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Abstract 

The diagnosis of cardiac arrhythmias often depends on information from long-term ambulatory electrocardiographic (ECG) 

monitoring. For several decades, these recordings have been obtained by wired Holter recorders. However, to overcome 

some of the known disadvantages of the old technologies, several different cable-free wireless patch-type ECG recorders 

have recently reached the market. One of these recorders is the ePatch designed by the Danish company DELTA. The 

extended monitoring period available with the patch recorders has demonstrated to increase the diagnostic yield of 

outpatient ECG monitoring. Furthermore, the patch recorders facilitate the possibility of outpatient ECG monitoring in new 

clinically relevant areas, e.g. telemedicine monitoring of cardiac patients in their homes. Some of these new applications 

could benefit from real-time embedded interpretation of the recorded ECGs. Such algorithms could allow the real-time 

transmission of clinically relevant information to a central monitoring station. The first step in embedded ECG interpretation 

is the automatic detection of each individual heartbeat. An important part of this project was therefore to design a novel 

algorithm that was optimized for heartbeat detection in ePatch ECGs and embed the algorithm in the ePatch sensor for real-

time analysis. We designed the algorithm based on a novel cascade of computational efficient filters and adaptive 

thresholds. We evaluated the algorithm on both standard databases and three different manually annotated ePatch 

databases. We found a very high detection performance with respect to both normal and abnormal beats as well as different 

types of artifacts arising from different daily life activities (average detection performance on 952,632 manually annotated 

beats obtained from 198 different patients: Se = 99.86% and P+ = 99.74%). This shows the possibilities for the embedded 

analysis of the ePatch ECGs, and the designed algorithm thus provides a platform for further research in this area.  

The expected advantages of the patch recorders are, however, unconditionally limited by their ability to record high-quality 

diagnostic ECGs throughout the recording period. Another main focus of this thesis was therefore to investigate different 

important clinical aspects of the novel ePatch recorder. To achieve this, we designed two pilot studies that were intended to 

provide information about the clinical usability of the ePatch ECGs for heart rhythm analysis. In the first pilot study, two 

medical doctors were asked to provide an individual assessment of the usefulness of 200 ePatch ECG segments for heart 

rhythm analysis. They found that more than 98% of the segments were useful. The second pilot study was designed as a 

high level comparison between the diagnostic information that could be extracted from simultaneous recordings obtained 

with the ePatch recorder and the traditional telemetry equipment. This comparison was conducted by a cardiologist on 11 

admitted patients. He found no clinically relevant differences between the information extracted from the two systems. Both 

pilot studies thus indicate a high potential for the clinical application of ECGs recorded with the ePatch system. To further 

investigate the general signal quality obtained by the ePatch, we designed a novel algorithm for the automatic estimation of 

the overall percentage of analyzable time (PAT) in ECGs. The algorithm obtained very high classification performance and is 

therefore expected to provide a reliable estimation of the overall PAT. We then applied the algorithm to investigate the PAT 

in 250 different ePatch recordings. We found that 10% of the recordings obtained less than 10% analyzable time, and they 

were considered as incorrect measurements. For the remaining 90% of the recordings, we found a very high PAT (median: 

100% (interquartile range: 97.9% to 100%); mean: (92.4 ± 18.8)%). We therefore didn’t find indications of problems related 

to the general signal quality obtained by the ePatch recorder. Overall, we thus find a high potential for the application of the 

ePatch recorder in many different clinical settings in the future. 
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Resumé 

Diagnosticering af patienter med hjerterytmeforstyrrelser er ofte baseret på ambulante målinger af patientens 

elektrokardiografi (EKG). Disse målinger er i flere årtier blevet opsamlet ved hjælp af de såkaldte Holter optagere. Det er 

dog kendt, at denne teknologi har en del begrænsninger i form af høj patientbyrde og relativ lav indvilligelse i at bære 

optageren i længere tidsperioder. I de senere år er der derfor blevet udviklet forskellige ”plaster”-løsninger til ambulant 

måling af EKG. Én af disse løsninger af DELTA’s ePatch. Videnskabelige studier har vist, at muligheden for en forlænget 

monitoreringsperiode kan øge det diagnostiske udbytte af målingerne. Den nye teknologi giver desuden muligheder for at 

anvende ambulant EKG i mange klinisk relevante sammenhænge, hvor det endnu ikke er udbredt i dag. Dette kunne fx 

være telemedicinsk monitorering af hjertepatienter i deres eget hjem. Der er mange af disse nye anvendelsesmuligheder, 

der vil kunne drage stor nytte af automatisk real-time-analyse af de målte signaler. Sådanne algoritmer kunne fx give 

mulighed for trådløst at sende relevante, kliniske markører til en central overvågningsenhed. Det første skridt i automatisk 

analyse af EKG signaler er detektion af hvert enkelt hjerteslag. Det har derfor været en vigtig del af dette projekt at designe 

en ny algoritme, der er optimeret til indlejret detektion af hjerteslag i ePatch-sensoren. Vi besluttede at designe algoritmen 

ud fra et sæt af nye beregningseffektive filtre og adaptive tærskelværdier. Vi validerede algoritmens performance på EKG fra 

to standarddatabaser og tre forskellige manuelt annoterede ePatch-databaser. Vi opnåede en meget høj detektionsrate i 

forhold til både detektion af normale og unormale hjerteslag og i forhold til forskellige former for artefakter forårsaget af 

normale dagligdagsaktiviteter (gennemsnitlig performance på 952,632 manuelt annoterede hjerteslag fra 198 forskellige 

patienter: Se = 99,86% og P+ = 99,74%). Den høje performance viser potentialet for fremtidig indlejret real-time-analyse af 

EKG signaler i ePatch-sensoren. Den designede algoritme danner desuden en platform for videre forskning i nye algoritmer, 

der kan anvendes til automatisk at ekstrahere klinisk relevant information under målingerne.  

De mange forventede fordele ved den nye teknologi er dog stærkt betinget af teknologiens evne til at optage diagnostisk 

EKG af høj kvalitet igennem hele måleperioden. Der har derfor også været stor fokus på at undersøge vigtige, kliniske 

aspekter af den nye ePatch-teknologi i dette projekt. For at kunne gøre dette, designede vi to forskellige pilotstudier, der 

havde til formål at undersøge den kliniske anvendelighed af EKG optaget med ePatch. I det første pilotstudie fik vi to læger 

til uafhængigt af hinanden at vurdere den kliniske anvendelighed af 200 forskellige ePatch EKG segmenter. Resultatet var, 

at flere end 98% af segmenterne var brugbare til hjerterytmeanalyse. Det andet pilotstudie var designet med henblik på at 

opnå en overordnet sammenligning af det diagnostiske indhold i samtidige målinger med ePatch-systemet og traditionelt 

telemetriudstyr. Sammenligningen blev udført af en kardiolog på data fra 11 indlagte patienter. Kardiologen fandt ingen 

klinisk relevant forskel imellem de tilgængelige informationer fra de to systemer. Resultaterne fra begge disse pilotstudier 

indikerer således et højt potentiale for klinisk anvendelse af EKG optaget med ePatch-sensoren. Vi ønskede yderligere at 

undersøge den generelle signalkvalitet, der kan opnås med ePatch-sensoren. For at kunne undersøge denne, designede vi 

en ny algoritme til automatisk estimering af den procentvise andel af en EKG måling, der er klinisk analyserbar. Vores 

algoritme opnåede en høj klassifikationsperformance i forhold til genkendelse af analyserbare og ikke-analyserbare EKG 

segmenter. Vi mener derfor, at den kan give et pålideligt estimat af den overordnede, analyserbare procentandel af en given 

måling. Vi anvendte algoritmen til undersøgelse af 250 ePatch-målinger. Vi fandt, at 10% af målingerne havde mindre end 

10% analyserbar tid. Disse målinger betragtede vi som fejl-målinger. For de resterende 90% af målingerne fandt vi, at de 

havde en meget høj analyserbar tid (median: 100% (kvartil range: 97,9% til 100%), gennemsnit: (92,4 ± 18,8)%). Baseret på 

vores studier, har vi derfor ikke fundet problemer i forhold til den signalkvalitet, ePatch-sensoren opnår. Vores overordnede 

konklusion er derfor, at ePatch systemet har et højt potentiale indenfor mange forskellige, kliniske anvendelser i fremtiden.   
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1 Introduction 

Cardiovascular diseases (CVDs) are not only lethal, they are also associated with a high economic burden on the healthcare 

facilities, and they can significantly decrease the quality of life for the affected patients and their families. Early diagnosis 

and treatment is furthermore essential to decrease the risk of dangerous complications. The diagnosis of cardiac 

arrhythmias often depends on information from long-term ambulatory electrocardiographic (ECG) monitoring [1]. However, 

many of the older technologies applied for outpatient heart rhythm assessment today suffer from significant issues related to 

patient comfort and consequently reduced compliance with wearing the systems for extended periods of time. This might be 

problematic since an extended monitoring period has shown to increase the diagnostic yield of outpatient ECG monitoring 

[2]. To overcome some of these difficulties, the novel ePatch recorder was designed by the Danish company DELTA. The 

novel technology has a high number of advantages compared to the traditional Holter recorders, but the clinical applicability 

and acceptance of the new technology is inextricably conditioned by the recorder’s ability to obtained high-quality diagnostic 

ECGs throughout the monitoring period. This ability has been questioned in the literature [1], [3], [4]. One of the main goals 

in this project was therefore to explore different aspects of the clinical applicability of ECGs recorded with the ePatch 

system. This investigation is two-fold and includes both an investigation of the clinical usefulness and recognisability of 

ePatch ECGs for heart rhythm analysis and an investigation of the obtained signal quality. These investigations are 

described in the first two main objectives listed below. As long as the ECG quality is ensured, the new technology is not only 

imagined to be able to substitute the currently applied Holter or telemetry recorders. This technology also reveals 

opportunities for monitoring in completely new clinically relevant patient populations. This could for instance include real-time 

monitoring of cardiac patients in their own homes. Many of these new applications could highly benefit from automatic real-

time embedded interpretation of the recorded ECGs. The system could, for instance, automatically transmit heart rate (HR) 

trend curves, potential arrhythmia events, signal quality indices, and patient activity levels to a central monitoring station. 

Another main goal in this project was therefore to initiate the design of new low-power signal processing algorithms for the 

automatic embedded analysis of the recorded ePatch ECGs. The first step in this analysis is the reliable detection of each 

individual heartbeat. This was therefore the primary focus of the low-power algorithm research conducted in this part of the 

project. The requirements regarding high clinical performance as well as low computational burden are obvious when the 

purpose is embedded analysis. However, it might be less trivial to define the exact limits for the acceptable algorithm power 

consumption. Furthermore, the power consumption required for a given algorithm depends on the specific implementation 

and realization of the algorithm in the ePatch sensor (e.g. general purpose microprocessor, digital signal processor (DSP), 

or application specific integrated circuit (ASIC)). From a practical point of view and to keep the required flexibility of the 

ePatch platform in mind, we decided to define the acceptable power consumption as the ability to perform real-time 

embedded analysis in the currently CE-market ePatch sensor without significantly reducing the total recording time of the 

system. This leads to the third project objective stated below: 

 

 

 

 

 

 

 

 

  

Objectives:  To conduct a preliminary investigation of the clinical usability of 

ECGs recorded with the novel ePatch technology 

 

 To conduct a preliminary investigation of the ability to obtain 

sufficient diagnostic quality of ECG recordings obtained with the 

ePatch technology 

 

 To design and validate a novel embedded QRS complex detection 

algorithm with high clinical performance in real-life ePatch ECGs 

and low computational load 

 

  
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1.1 Scientific Contributions 

The scientific contributions obtained throughout this project are mainly presented in two journal papers, one white paper, 

three conference papers, and one conference abstract. These contributions are listed below. The author of this thesis is 

cited as Dorthe Bodholt Nielsen until October 2012 and Dorthe Bodholt Saadi hereafter. Each contribution is provided at the 

end of this thesis, and the paper number refers to the order in which they are included.  

 

Journal papers 

 

 D.B. Saadi, G. Tanev, M. Flintrup, A. Osmanagic, K. Egstrup, K. Hoppe, P. Jennum, J. Jeppesen, H.K. Iversen, 

and H.B.D. Sorensen, “Automatic Real-time Embedded QRS Complex Detection for a Novel Patch-Type 

Electrocardiogram Recorder”, Submitted to IEEE Translational Engineering in Health and Medicine. (Paper V) 

 

 D.B. Saadi, A. Osmanagic, H.M Sheta, K. Egstrup, L. Bay, K. Hoppe, J.L. Jeppesen, H.K. Iversen, P. Jennum, 

and H.B.D. Sorensen, “Investigation of Analyzable Time in 24-hour Patch Electrocardiogram Recordings”, 

Submitted to IEEE Transactions on Biomedical Engineering. (Paper VII) 

 

White paper 

 

 D.B. Saadi, H.B.D. Sorensen, I.H. Hansen, K. Egstrup, P. Jennum, and K. Hoppe, ”ePatch® - A Clinical 

Overview”, available online: http://orbit.dtu.dk/en/publications/epatch--a-clinical-overview(5a3e37a2-76a8-4240-

aae6-781269a8ca2a).html, 2014. (Paper I) 

 

Conference papers 

 

 D.B. Nielsen, K. Egstrup, J. Branebjerg, G.B. Andersen, and H.B.D. Sorensen, ” Automatic QRS complex 

detection algorithm designed for a novel wearable, wireless electrocardiogram recording device”, 34th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp. 2913-6, 

2012. (Paper IV)  

 

 D.B. Saadi, I. Fauerskov, A. Osmanagic, H.M. Sheta, H.B.D. Sorensen, K. Egstrup, and K. Hoppe, “Heart rhythm 

analysis using ECG recorded with a novel sternum based patch technology”, CARDIOTECHNIX 2013: 

Proceedings of the International Congress on Cardiovascular Technologies, SciTePress, pp. 15-21, 2013. (Paper 

II) 

 

 D.B. Saadi, K. Hoppe, K. Egstrup, P. Jennum, H. K. Iversen, J. L. Jeppesen, and H.B.D. Sorensen, ”Automatic 

quality classification of entire electrocardiographic recordings obtained with a novel patch type recorder”, 36th 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp. 

5639-42, 2014. (Paper VI) 

 

Conference abstract 

 

 D.B. Saadi, K. Egstrup, K. Hoppe, and H.B.D. Sorensen, “Comparison of diagnostic information from regular 

telemetry equipment and a novel patch type electrocardiogram recorder”, 36th Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society (EMBC), 2014. (Paper III) 

 

 

http://orbit.dtu.dk/en/publications/epatch--a-clinical-overview(5a3e37a2-76a8-4240-aae6-781269a8ca2a).html
http://orbit.dtu.dk/en/publications/epatch--a-clinical-overview(5a3e37a2-76a8-4240-aae6-781269a8ca2a).html
http://orbit.dtu.dk/en/publications/automatic-qrs-complex-detection-algorithm-designed-for-a-novel-wearable-wireless-electrocardiogram-recording-device(1233c233-f86e-4932-8246-6f27a2eeb16a).html
http://orbit.dtu.dk/en/publications/automatic-qrs-complex-detection-algorithm-designed-for-a-novel-wearable-wireless-electrocardiogram-recording-device(1233c233-f86e-4932-8246-6f27a2eeb16a).html
http://orbit.dtu.dk/en/publications/automatic-quality-classification-of-entire-electrocardiographic-recordings-obtained-with-a-novel-patch-type-recorder(30e742bc-7d30-4f60-80ff-c80503822e59).html
http://orbit.dtu.dk/en/publications/automatic-quality-classification-of-entire-electrocardiographic-recordings-obtained-with-a-novel-patch-type-recorder(30e742bc-7d30-4f60-80ff-c80503822e59).html
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1.2 Thesis Outline 

This thesis is organized in three main research chapters together with a preliminary chapter and an overall conclusion. The 

preliminary chapter is included to provide some basic knowledge needed to understand and appreciate the impact of the 

research described later. The three main chapters cover the three different research topics defined on page 1. The three 

chapters are therefore naturally related, but they can be read individually. Since each chapter covers quite different aspects 

of our research, each chapter is initiated with its own brief background section, including the motivation, the hypothesis, and 

an overview of the relevant literature. Furthermore, each of the three main chapters contains its own conclusion on the 

investigations described in the relevant chapters. As summarized in section 1.1, the research is also presented in a number 

of papers. In some cases, the relevant methodology and results described in the papers are reproduced in the thesis. In 

other cases, this thesis contains either a brief summary of the findings in the paper, or it might contain more details and 

illustrations than the original paper. Furthermore, some sections contain additional previously unpublished results. 

Throughout this summary report, it is clearly stated when only a brief description is included. It is therefore recommended to 

read this summary report first and only refer to the papers if additional information is desired on these topics. A brief 

overview of the content in each chapter is provided below. 

 

Chapter 2 provides a brief description of the origin of the ECG, a brief description of a few selected arrhythmias, and an 

overview of currently applied ambulatory ECG recorders.   

  

Chapter 3 presents the results of two different pilot studies that we conducted to investigate the clinical usefulness of ECG 

recorded with the ePatch placed at the sternum. This chapter thus creates the foundation for the clinical real-life applicability 

of the ePatch system and, hereby, the applicability of the remaining research described in this thesis. This content is related 

to Papers I – III.  

 

Chapter 4 presents the results of our investigations of the possibilities for the real-time embedded detection of individual 

heartbeats in the ePatch sensor. This content is also addressed in Paper IV and Paper V.  

 

Chapter 5 contains an investigation and discussion of the signal quality obtained with the ePatch ECG recorder. This 

research is also addressed in Paper VI and Paper VII.  

 

Chapter 6 summarizes the main conclusions of the research described in the other chapters.  
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2 Preliminaries 

This chapter is intended to provide a quick fundamental introduction to a few areas that might ease the understanding of the 

research discussed in later chapters. The chapter thus contains a brief description of the origin of the ECG signal, 

illustrations of a few relevant arrhythmias, and a brief overview of currently applied ambulatory ECG recording techniques. 

The descriptions in this chapter are not intended to be exhaustive. Instead, they are intended to provide a brief overview and 

an understanding of the clinical “World” that the ePatch technology is a part of.  

2.1 The Electrocardiogram 

The repeated contraction and relaxation of the heart during each heartbeat is caused by organized depolarization and 

repolarization of the muscle cells in the heart. The ECG provides a visualization of this electrical activity. Each of the 

characteristic waveforms in the ECG signal represents different periods of the normal heart cycle. Generally, the 

functionality of the heart and its electrical system is altered in different ways during arrhythmias. These abnormalities 

naturally change the characteristic appearance of the electrical activity, and hereby the morphology of the recorded ECGs.  

Therefore, the standardized 12-lead ECG has served as the “gold standard” for diagnosis of different heart conditions, 

including arrhythmias, for more than hundred years [1]. To allow the reader a fundamental understanding of this, a very brief 

description of the origin of the ECG is provided below.  

2.1.1 The Origin of the ECG  

The important parts of the electrical conduction system of the heart are illustrated in Figure 2.1. Each normal heart beat is 

initiated by spontaneous depolarization in the sinus node (SA). This depolarization is spread to the atria that hereby 

contract. This depolarization results in the P-wave in the surface ECG (see Figure 2.2). The propagation of the 

depolarization wave is delayed in the atrioventricular (AV) node. This is observed as the brief isoelectric line between the P-

wave and the QRS complex. In the normal heart, the AV node provides the only conduction path from the atria to the 

ventricles. After the AV node, the depolarization propagates through the Bundle of His to the bundle branches and continues 

to the purkinje fibers. This causes depolarization and hereby contraction of the ventricles. This results in the QRS complex 

in the ECG signal. After the contraction, the ventricles are repolarized, and this is observed as the T-wave. [5]   

 

 

Figure 2.1: Illustration of the conduction system of the heart. The numbers indicate the intrinsic pacemaker frequency of each part in the 

conduction system. [5] 
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Figure 2.2: Illustration of the characteristic points in a normal ECG signal. [5] 

2.1.2 Cardiac Arrhythmias 

Based on the above description of the origin of the ECG, it becomes clear that diseases that alter the normal order of events 

in the heart can cause specific changes in the electrical activity and hereby cause changes in the recorded ECG. Cardiac 

rhythm disorders can basically be divided into two main categories: The supraventricular arrhythmias and the ventricular 

arrhythmias. The supraventricular arrhythmias originate from a location in the atria or the AV junction, whereas ventricular 

arrhythmias originate from a location within the ventricles [5]. One example of the latter is a ventricular ectopic beat (VEB). 

This is illustrated in Figure 2.3. When the depolarization is initiated in the ventricles, it will not follow the normal conduction 

pathway. This implies that it takes longer time for the activation front to proceed throughout the ventricles. This causes the 

wide QRS complex observed in Figure 2.3. Furthermore, no P-wave is observed. [5]  

 

 

Figure 2.3: Illustration of a premature ventricular contract. [5] 
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Figure 2.4 contains an example of a supraventricular rhythm where the origin of the atrial contraction varies. This example 

illustrates how different origins in the atria affect the appearance of the P-wave. It is observed that if the atrial activation is 

originated close to the AV node, the depolarization occurs in the opposite direction and hereby produces a negative P-wave. 

It is furthermore observed that the appearance of the QRS complexes is unaffected since the depolarization is lead through 

the AV node to the ventricles using the normal conduction pathway. [5] 

 

 

Figure 2.4: Illustration of wandering pacemaker. [5] 

Another clinically very interesting supraventricular arrhythmia is atrial fibrillation (AF). This arrhythmia is characterized by 

irregular and rapid beating of the two atria. This causes the surface ECG to display a fibrillating baseline and irregular QRS 

complexes. An ECG snippet illustrating this is provided in Figure 2.5.  

 

 

Figure 2.5: Illustration of atrial fibrillation (AF). [5] 

AF occurs in 1-2% of the general population, and the prevalence is expected to be at least doubled within the next 50 years 

due to the aging population [6]. Some patients might present symptoms including palpitations, dizziness, dyspnoea, syncope 

or fatigue, but about one-third of the patients are asymptomatic [6]. This makes AF a “silent killer” meaning that many 

patients suffer from AF without knowing it. This is highly problematic due to the increased risk of other serious clinical events 

(see Table 2.1). Early recognition of AF is thus very important to initiate correct treatment to avoid both progression of the 

disease and decrease the risk of related clinical consequences. However, the often “silent” nature of the arrhythmia impedes 

the chance of early detection [6]. Furthermore, AF can be paroxysmal meaning that episodes of AF alternate with episodes 

of normal sinus rhythm. This makes prolonged monitoring important to ensure that potential paroxysmal AF events are 

correctly identified [7]. It might therefore be beneficial to conduct large-scale screening programs to identify patients with AF 
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before the development of for instance injurious episodes of stroke. As described below, dangerous arrhythmias like AF 

might therefore not be sufficiently managed by the earlier accepted monitoring techniques. This draws the attention to the 

benefits of new recording techniques that facilitate prolonged comfortable ambulatory ECG recordings. This was one of the 

main motives for designing the novel ePatch ECG recorder.    

Table 2.1:  Clinical events (outcomes) affected by AF [6].  

Outcome parameter Relative change in AF patients 

1. Death Death rate doubled 

2. Stroke (including hemorrhagic stroke 

and cerebral bleeds) 

Stroke risk increased (5-fold) and AF is associated with 

more severe stroke. 

3. Hospitalization Hospitalizations are frequent in AF patients and may 

contribute to reduced quality of life. 

4. Quality of life and exercise capacity Wide variation, from no effect to major reduction. AF can 

cause marked distress through palpitations and other AF-

related symptoms. 

5. Left ventricular function Wide variation, from no change to tachycardiomyopathy with 

acute heart failure. 

2.2 Overview of Ambulatory ECG Monitoring Devices 

Since the first Holter recorders were invented in the 1940s there has been a tremendous development in the capabilities for 

ambulatory ECG monitoring [1]. A detailed overview of the different monitoring techniques is provided in [8] and [1], whereas 

a brief overview of three selected monitoring devices is presented in Table 2.2. It should be noted that different variations of 

the three selected devices exists, e.g. not all event and loop recorders require patient participation in transmission of the 

recorded events. The events can also be stored locally for analysis after the recording. However, it is generally observed 

that many of the older technologies induce significant issues related to patient comfort, the duration of the monitoring period, 

and the integrity of the recorded data. The event and loop recorders only store ECG data when either a patient trigger 

system or an automatic event detection system is activated. This prevents full disclosure and investigation of potential 

dangerous but asymptomatic events which were not correctly detected by the automatic algorithms. Furthermore, the auto-

trigger algorithms are not designed to detect the offset of an arrhythmia. This implies that it is impossible to assess for 

instance the AF burden [1]. This situation is overcome by the continuous Holter and telemetry systems. However, the nature 

of these systems induces issues related to patient comfort and compliance with wearing the systems for extended periods of 

time. As mentioned, this might be problematic since recent research have demonstrated how a prolonged monitoring period 

using patch devices can result in an increased diagnostic yield, e.g. in patients with AF [2], [7], [9]. A variation of the loop 

recorders is the implantable loop recorder. These are implanted subcutaneously, and they are triggered automatically or by 

patient activation. Their battery life time is more than 24 months and they can therefore be applied for very prolonged 

monitoring [8]. However, they require surgical insertion. The selection of monitoring technique in each situation can thus be 

characterized as a compromise between sufficient diagnostic information from adequate continuous monitoring on one 

hand, and patient comfort and compliance on the other. To overcome this, a new generation of long-term ECG monitoring 

techniques has reached the market during the last couple of years. The patch type recorders were created to fit right in the 

middle of this compromise: The patches were designed to provide reliable high quality continuous ECG monitoring for long 

periods of time without any patient discomfort or impairment of normal daily life activities. One of them is the ePatch recorder 

investigated in this project.    
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Table 2.2: Comparison of different types of important currently applied ambulatory ECG monitors  [1] [8].  

Device type Holter monitor Event monitor Loop recorder 

Illustration of 

device 

  

 

 

[1] 

 

 

 

[1] 

 

 

 

[1] 

Data flow Patient wears monitor  

contiuously → 

Patient keeps diary of  

symptoms → 

Patient returns monitor to 

technician → 

Technician creates final report for 

reffering physician  

Patient carries monitor → 

Patient places monitor on chest 

during symptoms → 

Patient transmit data via telephone 

line to monitoring station → 

Monitoring station sends data to 

physician  

Patient wears monitor → 

Patient activate monitor during 

symptoms  (auto-trigger  

possibility) → 

Patient transmit data via telephone 

line to monitoring station → 

Monitoring station sends data to 

physician 

Typical duration 24-48 hours  Up to 30 days   Up to 30days   

Complete data 

storage? 

Yes  No  No 

Remote 

monitoring? 

No  Yes  Yes  

Advantages - Continous ECG recording and 

analysis of all data 

- No patient participation in data 

transmission 

- The patient is not constantly 

”wired up” 

- Relatively long monitoring 

duration 

- The combination of auto-trigger 

and manual activation allows 

detection of both asymptomatic and 

symptomatic events 

- Storage of the pattern initiating 

the cardiac event 

- Relatively long monitoring 

duration 

Disadvantages - Relative short duration 

- Patient incompliance to keep 

diary of symptoms and constantly 

wear the device 

- Real-time analysis is impossible 

- Time consuming manual analysis  

- No information about 

asymptomatic events  

- No information about the pattern 

initiating a symptomatic event 

- Issues with patient incompliance 

to apply device and immedialetly 

transmit signals 

- Risk of missing asymptomatic 

events if the auto-trigger function 

fails  

- Patient incompliance with 

constantly wearing the device or 

immediately transmit data 

2.2.1 The ePatch Technology  

Based on knowledge about the disadvantages of the older ambulatory monitoring technologies, the ePatch heart monitoring 

platform was designed according to a “wear and forget” principle. Thus, the device is designed to be reliable, comfortable 

and easy to use for both the patient and the healthcare professionals. This was accomplished by the novel patch design 

illustrated in Figure 2.6. The ePatch system consists of two parts: 1) A bio-compatible, single-use adhesive electrode with 

multiple skin contact points that is attached directly to the skin surface (this part is termed the ePatch electrode) and 2) A 

reusable device that contains a rechargeable battery, electronic parts, data storage module, equipment for wireless data 

transmission, and a signal processing module (this part is termed the ePatch sensor). The ePatch sensor is attached directly 

on the ePatch electrode. This makes the system completely free of cables. This is designed to increase patient comfort and 

compliance and ensure the possibility of full participation in normal daily life activities during the recording. This patch design 

also facilitates a very small and light weight construction that minimizes the awareness of the system while wearing it. The 

ePatch version applied in most of this dissertation is CE approved for 24-hour ambulatory ECG recordings, and the ECG 

signals are stored locally on an internal memory. This ePatch version records two bipolar ECG channels with a resolution of 
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12 bits and a sampling frequency of 512 Hz. Furthermore, in compliance with IEC 60601-2-47, the ePatch front end had an 

analog bandpass (BP) filter between 0.67 and 40 Hz [10]. The ePatch is designed as a technology platform that can be 

customized to account for the needs in a high variety of situations. This is accomplished by a modular design that for 

instance allows addition of additional sensors for other recording modalities. Further details about the clinical application of 

the ePatch and results obtained from different clinical studies applying the ePatch are presented in Papers I - III.  

 

 

Figure 2.6: Illustration of the ePatch electrode and sensor correctly placed on the sternum.  

