + δF̂ex(Ω)

]( 1

−imeffΩ

)
, (3.6)

where we have introduced a dimensionless matrix mapping the field fluctuations from

noise sources onto the intracavity field fluctuations,

Mc =
κ

2
χc(Ω)

(
κ/2− iΩ −∆

∆ κ/2− iΩ

)
. (3.7)
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The transfer of field fluctuations from external noise sources to the optical cavity and

mechanical resonator is described by an optical and mechanical susceptibility,

χc(Ω) =

[(κ
2
− iΩ

)2
+ ∆2

]−1

, (3.8)

χm(Ω) =
[
meff

(
Ω2
m − Ω2 − iΩΓm

)]−1
, (3.9)

respectively. Fluctuations in the position and momentum of the mechanical resonator are

driven by optical noise in the amplitude quadrature of the intracavity field via a radiation

pressure interaction. Reciprocally, mechanical position fluctuations are transduced onto

the amplitude and phase quadrature of the intracavity field on top of optical noise from

the input and loss ports of the cavity. At zero detuning of the input field the mechanical

noise affects only the phase quadrature fluctuations of the intracavity field, meaning that

the radiation pressure force, proportional to the amplitude quadrature of the intracavity

field, is independent of mechanical noise.

3.1.2 Probing the mechanical motion

In practice the optomechanical system observables, namely the amplitude and phase

quadratures of the intracavity optical field and the position and momentum of the me-

chanical resonator, are not easily accessible and are inferred from measurements of the

output field fluctuations exiting the optical cavity. We recall from Chapter 2 the input-

output relation giving the output field fluctuations in terms of the input and intracavity

field fluctuations,

δX̂ ′out =δX̂ ′in −
√
κexδX̂a , (3.10)

δP̂ ′out =δP̂ ′in −
√
κexδP̂a , (3.11)

then insert the intracavity field fluctuations given by Equation (3.5), such that we get

the output field fluctuations in terms of the input and mechanical noise,

(
δX̂ ′out

δP̂ ′out

)
= (I2 − 2ηMc)

(
δX̂ ′in
δP̂ ′in

)
− 2
√
η(1− η)Mc

(
δX̂ ′loss

δP̂ ′loss −
gc√
κc
δx̂

)
, (3.12)

where I2 is the identity matrix of dimension 2. Here the input and output field quadra-

tures are defined in the reference frame of the intracavity field, but it is more relevant to

express the field quadratures in their own frame in order to account for the phase shift
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induced by the cavity under a non-zero detuning ∆, such that

(
δX̂ ′out

δP̂ ′out

)
= R(φout)

(
δX̂out

δP̂out

)
=

1√
(1− 2η)2 + ∆̄2

(
1− 2η ∆̄

−∆̄ 1− 2η

)(
δX̂out

δP̂out

)
,

(3.13)
(
δX̂ ′in
δP̂ ′in

)
= R(φin)

(
δX̂in

δP̂in

)
=

1√
1 + ∆̄2

(
1 ∆̄

−∆̄ 1

)(
δX̂in

δP̂in

)
, (3.14)

where the phases of the input and output field are defined by φin,out = arg(s̄in,out). The

last equality in the above equations are derived from the classical input output relation

of the mean field amplitudes (cf. Equations (2.5) and (2.6)). In the absence of detuning

of the probe field from the cavity resonance, the phases of the output and output fields

are equal to the phase of the intracavity field, and the rotation matrix R(φout) and

R(φin) are equal to the identity matrix. Note that at critical coupling, η = 1/2, and

for zero-detuning, ∆̄ = 0, the phase of the output field is ill defined as the output field

amplitude is null, s̄out = 0. In this case however, we chose the convention φout = 0 for

simplicity.

Arbitrary quadrature measurement

Continuous measurement of an arbitrary quadrature of the output field fluctuations

can be performed with a balanced homodyne detector (cf. 1.3.3). The phase of the

measured quadrature is given by the phase of the local oscillator relative to the output

field, θ = φlo − φout, such that the measured output quadrature reads,

δX̂ θ
out = cos(θ)δX̂out + sin(θ)δP̂out . (3.15)

For a real homodyne measurement of the output field fluctuations, information on

the mechanical displacement fluctuations of a microresonator is best retrieved from the

PSD of the homodyne difference current, whose relation with the PSD of the measured

output quadrature fluctuations is given in Equation (1.94). In general the derivation

of the PSD of the measured output quadrature is rather cumbersome as the optome-

chanical interaction generates correlations between the intracavity field fluctuations and

the mechanical displacement fluctuations. However the calculations simplify consider-

ably when considering zero-detuning between the input field and the cavity resonance.

This situation is particularly relevant when considering the measurement of mechani-

cal displacements as it corresponds to a maximum intracavity circulating power for a

given input power, leading to a maximum transduction of the mechanical motion onto

the intracavity field. By combining Equations (3.5) and (3.6) into Equation (3.10), and

projecting the amplitude and phase quadratures of the output field onto the measured



3.1. Continuous displacement sensing 73

quadrature, we obtain

δX̂ θ
out =

[
cos(θ)− 2η

1− iΩ̄
G(θ)

]
δX̂in +

[
1− 2η

1− iΩ̄

]
sin(θ)δP̂in

−
2
√
η(1− η)

1− iΩ̄
G(θ)δX̂ ′loss −

2
√
η(1− η)

1− iΩ̄
sin(θ)δP̂ ′loss

+
2
√
η(1− η)

1− iΩ̄
gcχm√
κc

sin(θ)δF̂ex , (3.16)

where we introduced the function

G(θ) = cos(θ) +
2(1− η)

1− iΩ̄
~g2

c

κc
χm sin(θ) , (3.17)

which accounts for the correlated input noise driving the mechanical motion and the

cavity mode.

Assuming that the noise sources are independent, the variance of the measured

output field quadrature fluctuations are given by,

〈|δX̂ θ
out|2〉 = Zin(θ)〈|δX̂in|2〉+ (1− Zc) sin2(θ)〈|δP̂in|2〉

+ Zloss〈|δX̂ ′loss|2〉+ Zc sin2(θ)〈|δP̂ ′loss|2〉

+ ZcZrp
|χm|2

~
sin2(θ)〈|δF̂ex|2〉

+ (1− Zc) cos(θ) sin(θ)〈δX̂inδP̂in + δP̂inδX̂in〉

+ (1− Re[χ̄oχm])ZcZrp sin2(θ)〈δX̂inδP̂in + δP̂inδX̂in〉

+ Zc cos(θ) sin(θ)〈δX̂ ′lossδP̂ ′loss + δP̂ ′lossδX̂ ′loss〉

+ Re[χ̄oχm]ZcZrp sin2(θ)〈δX̂ ′lossδP̂ ′loss + δP̂ ′lossδX̂ ′loss〉 , (3.18)

where we have introduced the following notations for simplifying the expression,

Zin = (1− Zc) cos2(θ) + Z2
cZ

2
rp|χm|2 sin2(θ) + 2ZcZrp Re [(1− χ̄o)χm] sin(θ) cos(θ) ,

Zloss = Zc cos2(θ) + ZcZ
2
rp|χ̄oχm|2 sin2(θ) + 2ZcZrp Re [χ̄oχm] sin(θ) cos(θ) ,

Zc =
4η(1− η)

1 + Ω̄2
, Zrp =

~g2
c

κc
, χ̄o =

2(1− η)

1− iΩ̄
(3.19)

The last four lines in Equation (3.18) contains the possible correlations between con-

jugate quadrature fluctuations of the fields entering the cavity from the input and loss

ports. For optical fields in a coherent or vacuum state, all quadrature fluctuations are

uncorrelated and the four terms vanishes, but this is not the case with a squeezed state.

As expected from the nature of the optomechanical coupling, the output quadrature

receiving the highest contribution from mechanical noise (3rd line in Equation (3.18)) is

the output phase quadrature, i.e. θ = π/2. However this does not necessarily imply that
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measurements of mechanical noise performed on the output phase quadrature are the

most sensitive as noise contributions from the input and loss port may cover mechanically

induced phase fluctuations. In the next section we will determine the limits in sensitivity

of mechanical displacement fluctuation measurements.

Note that in the absence of optomechanical coupling, the constant Zrp equals zero,

and all mechanical contributions to the output fluctuations vanish. As a result, Equation

(3.18) reduces to the description of a linear cavity connected to an input, output, and

loss channels.

3.2 Theoretical limits on continuous displacement sensing

In experimental optomechanics, the optical degree of freedom of the optomechanical sys-

tem is commonly employed as a meter for measuring mechanical displacements. As we

saw in Section 2.2, mechanical displacements are represented by variations in the scalar

position of a harmonic oscillator subjected to damping and forces from its environment.

Therefore optical measurements of mechanical motion also provide information about

physical systems that are dynamically coupled to the mechanical degree of freedom of

the optomechanical system. Thanks to advances in micro- and nanofabrication tech-

niques, mechanical resonators can be engineered to achieve efficient coupling with a

broad range of physical systems, thereby allowing measurements on a wide variety of

physical quantities, such as electron and nuclear spins [84, 96, 97], radio wave signals [34],

attonewton-scale forces [98, 99], and atomic-scale masses [100]. The fundamental sensi-

tivity limit of a measurement of the aforementioned physical quantities via mechanical

displacement sensing is imposed by the zero-point energy of the mechanical oscillator. If

the variance of the mechanical displacement induced by the environment is smaller than

the zero-point motion of the mechanical oscillator, then the effect of the environment on

the oscillator will be buried under mechanical quantum noise. That being said, the opti-

cal measurement of mechanical displacements is itself limited by optical quantum noise

which has prevented the observation of the zero-point motion in real experiments so far.

In this section we investigate the limit of mechanical displacement sensing imposed by

fluctuations in the fields coupled to the optomechanical system.

3.2.1 The standard quantum limit in interferometric measurements

The fluctuations in an arbitrary quadrature of the output field defined by Equation

(3.15) can be observed via an interferometric measurement, with an homodyne detector

for example. A canonical example of interferometric measurement consists of measuring

a relative phase difference between the two arms of a Mach-Zehnder interferometer, as

depicted on Figure 3.1. A single optical mode is split in two at a beam splitter, and
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later recombined at a second beam splitter after a phase shift φ has been applied in one

of the arms. A simple analysis of the fluctuations in the photon number measured at

one output of the second beam splitter reveals the nature of the sensitivity limits of the

interferometric phase measurement [20]. The mean number of photon measured at one

output of the second beam splitter during a time τ , with a photodetector depends on

the relative phase between the two arms of the interferometer, and is given by

n̄2 = 〈n̂2〉 = 〈ŝ†2ŝ2〉τ = n̄in sin2(φ/2) , (3.20)

with n̄in = 〈ŝ†inŝin〉τ the mean number of photon sent at the input of the interferometer

during a time τ . Here we have arbitrarily chosen to look at the second output of the

beam splitter but the analysis is analog for the first output. As we are investigating

limits in measurement sensitivity it is reasonable to consider the measured quantity as

a small deviation of the phase, δφ� π. It induces a change in the measured number of

photons at the photodetector given by

δn̄2 = δφ
∂n̄2

∂φ
≈ δφ

2
sin(φ)n̄in , (3.21)

The signal measured by the photodetector must be compared to the noise of the mea-

surement in the form of the signal to noise ratio (SNR),

SNR =
(δn̄2)2

Var(n̂2)
=

sin2(φ)

sin2(φ/2)

δφ2

4
n̄in . (3.22)

Here we considered only the optical quantum noise, i.e. the variance of the photon

number fluctuations at the photodetector, which we further assume to follow a Poisson

distribution, i.e Var(n̂2) = n̄2, corresponding to a coherent state of light. In this case

the minimum detectable phase variation, obtained for SNR = 1, is given by

δφimp =
1√
n̄in

, (3.23)

and is referred to as the imprecision noise limit.

It appears that the imprecision noise can be arbitrarily reduced by increasing the

input number of photon, either by increasing the power in the input beam or by length-

ening the measurement time. That is obviously not a complete description of the in-

terferometer noise limit, or otherwise the Heisenberg uncertainty principle would be

violated. Indeed we must consider the noise induced by fluctuations in the position of

the interferometer mirrors [7]. Due to the radiation pressure force exerted by the light

beam reflected off a mirror, the mirror position fluctuates on a length scale proportional

to the power fluctuations in the reflected beam. The uncertainty in the mirrors’ position

translates into an additional noise limit in the interferometric phase measurement, which
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Figure 3.1: Quantum model of a balanced interferometer. An optical input beam, ŝin, is
split equally into the two arms of a Mach-Zehnder interferometer by a 50:50 beam splitter.
Vacuum noise enters the interferometer through the unused port of the beam splitter. A
phase shift φ is applied to the optical beam in one arm of the interferometer. After propa-
gating through the arms of the interferometer, the split beams are recombined on a 50:50
beam splitter. Due to interferences between the two beams, the powers at the outputs of
the second beam splitter are dependent on the relative phase between the two arms of the
interferometer, thereby enabling the detection of phase variations by recording one output
of the beam splitter with a photodetector.

increases with the square-root of the input photon number variance for a measurement

time τ , resulting in

δφqba ∝
√
n̄in . (3.24)

This radiation pressure noise is referred to as the quantum backaction (QBA) noise limit,

and it counterbalances the imprecision noise at high photon number. The sum of the

QBA noise and the imprecision noise reaches a minimum for a specific input number of

photon which depends on the characteristic of the interferometer and the signal to be

measured. This minimum is the so-called standard quantum limit (SQL),

δφsql = min
n̄in

(δφimp + δφqba) (3.25)

3.2.2 Imprecision and backaction noise in cavity optomechanics

Expanding on the preceding definitions of the fundamental quantum noise limits for an

interferometric phase measurement, we may define the imprecision noise as the funda-

mental quantum noise introduced by the meter in the measurement, and the QBA noise

as the noise imparted onto the measured quantity via the interaction with the meter.

