
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Nov 08, 2017

Apramycin treatment affects selection and spread of a multidrug-resistant Escherichia
coli strain able to colonize the human gut in the intestinal microbiota of pigs

Herrero-Fresno, Ana ; Zachariasen, Camilla; Hansen, Monica Hegstad; Hendriksen, Rene S.; Nielsen,
Søren Saxmose; Olsen, John Elmerdahl
Published in:
Veterinary Research

Link to article, DOI:
10.1186/s13567-015-0291-z

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Herrero-Fresno, A., Zachariasen, C., Hansen, M. H., Hendriksen, R. S., Nielsen, S. S., & Olsen, J. E. (2016).
Apramycin treatment affects selection and spread of a multidrug-resistant Escherichia coli strain able to colonize
the human gut in the intestinal microbiota of pigs. Veterinary Research, 47(1), [12]. DOI: 10.1186/s13567-015-
0291-z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43255419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13567-015-0291-z
http://orbit.dtu.dk/en/publications/apramycin-treatment-affects-selection-and-spread-of-a-multidrugresistant-escherichia-coli-strain-able-to-colonize-the-human-gut-in-the-intestinal-microbiota-of-pigs(be4db651-506a-428b-a509-4bc495b0513a).html


Herrero‑Fresno et al. Vet Res  (2016) 47:12 
DOI 10.1186/s13567‑015‑0291‑z

RESEARCH ARTICLE

Apramycin treatment affects selection 
and spread of a multidrug‑resistant Escherichia 
coli strain able to colonize the human gut  
in the intestinal microbiota of pigs
Ana Herrero‑Fresno1*, Camilla Zachariasen1, Monica Hegstad Hansen1, Alexander Nielsen1, 
Rene S. Hendriksen2, Søren Saxmose Nielsen3 and John Elmerdahl Olsen1

Abstract 

The effect of apramycin treatment on transfer and selection of an Escherichia coli strain (E. coli 912) in the intestine 
of pigs was analyzed through an in vivo experiment. The strain was sequenced and assigned to the sequence type 
ST101 and serotype O11. It carried resistance genes to apramycin/gentamicin, sulphonamide, tetracycline, hygromy‑
cin B, β‑lactams and streptomycin [aac(3)‑IV, sul2, tet(X), aph(4), blaTEM‑1 and strA/B], with all but tet(X) located on the 
same conjugative plasmid. Nineteen pigs were randomly allocated into two inoculation groups, one treated with 
apramycin (pen 2) and one non‑treated (pen 3), along with a non‑inoculated control group (pen 1). Two pigs of pen 
2 and 3 were inoculated intragastrically with a rifampicin resistant variant of the strain. Apramycin treatment in pen 
2 was initiated immediately after inoculation. Strain colonization was assessed in the feces from all pigs. E. coli 912 
was shown to spread to non‑inoculated pigs in both groups. The selective effect did not persist beyond 3 days post‑
treatment, and the strain was not detected from this time point in pen 2. We demonstrated that E. coli 912 was able 
to spread between pigs in the same pen irrespective of treatment, and apramycin treatment resulted in significantly 
higher counts compared to the non‑treated group. This represents the first demonstration of how antimicrobial treat‑
ment affects spread of resistant bacteria in pig production. The use of apramycin may lead to enhanced spread of 
gentamicin‑resistant E. coli. Since gentamicin is a first‑choice drug for human bacteremia, this is of concern.

© 2016 Herrero‑Fresno et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
During the last 50  years, antibiotics have been used to 
treat infections in both human and veterinary medicine. 
In this period, use of antimicrobials has caused selec-
tive evolutionary pressures, resulting in the emergence 
of antimicrobial resistant bacteria [1], which in turn 
have caused treatment failure and increased morbidity 
[2]. The natural gut microbiota, consisting of commen-
sal bacteria, represents an important reservoir for the 
development of antimicrobial resistance (resistome), and 

continuous antibiotic use could lead to the emergence of 
clinically problematic strains [3].

Multi-drug resistant E. coli isolates from humans and 
pigs have been reported worldwide [4–7]. These multi-
drug resistant isolates harbor antimicrobial resistance 
(AMR) genes either on the chromosome or on mobile 
genetic elements, such as plasmids [8]. The presence of 
AMR genes on plasmids, and their subsequent horizontal 
transfer via conjugation, can result in their rapid spread 
among the susceptible bacterial populations [9]. One 
of the main concerns is the potential transfer of these 
resistant determinants to pathogenic bacteria which pro-
longs infections and decreases treatment options as a 
consequence.