 

Some of the expected advantages of the ePatch technology compared to the traditional Holter or event recorders thus 

include increased patient comfort and compliance, the possibility of real-time data transmission of clinically relevant cardiac 

events (enabled through embedded signal processing), and prolonged continuous monitoring. Furthermore, the patch 

design is expected to decrease the burden on the hospital staff to handle issues with loose or disconnected electrodes, a 

high number of cables attached to the patient, and difficulties with personal care, e.g. patient showering. However, the 

placement of the ePatch electrode results in a shorter distance between the bipolar recording electrodes. Furthermore, the 

placement of the electrodes is not similar to the electrode placements in the traditional Holter recordings. This causes the 

recorded electrical activity to be slightly different. Based on the brief description of the origin of the ECG, it can be 

appreciated that the different electrode positions might therefore slightly change the appearance and/or quality of the 

recorded ECGs. This might induce difficulties regarding the medical professional’s ability to recognize different heart 

rhythms and hereby reduce the practicability of the system. The reservation towards the quality of ECG signals recorded 

using patch technologies with closely spaced bipolar recording electrodes was furthermore stated by [1]. On the other hand, 

the advantages of the cable-free design and the placement on the sternum are expected to include the benefits of reduced 

artifacts from large muscles and large movements of electrodes and wires. To summarize, some of the important concerns 

related to this new technology include uncertainties about the ability to record high-quality diagnostic ECGs throughout the 

monitoring period. However, a number of other competitive patch-type ECG recorders have also reached the market. Two of 

the other players in the market are designed by Corventis [11]–[14] and IRhythm [2], [7], [9], [15], respectively. The high 

activity in the patch recorder market illustrates the interesting potentials with this technology and indicates that it is expected 

that the potential difficulties described above can be handled. Furthermore, it is observed how the important players in the 

patch recorder market has documented and validated their clinical performance through published clinical studies. In the 

beginning of this project, no publications regarding the clinical performance of the ePatch were available. We thus found it 

important to conduct investigations regarding the ability to record diagnostic meaningful high-quality ECG using the ePatch 

recorder placed at the sternum. As mentioned earlier, this topic is therefore the focus in chapter 3 and chapter 5. If the 

quality of the recorded signals can be assured, the potential for future application of the ePatch recorder as a substitute for 



11 
 

current recorders in areas were outpatient ECG monitoring is routinely applied today seem obvious. However, the new 

technologies also open for completely new areas were outpatient ECG monitoring is not possible or feasible today due to 

the limitations of the current devices. Examples of this might include:   

 

 Prolonged monitoring to improve diagnosis and management of dangerous paroxysmal arrhythmias that might be 

difficult to diagnose using traditional devices (e.g. AF) 

 Large-scale cardiac screening programs 

 Tele-monitoring of known cardiac patients in their own homes 

 Improved monitoring and guidance in exercise and rehabilitation programs 

 Monitoring of high risk patients (e.g. patients with diabetes) 

 Improved monitoring of post-operative patients 

 

Many of these new application areas might benefit from the possibilities of real-time embedded interpretation of the recorded 

ECGs. As mentioned earlier, the first step in this analysis is reliable detection of each heartbeat. The design of an algorithm 

for embedded detection of QRS complexes in the ePatch sensor is thus the main focus in chapter 4. Overall, the application 

areas of the novel ePatch technology are very wide, and it is therefore worth spending some time and effort on 

investigations related to the practical applicability of this novel technology in real-life clinical settings. 
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3 Clinical Usability of ECGs Obtained with the ePatch Recorder  

Objectives: The general advantages of the novel patch-type ECG recorders should be obvious. However, the primary 

requirement for the successful diagnosis and treatment of the patients remains to be the possibility for reliable interpretation 

of the recorded ECGs. This requires that the long-term patch ECG recordings obtain sufficient diagnostic quality for the 

analysis of specific ECG patterns. The aim of this part of the project was therefore to investigate the usability of two-channel 

sternal ECG recorded with the ePatch technology for heart rhythm analysis. This investigation thus forms the basis for the 

relevance of applying the ePatch ECG sensor in real-life clinical applications and, hereby, also the relevance of the 

remaining research described in this thesis. The clinical work described in this chapter is a summary and discussion of the 

work presented in Papers I – III.    

 

 

 

 

 

Figure 3.1: The advantages of the patch-type ECG recorders include increased patient comfort and compliance with wearing the system 

for extended periods of time, decreased artifacts from movements of cables, and the possibility of recording during most everyday 

activities, e.g. showering. However, it is important to investigate whether the recorded ECGs possess the same diagnostic information as 

ECGs recorded with traditional ECG equipment. This investigation is the main focus of this chapter. Modified from [16].   
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3.1 Background 

In the beginning of this project, the ePatch technology was very new, and it was therefore not well understood whether the 

analysis of ePatch ECGs could provide satisfactory clinical information. This concern was highly related to the necessary 

short inter-electrode distances and the placement of the ePatch on the sternum. As can be imagined, these design choices 

were crucial to achieve the wear-and-forget goals, but they also imply that the projection of the cardiac vector is different 

from the projection applied in traditional ECG equipment. The information obtained from the recorded ECG channels does 

therefore not necessarily correspond to the information obtained from any of the known leads in the traditional Holter or 

telemetry systems. This could induce a risk of misinterpretation and difficulties during the analysis of the recorded ECGs. It 

was therefore an important part of this project to investigate the clinical usefulness of two-channel ECGs recorded on the 

sternum with the novel ePatch technology. This investigation is clearly important to validate the clinical usefulness of the 

ePatch technology and hereby create the foundation for the real-life clinical applicability of the remaining parts of this thesis.  

3.1.1 Research Hypothesis 

The above described concerns led to the formulation of two research questions that will be investigated and discussed 

throughout this chapter: 

 

1. Is two-channel ECG recorded with the novel ePatch ECG recorder placed at the sternum useful for heart rhythm 

analysis? The usefulness for heart rhythm analysis implies that the relevant ECG fiducial points are visible (e.g. 

the presence/absence of P-waves, the regularity of the QRS complexes, and the width of the QRS complexes). 

2. Is the clinically relevant information obtained from the ePatch system comparable to the diagnostic information 

obtained from simultaneous recordings obtained with traditional ECG equipment? 

3.1.2 Literature Overview 

A few studies in the literature have addressed similar questions related to other patch-type devices. Some of the most 

interesting findings from the literature are summarized below: 

 

 In [3], the use of a prototype patch ECG recorder designed by Phillips Healthcare was investigated and compared 

to traditional Holter recordings. They extracted seven-second ECG segments from simultaneous recordings 

obtained with the prototype device and a traditional Holter recorder. They compared each pair of simultaneously 

extracted ECG segments from the two devices with respect to the ability to correctly capture episodes of 

ventricular ectopy. They found a 100% agreement for the recognition of ventricular fibrillation (VF) and a very high 

accuracy for the correct detection of the total number of VEBs and the number of different VEB configurations in 

each ECG snippet. 

 In [4], the same prototype patch ECG recorder designed by Phillips Healthcare was investigated again. They 

investigated four different placements of the experimental patch recorder. One of the investigated positions was at 

the sternum. Again, they extracted seven-second ECG segments from simultaneous recordings obtained with the 

experimental device and a traditional Holter recorder and compared the segments with respect to the presence of 

important diagnostic ECG fiducial markers. In this study, they found a very accurate assessment of atrial activity 

(presence/absence of P-waves and PR interval) and overall rhythm diagnosis at the midsternal position and a 

good assessment of the QRS width in all four investigated locations. In both [3] and [4], segments were excluded if 

the interpretation was obscured by noise in either one of the two different recording modalities.   

 In [9], recordings of up to 14 days with the one-channel Zio Patch recorder (iRhythm Technologies) placed over 

the left pectoral region were compared to three-channel 24-hour traditional Holter recordings obtained from 146 

patients. They found that, during the initial 24-hour period where both devices were worn, the Holter recorder 

found a few cases of clinically significant arrhythmias that went undetected by the patch recorder. However, 
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comparing the total wear time of the two devices (Holter: median = 1.0 day; patch: median = 11.1 days), the patch 

recorder detected significantly more arrhythmia events than the traditional Holter device. 

 In [7], the Zio Patch was used on 74 patients referred for evaluation of paroxysmal AF. They found an excellent 

agreement between the detection of AF episodes and estimation of the overall AF burden using the Zio Patch and 

the traditional Holter recorder during the initial 24 hours where both devices were applied.  

 

A review of the literature thus indicates a strong potential for the recording of clinically relevant ECG signals on the sternum 

using a patch-type ECG recorder. However, the described systems are not completely comparable to the ePatch system, 

and it was therefore also important to investigate the clinical usefulness of ECGs recorded with the novel ePatch recorder.   

3.1.3 Chapter Overview 

To allow the investigation of the formulated research questions, we conducted two clinical pilot studies. These studies were 

designed with inspiration from the above described literature review as well as considerations for the practical circumstances 

and the practical possibilities at the time of the investigations. This chapter contains a description and discussion of the 

findings in each individual pilot study, followed by a common discussion of the study limitations and the overall conclusions 

gained from both studies.  

3.2 Pilot Study I: Usability of ePatch ECG Segments for Heart Rhythm Analysis 

One of the expected ePatch applications is a substitution of today’s traditional Holter recorders. The first pilot study was 

therefore designed to investigate whether ECGs recorded with the ePatch sensor placed on the sternum are useful for heart 

rhythm analysis in a setting fairly similar to that of the traditional and well-known Holter analysis. In the traditional setting, a 

medical technician with speciality in Holter or telemetry analysis extracts relevant ECG segments that are provided to the 

referring medical doctor together with an overall description of the findings in the recording. The referring medical doctor 

applies this information as input to the diagnosis together with other relevant clinical tests and the medical history. To obtain 

a realistic impression of the usefulness of the ePatch ECGs, we applied a methodology that is fairly similar to this approach: 

An experienced nurse (ECG technician) was asked to extract ECG segments from each patient, and two medical doctors 

were then asked to individually judge the usefulness of each of the extracted segment for heart rhythm analysis. The data 

extraction procedure and the medical evaluation of each segment were conducted in two different Graphical User Interfaces 

(GUIs) that we designed in MATLAB R2012B. The next sections contain a summary of the findings in this pilot study, 

whereas a detailed description is provided in Paper II.  

3.2.1 Description of Database 

To facilitate a meaningful investigation, it was important to ensure the representation of realistic amounts of different 

abnormal beat morphologies. We therefore decided to include hospitalized patients that were already selected for regular 

telemetry monitoring. We included ECG data from 25 randomly selected admitted patients. Each patient was monitored 

simultaneously with the CE-marked ePatch ECG recorder and the traditional telemetry equipment for approximately 24 

hours. The recorded data were stored locally on the ePatch sensor for offline analysis. The ECG segments were provided to 

both the nurse and the medical doctors without any form of pre-processing. 
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3.2.2 Extraction of the ECG segments 

In line with [4] and [3], the duration of each segment was seven seconds. A total of eight ECG segments were extracted 

from each patient by an experienced ECG technician. The segments were extracted according to the procedure described 

below and illustrated in Figure 3.2:  

 

1. If the current seven-second data segment was considered noise free, it was selected for the study, and a new 

seven-second segment was investigated five minutes later. 

2. If the current seven-second data segment was not considered noise free, it was excluded from the study, and a 

new seven-second data segment was investigated one minute later. 

3. If it was not possible to extract eight segments of sufficient signal quality within the three investigated hours of 

data (indicated by red squares in the top plot of Figure 3.2), the patient was excluded from the study.   

4. This procedure was continued until a total of 200 ECG segments were extracted from 25 different patients.  

 

 

Figure 3.2: Illustration of the procedure for ECG segment selection. For each patient, only three hours of data was considered. These 

three hours are indicated by red marks in the top panel for a recording of exactly 24 hours. This prevents the very time-consuming 

process of going through a long-term recording of very poor quality minute by minute and, at the same time, ensures that the patient is 

only excluded if the quality remains poor throughout the entire recording period. The bottom panel illustrates the process of extracting the 

seven-second ECG segments. Green segments were selected for the study, whereas red segments were excluded due to insufficient 

recording quality. 

3.2.3 Results 

The results are provided in Table 3.1. It is observed that the first and the second medical doctor found 197 and 199 of the 

200 segments useful, respectively.   

Table 3.1: Results from the medical evaluation of each of the 200 ECG segments. 

Segments marked as “useful” Number Percentage 

Medical doctor 1 197 98.5% 
Medical doctor 2 199 99.5% 

Both medical doctors 196 98.0% 

At least one medical doctor 200 100% 

3.2.4 Discussion 

Both medical doctors indicated that more than 98% of the selected ECG segments were diagnostically meaningful to them. 

This implies that the ECG segment could help toward heart rhythm analysis and, hereby, the diagnosis of the patient. It 

should, of course, be stated that the diagnosis would include results from other relevant clinical tests, medical history, review 

of the entire long-term ECG recording, and general comments from the nurse preparing the ECG analysis report. The 

diagnosis is not imagined to be based solely on the seven-second ECG segments investigated in this study. It should 

furthermore be noted that this study was focused on the clinical interpretability of the recorded ECGs, and we were therefore 

not concerned about the obtained signal quality. This is in line with the investigations described in [3] and [4]. The signal 

quality of patch ECG recorders is further discussed in chapter 5. Furthermore, it was observed that the two doctors did not 

agree on which segments that were not useful for rhythm analysis. This could indicate a certain degree of inter-reader 

variability. The number of doctors could be increased in a future study to investigate the true inter-reader variability. For the 

purpose of this pilot study, it was, however, considered sufficient with the evaluation by two medical doctors. It should also 
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be stated that, even using the “worst case” still results in 98% of the segments being useful. Furthermore, in a real-life 

situation, cases of doubt are expected to be solved by discussion and consensus with other doctors. It is therefore important 

to note that the “best case” indicates that all 200 segments were useful. The results from this pilot study are therefore very 

promising and strongly indicate the potential for ambulatory cardiac monitoring using the ePatch ECG recorder. This finding 

corresponds well with other findings in the literature for different types of patch ECG recorders [2]–[4], [7], [9] 

3.3 Pilot Study II: Comparison with Traditional Telemetry Equipment 

To investigate the second research question, we designed this pilot study to allow a high level comparison of the clinically 

relevant information obtained from simultaneous recordings obtained with the ePatch ECG recorder and the traditional 

telemetry equipment. The study includes both an overall comparison of the clinically relevant information from both 

techniques and a “spot check” of the ability to correctly reproduce specific interesting arrhythmia events in the ePatch 

recordings. The next sections contain a detailed description of the comparison, whereas a short abstract is presented in 

Paper III.  

3.3.1 Description of Database 

The database was generated from the database described in section 3.2.1. However, the investigations in this pilot study 

were more time consuming, and therefore, only 11 of the 25 patients were included. The 11 patients were randomly selected 

among all patients with a recording time of at least 24 hours and 10 minutes (the first 10 minutes of each recording was 

discarded due to the risk of pronounced artifacts caused by the mounting of the device).  

3.3.2 Methodology 

The available information was extracted from the two monitoring systems, and the clinical interpretation obtained from each 

system was compared by a cardiologist. This procedure is described in detail below.  

3.3.2.1 Extraction of Information from the Telemetry Equipment 

After each ePatch recording, information from the telemetry reports was extracted from the automatic analysis software. The 

extracted information included ECG segments of automatically generated alarms indicating potential arrhythmia events, 

automatically generated overviews of arrhythmia events, and HR trend curves for each patient. In some cases, no alarms 

were automatically generated. Therefore, it was also investigated whether any significant findings, diagnosis, or conclusions 

from the telemetry monitoring system were added to the electronic patient journal (EPJ).  

3.3.2.2 Extraction of Information from the ePatch Equipment 

For the ePatch system, a full disclosure of the 24-hour digital ECG recording was available for visual inspection by the 

cardiologist. The automatic telemetry software applies pre-processing, e.g. filtering, before the recorded ECG data are 

visualized. To allow a fair comparison, the ePatch recordings were therefore also pre-processed. During this step, it is 

important to attenuate the influence of different types of artifacts without deteriorating clinically relevant ECG characteristics. 

The pre-processing is described in detail in Appendix A. The ePatch ECG data were visualized using LabChart 7 Pro from 

ADInstruments. A third channel with the instantaneous HR was added in LabChart. This provides an overview of the 

recording that can be compared to the HR trend curves from the telemetry recordings. Furthermore, it provides an overview 

of the variation in the RR intervals and hereby clearly indicates heart rhythms like AF as well as episodes of VEBs and 

supraventricular ectopic beats (SVEBs). Episodes of poor data quality will also often be highlighted from the instantaneous 

HR curve due to incorrect heartbeat detections.  
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3.3.2.3 Comparison of Diagnostically Relevant Information 

The comparison of the clinically relevant information for each patient was conducted as described below: 

 

1. The cardiologist selected relevant alarm events from the telemetry system. It was then investigated whether the 

same event(s) could be visually identified and correctly diagnosed at the same time instance in the ePatch 

recording. This provides a “spot check” of the diagnostic quality of two-channel ECG recorded with the ePatch 

placed at the sternum. 

2. The cardiologist looked through the entire 24-hour ePatch recording and hereby obtained an assessment of the 

heart rhythm, any abnormal beats, the HR trend curve, and the general signal quality obtained in the ePatch 

recording. 

3. The general heart rhythm observed from the telemetry alarms or written in the EPJ was compared to the general 

heart rhythm found in the ePatch recording. The same procedure was conducted for the HR trend curves. 

4. The cardiologist was asked to provide an overall judgment of the signal quality obtained in the ePatch recordings.  

5. The cardiologist was finally asked if there were any clinically relevant differences in the findings and diagnosis that 

could be made based on the 24-hour ePatch recording and the available information from the traditional telemetry 

monitoring system. 

3.3.3 Results 

One of the important comparisons was the “spot checks” of the diagnostic quality of the ePatch ECG recordings. These 

“spot checks” served to ensure the correct reproduction of relevant arrhythmia events in the ePatch recordings. The 

following figures therefore contain a few examples of these “spot checks.” Figure 3.3 illustrates an example of an alarm from 

patient 4 indicating asystole. The asystole is observed from both the telemetry printout and the ePatch ECG snip. The 

general heart rhythm for this patient is AF. This is also observed from both the telemetry system and the ePatch recording. 

Figure 3.4 contains an example from patient 10. The general heart rhythm is normal sinus rhythm (NSR) with a sudden 

onset of tachycardia. This is observed from both the ePatch recording and the telemetry alarm printout. The telemetry 

printout furthermore shows a flat line in channel II. Figure 3.5 illustrates an example of a comparison for patient 11. The 

general heart rhythm for this patient is NSR. The alarm is an episode of AF with aberration. This is also observed from the 

ePatch recording. An overview of the comparisons for all 11 patients is provided in Table 3.2 on page 20. Finally, the 

cardiologist found that there were no clinically relevant differences between the information that could be extracted from 

each of the 24-hour ePatch recordings and the available information from the traditional telemetry monitoring system.  

 

 

Figure 3.3: Example of comparison between telemetry and ePatch for patient 4: Episode of approximately nine-second asystole is 

correctly recorded by the ePatch system. Note that the general heart rhythm is AF.  
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Figure 3.4: Example of comparison between telemetry and ePatch for patient 10: Episode of sudden onset of tachycardia is correctly 

recorded by the ePatch system. Note that channel II of the telemetry recording is only a flat line.  

 

Figure 3.5: Example of comparison between telemetry and ePatch for patient 11: Episode of AF with aberration is correctly recorded by 

the ePatch system.  

3.3.4 Discussion 

In this pilot study, it was investigated whether the same clinically relevant information could be extracted from the 24-hour 

simultaneous recording obtained with the ePatch ECG recorder and the traditional telemetry equipment. For all patients, the 

HR trend curves could be reproduced using the ePatch technology. Furthermore, episodes of ventricular frequencies of up 

to 150 BPM and bradycardia episodes with low ventricular frequencies were correctly reproduced by the ePatch recordings. 

This indicates the usefulness of the ePatch technology in a large portion of the clinically relevant HR range. Different 

clinically relevant heart rhythms and beat morphologies (NSR, AF, sinus tachycardia, VEBs, run of VEBs, SVEBs, and 

asystole) were furthermore correctly recorded by the ePatch technology. This indicates the clinical usefulness of two ECG 

channels recorded on the sternum with this novel patch technology. Furthermore, the fact that no clinically relevant 

differences between the available information from the two technologies were noted by the cardiologist is very promising for 

the future application of the ePatch technology in this setting. In addition, ten of the investigated ePatch recordings were 

judged to obtain a very high signal quality. This is extremely important for the reliability of the system. One recording was 

noted to contain a high number of very noisy segments. The visual appearance of the artifacts indicates that they were 

caused either by many movements or by bad electrode contact. However, for the same patient, the automatic telemetry 

system generated a number of false alarms due to noisy data segments. This could indicate that the general quality of the 

ePatch recording was not necessarily lower than the quality of the traditional telemetry recording. The impression of the 

findings in this pilot study is thus that ePatch recordings could be imagined as a substitute to the traditional telemetry 

monitoring of admitted as well as ambulant patients requiring real-time cardiac surveillance. As for the first pilot study, the 

findings correspond well with other findings in the literature [3], [4], [7], [9] 
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Table 3.2: Summary of comparison between information extracted from the telemetry monitoring versus the ePatch recording (AF = atrial 

fibrillation, NSR = normal sinus rhythm, EPJ = electronic patient journal, HR = heart rate, BPM = beats per minute, VEB = ventricular 

ectopic beat, and SVEB = supraventricular ectopic beat).  

Patient Telemetry ePatch 

1 General rhythm: AF. HR: around 50 BPM. Selected 

telemetry alarm episodes include run of wide QRS 

complexes, cases of VEBs, and bradycardia during the 

night. 

General rhythm: AF. HR: around 50 BPM. All 

selected alarm episodes from the telemetry 

software were correctly found in the ePatch 

recording. 

2 No alarms from the telemetry, and no comments in 

EPJ. This indicates NSR during the entire recording. 

HR: around 100 BPM. No drop in HR during the night. 

General rhythm: NSR/sinus tachycardia with 

frequency around 100 BPM. No drop in HR 

during the night.  

3 General rhythm: NSR. HR: around 100 BPM without 

decrease during the night. Telemetry overview indicates 

several VEBs in the recording. Selected telemetry 

alarm examples include run of wide QRS complexes 

and VEB.  

General rhythm: NSR. HR: around 100 BPM 

without nightly decrease. Many episodes of 

VEBs found in the ePatch recording. Selected 

telemetry alarms with run of wide QRS 

complexes and VEB correctly located in 

ePatch recording. 

4 General rhythm: AF. HR: around 75 BPM but with 

several episodes of very high ventricular frequency of 

up to 150 BPM. Selected telemetry alarm with asystole 

of approximately nine seconds.  

General rhythm: AF. HR: around 75 BPM. 

Episodes of ventricular frequency up to 150 

BPM are also observed in the ePatch 

recording. Episode of asystole correctly found; 

see Figure 3.3.  

5 EPJ states NSR with run of SVEBs with aberration. 

Telemetry episodes of SVEB with compensatory pause. 

HR: 60-70 BPM with many brief episodes of higher HR.   

General rhythm: NSR. HR shows the same 

pattern as the telemetry trend curve. Example 

of episode of SVEB with compensatory pause 

was correctly found in the ePatch recording. 

6 The telemetry overview indicates NSR with a few 

abnormal beats. HR: 60-70 BPM with small decrease 

during the night.   

NSR with examples of isolated SVEBs. The 

HR trend curve is comparable to the telemetry 

HR trend curve.  

7 EPJ indicates AF with high ventricular frequency. HR 

from telemetry trend curve is approximately 75-100 

BPM.  

AF during the entire recording without other 

significant arrhythmias. HR curve has the 

same trend as telemetry HR curve.  

8 General rhythm: NSR. Several false alarms due to 

noisy data segments.   

General rhythm: NSR. Several episodes of 

very noisy data.  

9 EPJ indicates paroxysmal AF. No alarms from the 

telemetry system. However, the first two hours are 

indicted to contain a relatively high number of 

arrhythmia events.   

Paroxysmal AF with episodes of clear change 

between NSR and AF. Episodes of SVEBs are 

observed.  

10 EPJ indicates NSR. Selected example of telemetry 

alarm shows episode of tachycardia.  

General rhythm: NSR. Example of episode of 

tachycardia from telemetry correctly identified; 

see Figure 3.4.  

11 EPJ indicates NSR with brief episodes of AF with 

aberration. Examples of this are also found in the 

telemetry alarms.  

General rhythm: NSR. Selected example of 

brief episode of AF with aberration correctly 

found in the ePatch recording; see Figure 3.5.   
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3.4 Study Limitations and Suggestions for Future Work 

Both pilot studies serve to gain preliminary knowledge about the clinical applicability of ECGs recorded with the novel 

ePatch heart monitor. It should, of course, be mentioned that these preliminary studies have a high number of limitations. 

Some of these limitations are listed below together with suggestions for further clinical studies that might be conducted to 

establish a more solid knowledge about this novel technology: 

 

1. Both pilot studies were conducted on a very limited number of patients. They should be performed on much larger 

patient populations to confirm the findings in the general population. It might also be interesting to conduct detailed 

investigations of the usefulness in specific patient populations.   

2. In the first pilot study, we applied a procedure similar to the traditional Holter analysis. However, simultaneous 

Holter recordings were not available, and a direct comparison with the gold-standard Holter recorder was therefore 

not possible. This direct comparison might be interesting in future clinical studies. 

3. In the second pilot study, we conducted a high level comparison of the clinically relevant information obtained from 

the ePatch technology and the traditional telemetry equipment. It might be interesting to conduct a direct 

comparison on a beat-by-beat basis between telemetry/Holter recordings and the ePatch recordings. This could, 

for instance, include an investigation of the ability to correctly detect specific ECG features, e.g. the 

presence/absence of P-waves [3] [4]. This investigation was not practically possible because the extraction of 

digital full-disclosure 24-hour ECG data files was not possible with the available telemetry software. The issue was 

therefore somehow addressed using the carefully selected “spot checks,” but this comparison might be conducted 

more thoroughly. Furthermore, it should be mentioned that the comparison was not conducted using statistical 

methods. A thorough statistical analysis was not feasible due to the relatively small number of data points and the 

limited available time. This analysis might therefore also be conducted in future studies.  

4. However, a more interesting and clinically relevant comparison could include an analysis of potential differences in 

the final analysis reports obtained from simultaneous recordings obtained with the ePatch technology and 

traditional Holter or telemetry systems. This would somehow be similar to the investigations described in [7] and 

[9]. However, this was not possible due to the previous lack of commercial automatic software approved for the 

analysis of the ePatch ECGs. Today, these software systems exist [17][18], and this analysis might therefore be 

both very interesting and practically possible in future studies.  

5. In the described pilot studies, only two medical doctors and one cardiologist were asked to assess the usability of 

the recorded ECGs. It might be interesting to conduct investigations with more physicians to ensure the general 

acceptance of the appearance/morphology of the recorded ePatch ECGs.  

6. Preliminary studies (not further described in this thesis) have also suggested that the ePatch placed in different 

chest locations might have certain degrees of similarity with some of the traditional leads from the standard 12-

lead resting ECG. It might also be interesting to explore this topic further in future research projects.  

7. Finally, one of the major areas that have not been satisfactorily covered for patch-type ECG recorders in general is 

the long-term stability and quality of the recorded ECGs. As mentioned, this topic will be further discussed in 

chapter 5.  

3.5 Conclusions 

In spite of the above discussed limitations, these pilot studies clearly indicate the clinical usefulness and relevance of ECG 

recorded with the ePatch placed at the sternum. In the first pilot study, it was found that more than 98% of the extracted 

ECG segments were useful for heart rhythm analysis. This implies that the important ECG fiducial points necessary for heart 

rhythm analysis were visible in the extracted ECG snippets (e.g. absence/presence of P-waves, QRS regularity, and QRS 

width). We therefore conclude that two-channel ECG recorded with the ePatch ECG recorder placed at the sternum is useful 

for heart rhythm analysis. The recorded ECGs can therefore be applied as input to patient diagnosis together with other 

relevant clinical tests and the medical history. The main finding in the second pilot study was that the cardiologist found no 

clinically relevant differences in the information that could be extracted from the ePatch recordings and the traditional 
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telemetry equipment for all 11 investigated patients. This indicates that the ePatch recordings could be applied on equal 

terms as recordings obtained with traditional telemetry equipment. The clinical relevance of ECG recorded with the ePatch 

placed on the sternum is thus clearly indicated, and it is expected that the new patch technologies might completely 

substitute the currently applied Holter and telemetry systems in the future. The future possibilities for this type of long-term 

ambulatory ECG recorders furthermore seem to be very high in areas like home monitoring, screenings, and follow-up 

consultations. However, the knowledge about the practical application of the new patch technologies is still relatively limited 

due to the lack of large-scale applications of the technology in everyday clinical situations [1]. These pilot studies thus 

contribute to the currently limited knowledge about the usability of this novel patch-type ECG recorder. The overall 

conclusion from this chapter is thus that ECG recorded with the ePatch system placed at the sternum is clinically 

meaningful. This creates the foundation for the real-life clinical applicability of the remaining research described in this 

thesis. It should, however, be noted that the research described in this chapter was only focused on the clinical 

interpretation of the recorded ECG morphology in artifact-free ECG segments.  
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4 Automatic Real-Time Embedded Heartbeat Detection 

Objectives Many of the new interesting clinical fields that could benefit from future application of outpatient ECG monitoring 

using the novel patch recorders could also benefit from the possibilities of performing embedded real-time interpretation of 

the recorded ECGs. This embedded analysis would for instance allow real-time wireless transmission of HR trend curves, 

arrhythmia events, patient activity levels, and estimation of the general signal quality. The first important step in automatic 

ECG analysis is the reliable automatic detection of each individual heartbeat represented by the QRS complexes. The aim 

of this part of the project was therefore to explore the design of algorithms for automatic real-time embedded detection of 

QRS complexes in ECGs recorded with the ePatch system. The essential algorithm requirements are thus exceptional 

clinical performance with minimal computational costs. The work described in this chapter is an extension and discussion of 

the work presented in Paper IV and Paper V.  

 

 

Figure 4.1: In many applications it is desirable to perform real-time embedded processing of the recorded signals and for instance transmit 

pre-selected clinically relevant information to a central monitoring station. The first essential step in embedded ECG processing is reliable 

automatic detection of each individual heartbeat. The focus of this chapter is therefore to explore the design of automatic algorithms for 

real-time embedded detection of QRS complexes in ECGs recorded with the ePatch system. Modified from [19].     
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4.1 Background 

The field of automatic QRS complex detection has been subject to extensive research efforts for at least 30 years [20]. This 

has partly been facilitated by the design of a number of publicly available standard ECG databases extracted from traditional 

Holter recordings [21]–[23]. These databases have achieved to optimize the research effort by providing a possibility for 

reproducible and simple evaluation of algorithm performance and consequently easy comparison between different 

published algorithms. A high number of algorithms obtaining high detection performance on these standard databases have 

thus been presented in the literature. This research field might therefore seem adequately covered in the literature already. 