Applying these definitions to the measurement of mechanical displacements represented
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by Equation (3.18), the imprecision noise corresponds to the spectral variance

〈|δx̂imp|2〉 =
~(1− Zc)
ZcZrp

[
cot2(θ)〈|δX̂in|2〉+ 〈|δP̂in|2〉+ cot(θ)〈δX̂inδP̂in + δP̂inδX̂in〉

]

+
~
Zrp

[
cot2(θ)〈|δX̂ ′loss|2〉+ 〈|δP̂ ′loss|2〉+ cot(θ)〈δX̂ ′lossδP̂ ′loss + δP̂ ′lossδX̂ ′loss〉

]
.

(3.26)

As the measured quadrature tends to the amplitude quadrature of the output field

(θ → 0) the imprecision noise diverges to infinity, what can be explained by the fact

that the amplitude quadrature carries no information on the mechanical displacement

fluctuations, and consists only of quadrature noise from the optical fields entering the

cavity. On the other hand, in the case of uncorrelated amplitude and phase quadra-

tures, the minimum imprecision noise is achieved for a measurement of the output

phase quadrature (θ = π/2), which is the most sensitive to mechanical displacement

fluctuations.

Now considering the mechanical displacement fluctuations driven by the optical

field fluctuations entering the cavity, we can separate the remaining terms in Equation

(3.18) into two contributions to the spectral variance. One which is purely due to the

QBA noise, and will be referred as such,

〈|δx̂qba|2〉 = ~ZcZrp|χm|2〈|δX̂in|2〉+ ~Zrp|χ̄oχm|2〈|δX̂ ′loss|2〉 , (3.27)

and another which results from correlations between the optical field quadrature fluc-

tuations and the transduced mechanical displacement fluctuations driven by radiation-

pressure noise,

〈|δx̂corr|2〉 = 2~Re [(1− χ̄o)χm] cot(θ)〈|δX̂in|2〉+ 2~Re [χ̄oχm] cot(θ)〈|δX̂ ′loss|2〉

+ ~ (1− Re[χ̄oχm]) 〈δX̂inδP̂in + δP̂inδX̂in〉

+ ~Re[χ̄oχm]〈δX̂ ′lossδP̂ ′loss + δP̂ ′lossδX̂ ′loss〉 . (3.28)

As expected the QBA noise scales proportionally with the radiation-pressure transduc-

tion strength ~Zrp = 8η(1− η)(~g/κc)2s̄2
in. while the imprecision noise scales inversely.

3.2.3 The standard quantum limit in cavity optomechanics

The strongest signal induced by mechanical oscillations is observed for a measurement

of the phase quadrature fluctuations of the output field (θ = π/2), therefore it is rea-

sonable to first consider the sensitivity of mechanical displacement sensing for such a

measurement. We further assume that the amplitude and phase quadratures of the fields

entering the input and loss ports of the cavity are uncorrelated. Under these conditions,
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the imprecision and QBA noise simplify to

〈|δx̂imp|2〉 =
~|χm|√
ηP

[
〈|δP̂in|2〉+ Zc

(
〈|δP̂ ′loss|2〉 − 〈|δP̂in|2〉

)]
, (3.29)

〈|δx̂qba|2〉 =
~|χm|P√

η

[
〈|δX̂in|2〉+ (1− η)

(
〈|δX̂ ′loss|2〉 − 〈|δX̂in|2〉

)]
, (3.30)

while the contribution from the output quadrature correlated noise vanishes, 〈|δx̂corr|2〉 =

0. In the equations above we have introduce a dimensionless parameter, refereed to as

the normalized power,

P(Ω) =
ZcZrp|χm|√

η
= 64

η3/2(1− η)2

1 + Ω̄2

g2
0

κ2
c

Pin

~ωd

√
Ω2
m

(Ω2
m − Ω2)2 + Ω2Γ2

m

, (3.31)

which highlights the inverse scaling of imprecision and QBA noise, and follows a lin-

ear dependence on the input power Pin and a quadratic dependence on the vacuum

optomechanical coupling parameter g0.

The SQL corresponds to the minimum measurement noise achievable with quantum

noise limited resources, which means that the field fluctuations entering the system

are equivalent to vacuum noise. In addition, the linearization of the QLE governing

the cavity optomechanical system dynamics (cf. 2.3.5) requires the cavity to be driven

by a bright field, thus the input field must be in a bright coherent state while the

loss port can be filled with a vacuum state, with the respective spectral variances,

〈|δX̂in|2〉 = 〈|δP̂in|2〉 = 1/2, and 〈|δX̂ ′loss|2〉 = 〈|δP̂ ′loss|2〉 = 1/2. After substitution

of the spectral variances of the field fluctuations in Equations (3.29) and (3.30), the

sum of imprecision and QBA noise at a given measurement frequency Ωmeas reaches a

minimum for a value of the dimensionless parameter P(Ωmeas) = 1. Therefore the SQL

for a measurement of the mechanical oscillations, at a frequency Ωmeas = Ωm, reads

〈|δx̂sql(Ωm)|2〉 =
2x2

zpf√
ηΓm

. (3.32)

The SQL is minimum in the limit of high overcoupling, η → 1, because, in this regime,

almost all of the intracavity field sensing the mechanical oscillations is coupled to the

output field of the cavity and thereby increases the measurement signal. Recalling

Equation 2.26 we notice that the SQL is then equal to the spectral variance of the

mechanical oscillator in its ground state,

lim
T→0
〈|δx̂ (Ωm)|2〉 = 2x2

zpfΓm . (3.33)

The SQL is equivalent to the Heisenberg uncertainty principle for continuous linear
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measurements [8]. Indeed the non-commutativity of the amplitude and phase quadra-

tures of the input field imposes the following inequality on the imprecision noise and the

radiation-pressure backation force fluctuations,

〈|δx̂imp|2〉〈|δF̂qba|2〉 = |χm|−2〈|δx̂imp|2〉〈|δx̂qba|2〉 =
~2

4η
≥ ~2

4
, (3.34)

which saturates in the limit of high overcoupling.

The input optical power required to achieve a measurement sensitivity at the SQL

is obtained from Equation (3.31) by setting P(Ωm) = 1, resulting in

Psql = η−3/2 1 + Ω̄2
m

Ω̄2
m

Pmin , (3.35)

where Ω̄m = 2Ωm/κ = 2(1− η)Ωm/κc is the sideband resolution parameter, comparing

the mechanical resonance frequency with the cavity width. Furthermore, we have intro-

duced the minimum input power at which a sensitivity at the SQL can be achieved with

quantum noise limited resources, defined by

Pmin
~ωd

=
ΓmΩ2

m

16g2
0

. (3.36)

Reaching the SQL at this input power requires a highly overcoupled cavity optomechan-

ical system in the resolved sideband regime, i.e. η → 1 and Ω̄m � 1. However there

exists a trade-off between these requirements as the width of the cavity increases with

the coupling parameter, thereby reducing the sideband resolution. Figure 3.2 illustrates

the ratio of the power required to reach the SQL with the minimum theoretical power,

as a function of the optical coupling parameter η and the intrinsic sideband resolution

parameter Ωm/κc.

In order to get a clear idea of the nature of the imprecision noise and the QBA

noise it is interesting to look at the total uncertainty on the displacement measurement

as a function of optical input power and sideband frequency, which is given by

〈|δx̂tot(Ω)|2〉 =
〈|δx̂sql(Ωm)|2〉

2

[
1 + Ω̄2

1 + Ω̄2
m

Psql

Pin
+
|χm(Ω)|2

|χm(Ωm)|2
1 + Ω̄2

m

1 + Ω̄2

Pin

Psql

]
,

≈
〈|δx̂sql(Ωm)|2〉

2

[
Psql

Pin
+

(Γm/2)2

(Ωm − Ω)2 + (Γm/2)2

Pin

Psql

]
, (3.37)

and shown on Figure 3.3. To simplify the expression we assumed κ2 � ΩmΓm, which is

a less stringent condition than the resolved sideband regime, usually fulfilled by cavity

optomechanical systems. Imprecision noise clearly dominates over QBA noise for low

input optical power, Pin < Psql. Inversely the QBA noise surpasses the imprecision

noise at high optical power, Pin > Psql, but only within the resonance of the mechanical
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Figure 3.2: Optical input power required to achieve sensitivities of mechanical displace-
ment measurements at the SQL, normalized to the minimum required power Pmin =
ΓmΩ2

m/32g20 . For an optomechanical system in the bad cavity regime, Ωm/κc � 1, the
required input power is several order of magnitudes higher than for a system in the resolved
sideband regime, Ωm/κc � 1.

oscillator. Away from the mechanical resonance the noise level remains limited by shot

noise from the optical probe field.

Considerations over the optical power necessary to achieve high-sensitivity in me-

chanical displacement measurements are essentials in experiments where the use of high

optical power is limited by technical reasons, e.g. the maximum output power of exist-

ing lasers, or practical reasons, e.g. the damage threshold of biological samples. For a

continuous measurement with a coherent probe, high-sensitivities with low probe pow-

ers are better achieved with an optomechanical system in the resolved sideband regime.

The optimization of an optomechanical system with the view to achieve high-sensitivity

displacement sensing requires a reduction of optical and mechanical loss, as well as a

strengthening of the optomechanical interaction. Table 3.1 lists the experimental pa-

rameters of a few cavity optomechanical systems, and compares the optical probe power

required for a measurement at the SQL.

3.2.4 Squeezing-enhanced measurements

With a growing interest in high-sensitivity measurements of mechanical displacement

motivated by the quest for the detection of gravitational waves in large-scale interfer-

ometers, it was soon recognized that the use of squeezed light as a quantum sensing

resource could improve the sensitivity of interferometric phase measurements beyond
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Figure 3.3: Noise PSD normalized to the SQL. The black wireframe indicates the total
noise PSD, which is the sum of the imprecision noise and the QBA noise, as a function
of the normalized input power Pin/Psql and the normalized frequency detuning from the
mechanical resonance (Ω − Ωm)/Γm. The total noise PSD at the mechanical resonance
frequency Ωm is plotted as a function of normalized input power (black), along with the
imprecision noise (dashed green), the QBA noise (dashed red), and the SQL (dashed yellow).
Similarly the total noise PSD at Pin = Psql is shown on the frequency axis. The blue dotted
curve represents the PSD of the zero-point fluctuations of the mechanical oscillator in its
ground state. All PSD are normalized to the SQL.

the shot noise limit set by optical powers of available continuous-wave lasers [83]. Ex-

perimental demonstrations of squeezing-enhanced interferometric measurements were

later performed with Mach-Zehnder [90], Michelson [91–93], Sagnac [94], and large-scale

gravitational-wave interferometers [95], followed by applications to displacement mea-

surements [101] of particles in biological samples [86].

The use of squeezed light in optical interferometric measurements enables an im-

provement of the measurement sensitivity in the form of a reduction of the measured

optical field fluctuations. By an appropriate choice of the squeezed quadrature of the

optical field, the imprecision noise limit of the measurement can be lowered, thereby

increasing the signal-to-noise ratio. The reduction of the imprecision noise can be un-

derstood by recalling the sideband model of Subsection 1.2.5, where quantum noise

arises upon detection, from the beating of randomly fluctuating sidebands with a bright

carrier. From Equation (1.55) the spectral variance of a phase quadrature measurement

(φα = π/2) in terms of upper and lower sideband quadrature fluctuations, and excluding
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References This thesis [37] [39] [33] [89]

λd [nm] 1064 1537 780 1064 1540

κ/2π [Hz] 1.84e+08 5.00e+08 7.10e+06 8.90e+05 3.42e+09

Ωm/2π [Hz] 5.48e+06 3.68e+09 7.80e+07 1.55e+06 2.80e+07

Γm/2π [Hz] 1.00e+04 3.50e+04 8.10e+03 1.43e+03 1.72e+02

g0/2π [Hz] 3.00e+01 9.10e+05 3.40e+03 1.61e+01 7.50e+05

Ωm/κ 3.0e-02 7.4e+00 1.1e+01 1.7e+00 8.2e-03

Pmin [W] 2.4e-05 2.9e-08 4.3e-07 9.7e-07 1.2e-14

Psql (η = 1/2) [W] 7.8e-02 8.4e-08 1.2e-06 3.7e-06 5.1e-10

Table 3.1: Experimental parameters and calculated optical probe power for measurements
at the SQL in various optomechanical systems. As the coupling parameter is not always
clearly stated in the references, we assumed the system to be in the critical coupling regime
(η = 1/2) for the calculation of Psql.

all classical noise from the detection apparatus, is given by

〈|δP̂ (Ω)|2〉 =
1

4

[
〈δP̂ 2

+〉+ 〈δP̂ 2
−〉+ 〈δX̂2

+〉+ 〈δX̂2
−〉+ 2〈δP̂+δP̂−〉 − 2〈δX̂+δX̂−〉

]
.