Use of antibiotics in livestock is considered one of the 
main reasons leading to development of AMR, and such 
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resistant bacteria can be potentially transmitted to the 
food chain [2]. The role of pigs in AMR transmission 
to the food chain must be better understood in order 
to prevent dissemination of multidrug-resistant strains 
from pigs to humans. In a previous study a multi-drug 
resistant strain of E. coli isolated from a healthy pig (E. 
coli 912) [10] was proven to be able to colonize the gut of 
human volunteers for 35  days [11]. The strain harbored 
the resistance gene aac(3)-IV conferring resistance to 
gentamicin/apramycin [11].

Apramycin, which is only approved for animal use, was 
introduced into veterinary therapy in the early 1980s in 
several European countries [12]. Several apramycin prod-
ucts were authorized for oral use in production animals 
in 1998 [13]. The gene aac(3)-IV is the only identified 
gene causing enzymatic cross-resistance between gen-
tamicin and apramycin [12]. Apramycin resistance asso-
ciated with the aac(3)-IV gene was initially reported in 
1981 in France, and the gene was only found in the ani-
mal reservoir [14]. Over the next years aac(3)-IV dis-
seminated rapidly in the animal reservoir in France, 
Belgium and Great Britain [14]. In 1986, the gene was 
first detected in Enterobacteriaceae isolated from human 
patients [15].

Nowadays, apramycin is widely used in farm animals, 
and resistant E. coli are commonly isolated from diseased 
pigs [10]. E. coli from pigs may be an important reservoir 
for transfer of apramycin/gentamicin resistance genes or 
bacteria to humans. Furthermore, resistance to apramy-
cin and other aminoglycosides is usually transmissible, 
encoded on conjugative R-plasmids, and often linked to 
resistance to other antimicrobials [12].

In Denmark, detailed information on aminoglycoside 
use in food-producing animals is registered in the Dan-
ish veterinary drug-monitoring programme, VetStat [16]. 
This database contains information on consumption of 
all prescription drugs purchased by animal owners or 
used by veterinarians at farm level, including information 
on animal species, age group, disease group and farm 
identity. Importantly, gentamicin is a first-choice drug (in 
combination with β-lactams) for severe human infections 
(e.g. sepsis and endocarditis) in Danish Hospitals [17]. 
Therefore, spread of gentamicin-resistant E. coli strains 
to humans is of great concern.

Several studies have evaluated the impacts of antimi-
crobial treatment on selection for resistance [18–23], 
however, only a few reports have considered the impact 
of treatment on the spread of resistant microorganisms 
among animals [24, 25]. Here, we quantify for the first 
time the effect of treatment on the transmission of resist-
ant strains among pigs in  vivo. In this study, the effect 
of apramycin treatment on the selection of the E. coli 
912 inoculated into nursery pigs was assessed. Derived 

results provided information of the consequence of anti-
biotic treatment in the development and spread of resist-
ant bacteria between pigs in production-like conditions 
(regular farm conditions), where pigs are housed closely 
together.

Materials and methods
Animals, housing conditions, and ethical issues
Three to 4 weeks nursery cross-bred sex-mixed pigs with 
weights ranging from 6 to 9  kg were purchased from 
a specific-pathogen-free farm in Denmark. The ani-
mals were housed in a level 1 isolation unit (individual 
disinfected pens in a same room of the building) at the 
Faculty of Health and Medical Sciences, University of 
Copenhagen and weighed at least once a week. All pro-
cedures regarding the animal experiments were carried 
out in agreement with the Animals Scientific Act and 
performed under the license and approval of the Dan-
ish National Animal Experiment Inspectorate (license 
no. 2009/561-1675). Occurrence of any clinical sign, 
such as changes in behavior and decrease in food and 
water intake, was surveyed twice a day. At the end of 
the experiment (3 weeks of duration), the animals were 
euthanized by captive bolt pistol penetration followed by 
exsanguination.