However, most of the algorithms achieving clinically high detection performance are not optimized for embedded 

functionality. Furthermore, there is a huge difference between obtaining high clinical detection performance on carefully 

extracted standard databases and real-life ECG recordings with realistic amounts of artifacts arising from normal daily life 

activities. This issue was also addressed by the design of the Noise Stress Test database (NSTDB [20]). The performance 

of this databases must be stated to comply with [24]. However, this database is usually not applied for performance 

evaluation in the literature. Furthermore, this database is artificially created by adding noise to clean ECG recordings. It is 

therefore not well investigated in the literature how different algorithms perform on real-life ECG data recorded during normal 

daily life activities. Furthermore, the influence of the slightly different morphology of the ePatch ECGs was not well 

understood in relation to automatic ECG interpretation. Since our goal was to design and validate an algorithm to be applied 

embedded in real-life recordings obtained with the ePatch sensor, we therefore found it very relevant to conduct new 

research in this field. This ensures that we end up with an algorithm with high clinical performance on ePatch ECGs and with 

a computational load that can be handled by the resources available in the ePatch sensor.  

4.1.1 Research Hypothesis 

The chapter objectives and the above described considerations led to the formulation of a number of research questions 

that will be investigated and discussed throughout this chapter: 

 

1. How pronounced is the similarity between ECG recorded with the ePatch technology and traditional equipment 

from an automatic algorithm point-of-view: Is it possible to design algorithms that can achieve high clinical 

performance on both types of ECGs? 

2. Will the inclusion of information from the second ECG channel improve the clinical detection performance in long-

term real-life ePatch ECG recordings or is the information from the two simultaneously recorded ePatch ECG 

channels redundant with respect to automatic QRS complex detection? 

3. Can we design novel biomedical signal processing methods that can enhance the current detection performances 

stated in the literature? 

4. Can the computational load be decreased to a level that allows embedded real-time heartbeat detection in the 

ePatch sensor with a satisfactory clinical performance and without significantly decreasing the total recording time 

with the current version of the ePatch sensor? 

5. Is it possible to achieve a satisfying compromise between high sensitivity for detection of abnormal beat 

morphologies and a high tolerance to different types of inevitable artifacts arising from normal daily life activities in 

real-life ePatch recordings? 

4.1.2 Literature Overview 

Naturally, no literature was available regarding the first two research questions. For the remaining three questions, it was 

natural to take a close look at the existing literature describing different automatic methods for QRS complex detection. An 

extensive literature review of this area can be found in [25]. Generally, the automatic QRS complex detection algorithms can 

be divided into two steps: 1) The feature extraction step, where the QRS complexes are enhanced and different types of 

artifacts are attenuated, and 2) the detection step, where the position of the QRS complexes are found based on the feature 

signal and a classification procedure. Two of the commonly applied techniques for feature extraction include different 
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variations of digital BP filtering [26] and the wavelet decomposition scheme [27]–[33], but several other techniques have also 

been proposed, e.g. morphological operators [34], application of the phase-space portrait of the ECG [35], or the phasor 

transform method [36]. Especially, the wavelet decomposition has obtained high performance on most standard databases 

in many different studies. For the detection step, a well-known and accepted method is different variations of adaptive 

thresholding [26]–[29], [32]–[34]. Furthermore, some algorithms include an additional confirmation block to decrease the 

number of false positive detections due to noisy episodes crossing the relevant thresholds. In the literature, most algorithms 

are furthermore designed to process only a single ECG channel [26]–[31], [34], [36]. These algorithms are thus not designed 

to take advantage of the available multi-channel information. However, some studies have also proposed methods for 

automatic two or three channel QRS detection [33], [37], [38]. An overview of the obtained performances of different 

published studies is provided in Table 4.9 on page 53.   

4.1.3 Description of Project Workflow  

As discussed in the previous chapters, the short distance between the recording sites and the placement of the ePatch 

sensor implies that the projection of the cardiac vector is slightly different in ePatch recordings compared to traditional 

telemetry or Holter recorders. In the beginning of this project, the level of similarity between the ePatch ECGs and 

traditionally recorded ECGs was therefore not well understood. This is also reflected in the research effort discussed in the 

previous chapter. In the beginning of the project, it was therefore not clear whether it would be possible to analyze 

traditionally recorded ECGs and ePatch ECGs using the same automatic algorithms with satisfactory performance. To 

obtain an understanding of these issues and gain experience with the potential difficulties in automatic QRS complex 

detection in ePatch ECGs, we visually looked through a high number of long-term ePatch recordings. We hereby observed 

some characteristic challenges in the ePatch recordings. Many of these challenges are expected to be caused by the short 

distance between the recording sites and the sternal placement of the ePatch sensor. Some of the challenges include cases 

of “double” R-peaks (in healthy subjects), cases of very pronounced P-, Q- and/or S-waves, recording of profound atrial 

activity during episodes of AF, and relatively large changes in signal amplitude (including changes in QRS polarity). The 

amplitude changes were pronounced both between patients and sometimes also within the same recording. These changes 

might originate from high sensitivity to changes in patient posture. In addition, the comfortable design of the ePatch is 

expected to result in an increased activity level during the recording. This is expected to result in an increased number of 

artifacts and hereby more ECG segments characterized by a potentially low signal to noise ratio (SNR). Some of these 

challenges are illustrated in Figure 4.2. Based on this, we formulated some essential algorithm requirements: 

 

1. The algorithm should, of course, obtain high detection performance on both normal and abnormal beats. This 

ensures high applicability in a clinical environment.  

2. The algorithm should be able to handle sudden amplitude changes. 

3. The algorithm should be able to handle high/pronounced T-waves. 

4. The algorithm should be able to handle different QRS morphologies, including morphologies with very pronounced 

Q- or S-waves (sometimes even more pronounced than the R-peak). This includes QRS complexes with 

“negative” polarity. 

5. The algorithm should be able to handle relatively high amounts of artifacts arising from normal daily life activities.  

6. The algorithm should be able to handle very pronounced recording of atrial activity.  

7. The above requirements should be fulfilled by an algorithm with low power consumption. As described earlier, we 

defined an acceptable low power consumption based on the ability to perform real-time embedded analysis within 

the ePatch sensor without unacceptable reduction in the total recording time.   
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Figure 4.2: Illustration of some of the challenges experienced in automatic QRS complex detection in ePatch ECGs. (a) ECG segment 

displaying an episode of AF with very pronounced atrial activity between the QRS complexes. This ECG appearance has some visual 

similarity with ECG recorded from esophagus and is sometimes observed in the ePatch recordings. This is probably due to the electrode 

placement.  (b) ECG segment with a sudden change in amplitude, probably due to patient movements. (c) ECG segment displaying a 

“double” R peak. This morphology is sometimes observed from healthy test subjects. This is probably caused by the sternal placement of 

the ePatch sensor. (d) Illustration of an ECG segment recorded with the ePatch sensor during gardening. It is expected to observe more 

of these types of artifacts in ePatch ECGs due to the expected increase in the general activity level compared to patients who are wired 

up with traditional equipment.  

Furthermore, the projections of the cardiac vector obtained from the two ePatch channels describe approximately the same 

electrical axis. It was therefore not clear whether the information provided from the second ePatch ECG channel was 

redundant. Again, we initiated this investigation by visual inspection of ePatch ECGs. As indicated in Figure 4.2, the 

similarity between the two channels was often found to be high. However, it was also observed that the quality obtained in 

the two channels sometimes differs. A few clinical examples of this are illustrated in Figure 4.3. It is furthermore observed 

that abnormal beats sometimes display quite different morphologies in the two channels. It was therefore not clear in the 

beginning of the project whether information from the second ePatch ECG channel would be redundant with respect to 

automatic QRS complex detection. Looking at the literature overview, it was observed that most algorithms apply only a 

single ECG channel. The primary assumption for including additional channels is that the quality of one channel might 

occasionally or permanently decrease during a long-term recording without deterioration in quality of the remaining 

channels. For many of the recordings obtained from the standard databases, the quality of channel II is significantly lower 

than the quality of channel I – the opposite is rarely the case. It is therefore natural that the inclusion of information from 

channel II will not significantly improve the detection performance on these databases. This was also observed by [26] back 

in 1985. They state that the orthogonal placement of the electrodes in the traditional Holter leads applied in these databases 

implies that a high-quality signal in one channel often leads to a low-quality signal with low amplitude in the other channel. It 

is therefore natural that most algorithms described in the literature based on these standard databases only apply one 

channel. Opposite to the available standard databases, it might be difficult to foresee which channel that will achieve to 

obtain the most stable high-quality signal throughout the entire recording period in real life long-term recordings. For the 

real-life ePatch recordings, the inclusion of clean ECG from the additionally recorded channel might therefore be expected 

to improve the detection performance. Furthermore, we expected that information from both channels might increase the 
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likelihood of correct detection of abnormal beat morphologies. We therefore started by designing an algorithm that applies 

information from both simultaneously recorded ePatch channels. However, as we proceeded and continuously learned more 

about the characteristics of the ePatch ECGs, we began to believe that one ePatch channel would be sufficient in most 

cases. Furthermore, with the desired embedded implementation in mind, it is important to note that the computational load 

associated with the feature extraction and allocation of memory (RAM) is doubled when both channels are processed 

simultaneously. We therefore decided to design a second algorithm that only applies information from one of the available 

channels and investigate whether this would decrease the detection performance. A schematic overview of the two 

proposed algorithms is provided in Figure 4.4. Both algorithms are described and discussed in details later in this chapter. It 

is furthermore observed that we decided to implement different algorithm “building” blocks in the two proposed algorithms. 

This allows a better investigation of the exact functionality and influence of different algorithm steps, and hereby provides an 

understanding of the best future approach for real-time embedded QRS detection in patch ECG devices. The selection of 

building blocks in the second proposed algorithm was highly influenced by the knowledge gained from analysis of the 

performance of the first proposed algorithm in different challenging ECG snippets. This is further illustrated and discussed in 

section 4.5.  

  

 

Figure 4.3: (a) Illustration of arrhythmia event with different morphology in the two channels. (b) Illustration of poor quality of channel I and 

high quality of channel II. (b) Illustration of high quality in channel I and poor quality in channel II. The rhythm is observed to be AF with a 

single VEB beat.  
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Figure 4.4: Schematic overview of the two proposed algorithms. The blue squares indicate blocks that were invented or significantly 

modified in the current work compared to the literature. (a) The first proposed algorithm applies simultaneous information from both 

available channels, the feature signals are extracted using the well-known wavelet decomposition, a single adaptive threshold is applied 

for QRS detection, and a confirmation block is included to decrease the number of false detections. (b) The second proposed algorithm is 

based on a single-channel approach, the feature extraction is based on a novel cascade of BP filters, the QRS detection block was 

implemented using two simplified adaptive thresholds in a refined search back scheme, and a localization block estimates  

the R peak position.  

The proposed multi-channel algorithm was based on the well-known wavelet decomposition scheme. This was chosen 

based on the high performance obtained by this method in many studies in the literature. Some of the novel contributions of 

the multi-channel wavelet based algorithm are the scheme for combination of information from the two channels and the 

designed QRS confirmation block. However, as discussed later, the wavelet decomposition was found to possess some 

limitations, and the wavelet filtering scheme was therefore refined using a novel cascade of simple finite impulse response 

(FIR) BP filters in our second proposed single-channel algorithm.  

Due to the high performance of adaptive thresholding in the literature, we decided that this was a sensible starting point, and 

therefore a variation of adaptive thresholding was implemented in the first algorithm. The adaptive thresholds can be applied 

according to different paradigms. One approach is the application of two different adaptive thresholds in a search back 

scheme [26]. Another scheme is to apply only a single adaptive threshold to each feature signal [29]. The search back 

mechanism induces an unavoidable, but small, delay in the detection of the QRS complexes. The search back scheme 

might therefore be more complex than a single threshold approach when the goal is real-time embedded QRS complex 

detection. We therefore decided to investigate the single adaptive threshold approach in our first proposed algorithm. We 

therefore implemented a threshold with inspiration from [29]. However, as discussed later, we found that the single threshold 

approach requires the threshold to be relatively low to allow acceptable detection of abnormal beats. This has the 

disadvantage of also increasing the vulnerability to different types of artifacts. Based on these considerations and 

experience from the first algorithm, we therefore found it feasible to investigation the possibilities with the search back 

scheme in the second algorithm. As mentioned, the search back methodology is a well-known procedure [26]. However, we 

have simplified the calculation of the adaptive thresholds to decrease the computational load, and we have refined the 

adaptation of the search back procedure in cases of irregular heart rhythms. This is described in detail later. To ensure 

sufficiently low power consumption, we embedded the second proposed algorithm in the ePatch sensor and evaluated both 

the energy consumption and the detection performance of the embedded algorithm. It is revived that we defined the 

acceptable power consumption as the ability to perform real-time embedded analysis without significantly reducing the total 

recording time of the current CE-market ePatch sensor.  
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4.1.4 Chapter Overview 

Section 4.2 contains a detailed description of the selection of databases. Then a detailed description of the first proposed 

algorithm is presented in section 4.3. In section 4.4, the second proposed algorithm is described in detail. This section also 

contains the evaluation of the embedded implementation of this algorithm. Section 4.5 contains a discussion and 

comparison of the two algorithms. This also includes a comparison with the performances obtained by other published 

works, and this section is concluded with a set of recommendations for future embedded QRS complex detection in the 

ePatch sensor.  

4.2 Description of Databases 

To allow a careful investigation of the first research question related to the similarity between ePatch ECGs and ECGs 

recorded with traditional equipment, we found it essential to obtain throughout validation of the proposed algorithms on both 

ECGs recorded with the ePatch system and ECGs recorded with traditional equipment. It was furthermore very important to 

obtain databases with a high representation of normal beats with different ventricular frequencies, many different types of 

abnormal beats, and a high number of different artifacts. It was therefore of high importance to select relevant databases.  

For the standard databases, it was natural to select the two most popular databases in the literature. This allows both 

evaluation of detection performance on a high number of manually annotated abnormal beats and it allows easy comparison 

with the performance obtained by other published algorithms. It was furthermore important to obtain a representation of 

ePatch ECG recorded during different conditions. We therefore decided to apply the five databases defined below: 

 

1. The MIT-BIH Arrhythmia Database (MITDB) [21] 

2. The European ST-T Database (EDB) [22] 

3. The Preliminary ePatch Database (PeDB) 

4. The ePatch Training Database (eTDB) 

5. The ePatch Validation Database (eVDB) 

 

A summary of the recordings from the five databases is provided in Table 4.1 and a detailed description of each database is 

provided in section 4.2.1 - 4.2.4. It is important to note that a considerable amount of effort was put into the design of a 

suitable protocol for the extraction of the ePatch databases as well as the design of a relevant protocol for the manual 

annotations of the extracted databases. These steps were highly relevant to ensure proper validation in different aspects of 

the ePatch ECGs. It is furthermore important to note that the different databases were obtained throughout the course of the 

project. This implies that the EDB, the eTDB, and the eVDB were not available during the design of the first proposed 

algorithm. The application of the five databases is therefore slightly different for the two algorithms. This is summarized in 

Table 4.2. The first proposed algorithm was thus designed and optimized for automatic QRS complex detection based on 

the PeDB and the MITDB, whereas the second proposed algorithm was designed and optimized based on the MITDB and 

the eTDB. The PeDB was extracted from an existing database of recordings that were obtained with an early version of the 

ePatch sensor. This implies that the original sampling frequency of this database is 500 Hz and the channel configuration is 

slightly different from the configuration applied for the eTDB and the eVDB. The first proposed algorithm was therefore 

designed to function at a sampling frequency of 500 Hz. The recordings in the eTDB and the eVDB were extracted from 

three existing databases that were obtained using the currently newest CE-market ePatch sensor. As stated in Table 4.1 

and Table 4.2, this implies that their sampling frequencies were 512 Hz. The second proposed algorithm was thus designed 

to function at a sampling frequency of 512 Hz. During the design and validation of each of the two algorithms, the relevant 

databases were therefore resampled to 500 Hz and 512 Hz, respectively. In compliance with [24], the resampling was 

performed using the “xform” function from the WFDB Toolbox [23]. As observed from Table 4.2, the multi-channel wavelet 

based algorithm was not embedded, and embedded evaluation was therefore not conducted for this algorithm. 
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Table 4.1: Comparison of the five different databases applied for design, optimization, and validation of the two proposed algorithms. 

Database Bit resolution Fs (Hz)a Recordsb Length (min)c Total beatsd VEB beatse SVEB beatsf 

MITDB 11 360  48 30 91,285 6,101 2,745 

EDB 12 250  90 120 759,878 4,375 1,075 

PeDB 13 500  11 30 22,080 361 420 

eTDB 12 512  120 10 45,248 * * 

eVDB 12 512 61 15 38,429 * * 

Total - - 330 14,685 956,920 10,837 4,240 

 a The original database sampling frequency. 

 b The total number of recordings in the database. 

 c The length of each record in the database. Note that the first five minutes are not used for evaluation. 

 d The total number of beats in the database during the evaluation period. 

 e The total number of VEB beats in the database during the evaluation period. 

 f The total number of SVEB beats in the database during the evaluation period. 

 * Not stated (all beats were labelled as normal during the manual annotation). 

 

Table 4.2: Application of the five databases for the design, optimization, and validation phases of both proposed algorithms. 

 Programming  

language  

Multi-channel 

wavelet based 

Single-channel 

BP filter based 

Sampling frequency - 500 Hz 512 Hz 

Design and Optimization MATLAB 
MITDB 

PeDB 

MITDB 

eTDB 

Offline validation MATLAB 

EDB 

eTDB 

eVDB 

EDB 

PeDB 

Real-time embedded validation ANSI C - eVDB 

4.2.1  The Standard Databases 

The MITDB [21] and the EDB [22] were both downloaded from Physionet [23], and they were converted to mat-files using 

the WFDB Toolbox for MATLAB [23]. All beats in both databases are manually labelled according to the beat type. This 

allows evaluation of the detection performance with respect to VEB and SVEB beats. This is especially important if the 

designed automatic QRS complex detection algorithm is intended to function as an initiator of an event detection or beat 

classification algorithm.  

4.2.2 The Preliminary ePatch Database 

The PeDB consists of ECG data extracted from recordings on 11 different admitted patients. This choice ensures a realistic 

amount of abnormal beat morphologies. One segment with 30 minutes of data was extracted from each recording. For all 

patients, the 30 minutes were extracted one hour after the beginning of the recording. The patients were allowed to move 

around in the monitoring unit during the recordings. This ensures a fair amount of realistic in-hospital artifacts. The manual 

reference annotation files were created in several steps: 1) Automatic pre-annotation using the automatic QRS complex 

detection algorithm “sqrs” available from [23], 2) automatic QRS position correction using a maximum algorithm in MATLAB, 

3) manual correction by a biomedical engineer (using the “WAVE” program – available from [23]), and finally 4) manual 

correction by a cardiologist using “WAVE”. During the first three steps of the annotation protocol, all beats were labelled as 

normal. During the final manual annotation conducted by the cardiologist, each beat was manually classified into different 

beat types: Normal, pause (RR > 2s), SVEB, VEB, or unclassifiable beat.   
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4.2.3 The ePatch Training Database 

The eTDB was generated by extracting 10 minute ECG segments from two large existing ePatch databases. The first 

original database contains recordings from patients admitted to the stroke unit at Glostrup Hospital. The second original 

database contains ECG recordings from patients undergoing ambulatory diagnosis for obstructive sleep apnea at Glostrup 

Hospital. Each ECG recording in the two databases was associated with an ECG analysis report (similar to a traditional 

Holter analysis report). It was important to include ECG recordings from many different patients. We therefore selected 30 

patients from the stroke unit database and 30 patients from the ambulatory database.  It was furthermore important to 

ensure representation of many different abnormal beat morphologies as well as normal sinus rhythm with different 

ventricular frequencies. To ensure this, we selected the 60 patients based on the summaries in the associated ECG analysis 

reports. From the selected patients, we extracted a total of 120 ECG segments of which 40% were selected randomly and 

the remaining 60% were selected based on markings of interesting data segments in the analysis reports. This segment 

extraction ensures a database with realistic amounts of artifacts as well as representation of many different types of 

abnormal beat morphologies. Some examples of included arrhythmia events are: Atrial fibrillation (AF), episodes of 

supraventricular tachycardia (SVT) with different frequencies, SVEBs, runs of SVEBs, VEBs, ventricular bigeminy (B), 

ventricular trigeminy (T), bradycardia, and  AV blocks. The reference annotations for both the eTDB and the eVDB were 

created based on manual corrections of the output from the “sqrs” function from the WFDB Toolbox [23]. The manual 

corrections were conducted by a biomedical engineer with experience in ECG interpretation. All beats were labelled as 

normal. To validate the annotation performance of the biomedical engineer, 12 randomly selected records from the eTDB 

(10%) were also annotated by a medical doctor. The medical doctor did not find any errors in the manual annotations 

conducted by the biomedical engineer. The manual corrections were conducted using the WAVE program from the WFDB 

Toolbox [23].   

4.2.4 The ePatch Validation Database 

The eVDB was generated from three ECG recordings obtained from three different healthy volunteers. The volunteers 

continued normal daily life activities throughout the recordings. The embedded algorithm output was calculated in real-time 

during the recordings, and saved in a special channel in the data file. The algorithm output was not investigated before the 

manual annotation of the eVDB. For each subject, a 15 minute segment was automatically extracted from minute 30 to 45 in 

each hour of the recording. The mean recording time was 21.0 hours, yielding a total of 20-21 segments for each subject. 

This ensures representation of realistic amounts of normal daily life activities and provides an overview of a potential change 

in performance during the recording period.  

4.2.5 Performance Evaluation 

For both proposed algorithms, the beat detection accuracy was evaluated using the QRS sensitivity (Se), and positive 

predictivity (P+) defined by 4.1 and 4.2, where TP is the number of true positive detections, FP is the number of false positive 

detections, and FN is the number of false negative detections.  

 

𝑆𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (4.1) 

𝑃+ =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (4.2) 

 

In compliance with [24], TP, FP, and FN for each record, were calculated using the default settings of the “bxb” function from 

the WFDB toolbox (five minute training period and episodes of ventricular flutter or fibrillation (VF) were excluded) [23] [24]. 

The average performances for each database are stated as gross statistics [24], meaning that Se and P+ are calculated 

based on the overall TP, FP, and FN from all records from each database. Unless otherwise mentioned, no records were 

excluded from the database average performances. Furthermore, when possible, the sensitivities with respect to detection 

of VEB and SVEB beats were also calculated.    
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4.3 Multi-Channel Wavelet Based Approach 

This section contains a detailed description of the methodology and the obtained results for the multi-channel wavelet based 

algorithm. The algorithm is also described and discussed in Paper IV. As mentioned, the motivation for including an 

additional channel arises from the assumption that the signal quality of one channel might occasionally or permanently 

decrease during a long-term ambulatory recording. The contaminating noise is maybe only present in one of the channels. 

Therefore, the inclusion of information from an additional clean channel is expected to improve the detection performance. 

The information from the two channels can be combined in a high number of different ways. In [33], information from three 

different ECG channels is constantly simultaneously applied. This approach may have some limitations: Episodes of 

extreme amounts of noise in one channel might deteriorate otherwise good performance obtained from analysis of the other 

channels. A different approach was introduced by [38]. In [38], the QRS detection is generally based on channel I of the 

MITDB, and then a combination of the two channels is applied only if the current RR interval exceeds a predefined interval. 

However, this approach probably benefits from the fact that channel I of the MITDB generally obtains higher signal quality 

than channel II. It might therefore be difficult to transfer their results to real life recordings where the channel with the highest 

quality might not be known beforehand. To overcome these issues, we decided to propose an algorithm that can function in 

two different modes: Single-channel mode and multi-channel mode. The multi-channel mode applies information from both 

available channels simultaneously. The single-channel mode is derived from the multi-channel mode, but with the exclusion 

of information from a noisy channel. The algorithm can automatically switch between the two modes when predefined 

artifacts are present in one or both channels. If the predefined artifacts are present in both channels, a complete shutdown 

occurs. The idea of generally applying both channels and then exclude a potentially noisy channel was also investigated by 

the authors of [37].  

4.3.1 Algorithm Description 

An overview of the proposed multi-channel wavelet based algorithm is provided in Figure 4.5. The channel exclusion block 

marks the point of separation between the single-channel and the multi-channel mode. This implies that the exclusion of one 

or even both channels does not significantly reduce the computational load. The BP filtering, wavelet decomposition, and 

feature extraction is performed even when a channel is excluded. This is necessary to avoid errors from for instance filter 

delays when the channel is considered useful again. However, the adaptive maximum removal procedure and calculation of 

the adaptive thresholds is not updated when a channel is excluded. This prevents adaptive fitting to extremely noisy events. 

The channel exclusion, high maximum removal, adaptive threshold calculation, and decision fusion blocks were executed in 

one second non-overlapping analysis windows [29]. Each of the algorithm building blocks are described in details in the 

following sections.    

4.3.1.1 Channel Exclusion Criteria 

The purpose of the channel exclusion block is to automatically capture episodes of extremely noisy data and exclude these 

episodes from disturbing the analysis. Several different types of noise can be accounted for in such an exclusion paradigm. 

The different types of noise might require different measures/features for automatic detection. For this algorithm, we only 

accounted for saturation of the raw ECG signals. Saturation is not intended and it can produce false detections and disturb 

the adaptive algorithm parameters. The ECG channel was therefore excluded if the raw ADC count of 15 consecutive 

samples in the current analysis window obtained the maximum or minimum possible analog-to-digital count (ADC) value. 

The threshold of 15 samples was found by visual and experimental analysis of challenging ECG examples. It is thus 

selected as a compromise between correctly distinguishing problematic cases of saturation and cases where the “saturation” 

is only caused by very pronounced R peaks that sometimes reached the maximum possible ADC value in the PeDB 

recorded with the first version of the ePatch sensor. The minimum and maximum possible ADC values depend on the 

recording equipment and they were therefore set individually for each database. Furthermore, it was expected that the 

feature signals might be disturbed immediately after an episode of pronounced saturation. The channel was therefore also 



33 
 

considered in shutdown in the first “clean” analysis window after a case of problematic saturation. An example of the effect 

of the designed shutdown paradigm is provided and discussed in Figure 4.19 on page 56.   

 

 

Figure 4.5: Schematic overview of the proposed automatic multi-channel wavelet based QRS complex detection algorithm. The algorithm 

input is two raw ECG channels and the output is a vector with indication of the detected QRS positions  

4.3.1.2 Bandpass Filtering 

The purpose of the BP filtering step is to increase the influence of the QRS complexes and decrease the influence of 

different types of artifacts as well as pronounced P- and T-waves. As illustrated later, the wavelet decomposition is in itself a 

type of BP filter. In many algorithms from the literature, the wavelet decomposition is therefore applied directly without a 

preceding BP filter. However, some of the best results are obtained by the authors of [33] who applied a FIR BP filter with 

passband from 0.40-40 Hz before the wavelet decomposition. We therefore decided to include this step. Keeping the 

desired embedded implementation in mind, we decided to apply a simple FIR filter with impulse response hBP  defined by 

(4.3) [35]. The amplitude characteristic of the BP filter is provided in Figure 4.6. After correction for the filter delay, the BP 

filtered signal will ideally obtain a zero-crossing at the R peak position in the raw ECG signal. 

 

ℎ𝐵𝑃[𝑘] =  {

𝛿[𝑘 + 10] + 𝛿[𝑘 + 9] + 𝛿[𝑘 + 8] + 𝛿[𝑘 + 7] + 𝛿[𝑘 + 6] …

+𝛿[𝑘 + 5] + 𝛿[𝑘 + 4] + 𝛿[𝑘 + 3] + 𝛿[𝑘 + 2] + 𝛿[𝑘 + 1] …

− 𝛿[𝑘] −  𝛿[𝑘 − 1] −  𝛿[𝑘 − 2] −  𝛿[𝑘 − 3] −  𝛿[𝑘 − 4] …

− 𝛿[𝑘 − 5] −  𝛿[𝑘 − 6] −  𝛿[𝑘 − 7] −  𝛿[𝑘 − 8] −  𝛿[𝑘 − 9]

} (4.3) 

 

 

 Figure 4.6: Illustration of the amplitude characteristic of the applied BP filter using a sampling frequency of 500 Hz.  
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4.3.1.3 Wavelet Transform 

The purpose of the wavelet decomposition is to divide the ECG signal into different frequency sub-bands and hereby further 

enhance the influence of the QRS complexes. Some of the known advantages of the wavelet transform are a good balance 

between detection performance and computational load [29], and the possibility of dividing the ECG signals into defined 

frequency sub-bands that might also help detection and delineation of P- and T-waves [27]. The non-downsampling a trous 

algorithm is the most popular for wavelet decomposition of ECG signals in the literature [29] [33]. This decomposition 

consists of a cascade of simple FIR lowpass (LP) and highpass (HP) filters as illustrated in Figure 4.7.  

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Schematic overview of the wavelet transform. The output from each LP filter step is termed approximation coefficients (aq) and 

the output from each HP filter step is termed the detail coefficients (dq). Note that there is no down sampling using the a trous wavelet 

decomposition scheme. The decomposition can be continued until any desired level.   

The output of the wavelet decomposition at level q > 1 was implemented by (4.4) and (4.5), where aq is the LP filter output 

(approximation coefficients) and dq is the HP filter output (detail coefficients) [29]. For level q = 1, the input to the filtering 

scheme is the BP filtered ECG signal. The impulse responses, hLP,1 and hHP,1, were implemented by (4.6) and (4.7), 

respectively [29]. For scale q > 1, hLP,q and hHP,q were obtained by inserting (2q-1 – 1) zeros between each of the coefficients 

of hLP,1 and hHP,1 [29].  