(3.38)

For a coherent optical field, the sidebands are uncorrelated and in vacuum states with

quadrature variances equal to 1/2. Therefore the phase quadrature measurement is

quantum noise limited with a noise spectral variance at the shot noise level, i.e. 〈|δP̂ (Ω)|2〉 =

1/2. The effect of squeezed light on the detection noise lies in the covariance terms of

Equation (3.38). Correlations between upper and lower sideband quadrature fluctu-

ations can be introduced such that both covariance terms subtract to the total sum,

thereby bringing the measurement imprecision noise below the shot noise level, i.e.

〈|δP̂ (Ω)|2〉 < 1/2. In the case of a phase measurement, the maximum noise reduction

is achieved when the sidebands are in a phase squeezed vacuum state, which implies

that the phase quadrature fluctuations of the upper and lower sidebands are corre-

lated, 〈δP̂+δP̂−〉 < 0, while their amplitude quadrature fluctuations are anti-correlated,

〈δX̂+δX̂−〉 > 0.

Phase quadrature squeezed input field

From 1.2.7 we recall the amplitude and phase quadrature variances of a pure phase

squeezed state,

〈|δX̂ (Ω)|2〉 =
1

2
e2r , 〈|δP̂ (Ω)|2〉 =

1

2
e−2r , (3.39)

where r ≥ 0 is the squeezing parameter. Injecting a bright phase squeezed state at

the input port of the cavity leads to an overall reduction of the imprecision noise (cf.

Equation (3.29)), to the detriment of an increase in QBA noise due to the anti-squeezed
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Figure 3.4: Imprecision noise (a) and QBA noise (b) at the mechanical sideband as a
function of the cavity coupling parameter η = κex/κ. Noise levels are normalized to the
SQL. Thin and thick traces indicate noise levels for measurements with a coherent and
phase squeezed input field, respectively, with input power Pmin, and at various degrees
of intrinsic sideband resolution, Ωm/κc = 0.1(red), 1 (magenta), 10 (cyan), and 100 (blue).
Phase squeezed vacuum states with 8.7 dB reduced variance at the mechanical sidebands are
used as a quantum-enhanced sensing resources. Gray and black stars indicate the extrema of
the thin and thick traces, respectively, which correspond to the minimum of the imprecision
noise in (a), and the maximum of the QBA noise in (b).

amplitude quadrature of the input field (cf. Equation (3.30)). The imprecision noise and

the QBA noise at the mechanical sideband frequency Ωm are shown on Figures 3.4(a)

and 3.4(b) for both a bright coherent and phase squeezed input field with power Pmin.

The noise PSD is normalized to the SQL, and plotted as a function of the cavity coupling

parameter, η = κexκ, for various degrees of intrinsic sideband resolution, Ωm/κc. The

squeezing parameter is arbitrarily chosen equal to unity, which yields a reduction of the

input phase quadrature fluctuations of 8.7 dB compared to a coherent state, well within

reach of current technology [94]. As indicated by the gray and black stars on Figure

3.4(a), the minimum achievable imprecision noise at a fixed input power with both a

coherent and phase squeezed input field decreases when the resolution of the mechanical

sideband increases. The inverse trend is observed for the maximum QBA noise on Figure

3.4(b). This behavior can be explained by an increase of the power circulating in the

cavity induced by a reduction of the intrinsic cavity loss, and leading to an improvement

of the mechanical noise transduction.

Figure 3.4 highlights the difference between the resolved sideband regime (Ωm/κc >

1) and the unresolved sideband regime (Ωm/κc < 1). In the later case phase squeezing of

the input field fluctuations yields a limited improvement in measurement sensitivity as

intrinsic cavity loss damages squeezed states at sideband frequencies within the cavity

width. In particular when the cavity is critically coupled (η = 1/2) and in the limit

Ωm � κ, all input field fluctuations entering the cavity pass through the cavity and leave

through the loss port, while fluctuations that enter the cavity via the loss port couple

through the cavity to the output field. Therefore squeezing the input field fluctuations
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yields no improvement of the measurement sensitivity in this regime.

Optimum squeezing-enhanced imprecision noise reduction is achieved in the regime

of negligible intrinsic cavity loss rate compared to both the optical cavity coupling rate

and mechanical resonance frequency, i.e. κc � κex, Ωm, where the squeezed mechanical

sidebands lie far out of the cavity resonance and are therefore little affected by the

cavity loss. Unfortunately, this regime also corresponds to a maximum QBA noise that

compensates the reduction of imprecision noise, thereby preventing the measurement

sensitivity to beat the SQL.

Figure 3.5 shows the total displacement measurement uncertainty at the mechanical

sideband frequency Ωm as a function of the optical input power and degree of phase

squeezing. The cavity optomechanical system is set in the overcoupled regime with η =

0.8, and in the resolved sideband regime with Ωm/κc = 22 [39], which are favorable and

experimentally reasonable conditions for the enhancement of measurement sensitivity

with squeezed light. Strong squeezing of the input phase quadrature fluctuations gives

access to measurement sensitivities close to the SQL at low powers with minimum noise

levels achieved near the line parametrized by, Pin = 2Psql〈|δP̂in|2〉, as expected from

Equations (3.29) and (3.30). However, due to non-zero intrinsic cavity loss, the QBA

noise and imprecision noise are unbalanced for high degrees of squeezing, what degrades

the measurement sensitivity. As a result squeezing enhances the measurement sensitivity

at a given power, but the optimum measurement sensitivity achievable is lower than one

at a higher power.

Considerations for experimental implementations

The primary requirement on the experimental implementation of squeezing-enhanced

measurements is the availability of squeezed vacuum states at the mechanical sideband

frequency. Indeed the observation of squeezed states is currently technically limited to

sideband frequencies from kilohertz to gigahertz [102, 103], with the strongest squeezing

typically obtained in the megahertz to tens of megahertz range [94, 104], where the

sidebands are little affected by low frequency classical noise modulating the amplitude

and phase of the carrier, but still satisfying the mode matching conditions imposed

by squeezing source devices. These restrictions on the squeezing bandwidth limit the

choice of mechanical resonator with which to perform quantum-enhanced displacement

measurements. For example, optomechanical crystals [36, 37] sustain mechanical modes

at gigahertz frequencies that lie outside of the bandwidth of current squeezing sources,

and are therefore not suitable although they operate far into the resolved sideband

regime. On the other hand, WGM resonators [39, 105] display mechanical resonances

at lower frequencies (1-100 MHz) that can be probed with significant quantum noise

reduction (∼5 dB at 100 MHz [103, 104]), while being sideband resolved.
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Figure 3.5: Total quantum noise for a displacement measurement in the overcoupled
and resolved sideband regime (η = 0.8 and Ωm/κc = 22) as a function of input power and
squeezing degree. The measurement noise is normalized to the SQL. Black contours indicate
3 dB, 10 dB and 20 dB of quantum noise above the SQL.

Considering the cavity optomechanical system in [39] (cf. Table 3.1), its mechanical

resonance at 78 MHz, corresponding to the radial breathing mode of a WGM resonator,

can be probed by a bright phase squeezed input field with a phase noise reduction of 6 dB

at the mechanical sideband, provided by the squeezing source in [104]. Figure 3.6 shows

the sum of the imprecision and QB noise for displacement measurements with both a
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Figure 3.6: Total quantum noise for a displacement measurement using coherent (solid
lines) and phase squeezed (dashed lines) input fields at powers -6 dB (magenta), 0 dB
(cyan), and +6 dB (blue) over Pmin. Phase squeezed vacuum states at the mechanical
sidebands display a 6 dB reduction of noise variance, and are assumed to be pure. The
cavity optomechanical system is in the resolved sideband regime with Ωm/κc = 22. The
measurement noise is normalized to the SQL which is indicated by the gray dashed line.
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coherent input field and a phase squeezed intput field, and for various probe powers

below and above Pmin. The minimum optical power required to reach displacement

measurement sensitivities at the SQL with a coherent input field at a carrier wavelength

of 1064 nm is Pmin = 590 nW. In the case of a squeezing-enhanced measurement, the

degree of anti-squeezing is assumed equal to the degree of squeezing for simplicity. For

impure phase squeezed vacuum states at the mechanical sideband, the excess QBA noise

prevents reaching sensitivities at the SQL.

We see from Figure 3.6 that the measurement sensitivity increases with the input

power until the SQL is approached for Pin = Pmin. This behavior is expected since the

QBA noise is negligible compared to the imprecision noise for low input powers below

Pmin, therefore the total noise variance follows the 1/Pin dependence of the imprecision

noise (cf. Equation 3.29).

For measurements at input powers above Pmin, the QBA noise is no longer negligi-

ble and overcomes the imprecision noise, which leads to an increase in the noise variance

proportional to the input power. However, due to the the near zero transduction of

mechanical displacements onto the output phase quadrature in the limit of under- and

overcoupling, i.e. η → 0, 1, there exists two values of the cavity coupling parameter

at which the imprecision noise and the QBA noise are balanced, thus the total mea-

surement noise is minimum and near the SQL. One value corresponds to the limit of

the overcoupled regime (η → 1) and provides the best measurement sensitivity, but it

is challenging to reach experimentally [61]. The second value yields a slightly lower

measurement sensitivity but corresponds to less demanding experimental conditions.

With a cavity optomechanical system in the resolved sideband regime, probing

mechanical displacements with a phase squeezed field provides an improvement of the

sensitivity comparable to an increase of input power with a coherent field. For example,

the measurement noise level achieved with a 6 dB reduction of the input phase noise

is equivalent to the noise level reached with an increase of the input power by 6 dB.

This statement holds particularly true when comparing measurement sensitivities at

input power lower than Pmin, and in the limit of strong overcoupling. However, it

is more advantageous to employ a phase squeezed-input state for probing mechanical

displacements in the undercoupled regime with an input power larger than Pmin, as it

gives access to measurement sensitivities near the SQL, which cannot be reached by

using a coherent input field, regardless of its power.

Squeezing of the loss

So far we have considered the squeezing of the input field fluctuations, that best improves

displacement measurement sensitivities in sideband resolved cavity optomechanical sys-

tems. In analogy to the interferometric phase measurement of 3.2.1, we may also consider
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Figure 3.7: Imprecision noise (a) and QBA noise (b) at the mechanical sideband as a
function of the cavity coupling parameter η = κex/κ. Noise levels are normalized to the
SQL. Thick and thin traces indicate noise levels for measurements with and without squeez-
ing of the vacuum fluctuations entering the loss port, respectively. Phase squeezed vac-
uum states with 8.7 dB reduced variance at the mechanical sidebands are coupled to the
loss port of the cavity. The mechanical displacements are probed with a coherent input
field at power Pmin, and various degrees of intrinsic sideband resolution are considered:
Ωm/κc = 0.1(red), 1 (magenta), 10 (cyan), and 100 (blue). Gray and black stars indicate
the extrema of the thin and thick traces, respectively, which correspond to the minimum of
the imprecision noise in (a), and the maximum of the QBA noise in (b).

injecting vacuum squeezed states at sideband frequencies into the dark port rather than

the bright port [83], which in the case of a cavity optomechanical system corresponds to

squeezing the field fluctuations entering the cavity from the loss port.

Figure 3.7 shows the imprecision and QBA noise of a displacement measurement

performed with a bright coherent input field while injecting phase squeezed vacuum

states at sideband frequencies into the cavity via the loss port. Compared to displace-

ment measurements performed with quantum noise limited resources, such a measure-

ment provides an enhancement of sensitivity in the unresolved sideband regime, but no

improvement in the resolved sideband regime. This is because the fluctuations entering

through the loss port can only couple to the output field at sideband frequencies within

the cavity bandwidth.

In practice it is usually not feasible to squeeze the vacuum field fluctuations coupled

to the cavity via the loss port, as optical loss may be due to absorption or scattering

into radiative modes that cannot be accessed. However in some particular design of

optomechanical systems it is possible to control the coupling rate to an controllable

optical mode such that it dominates other loss rate. In the case of a Fabry-Pérot cav-

ity with a movable mirror (Figure 3.8(a)) the optical loss associated to the mirror’s

transmission can be shaped into a single propagating mode by an appropriate design

and alignment of the cavity. The transmission of the mirror can then be selected such

that coupling to the propagating mode dominates over other loss rates. By squeezing

a matching counter-propagating field, vacuum squeezed states can be injected into the
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Figure 3.8: Fabry-Pérot (a) and WGM (b) optomechanical systems coupled to a single

mode field ŝ
(2)
loss via the loss port with decay rate κ

(2)
c . The coupling to remaining loss

channels is represented by the coupling of the cavity field to the external field ŝ
(1)
loss with rate

κ
(1)
c .

cavity through the movable mirror. Similarly it is possible to couple vacuum squeezed

states via the loss port in a WGM cavity by scattering of a counter-propagating mode

into the forward-propagating WGM [106–108], as shown on Figure 3.8(b). By optimiz-

ing the modal coupling of the WGM cavity such that it dominates intrinsic loss rates,

squeezed vacuum states can be efficiently transfered from the counter-propagating mode

to the forward-propagating mode, thus enabling squeezing-enhanced displacement mea-

surements with cavity optomechanical systems in the unresolved sideband regime.