Bacterial strain
The bacterial strain E. coli 912 used to inoculate the pigs 
was previously proven to be resistant to gentamicin/
apramycin and sulphonamide by determination of mini-
mum inhibitory concentration [10, 11]. It was isolated 
from the feces of a healthy pig [10, 11]. The strain har-
bored the genes aac(3)-IV and sul2 on a conjugative 
plasmid (not shown) [11]. A rifampicin (RIF) resistant 
mutant was obtained by serial plating on nutrient agar 
with rifampicin. The RIF-resistance (MIC ≥ 250 μg/mL) 
was used as a marker to distinguish the inoculated strain 
from gentamicin/sulphonamide-resistant coliforms 
that could preexist in the intestinal microbiota or that 
emerged during the experiment as a result of horizontal 
gene transfer. Growth of both wild-type and the isogenic 
RIF-resistant mutant strain was analysed and compared. 
The isolates were grown at 37  °C, 200  rpm for 16  h in 
Luria–Bertani broth before sub-culturing into fresh 
media at a 40 fold dilution and further grown with assess-
ments every 15 min for 18 h using Bioscreen C. Growth 
curves were obtained (Additional file 1).

Whole genome sequencing, analysis of genome sequence 
for virulence, resistance, serotype, plasmid associated 
genes, and multilocus sequence typing (MLST)
Genomic DNA was extracted from the isolate E. coli 912 
using the Invitrogen Easy-DNATM Kit (Invitrogen) and 
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DNA concentrations were determined using the Qubit 
dsDNA BR assay kit (Invitrogen). The genomic DNA was 
prepared for Illumina pair-end sequencing using the Illu-
mina (Illumina) NexteraXT® Guide 150319425031942 
following the protocol revision C [26]. A sample of the 
pooled NexteraXT Libraries was loaded onto an Illumina 
MiSeq reagent cartridge using MiSeq Reagent Kit v2 and 
500 cycles with a Standard Flow Cell. The libraries were 
sequenced using an Illumina platform and MiSeq Con-
trol Software 2.3.0.3. The isolate was pair-end sequenced.

The raw reads were assembled using the Assem-
ble pipeline (version 1.0) available from the Center for 
Genomic Epidemiology (CGE) [27] which is based on 
the Velvet algorithms for de novo short reads assembly. 
The assembled genome was submitted and annotated at 
NCBI [28] under accession number JWJM00000000.

The assembled sequences were analyzed to confirm 
the species and E. coli serotype using the CGE pipe-
lines; K-merFinder (version 2) [29] and SeroTypeFinder 
(version 1.1). Following the confirmation, the MLST 
sequence type (ST) for E. coli, plasmid replicons, and 
acquired antimicrobial resistance genes, and virulence 
genes were identified with a selected threshold equal to 
98% identity using the pipelines; MLST (version 1.8) [30], 
PlasmidFinder (version 1.3) [31], ResFinder (version 2.1) 
[32], and VirulenceFinder (version 1.4) [33] also available 
from CGE.

Plasmid analysis and Southern blot
Plasmid DNA from E. coli 912 was isolated with the 
MidiPrep plasmid kit (Invitrogen) following the proto-
col suggested by the manufacturer. DIG-labelled DNA 
molecular weight marker II (Roche) was used as molec-
ular size standard and control in Southern blot hybridi-
zation. The obtained plasmid profile was subsequently 
hybridized with probes specific for the sul2, aac(3)-IV, 
tet(X), blaTEM-1 and strA/B genes by using the kit DIG 
wash and block buffer set (Roche) and manufacturers 
indications from the DIG application manual for filter 
hybridization. The probes were obtained from E. coli 912 
by PCR amplification using the PCR DIG labelling mix 
(Roche). The sequences of the primers used for PCR are 
listed in Table 1.

Challenge experimental setup
Pigs were divided into three groups housed in three well-
separated pens avoiding any contact among pigs from 
different pens. Only airflow between pens was possi-
ble. The untreated control group (n = 3) was isolated in 
pen 1. The two inoculated groups, group 2 (pen 2) and 
group 3 (pen 3) included eight pigs each. After 1 week 
of acclimatization, two pigs from each of groups 2 and 
3 were inoculated with 109 CFU/mL of the E. coli 912 

strain suspended in 10  mL of a saline suspension using 
an endogastric tube after sedation. The four inoculated 
pigs were isolated in an individual pen for 2 days in order 
to allow the bacterial colonization of the gut and then 
replaced in their original groups.