 

𝑎𝑞[𝑛] =  ∑ ℎ𝐿𝑃,𝑞[𝑘] ∙ 𝑎𝑞−1[𝑛 − 𝑘]𝑘         (4.4) 

 

𝑑𝑞[𝑛] =  ∑ ℎ𝐻𝑃,𝑞[𝑘] ∙  𝑎𝑞−1[𝑛 − 𝑘]𝑘    (4.5) 

 

ℎ𝐿𝑃,1[𝑘] =  
1

8
 ∙  {𝛿[𝑘 + 2] + 3 ∙ 𝛿[𝑘 + 1] + 3 ∙ 𝛿[𝑘] + 𝛿[𝑘 − 1]}  (4.6) 

 

ℎ𝐻𝑃,1[𝑘] = 2 ∙ {𝛿[𝑘 + 1] −  𝛿[𝑘]}   (4.7) 

 

An illustration of the filter characteristics for each wavelet detail-band is provided in Figure 4.8. It is observed that the 

bandwidth of each individual detail-band is relatively wide. It is generally accepted in the literature that the frequency content 

of the QRS complex is around 5-22 Hz [26], [28], [33], [34]. With a sampling frequency of 500 Hz, this corresponds 

approximately to the wavelet detail-bands d4 and d5. However, due to the wideness of each detail-band, it is difficult to avoid 

the influence of the lower frequency P- and T-waves as well as some amounts of high frequency noise using d4 and d5 

directly. Figure 4.9 contains an illustration of the BP filtering and the wavelet decomposition on a brief ECG snippet from 

record 106 from the MITDB.  

 

 

ECG[n] hHP,1[k] 

hLP,1[k] hHP,2[k] 

hLP,2[k] hHP,3[k] 

hLP,3[k] hHP,4[k] 

hLP,4[k] 

d1[n] 

d2[n] 

d3[n] 

d4[n] 

a1[n] 

a2[n] 

a3[n] 

a4[n] 
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Figure 4.8: Amplitude characteristic of each individual wavelet detail-band using a sampling frequency of 500 Hz.  

 

Figure 4.9: Illustration of the BP filtering and wavelet decomposition of record 106 from the MITDB. The top plot contains the raw channel I 

ECG (blue line) and the QRS positions obtained from the reference annotation (red lines), the second plot contains the BP filtered ECG 

signal, and the third to eighth plot contain the wavelet detail-bands from d1 – d6. It is observed that the QRS complexes are visible in all 

detail-bands. As expected, it is observed that the influence of the VEB beats is highest in the detail-bands containing the lower 

frequencies. It is furthermore observed that the influence of the P- and T-waves also is increased in these sub-bands. However, this issue 

is more pronounced in recordings with higher P- and/or T-waves.  
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4.3.1.4 Feature Extraction 

As mentioned, the energy of the QRS complexes is expected to be most pronounced in d4 and d5. The first feature, F1,j, was 

therefore calculated according to (4.8). The feature signal was calculated for each channel j individually. The absolute value 

is applied to ensure equal detection of QRS complexes with positive and negative polarity. This was one of the algorithm 

requirements formulated in section 4.1.3. In some cases it was observed that pronounced P- and/or T-waves could disturb 

these detail bands even after the BP filtering step. It was furthermore observed that the QRS complex was also clearly 

present in the higher frequency detail-bands (see Figure 4.9). Therefore, and additional feature signal, F2,,j, representing the 

higher frequencies were calculated according to (4.9). Again, the feature signal was calculated for each channel individually.   

 

𝐹1,𝑗 =  |𝑑4,𝑗| +  |𝑑5,𝑗|    (4.8) 

 

𝐹2,𝑗 =  |𝑑1,𝑗| +  |𝑑2,𝑗|    (4.9)  

 

It is thus expected that F1,j obtains high values during QRS complexes as well as during episodes of pronounced P- and/or 

T-waves, whereas F2,j is expected to obtain high values during QRS complexes and high frequency noise. Periods where all 

four feature signals obtain high values are thus expected to correspond to the location of the QRS complexes. Figure 4.10 

contains an illustration of the feature extraction for the data segment illustrated in Figure 4.9. The adaptive thresholds (red 

lines) and the extracted QRS candidates (Ffinal) are also illustrated together with the final locations of the detected QRS 

positions. The latter algorithm steps are described in the next sections.  

4.3.1.5 Adaptive Thresholding 

We decided to apply an adaptive threshold to each of the four feature signals individually. These four thresholds were 

applied to calculate four binary feature signals defined by (4.10), where z ϵ [1,2] indicates the two feature signals obtained 

from each channel j ϵ [1,2] and Tz,j is the corresponding adaptive threshold.  

 

𝐹𝑏𝑖𝑛,𝑧,𝑗[𝑛] = {
1, 𝐹𝑧,𝑗[𝑛] >  𝑇𝑧,𝑗[𝑛]

0, 𝐹𝑧,𝑗[𝑛] ≤  𝑇𝑧,𝑗[𝑛]
   (4.10) 

 

The purpose of adaptive thresholding is to ensure smooth adaptation of the thresholds to changes in the feature signals. It 

was decided to update the four adaptive thresholds in non-overlapping one second analysis windows [29]. The thresholds 

were calculated according to (4.11), where 0 < λ < 1 is a forgetting factor, c is a scaling parameter, Tm,z,j is the final threshold 

value in the current window, m, Tm-1,z,j is the threshold value in the previous window, and µm,z,j and σm,z,,j are the mean and 

standard deviation of feature number z ϵ [1,2] from channel j ϵ [1,2] in the current analysis window. Based on simulations on 

the PeDB, the parameters were chosen to λ = 0.4 and c = 0.8. The adaptive thresholds T1,1 and T2,1  for the segment 

illustrated in Figure 4.10 are indicated by red lines together with the respective feature signals. It should be mentioned that 

this threshold calculation implies a delay in the QRS detection of one second in addition to the filter delays.     

 

𝑇𝑚,𝑧,𝑗 =  𝜆 ∙  𝑇𝑚−1,𝑧,𝑗 + (1 − 𝜆) ∙ (𝜇𝑚,𝑧,𝑗 + 𝑐 ∙ 𝜎𝑚,𝑧,𝑗)  (4.11) 

 

In cases with abnormal beat morphologies or high amount of artifacts with high amplitudes, the adaptive threshold might be 

increased to a level that can prevent detection of subsequent normal QRS complexes. To avoid this, a high maximum 

removal was applied before the adaptive threshold calculation. This block contains information about the maximum feature 

value in the eight previous one second analysis windows. Any sample in the current analysis window exceeding the median 

value of this maximum register was set to the median value before the threshold calculation. The adaptive threshold and the 

maximum register were not updated for channel j when it was excluded from the analysis. This precaution was included to 

ensure that the adaptive parameters where not updated during very noisy episodes.  
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Figure 4.10: Illustration of the feature extraction, the creation of the final feature, Ffinal, that contains the QRS candidates, and the detected 

QRS positions. This segment illustrates the processing of record 106 from the MITDB (the same segment as illustrated in Figure 4.9). The 

vertical green lines illustrate the positions where the algorithm has detected QRS complexes. The red vertical lines illustrate the QRS 

positions obtained from the reference annotation. It is observed that all beats are correctly detected. It is furthermore observed that the 

appearance and quality of the two channels is quite different.  

4.3.1.6 Extraction of QRS Candidates 

The purpose of this algorithm block is to extract QRS candidates that can be provided to the QRS confirmation block for the 

final QRS detection step. This block is based on a decision fusion scheme that combines information from all four binary 

feature signals defined in (4.10). The information is combined according to the following scheme: 

 

1. If both channels were selected for analysis during the channel exclusion procedure, at least three of the four 

binary features should be asserted to indicate a QRS candidate.  

2. If one channel was excluded from the analysis, both binary feature signals from the other channel should be 

asserted. 

3. If both channels were excluded from the analysis, a complete shutdown occurs and no QRS complexes could 

be detected in the current window.  

 

The new binary feature signal is denoted Ffinal. The QRS candidates are then indicated when Ffinal is asserted. This final 

feature signal is illustrated in Figure 4.10. To the best knowledge of the authors, this combination of wavelet based features 

from two different ECG channels is novel.   
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4.3.1.7 QRS Localization and Confirmation Block 

The purpose of this block is two-fold: The first functionality is to investigate whether a QRS candidate is in fact a QRS 

complex and the second functionality is to provide a reliable estimate of the actual R peak position of the confirmed QRS 

candidates. As observed from Figure 4.10, Ffinal is asserted for a period of time around the location of each QRS complex. 

The temporary duration of the QRS complex was defined from the rising edge of Ffinal and 100ms forward. The BP filtered 

signal was investigated for zero-crossings during this time interval. The QRS candidate was temporarily confirmed if at least 

one active channel possessed at least one zero-crossing during this period. Theoretically, this zero-crossing corresponds to 

a peak in the raw ECG signal. The first zero-crossing in this interval might correspond to the location of a pronounced Q 

peak. It was therefore decided to apply the location of the second zero-crossing if more than one zero-crossing occurred in 

the BP filtered signal during this time interval. The position of the selected zero-crossing was extracted for each active 

channel. In the multi-channel mode, the final QRS position was estimated as the minimum sample number suggested by the 

two active channels. This location was saved as the new position of the QRS candidate. To further decrease the number of 

false detections, an additional QRS confirmation step was implemented. The block was initiated if the current RR interval 

was less than half the median of the eight previous RR intervals. If the RR interval was larger than this, the QRS candidate 

was immediately confirmed as a new QRS complex. The assumption in this block was that the feature values of two closely 

located QRS complexes should not vary significantly. This was measured with the maximum amplitude value in all active 

feature signals. For each of the active feature signals, the maximum value was calculated in a 100ms window around the 

position of the previously detected QRS complex (Fold) and the current QRS candidate (Fnew). The decision rule depends on 

the algorithm mode, see Table 4.3, where case 1 – 3 refers to the following possible outcomes: 

 

 Case 1: Accept both the previously detected QRS complex and the current QRS candidate 

 Case 2: Delete the previously detected QRS complex and accept the current QRS candidate 

 Case 3: Accept the previously detected QRS complex and reject the current QRS candidate 

Table 4.3: Decision rule in the final QRS confirmation block. 

Case Multi-channel Mode Single-channel Mode 

1 At least three of four maximum values should 

satisfy the requirement: 

𝐹𝑜𝑙𝑑

2
<  𝐹𝑛𝑒𝑤 < 2 ∙  𝐹𝑜𝑙𝑑  

Both maximum values should satisfy the requirement: 

𝐹𝑜𝑙𝑑

2
<  𝐹𝑛𝑒𝑤 < 2 ∙  𝐹𝑜𝑙𝑑  

2 At least three of four maximum values should 

satisfy the requirement: 

𝐹𝑛𝑒𝑤  ≥ 2 ∙  𝐹𝑜𝑙𝑑  

Both maximum values should satisfy the requirement: 

𝐹𝑛𝑒𝑤  ≥ 2 ∙  𝐹𝑜𝑙𝑑  

3 Otherwise Otherwise 

 

This novel QRS confirmation block was designed based on experiments and visual inspection of different challenging ECG 

snippets. After the confirmation of the QRS candidate, a refractory period of 200ms was implemented in line with [26]. The 

functionality of the confirmation block is illustrated in Figure 4.11. The ECG segment is extracted from record 233 from the 

MITDB. The vertical black lines indicate samples where Ffinal is asserted, the vertical green lines indicate detected QRS 

positions, and the vertical red lines indicate the QRS positions in the reference annotations. It is observed that Ffinal has two 

false QRS candidates. It is furthermore observed how the algorithm correctly deletes these candidates and obtains perfect 

QRS detection throughout this ECG segment. In both cases, the confirmation block is initiated since the distance to the 

previously detected QRS complex is less than half the median of the eight previously detected RR intervals. The first false 

QRS candidate is never detected because the amplitude of the feature signals are too small compared to the amplitude of 

the feature signals for the previously detected QRS complex. Therefore, this QRS candidate falls in case 3 described above, 

and it is thus immediately deleted. The second false QRS candidate is initially detected as a QRS complex. But then a new 

QRS candidate (the true QRS complex) is detected within the predefined interval. The amplitude of the feature signals for 

the two QRS complexes are therefore compared, and this situation falls in case 2. The amplitude of the feature signals for 
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the new QRS candidate is significantly higher than the falsely detected QRS complex. Therefore the false QRS complex is 

deleted and the true QRS complex is accepted. This confirmation methodology implies that any QRS candidate that will be 

detected before the expected RR interval (estimated as the median of the eight previously detected RR intervals) will be 

compared to either the previous or the next QRS complex. It should be mentioned that this confirmation block implies that 

already detected QRS detections can be deleted from the final QRS detection. This methodology will, of course, impose an 

additional delay before the detection of each QRS complex can be confirmed. To our best knowledge, this design of the 

QRS confirmation block is novel.   

 

 

Figure 4.11: Illustration of the functionality of the confirmation block. The ECG segment is extracted from record 233 from the MITDB. The 

vertical black lines indicate samples where Ffinal is asserted, the vertical green lines indicate detected QRS positions, and the vertical red 

lines indicate the QRS positions in the reference annotations. It is observed that Ffinal has two false QRS candidates. It is furthermore 

observed how the algorithm correctly deletes these candidates and obtains perfect QRS detection in this ECG segment. The first 

candidate is deleted using case 3, whereas the second false QRS candidate is deleted based on case 2. Furthermore, a minor 

misalignment between the green and red lines is observed. However, these differences are within the match window of 150ms defined by 

[24] for all beats.  
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4.3.2 Results 

The performance of the proposed multi-channel wavelet based algorithm on each record from the PeDB is provided in Table 

4.4 and the average QRS detection performances of the multi-channel wavelet based algorithm on all five databases are 

provided in Table 4.5. Furthermore, the sensitivity with respect to detection of SVEB and VEB beats are stated for the 

MITDB, the EDB, and the PeDB. As mentioned, it is important to note that only the PeDB and the MITDB were accessible 

during the design and optimization phase of this algorithm. The performance of the algorithm is discussed and compared 

with results from the literature and the second proposed algorithm in section 4.5 on page 52. However, before this 

comparison, a detailed description of the second proposed algorithm is provided in the next section.    

Table 4.4: Performance of the proposed multi-channel wavelet based algorithm on the PeDB.  

Patient 
Number 

of beats 

Se 

(%) 

P+ 

(%) 

Se VEB 

(%) 

Se SVEB 

(%) 

1 1,450 99.93 99.52 100.0 100.0 

2 1,617 100.0 100.0 100.0 - 

3 1,594 99.87 100.0 100.0 100.0 

4 1,727 100.0 100.0 100.0 100.0 

5 1,465 99.86 99.80 - 100.0 

6 3,049 100.0 100.0 100.0 100.0 

7 1,762 100.0 100.0 100.0 100.0 

8 1,984 99.95 100.0 100.0 100.0 

9 2,562 99.88 96.75 100.0 - 

10 1,651 99.94 99.94 100.0 100.0 

11 3,219 95.84 99.26 100.0 - 

Total 22,080 99.35 99.46 100.0 100.0 

 

Table 4.5: Overview of the proposed multi-channel wavelet based algorithm on the five different databases.  

Database 
Se 

(%) 

P+ 

(%) 

Se VEB 

(%) 

Se SVEB 

(%) 

MITDB 99.65 99.63 98.71 98.80 

EDB 99.75 99.79 92.27 99.63 

eTDB 99.70 97.76 - - 

eVDB 99.80 98.20 - - 

PeDB 99.35 99.46 100 100 

Total 99.73 99.61 96.15 99.13 

4.4 Single-Channel Bandpass Filter Based Approach 

During the design of the wavelet-based algorithm, it was noted that the width of each detail-band was relatively wide. From 

the literature, it was furthermore observed that different combinations of information from several wavelet sub-bands is 

usually required when applying the wavelet technique [27]–[33]. This was also necessary in our proposed wavelet based 

algorithm. This combination of information requires additional computations. Furthermore, the application of the wavelet 

transform often requires additional algorithm blocks after the wavelet decomposition to obtain satisfactory enhancement of 

the QRS complexes or to confirm a QRS candidate. This includes for instance calculation of maximum-minimum-difference 

[27], multiplication of detail coefficients from selected scales [28] [29], denoising of wavelet output [29], detection of 



41 
 

modulus-maxima exceeding pre-defined thresholds in several detail bands [30], [31], calculation of area-curve length 

[32][33], normalization using standard deviation [33], non-linear exponential amplification of the feature signal [33], or the 

QRS confirmation block designed for the first proposed algorithm described in the previous section. These additional 

algorithm steps decrease the computational efficiency. For the second proposed algorithm we therefore aimed at creating a 

novel filtering scheme that was able to directly output a single feature signal that would be smooth enough for immediate 

QRS complex detection without further enhancement, combination of different features, or additional blocks to confirm the 

presence of the QRS complexes. Furthermore, we aimed at avoiding any non-linear processing, e.g. squaring. This was 

avoided both in order to decrease the computational load and in order to avoid the risk of decreasing the influence of 

abnormal beat morphologies. We achieved this by designing a novel cascade of simple FIR filters that obtain both efficient 

enhancement of the QRS complexes and strong artifact attenuation. The cascading of filters was inspired by the wavelet 

decomposition, but we designed a filter cascade that accurately and directly extract the frequency content of interest in a 

single feature signal. As mentioned earlier and further discussed in section 4.5, we also decided to upgrade the adaptive 

threshold approach with a search back mechanism. The proposed single-channel algorithm is described in details in this 

section. The work described here is also presented in Paper V.  

4.4.1 Algorithm Description 

An overview of the second proposed algorithm is provided in Figure 4.12. The dashed green square illustrates the feature 

extraction block and the dashed blue square illustrates the detection block.   

 

 

Figure 4.12: Schematic overview of the second proposed QRS complex detection algorithm. The algorithm processes the ECG signal 

sample by sample. The input to the algorithm is one channel raw ECG. The feature extraction is indicated by the dashed green square. It 

consists of BP filtering, removal of signs, and smoothening. RRn indicates the current RR interval, if a QRS complex is detected at the 

current sample, n. If the refractory period (Tref) is exceeded, the algorithm is allowed to continue to the detection block that is indicated by 

the dashed blue square. This block can operate in three different modes dependent on the distance to the previously detected QRS 

complex (RRn). This implies that only one of the three modes is applied for each sample. The second mode includes the search back (Sb) 

procedure. The expected maximum distance between two subsequent QRS complexes is termed RRmax. If the relevant threshold is 

exceeded, a QRS complex is detected, and the localization block is initiated.  
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As observed from the dashed blue square, the QRS detection block can function in three different modes. The first mode 

applies the high threshold, Thigh, and is active when the distance from the previously detected QRS complex is within the 

expected maximum RR interval (RRmax). If RRmax is exceeded, a search back is performed using the low threshold value, 

Tlow. This search back procedure is the second mode. If no QRS complex is detected during the search back, Tlow is applied 

until a new QRS complex is detected. This is the third mode. When a QRS complex is detected, a delineation procedure is 

applied to locate the QRS complex at the correct position, and the detection block switches back to the first mode. The 

algorithm is designed to analyze the ECGs in a sample by sample manner. This enables real-time embedded detection with 

only minor insignificant delays in the detection of each QRS complex. The following sections contain a detailed description 

of each part of the algorithm.  

4.4.1.1 Bandpass Filtering 

As mentioned earlier, the purpose of the BP filtering step is two-fold: 1) Increase the influence of the QRS complexes, and 

2) attenuate the influence of different types of artifacts, as well as pronounced P- and T-waves. However, it is also important 

to keep in mind that BP filtering might unintentional decrease the influence of abnormal beat morphologies, especially VEBs. 

The performance of the BP filtering step is thus a major determinant of the necessary complexity of the remaining parts of 

the algorithm. As mentioned, it is generally accepted that the frequency components of the QRS complex primarily is 

between 5 to 22 Hz [26], [28], [33], [34]. We therefore designed a novel cascade of simple FIR filters that obtain a favorable 

passband in this frequency region. The cascade of filters consists of two BP filters followed by one LP filter. The impulse 

responses for the two successive BP filters are defined by (4.12) and (4.13), respectively.   

 

ℎ𝐵𝑃1[𝑘] =  {
−𝛿[𝑘 + 10] − 𝛿[𝑘 + 9] + 𝛿[𝑘 + 2] + 𝛿[𝑘 + 1] …

+𝛿[𝑘] + 𝛿[𝑘 − 1] − 𝛿[𝑘 − 8] − 𝛿[𝑘 − 9]
}  (4.12) 

 

ℎ𝐵𝑃2[𝑘] =  {
−𝛿[𝑘 + 14] − 𝛿[𝑘 + 13] + 𝛿[𝑘 + 2] + 𝛿[𝑘 + 1] …

+𝛿[𝑘] + 𝛿[𝑘 − 1] − 𝛿[𝑘 − 12] − 𝛿[𝑘 − 13]
} (4.13) 

 

The LP filter, with impulse response defined by hLP, is an average filter with 16 points. This cascade of filters corresponds to 

an equivalent BP filter with impulse response, h, defined by (4.14), where ∗ is the convolution operation. The amplitude 

characteristics of the three individual filters, and the equivalent BP filter is provided in Figure 4.13.  

 

ℎ[𝑘] =  ℎ𝐵𝑃1[𝑘] ∗ ℎ𝐵𝑃2[𝑘] ∗ ℎ𝐿𝑃[𝑘]   (4.14) 

 

 

Figure 4.13: The amplitude characteristics of the three individual filters (dark blue line represents BP1, green line represents PB2, and light 

blue line represents LP), and the resulting equivalent BP filter (red line) using a sampling frequency of 512 Hz.   
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4.4.1.2 Final Feature Extraction 

The final feature signal is obtained by smoothening the absolute value of the output from the novel filtering scheme using an 

8 point FIR average filter. As for the proposed multi-channel wavelet based algorithm, the absolute value is applied to 

ensure equal detection of QRS complexes with positive and negative polarity. An illustration of the feature extraction is 

provided in Figure 4.14. It is observed how muscle artifacts, electrode motion artifacts, and P- and T-waves are attenuated. 

The total delay of all four cascaded filters is 34 samples. Using a sampling frequency of 512 Hz, this corresponds to 66.4ms, 

which we considered to be within the acceptable limit for clinical applications.  

 

 

Figure 4.14: Illustration of each of the pre-processing steps: (a) Example of raw ECG signal recorded with the ePatch sensor. The 

amplitude is illustrated in analog-to-digital count (ADC) values for all plots. Note the presence of both muscle artifacts and electrode 

motion artifacts. (b) The ECG signal after BP filtering using the novel cascade of simple FIR filters. (c) Absolute value of the BP filtered 

ECG signal. (d) Smoothening of the feature signal. The red lines indicate Thigh and Tlow. The light blue circles indicate the detected 

positions of QRS complexes. 

4.4.1.3 The QRS Detection Block 

The purpose of the detection block is to localize the preliminary positions of the QRS complexes based on the feature signal 

and the adaptive thresholds. One of the important components in such an algorithm is timely initiation of the search back 

procedure. This initiation is decided by the maximum expected RR interval between two subsequent QRS complexes, 

RRmax. The assumption in this study was that RRmax should vary with the general variation of the RR intervals. The timely 

initiation of the search back procedure is especially important in the presence of many abnormal beats that might be missed 

by Thigh. In many cases, it is therefore advantageous to initiate the search back procedure earlier in a recording with high 

variability in the RR intervals. The algorithm was therefore designed to function in two different variability modes described 

below.   

  



44 
 

4.4.1.3.1 Estimation of the Optimal Variability Mode 

To estimate the optimal variability mode and RRmax, three different set of previous RR intervals are saved: 

1. RRlong: This contains the 34 previously detected RR intervals, disregarding the detection mode used for detection. 

The number of RR intervals is chosen to obtain enough RR intervals to provide a reliable estimate of the 

variability, but without losing the adaptive capability if the heart rhythm suddenly changes.  

2. RRshort: This contains the 8 previously detected RR intervals, disregarding the detection mode. This can be derived 

directly from RRlong, but it contains a shorter history, and is thus faster adapted to changes in the heart rhythm.   

3. RRsearchback: This contains the 8 previously detected RR intervals that were detected during search back. This 

implies that information about the general RR intervals during previous episodes of search back is saved, even 

though the search back procedure might not have been initiated during the previous 34 RR intervals. 

 

The current variability parameter, θ, is then estimated as: 

1. Calculate the median of RRlong. 

2. Calculate the absolute deviation between each RR interval in RRlong and the median. The deviation vector is 

termed ε.  

3. Remove the two largest values from ε.  

4. θ is then defined as the mean value of the remaining 32 entries in ε.  

 

The third step is included to prevent a single ectopic beat detection, a single missed detection, or a single false positive from 

pushing the algorithm into the high variability mode. This mode is only intended to be activated in recordings with many 

ectopic beats or generally high variation in the RR intervals. In these records, it is expected that the risk of missing a beat is 

increased, and to prevent this, the “sensitivity” of the search back procedure is increased. The high and low variability 

modes are defined based on θ being above or below a threshold, Tθ. The threshold was set by visual inspection of figures 

similar to Figure 4.15. In Figure 4.15, the RR intervals obtained from the reference annotations in the MITDB were used to 

calculate θ throughout the entire duration of each recording. The time course of θ was then compared to the types of heart 

rhythms that are intended to activate the high variability mode. By visual inspection of these figures, Tθ was set to 35 

samples. It is observed from Figure 4.15 that record 212 with normal sinus rhythm is in the low variability mode during the 

entire recording. This is as intended. The general rhythm in recording 203 is AF. This recording is in the high variability 

mode during the entire recording. This is also as intended. The general rhythm in recording 223 is normal sinus rhythm. 

However, this recording has episodes of bigeminy (B), trigeminy (T), and ventricular tachycardia (VT). As expected, the 

algorithm jumps to the high variability mode during many of these episodes.  

 

 

Figure 4.15: Example of visual inspection of θ on three different records from the MITDB: (a) Record 212 with normal sinus rhythm (N) 

during the entire recording, (b) Record 203 with atrial flutter (AFL), atrial fibrillation (AF), ventricular trigeminy (T) and ventricular 

tachycardia (VT), and (c) Record 223 with normal sinus rhythm (NSR), ventricular bigeminy (B), T and VT. The top plots illustrate the RR 

intervals from the reference annotations in samples. The middle plots illustrate θ (blue line) in samples, and the threshold Tθ = 35 (red 

line). The button plots indicate the heart rhythms obtained from the reference annotations 
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4.4.1.3.2 Estimation of the Maximum Expected RR Interval (RRmax) 

RRmax is calculated according to (4.15) and (4.16), where 𝑥̃ is the median value of the elements in x, Min(x) is the minimum 

value of the elements in x, and RRscale is a scaling parameter. The median value is applied to avoid high influence of a single 

false high or low RR interval. In the low variability mode, RRlong provides a good estimation of the expected RR interval. In 

the high variability mode, the minimum of the two more sensitive RR variables are used to increase the search back 

sensitivity. The adaptive parameters, RRmax and θ, are updated every two seconds together with the adaptive thresholds 

descried below.  

 

 

𝑅𝑅𝑡𝑒𝑚𝑝 = {
𝑅𝑅𝑙𝑜𝑛𝑔

̃                                           𝑖𝑓 𝜃 ≤ 𝑇𝜃

𝑀𝑖𝑛(𝑅𝑅𝑠ℎ𝑜𝑟𝑡
̃ , 𝑅𝑅𝑠𝑒𝑎𝑟𝑐ℎ𝑏𝑎𝑐𝑘

̃ )   𝑖𝑓 𝜃 >  𝑇𝜃

}  (4.15) 

 

𝑅𝑅𝑚𝑎𝑥 =  𝑅𝑅𝑡𝑒𝑚𝑝  ∙  𝑅𝑅𝑠𝑐𝑎𝑙𝑒     (4.16) 

 

4.4.1.3.3 Adaptive Thresholding 

The purpose of adaptive thresholding is to obtain thresholds that follow the changes in the signal. This is especially 

important for analysis of ePatch ECG signals. The goal is to obtain smooth adaptation to changes in both ECG signal 

amplitude and changes in the amount and types of artifacts. In this algorithm, we decided to update the threshold 

parameters in non-overlapping windows of two seconds. The high threshold, Thigh, is based on the median value of the 

maximum feature value in the eight previous windows: 

 

𝑇ℎ𝑖𝑔ℎ[𝑚] =  (𝑚𝑎𝑥𝐹[𝑚−8], … 𝑚𝑎𝑥𝐹[𝑚−1])̃   ∙ 𝛼   (4.17) 

 

In (4.17) m indicates the window number, F[m] represents the final feature signal in window m, 𝑚𝑎𝑥𝑥  is the maximum value 

of the elements in x, and α is a scaling factor slightly lower than 1. Using a window length of two seconds implies that we 

expect at least one QRS complex in each analysis window. It most cases, the maximum value in each analysis window is 

therefore expected to represent the amplitude of a QRS complex. Thigh is thus designed to float right below the expected 

amplitude of the QRS complexes. This avoids adaptation to the level of the isoelectric line in cases of low HR. Furthermore, 

it is observed that this threshold calculation does not require any information from the current analysis window. Opposite to 

the proposed multi-channel wavelet based algorithm, this algorithm thus functions in a very close to real-time manner where 

the adaptive threshold is “ready” right from the beginning of each new analysis window.  

The low threshold, Tlow, is intended to adjust faster to rapid changes in the amount of artifacts. This threshold is therefore 

based on information about the mean value of the final feature signal in the two previous windows. It is known that an 

increase in heart rate induces an increase in the mean value of the feature signal. Tlow is not intended to increase as a 

consequence of increased heart rate. Therefore, Tlow is scaled according to the number of QRS detections obtained in the 

two successive windows applied for the threshold calculation. This modification is termed s1. The s1 parameter is 

furthermore bounded as follows: 

 

 If no QRS complexes were detected, set s1 = 1.  

 If > 8 QRS complexes were detected, set s1 = 8.  

 

It is furthermore important to note that episodes of very noisy data might disturb the QRS detection and produce a number 

of false positive detections that might induce RR variability similar to e.g. episodes of AF, and hereby push the algorithm to 

activate the high variability mode. To prevent the increased sensitivity of the search back procedure from exacerbating the 

number of false positive detections in noisy data, a modification of Tlow is therefore also needed in the high variability mode. 

This modification is defined as the s2 parameter in (4.18). The values of s2 were obtained by visual inspection of different 
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challenging ECG snippets from the training data (MITDB and eTDB). The temporary low threshold, Tlow,temp, was thus 

calculated by (4.19), where 𝜇𝑥 is the mean value of the elements in x. 