Chapter 4

Electrical feedback cooling

In the previous chapter we have seen that optomechanical interactions give us a mean to

indirectly observe the displacement of a microresonator from the mechanically-induced

alteration of the noise properties of an optical probe field. Here the mechanical oscilla-

tions shape the amplitude and phase fluctuations of the light, but the optomechanical

interaction also authorize the light to affect the phase and amplitude of the mechanical

oscillations. This backaction has been shown to limit the sensitivity of position mea-

surements but it may also be used to control the displacement of the microresonator. In

particular, a lot of effort from the optomechanical community is being directed towards

the cooling of a microresonator vibrational mode into its quantum ground state. Such

an achievement would enable the study of the quantum behavior of a massive oscillator

and allow experimental test of major scientific theories such as quantum gravity [3, 109].

However radiation pressure forces are inherently weak, thus a high optical power is re-

quired to achieve a significant control, what leads to detrimental heating by absorption

[110, 111]. Another actuation method, extensively used with nanoelectromechanical sys-

tems [42, 112, 113], is based on electrical forces that can be orders of magnitude stronger

while producing far less heat.

In this chapter we investigate the actuation and control of the mechanical mode of

a microtoroid resonator with dielectric gradient forces [14, 17, 18]. We start by studying

theoretically and experimentally the generation of dielectric gradient forces, and their

effect on the dynamics of the microresonator. Then we include the electrical actuation

scheme within a feedback loop to cool the mechanical mode.

89
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4.1 Actuation of a microtoroid resonator

4.1.1 Dielectric gradient forces

Any dielectric body experiences a force when placed in a nonuniform electric field .

Due to the presence of the electric field, electric charges within the body are slightly

displaced what generates electric dipoles oriented in the direction of the electric field.

In a nonuniform electric field, each pole of an electric dipole is subjected to a Coulomb

force with different magnitude, thus the dipole experiences a net force directed towards

higher electric field strength. Additionally, any dipole in an electric field experiences a

torque which tends to bring it in alignment with the electric field.

An electrical dipole consists of two equal and opposite electrical charges +q and

−q at positions ~r+ and ~r−, respectively, and is represented by a dipole moment ~p = q~d,

where ~d = (~r+ − ~r−). The net force experienced by the dipole in the presence of a

nonuniform electric field is given by [114],

~Fdiel = q ~E (~r+)− q ~E (~r−) , (4.1)

which can be approximated, in the limit of small distance |~d| compared to the charac-

teristic dimension of the electric field nonuniformity, by

~Fdiel =
(
~p · ~∇

)
~E. (4.2)

In a uniform electric field, the gradient of the electric field is null, therefore no net force

moves the dipole, however both charges still experience a Coulomb force that generates

a torque on the dipole, given by

~Tdiel =
~d

2
× q ~E +

−~d
2
×
(
−q ~E

)
= ~p× ~E. (4.3)

The above equation holds in the presence of a nonuniform electric field if the distance∣∣∣~d
∣∣∣ remains small compared to the characteristic dimension of the electric field nonuni-

formity. The torque exists only when the electric dipole is not parallel to the electric

field.

4.1.2 Dielectric gradient force actuation of a mechanical resonator

The actuation of a microresonator via dielectric forces can be achieved by placing the

microresonator in an electric field gradient generated by two charged electrodes [14, 17].

The charging of the electrodes can be controlled by applying a voltage V to the electrodes

such that the electrodes act as the two sides of a capacitor with capacitance Ce. We

model the charging of each electrode as a point charge q± = ±CeV . Gauss’s law yields
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the electric field generated by each point charges, at a position ~r in the vicinity of the

electrodes,

~E±(~r) =
q±

4πε0

~r − ~r±
|~r − ~r±|3

=
±CeV
4πε0

~e±(~r) , (4.4)

where we have introduced the vectors ~e±(~r) = (~r − ~r±) / |~r − ~r±|3 which accounts for

the spatial dependence of the electric field generated by each point charge. Due to the

linearity of Maxwell’s equation, the total electric field generated by the electrodes is

given by the sum

~E(~r) = ~E+(~r) + ~E−(~r) , (4.5)

=
CeV

4πε0
(~e+(~r)− ~e−(~r)) . (4.6)

We note here that the electric field diverges to infinity when the distance to the point

charge shrinks to zero, what is not physical. However the formal treatment of this sin-

gularity is only relevant at scales way smaller than the scale of actual electromechanical

devices.

The electric field generated by the charged electrodes polarizes the dielectric medium

constituting the microresonator. The polarization of an homogeneous and isotropic

dielectric medium induced by a constant electric field ~E is given by

~Pinduced = χeε0
~E , (4.7)

where ε0 is the vacuum permittivity and χe is the electric susceptibility of the medium.

On top of the induced polarization the dielectric medium may present an intrinsic po-

larization due to trapped charges, so that the total polarization of the medium reads,

~Ptotal = ~Pintrinsic + ~Pinduced . (4.8)

The induced polarization is parallel to the electric field so it is not subjected to

a torque (cf. Equation (4.3)). Only the trapped dipoles contributing to the intrinsic

polarization of the medium experience a torque, leading to mechanical stress in the

dielectric material.

Combining Equations (4.2) and (4.8), the dielectric gradient force experienced by

an elementary volume of the dielectric body in a constant inhomogeneous electric field
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Figure 4.1: Electric field ~E(~r) (left) and dielectric gradient force ~Fdiel(~r) (right) generated
by a pair of electrodes with opposite charges. The streamlines indicate the vector fields of
the electric field (left) and dielectric gradient force (right). The colored contours show the

magnitude of the electric field | ~E(~r)| (left) and the magnitude of the dielectric gradient force

| ~Fdiel(~r)| (right). Here the intrinsic polarization is not taken into account in the calculation
of the dielectric gradient force.

reads,

~Fdiel(~r) =
(
~Ptotal(~r) · ~∇

)
~E(~r) , (4.9)

=
CeV

4πε0

(
~Pintrinsic(~r) · ~∇

)
(~e+(~r)− ~e−(~r))

+
χeC

2
eV

2

32π2ε0

~∇ |~e+(~r)− ~e−(~r)|2 , (4.10)

where we derived the last term by using Maxwell-Faraday equation in the absence of a

magnetic field, i.e. ~∇× ~E = ~0. Figure 4.1 shows both the electric field and the dielectric

gradient force generated between two electrodes with opposite charges. Both the electric

field and its gradient are more intense in the direct vicinity of the electrode point charges,

and decays exponentially as the distance to the electrodes increases. This indicates that

an efficient actuation scheme employing dielectric gradient forces to control the motion

of a mechanical resonator requires the electrodes to be placed as close as possible to the

resonator. Further tuning of the position of the electrodes may also lead to the targeted

actuation of specific oscillatory modes of the mechanical resonator by matching the

orientation of the dielectric gradient force with the direction of the mechanical spatial

mode motion.

We note Fdiel the scalar projection of the dielectric gradient force according to

Equation (2.40). It has a linear and quadratic dependence on the voltage applied to

the electrodes due to the intrinsic and induced polarization of the mechanical resonator,
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respectively, and can be written,

Fdiel = cintrinsicV + cinducedV
2 , (4.11)

where cintrinsic and cinduced are constants.

In order to drive the oscillations of the microresonator the dielectric force is modu-

lated by applying a weak voltage modulation on top of a constant DC voltage, resulting

in the time dependent force

Fdiel(t) = Fdiel(Vdc + Vac(t)) ,

= Fdiel(Vdc) + (cintrinsic + 2cinducedVdc)Vac(t) + cinducedVac(t)2 . (4.12)

The first term is a time-independent force that causes a steady-state displacement of

the microresonator, and does not affect the time evolution of the microresonator. The

second and third terms are time dependent forces that drive the oscillations of the

microresonator.

Assuming a periodic modulation of the drive voltage Vac(t), the dynamics of a single

mechanical mode of the microresonator is best described in the frequency domain where

it obeys

x (Ω) = χm(Ω)Fdiel(Ω) , (4.13)

with χm(Ω) the mechanical susceptibility of the mode oscillator. Here we consider the

dielectric force only, excluding all other forces that may drive the oscillator’s motion, for

simplicity. The Fourier transform of the dielectric force applied to the microresonator

is given by

Fdiel(Ω) =
√

2πFdiel(Vdc)δ(Ω) + (cintrinsic + 2cinducedVdc) Vac(Ω)

+
cinduced√

2π

(
Vac ∗Vac

)
(Ω) , (4.14)

where the first term on the right hand side is proportional to a Dirac delta function

δ(Ω), the second is proportional to the Fourier transform of the modulated drive voltage

Vac(Ω), and the third contains the autoconvolution of the modulated drive voltage in

the frequency domain.
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Considering a monochromatic voltage modulation such as Vac(t) = Vmod sin(Ωmodt),

the dielectric force in the Fourier domain reads,

Fdiel(Ω) =
√

2π

(
Fdiel(Vdc)−

cinducedV
2

mod

2

)
δ(Ω)

− i
√
π

2
(cintrinsic + 2cinducedVdc)Vmod [δ(Ω− Ωmod)− δ(Ω + Ωmod)]

− 1

2

√
π

2
cinducedV

2
mod (δ(Ω− 2Ωmod) + δ(Ω + 2Ωmod)) , (4.15)

and presents three frequency components. One at zero frequency, also called the DC

component, consists of the constant force generated by the DC voltage (first line in

Equation (4.14)) plus the mean of the dielectric force induced by the voltage modulation.

The second at ±Ωmod scales linearly with both the DC voltage and the modulation

voltage amplitude. The third at ±2Ωmod is independent of the DC voltage applied

at the electrodes and scales quadratically with the modulation voltage amplitude, and

represents the modulated voltage both affecting the dielectric polarization and actuation

of the microresonator.

Driving the mechanical resonator at its resonance frequency (i.e. Ωmod = Ωm) yields

a maximum mechanical displacement amplitude

x (Ωm) =

√
π

2

(cintrinsic + 2cinducedVdc)Vmod

meffΩmΓm
, (4.16)

and measuring this displacement provides a mean to estimate the magnitude of the

dielectric gradient forces experienced by the resonator.

4.1.3 Dielectric gradient force actuation setup

Our generic setup for dielectric gradient force actuation of microtoroids, depicted in

Figure 4.2, is inspired from an antecedent dielectric gradient force actuation scheme

[17]. The actuation of a microtoroid resonator is achieved by generating a nonuniform

electric field inducing dielectric gradient forces to drive the mechanical motion. The

electric field is produced by applying a voltage to a sharp electrode positioned above

the microtoroid while an aluminum plate placed underneath the silicon chip supporting

the silica microtoroids is grounded. The static dielectric polarization of the microtoroid

consists of its intrinsic polarization and an induced polarization controlled by a constant

DC voltage from a high voltage source1. An AC voltage modulation provided by a

function generator2 is combined to the DC voltage on a bias tee3 in order to modulate

1 Piezomechanik SVR 1000-3 High power analog amplifier.
2Agilent 33120A Function Generator.
3Mini-Circuits ZFBT-4R2GW+ Bias-Tee, modified to accept up to 300V at its DC input.
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the electric field, thereby producing periodic dielectric forces at radio-frequencies. Both

DC and AC voltages can be tuned independently.

We use sharp stainless steel needles with tip diameters around 2-5 μm as the top

electrode. Alternatively one may use very sharp tungsten tips made by electromechanical

etching, such as in scanning tunneling microscopes. The needle is affixed to a conductive

copper holder which enables easy connection to the electrode with a BNC cable. The

holder is placed on a 3-axis translation stage4 with manual and piezo actuators providing

control over the position of the electrode tip in the vicinity of the microtoroid resonator.

Piezo actuation allows a fine tuning of the stage position over a 20 μm range by using a

3-channel piezo controller5.

Observation of the mechanical displacement of the microtoroid is achieved by ho-

modyne spectroscopy. The microtoroid WGM cavity is probed by an optical field which

acquires phase fluctuations due to the transduction of mechanical displacements via the

optomechanical interaction. The optical phase noise is then measured by a balanced ho-

modyne detector and the PSD of the difference photocurrent is recorded by an electronic

spectrum analyzer (ESA).

4.1.4 Characterization of the actuation setup

We characterize our dielectric gradient force actuation setup by varying the DC and AC

voltage independently. Calibration of the homodyne noise power spectrum by adding a

known phase modulation onto the optical probe allows the calibration of the amplitude

of mechanical displacements as well as the calibration of the magnitude of dielectric

gradient forces experienced by the microresonator.

In order to confirm that the phase noise measured at the AC drive frequency is due to

the actuation of mechanical motion and not any electro-optic effect, we scan a mechanical

resonance with an electrical network analyzer6 (ENA), which consists of a combined

signal generator and spectrum analyzer, replacing the individual signal generator and

ESA in Figure 4.2. An ENA provides an electrical signal which serves both as a probe

to an electrical network and as a reference to the measured frequency response of the

electrical network. In this way both the gain and phase response of the electrical network

is obtained. In our setup the probe signal from the ENA drives the AC modulation at

the sharp electrode, then the ENA receives the homodyne difference signal from the

optical phase quadrature measurement. We test the actuation setup for various DC

voltage and we clearly observe a resonant amplification of the measured signal matching

the response of a mechanical mode of our microtoroid to a driving force. Results are

4Thorlabs MAX311D 3-axis NanoMax stage with closed-loop piezos.
5Thorlabs BPC303 3-channel benchtop piezo controller with USB.
6Find reference for the network analyzer
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shown in Figure 4.3 for the scan of the FFM with an AC drive voltage amplitude set to

Vmod = 220 mV. We also observe the effect of the intrinsic polarization as the mechanical

resonance is excited even at zero DC voltage, but the driving forces are canceled for a

DC voltage around -30 V. Furthermore the scan of the FFM shows that the width of

the mechanical resonance is not affected by the magnitude of the DC bias voltage.