The antimicrobial drug, Apralan Vet 10% solution, 
was purchased as veterinary medical product. All pigs 
in group 2 were individually treated with 5  mg/kg of 
the antibiotic after the replacement of the two previ-
ously inoculated pigs, and the antimicrobial product was 
administered once a day for 3 days orally in nutri-drink 
ensuring that everything was taken up. The administra-
tion was performed according to the standard treatment 
recommended when administering the drug product in 
pigs.

Collection and microbiological analysis of fecal samples
Fecal samples of about 5 g were collected from the rec-
tum of all the pigs prior to inoculation of the strain (day 
−2), 1 day after inoculation (day −1), prior to antimicro-
bial treatment in pen 2 (day 0) and on days 2, 4, 6, 8, and 
10 after day 0 (days corresponding last day of treatment-
day 2- and 2, 4, 6 and 8 days after the end of the treat-
ment). Except for day −1, where CFU counts were only 
performed for the four inoculated pigs, fecal samples 
were taken from all the 19 pigs and CFU counts were car-
ried out. Serial tenfold dilutions were used to count the 
numbers of colony forming (CFU) coliforms on Mac-
Conkey agar (Merck), CFU of RIF-resistant coliforms 
on MacConkey agar supplemented with 50  μg/mL RIF, 
and CFU of the inoculated sulphonamide-gentamicin/
apramycin (SUL-GEN/APRA) resistant strain on MacCo-
nkey agar supplemented with 50 μg/mL RIF, 150 μg/mL 
SUL and 25 μg/mL GEN. All counts were determined by 
the spot method [34]. Briefly, 30 μL of each dilution was 
inoculated as a spot in duplicate (on two plates contain-
ing every specific antibiotic or combination, and without 

Table 1 Primers used in this study.

Primers Sequence (3′–5′)

aac(3)‑IV‑F AGTTGACCCAGGGCTGTCGC

aac(3)‑IV‑R GTGTGCTGCTGGTCCACAGC

blaTEM‑F TTTGCGGCATTTTGCCTTCCT

blaTEM‑R GTTCATCCATAGTTGCCTGAC

strA‑F TTG ATG TGG TGT CCC GCA ATG C

strA‑R CCA ATC GCA GAT AGA AGG CAA

sul‑2‑F TTTCGGCATCGTCAACATAA

sul‑2‑R GTGTGTGCGGATGAAGTCAG

tet(X)‑F TTAGCCTTACCAATGGGTGT

tet(X)‑R CAAATCTGCTGTTTCACTCG
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antibiotic), followed by 24 h of incubation at 37 °C. This 
method allowed the detection of the coliforms and the 
quantification of the coliforms at greater than or equal to 
500 CFU/g (2.7 log CFU/g) of feces.

On all days except -1, colonies were isolated from the 
selective plates containing RIF or RIF-SUL-GEN. All iso-
lates were identified as E. coli by the indole, methyl red, 
Voges-Proskauer, and citrate tests. Isolates confirmed to 
be E. coli were tested for the presence of the aac(3)-IV 
gene by PCR (Table 1). In order to enable a comparison 
of the isolates obtained at different time points and the 
inoculated strain, all the RIF or RIF-SUL-GEN resistant 
isolates obtained from each animal of each group at all 
the sampling times were further characterized by pulsed-
field gel electrophoresis (PFGE) with XbaI (Roche) diges-
tion as previously described [35].

Statistical analysis
The log CFU counts were compared by one-way ANOVA 
with pair-wise comparison of means at the different time 
points using Tukey’s multiple comparison test, while 
accounting for repeated measurements. A P value <0.05 
was considered significant.

All occurrences in the individual pig on specific test 
days were further dichotomized (above or below detec-
tion level), which also enabled the estimation of inci-
dence and recovery rates. For each of the time periods 
0–2, 2–4, 4–6, 6–8 and 8–10 days post inoculation, the 
incidence rate (IR) was estimated using the formula [36]:

Results
Traits of the strain E. coli 912
First the inoculated strain E. coli 912 was characterized 
in order to obtain information that could explain its high 
ability to colonize the gut of humans, as reported [11]. 
The strain was sequenced and found to contain additional 
resistance genes to the ones previously reported [11]. 
The additional genes encoded resistance to tetracycline 
[tet(X)], hygromycin B [aph(4)], β-lactams (blaTEM-1) 
and streptomycin (strA/B). This genotype complied 
with the phenotypic resistance results. The strain was 
shown to belong to MLST-type ST101 and serotype 
O11:H12. E. coli 912 also harbored the virulence genes 
mchB, mchF, mcmA (involved in microcin synthesis) iroN 
(iron uptake), tsh (hemoglobin binding protease), cnf1 
(toxin synthesis), lpfA, prfB (fimbriae synthesis) and iss 
(increased serum survival) (Table  2) and two plasmids 
belonging to the incompatibility groups incF1 and incFII. 
Since genome sequencing did not reveal information 
about the location of the resistance genes, plasmid puri-
fication followed by Southern blot hybridization was per-
formed. Results showed that the genes aph(4), blaTEM-1 
and strA/B were plasmid located as it was previously 
found for sul2 and acc(3)-IV [11]. Furthermore, all the 
five genes were harbored in the same resistance plasmid 
(not shown).

A growth curve for each of the strains was obtained 
through in vitro studies and growth was not significantly 
different between the mutant and WT strains reaching 

Table 2 Features of the strain. E. coli 912.

Strain used in this study R-genes (phenotype) V-genes (phenotype) Plasmids MLST-type Serotype

E. coli 912 blaTEM‑1 (β‑lactams)
aac(3)‑IV (aminoglycoside)
aph4 (aminoglycoside)
strA/B (aminoglycoside)
sul‑2 (sulphonamide)
tetX (tetracycline)

mchB (microcin)
mchC (microcin)
mchF (microcin
mcmA (microcin)
iroN (siderophore)
tsh (serin protease autotransporter)
cnf1 (toxin)
lpfA (fimbrae)
prfB (fimbrae)
iss (increased serum survival)

IncFII
IncFIB

ST101 011:H12

IR =

no. of cases
(

no. of pigs at risk at start of study period − 0.5 × no. of pigs aquiring resistance in period
)

× time

The recovery rates (RR) were calculated similarly:

RR =

no. of recovered
(

no. of pigs at without resistance at start of study − 0.5 × no. of pigs losing resistance in period
)

× time
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the stationary phase after approximately 6–8 h post-inoc-
ulation (Additional file 1).

The influence of apramycin treatment on spread 
and selection of the tested strain
All experimental animals maintained good health status 
throughout the experiment, and their weights increased 
from 6–9  kg to 12–16  kg (average daily weight gain, 
309  ±  0.052  g). The outline of the study is shown in 
Additional file  3 with the status of the individual pig at 
each time point. No significant differences in the aver-
age counts of total coliforms were observed between the 
treated group, the non-treated group and the control 
group (Figure 1A). Prior to inoculation, the feces of the 
19 pigs did not contain neither RIF nor RIF-SUL-GEN 
resistant strains (strains growing after 18 h of growth at 
37  °C). The counts of RIF and RIF-SUL-GEN resistant 
coliforms were significantly higher in the treated group 
(pen 2) than in the non-treated group (pen 3) from day 2 
to day 6 after day 0 (start of treatment) (Figure 1B). The 
effect of treatment was evident until day 6 (4 days after 
the end of treatment which corresponded to day 2) and 

the highest peak was reached on the last day of treatment 
(2 days after day 0) (Figures 1B and C; Additional file 3). 
A higher number of pigs (up to seven out of eight-treated 
group vs. two out of eight-untreated group) tested posi-
tive for the strain when apramycin was administered 
(pen 2) (Additional file  3). Using plates with RIF-SUL-
GEN for detection, the strain was observed in five and 
three pigs in the treated and the untreated group (Addi-
tional file 3B), respectively, while seven vs. four pigs were 
shown to excrete the strain when only RIF was used in 
the plate (Additional file  3A). RIF-SUL-GEN-positive 
strains were not recovered after day 6 (compared to day 
0) in both groups, except that E. coli 912 was found in 
two pigs from pen 3 (untreated group) when only RIF 
was used for selection (Figure  1B; Additional file  3) on 
day 8 (with regards to day 0) but at very low numbers 
(<1 × 103 cfu/mL). The presence of E. coli 912 was con-
firmed by PFGE. Thirty-six RIF and 36 RIF-SUL-GEN 
resistant isolates from days 0 (when the treatment was 
started and corresponding only to the inoculated pigs), 2 
(last day of treatment), 4 (2 days after the end of treat-
ment), 6 (4 days after the end of treatment) and 8 (6 days 
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after the end of treatment) were identified as E. coli, and 
the presence of aac(3)-IV in all of them was confirmed 
by PCR. All isolates had the same XbaI-profile by PFGE, 
which corresponded to the profile of E. coli 912 (Addi-
tional file 2), thereby confirming that the counts on these 
selective agar plates were representative of the inoculated 
strain. None of the pigs in the unexposed groups showed 
RIF or RIF-SUL-GEN resistant bacteria.