 

𝑠2 = {
10          𝑖𝑓 𝜃 ≤  𝑇𝜃

12          𝑖𝑓 𝜃 > 𝑇𝜃
}    (4.18) 

 

𝑇𝑙𝑜𝑤,𝑡𝑒𝑚𝑝[𝑚] = (𝜇𝐹[𝑚−2], 𝜇𝐹[𝑚−1])
̃  ∙  

𝑠2

𝑠1
   (4.19) 

 

Finally, Tlow was furthermore bounded by a percentage, β, of Thigh. This modification is defined in (4.20). This ensures a 

proper functionality of Tlow to detect beats missed by Thigh:  

 

𝑇𝑙𝑜𝑤 = {
𝑇𝑙𝑜𝑤,𝑡𝑒𝑚𝑝               𝑖𝑓 𝑇𝑙𝑜𝑤,𝑡𝑒𝑚𝑝 ≤ 𝑇ℎ𝑖𝑔ℎ ∙ 𝛽

𝑇ℎ𝑖𝑔ℎ ∙ 𝛽               𝑖𝑓 𝑇𝑙𝑜𝑤,𝑡𝑒𝑚𝑝 > 𝑇ℎ𝑖𝑔ℎ ∙ 𝛽
}  (4.20) 

 

For the low threshold, it is again observed that the calculation only depends on data from previous analysis windows, and 

therefore no additional detection delay is introduced.   

4.4.1.3.4 QRS Localization and Refractory Blanking 

The purpose of the localization block is to provide a reliable estimate of the R peak position. The preliminary QRS location is 

selected as the first sample where the feature signal exceeds the relevant threshold. However, this point is probably not the 

location of the R peak. To allow better delineation, a search is performed for the maximum point in the feature signal for a 

period of time after the exceedance of the threshold. The sample point that obtains the maximum feature value during this 

time interval was selected as the QRS position. The search period was chosen to be equal to the refractory period (Tref), in 

which detection of a new QRS complex was not allowed. It should be mentioned that only one QRS complex was detected 

in each search back. If several samples exceeded Tlow during the search back period, the sample with the highest feature 

value was selected as the preliminary QRS position.  

4.4.2 Results 

4.4.2.1 Algorithm Parameter Optimization 

Four of the algorithm parameters were chosen based on a parameter grid search on the training databases (MITDB and 

eTDB). The four parameters were the refractory blanking period (Tref = 0.2ms, 0.25m, or 0.3ms), the scaling of the expected 

RR interval (RRscale = 1, 1.2, or 1.3), the boundary for Tlow (β = 0.4, 0.5, or 0.6), and the scaling parameter for Thigh (α = 0.8, 

0.9, or 0.99). The investigated values were selected based on clinical relevance, theoretical sense, and experience from the 

literature. The parameters are mutually dependent on each other. Therefore, the performances of all 81 different 

combinations of parameter values were investigated. The relationship between Se and P+ for all 81 combinations is provided 

in Figure 4.16. Figure 4.16(a) illustrates the performance on the MITDB. The blue marks indicate the performance on the 

entire database, the green marks indicate Se on SVEB beats only, and the red marks indicate Se of VEB beats only. The 

black circles indicate the parameter combination selected for further embedded implementation. Figure 4.16(b) illustrates the 

performance on the eTDB. The selected parameter combination was Tref = 0.25ms, RRscale = 1.2, α = 0.8, and β = 0.4. The 

parameter optimization was based on channel I from both training databases.  
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Figure 4.16: Relation between P+ and Se for (a) the MITDB and (b) the eTDB. Each mark indicates the performance for one of the 81 

investigated parameter combinations. In (a), the blue marks indicate the performance on the entire database, the green marks indicate the 

performance on SVEB beats only, and the red marks indicate the performance on VEB beats only. The black circles indicate the 

parameter combination that was selected for further embedded implementation.  Note, that the axes are zoomed to allow a better view of 

each point. 

4.4.2.2 QRS Detection Performance 

Table 4.6 contains the QRS detection performances obtained on the five different databases. The performances are 

calculated for both channel I and channel II for each database. It should be noted that the algorithm was designed and 

optimized on channel I of the eTDB and the MITDB. The EDB, eVDB, and PeDB were only applied for validation purposes. 

The performance on the last three databases thus provides a reliable estimate of the performance on unseen data with a 

realistic amount of abnormal beat morphologies and different types of normal daily life activities.  

 

Table 4.6: Performance of the proposed single-channel BP filter based algorithm on the five different databases.  

Database 

Channel I Channel II 

Se 

(%) 

P+ 

(%) 

Se VEB 

(%) 

Se SVEB 

(%) 

Se 

(%) 

P+ 

(%) 

Se VEB 

(%) 

Se SVEB 

(%) 

EDB 99.84 99.71 97.60 99.53 99.69 99.07 93.30 99.81 

MITDB 99.90 99.87 99.44 99.67 99.11 97.64 98.41 98.72 

PeDB 97.99 98.25 99.45 100 98.65 99.34 98.89 99.52 

eTDB 99.88 99.37 - - 99.67 98.99 - - 

eVDB 99.91 99.79 - - 99.93 99.82 - - 

Total 99.80 99.67 98.70 99.67 99.62 98.96 96.36 99.08 
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4.4.2.3 QRS Detection Examples 

Figure 4.17 illustrates the algorithm performance in different challenging clinically relevant ECG segments from the eTDB. 

The top plot of each subfigure illustrates one channel of raw ePatch ECG. The bottom plot illustrates the final feature signal 

(blue line) together with Tlow and Thigh (red lines). The green circles indicate QRS complexes detected using Thigh (detection 

mode 1), the black circles indicate QRS complexes detected in search back (detection mode 2), and the magenta circles 

indicate QRS complexes detected using Tlow (detection mode 3).  

 

 

Figure 4.17: Illustration of performance on six challenging ECG segments from the eTDB: (a) Irregular heart rhythm, (b) AF with VEBs, (c) 

AF with VEBs, (d) Sudden onset of tachycardia, (e) 2nd degree AF block, and (c) sudden change in amplitude. The top plot in each 

subfigure is one channel of raw ECG. The amplitude is illustrated in ADC counts. The bottom plot in each subfigure illustrates the final 

feature signal (blue line) together with Thigh and Tlow (red lines). The green circles indicate QRS positions detected using Thigh (detection 

mode 1), the black circles indicate QRS positions detected during search back (detection mode 2), and the magenta circles indicate QRS 

complexes detected using Tlow (detection mode 3). 

Figure 4.17(a) illustrates an example of perfect QRS detection in a segment with irregular heart rhythm. It is observed that 

beats with a prolonged RR interval are detected in the third detection mode (magenta circles). This implies that a search 

back has been correctly performed without detection of QRS complexes. This is due to the novel cascade of BP filters that 

succeed in a high attenuation of the pronounced P- and T-waves in this signal. Figure 4.17(b) and Figure 4.17(c) illustrates 

two different cases of AF with VEBs. In Figure 4.17(b) it is observed that the VEBs are wider than the normal beats, and 

therefore less pronounced in the final feature signal. This is observed not to be problematic due to timely initiation of the 
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search back procedure in the VEB positions (black circles). It is furthermore observed that the normal beats after two of the 

VEBs are detected in the third algorithm mode (magenta circles). In these two cases, the algorithm thus proves to function 

exactly as intended. At fourteen seconds, one QRS complex is detected using the search back mode even though the 

amplitude exceeds Thigh. This is due to a very sensitive search back that is initiated on the rising slope of the QRS complex. 

The localization block is then initiated from the search back procedure and ensures correct localization of the QRS complex. 

The high search back sensitivity for this recording is caused by the characteristic irregularity of the RR intervals that is 

observed during episodes of AF. In Figure 4.17(c), the opposite case is illustrated. For this patient, the VEB beats are more 

pronounced than the normal beats and they have very large slopes. This implies that the VEB beats are more pronounced in 

the final feature signal. However, again, this is observed not to be problematic due to timely initiation of the search back 

procedure for each normal beat. It is furthermore observed that the search back procedure is also relatively sensitive for this 

segment. This is observed from the magenta circles that indicate that the beat was detected in the thrid algorithm detection 

mode. This increased sensitivity is also expected for a recording where the general heart rhythm is AF. Figure 4.17(d) 

illustrates two interesting issues: 1) Very pronounced P-waves with high slopes, and 2) a run of SVEBs/sudden tachycardia 

onset. It is observed that all QRS complexes are correctly detected by the algorithm. This is obtained through a timely 

initiation of the search back procedure for all QRS complexes in the SVEB run with amplitude lower than Thigh (indicated by 

black circles). This illustrates the high adaptability of the search back initiation. It is furthermore observed that the QRS 

complexes after the SVEB run are detected using Tlow in the third algorithm mode (magenta circles). This occurs because it 

requires some time to adapt to the lower RR variability by decreasing the sensitivity of the search back procedure again. The 

pronounced P-waves are also observed in the final feature signal. In cases using Thigh, this is not a problem. In cases using 

the search back procedure and Tlow this could induce false detections of the P-wave when they exceed Tlow. However, the 

localization block is observed to correctly prevent false detections of the P-wave for all QRS complexes in this segment. 

Figure 4.17(e) illustrates the algorithm performance in case of a 2nd degree AF block. The general heart rhythm is observed 

to be regular, and therefore the search back is only initiated once at the location of the missed QRS complex. It is observed 

that the algorithm correctly detects that no QRS complex was present and stays in the third algorithm mode until the next 

QRS complex is detected (indicated by the magenta circle after the blocked P-wave). Finally, Figure 4.17(f) illustrates the 

performance during a sudden change in amplitude. This property is especially important for the ePatch data. As mentioned, 

the location on the sternum implies that the general amplitude can change rapidly due to changes in body position. It is 

observed how Thigh is quickly adapted to the new level of the QRS complexes. Even in the meantime, no QRS complexes 

are missed due to the correct functionality of the search back procedure. This feature of the algorithm is very important in 

real-life clinical applications where patients would wear the ePatch during normal daily life activities for extended periods of 

time. Furthermore, it is observed that the minor muscle and motion artifacts present in Figure 4.17(f) does not disturb the 

automatic QRS detection.  

4.4.2.4 Reflections on Algorithm Requirements 

The algorithm performance is further discussed and compared to both results obtained from the literature and the proposed 

multi-channel wavelet based algorithm in section 4.5 on page 52. However, before we continue, it is worth taking a moment 

to reflect on the original algorithm requirements defined in section 4.1.3. These requirements were the motivation and 

guidance throughout the design of the algorithm. The first requirement was a high detection performance with respect to 

both normal and abnormal beat morphologies. This requirement was included to ensure high clinical applicability of the 

algorithm. Looking at Table 4.6 and Figure 4.17, this requirement is observed to be fulfilled. It is furthermore observed that 

the fulfillment of this requirement is highly related to the refined search back mechanism designed in this project. This 

search back procedure ensures high search back “sensitivity” in cases of irregular heart rhythms. The second algorithm 

requirement was related to proper handling of sudden amplitude changes in the recorded ECGs. This requirement was 

incorporated through the highly adaptive thresholds as well as the search back mechanism. As observed from Figure 

4.17(f), this requirement also seems to be fulfilled by this algorithm. The third algorithm requirement was related to the ability 

to handle pronounced T-waves. This requirement was ensured by the design of the novel cascade of BP filters that provides 

high attenuation of the T-waves. Figure 4.17(a) and Figure 4.17(e) contains examples of relatively pronounced T-waves. It is 

observed that the T-waves are highly attenuated in the feature signal, and therefore do not impose difficulties by the 
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algorithm. The fourth requirement was related to the ability to handle QRS complexes with different morphologies (high Q- 

and/or S-waves), e.g. handling of QRS complexes with “negative” polarity. This feature was ensured by the application of 

the absolute value of the BP filtered ECGs. Figure 4.17(a)-(c) illustrates this functionality. The fifth and sixth requirements 

were related to the ability to handle different amounts of artifacts and very pronounced atrial activity, respectively. These 

requirements are only slightly touched in Figure 4.17. However, additional examples of these issues are provided in Figure 

4.19, Figure 4.22, and Figure 4.23. These issues are also further discussed later, but we generally found an acceptable 

performance in the presence of pronounced atrial activity and a high detection performance in the presence of many 

different types of artifacts. Based on knowledge gained from the literature review, the experience gained from looking 

through a high number of ePatch ECGs, and the lessons learned during analysis of the performance of the first proposed 

algorithm, we thus succeeded in designing an algorithm that satisfactorily fulfill the first six selected algorithm requirements. 

It was therefore highly interesting to embed this algorithm in the ePatch sensor and investigate the last algorithm 

requirement related to the computational load. This investigation is described below.  

4.4.3 Real-time Embedded Algorithm Validation 

The algorithm was implemented in ANSI C, compiled and embedded in the ePatch sensor. This investigation was conducted 

to ensure that the designed algorithm could perform embedded QRS complex detection with high clinical performance 

without significantly decreasing the total recording time. A certain deviation in algorithm output is expected when the 

algorithm is implemented in a different programming language and consequently applied in a different environment. Some of 

these differences are expected to be related to rounding differences in the MATLAB version of the algorithm and the 

embedded version. These differences might be exacerbated over time due to the high adaptation of the algorithm. We 

therefore implemented several iterations where we compared the output from the MATLAB and the C implementation in 

long-term ePatch ECGs and hereby sought to minimize these differences. A minimal difference between the 

implementations is important to be able to apply the performances stated in Table 4.6 as a reliable estimate of the expected 

embedded performance. To investigation this further, we evaluated the performance of both the MATLAB implementation, 

the C implementation, and the embedded implementation on the eVDB. The embedded estimation of the QRS positions 

were calculated in real-time and saved in a special channel in the data file. This channel was compared to the manual 

annotations in a double-blinded validation scheme. The QRS detections obtained by the MATLAB and the C 

implementations were calculated offline after the recording (but still in a double-blinded scheme). The currently applied 

ePatch sensor has a 32 bit micro controller based on the ARM Cortex-M3 processor from Energy Micro (now acquired by 

Silicon Labs). The processing time for each sample will among other things depend on the algorithm detection mode applied 

for that specific sample and whether a QRS complex is detected or not. Furthermore, every two seconds the thresholds and 

the other adaptive parameters are updated. This will clearly require more processor time than processing a non-boundary 

ECG sample between two QRS complexes. We therefore decided to investigate the processing time using a histogram. The 

histogram was created with a clock cycle counter that counted how many clock cycles the algorithm spends on processing 

each sample in a real-life recording. The duration of the recording was approximately 2.3 hours, yielding a total of 4,271,185 

samples. This is expected to provide a reliable estimate of the histogram.  

4.4.3.1 Results and Discussions 

The detection performances on the eVDB obtained by the MATLAB implementation, the offline C implementation, and the 

embedded implementation are provided in Table 4.7. The evaluation was conducted on channel I for all three 

implementations. Only minor performance differences are observed between the three implementations. These differences 

are considered insignificant, and they are not expected to cause issues with the extension of the results presented in Table 

4.6.  Furthermore, it should be noted that these performances were obtained throughout the duration of the three recordings. 

Based on this study, we thus find that the risk of exacerbating potential differences in long-term recordings (due to the high 

algorithm adaptability) is small. However, these findings should, of course, be validated on a larger database.  
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Table 4.7: Real-time embedded QRS detection performance of the proposed single-channel BP filter based algorithm on the eVDB.  

Subject Records Beats 
MATLAB Offline C code Embedded 

Se (%) P+ (%) Se (%) P+ (%) Se (%) P+ (%) 

Subject1 20 11,510 99.83 99.72 99.83 99.72 99.83 99.72 

Subject2 20 12,396 99.99 99.85 100 99.86 100 99.86 

Subject3 21 14,523 99.92 99.80 99.91 99.79 99.89 99.80 

Total 61 38,429 99.92 99.79 99.92 99.79 99.91 99.79 

 

The histogram of the processing times for a real-life recording is provided in Figure 4.18. Two distinct peaks are observed 

from the histogram. The first peak represents samples with processing times between 30µs and 90µs. This peak 

corresponds to processing of a non-boundary sample. The smaller peak represents samples with processing times between 

120µs and 240µs. This corresponds to samples lying on a two second boundary where all the adaptive parameters are 

updated. It is furthermore observed that no sample has a processing time of more than 240µs. Furthermore, 99.82% of the 

recorded samples where processed in less than 60µs. This implies that the algorithm is active in less than 3.1% of the time 

with a sampling frequency of 512Hz, and allows the processor to enter sleep mode or perform other activities approximately 

97% of the time. The typical energy consumption of the processor is 5.62mA. Theoretically, the algorithm thus uses 

0.1726mA. During normal operation (recording, sampling, storage etc.) the ePatch sensor uses 3.125mA. This implies that 

the algorithm causes a theoretic increase in the energy consumption compared to the normal ePatch sensor activity of 

5.5%. This corresponds to a decrease from a maximum recording time of 80 hours to a maximum recording time of 75.8 

hours using a standard 250mAh battery.  

 

 

Figure 4.18: Histogram of the embedded algorithm processing time for each sample in a real-life recording of 2.3 hours. The x-axis 

indicates the mean value of each histogram bin. This implies that the first bin contains samples with a processing time of 0-30µs, the 

second bin contains samples with a processing time of 30-60µs etc. Note the two distinct peaks in the histogram.  

Generally, it is observed that the embedded detection performance is considered to be very high. This performance is 

obtained on healthy young volunteers during normal active daily life activities. This performance therefore provides a reliable 

estimate of the performance in long-term ePatch recordings. However, it should, of course, be mentioned that these 

subjects were healthy, and it might therefore be interesting to conduct the same investigation on patients with a high number 

of abnormal beat morphologies. Furthermore, it is observed that the additional computational load required by the 

embedded algorithm is relatively low compared to the normal energy consumption in the ePatch sensor. We therefore 

consider the algorithm to be applicable in real-life situations. This implies that we also consider the algorithm to fulfill the last 

requirement related to the computational load.  
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4.5 Algorithm Comparison and Discussions 

To summarize our results, Table 4.8 contains the detection performances obtained on the five different databases for the 

multi-channel wavelet based algorithm, the single-channel BP filter based algorithm applied to channel I, and the single-

channel BP filter based algorithm applied to channel II. For the total average performance on all five databases, it is 

observed that the single-channel BP filter based algorithm applied to channel I obtains the best results. The second best 

results are obtained by the multi-channel wavelet based algorithm, and the worst result are obtained by only applying 

channel II of each database. Considering the increased quality of channel I in the standard databases, this result is not 

surprising. However, it is also observed that the performance with respect to detection of VEB beats is lowest for the multi-

channel algorithm. This was not expected. This is therefore further discussed later. Before continuing, it is worth noting that 

both algorithms, and especially the second proposed algorithm applied to channel I, generally obtain very satisfactory 

performance on most of the databases and that the performances obtained on the five different databases are comparable. 

During the design and optimization of the two proposed algorithms, we emphasized the special characteristics of the ePatch 

ECGs, but these considerations did not result in a decreased detection performance on ECGs recorded with traditional 

equipment (represented by the MITDB and the EDB). This indicates that algorithms can be designed to obtain high 

performance on both ECGs recorded with traditional equipment and ECGs recorded with the ePatch recorder. This was one 

of the key research questions investigated in this part of the project. This finding is important because it might indicate that 

algorithms applied in commercial automatic Holter analysis software could be updated to also include possibilities of 

analysis of ePatch ECGs. This would highly decrease the difficulties that would otherwise be experienced during large-scale 

implementation of the ePatch recorder for clinical outpatient ECG monitoring in the future. However, this area should be 

further investigated for arrhythmia detection algorithms before a definitive conclusion can be made. 

 

Table 4.8: Comparison of performance of the first proposed multi-channel wavelet based algorithm and the second proposed single-

channel BP filter based algorithm. The performance of the BP filter based approach is stated for both channel I and channel II of each 

database.  

 

Database 

Wavelet Transform Based 

Channel I & Channel II 

BP Filter Based 

Channel I 

BP Filter Based 

Channel II 

 

Se 

(%) 

 

P+ 

(%) 

VEB 

Se 

(%) 

SVEB 

Se 

(%) 

 

Se 

(%) 

 

P+  

(%) 

VEB 

Se 

(%) 

SVEB 

Se 

(%) 

 

Se 

(%) 

 

P+  

(%) 

VEB 

Se 

(%) 

SVEB 

Se 

(%) 

EDB 99.75 99.79 92.27 99.63 99.84 99.71 97.60 99.53 99.69 99.07 93.30 99.81 

EDBa 99.76 99.80 94.33 99.63 99.84 99.71 98.56 99.53 99.72 99.09 98.17 99.81 

MITDB 99.65 99.63 98.71 98.80 99.90 99.87 99.44 99.67 99.11 97.64 98.41 98.72 

PeDB 99.35 99.46 100 100 97.99 98.25 99.45 100 98.65 99.34 98.89 99.52 

PeDBb 99.95 99.49 100 100 99.94 99.66 99.44 100 99.79 99.53 98.89 99.52 

eTDB 99.70 97.76 - - 99.88 99.37 - - 99.67 98.99 - - 

eTDBc 99.81 99.55 - - 99.95 99.92 - - 99.83 99.64 - - 

eVDB 99.80 98.20 - - 99.91 99.79 - - 99.93 99.82 - - 

Total 99.73 99.61 96.15 99.13 99.80 99.67 98.70 99.67 99.62 98.96 96.36 99.08 

Totald 99.76 99.70 96.98 99.13 99.86 99.74 99.09 99.67 99.68 99.02 98.33 99.08 

 a Gross average performance with corrections for record e0614 from the EDB, see Appendix B.  

 b Gross average performance with exclusion of record 11 from the PeDB, see section 4.5.2. 

 c Gross average performance with exclusion of record 28 and 29 from the eTDB, see section 4.5.2.  

 d Total gross average performance on all five databases with the modifications described by a, b, and c. 
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4.5.1 Comparison with literature 

As discussed earlier, we believe that especially the second proposed algorithm obtains satisfactory fulfilment of the selected 

algorithm requirements. However, it is still important to compare the obtained performances with other performances stated 

in the literature. This is, of course, not possible for the ePatch databases. We therefore only conduct this comparison using 

the MITDB and the EDB. To allow comparison, Table 4.9 therefore contains the performances obtained by different studies 

from the literature on these databases. The algorithms were selected for comparison based on several criteria: 

 

 It was prioritized to compare with some of the algorithms obtaining the best performance in the literature.  

 It was prioritized to select literature that could allow comparison with different types of algorithms applying different 

methodologies, and hereby requiring different computation loads. 

 It was prioritized to compare with algorithms that have been evaluated on both databases.  

 Finally, it was prioritized to compare with algorithms based on both the single-channel paradigm and different 

multi-channel paradigms 

 

As mentioned earlier, the single-channel based algorithms described in the literature are generally only evaluated on 

channel I of the MITDB and the EDB. We therefore only compare with the performance of our proposed single-channel 

algorithm applied to channel I. In spite of the high clinical relevance, the other studies did not publish their detection 

performances with respect to VEB and SVEB beats. A comparison with respect to detection of abnormal beats was 

therefore not possible. The next two sections contain a brief comparison of each of the proposed algorithm with the results 

stated in Table 4.9.    

 

Table 4.9: Comparison with some of best results obtained from the literature. 

Method 
MITDB EDB 

P+ Se P+ Se 

Multi-channel wavelet based algorithm e 99.63 99.65 99.80 99.76 

Single-channel BP filter based algorithm a 99.87 99.90 99.71 99.84 

Di Marco and Chiari [27] 99.86 99.77 99.56 99.81 

Ghaffari et al. [32] 99.88 99.91 99.55 99.63 

Ghaffari et al. [33] 99.91 99.94 - - 

Boqiang et al. [38] e 99.93 99.91 - - 

Chiarugi et al. [37] e 99.81 99.76 - - 

Liu et al. [29] b 99.86 99.80 - - 

Li et al. [30] d 99.94 99.89 - - 

Martìnez et al. [36] 99.97 99.71 99.73 99.67 

Martìnez et al. [31] 99.86 99.80 99.48 99.61 

Zhang and Bae [34] c 99.82 99.76 - - 

Pan and Tompkins [26] d a 99.54 99.75 - - 

Zidelmal et al. [28] 99.82 99.64 - - 

 - Not stated in paper. 

 a Algorithm is implemented and tested in a microprocessor. 

 b Algorithm is implemented and tested on an ASIC. 

 c Algorithm is implemented and tested on a FPGA.  

 d A discrepancy was found between the stated total number of beats and the record-by-record total 

 number of beats. In this table, the record-by-record numbers are applied.  

 e Algorithm is evaluated using a multi-channel paradigm. 
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4.5.1.1 Single-Channel BP Filter Based Algorithm 

The performance of the single-channel BP filter based algorithm on the MITDB is definitely comparable to the best results 

obtained in the literature. These results [32], [33], [38] are, however, not obtained by embedded algorithms that have been 

tested in real-life situations. When compared to other embedded algorithms [26], [29], [34], the performance obtained by our 

novel algorithm is slightly superior. Furthermore, we consider our detection sensitivity with respect to VEBs and SVEBs to be 

very high for the single-channel algorithm applied to channel I. This is especially relevant when the algorithm is intended to 

be applied in a clinical setting. The performance on the EDB is also superior to other algorithms from the literature. It should 

furthermore be noted that this database was used only as a validation database. This implies that the algorithm design and 

parameter selection was not changed prior to the processing of this database. This result can thus provide a relatively 

realistic impression of the performance on unseen ECGs with different types of abnormal beat morphologies from a high 

number of different patients. The comparison with the literature thus strengthens our impression of this algorithm as highly 

clinically relevant in the future.  

4.5.1.2 Multi-Channel Wavelet Based Algorithm 

The performance of the multi-channel wavelet based algorithm on the MITDB is slightly lower than most of the studies 

selected for comparison. The lower performance might be caused by the optimization to the quite small PeDB or the choice 

of a multi-channel paradigm. As mentioned, the quality of channel II is often lower than channel I for this database. In our 

approach, we only tested the implementation of a very simple channel exclusion measure based on saturation. The 

detection performance on the MITDB might therefore be improved by implementation of more sophisticated channel 

exclusion measures. The overall performance on the EDB is considered very high compared to other published work. 

However, for the EDB, the sensitivity with respect to abnormal beats is considered to be relatively low compared to the 

proposed single-channel algorithm. This is discussed further in the next sections.   

4.5.2 Comparison of Performance of the Two Proposed Algorithms 

The previous section contains an overview comparison of each proposed algorithm relative to performances stated in the 

literature. This section, on the other hand, contains a detailed comparison and discussion of the performances obtained by 

the two proposed algorithms. During the comparison of the two algorithms it is important to keep in mind that the goal of the 

work described in this chapter was to design an automatic algorithm for embedded QRS complex detection in the ePatch 

sensor. Therefore, the detection performances obtained on the ePatch databases (especially the eTDB and the eVDB that 

were recorded with the newest CE-market ePatch) is generally prioritized over the performances obtained on the standard 

databases. This is especially relevant when discussing the potential benefits from applying information from both ePatch 

ECG channels. Looking at the performances obtained by the two algorithms on each ePatch record, a few interesting 

findings became clear: 

 

 The difference in performance on the PeDB was primarily caused by differences in record 11. When this record is 

excluded from the overall statistics, the performances become quite similar (see Table 4.8). This record contains 

approximately 2.5 minutes of very poor data quality in both channels and several episodes of saturation. The 

increased performance obtained by the multi-channel algorithm for this record was found to originate primarily 

from the channel “shutdown” methodology implemented in this algorithm. This issue is further discussed in section 

4.5.2.1.  

 It was generally observed that the performances obtained by applying the single-channel algorithm to the two 

different ePatch channels were quite similar. This indicates that the two channels possess approximately equal 

amount of information for automatic embedded QRS complex detection.  Furthermore, it is observed from the 

ePatch databases that the multi-channel algorithm obtains slightly lower performance than the single channel 

algorithm. This furthermore indicates that no additional information is provided by including both channels from the 

ePatch recordings. This is further discussed in section 4.5.2.2.  
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 It was observed that the difference in performances obtained on the eTDB primarily originates from record 28 and 

29. These recordings were extracted from the same patient. This patient suffers from AF and the recorded atrial 

activity is very pronounced. It is revived that high performance in these cases was one of the algorithm 

requirements defined in section 4.1.3. If these records are excluded, the overall statistics from both algorithms 

become quite similar (see Table 4.8). We found that the increased performance obtained by the single-channel 

algorithm in this example is caused by the influence of proper functionality of the novel search back mechanism 

implemented in the second algorithm. This issue is further discussed in section 4.5.2.3.  

 For the eVDB, the differences in performance originate from several different recordings. However, a common 

characteristic for these recordings is relatively high amounts of high frequency artifacts caused by muscle 

activations. It is revived that high performance in these cases was one of the algorithm requirements defined in 

section 4.1.3. The improved detection performance by the single-channel algorithm was, again, observed to be 

highly related to the search back mechanism. This issue is therefore also further addressed in section 4.5.2.3.  

 

When comparing the performances with respect to detection of abnormal beat morphologies, the performances on the 

standard databases were the primary source of information (due to the lack of large-scale manual annotations of abnormal 

beat morphologies in the ePatch databases). Based on the standard databases, the following observation was clear with 

respect to detection of abnormal beats: 

 

 It was observed that the multi-channel algorithm obtained the lowest detection performance with respect to 

abnormal beats, especially VEBs, on the EDB. One of the assumptions for including an additional channel was an 

increased chance of detecting abnormal beats. This finding was therefore not expected. This issue is therefore 

further discussed in section 4.5.2.2.  

 

As mentioned above, each of these performance differences were found to be related to specific differences in the design of 

the two algorithms. Two of the important blocks implemented in the second algorithm were the novel BP filtering scheme 

and the refined search back methodology. These improvements were partly made based on experiences with the first 

algorithm. Furthermore, an important difference between the algorithms was the application of either one or both channels. 

Finally, the first proposed algorithm contains a “shutdown” block that is intended to “protect” the algorithm in cases of 

extremely noisy data segments. This block was not included in the single-channel algorithm. The influence of each of these 

four design choices are indicated in the above listed bullets. The next sections contain a number of illustrations that are 

intended to highlight the strengths and weaknesses of these design choices using clinically relevant ECG snippets. This 

investigation led to a set of recommendations for future embedded detection of QRS complexes in the ePatch sensor (see 

section 4.5.3). 