Scaling with DC voltage

We investigated the scaling of the driven mechanical displacement with DC voltage

by recording with the ESA the peak displacement amplitude of the FFM driven by a

Figure 4.2: Experimental setup for dielectric gradient force actuation of a microtoroid
resonator. The mechanical displacement of the microtoroid resonator is transduced via the
optomechanical interaction onto the optical phase quadrature fluctuations of a probe beam.
Subsequent measurement of the probe phase fluctuations is performed with a balanced ho-
modyne detector and the power spectrum of the homodyne difference current is recorded
by an electronic spectrum analyzer (ESA). Actuation of the microtoroid motion is achieved
by generating a time-varying nonuniform electric field which subjects the microtoroid to
dielectric gradient forces. A sharp electrode is positioned above the microtoroid while an
aluminum plate placed underneath the chip supporting the microtoroid is grounded. Ap-
plying a voltage difference between the sharp electrode and the aluminum plate leads to the
accumulation of opposite electric charges, thereby generating an electric field across the mi-
crotoroid resonator. The voltage is composed of a constant DC part from a tunable voltage
supply combined to a weak modulation from a function generator. Alternatively, the signal
generator and ESA are replaced by an electrical network analyzer (ENA).
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Figure 4.3: Gain power spectrum of the dielectric gradient force setup. A probe signal
from an electrical network analyzer (ENA) is applied to the sharp electrode to drive the
motion of a microtoroid via dielectric gradient forces. The displacement of the microtoroid
is transduced onto an optical field whose phase noise is measured by balanced homodyne
detection. The recorded homodyne signal is then compared to the electrical probe signal, and
shows that the increase in phase noise is due to the excitation of the mechanical resonances
by dielectric gradient forces. For this measurement the probe signal has an amplitude
Vmod = 220 mV.

monochromatic voltage modulation at its resonance frequency from the function gener-

ator. The results in Figure 4.4(a) show a linear dependence of the peak displacement

amplitude at the drive frequency with DC bias voltage applied to the electrodes, as

expected from Equation (4.16). Furthermore the presence of an intrinsic polarization is

confirmed by the nonzero driving of the oscillator at zero DC bias voltage. However the

intrinsic polarization can be canceled by applying an appropriate DC bias voltage, here

corresponding to -24.4 volts, thereby inhibiting the actuation of mechanical motion.

Besides varying the strength of the dielectric gradient force on the microtoroid,

changing the DC bias voltage displaces the resonator in a new equilibrium position due

to the time independent component of the dielectric gradient force, i.e. Fdiel(Vdc) in

Equation (4.12). Therefore we observed an alteration of the optical coupling between

the tapered fiber and the WGM cavity, which required a repositioning of the tapered

fiber relative to the microtoroid.
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Scaling with AC voltage

Following the same method as for measuring the scaling of the driven mechanical dis-

placement with DC voltage, we observe a linear scaling with AC voltage amplitude as

expected from Equation (4.16), and shown in Figure 4.4(b).

4.2 Feedback cooling of a microtoroid resonator

A long standing interrogation touching the foundations of quantum mechanics has been

the ability to prepare and observe macroscopic objects in a purely quantum mechani-

cal state, such as the famous dead-and-alive cat imagined by Schrödinger. Indeed the

quantum behavior of microscopic piece of matter such as atoms or molecules has been

well studied and documented, but scaling up to larger massive systems, such as mechan-

ical oscillators with dimensions in the order of micrometers, and weights in the order

of micrograms, proves difficult. A prior requirement to the observation of the quantum

behavior of a macroscopic oscillator is the ability to prepare the oscillator in or near

its ground state. Ground state operation imposes a strict condition on the temperature

T of the oscillator, which must satisfy kBT � ~Ωm in order to prevent the thermal-

ization of the oscillator’s state. Unless the mechanical frequency of the oscillator is in

the gigahertz range, a domain almost exclusively restricted to optomechanical crystals

[36, 37, 115], even dilution refrigerator temperatures of a few tens of millikelvins are not

sufficient to reach ground state temperatures, thus additional cooling is required.

Cooling techniques can be divided into two categories, namely feedback cooling ,

also known as cold damping, and cavity-assisted backaction cooling, also known as side-

band cooling. Cavity cooling schemes derive from the long known laser-cooling schemes

applied to atoms and ions [9, 116, 117], and are based on the parametric coupling of

a mechanical mode to a high-frequency bosonic resonator acting as a low temperature

reservoir. In optomechanical systems the mechanical mode gets coupled to an optical

cavity mode via radiation pressure interaction. Driving the cavity with a negative de-

tuning results in a retarded radiation pressure backaction force which is anti-correlated

with the Brownian motion of the oscillator, thereby leading to cooling of the mechan-

ical mode [118] (cf. Figure 4.5(a)). In order to understand the conditions and limits

of cavity-assisted backaction cooling it is interesting to represent the optomechanical

interaction in terms of Raman scattering. Via the radiation pressure interaction of the

optical drive at frequency ωd, with the mechanical oscillator with resonance frequency

Ωm, drive photons scatters into anti-stokes (stokes) sidebands at frequency ωd + Ωm

(ωd − Ωm) by absorbing a phonon. Cooling of the mechanical oscillator is enhanced

when the anti-stokes sidebands matches the cavity resonance, i.e. for a drive field red

detuned from the cavity resonance by ∆ = −Ωm, as shown on Figure 4.5(b). It can be
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Figure 4.4: (a) Scaling of the mechanical actuation with DC bias voltage. The microtoroid
motion is driven by a monochromatic AC voltage modulation with Ωmod/2π = 5.48 MHz
and Vmod = 500 mV. The DC bias voltage is varied from 300 V to -200 V. Measured
peak displacement amplitudes are fitted to a function Vdc 7→ Slope × |Vdc − Intercept|,
giving Slope = 3.2 am.Hz−1/2.V−1 and Intercept = −24.4 V. (b) Scaling of the mechanical
actuation with DC bias voltage. The microtoroid motion is driven by a monochromatic AC
voltage modulation at frequency Ωmod/2π = 5.48 MHz. The DC bias voltage is fixed to
Vdc = 50 V and the amplitude of the AC modulation is varied from 6.8 Vrms to 0 Vrms.
Measured peak displacement amplitudes are fitted to a function Vmod 7→ Slope × Vmod,
giving Slope = 0.33 fm.Hz−1/2.V−1

rms. Thermal noise was subtracted in all measurements of
the mechanical peak displacement amplitude.
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Figure 4.5: (a) Due to the finite cavity lifetime the radiation pressure force exerted by
the intracavity field onto the mechanical oscillator evolves nonadiabatically thereby adding
or removing work from the mechanical oscillator as the cavity driving field is respectively
blue or red detuned from the cavity resonance. This gives rise to heating or cooling of the
mechanical oscillator. (b) Raman scattering picture of cavity-assisted backaction cooling.
The probability of a drive photon being scattered by a mechanical phonon is dictated by the
cavity bandwidth. Therefore when the cavity driving field is red detuned by one mechanical
resonance frequency from the cavity resonance, anti-stokes scattering is enhanced over stokes
scattering what leads to a depletion of the phonon population, and cooling of the mechanical
oscillator.

shown [119, 120] that ground state cooling can only be achieved when the cavity width is

much larger than the heating rate induced by stokes scattering, but much smaller than

the mechanical oscillation (Ωm � κ). So far, resolved sideband cooling has proven to be

the most successful cooling technique for bringing a mechanical oscillator in its quantum

ground state, both with microwave cavity electromechanical systems [42] and cavity op-

tomechanical systems [37], reaching phonon occupations of respectively nm ∼ 0.34 and

nm ∼ 0.85.

The study presented in this thesis is focusing on cavity optomechanical systems

in the unresolved sideband regime which are not suited for the application of sideband

cooling techniques. However as we will see in the following, cold damping is preferable

and works best for systems in the unresolved sideband regime, and can in theory bring

a mechanical oscillator in its quantum ground-state [120].

4.2.1 Cold damping

Cold damping relies on the sensitive measurement of mechanical motion to apply an

active negative feedback, which increases the damping of the mechanical oscillator [121].

The optimal cooling that can be achieved with a feedback cooling scheme is usually

limited by the measurement noise and the feedback gain. Cavity optomechanical sys-

tems allow ultrahigh-sensitivity measurements of mechanical motion due to the high

frequencies of optical fields and the cavity-enhanced optomechanical interaction. Cool-

ing can then be achieved by feeding back the measured low noise signal to a control force
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actuating the mechanical oscillator. The radiation pressure force can be used for this

purpose [29, 122, 123], but it remains inherently weak and the optical powers required

to significantly actuate the mechanical motion may actually lead to heating, especially

for cryogenically precooled systems. Alternative actuation schemes involve piezzo-driven

cantilevers [112], coil actuators [124, 125], and optical tweezers [126]. In this thesis we in-

vestigate feedback cooling capabilities of a cavity optomechanical system with dielectric

gradient force actuation of a mechanical mode [18].

+ +

Figure 4.6: Block diagram of a feedback control scheme for a cavity optomechanical sys-
tem. The response of a mechanical oscillator to applied forces is described by the mechanical

susceptibility χm. The mechanical motion δx̂ is driven by external forces δF̂ex, a radiation

pressure force δF̂rp = −~gcδX̂a, and a feedback force δF̂fb. The transduction of mechanical
displacements onto an optical output field quadrature δx̂ θ

out is represented by the trans-
fer function Ktr. Optical quantum noise is modeled as an uncertainty on the mechanical
oscillator’s position δx̂ imp. A nonunity detection efficiency ηdet induces a mixing of the
measured output field quadrature with vacuum fluctuations δx̂ vac. The measurement of

the output field quadrature Kdet produces a photocurrent δîdet which can be sent to an
electronic spectrum analyzer (ESA) for data acquisition. The detection current is processed
through an electrical circuit represented by the transfer function Kctr in order to generate

a current δîfb controlling the feedback force applied to the mechanical oscillator.

We consider the continuous measurement of mechanical displacement presented in

Chapter 3, and feedback the measurement signal to actuate the mechanical motion, as

shown on Figure 4.6. We assume the feedback force to depend linearly on the mea-

surement signal amplitude, what is consistent with the generation of dielectric gradient

forces from the homodyne difference current of the displacement measurement. Among

the forces actuating the mechanical oscillator, we distinguish the feedback force, δF̂fb(Ω),

from other external forces in Equation 3.6, such that the mechanical position operator
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reads,

δx̂ (Ω) = χm(Ω)
[
−~gcδX̂a(Ω) + δF̂ex(Ω) + δF̂fb(Ω)

]
. (4.17)

Without loss of generality within the frame of optomechanics, we may consider

that the mechanical motion is transduced onto an output optical field, and a subsequent

measurement is performed on an arbitrary quadrature given by

δx̂ θ
out(Ω) = Ktr(Ω)

[
δx̂ (Ω) + δx̂ imp(Ω)

]
, (4.18)

where δx̂ imp(Ω) indicates the imprecision noise corresponding to the optical quantum

noise of the output field.

Considering the general case of a nonunit detection efficiency ηdet, the signal ob-

tained from the measurement of the arbitrary output quadrature is given by

δîdet(Ω) = Kdet(Ω)
[√

ηdetδx̂ θ
out(Ω) +

√
1− ηdetδx̂ vac(Ω)

]
, (4.19)

where Kdet(Ω) is the transfer function of the detector. We have modeled the nonunit

detection efficiency of the detector by introducing loss in the form of an uncorrelated

vacuum field δx̂ vac(Ω) mixing with the output field on a beam splitter with transmit-

tivity ηdet. The measurement signal is represented as an electrical current in order to be

consistent with photodetection techniques relevant to this thesis. Equation (4.19) is ana-

log to Equation (1.94), and so can represent the homodyne difference current obtained

from the balanced homodyne detection of an arbitrary output phase quadrature.

The signal obtained from the measurement of the arbitrary output quadrature is

subsequently processed through a control feedback loop, resulting in the feedback signal

δîfb(Ω) = Kctr(Ω)δîdet(Ω) , (4.20)

where Kctr is a transfer function describing the processing of the measurement signal, e.g.

electronic filtering and amplification of the homodyne difference current. The feedback

signal is then used to generate a force that controls the mechanical motion, and can be

written

δF̂fb(Ω) = Kact(Ω)δîfb(Ω) , (4.21)

where Kact translate the feedback signal into a mechanical actuation force, e.g. the di-

electric gradient force produced by the alternative charging of electrodes. For simplicity

of the calculations, we assume that detection and feedback do not add classical noise to

the signal. In reality, active electronic components such as amplifiers would add some

electronic noise to the feedback signal, but under appropriate choice of quality compo-

nents and strength of the measurement signal, it is reasonable to neglect this electronic
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noise.