The resulting incidence and recovery rates are displayed 
in Figures  2A and B, respectively. The specific rates are 
listed in Table 3. The incidence rate was high in the first 
time step for both RIF and RIF-GEN-SUL (Figure  2A), 
but 0 in both control groups. Recovery appeared almost 
identical in all groups, irrespective of the time points 
(Figure 2B). Statistical testing was not done because there 
was only one pen with each treatment and the separa-
tion in resistant and non-resistant counts was reasonably 
clear. Even though no significant difference was identi-
fied, the spread of E. coli 912 among pigs in the Apramy-
cin treated group appeared higher than in the not treated 
group (Additional file 3).

Discussion
There is overwhelming evidence that the continuous use 
of antibiotics in food animals increases the number of 
resistant bacteria in their intestine [5, 6, 8, 18–23]. How-
ever, it remains to be shown whether this is caused by 
selection of resistant bacteria, already present in treated 
animals only, or whether treatment also promotes colo-
nization of more animals with resistant bacteria. This has 
not been previously analyzed in pigs, and it represented 
the main goal of the present work.

In a previous study the strain E. coli 912, of pig origin, 
was orally administered to human volunteers and results 
showed that, even though the sulphonamide resistance 
encoded by the isolate was not found to be transferred to 
the commensal microbiota, the strain was able to colo-
nize the human gut. It was also proven that once in the 
intestine, the bacteria could survive for a long period, 
enabling the possible transfer of resistance genes to the 
commensal bacteria in the gastrointestinal human tract 
[11]. In this study we analyzed the potential spread of the 
same strain during an in vivo experiment in pigs treated 
and non-treated with apramycin in order to elucidate 
how the selection force of antibiotic treatment affects 
spread of resistant bacteria. The plasmid-located gene 
responsible for apramycin resistance in this strain was 
aac(3)-IV. The experiment was performed only once, 
which represents a study limitation, and therefore the 
statistical assessment carried out can be only descriptive 
in nature. The incidence rates appeared lower in the non-
treated groups compared to the treated groups (Table 2), 
however, no statistical testing could be performed to 
confirm the trend. A larger-scale study including more 
animals per group would be required to prove whether 
the incidence rates are indeed different. Recovery did not 
appear to be different, which is an effect of the removal of 
the antimicrobial.

Results from our study revealed selection from treat-
ment with apramycin in the intestinal microbiota of 
treated pigs, leading to significantly higher counts of 
resistant strains than in pigs that did not receive the anti-
biotic. On average, selection resulted in differences in 
CFU of E. coli 912 in the feces of apramycin-treated and 
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non-treated pigs of around 100-fold. Unlike reported by 
Trobos et  al. [11] for human volunteers, we found that 
the strain was relatively poor in colonizing the gut of 
the pigs, in the sense that the peak in CFU was reached 
already on day 3 of treatment (day 2) in both groups. Sev-
eral factors might have contributed to the rapid loss of E. 
coli 912. Even though the rifampicin resistance mutation 
does not affect the fitness of the mutant strain “in vitro”, 
there could be a fitness cost “in vivo” due to this mutation 
as previously described [37]. Further experiments where 
both wild type and RIF-R strains are administered to pigs 
should be performed in order to elucidate this premise. 
It has previously been observed that predominant E. coli 
clones normally associated with the individual intesti-
nal microbiota make it difficult for introduced strains to 
establish themselves permanently [38–42]. Interestingly, 
in a previous study performed in calves, natural conju-
gative apramycin resistance plasmid isolated from com-
mensal organisms of newborn calves was found to confer 
a fitness advantage on new hosts cells [43]. However, the 
methodology in the current study did not allow for esti-
mation of plasmid transfer to other bacteria. Cavaco et al. 
[34] also demonstrated that the administration of several 
β-lactams (ceftiofur, cefquinome and amoxicillin) led 
to significantly higher counts of antimicrobial resistant 
strains compared to the control group. However, contrary 
to our results, the study which was set up very similar to 
ours, showed that the selective effects exerted by these 
antibiotics persisted for longer periods and cefotaxime-
nalidixic resistant strains were detected up to 15–20 days 
after inoculation of the strain in all the groups, no matter 
whether the antibiotic was administered or not.