4.5.2.1 Influence of the Channel “Shutdown” Methodology 

In the first proposed algorithm, a channel “shutdown” procedure was implemented to exclude information from a potentially 

noisy channel. An example of the performance of both algorithms during an episode of pronounced saturation in record 11 

from the PeDB is provided in Figure 4.19. It is observed that the improved detection performance is ensured by the channel 

exclusion measure: The multi-channel algorithm is in complete “shutdown” mode during the episodes of saturation. This 

ensures that no false detections are produced. It is furthermore observed how fast the multi-channel algorithm recovers after 

the artifact episode. This is achieved because the adaptive algorithm parameters are not updated during periods of 

“shutdown”. This ensures that the thresholds are able to “catch” the QRS complexes immediately after this episode of 

saturation. This might suggest that the single-channel algorithm could be further improved by implementation of protective 

features similar to the “shutdown” approach implemented in the multi-channel algorithm. This could for instance ensure that 

the adaptive algorithm parameters would not be updated and hereby fitted to noise during “shutdown” or it might be 

implemented in the form of resetting the adaptive algorithm parameters if a noisy episode has been detected. It should 
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furthermore be mentioned that the “shutdown” approach might be improved by the implementation of more sophisticated 

channel exclusion measures. Therefore, this block is definitely worth more exploration in future studies.  

 
 

 

Figure 4.19: Illustration of detection performance on record 11 from the PeDB during an episode of saturation in both channels: (a) 

Performance of the single-channel algorithm applied to channel I, (b) Performance of the single-channel algorithm applied to channel II, 

and (c) Performance of the multi-channel wavelet based algorithm. The vertical red lines indicate the position of QRS complexes in the 

reference annotations. The vertical green lines indicate the QRS positions detected by the different algorithms. In (a) and (b), the green 

circles indicate QRS complexes detected using Thigh (algorithm mode 1), the black circles indicate QRS complexes detected using Tlow 

during search back (algorithm mode 2), and the magenta circles indicate QRS complexes detected using Tlow after search back (mode 3). 

The horizontal red lines indicate the adaptive threshold values. The horizontal green lines indicate the channel exclusion measure 

(asserted = channel excluded). It is observed how both channels are excluded (complete algorithm shutdown) for the first six seconds, 

and hereafter one of the channels is constantly active.   
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4.5.2.2 Influence of Application of Information from Both ePatch Channels 

It was important to investigate whether the two simultaneously recorded ePatch ECG channels provide non-redundant 

information with respect to the automatic detection of QRS complexes. In the beginning, we believed that there might be 

additional information in the second channel, especially during episodes of artifacts or abnormal beat morphologies. 

However, as observed from Table 4.8, this does not seem to be the case. Furthermore, it is also observed that the 

sensitivity with respect to detection of VEB beats is highly decreased for the multi-channel algorithm on the EDB. This was 

not expected. An example of this issue is illustrated in Figure 4.20.  

 

 

Figure 4.20: Illustration of detection performance on record e0605 from the EDB during an episode with several VEB beats: (a) 

Performance of the single-channel algorithm applied to channel I, (b) Performance of the single-channel algorithm applied to channel II, 

and (c) Performance of the multi-channel wavelet based algorithm. The horizontal red lines indicate the appropriate threshold values. The 

vertical red lines indicate the position of QRS complexes in the reference annotations. The vertical green lines indicate the QRS positions 

detected by the different algorithms. It is observed that all four VEB beats are correctly detected using the single-channel BP filter based 

algorithm applied to both channel I (a) and channel II (b), but one of the VEB beats is missed using the multi-channel wavelet based 

algorithm (c). In (a) and (b), the green circles indicate QRS complexes detected using Thigh (algorithm mode 1) and the black circles 

indicate QRS complexes detected using Tlow during search back (algorithm mode 2).    
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It is observed how the single-channel algorithm obtains perfect VEB detection in this ECG segment independent of the 

channel applied. It is furthermore observed how the multi-channel algorithm misses the second VEB beat. To investigate 

this issue further, a zoomed version of the first two seconds of the segment is provided in Figure 4.21.  

 

 

Figure 4.21: Illustration of a zoom on the first two seconds illustrated in Figure 4.20. It is observed that the second VEB beat is missed. As 

illustrated in the bottom plot, this is caused by a difference in the assertion of the binary feature signals for the two channels. It is 

furthermore observed how a very low threshold value is required to detect the first VEB beat.   

It is observed that the missed VEB detection is caused by a misalignment between the locations where the two feature 

signals from the two channels cross the respective thresholds. This was generally observed to be the case for many of the 

VEB beats that where missed by the multi-channel algorithm. This might suggest that a different decision fusion scheme 

should be designed to combine information from the two channels. However, the feature signals from the two channels 

indicate that any simple combination of the information from the two channels might be difficult without also unintentionally 

increasing the risk of additional false positive detections during episodes of noisy data. It should, however, be noted that the 

decreased detection performance with respect to VEB beats might be caused by the BP filter applied before the wavelet 
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decomposition in the multi-channel algorithm. It is known that a BP filter might unintentionally decrease the influence of VEB 

beats that are generally recognized by lower frequency content than the normal beats. It should also be mentioned that in 

some cases the detection performance with respect to abnormal beats was increased in the multi-channel algorithm. But the 

overall impression is that the single-channel algorithm obtains higher performance with respect to detection of VEB beats. 

Furthermore, based on the available data, no significant difference between the performances obtained on the two different 

ePatch channels was observed. At the same time, the multi-channel algorithm obtains lower performance on the eTDB and 

the eVDB than both channel I and channel II individually. This might indicate that the information in the two ePatch channels 

is redundant with respect to automatic heart beat detection and that a single-channel approach therefore might be the best 

choice in ePatch ECGs. It should, of course, be mentioned that the multi-channel algorithm might be improved, and hereby 

obtain a higher performance. However, even if improvements were made, it is not considered likely that including both 

channels for analysis of the ePatch recordings will be able to significantly improve the high detection performance obtained 

by the proposed single-channel algorithm applied to either channel I or channel II. The computational load is furthermore 

significantly higher when two ECG channels are processed simultaneously. The designed multi-channel algorithm should 

therefore obtain significantly higher performance in order to serve as the first choice for real-time embedded QRS detection. 

We therefore recommend application of only one ePatch ECG channel for automatic embedded detection of QRS 

complexes in the ePatch sensor. However, as suggested in the previous section, the single-channel algorithm might be 

further improved by implementation of a “shutdown” procedure. This could ensure that the algorithm always applies the 

channel with the highest quality and hereby always provide the best environment for reliable detection of the QRS 

complexes.  

4.5.2.3 Influence of the Search Back Mechanism 

As described earlier, we applied two different variations of adaptive thresholding. In the first algorithm a single adaptive 

threshold was applied. However, it was found that this approach requires that the threshold is relatively low to ensure 

adequate detection of abnormal beat morphologies. An example of this is illustrated in Figure 4.20 and Figure 4.21. 

However, it was found that this low threshold has a high tendency to produce false detections. We therefore decided to 

investigate the application of two adaptive thresholds applied in a search back scheme in the second algorithm. An example 

of the influence of this detection methodology is provided in Figure 4.22. This ECG snippet is extracted from record 28 from 

the eTDB. The rhythm is AF, and the fibrillating “P-waves” are very pronounced compared to the QRS complexes. As 

mentioned, this is one of the characteristic challenges that are sometimes experienced during episodes of AF recorded with 

the ePatch. The accurate assessment of the atrial activity is expected to be caused by the location of the ePatch. It is 

observed how the multi-channel approach achieves very poor performance in this ECG snippet. It is also observed that the 

increased performance obtained by the single-channel algorithm is caused by the novel search beach mechanism. Several 

episodes from the atrial activity actually obtain peaks in the feature signal that are higher than the influence of the R peaks. 

This occurs for both algorithms. However, this is handled quite well by the search back mechanism. The idea of the search 

back mechanism is to increase the sensitivity of the algorithm when enough time has elapsed to confidently expect a new 

QRS complex, and this procedure is observed to increase the performance in this ECG snippet. However, it is expected that 

both algorithms can produce some FP detections during episodes of AF with this appearance. A single FP/FN pair is also 

observed using channel II in Figure 4.22. However, a few false detections during episodes of AF are not expected to disturb 

subsequent automatic rhythm analysis and automatic classification of AF versus other heart rhythms. The performance of 

the single-channel algorithm observed in Figure 4.22 is thus expected to be sufficient for subsequent automatic AF 

detection, whereas the performance of the multi-channel algorithm is considered too low for this segment. However, it is 

recommended to conduct further analysis to clarify the exact extend of this AF morphology in the ePatch recordings and 

conduct a proper performance evaluation on this specific arrhythmia morphology.  
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Figure 4.22: Illustration of detection performance on record 28 from the eTDB: (a) Performance of the single-channel algorithm applied to 

channel I, (b) Performance of the single-channel algorithm applied to channel II, and (c) Performance of the multi-channel wavelet based 

algorithm. The horizontal red lines indicate the appropriate threshold values. The vertical red lines indicate the position of QRS complexes 

in the reference annotations. The vertical green lines indicate the QRS positions detected by the different algorithms. In (a) and (b), the 

green circles indicate QRS complexes detected using Thigh (algorithm mode 1) and the black circles indicate QRS complexes detected 

using Tlow during search back (algorithm mode 2).   

Another example of the influence of the detection methodology is provided in Figure 4.23. This illustrates the performance of 

both algorithms during gardening. It is clearly observed how the single-channel algorithm handles the high frequency muscle 

artifacts better than the multi-channel algorithm. It is observed that the feature signal obtained using the novel cascade of 

simple FIR filters in the single-channel algorithm is somehow smoother than the wavelet based features achieved in the 

multi-channel algorithm. However, many of the artifacts still cross the low threshold in the single-channel algorithm. This 

again illustrates the usefulness of timely initiation of a search back procedure. The search back allows a relatively high Thigh 

that prevents erroneous detections of muscle artifacts without missing abnormal beats with lower amplitude. This is 

observed to increase the detection performance. However, it should be remembered that the training databases applied for 

the two algorithms were quite different (see section 4.2). The single adaptive threshold approach might therefore obtain 

slightly higher performance if the algorithm parameters were optimized using more ePatch data. However, after reviewing 

different challenging ECG snippets, we consider it unlikely that this optimization would be able to account for the higher 

performance obtained by the search back approach. Furthermore, we accomplished to implement the search back 

procedure using computationally simple adaptive thresholds. These thresholds can even be calculated without information 
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from data in the current analysis window. We therefore consider the search back procedure to be a good approach for 

embedded detection in long-term recordings with a high amount of real-life artifacts from normal daily life activities.  

 

 

 

Figure 4.23: : Illustration of detection performance on record 14 from the eVDB during an episode of gardening: (a) Performance of the 

single-channel algorithm applied to channel I, (b) Performance of the single-channel algorithm applied to channel II, and (c) Performance 

of the multi-channel wavelet based algorithm. The horizontal red lines indicate the appropriate threshold values. The vertical red lines 

indicate the position of QRS complexes in the reference annotations. The vertical green lines indicate the QRS positions detected by the 

different algorithms. In (a) and (b), the green circles indicate QRS complexes detected using Thigh (algorithm mode 1) and the black circles 

indicate QRS complexes detected using Tlow during search back (algorithm mode 2). 

When discussing the performance in noisy segments, it should be noted that future work could include specific noise stress 

tests of the algorithm. In our study, we include artifacts from normal daily life activities (especially in the eVDB), but the 

investigation of algorithm performance during specific types and amounts of artifacts could be further investigated. In noisy 

data segments there is always a risk of obtaining a high number of FP or FN detections. In these cases, this might disturb 

the adaptive parts of the algorithms. This might exacerbate poor performance. However, as mentioned earlier, this might be 

accounted for in future versions by implementation of sophisticated channel exclusion measures.  
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4.5.2.4 Discussion of the Feature Extraction Methodology 

For the feature extraction step, we investigated the well-known and accepted wavelet decomposition and a novel designed 

cascade of simple FIR filters. One of the motivations for designing the novel filter system was to directly achieve an 

appropriate feature signal without the additional computations required to combine information from different wavelet sub-

bands and without the requirement for further processing of the feature signal before the detection step. Both these 

purposes were achieved with the novel filter system. This can partly be explained by comparing the amplitude 

characteristics of the two filtering schemes (see Figure 4.24). It is observed that the novel resulting BP filter obtains a 

sharper passband for the relevant frequencies that any of the wavelet sub-bands.  

 

Figure 4.24: Comparison of the amplitude characteristics for the two filtering system. (a) The novel cascade of filters (sampling frequency: 

512 Hz). (b) The wavelet decomposition system (sampling frequency: 500 Hz).   

Table 4.10 contains a comparison of the computational load required for the two filtering schemes. To obtain an impression 

of the overall algorithm burden, we have also included the BP filter applied before the wavelet decomposition and the 

smoothening filter applied in the second proposed algorithm. The exact power consumption of each algorithm depends on 

the implementation and realization of the algorithm. However, it is observed that the computational profile is slightly different, 

but comparable, for the two systems. As mentioned earlier, the wavelet decomposition is generally characterized by a good 

compromise between high detection performance and possibilities of efficient hardware implementation [29]. We have thus 

designed a novel filter system with the same low computational burden, but our filter system has the advantage of providing 

a smooth feature signal that can be applied for QRS complex detection directly without any additional combination of 

information from different sub-bands, additional confirmation blocks, or other computationally demanding detection 

methodologies. This reduces the overall computational burden of the second proposed algorithm. Furthermore, we found 

that the embedded implementation of the second proposed algorithm was able to perform real-time QRS complex detection 

with high clinical performance without significantly reducing the total recording time of the ePatch sensor. This algorithm thus 

complies with our definition of acceptable power consumption. For an application that requires reliable embedded detection 

of heartbeats with low computational load, we therefore recommend applying this filter system. Furthermore, it should be 

noted that the single-channel algorithm based on the novel filter system actually obtains higher performance on the two 

standard databases than many of the wavelet based algorithms from the literature. However, in some situations it might still 

be advantageous to apply the wavelet decomposition. Several studies have obtained good delineation results with respect 

to detection of P- and T-wave fiducial points using the wavelet decomposition. If this is desired, it might therefore be 

considered to apply the wavelet decomposition in spite of the described advantages of the novel designed cascade of filters.  

As discussed earlier, the single-channel BP filter based algorithm generally obtains higher detection performance with 

respect to the detection of abnormal beat morphologies. However, it is difficult to decode how this result is influenced by the 

filtering scheme, the search back methodology, and the number of channels applied, respectively. Overall, our 

recommendation is to apply the novel cascade of FIR filters for embedded heart beat detection in the ePatch sensor. 
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However, it should be mentioned that further investigations should be conducted in order to update the novel filter system to 

handle different sampling frequencies if this is required.  

 

Table 4.10: Comparison of the computational complexity of the two proposed algorithms. For the wavelet decomposition, we have 

included the requirements for calculation of the sub-band applied in the proposed wavelet based algorithm (a1 – a4, d1, d2, d4, and d5).   

 
Total filter  

coefficients 

Memory 

requirements 

Non-zero  

coefficients 

Multiplications and 

divisions with 2n 

Other multiplications 

and divisions 

BP filter system      

BP1 20 20 8 0 0 

BP2 28 20 8 0 0 

LP 16 16 16 1 0 

Smoothening 8 8 8 1 0 

Total 72 72 40 2 0 

Wavelet system      

BP 20 20 20 0 0 

Decomposition to d5 80 66 24 8 8 

Total 100 86 44 8 8 

4.5.3 Recommendations for Real-Time Embedded Heart Beat Detection in ePatch ECGs 

Based on the above discussions, it is recommended to apply a single-channel based algorithm for real-time embedded heart 

beat detection on ePatch ECGs. From the data investigated in this study, there is no apparent difference between detection 

on the two recorded ePatch ECG channels and the information obtained from the two different channels thus seem to be 

redundant with respect to automatic QRS complex detection. It is furthermore recommended to apply the computationally 

efficient BP filter approach where a suitable feature signal is obtained directly. For the detection block, it is recommended to 

apply two adaptive thresholds in a search back scheme. It is not considered necessary to implement additional confirmation 

blocks. However, it is recommended to explore the possibilities for improvements based on refined signal quality measures 

that might serve to avoid false detections during extreme episodes of artifacts and decrease the algorithm recovery time 

after such noisy events. New sensitive channel exclusion measures might be explored to further improve the performance of 

the shutdown mechanism. Furthermore, the exact delineation of the R peaks has not gained much attention in this thesis. 

For some applications, the exact position of the R peak is not important. In other applications it might be crucial. It is 

therefore recommended to continue with analysis of the delineation capabilities. The delineation performance of the 

algorithm might be improved by improving the delineation block. This should not necessarily affect the performance of the 

remaining parts of the algorithm. Finally, it is recommended to conduct controlled noise stress tests of the implemented 

algorithm to gain specific knowledge about the types and amounts of artifacts than can be handled satisfactorily. In this 

study, the noise tolerance has been investigated to some extend with the eVDB. It is expected that a high number of normal 

daily life activities are present in this database, but a specific noise stress test would be interesting.  
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4.6 Conclusions 

In this chapter, we have investigated the possibilities of real-time embedded heartbeat detection in the ePatch sensor. 

Based on experience from the ePatch recordings, we defined a set of algorithm requirements that we sought to fulfill 

throughout the design phase. However, it was not only a priority to provide new knowledge about automatic signal 

processing in the ePatch ECGs. It was also a priority to provide new knowledge related to the similarity between ePatch 

ECGs and traditionally recorded ECGs, the potential redundancy of the second ePatch channel, and the general ability to 

obtain high clinical performance in a real-life environment.  

One of our key findings was thus that it was possible to design automatic QRS complex detection algorithms that obtain high 

clinical performance on both ePatch ECGs and ECGs recorded with traditional equipment. This indicates some degree of 

similarity between the different ECGs from an algorithm point-of-view. However, it remains to be investigated whether 

algorithms designed and optimized for traditional ECGs also obtain high performance on ePatch ECGs. This discussion is 

highly relevant for the potential difficulties associated with the large-scale implementation of the ePatch recorder as a 

substitute for today’s Holter devices in the future. Another key finding was that information provided from the two 

simultaneously recorded ePatch channels is redundant in most cases. This indicates that only one channel is required for 

reliable QRS complex detection in ePatch ECGs. This further indicates that for some applications it might be sufficient to 

record and store a single ePatch ECG channel in the future. This would significantly decrease the power consumption of the 

system.  

During the project, we designed two novel algorithms and especially the second proposed algorithm obtained very high 

clinical performance (Se = 99.86% and P+ = 99.74% on more than 950,000 manually annotated beats obtained from 198 

different patients). This algorithm was based on a novel computationally efficient cascade of FIR filters that directly obtain a 

smooth feature signal that can be applied as input to the detection step. We furthermore refined the well-known search back 

mechanism and designed novel computationally simple methods for calculation of the adaptive thresholds. The detection 

performance with respect to abnormal beat morphologies is also considered very high. Furthermore, a high number of 

artifacts were included in the five different databases. Based on our databases, we thus find that it was possible to obtain a 

high tolerance to artifacts and still obtain high detection performance with respect to abnormal beats. This was partly 

obtained by the novel filter system and the refined search back procedure. We furthermore evaluated an embedded 

implementation of the algorithm to investigate the power consumption. We defined an acceptable computational load based 

on the algorithm’s influence on the total recording time of the current version of the ePatch. We found that the theoretical 

maximum reduction in the recording time for the embedded implementation of the second proposed algorithm was 

approximately 5.5%. We found this within the acceptable limits. We thus conclude that it was possible to design a novel 

algorithm with high clinical performance and with low computational costs.   

Overall, our impression is thus that the single-channel BP filter based approach obtains excellent results on both ePatch 

ECGs and standard databases. The high performance on both normal and abnormal beat morphologies as well as episodes 

of normal daily life activities, and the possibility of embedded implementation opens possibilities of real-time monitoring of 

clinically relevant parameters like HR curves, rhythm analysis, and detection of cardiac events on patients outside the 

hospital setting. This might help to improve the diagnosis and treatment of patients with varying life threatening diseases in 

the future.    
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5 Automatic ECG Quality Estimation 

Objectives: The advantages of the novel patch-type ECG recorders are irresolvable conditioned by their ability to obtain 

high-quality diagnostic ECGs throughout the recording period. However, this ability might be decreased due to the short 

inter-electrode distance and the increased possibility of performing normal daily life activities that might produce a high 

number of artifacts. The purpose of this part of the study was thus to investigate whether the advantages of the novel 

ePatch recorder is counterbalanced by low signal quality.    

 

 

 

 

 

 

Figure 5.1: (a) Illustration of an artifact-free ECG segment of high quality. The rhythm is observed to be AF with scattered VEBs. In a 

traditional Holter recording, the patient is wired up and therefore naturally hindered in high intensity physical activity that might produce 

significant amounts of artifacts in the recorded ECG. (b) The increased patient comfort and possibility to perform normal daily life activities 

might increase the number of artifacts in the ePatch recordings. Modified from [39] and [40].  
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5.1 Background 

The advantages obtained from the implementation of the novel patch-type ECG recorders are expected to highly increase 

the diagnostic possibilities in the future. However, outpatient ECG monitoring remains to be sensitive to artifacts arising from 

normal daily life activities that neither can nor shall be avoided during long-term recordings. The advantages of novel patch-

type ECG recorders are thus irresolvable conditioned by the assurance of the ability to obtain high-quality diagnostic ECGs 

throughout the recording period. This ability has been questioned in the literature [1]. Furthermore, as mentioned earlier, the 

patch designs impose much less restrictions to normal daily life activities compared to the traditionally wired Holter 

recordings. This is, of course, an advantage for the patients, and this feature facilitates the possibility of prolonged 

continuous monitoring without the need for implantable devices. The diagnostic advantages of the prolonged monitoring 

have been investigated for the ZioPatch ECG recorder in a number of studies. They found that an extended monitoring 

period resulted in an overall higher diagnostic yield, the detection of more significant arrhythmias, and a higher degree of 

definitive diagnosis compared to the traditional Holter recordings [2], [7], [9]. However, the increased number of daily life 

activities also imposes an inevitable risk of an increased amount of artifacts that might interfere with the clinical 

interpretation of the recorded ECGs. It is therefore highly relevant to investigate the ePatch recorder’s vulnerability to noise 

and the actual analyzable time obtained in ePatch ECG recordings. The research discussed in this chapter is also 

addressed in Paper VI and Paper VII.  

5.1.1 Research Hypothesis 

The above described discussions lead to the formulation of the following questions that will be investigated and discussed 

throughout this chapter:  

 

1. How can we define ECG quality? 

2. Is it possible to obtain sufficient signal quality for clinical applications of ECGs recorded with the ePatch system? 

3. Is it possible to design novel biomedical signal processing algorithms for the automatic estimation of ECG quality? 

5.1.2 Literature Overview 

The literature review for this part of the project covers two different areas. The first literature review was focused on studies 

investigating the analyzable times obtained in patch recordings. Only a few studies were found to address this important 

area. One study states that they obtained a median analyzable time of 99% (interquartile range: 94% to 99%) and that 

87.1% of the patients obtained an analyzable time equivalent to ≥22 hours/day using a patch-type ECG recorder [2]. A 

recently published study furthermore showed that 69% of data recorded by another patch-type ECG recorder during 

different activities were of at least moderate quality [41]. Both these studies indicate the potential for clinically acceptable 

analyzable times in patch recordings, but the literature review definitely leaves room for new knowledge gained from the 

analysis of the analyzable time obtained by the ePatch recorder.   

The other part of the literature review was focused on the design of algorithms for the automatic estimation of ECG quality. 

Many of the published papers in the field of automatic ECG quality assessment are related to the Physionet Challenge from 

2011. In this challenge, 10-second 12-lead ECG recordings should be classified as “acceptable” or “non-acceptable.” The 

original challenge obtained a high number of participants of which nine groups achieved an accuracy of 90–93.2% on 

unknown test data [42]. Generally, the existing quality assessment algorithms can be divided into two steps: The feature 

extraction step and the classification step. The underlying assumptions in the feature design step can be further divided into 

three different paradigms. The first paradigm aims at designing individual features for the detection of specific artifact types. 

This could include features designed for the detection of missing leads or flat lines [43]–[47], detection of peak or spike 

artifacts [46], [47], detection of power line interference [43], [46], detection of baseline wandering [43], [45], [46], or detection 

of muscle artifacts [43], [46]. The second paradigm includes features designed to capture general statistical differences 

between clean and noisy ECG segments. Examples of these features include skewness [45], kurtosis [45], [48], Shannon 

entropy [49], mean value [49], and variance [49]. The third paradigm includes features designed to recognize the 
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characteristic appearance of a clean ECG segment. This includes features like the comparison of multiple automatic beat 

detection algorithms [45], [48], beat detection comparison in different leads [45], [48], regularity of detected QRS complexes 

[47], and the relative spectral power in the region of the QRS complexes (5-14 Hz) [44], [45], [48]. For the classification step, 

some studies applied empirically found thresholds compared to each feature individually [46], [47], [49], whereas other 

studies apply more sophisticated classification schemes, e.g., the matrix of regularity defined in [44] or the support vector 

machine (SVM) and the multi-layer perceptron neural network investigated in [45]. It is not surprising that the highest 

accuracies were found for algorithms with the more advanced classification schemes.  

5.1.3 Description of Project Workflow  

In the beginning of this part of the project, our approach reflected a quite traditional engineering mind-set. This approach 

was highly inspired from the literature review. Our original paradigm was to detect artifacts as undesired events occurring in 

the long-term ECG recordings. Our goal was therefore to design automatic algorithms that could detect these artifact events. 

We therefore sought to define and characterize the appearance of the most dominant ECG artifacts: power line interference, 

interference from muscle activation, baseline wandering, and electrode-motion artifacts. We then attempted to design 

features for the automatic identification of each of these artifact types in an “event detection” scheme. This is somehow 

similar to the first feature extraction paradigm described in the literature overview. This paradigm can be characterized as a 

“shutdown” approach that could ensure the exclusion of potentially noisy segments. As discussed in chapter 4, this could, 

for instance, be applied to “protect” subsequent automatic algorithms from false detections and incorrect adaptation to 

extremely noisy segments. Furthermore, we expected that this paradigm might be able to provide new knowledge about the 

distribution of different artifact types in ePatch recordings. However, using this approach, the performance of the algorithm is 

naturally limited by the types of artifacts that are accounted for in the feature design phase. We found that the generalization 

of such an algorithm therefore highly depends on the representation of sufficient amounts of all likely artifacts in the training 

database. Furthermore, it soon became clear to us that ECG quality is highly subjective and dependent on the desired 

application of the recorded signals. Therefore, it became important to think more carefully about our definition of ECG signal 

quality. To accomplish this, we sought information from a number of sources: 

 

 We went through relevant literature to obtain an overview of how other research papers define quality. 

 We gained information from our own work with automatic heartbeat detection as described in chapter 4. This 

experience provided valuable information about where automatic algorithms might fail.  

 We visually investigated a high number of long-term ePatch recordings to obtain experience and knowledge about 

the general quality and the common artifact types. 

 We had fruitful discussions with cardiologists and other medical doctors regarding their evaluation of specific ECG 

segments and hereby learned how they visually analyze each segment. This provided immeasurable information 

about the specific ECG patterns that should be visible for reliable heart rhythm analysis and, hereby, the correct 

diagnosis of the patients.   

 We watched experienced ECG technicians analyze traditional Holter recordings and create analysis reports. This 

process again provided us with immeasurable information about the types, amounts, and duration of artifacts that 

makes clinical interpretation difficult. 

 

We learned that, during clinical ECG interpretation, the human experts (e.g. ECG technicians and cardiologists) are 

accustomed to recognize artifacts and conduct the interpretations based on periods with diagnostic ECG. This includes 

“looking through” short periods of data with even pronounced amounts of artifacts and still being able to interpret the 

underlying heart rhythm with certainty. This is possible due to contextual information provided from periods of diagnostic 

ECG surrounding the artifact event. This implies that short periods of even very pronounced amounts of artifacts might not 

interfere with the clinical interpretation of the ECG. This is illustrated in Figure 5.2. It is observed how short-duration artifacts 

do not interfere with the clinical interpretation, whereas similar long-lasting artifacts preclude clinical interpretation. This 

illustrates the issue with considering the quality estimation process as an “event detection” problem: It is very difficult from 
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an engineering point of view to define and reproduce the exact amount and duration of any type of artifact that affects the 

clinical interpretation of the ECGs. Furthermore, the ECG is often affected by small amounts of several different types of 

artifacts. This might also go unnoticed by a “noise detection algorithm.” We therefore decided to change our understanding 

of the problem and consider it from a more clinical point of view. This learning process led to the formulation of two different 

definitions of acceptable signal quality: 

 

1. The quality of an ECG segment is acceptable when no significant artifacts are present. 

2. The quality of an ECG segment is acceptable when the heart rhythm can be analyzed with certainty. 

 

The first definition is highly related to the “artifact event” detection approach. In our study, we found the second definition 

more clinically relevant, and we therefore adopted this definition in our work. As described above, we furthermore learned 

that it is important to include adequate contextual information and consider each potential artifact event together with 

information about the quality of the surrounding ECG segments. This also implied that we became more interested in 

features from the second and third paradigm described in the literature overview. This type of features attempts to 

characterize the known characteristics of a clinically useful ECG segment rather than specific artifact types. The original 

work where we attempted to apply a “noise event detection” approach according to the first definition of ECG quality is not 

further described in this thesis.  

 

 

Figure 5.2: Illustration of the influence of different types of artifacts. (a) illustrates two different electrode-motion artifacts. The artifact in the 

top plot is surrounded by high-quality ECG, and the rhythm is observed to be NSR. This artifact does not interfere with rhythm analysis. In 

the lower plot, the artifact is repeated. This renders the segment useless for both rhythm analysis and reliable estimation of the HR. (b) 

illustrates two different high frequency artifacts. The artifact in the top plot is surrounded by high-quality ECG, and the rhythm is observed 

to be NSR. Thus, this artifact does not interfere with the clinical interpretation. In the lower plot, the artifact lasts throughout the duration of 

the segment. This implies that it is impossible to decipher the presence/absence of P-waves with certainty. Rhythm analysis is therefore 

not possible in this segment, but reliable HR estimation is.   