Finally combining the above equations (4.17, 4.18, 4.19, 4.21), the mechanical po-

sition operator can be recast into

δx̂ (Ω) = χfb(Ω)
[
−~gcδX̂a(Ω) + δF̂ex(Ω)

+KactKctrKdet

(√
ηdetKtrδx̂ imp(Ω) +

√
1− ηdetδx̂ vac(Ω)

)]
, (4.22)

with the effective feedback-induced mechanical susceptibility given by

χfb(Ω) =
[
χ−1
m (Ω)−√ηdetKact(Ω)Kctr(Ω)Kdet(Ω)Ktr(Ω)

]−1
. (4.23)

The feedback modifies the dynamical response of the mechanical oscillator to applied

external forces, by altering its susceptibility. Combining the transfer functions of the

processes involved in the feedback loop into a single feedback transfer function,

Kfb(Ω) = m−1
eff

√
ηdetKact(Ω)Kctr(Ω)Kdet(Ω)Ktr(Ω) , (4.24)

then writing the effective susceptibility of the mechanical oscillator as

χ−1
fb (Ω) = meff

(
Ω2
m − Re[Kfb(Ω)]− Ω2 − iΩΓm − i Im[Kfb(Ω)]

)
, (4.25)

shows that the real part of the feedback gain contributes to the spring constant of

the mechanical oscillator while its imaginary part contributes to the damping of the

mechanical oscillator. In more physical terms this means that the stiffening or softening

of the mechanical oscillator, as well as its dissipative coupling to the environment, can

be controlled by designing an appropriate feedback transfer function.

In order to cool the mechanical mode, the optimum choice of feedback transfer func-

tion is the differentiation with negative feedback, i.e. Kfb(Ω) = −iΩGfb with Gfb ∈ R−

the feedback gain, such that the feedback generates a purely dissipative force that damps

the motion of the mechanical oscillator. In practice however, such a feedback transfer

function is hardly feasible due to the available technologies for transduction, detection

and actuation of mechanical displacements, that limits the bandwidth of the feedback

loop. Moreover the unavoidable delays introduced by the feedback loop prevents the

design of an arbitrary feedback transfer function.

A key requirement for the implementation of a cold damping scheme is the stabil-

ity of the feedback transfer function. A feedback loop is stable if every bounded input

produces a bounded output, which in our case translates into the requirement that all

the poles of the Laplace transform of the time-dependent effective mechanical suscepti-

bility, χfb(s), lie in the left-hand side of the complex half-plane [27, 127]. This stability
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condition imposes restrictions over the choice of the feedback transfer function that can

be used for feedback cooling of a mechanical oscillator.

4.2.2 Feedback transfer function of a cavity optomechanical system

Apart from the radiation pressure force entering Equations (4.17) and (4.22), the model

of feedback developed so far can be transposed to any scheme involving the detection and

feedback actuation of mechanical motion. We now turn to cavity optomechanical systems

specifically in which the radiation pressure interaction between a mechanical oscillator

and a cavity field allows indirect optical measurements of mechanical displacements.

For a cavity optomechanical system probed on resonance, the transfer function

describing the transduction of mechanical motion onto the output field can be found

from Equation (3.16) to be

Ktr(Ω) =
2
√
η(1− η)

1− iΩ̄
gc√
κc

sin(θ) . (4.26)

The transduction acts as a low pass filter with cutoff frequency κ/2, because the optical

cavity filters signals that lie outside of its resonance, i.e. frequencies larger than its

half-width.

The detection transfer function depends on the detection technique employed but

consists essentially of a linear gain, and filtering from photodetectors. Photodetectors

have a limited bandwidth that prevents the detection of high-frequency signals in the

gigahertz range and higher. However they can in principle be tuned for particular

purposes within a reasonable frequency range, such that the detection transfer function

is flat in the frequency band occupied by the signal of interest, and can be approximated

by a frequency-independent constant gain, Kdet(�@Ω).

The control transfer function, Kctr(Ω), describes the shaping of the feedback signal

that is necessary to control the system and achieve cooling of the mechanical motion.

Practically, the design of the feedback signal is performed by electronic filtering and am-

plification of the current provided by the photodetection. This is the most controllable

part of the feedback loop because of the wide variety of electronic components com-

mercially available (e.g. filters and amplifiers), and their ease of use. For convenience

we may write the control transfer function in terms of a frequency-dependent gain and

phase response,

Kctr(Ω) = gctr(Ω)eiΘ(Ω) , (4.27)

with gctr(Ω), Θ(Ω) ∈ R.

The actuation transfer function, Kact(Ω), describes the process transforming the

signal, usually in the form of a current, into a mechanical actuation force driving the
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mechanical oscillator. It is determined by the nature of the force, e.g. dielectric gradient

force [18], piezoelectric effect [112], radiation pressure force [29, 122, 123]. The transfer

function of a dielectric gradient force actuation scheme, such as discussed in Section 4.1,

is given by (cf. Equation (4.14)),

Kact(Ω) = (cintrinsic + 2cinduced(Ω)Vdc)Zfb(Ω) , (4.28)

where Zfb(Ω) is the electrical impedance of the feedback circuit, and we assume that

the bias voltage is much larger than the signal voltage so that we can neglect quadratic

terms in the signal voltage. The characterization of our actuation setup shows that the

dielectric gradient force is frequency-independent over the frequency band occupied by

the mechanical oscillator’s resonance, therefore we may consider the transfer function to

be constant, Kact(�@Ω).

Finally we may model the feedback transfer function as

Kfb(Ω) = gfbe
iΩτfb

gctr(Ω)eiΘ(Ω)

1− iΩ̄
, (4.29)

where gfb ∈ R+ is a frequency-independent gain which depends on the transduction,

detection and actuation efficiencies, and τfb is the time delay of the feedback loop which

introduces a frequency-dependent phase shift on the feedback signal. Considering the

simple case where the control transfer function consists of a real frequency-independent

gain gctr(�@Ω), with Θ = 0, the feedback-induced effective susceptibility of Equation (4.23)

can be read as the susceptibility of an oscillator with effective resonance frequency and

damping rate given by

Ω2
fb = Ω2

m −
gfbgctr

1 + Ω̄2

[
cos(Ωτfb)− Ω̄ sin(Ωτfb)

]
, (4.30)

Γfb = Γm +
gfbgctr

1 + Ω̄2

1

Ω

[
sin(Ωτfb) + Ω̄ cos(Ωτfb)

]
. (4.31)

Due to the filtering of the feedback signal by the optical cavity, the feedback is most

effective in altering the dynamics of the mechanical oscillator when the cavity optome-

chanical system is in the unresolved sideband regime, i.e. Ω̄ ∼ Ω̄m � 1. In this regime

the phase quadrature field fluctuation from the cavity output is adiabatically following

the oscillator position, thus it retains the full magnitude of the mechanical oscillations.

On the other hand, in the resolved sideband regime, the longer lifetime of the cavity

averages the oscillator position over time, thus reducing the magnitude of the signal

transduced onto the output phase quadrature field fluctuation. Now focusing on cold

damping in the unresolved sideband regime, we observe that the mechanical oscillator

can be alternatively softened, dampened, stiffened, or freed by tuning the feedback delay

time, such that Ωτfb ∼ Ωmτfb = 0, π/2, π, and 3π/2 mod 2π, respectively, for gctr > 0.
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Note however that for keeping the effective resonance frequency and damping rate ap-

proximately constant over the mechanical resonance, we need the time delay of the

feedback to be much shorter than the effective decay time of the mechanical oscillations,

i.e. τfb � Γ−1
fb .

Stability of the feedback

As stated previously the stability of the feedback requires that all the poles of the

Laplace transform of the time-dependent effective mechanical susceptibility, χfb(s), lie

in the left-hand side of the complex half-plane [27, 127]. The poles are the solutions s

of the equation

(
s2 + sΓm + Ω2

m

) (
s+

κ

2

)
Dctr(s) = gfbe

−sτfb κ
2
Nctr(s) , (4.32)

where Nctr(s) and Dctr(s) are respectively the numerator and the denominator of the

Laplace transform of the control transfer function, i.e. Kctr(s) = Nctr(s)/Dctr(s). To

some extent the Laplace transform is obtained from the Fourier transform by substituting

the frequency Ω by the complex variable i · s (s ∈ C). The stability criterion imposes

constraints over the maximum gain and bandwidth of the feedback loop [27]. For a

high Q mechanical oscillator in the unresolved sideband regime, a sufficient (but not

necessary) condition for stability is given by |gfbgctr/Ωm| < Γm. This condition prevents

the effective mechanical damping to become negative, cf. Equation (4.31).

4.2.3 Displacement spectrum of the feedback actuated resonator

The PSD of the mechanical position can be derived from Equation (4.22), however cor-

relations between the radiation pressure force and the imprecision noise renders a full

analytical expression rather cumbersome in the case of an arbitrary quadrature measure-

ment of the output field fluctuations. Therefore, for simplicity and in accordance with

Section 3.2.3 as well as with the experimental work presented in this thesis, we restrict

ourselves to a measurement of the phase quadrature fluctuations of the output field,

which carry the strongest modulation induced by mechanical oscillations, and whose

shot noise is uncorrelated with the amplitude quadrature fluctuations of the intracavity

field. The PSD of the oscillator position then reads,

〈|δx̂ (Ω)|2〉 =m2
eff|χfb(Ω)|2|Kfb(Ω)|2

[
〈|δx̂ imp(Ω)|2〉+

1− ηdet
ηdet|Ktr(Ω)|2

〈|δx̂ vac(Ω)|2〉
]

+ |χfb(Ω)|2
[
〈|δF̂ex(Ω)|2〉+ 〈|δF̂rp(Ω)|2〉

]
. (4.33)

The first term in Equation (4.33) represents the mechanical displacement driven by the

quantum noise of the probe field and the detection noise from imperfect detectors that
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is injected into the feedback loop. We group the noise contributions to the feedback

signal under the position noise operator,

δx̂ (fb)
noise(Ω) = δx̂ imp(Ω) +

√
1− ηdet√

ηdetKtr(Ω)
δx̂ vac(Ω) , (4.34)

to which we may also add classical noise from the non-ideality of the the measurement

and feedback (e.g. phase noise from deviations in the locking of the LO and signal

phases, or electrical noise from electronic components). The second term in Equation

(4.33) arises from the driving of the mechanical oscillator by external forces (e.g. thermal

Brownian force) and radiation pressure force from the quantum fluctuations of the probe

field, i.e. the quantum backaction force. However the QBA force is usually much weaker

than the thermal Brownian force and remains hidden below the measurement noise in

most experiments of mechanical displacement measurements, having been observed only

recently in state of the art experiments on macroscopic oscillators [33, 89]. Therefore

we neglect the effect of QBA in our treatment of the feedback cooling scheme.

4.2.4 Effective temperature of the feedback actuated resonator

Following 2.2.3 we may attribute an effective temperature to a mechanical oscillator,

which is proportional to the area under the PSD of the mechanical position fluctuations

(cf. Equation (2.27)). The effective temperature Tfb of a mechanical oscillator subjected

to a feedback actuation force can be calibrated relative to the effective temperature T of

the same oscillator in the absence of feedback actuation, which is the temperature of the

oscillator’s environment, assuming thermal equilibrium. For a cavity optomechanical

system in the unresolved sideband regime, the spectral response of the optical cavity

over a sideband frequency range within the resonance of the mechanical oscillator is flat,

and so is the noise term in Equation (4.33). If we further assume that the external force

fluctuations driving the mechanical oscillator consists essentially of white noise in the

same sideband frequency range, and that the feedback-induced effective susceptibility of

the oscillator retains a Lorentzian profile with effective resonance frequency and damping

rate, Ωfb and Γfb, respectively, then the temperature of the feedback actuated oscillator

is given by
Tfb

T
=

∫∞
−∞〈|δx̂ (Ω)|2〉dΩ∫∞

−∞〈|δx̂ (Ω)|2〉Kfb=0dΩ
=

Γfb〈|δx̂ (Ωfb)|2〉
Γm〈|δx̂ (Ωm)|2〉Kfb=0

. (4.35)

For a feedback transfer function consisting of a frequency-independent proportional

gain, gfbgctr = ΩmΓmGfb ≥ 0, and time delay τfb over the sideband frequency range

covering the mechanical resonance, a pure dissipative cooling of the mechanical oscillator

requires Ωmτfb = π/2 mod 2π, such that Ωfb ≈ Ωm and Γfb ≈ Γm(1 + Gfb). The

condition Γfb � τ−1
fb is also needed for the phase response of the feedback to remain
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approximately constant over the mechanical resonance, thus retaining the Lorentzian

profile of the mechanical susceptibility. Then substituting Equation (4.33) into Equation

(4.35) yields,

Tfb

T
=

(
1 +

G2
fb

SNR

)
1

1 +Gfb
, (4.36)

where we introduced the signal-to-noise ratio (SNR) of the peak of the mechanical po-

sition noise to the optical measurement noise without feedback,

SNR =
〈|δx̂ (Ωm)|2〉Kfb=0

〈|δx̂ (fb)
noise(Ωm)|2〉

, (4.37)

which can be directly determined from the PSD of the detected cavity output field

fluctuations. For fixed detection conditions, the minimum temperature that can be

achieved by cold damping is limited to

Tmin = 2T

√
1 + SNR− 1

SNR
, (4.38)

for a feedback gain Gfb =
√

1 + SNR − 1. At larger gain, Gfb >
√

1 + SNR − 1, the

driving of the mechanical oscillator by the measurement noise injected into the feedback

loop overcomes the damping of the oscillations, and the temperature increases with the

feedback gain. Therefore it is essential to maximize the SNR in order to reach high

levels of cooling, and ultimately cool the mechanical oscillator into its quantum ground

state.