In a previous study it was concluded that apramycin 
administration is most probably driving the increasing 
occurrence of apramycin/gentamicin cross-resistance 
in swine [44]. Moreover, this increasing occurrence in 
animals is of concern and should be under close surveil-
lance. Resistance to apramycin and gentamicin in Entero-
bacteriaceae and other enteric pathogens usually remains 
low in pigs at slaughter and in food at retail [44]. Notably, 
several studies from Great Britain have shown that ca. 
26% of the gentamicin-resistant pathogenic E. coli strains 
from humans were carrying the aac(3)-IV gene [45, 46].

Strain E. coli 912 has now been well characterized with 
respect to colonization of both pigs and humans, which 
might make it a suitable challenge strain in studies on 
aspects of E. coli microbiota of pigs. To deeply study 
the main features of this strain whole genome sequenc-
ing was performed. Apart from the genes aac(3)-IV and 
sul2, sequencing revealed that the strain also harbored 
the genes blaTEM-1, strA/B, aph(4) and tet(X). Southern 
blot hybridization analysis showed that all the resistance 
genes but tet(X) were carried in the same plasmid that 

was proven to be conjugative (not shown). Thus, treat-
ment with any of the antibiotics for which the strain is 
resistant may co-select for the selection and spread of all 
the resistance genes as a whole since they can be trans-
mitted within the same transferable element. With this 
knowledge, this strain also constitutes a suitable candi-
date for studies of how resistance plasmids contribute 
to the distribution of resistance genes in the intestine, as 
well as for the analysis of rates and mechanisms of trans-
fer of such plasmids.

Whole genome sequencing also revealed that E. coli 
912 harbors virulence genes, encoding functions related 
to microcin synthesis (mchB/C/F and mcmA), toxin pro-
duction (cnf1), fimbriae synthesis (lpfA, prfb), iron uptake 
(iroN), increased serum survival (iss) and hemoglobin-
binding protease (tsh) (Table  2). Since virulence genes 
responsible for pathogenicity are often located on trans-
missible genetic elements [47], E. coli 912 may represent 
a source of such virulence determinants, which could 
disseminate to pathogenic subgroups of E. coli. However, 
it is important to stress that the strain has been given to 
both humans and pigs without sign of symptoms, indi-
cating that it is a well-characterized strain which can be 
safely used in future studies.

Other studies have reported that antibiotic treatment 
influences selection, spread and persistence of resistant 
bacterial members of the family Enterobacteriaceae [48, 
49]. A prospective in vivo/in situ study demonstrated that 
the administration of low-dose in-feed oxytetracycline of 
chickens and farm dwellers did not only lead to coloniza-
tion of the intestinal microbiota of chickens with tetracy-
cline-resistant E. coli strains but also acquisition of such 
resistance in E. coli in the gut of the farm family [50].

The quantitative data generated by this study might be 
useful for assessment of the risk of acquisition of antimi-
crobial resistance from aminoglycosides use in pig pro-
duction. Besides, this is the first study providing evidence 
that the selection of resistant bacteria by treatment trans-
lates into spread between pigs and that antibiotic admin-
istration enhances the risk of transfer among treated 
animals. Further large-scale studies including more pigs 
per group, analysis of the immune status of the pigs, and 
analysis of the E. coli resistance gene pool in the gut of 
the pigs at the start of the experiments as well as analy-
sis of the variation of both aspects between piglets and 
between pens should be performed to confirm our con-
clusions. All these factors might have an impact on strain 
colonization, shedding and spread of the strain, as well as 
on emergence and spread of antimicrobial resistance. As 
mentioned, gentamicin is used for treatment of critical 
human systemic infections, such as bacteremia. Due to 
the risk of transfer of gentamicin resistance genes or gen-
tamicin-resistant E. coli from animals to humans and the 
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consequent risk of difficulty in treating infections with 
gentamicin-resistant E. coli, the selective force conferred 
by apramycin for presence of gentamicin-resistant E. coli 
in animals and the potential enhanced spread among 
them is of great concern.
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