 

We found that it was crucial to ensure that we conducted our analysis on a database with realistic amounts of abnormal beat 

morphologies as well as a high number of expected normal daily life activities. We furthermore found that some of our real-

life ePatch recordings were of poor quality throughout the recording period. This would completely prevent clinical 
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interpretation and is thus highly undesirable. This would especially be problematic for long-term recordings without telemetry 

feedback. We therefore found it relevant to keep in mind that future applications of our designed algorithms might serve as 

“red flags” that could be turned on during a recording if the quality remained poor for extended periods of time. This could be 

obtained by the embedded implementation of a quality assessment algorithm. We therefore defined the following 

requirements for our final quality estimation algorithm: 

 

1. The algorithm should obtain high performance with respect to the correct estimation of the percentage of 

analyzable time (PAT) in ePatch recordings. This feature is applied to gain new knowledge about the general 

quality obtained in patch recordings.  

2. The algorithm should be able to point out specific areas of high and low qualities. This could be used to save time 

during manual analysis by only investigating periods with analyzable data.  

3. The algorithm should be designed using computationally efficient features that might be embedded in future 

versions of the ePatch. This could allow a “red flag” or warning system against poor quality during the recording.   

5.1.4 Chapter Overview 

As described above, the research presented in this chapter was characterized by an important learning process that led to a 

clinically relevant understanding of ECG quality. Furthermore, it should be noted that this research field is much less 

described in the literature than the field of automatic heartbeat detection presented in chapter 4. The research in this field is 

thus not pushed forward and helped along by a number of available standard databases that facilitate easier understanding 

of the important aspects of the field and definitions for the evaluation and comparison of algorithm performances. It was 

therefore natural that we initiated the project by the design of a preliminary algorithm based on the ePatch databases 

available in the beginning of the project. We then refined this algorithm based on a new manually annotated ePatch 

database later in the project. The preliminary algorithm is briefly presented in section 5.3, and the refined algorithm is 

presented in detail in section 5.4. The refined algorithm was then applied to investigate the overall PAT obtained in a high 

number of ePatch recordings. This is described in section 5.5. As mentioned, a major part of this project was to extract 

relevant databases that can provide a reliable investigation of the diagnostic quality obtained in the ePatch recordings. This 

topic is therefore described first.    

5.2 Description of Databases 

For this project, we applied 250 long-term ECG recordings from four different existing databases. An overview of the four 

databases is provided in Table 5.1. All patients from the Stroke Database (STRDB) were admitted after an episode of 

stroke, the Telemetry Database (TDB) contains recordings from patients who were admitted and selected for regular 

telemetry monitoring, the patients from the Cardio-Respiratory Monitoring Database (CRMDB) were monitored ambulant as 

a part of diagnosing potential obstructive sleep apnea, and the Fitness Database (FDB) contains ambulatory recordings 

from subjects recruited in a fitness study [50]. The patients from the first two databases are thus considered a high-risk 

population with respect to the presence of abnormal heart rhythms, especially atrial fibrillation, whereas the recordings from 

the last two databases are expected to represent patients with a high prevalence of physical activity during the recording 

period. This database selection is thus expected to ensure a small overrepresentation of both arrhythmia events and 

episodes of artifacts arising from everyday activities. This ensures a very realistic investigation of the diagnostic quality 

obtained in 24-hour ePatch recordings.  

It should be mentioned that the ePatch Training Database (eTDB) described in section 4.2.3 was extracted from the CRMDB 

and the STRDB. Each ECG recording in these two databases was associated with a full ECG analysis report (similar to a 

traditional Holter analysis report). These reports were created by experienced ECG technicians, and they were applied 

during the diagnosis of the patients. As mentioned, these highly trained ECG technicians are accustomed to recognize 

disturbances as noise and conduct the interpretation on clean data segments. However, when the general signal quality of a 

recording is decreased enough to interfere with the clinical interpretation, thus inducing uncertainty about the analysis, the 

nurses write remarks of this in the analysis reports. These subjective and spontaneous comments on potentially low signal 
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quality were therefore available for these two databases. Furthermore, a grading of each recording according to the 

following scheme became available during the project: 

 

 Grade 0: Useless recording, no diagnosis was possible 

 Grade 1: Almost useless recording, only possible to identify HR from QRS complexes 

 Grade 2: Generally too much noise to allow full diagnosis 

 Grade 3: Periods with too much noise or noise that, in general, disturb the diagnosis 

 Grade 4: A few episodes of noise that disturb the ECG morphology 

 Grade 5: Noise-free recording or recording with only movement artifacts 

 

The ECG analysis reports were available from the beginning together with the ECG recordings, but the quality assessments 

described above were provided to us later. No additional information was available about the quality in the recordings from 

the TDB and the FDB. The length of each recording was found by visual inspection of the relevant data file.  

 

Table 5.1: Patient demographics for each of the four original databases. 

 STRDB CRMDB TDB e FDB Total 

Patients a 84 84 50 32 250 

Length (hours) b 20.3±6.7 18.3±3.6 23.2±3.4 23.8±1.9 20.7±5.1 

Gender c M: 64  

F: 20 

M: 46 

F: 38 

M: 27 

F: 22 

M: 3 

F: 29 

M: 140 

F: 109 

Age (years) d 49.7±13.4 65.5±16.2 72.6±13.1 61.4±9.2 61.0±16.4 

  

 a Number of patients 

 b Recording length stated as mean ± standard deviation 

 c Gender: M = males; F = females 

 d Age stated as mean ± standard deviation 

 e Information about gender and age is missing for one subject 

5.3 Preliminary Algorithm for ECG Quality Estimation 

The first preliminary version of our quality estimation algorithm was designed to classify entire long-term ECG recordings 

into two groups: “good” and “bad” recordings. We defined a “bad” recording as a recording where the experienced ECG 

technician made comments on bad quality in either one or both channels in the analysis report. On the other hand, a “good” 

recording was defined as a recording without comments on quality or positive comments regarding high quality. This 

algorithm was thus intended to mimic these subjective spontaneous comments on noise levels. This choice reflected both 

the available manual annotations in the beginning of the project (the analysis reports were provided from the beginning) and 

the above discussed requirement for contextual information when defining ECG quality. To our best knowledge, this is the 

first study investigating the possibility of an automatic method for the determination of the overall signal quality in entire long-

term ECG recordings. The clinical applications of such an algorithm might include a fast and robust possibility to compare 

the quality of different recording techniques and a possibility to avoid wasting time on the manual analysis of a useless 

recording. Furthermore, the design of this algorithm was used to gain inspiration and knowledge for the design of our final 

proposed quality estimation algorithm. A brief summary of the results obtained in this study is provided in the next sections, 

whereas a detailed description is provided in Paper VI.   



71 
 

5.3.1 Description of Database 

We randomly extracted 20 “bad” and 20 “good” recordings from the CRMDB. We chose recordings from the CRMDB to 

ensure a high frequency of normal daily life activities in the recordings. Furthermore, to ensure inclusion of both very clean 

and normal recordings, the 20 clean recordings were extracted as five random recordings with remarks on good quality and 

15 random recordings without remarks on quality. 

5.3.2 Description of Algorithm 

An overview of the algorithm is provided in Figure 5.3. The input is a two-channel ePatch ECG signal, and the output is a 

classification of the entire recording as being either “good” or “bad.” The first feature, F1, was based on the percentage of 

saturated samples in the recording. Saturation is never intended in an ECG signal, and it is therefore expected that the 

signal would always be noisy when this feature was high. However, this feature proved redundant when the other features 

were optimized, and it was therefore excluded from the final algorithm described in section 5.4. The second feature, F2, is a 

measure of how often the mean value of the scaled rectified ECG signal exceeds a pre-defined threshold. The third feature, 

F3, is a measure of how often the number of significant signal peaks exceeds a pre-defined threshold. Both these features 

were optimized and included in the final version of the algorithm. The optimized versions of these features are therefore 

further described in section 5.4. For the classification task in this pilot study, we applied a simple Bayes classifier.  

 

 

Figure 5.3: Schematic overview of the first preliminary quality estimation algorithm. The input to the classification scheme is three feature 

vectors describing the overall amount of noise based on contextual information from the entire recording.  

5.3.3 Results 

The algorithm performance was evaluated in terms of the sensitivity (Se), specificity (Sp), and accuracy (Acc) as defined in 

(5.1) – (5.3), where TP is the number of clean recordings correctly classified as clean (true positive), TN is the number of 

noisy recordings correctly classified as noisy (true negative), FN is the number of clean recordings wrongly classified as 

noisy (false negative), and FP is the number of noisy recordings wrongly classified as clean (false positive). Due to the 

intermediate number of recordings in this pilot study, the performance was evaluated by a five-fold cross validation. Each 

fold consists of training the classifier on 32 recordings (16 from each class) and testing the performance of the obtained 

classifier on the remaining eight recordings. The training and test performances for each fold, as well as the average 

performances, are provided in Table 5.2.  

.  

 

𝑆𝑒 =   
𝑇𝑃

𝑇𝑃+𝐹𝑁
  ∙ 100%    (5.1) 

 

𝑆𝑝 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 ∙ 100%    (5.2) 

 

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ∙ 100%    (5.3) 
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Table 5.2: Performance Evaluation of the preliminary quality estimation algorithm. Training data: *. Test data: ¤.  

 Se* Sp* Acc* Se¤ Sp¤ Acc¤ 

Fold 1 93.8% 81.3% 87.5% 100% 75% 87.5% 

Fold 2 93.8% 87.5% 90.6% 75% 100% 87.5% 

Fold 3 93.8% 87.5% 90.6% 100% 75% 87.5% 

Fold 4 93.8% 93.8% 93.8% 100% 75% 87.5% 

Fold 5 93.8% 75.0% 84.4% 100% 100% 100% 

Average 93.8% 85.0% 89.4% 95% 85% 90% 

5.3.4 Discussion 

The proposed novel algorithm is capable of obtaining an average accuracy of 90% on the test data. This is considered a 

high clinical performance. It should be stated that this high performance is obtained on clinically relevant ambulatory ECG 

recordings acquired from real patients in their homes. This was chosen to ensure a realistic amount of abnormal heart 

rhythms and beat morphologies. It is, of course, very important to ensure that automatic noise classification algorithms will 

not classify a recording with a high number of abnormal beat morphologies as noisy. However, it should be noted that no 

specific test was conducted to ensure this, and this should be conducted in future studies. In general, it should be mentioned 

that the findings should be validated on a larger database to ensure the applicability in the general population or in specific 

high-risk patient groups. However, due to the apparently high clinical performance of the algorithm, this novel approach to 

the quantification of noise levels in entire ECG recordings is expected to be useful in many different applications. As 

mentioned, it is extremely important to gain solid knowledge related to the benefits and drawbacks of the new technologies 

for long-term ambulatory ECG monitoring in different situations. Choosing the right device in each application can increase 

the diagnostic yield and decrease the burden on the patients and the health care facilities. An automatic classification of 

entire ECG recordings provides the possibility of an objective and fast assessment of the clinical quality of a high number of 

ECG recordings acquired using the different technologies. This could provide important information to answers related to the 

benefits and drawbacks of the new technologies. Another application scenario is related to the pre-screening of recordings 

before the manual analysis. If a specific recording is classified as being very noisy, it might be beneficial to exclude the 

recording from manual analysis to increase the efficiency of the health care facilities. From this study, we thus learned that it 

is possible to achieve a high clinical classification performance using a relatively simple automatic algorithm and contextual 

information from entire ECG recordings. This strengthened our assumption regarding the inclusion of contextual information 

instead of the originally investigated “artifact event detection” paradigm. It furthermore inspired us to improve the algorithm 

further. We found that it would be interesting to investigate the possibilities of providing continuous quality indexes instead of 

only a classification into either a “bad” or a “good” recording. This would also render the algorithm even more applicable with 

respect to the above mentioned application scenarios. We furthermore learned that two of the designed features (F2 and F3) 

were very promising, and we therefore decided to explore them further in the new algorithm. Not surprisingly, these features 

both belong to the second feature extraction paradigm described in the literature review. The design and validation of the 

finally proposed quality assessment algorithm is described in detail in the next section.  
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5.4 Design of Automatic Algorithm for Estimation of Percentage of Analyzable Time 

This algorithm was designed to allow an investigation of the overall percentage of analyzable time (PAT) obtained in the 

ePatch recordings. This investigation is highly important to gain new knowledge about the practical usability of the 

technology in a clinical setting. The algorithm was designed based on the earlier described assumption about the 

requirements regarding adequate contextual information and knowledge from the design of the preliminary algorithm. 

Furthermore, we kept the algorithm requirements formulated in section 5.1.3 in mind. The algorithm design and performance 

is described in detail in the next sections. This work is also presented in Paper VII.   

5.4.1 Description of Algorithm 

To allow the estimation of the overall PAT, we divided the long-term recordings into several smaller non-overlapping 

segments and automatically assigned each of these segments to one of the two classes: “analyzable” (class I) or “non-

analyzable” (class II). As illustrated in Figure 5.4, this procedure facilitates the easy evaluation of the overall PAT. As 

discussed in section 5.1.3 and learned from the high classification performance obtained by the preliminary algorithm, we 

found that the diagnostic quality of any ECG segment is best characterized when enough contextual information is included. 

The selection of segment length was therefore a compromise between including adequate contextual information (longer 

segment lengths) and keeping a high “resolution” of the overall estimated PAT (shorter segment lengths). Furthermore, it is 

our experience that the types of activities that would often cause artifacts that could significantly impair clinical 

interpretations occur on the scale of several minutes. This could, for instance, include running on stairs, carrying shopping 

baskets, or exercising. We therefore subjectively decided to apply segments of 10 minutes. We found this segment length to 

provide a good compromise. The proposed quality assessment algorithm is based on three carefully designed features and 

an SVM classifier. The algorithm design is described in detail in the next sections.   

 

 

Figure 5.4: The long-term recordings were divided into smaller non-overlapping segments, u. Each segment was then classified as being 

either analyzable (class I) or non-analyzable (class II) using our proposed quality assessment algorithm. The algorithm is based on three 

features and an SVM classifier. The input to the quality assessment algorithm is a two-channel ECG segment, and the output is an 

assignment to one of the two classes. For the calculation of F1 and F2, each segment was further divided into smaller analysis windows, 

m. For the calculation of F2, each analysis window was also divided into even smaller scaling windows, w. This segment division is further 

described later. 

5.4.1.1 Feature Extraction 

All three features were designed to obtain small values (close to 0) for the analyzable ECG segments and high values (close 

to 1) for the non-analyzable ECG segments. The first two features, F1 and F2, were designed to measure the quality of the 

important isoelectric line. These features thus fall in the second feature extraction paradigm described earlier. Simpler 

variations of these features were applied in the preliminary algorithm. The third feature, F3, was based on the assumption 

that the performance of an automatic QRS complex detection algorithm depends on the quality of the ECGs. This feature 

thus belongs to the third feature extraction paradigm. Variations of this feature were also investigated in [43], [45], [48]. In 

our implementation, an automatic QRS complex detection algorithm was applied to estimate R peak positions in each 

channel individually, and the similarity obtained between the two channels was applied for the calculation of F3. Figure 5.5 
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contains ECG snippets from three different ECG segments. The final and temporary feature values obtained for each 

segment are furthermore provided in Table 5.3. The calculation of each of the stated features is described in detail in the 

following sections. It should be noted that the stated feature values are based on the entire 10-minute duration of each 

segment and not only the illustrated snippet. This is especially observed from segment C, where channel II apparently 

seems more noisy than channel I in the illustrated snippet, but it is observed from Table 5.3 that, based on the entire 10-

minute segment, F1,2 < F1,1 and F2,2 < F2,1.  

 

Table 5.3: Calculation of the feature values for each of the three ECG segments illustrated in Figure 5.5. The calculation of the features is 

described in the next sections.  

Segment F1,1 F1,2 F1 F2,1 F2,2 F2 FD/TP η F3 

A 0.00 1.00 0.00 0.00 1.00 0.00 0.41 0.28 0.11 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 

C 0.45 0.20 0.20 1.00 0.90 0.90 0.60 0.99 0.60 

 

 

Figure 5.5: Illustration of three ECG snippets with different quality characteristics. The amplitudes are illustrated in ADC counts. Segments 

A and B were manually annotated to class I (analyzable), whereas segment C was manually annotated to class II (non-analyzable). It is 

noted that the rhythm in segment A is AF with a single VEB beat and segment B displays an example of NSR. The temporary and final 

feature values for each segment are provided in Table 5.3.  
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5.4.1.1.1 Calculation of F1 

The first feature, F1, provides a measure of the number of significant signal peaks observed in the current analysis window. 

It is expected that a noisy non-analyzable ECG segment obtains significantly more signal peaks than a clean segment. The 

10-minute ECG segment was divided into smaller analysis windows, m (see Figure 5.4). The length of each analysis window 

was again a compromise between including adequate contextual information and obtaining a high “resolution” on the 

possible feature values. We therefore decided to apply analysis windows of 30 seconds, yielding a total of 20 windows (M = 

20). For each analysis window, the number of significant signal peaks, Pj(m), was estimated for each channel j. A significant 

signal peak was defined as any sample obtaining a higher value than the three previous and the three subsequent samples. 

For each channel, F1,j was calculated according to (5.4), where logical{} obtains the value 1 when the expression is true and 

0 if otherwise. The threshold, T1, was optimized using a parameter grid search described later. The final value of F1 for each 

segment was defined as the minimum value obtained from the two channels (see (5.5)). This prevents the final feature value 

from being wrongly increased in cases where only one of the two channels obtains poor quality. An example of this is 

illustrated as segment A in Figure 5.5.  

 

𝐹1,𝑗 =  
1

𝑀
∑ 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 {𝑃𝑗(𝑚) > 𝑇1}𝑀

𝑚=1    (5.4) 

 

𝐹1 = 𝑀𝑖𝑛{[𝐹1,1  𝐹1,2] }    (5.5) 

 

The calculation of F1 for a clean and a noisy ECG segment is visualized in Figure 5.6. It is observed how the noisy ECG 

segment contains a much higher density of significant signal peaks. This causes the value of F1 to increase for the noisy 

segment compared to the clean segment.  

5.4.1.1.2 Calculation of F2 

The second feature, F2, was designed as a measure of the mean value of the baseline-corrected, rectified, and scaled ECG 

signal. This mean value is expected to be higher for noisy ECG segments than for an analyzable segment. The calculation 

of F2 for a clean and a noisy ECG segment is illustrated in Figure 5.6. The baseline was removed to avoid the influence of 

high P- and T-waves and non-disturbing amounts of baseline wandering and electrode-motion artifacts. The baseline was 

estimated using a 32-point average filter. The baseline-corrected ECG signal, ECGfilt,j was obtained by subtracting the 

estimated baseline from the raw ECG signal. Then, ECGfilt,j was rectified. The baseline-corrected rectified ECG segment 

was termed |ECGfilt,j|. It is important to account for the known differences in the general amplitude in ECG recordings. A 

scaling parameter, sj(m), was therefore calculated for |ECGfilt,j| in each analysis window. We decided to design the scaling 

parameter to theoretically obtain a value close to 1 in the R peak positions after the scaling of |ECGfilt,j|. This ensures that the 

mean value estimates the noise level relative to the R peak amplitudes. To achieve this, each analysis window was divided 

into even smaller scaling windows, w (see Figure 5.4). The length of each scaling window was chosen to be two seconds. 

This implies that at least one QRS complex is expected in each scaling window. In most scaling windows, the maximum 

value of |ECGfilt,j| is thus expected to represent the amplitude of a QRS complex. The scaling parameter in the m’th analysis 

window was therefore calculated as the median value of the maximum value of |ECGfilt,j| obtained from each of the 15 

scaling windows. This calculation of sj(m) thus provides a reliable estimate of the general R peak amplitude in the m’th 

analysis window. The mean value of the scaled, rectified, and baseline-corrected ECG signal was calculated for each 

analysis window. This is defined in (5.6), where N is the total number of samples in each analysis window. For each 

channel, F2,j was then calculated according to (5.7). The threshold, T2, was optimized by a parameter grid search described 

later. As for F1, the final value of F2 for each segment was defined as the minimum value obtained from the two channels 

(see (5.8)). 

 

𝜇𝑗(𝑚) =  
1

𝑠𝑗(𝑚)∙𝑁
∑ |𝐸𝐶𝐺𝑓𝑖𝑙𝑡,𝑗(𝑛)|𝑁

𝑛=1    (5.6) 

 

𝐹2,𝑗 =  
1

𝑀
∑ 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 {𝜇𝑗(𝑚) > 𝑇2}𝑀

𝑚=1    (5.7) 
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𝐹2 = 𝑀𝑖𝑛{[𝐹2,1  𝐹2,2] }    (5.8) 

 

 

 

Figure 5.6: Illustration of the feature extraction for a clean ECG segment (a) and a noisy ECG segment (b). It is noted that these are 

segments B and C from Figure 5.5, respectively. The top plots contain the raw ECG signals from channel I and channel II (blue lines), the 

estimated baseline for channel I (red lines), the positions of the QRS complexes detected in each channel individually (vertical black 

lines), and the positions of the significant signal peaks detected in each channel individually (vertical green lines). The green and black 

vertical lines are applied for the calculation of F1 and F3, respectively. The third plot illustrates the calculation of FD and TP. The black and 

magenta vertical lines indicate the detected positions of QRS complexes using channel I and channel II, respectively. The vertical blue 

lines indicate the common QRS positions obtained from the two channels. The green marks indicate QRS complexes detected 

simultaneously by both channels (counted in TP), whereas the red marks indicate non-simultaneous QRS detections (counted in FD). The 

influence of the 150-ms match window in the pairing step is observed in (b). The feature values obtained by the entire 10-minute 

segments were F3 = 0.0 and F3 = 0.60, respectively. The next three plots illustrate the calculation of µ1. The first plot illustrates the 

baseline removal. It is observed how the influence of pronounced T-waves is also reduced. The next plot illustrates the absolute value of 

the baseline-corrected ECG signal, |ECGfilt,1|, (blue lines) and the scaling parameter, s1 (green lines). The sixth plot illustrates the scaling 

of |ECGfilt,1| (blue lines), the temporary feature signal, µ1, representing the mean value of the current window (green lines), and the 

threshold, T2 (red lines). It is observed that µ1 is below T2 for the clean segment and above T2 for the noisy segment. It is furthermore 

observed how the scaling parameter achieves to scale both signals to the same range and hereby allow noise estimation relative to the 

QRS amplitudes in each segment. The two bottom plots illustrate the calculation of P1 and µ1 for the entire duration of each segment 

(green lines) and the thresholds, T1 and T2, respectively (red lines). The dashed black lines indicate the time instance illustrated in the top 

plots. All amplitudes are in ADC values. The feature values obtained by channel I are stated in the figure. However, since the final feature 

values are defined as the minimum between the two channels (see (5.5) and (5.8)), the final values were F1 = 0.0 and F2 = 0.0 for the 

clean segment and F1 = 0.2 and F2 = 0.90 for the noisy segment. This is also stated in Table 5.3.  
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5.4.1.1.3 Calculation of F3 

For the calculation of F3, the segment was not divided into the previously described analysis windows. The input to this 

feature is an array of R peak positions estimated from each ECG channel individually. We applied the single-channel BP 

filter-based algorithm described in chapter 4. For each segment, we calculated the number of true positive detections (TP) 

and the number of false detections (FD). We defined TP as the number of QRS complexes simultaneously detected in both 

channels and FD as the number of QRS complexes only detected in one channel. In compliance with [24], we used a match 

window of 150 ms. This implies that the absolute distance between the QRS complexes detected in channel I and channel II 

should not exceed 150 ms in order for the pair of QRS complexes to be counted in TP. This is illustrated in Figure 5.6. The 

third feature was then based on the relation between FD and TP (see (5.10)). However, this relation is expected to be high 

when either one or both channels obtain poor quality. This is not intended (see segment A in Figure 5.5). To account for this, 

we designed a novel scaling parameter, η, defined by (5.9), where σ(RRj) is the variance of the elements in the RR interval 

vector for channel j. If both channels display the same quality (either good or poor), the variation between the detected RR 

intervals is expected to be similar in both channels. In this case, η will obtain a value close to 1, and the relation between FD 

and TP will not be modulated significantly. On the other hand, when the quality is different for the two channels, η is 

expected to decrease and, hereby, reduce the influence of a potentially high relation between FD and TP caused by poor 

quality in only one channel. The performance of η is observed from Table 5.3. 

 

𝜂 =  
𝑀𝑖𝑛{[𝜎(𝑹𝑹1)  𝜎(𝑹𝑹2)]}

𝑀𝑎𝑥{[𝜎(𝑹𝑹1)  𝜎(𝑹𝑹2)]}
    (5.9) 

 

𝐹3 =  
𝐹𝐷

𝑇𝑃
 ∙  η     (5.10) 

5.4.1.1.4 The Final Feature vector 

The final feature vector was then defined by (5.11). The discriminative capability of the final feature vector is observed from 

Figure 5.7. This difference provides the foundation for an automatic classifier to obtain high performance in differentiating 

between the two classes.  

 

𝑭 =  [𝐹1  𝐹2   𝐹3]    (5.11) 

 

 

Figure 5.7: Illustration of the three dimensional feature space for the ECG segments from the training database. The plot is thus based on 

feature values obtained from 292 diagnostic ECG segments (class I) and 58 non-analyzable ECG segments (class II). It is observed that 

most feature vectors from the analyzable class are located in a very small area in the three-dimensional feature space. This is very 

promising for subsequent automatic classification between the two classes.    
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5.4.1.2 Classification 

The feature vector for each ECG segment was fed to an automatic classifier that separates the two classes and labels each 

of the ECG segments as being analyzable or non-analyzable. We decided to apply a soft margin SVM with a radial basis 

function kernel. This was also applied with success in [45]. The SVM classifier applies a hyperplane to distinguish between 

the two classes. This hyperplane can be defined by (5.12), where w and w0 indicate the direction and the exact position in 

space of the separating hyperplane, respectively [51]. Each feature vector, Fu, is assigned to one of the two classes 

according to its location relative to the separating hyperplane. This is illustrated in Figure 5.8.  

 

𝑔(𝑭𝒖) =  𝒘𝑇𝑭𝒖 + 𝑤0 = 0    (5.12) 

 

Based on a given training database, a high number of separating hyperplanes can be drawn with equal classification 

accuracies on the training database. In many classification schemes, the applied hyperplane is therefore somehow arbitrary. 

The high generalization performance of the SVM classifier arises from the calculation of the separating hyperplane based on 

the maximization of the margin indicated as the distance between the dashed hyperplanes in Figure 5.8 [51]. These 

hyperplanes are described by (5.13), and they are defined by the support vectors from the two classes [51]. The support 

vectors are thus the feature vectors with the highest importance with respect to separating the two classes. In the linearly 

separable case, the support vectors will be the feature vectors closest to the separating hyperplane, and no feature vectors 

will be placed inside the margin. This is termed a hard margin SVM. This implies that the separating hyperplane is located 

as far away from both classes as possible, thus yielding optimal separability for unseen data points that can be expected to 

fluctuate with some radius from the feature vectors in the training database. In our case, we use the soft margin SVM that is 

applied in the nonseparable case. To account for classification errors in the nonseparable training database, a slack 

variable, ξu, is introduced. This is defined in (5.14), where yu = 1 for the feature vectors from class I and -1 for the feature 

vectors from class II [51]. For feature vectors correctly classified and located outside the margin, ξu = 0, for feature vectors 

correctly classified but located inside the margin, 0 < ξu ≤ 1, and for feature vectors in the training database that were 

wrongly classified, ξu > 1. The slack variable can thus be interpreted as a “punishment” for classifying training vectors 

wrongly.   

 

 𝒘𝑇𝑭𝒖 + 𝑤0 = ±1    (5.13) 

 

𝒚𝒖[𝒘𝑇𝑭𝒖 + 𝑤0] ≥ 1 −  𝜉𝑢    (5.14) 

 

The process of finding the optimal separating hyperplane can then be interpreted as finding w and w0 such that the margin is 

maximized while the number of data points in the training database that are misclassified or placed on the wrong side of the 

margin boundaries is minimized [51]. This can be shown to correspond to the optimization of the cost function defined in 

(5.15) [51], where C is implemented to control the relative influence of the two terms in the optimization.  

 

𝒎𝒊𝒏 {
𝟏

𝟐
 ‖𝒘‖𝟐 + 𝐶 ∑ 𝜉𝑢

𝑵
𝒏=𝟏 }  subject to 𝒚𝒖[𝒘𝑇𝑭𝒖 + 𝑤0] ≥ 1 −  𝜉𝑢 and 𝜉𝑢  ≥ 0 (5.15) 

 

For the implementation, we applied the svmtrain and svmclassify functions in MATLAB R2013b. In this SVM implementation, 

C is implemented so that the misclassification of feature vectors that belong to a potentially underrepresented class in the 

training data is “punished” harder than the misclassification of the overrepresented class [52]. This is obtained by rescaling 

C with G/(2·G1) for data points from class I and with G/(2·G2) for data points from class II, where G1 and G2 are the number 

of segments in class I and class II, respectively, and G = G1+G2 [52]. The optimal value of C was found by a parameter grid 

search described later.  

 



79 
 

 

Figure 5.8: Schematic illustration of the functionality of the SVM classifier using two features. The two classes are indicated by the red and 

green marks, respectively. The separating hyperplane is illustrated as the solid line, and the margin is illustrated as the distance between 

the two dashed parallel hyperplanes. The support vectors are located on the dashed hyperplanes. The squares indicate feature vectors 

with 0 < ξu ≤ 1, and the circles indicate feature vectors with ξu > 1 (wrongly classified). 

It is observed that the SVM classifier, in general, is linear. In cases where the separation of the feature vectors is not linear, 

the kernel trick is applied [51]. The kernel trick is based on mapping the original features into a higher dimensional feature 

space, where they are linearly separable. As described in [51], this can be accomplished by the use of a kernel function, 

K(Fu1,Fu2). As mentioned, we applied the radial basis function kernel defined in (5.16), where |Fu1 – Fu2|2 is the squared 

Euclidian distance between the two feature vectors Fu1 and Fu2 in the original feature space. The radial basis function kernel 

parameter, γ, was optimized using the parameter grid search described later. Since the feature values were designed to be 

approximately in the range [0; 1], no additional scaling was conducted prior to the SVM classification. 