4.2.5 In-loop and out-of-loop position measurements

The effective temperature of the mechanical oscillator can in principle be extracted

from the cavity output fluctuation measurement by subtracting the transduction and

detection noise. However, the feedback introduces correlations between the mechanical

motion and the measurement noise injected into the feedback loop, what leads to a

squashing of the measurement noise [18, 27, 112, 113, 128]. One must then distinguish

in-loop and out out-of-loop measurements of the feedback actuated mechanical motion

to infer the effective temperature of the oscillator. In the first case the measurement

signal is used both for the feedback and for the determination of the effective temperature

such that the mechanical motion is correlated with the measurement noise. In the second

case the temperature is inferred from a displacement measurement independent of the

feedback loop, such that the measurement noise is uncorrelated with the mechanical

motion.
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The measured oscillator position δx̂meas consists of the real position given by Equa-

tion (4.22), plus an uncertainty due to the measurement noise δx̂ (ms)
noise, and reads

δx̂ ms(Ω) = δx̂ (Ω) + δx̂ (ms)
noise(Ω) , (4.39)

= χfb(Ω)
[
δF̂ex(Ω) +meffKfb(Ω)δx̂ (fb)

noise(Ω)
]

+ δx̂ (ms)
noise(Ω) . (4.40)

The PSD of the measured oscillator position is therefore given by

〈|δx̂ ms(Ω)|2〉 = 〈|δx̂ (ms)
noise(Ω)|2〉+ 2meff Re[χfb(Ω)Kfb(Ω)]〈δx̂ (fb)

noise(Ω)δx̂ (ms)
noise(−Ω)〉

+ |χfb(Ω)|2
[
〈|δF̂ex(Ω)|2〉+m2

eff|Kfb(Ω)|2〈|δx̂ (fb)
noise(Ω)|2〉

]
. (4.41)

For an out-of-loop measurement the measured noise is uncorrelated with the feedback

noise thus the second term in Equation (4.41) cancels, but for an in-loop measurement

the noise correlation term must be kept.

From Equation (4.41) we derive the in-loop measured PSD for an arbitrary feedback

transfer function,

〈|δx̂ (in)
ms (Ω)|2〉 = |χfb(Ω)|2〈|δF̂ex(Ω)|2〉 + |χfb(Ω)|2|χ−1

m (Ω)|2〈|δx̂ (ms)
noise(Ω)|2〉 , (4.42)

where we assumed that the feedback and measurement noise are identical. The second

term clearly shows the squashing of the measurement noise within the resonance of the

mechanical oscillator. For a cavity optomechanical system in the unresolved sideband

regime with the aforementioned cold damping transfer function, Kfb(Ω) = iΩmΓmGfb,

the PSD of the measured oscillator position obtained from an in-loop measurement can

be written,

〈|δx̂ (in)
ms (Ω)|2〉 = |χfb(Ω)|2〈|δF̂ex(Ω)|2〉+ 〈|δx̂ (ms)

noise(Ω)|2〉

+ |χfb(Ω)|2|χ−1
m (Ωm)|2G2

fb

(
1− 2

Gfb
− 2Ω

Ωm

)
〈|δx̂ (ms)

noise(Ω)|2〉 . (4.43)

From Equation (4.35) we derive the effective temperature that can be inferred from an

in-loop measurement by subtracting the measurement noise,

T
(in)
fb

T
=

Γfb(〈|δx̂ (in)
ms (Ωm)|2〉 − 〈|δx̂ (ms)

noise(Ωm)|2〉)
Γm|χm(Ωm)|2〈|δF̂ex(Ωm)|2〉

(4.44)

=

(
1−

(2 +Gfb)Gfb

SNR

)
1

1 +Gfb
. (4.45)

The inferred temperature match approximately the actual temperature of the mechanical

oscillator given in Equation (4.36) only for low feedback gain Gfb �
√

SNR. At the

optimum feedback cooling gain, Gfb =
√

1 + SNR − 1, the inferred temperature reads
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zero, then becomes negative for higher gains. This behavior is clearly unphysical and can

be explained by the squashing of the measurement noise resulting from the correlations

introduced by the feedback. The noise correlations are restricted to the bandwidth

of the feedback which is usually determined by the effective width of the mechanical

resonance, thus at high gains the measured PSD shows an inverted Lorentzian with

width Γfb, centered at the mechanical resonance frequency Ωm [18, 112, 113, 122, 123].

Despite the inaccuracy of the in-loop temperature inference due to measurement noise

correlations, the effective temperature of the mechanical oscillator can still be obtained

indirectly by using the formula

Tfb

T
(in)
fb

=
SNR +G2

fb

SNR−(2 +Gfb)Gfb
, (4.46)

given that the feedback gain and the SNR are calibrated and determined accurately.

Direct inference of the mechanical oscillator temperature is possible from the out-

of-loop measurement the oscillator position, which gives the following PSD

〈|δx̂ (out)
ms (Ω)|2〉 = |χfb(Ω)|2〈|δF̂ex(Ω)|2〉+ 〈|δx̂ (ms)

noise(Ω)|2〉

+ |χfb(Ω)|2|χ−1
m (Ωm)|2G2

fb〈|δx̂
(fb)
noise(Ω)|2〉 , (4.47)

where the noise correlation term in Equation (4.41) cancels. The out-of-loop inferred

temperature, after subtracting the measurement noise, then reads

T
(out)
fb

T
=

Γfb(〈|δx̂ (out)
ms (Ωm)|2〉 − 〈|δx̂ (ms)

noise(Ωm)|2〉)
Γm|χm(Ωm)|2〈|δF̂ex(Ωm)|2〉

(4.48)

=

(
1 +

G2
fb

SNR

)
1

1 +Gfb
, (4.49)

and is equal to the effective temperature of the mechanical oscillator given by Equation

(4.36). The out-of-loop measurement provides a direct mean to infer the effective tem-

perature, that does not require prior determination of the feedback gain or the SNR. The

relative cooling or heating of the oscillator is directly given by the ratio of the oscillator

position variance measured with and without feedback gain. On the other hand, per-

forming an out-of-loop measurement involves an additional optical probe to transduce

mechanical displacements independently of the feedback loop, thus it imposes further

demands on the experimental resources (e.g. laser sources, optical components, optical

detectors). For example, making use of the squeezing-enhanced detection scheme pre-

sented in Chapter 3 to increase the SNR in the feedback loop and consequently decrease

the minimum achievable effective temperature, would only be relevant if the quadrature

noise of the out-of-loop probe is also squeezed, therefore an additional squeezing source
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is needed (on top of an additional homodyne detector, etc.) what considerably increases

the complexity of the experimental setup. Moreover the optical power of the out-of-loop

probe adds to the optical power of the in-loop probe, thereby increasing the thermal

and nonlinear effects in the optical cavity, as wells as the radiation pressure backaction

force driving the mechanical motion.

4.2.6 Feedback cooling experiment

The cold damping scheme employed in this thesis work combines high-sensitivity mea-

surements of mechanical motion with strong electrical actuation [17, 18] of vibrational

modes of a cavity optomechanical system. The motion of a microtoroid resonator is

transduced onto an optical probe whose phase quadrature fluctuations are subsequently

measured with a homodyne detector (cf. Chapter 3). The homodyne photocurrent is

used as a feedback signal to generate dielectric gradient forces actuating the mechanical

oscillator motion. Compared to the method described in [18], where the feedback signal

is acquired by intensity detection of the probe field, our method reaches similar sensi-

tivities with a probe power reduced by two orders of magnitude, making it less prone

to thermal and nonlinear effects. Also by driving the optical cavity on resonance, our

scheme is safe from dynamical backaction heating [129]. Furthermore, with shot noise

limited balanced homodyne detection, the feedback noise is independent of the intensity

noise of the optical probe, so it is uncorrelated with the radiation pressure backaction.

This is of particular importance for reaching ground state cooling of the mechanical mo-

tion, as the high SNR required in the feedback comes with the expense of non-negligible

quantum backaction noise.

Dielectric force feedback actuation setup

The experimental setup employed for the feedback actuation of microtoroid resonators

is based on the dielectric gradient force actuation setup presented in 4.1.3. As shown

on Figure 4.7, half of the electrical signal obtained via the homodyne detection of the

cavity output field fluctuations is tapped of by a power splitter7 to allow for acquisition

of its PSD with an ESA. The remaining half is directed to the AC input of the bias tee in

order to modulate the electric field generated at the sharp electrode, and consequently

drive the dielectric gradient force actuating the microtoroid resonator.

The feedback control transfer function is designed by a combination of phase de-

lays, amplifiers and frequency filters. The phase delays simply consist of a series of

switch-controlled coaxial delay8 allowing for a full 2π phase delay at the mechanical res-

onance frequency, with a resolution around 3 · 10−3 rad. The gain of the feedback signal

7Mini-Circuits ZSC-2-1 Coaxial Power Splitter/Combiner, 2 Way-0◦, 0.1 to 400 MHz
8Stanford Research Systems DB64 Coax Delay, 63.5 ns delay with 0.5 ns resolution.
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Figure 4.7: Experimental setup for dielectric gradient force feedback actuation of a mi-
crotoroid resonator. Measurement and actuation of the mechanical resonator motion is
operated in the same way as with the dielectric gradient force actuation setup of Figure 4.2.
The electrical signal provided by the homodyne detector is injected into the feedback loop
and controls the dielectric gradient force actuating the mechanical resonator. The feedback
signal is shaped by electrical filters and amplifiers represented by the control transfer func-
tion Kctr. Half of the feedback signal is tapped of by a power splitter and directed to an
ESA for acquisition of its PSD.

is enhanced by linear, low-noise, large-bandwidth amplifiers9,10 within the limit where

the feedback signal do not saturate the amplifiers themselves. Saturation of electrical

components at the detection or feedback stage sets a technical boundary on the maxi-

mum gain that can be employed in the feedback loop. When cooling a single mechanical

mode, saturation may result from the amplification of the transduced mechanical res-

onance signal itself, or from parasitic signals measured from neighboring mechanical

modes. Frequency filters can be used to suppress these parasitic signals but care must

be taken as they introduce additional phase delays in the feedback loop. As the ampli-

fiers provide a fixed gain, we use a series of large-bandwidth tunable attenuators11,12,13

for adjusting the feedback gain.

9Stanford Research Systems SR445A 350 MHz Preamplifier, 4 channels with gain 5
10Mini-Circuits ZFL-500LN Low Noise Amplifier, 0.1 to 500 MHz, 28 dB gain.
11JFW Industries 50R-043 Single Rotary Attenuator, 100 dB attenuation by 10 dB step
12JFW Industries 50R-019 Single Rotary Attenuator, 10 dB attenuation by 1 dB step
13JFW Industries 50R-028 Single Rotary Attenuator, 1 dB attenuation by 0.1 dB step
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Phase delay characterization of the feedback

We first characterized the response of the optomechanical system to the feedback by

varying the phase delay of the feedback loop. For this characterization we used the

FFM of a microtoroid with a resonance frequency Ωm/2π = 5.48 MHz, such that a

series of three coaxial delays with a maximum delay time of 63.5 ns each allowed us

to shift the feedback signal by a full mechanical oscillation period. The resonator mo-

tion was probed by a coherent field with a power of 10 μW whose phase quadrature

fluctuations were subsequently measured on a balanced homodyne detector with a LO

power of 10 mW, providing a high clearance to the electronic noise (15 dB). The proper

balancing and shot noise limited behavior of the homodyne detector over a sideband

frequency range covering the mechanical resonance was verified by the linear scaling of

the optical noise spectral variance with optical power, in the absence of optomechanical

coupling. The visibility of the interferences at the homodyne detector reached 98%,

introducing 4% of detection loss. The optical cavity was driven on resonance, and in the

undercoupled regime with η = 0.14. No electrical frequency filters were used in addition

to the frequency filters included in the electronics of the optical detectors, such that

the electrical bandwidth of the feedback loop was limited by the homodyne detector

bandwidth. The feedback gain was adjusted in order to prevent saturation of the elec-

trical amplifiers by unfiltered parasitic signals from mechanical resonances within the

detection bandwidth. The DC bias voltage applied to the electrodes was 300 V, and

the tip of the sharp electrode was placed approximately 10 μm above the center of the

microtoroid.

Figure 4.8 shows the PSD of the in-loop position measurement as a function of

feedback delay time. The feedback gain is set to Gfb = 9.5, except for feedback delay

phase from Ωmτfb/2π = 0.58 to Ωmτfb/2π = 0.97 (modulo 2π) where it is reduced to

avoid saturation of the feedback. The behavior of the feedback actuated resonator with

increasing feedback delay time follows the expected behavior described by Equations

(4.30) and (4.31). At Ωmτfb = 0 the feedback force drives the mechanical oscillator

in phase with its oscillations, what softens its effective spring constant and reduces its

resonance frequency. The opposite behavior is observed when Ωmτfb = π, as the feedback

force is applied in opposite phase, and consequently stiffens the effective spring constant

of the resonator and increases its resonance frequency. Damping or amplification of the

mechanical motion is respectively achieved by delaying or advancing the phase of the

feedback force by one quarter of the oscillation period, i.e. Ωmτfb = ±π/2 (mod 2π).

Frequency tuning of a microtoroid FFM

We investigated the frequency tuning capability of our feedback actuation scheme by

varying the feedback gain while keeping a constant feedback phase delay around Ωmτfb ∼



114 Chapter 4. Electrical feedback cooling

Figure 4.8: PSD of the in-loop position measurement as a function of feedback delay time.
The PSD are normalized to the shot noise level. With increasing feedback delay times the
FFM of the microtoroid is successively spring-softened (Ωmτfb = 0), damped (Ωmτfb = π/2),
spring-hardened (Ωmτfb = π), and amplified (Ωmτfb = 3π/2). From Ωmτfb/2π = 0.58 to
Ωmτfb/2π = 0.97, the feedback gain is reduced to prevent saturation within the feedback
loop.

π. Figure 4.9(a) shows the PSD of the in-loop position measurements fitted with curves

described by Equation (4.42). The correlations between the measurement noise and the

feedback noise cause a squashing of the measurement noise below the shot noise level.

The fitted curves overestimate the noise reduction due to the assumption in Equation

(4.42) that measurement noise and feedback noise are completely correlated. In practice

however, amplifiers in the feedback loop add electronic noise which is not correlated

with the measurement noise. Furthermore, long feedback delay times may degrade the

noise correlations. Note that the electronic noise generated within the feedback loop is

not the electronic noise plotted on Figure 4.9(a), which comes from the measurement

only and is too weak to cause the observed deviation between the measured PSD and

the fitted curves.

From the fit, we extracted the effective resonance frequency and damping rate of

the FFM, which are plotted on Figures 4.9(b) and 4.9(c) as a function of feedback gain.
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Figure 4.9: (a) PSD of the in-loop position measurement at various feedback gains for a
fixed feedback phase delay Ωmτfb = 0.96π. The PSD are normalized to the shot noise level.
The electronic noise from the detection and acquisition of the PSD lies 15 dB below the
shot noise level, and is therefore negligible. Measurement data are fitted by curves described
by Equation (4.42) (dashed lines). The effective resonance frequency (b) and the effective
mechanical damping (c) of the FFM as a function of feedback gain are extracted from
the fitted curves. A linear regression on both sets of extracted values provide an accurate
calibration of the feedback delay time.

For the analysis of our data we assumed a feedback transfer function in the form,

Kfb(Ω) = ΓmΩmGfbe
iΩτfb . (4.50)

For low feedback gain relative to the Q factor of the mechanical mode (Gfb � Qm),

the deviation of the effective resonance frequency from the natural resonance frequency

of the mechanical resonator is approximately proportional to the feedback gain, i.e.

Ωfb − Ωm ∝ Gfb (cf. Equation 4.30). We applied a linear regression to the effective

resonance frequency and damping rate as a function of feedback gain in order to evaluate
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the phase delay of the feedback. A value of Ωmτfb/2π = 0.48 is obtained, what matches

well the expected value of Ωmτfb/2π ∼ 0.5, thereby confirming the validity of our model

and allowing a fine calibration of the feedback delay time.

Our feedback actuation setup allows the tuning of the effective mechanical resonance

frequency within ±1.4% of the natural resonance frequency. For the FFM at 5.48 MHz,

the tuning range covers ±80 kHz, what is one order of magnitude higher than the width

of the mechanical resonance (Γm ≈ 9 kHz).

Cold damping of a microtoroid FFM

By setting the feedback phase delay to π/2, we were able to damp the motion of the me-

chanical oscillator, and thereby to cool its effective temperature. In-loop measurements

of the resonator displacement resulted in the power spectra shown on Figure 4.10(a).

A reduction of the peak amplitude of the FFM oscillations is observed for increasing

feedback gains. For feedback gains larger than the SNR (Gfb > SNR) the measurement

noise is squashed below the shot noise level, leading to the expected inverse Lorentzian

spectrum. The mean resonance frequency of the FFM, extracted from Lorentzian fits

to the PSD, is Ωm = 5.480 ± 0.002 MHz, and the effective damping rate is plotted on

Figure 4.10(b) as a function of the feedback power gain. In practice we controlled the

gain of the feedback loop with a series of electrical power attenuators that does not

provided us with a direct calibration of the feedback gain Gfb. The calibration was ob-

tained by a fit to the effective damping rates (dashed line in Figure 4.10(b)), assuming

Γfb = Γm(1 +Gfb).

We inferred the in-loop temperatures by plugging the Lorentzian fit parameters

into Equation (4.44), and compared with the theoretical in-loop temperatures given by

Equation 4.45 (red dots and dashed line in Figure 4.10(c), respectively). The out-of-loop

temperatures were derived from both the inferred and theoretical in-loop temperatures

by using Equation 4.46 (blue squares and dashed line in Figure 4.10(c)). The inferred

in-loop temperatures are in good agreement with the calculated ones, what suggests that

a minimum effective temperature around Tmin = 58.8 K (corresponding to SNR = 82.3

in the absence of feedback actuation) was reached for a feedback gain Gfb = 8.1. Further

characterization of the feedback transfer function, with an alternative calibration of the

feedback gain from the SNR of the measured PSD, may improve the accuracy of the

estimate of the effective cooling temperature from in-loop measurements.

With an available feedback gain Gfb = 30, our feedback actuation setup could in

principle cool the FFM from room temperature to a temperature of 18.6 K, given an

SNR without feedback in the order of a thousand. The later can easily be achieved by

a tenfold increase of the probe power while keeping the same experimental conditions.

Other ways of increasing the SNR have been discussed in the previous chapters, e.g.
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Figure 4.10: (a) PSD of the in-loop position measurement at various feedback gains
for a fixed feedback phase delay Ωmτfb = π/2. The PSD are normalized to the shot
noise level. Measurement data are fitted with Lorentzian functions (dashed lines). (b)
Effective mechanical damping of the FFM as a function of feedback power gain, obtained
from the Lorentzian fits. A fit to the effective damping rates, Γfb = Γm(1 + Gfb), provides
a calibration of the feedback gain Gfb. (c) Inferred (markers) and calculated (dashed lines)
in-loop (red) and out-of-loop (blue) temperature of the FFM as a function of feedback gain
Gfb. The inferred temperatures follow the evolution of the theoretical calculations until a
high feedback gain Gfb = 30 is reached. From there the feedback loop is saturated by the
signal measured from the nearby first crown mode of the microtoroid (yellow line on the left
panel in (a)), which is amplified rather than cooled.

squeezing the probe field. However, the amplification of the nearby first crown mode of

the microtoroid, shown on the left panel of Figure 4.10(a) provokes the saturation of the

feedback loop at high gains, what prevents further cooling of the FFM.
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Filtering of parasitic modes

In order to prevent the saturation of the feedback loop due to the feedback heating of

neighboring mechanical modes of our microtoroid, we placed a narrow home-built band-

pass filter14 after the detection stage of the feedback loop. We chose to use a Bessel filter

to maintain a constant time delay of the feedback signal in the passband. The passband

was restricted to the signal produced by the FFM motion such that parasitic signals

from neighboring modes are strongly attenuated. In this way we succeeded in suppress-

ing the influence of the feedback on neighboring modes, but we also affected the feedback

actuation of the FFM. In fact, as the mode is cooled by increasing the effective damping

rate, its resonance width spreads and reaches the limits of the filter passband resulting

in the behavior shown on Figure 4.11. Beyond the cutoff frequencies of the bandpass

filter the signal is attenuated therefore the feedback actuation force does not follow the

complete motion of the resonator and cannot damp it further. Additionally the large

phase shift introduced by the filter near the cutoff frequencies alters the synchronization

of the feedback force with the mechanical oscillations. Interestingly, attempting to cool

the mechanical oscillator seems to bring it into an unstable state where small variations

of the feedback delay time (< 1 ns) causes large variations of its oscillation frequency, on

the order of 3% of the resonance frequency. Further investigation is required to charac-

terize completely this behavior, with e.g. a simulation of the feedback using the transfer

function of the bandpass filter. The ingenious design of the feedback control transfer

function may provide a greater control over the motion of the microresonator.

4.3 Conclusion and outlook

In this chapter we have investigated theoretically and experimentally the use of dielectric

gradient forces to control the motion of a micromechanical resonator. This work was

sparked by the great interest in cooling the motion of a macroscopic oscillator into its

quantum ground state, but also explored the capability provided by strong actuation

forces in tuning the frequency and amplitude of mechanical oscillations.

In the first part of this chapter we described theoretically the physical mechanism

giving rise to electrical forces within dielectric materials. We modeled the generation of

dielectric gradient forces by applying an electric field across a dielectric body. In our

work we considered the electric field to be produced between two point electrodes with

opposite charges, what resembles the configuration of our experimental setup. It would

be interesting to study more advanced design that could allow a precise control over the

spatial distribution of the dielectric gradient forces, such as to address vibrational modes

individually. By this mean, strongly driving a specific mechanical mode would require

145th order Bessel filter with a 100 kHz bandwidth centered at 5.5 MHz.
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Figure 4.11: PSD of in-loop position measurements at a fixed gain and various feedback
delay times (a), and at various feedback gains with a fixed feedback phase delay Ωmτfb = π/2
(b). All PSD are normalized to the shot noise level. The feedback signal is filtered by a
sharp 5th order Bessel filter with a 100 kHz bandwidth centered at 5.5 MHz in order to
suppress the actuation of mechanical modes other than the FFM. Due to the narrowness
and sharpness of the filter, the feedback actuation force does not follow linearly the motion
of the oscillator for effective damping rates larger than the filter bandwidth. Consequently
the power spectrum the oscillator position looses its Lorentzian shape.
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less electrical power, which means a lower DC bias voltage or AC drive voltage. High

gains could thus be achieved in a feedback actuation setup with the use of less electrical

amplifier stages, which are prone to saturation. Additionally the selective actuation

of specific vibrational mode prevents other modes to be amplified and to saturate the

feedback loop. The spatial profile of the dielectric gradient force field for different design

of the electrode configuration, or alternative electric field generation schemes, can be

investigated with FEM simulations, if not analytically.

In the second part of the chapter we presented the theoretical framework of feed-

back actuation control of mechanical resonators. We modeled the feedback loop as a

succession of processes such as optomechanical transduction and optical quadrature de-

tection. We investigated the contribution of each process to the feedback in terms of

bandwidth, gain and phase response, in order to combine and describe the action of the

feedback with a simplified transfer function. We confronted our theoretical model to the

reality of experiments and showed a good agreement between our expectations and the

behavior of a single feedback-actuated FFM of a microtoroid resonator. By controlling

the phase delay and the gain of the feedback loop, we were able to either spring-soften,

spring-harden, damp or amplify the mechanical oscillations. We demonstrated electri-

cal feedback cooling of the FFM down to 58.8 K from room temperature. The cooling

was limited by the SNR of our in-loop displacement measurement as we observed the

distinctive squashing of the measurement noise caused by correlations with the feedback

noise. The gain of the feedback loop was ultimately limited by the saturation of electri-

cal amplifiers caused by the feedback-induced amplification of mechanical modes in close

spectral proximity to the FFM. We prevented the undesired amplification of mechanical

oscillations by limiting the feedback bandwidth with sharp electrical frequency filters.

However the spectral broadening of the damped FFM became also limited by the filter

bandwidth, and the large phase shift introduced near the cutoff frequency gave rise to

an unstable behavior of the feedback loop.

We propose a few lines of investigation to overcome the limitations of our electri-

cal feedback actuation scheme. The feedback actuation scheme should be applied to a

mechanical mode well separated in frequency from other mechanical resonances of the

microresonator, such that the latter could be filtered out of the feedback while preserv-

ing the full resonance of the actuated mode. This solution requires the proper design

and fabrication of a microresonator, and seems realizable with current technologies. Al-

ternatively the spectral separation between mechanical modes could also be such that

tuning the phase delay to damp one mode does not provoke the amplification of another

mode. This solution involves less the design and fabrication of the microresonator, than

the design and building of the feedback transfer function. We must also point out a

major limitation to cold damping of a mechanical oscillator from room temperature.
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Given a mechanical mode with resonance frequency Ωm/2π = 5.48 MHz, reaching a

ground state probability of 50% (i.e. an average occupancy of one phonon) corresponds

to cooling the mechanical mode to an effective temperature T50% = ln(2)~Ωm/kB ≈ 0.18

mK. Accessing such a low temperature from room temperature (Trm = 300 K) requires a

feedback gain Gfb ≈ 2Trm/T50% ≈ 3.3 · 106 which is five orders of magnitude larger than

what we achieved in our experiments. The sensitivity of the displacement measurement

must also be improved to provide a sufficient SNR. Eventually, the main limitation to

ground state cooling from room temperature comes from the feedback-induced spectral

broadening of the damped mechanical mode. Assuming a modest damping rate Γm = 1

kHz at room temperature, the width of the mechanical resonance should broaden over

several gigahertz to achieve ground state cooling, thus the feedback gain and phase delay

should be uniform over a large bandwidth. An alternative solution to a high feedback

bandwidth would be to improve the intrinsic quality factor of the mechanical mode to

values higher than the required feedback gain, but such high values, over a million, have

never been observed with microresonators. In regards of the technical challenges listed

above we believe that feedback cooling to the ground state from room temperature is

not realizable with current technologies as it imposes extreme requirements on the mi-

croresonator properties and feedback design. Therefore it appears essential to combine

cold damping with another cooling scheme, such as cryogenic cooling in an Helium bath

[123], in order to reach ground state temperatures.
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