 

𝐾(𝑭𝑢1, 𝑭𝒖𝟐) =  𝑒
(−

|𝐹𝑢1−𝑭𝒖𝟐|
2

2𝛾2 )
    (5.16) 

5.4.2 Description of Algorithm Design Database 

For the algorithm design and validation, we decided to randomly select two ECG segments of 10 minutes from each of the 

patients from the four original databases described in section 5.2. This yields a total of 500 ECG segments. The random 

selection of segments from each patient ensures a realistic amount of artifacts, a realistic distribution of the types of artifacts 

(e.g. power line interference, muscle artifacts, and electrode-motion artifacts), a representation of normal sinus rhythm with 

different ventricular frequencies, and a realistic amount of abnormal heart rhythms and different beat morphologies. Each of 

the 500 ECG segments were manually annotated and assigned to one of the two classes. The annotation was conducted in 

two steps. The first step was designed to point out challenging segments and provide the final annotation of non-challenging 

segments. This was accomplished by asking three engineers with experience in ECG interpretation to provide an 

independent assessment of the quality of each of the 500 ECG segments. For all ECG segments where the three engineers 

agreed on the quality, this consensus was considered appropriate for the final annotation. Of the 500 segments, agreement 

between the engineers was obtained for 402 segments. The annotation of the remaining 98 segments was considered more 

challenging. These segments were therefore also annotated independently by a set of doctors. All 98 segments were 

annotated by two different cardiologists and one of two medical doctors. The final annotation for the 98 segments was based 

on majority voting between the three medical annotations for each segment. Table 5.4 contains information about the total 
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number of segments, the number of challenging segments, and the number of analyzable segments obtained from each of 

the four original databases.  

 

Table 5.4: Information about the algorithm training and validation database.  

Database STRDB CRMDB TDB FDB Total 

Patients 84 84 50 32 250 

Segments 168 168 100 64 500 

Training a 59 59 35 22 175 

Validation a 25 25 15 10 75 

Simple b 82.7% 87.5% 69.0% 73.4% 80.4% 

Analyzable c 85.1% 76.2% 91.0% 92.2% 84.2% 

 

 a The number of patients from each database that were randomly selected for the training and validation 

 phase, respectively. The training and validation phases are further described in the section 5.4.3.1. 

 b Percentage of segments with agreement between the three engineers. 

 c Percentage of analyzable segments (class I). 

5.4.3 Results 

To ensure the thorough evaluation of the algorithm performance, we applied five different performance measures: sensitivity 

(Se), specificity (Sp), accuracy (Acc), negative predictive value (P-), and positive predictive value (P+) defined in (5.1) – (5.3), 

(5.17), and (5.18). Positive refers to the clean segments, whereas negative refers to the noisy segments. Each of the five 

performance measures and their mutual relations contain important information regarding the ability to correctly classify 

each segment and, hereby, the algorithm’s ability to provide a reliable estimate of the overall PAT.   

 

𝑃+ =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
∙ 100%    (5.17) 

 

𝑃− =  
𝑇𝑁

𝑇𝑁+𝐹𝑁
∙ 100%    (5.18) 

5.4.3.1 Algorithm Parameter Optimization 

As mentioned, four algorithm parameters (T1, T2, C, and γ) were optimized using a grid search. The optimal value of each 

parameter depends on the value of the other parameters. We therefore optimized all four parameters simultaneously. To 

ensure the possibility of estimating the performance on unseen data, we randomly selected 30% of the patients as a 

validation group. The parameter optimization was only based on ECG segments from the remaining 70% of the patients (the 

training database). For each cross validation fold, 80% of the patients in the training database were applied to train the 

classifier, and the performance was evaluated on the data from the remaining 20%. The performance might depend on the 

random selection of the training and test data in the training database. To obtain a reliable estimate of the average 

performance as well as performance variations for each parameter combination, we therefore conducted 100 folds with 

random division of the training database. For each parameter combination, the average and standard deviation of Se, Sp,  

P-, and P+ over the 100 folds were calculated. These results are provided in Figure 5.9. The Acc was not applied for 

optimization since this performance measure might result in a biased optimization when the classes are unbalanced. We 

selected the parameter combination with the best compromise between the four performance measures. The performance 

of this parameter combination is indicated with a black circle in Figure 5.9. This combination was T1 = 1200, T2 = 0.12, C = 

0.7, and γ = 2. The performance of this parameter combination was Se = 98.5±1.3, Sp = 95.0±6.5, P+ = 99.1±1.1,  

P- = 92.6±7.0, and Acc = 98.0±1.5.  
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Figure 5.9: Each gray point indicates the performance obtained by one of the 750 different parameter combinations investigated. (a) 

Relation between average Sp and average P- obtained from the 100 random folds. (b) Relation between average Se and average P+ 

obtained from the 100 folds. (c) Relation between the standard deviation of Sp and P- obtained from the 100 folds. (d) Relation between 

the standard deviation of Se and P+ obtained from the 100 folds. The black circle indicates the performance of the selected parameter 

combination.   

5.4.3.2 Performance of the Final Algorithm 

The algorithm was then retrained using all the segments in the training database and the selected parameter combination. 

The performance of this final algorithm on the training database is provided in Table 5.5. The final algorithm was then 

applied to the unseen validation database. These results are also provided in Table 5.5 together with the performance of 

each human expert annotator with respect to the final manual annotations. 
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Table 5.5: Performance of the final algorithm and the human experts with respect to the final manual reference annotation.  

Annotator Na 
Se  

(%) 

Sp  

(%) 

P-  

(%) 

P+  

(%) 
Acc (%) 

Engineer I  500 96.9 98.7 85.7 99.8 97.2 

Engineer II  500 81.0 92.4 47.7 98.3 82.8 

Engineer II  500 99.5 82.3 97.0 96.7 96.8 

Medical doctor I  64 100.0 100.0 100.0 100.0 100.0 

Medical doctor II  34 93.3 100.0 66.7 100.0 94.1 

Cardiologist I  98 90.0 100.0 69.2 100.0 91.8 

Cardiologist II  98 93.7 66.7 70.6 92.5 88.7 

Training b 350 98.6 96.6 93.3 99.3 98.3 

Validation c 150 98.4 95.2 90.9 99.2 98.0 

 

 a N indicates the number of segments analyzed by each annotator. 

 b Performance on the entire training database when all segments from the training database were applied 

 to train the final algorithm classifier.  

 c Performance on the unseen validation database when the final algorithm trained on the entire training 

 database was applied.  

5.4.4 Discussion 

We have designed a novel algorithm for the estimation of the overall PAT in ECG recordings. The reliability of this algorithm 

highly depends on the ability to correctly classify each segment in the recordings as being either analyzable or non-

analyzable. The performance of our novel algorithm on the unseen validation data was Se = 98.4%, Sp = 95.2%, P+ = 

99.2%, P- = 90.9%, and Acc = 98.0%. For comparison, the highest Acc obtained on test data in the original Physionet 

challenge was 93.2% [42]. Our algorithm thus obtains much better Acc. However, care should be taken when comparing 

Acc on different unbalanced databases. Furthermore, the Acc does not provide any information about the relative 

performance in the detection of the two classes. The authors of [45] extended their Physionet entry by relabeling the 

database and balancing it by adding artificially generated noisy segments. Using this database and an algorithm based on 

five features and an MLP classifier, they obtained Acc = 95.9%, Sp = 96.0%, and Se = 95.8% on their test data. In [49], the 

achieved performance on a private database of unseen data was Acc = 95.36%, Se = 94.73%, and Sp = 96.63%. 

Comparing to the literature, our obtained performance is thus very satisfactory. The high performance obtained both during 

the cross validation and validation on unseen data is expected to be achieved from the design of appropriate features with 

high discriminative capabilities and the choice of an SVM classifier. Furthermore, it is observed that the standard deviations 

obtained from the cross validation are relatively low. This furthermore indicates the stability of the designed algorithm.  

The selection of the optimal parameter combination depends on the requirements for each application. In some applications, 

it is crucial that only noisy segments are detected for exclusion. In this case, the high performance of Se and P- should be 

valued at the expense of Sp and P+. In other applications, it might be more important to ensure that a selected data segment 

is, in fact, clean and therefore useful for rhythm analysis. In this case, the compromise between the four performance 

measures should be opposite. Since our goal was to estimate the overall PAT, we decided to allow each of the four 

performance measures equal weights during the parameter selection phase. However, it is observed that Sp is higher than 

P- and Se is slightly lower than P+. Looking at (5.1), (5.2), (5.17), and (5.18), this indicates an overrepresentation of FNs 

compared to FPs. This implies that more clean segments are wrongly classified than noisy segments, and thus, the 

algorithm might have a small tendency to overestimate the overall noise level. However, the mean analyzable time obtained 

from all 250 recordings was 83.4% (see section 5.5). This number is very comparable to the number of randomly selected 

segments that were manually annotated as analyzable (84.2%; see Table 5.4). The high similarity between these numbers 
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might suggest that the novel designed ECG quality estimation algorithm still provides a fairly reliable estimate of the overall 

PAT. Furthermore, the algorithm performance is well within the performance obtained by each human expert annotator (see 

Table 5.5). This does not necessarily indicate a higher performance of the algorithm. The difference in the human expert 

annotations might originate from different experience levels with respect to ECG interpretation. Furthermore, each individual 

annotator might look for different ECG characteristics to judge whether each segment is diagnostic or not. However, the high 

algorithm performance compared to that of the human expert annotators does indicate that the algorithm provides a more 

reproducible estimate of the overall PAT than would be possible to achieve using human expert annotations. The results 

might also indicate that the automatic estimation of the overall PAT provides a good compromise between potential 

disagreements between the human experts.   

It should, of course, be mentioned that the possibilities of improving the quality estimation algorithm are not exhausted. 

Improvements might include adding noisy segments to obtain a better balance between the classes. Improvements might 

also include the investigation of new and more advanced features. However, with the potential future embedded functionality 

in mind, we found it relevant to apply as simple features as possible. It should furthermore be noted that the most 

appropriate design choices (the definition of analyzability, the segment length, and the combination of the two channels) 

depend on the intended application of the algorithm. It could also be interesting to test the algorithm performance in the 

presence of specific arrhythmia events. In this study, the ability to correctly classify abnormal ECG segments as being 

analyzable or non-analyzable was based on a random selection from ECG recordings in a high-risk population, but it was 

not investigated specifically. It is important to keep these algorithm limitations in mind when analyzing the overall PAT. 

However, our overall impression is still that the designed algorithm provides a useful estimate that can provide important 

new knowledge about the general signal quality obtained in patch ECG recordings. The high classification accuracy also 

makes it possible to apply the algorithm to point out areas of high and low quality. This could be an important feature that 

might help save time during the manual analysis of the recorded ECGs.    

5.5 Investigation of Analyzable Time in 24-hour ePatch Recordings 

After the definition of our interpretation of signal quality and the design of an automatic algorithm for the reliable estimation 

of the overall PAT in ePatch recordings, we finally investigated the last research question. The final version of the algorithm 

described in section 5.4 was applied to estimate the overall PAT for each of the 250 patients described in 5.2. These results 

are provided in Figure 5.10. The x-axis indicates the recording numbers sorted according to their overall PAT.  

 

 

Figure 5.10: Illustration of the overall analyzable time obtained in each recording. The analyzable time was estimated by the novel 

proposed automatic algorithm described in section 5.4. As observed from the curve, 25 recordings (10%) obtained less than 10% 

analyzable time. The recordings to the right of the black circle obtained an overall analyzable time equivalent to ≥22 hours/day. 
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It is observed from Figure 5.10 that 147 of the recordings obtain an analyzable time of 100%. It should be noted that this 

does not imply that we claim that these recordings display no artifacts or noisy episodes. The algorithm is designed to detect 

periods of the recording where diagnostic interpretation is possible. This does not imply that no artifacts can be present. It 

implies that, using contextual information, it is possible with certainty to recognize the heart rhythm. On the other end of the 

scale, 25 recordings obtained an analyzable time of <10%. These recordings were considered to be incorrect 

measurements, and they would not be useful for diagnostic purposes. A new recording should therefore be obtained if any 

diagnostic information was to be extracted. These recordings were therefore treated separately, and they were not included 

in the calculation of the mean and median analyzable times. It is worth noting that this number is relatively high. When the 

recordings possess poor quality throughout the recording period, we expect that the poor quality is caused by improper 

mounting or disconnected electrodes. This high number might therefore suggest difficulties in the mounting procedure. With 

reference to the design choices, this finding was surprising. However, it is not known how often this actually happens for 

Holter recordings, and it is therefore difficult to know whether this is, in fact, an issue related to the new technology. 

Furthermore, it must be expected that there is a certain running-in period for clinical applications of new devices where the 

clinical staff learn how to use the new technologies correctly. We therefore don’t find these results to be concerning, but it is 

something that could be investigated further. Furthermore, this illustrates the future benefits that could be obtained by an 

embedded algorithm for real-time estimation of the obtained recording quality. Using such an algorithm, these long-lasting 

useless recordings might be avoided.   

For the remaining 225 recordings, the median analyzable time was 100% (interquartile range: 97.9% to 100%), and the 

mean analyzable time was 92.4±18.8%. Our estimated median analyzable time thus corresponds well with the findings in 

[2]. Furthermore, the analyzable time is higher than that found in [41]. This is also expected since the data analyzed in [41] 

were obtained during different kinds of physical activities (walking, running, Nordic walking, and biking), whereas the ePatch 

recordings were obtained during normal daily life. Physical activity is therefore not expected to be present constantly in our 

recordings. The percentage of ePatch recordings obtaining analyzable data equivalent to at least 22 hours/day was 83.6%. 

Comparing to [2], this number is slightly lower but still comparable. We thus believe that our findings correspond well with 

the limited available literature. Furthermore, it should be noted that the authors of [2] don’t disclose the methodology behind 

their proprietary algorithm applied for the estimation of the percentage of analyzable time. We aimed at a high reproducibility 

by applying a fully disclosed algorithm for the estimation of the overall PAT. Furthermore, the shape of the curve presented 

in Figure 5.10 imposes a new interesting question:  

 

 How much analyzable time is required to ensure a sufficient clinical interpretation of the recording? 

 

This question is highly relevant to understand the clinical impact of the estimated PATs. To investigate this area and hereby 

obtain a deeper understanding of the concept of ECG signal quality from a clinical point of view, we compared the PATs 

estimated by our algorithm and the manual quality indexes provided with the STRDB and the CRMDB (see section 5.2). This 

investigation is described in the next section.  

5.5.1 Comparison with Manual Quality Indexes  

The purpose of this investigation was to gain knowledge about the level of PAT that provides sufficient quality for the clinical 

interpretation of the entire recording. To investigate this, we applied the manual quality indexes from the CRMDB and the 

STRDB. The original indexes were divided into six categories. To simplify the analysis and provide a better overview, we 

applied three categories based on merging the original indexes as described below: 

 

 Bad recordings: Recordings with original grade 0 (useless recording, no diagnosis was possible) or original grade 

1 (almost useless recording, only possible to identify HR from QRS complexes).  

 Intermediate recordings: Recordings with original grade 2 (generally too much noise to allow full diagnosis) or 

original grade 3 (periods with too much noise or noise that, in general, disturbs the diagnosis) 
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 Good recordings: Recordings with original grade 4 (a few episodes of noise that disturb the ECG morphology) or 

original grade 5 (noise-free recording or recording with only movement artifacts).  

 

For each of the two databases, we illustrated the obtained PAT with an indication of the manual quality index for each 

recording. This is provided in Figure 5.11. A high relation between the manual grades and the automatically estimated PAT 

is generally observed. The “bad” recordings are located in the bottom of the curve with low PATs, and the “good” recordings 

are generally located at the high end of the curve. Together with the high classification performance described in section 

5.4.3.2, this creates the foundation for “trusting” the estimated PATs. It is furthermore observed that one “bad” recording in 

the STRDB obtains a PAT of 100%. The conclusion in the Holter analysis report for this recording was as follows: “There is 

noise in most of the recording. The impression is that the patient suffers from AF during the entire recording” and the quality 

grade was 1. A short ECG segment from this patient is provided in Figure 5.12. It is observed that the atrial activity is very 

pronounced. This appearance is sometimes present during AF in the ePatch recordings. This looks quite similar to ECG 

recordings with AF obtained from the esophagus. This appearance is thus expected to be caused by the location of the 

ePatch on the sternum. The low quality grade for this recording might therefore be an expression of the need to get used to 

the ePatch recordings rather than actually bad quality.   

 

 

Figure 5.11: Illustration of the PAT obtained on all recordings from the STRDB (a) and the CRMDB (b). The PAT was estimated using the 

final version of the quality assessment algorithm. The red marks indicate “bad” recordings, the blue marks indicate “intermediate” 

recordings, and the green marks indicate “good” recordings.  

The lack of recordings obtaining PATs between approximately 30% and 85% makes it impossible to provide a definitive 

clinical requirement for PAT. However, it is observed that most recordings obtaining more than approximately 85% 

analyzable time were manually annotated as a “good” recording. This might suggest that this is the level that is required to 

obtain easy clinical interpretation. There is, of course, always a risk of missing a single important arrhythmia event 

experienced by a patient during an episode of non-analyzable data. However, this unfortunate situation might also occur 

using the traditional Holter recorders. It is not possible to completely remove this risk, and it is not known with certainty 

whether this occurs more frequently in patch-type ECG recorders than the traditional Holter recorders. It is furthermore 

difficult to find literature describing the actual analyzable time in Holter recorders, and therefore, a direct comparison with the 

traditional devices was not possible. As mentioned, it is furthermore expected that some of the artifacts observed in patch 

recordings originate from the increased possibility of continuing normal daily life activities throughout the monitoring period 

compared to traditional Holter recorders. The recording conditions might therefore be considered quite different for the patch 

recorders and the traditional recorders. Overall, we find that the PAT obtained in the ePatch recordings is high, and this is 

very promising for the application of this technology in the future health care system. As mentioned earlier, it has 

furthermore been shown that the extended monitoring period facilitated by the novel patch recorders can result in an overall 

higher diagnostic yield, the detection of more significant arrhythmias, and a higher degree of definitive diagnosis compared 
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to traditional Holter recordings [2], [7], [9]. This indicates that a potential increase in the amount of artifacts recorded with the 

patch recorders is outbalanced by the advantages of the increased monitoring period.  

 

 

Figure 5.12: Illustration of a segment with AF from patient 4 from the STRDB. The patient obtained the manual score 1 which indicates a 

signal of very poor quality. The segment scored an analyzable time of 100% by the automatic algorithm. This segment is the “wrongly 

placed” red mark in Figure 5.11(a). However, the typical appearance of the signal in this recording is similar to the segment illustrated 

here. The patient suffers from AF, and this is sometimes characterized like this in ePatch recordings (due to the electrode placement). 

However, it might require some experience with ePatch analysis to acknowledge this, and maybe, this is the reason for the poor manual 

quality score. The automatic algorithm dos not consider this as artifacts (the illustrated segment is extracted from segment 233 from the 

algorithm design database, and it was manually annotated as analyzable).  

5.5.2 Relation Between the Two Algorithms 

After comparing the estimated PATs with the manual quality indexes, we also found it interesting to compare with the 

preliminary version of the algorithm. We therefore retrained the preliminary version of the algorithm on all 40 subjects from 

the database described in section 5.3.1. This algorithm was then applied to classify all 168 recordings from the STRDB and 

CRMDB as either “good” or “bad” recordings. The results are provided in Figure 5.13. It is observed that most recordings 

that obtain more than approximately 60% analyzable time by the final algorithm are classified as “good” recordings by the 

preliminary algorithm. Only four recordings from the STRDB and three recordings from the CRMDB are classified differently. 

We therefore looked closer at these recordings to investigate what caused the differences between the two algorithms for 

these recordings. Five recordings were “wrongly” classified as “bad” according to a threshold of an analyzable time of 60%. 

One of the recordings was found to obtain very poor quality of channel I and high quality of channel II. The difference for this 

recording is therefore probably caused by the difference in the combination of information from the two channels. In the 

preliminary version, we included all recordings with comments on bad quality in either one or both channels in the “bad” 

group. This paradigm was changed for the final version of the algorithm. One other recording (see Figure 5.12) was found to 

possess very pronounced atrial activity. The other recordings were generally characterized by periods of data with very 

pronounced T-waves or movement artifacts. The difference for these recordings is also expected based on the 

improvements of the mean value feature. In the preliminary version of the algorithm, the baseline correction step was not 

included. It is therefore expected that recordings with pronounced atrial activity, high T-waves, or many episodes of 

pronounced movement artifacts are misclassified as “bad” recordings. If the preliminary version of the algorithm was 

updated with the baseline correction, it is therefore likely that it would provide a very reliable estimation of the quality relative 

to the 60% threshold. As discussed above, most recordings obtain either a quite high or quite low PAT, and it is therefore 

difficult to decide a specific threshold for a clinically acceptable PAT based on Figure 5.11. This is also the case with the 

somehow arbitrarily selected 60% threshold, and the results in Figure 5.13 actually correspond quite well with the green 

marks (high-quality recordings) in Figure 5.11. This indicates that the preliminary version of the algorithm actually provides a 
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quite reliable estimation of the possibility to conduct a clinical interpretation of the recording. For this application, it might 

therefore be sufficient with an algorithm that provides the overall assessment of “good” or “bad.” This strengthens our 

impression of the importance of including adequate contextual information when evaluating ECG signal quality. In many 

clinical applications, the final version of the algorithm is still appreciated over a single indication describing the entire 

recording: 

 

 The final version of the algorithm allows for the exclusion of specific periods of the recording and not the entire 

recording. This might be highly relevant when clinical interpretation is required for an outpatient recording with a 

duration of several days. This is an acknowledgment of the second algorithm requirement formulated in section 

5.1.3.  

 The features applied in the algorithm are computationally quite simple. The biggest computational load in the 

feature extraction is the automatic QRS detection in both channels. It can, for instance, be imagined that this 

algorithm could be “turned on” once every hour during a recording to provide a warning if the quality suddenly 

decreases. This meets the third algorithm requirement formulated in section 5.1.3.  

 

 

 

Figure 5.13: Illustration of the PAT obtained on all recordings from the STRDB (a) and the CRMDB (b). The PAT was estimated using the 

final version of the quality assessment algorithm. The red marks indicate recordings that were classified as “bad” by the preliminary 

version of the algorithm, whereas the green marks indicate recordings that were classified as “good” by the preliminary version of the 

algorithm.  

It is interesting that the overall signal quality can be obtained both by applying the entire recording at once (the preliminary 

algorithm) and by considering the recording segment by segment (the final algorithm). This might suggest that it could be 

investigated to apply even smaller segments. It would be interesting to investigate how small the segments could be and still 

include enough contextual information to provide a reliable clinical assessment of the overall quality of the entire recording. 

Furthermore, it is, of course, possible that even very small segments could be applied to investigate the presence/absence 

of specific artifact types. As discussed earlier, this type of “shutdown” algorithm might be interesting to “protect” subsequent 

automatic arrhythmia classification algorithms. However, it should be noted that, even though smaller segments might also 

provide high classification results, we still advocate against the “artifact event detection” paradigm as the only source of 

information about the clinical quality of an ECG recording. As discussed in section 5.1.3, this approach might not be 

sensitive enough for prolonged periods of time with apparently minor artifacts that still might interfere with the clinical 

interpretation (see Figure 5.2).   
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5.6 Conclusions 

In this chapter, we have discussed the concept and understanding of ECG signal quality. We have investigated different 

ways of defining ECG signal quality, and we decided to use an approach that is highly related to the clinical interpretation of 

ECGs. We were therefore focused on the ability to conduct clinical interpretation with certainty (i.e. diagnosis of the patient) 

rather than the presence/absence of specific types of artifacts. This requires the application of contextual information when 

the influence of a potential artifact event is investigated. We thus defined the acceptable quality of an ECG segment based 

on the ability to conduct heart rhythm analysis. We furthermore learned that an ECG recording is generally considered of 

sufficient diagnostic quality when at least 85% of the recording is found to be analyzable according to our definition. 

We have designed a novel algorithm for the automatic estimation of the overall PAT obtained in ECG recordings. The 

algorithm divides the long-term recording into smaller segments and classifies each segment as being either “analyzable” or 

non-analyzable.” This allows an easy estimation of the overall PAT. The algorithm was based on three computationally 

simple features that were designed to provide an accurate characterization of the difference between an analyzable ECG 

segment and a non-analyzable segment. The algorithm obtained a very high performance with respect to the correct 

classification of clinically relevant manually annotated ePatch ECG segments (Se = 98.4%, Sp = 95.2%, P- = 90.9%, P+ = 

99.2%, and Acc = 98.0%). Furthermore, the estimated overall PATs obtained a high correlation with manually provided 

quality indexes. We therefore find that it is possible to design biomedical signal processing algorithms for the reliable 

estimation of ECG quality in the ePatch recordings.  

We then applied the designed algorithm to gain knowledge about the overall PAT in ePatch recordings obtained from 250 

different patients. We found that 10% of the 250 recordings obtained less than 10% analyzable time. These recordings were 

considered as recording errors. For the remaining recordings, we found a median and a mean analyzable time of 100% 

(interquartile range: 97.9% to 100%) and 92.4±18.8%, respectively. We consider these PATs to be high, and we 

furthermore expect that sufficient training of hospital staff can decrease the number of recording errors. We thus find that it 

is possible to obtain sufficient signal quality for clinical applications of the ECGs recorded with the ePatch system. However, 

it should, of course, be mentioned that the findings are based on the performance of the designed quality assessment 

algorithm, and the validity is therefore strongly connected to the performance of the designed algorithm. Overall, we 

consider the analyzable times obtained in the patch recordings to be high and hereby relevant for clinical applications. This 

is promising for the application of the ePatch technology in a high number of different clinical settings both as a substitute for 

the traditional Holter recorders and in clinically relevant applications where the traditional Holter recordings fall short.  
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6 Conclusions 

The main focuses in this project were to increase the currently limited amount of knowledge about the clinical applicability of 

the novel ePatch recorder and to initiate the design of new low-power algorithms that are optimized for embedded analysis 

in the ePatch sensor. We have pursued this through three different research areas that each contribute to the overall 

understanding of the future possibilities with the novel patch recorder. These investigations were guided by the three main 

objectives stated in chapter 1. The findings related to each of these objectives are separately discussed below.   

 

Objective I: To conduct a preliminary investigation of the clinical usability of ECGs recorded  

with the novel ePatch technology 

 

This research area provided important information about the clinical usability of ePatch ECG for heart rhythm analysis. This 

has not previously been investigated for the ePatch recorder. In our first pilot study, we found that two different medical 

doctors indicated that more than 98% of the selected ePatch ECG segments were useful for heart rhythm analysis, and in 

our second pilot study, a cardiologist found that there was no difference in the clinically relevant information that could be 

extracted from simultaneous recordings obtained with the ePatch recorder and traditional telemetry equipment from 11 

admitted patients. These pilot studies thus provided a fundamental confidence in the reliability of the recorded ECGs. They 

furthermore indicate the clinical potential for this novel patch device for the monitoring and management of different heart 

diseases in the future. This research area thus formed the basis for the applicability of the remaining investigations 

described in this dissertation.  

 

Objective II: To conduct a preliminary investigation of the ability to obtain sufficient diagnostic quality of  

ECG recordings obtained with the ePatch technology 

 

In this research area, we gained valuable information about the signal quality obtained using the ePatch recorder. First, we 

found it necessary to develop a clinically relevant definition of signal quality. This definition was then applied to design a 

novel algorithm for the automatic estimation of the overall PAT obtained in an ECG recording. The algorithm was designed 

using three computationally efficient features that were carefully designed to describe some of the characteristic differences 

between an analyzable and a non-analyzable ECG segment. This choice was made to ensure the potential for the future 

embedded implementation of the feature extraction procedure in the ePatch sensor. The algorithm achieved a very high 

classification performance on manually annotated ECG segments (Se = 98.4%, Sp = 95.2%, Acc = 98.0%, P- = 90.9%, and 

P+ = 99.2%). We then applied the designed algorithm to 250 recordings obtained with the ePatch recorder. We found that 

10% of the recordings obtained less than 10% analyzable time. These recordings were considered as recording errors, and 

it is not expected that any clinically relevant information could be extracted from these. These erroneous recordings are 

undesired, and this relatively high number thus illustrates the future potential for embedded quality assurance. On the other 

hand, we found very high mean and median analyzable times in the remaining recordings. In agreement with published 

studies treating the signal quality obtained by other patch devices, we thus found the overall PAT in the ePatch recordings to 

be high. This indicates that the many advantages of the patch ECG recorders are not counterbalanced by low signal quality. 

Overall, we thus find that, in most cases, it is possible to obtain sufficient diagnostic quality in ECGs obtained with the 

ePatch technology.  

 

 Objective III: To design and validate a novel embedded QRS complex detection algorithm with high clinical 

performance in real-life ePatch ECGs and low computational load 

 

Many new application areas of the ePatch technology might highly benefit from real-time embedded interpretation of the 

recorded ECGs. With the practical applications and the required flexibility of the ePatch technology platform in mind, we 

defined an acceptable power consumption based on the ability to perform embedded analysis without significant loss in the 

total recording time of the current version of the ePatch sensor. The first important step in any automatic ECG interpretation 
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is the reliable detection of each individual heartbeat. We therefore focused our research on the design of a novel QRS 

complex detection algorithm that was optimized for high clinical performance in real-life ePatch recordings with low 

computational costs. We achieved this by designing a novel cascade of computationally simple FIR filters that obtains 

adequate enhancement of the QRS complexes as well as high artifact attenuation. Furthermore, we implemented a refined 

search back scheme and two computationally simple adaptive thresholds. Using this novel algorithm, we achieved a very 

high clinical detection performance (average detection performance on 952,632 beats obtained from 198 different patients 

from five different databases: Se = 99.86% and P+ = 99.74%). We furthermore found that the embedded implementation of 

the algorithm only increases the energy consumption by theoretically up to 5.5% of the normal energy consumption in the 

ePatch sensor. This implies that a total recording time of 80 hours reduces to as much as 75.8 hours. We thus find this 

algorithm very applicable for real-time embedded heartbeat detection within the ePatch sensor. The design of this algorithm 

thus opens completely new possibilities for the embedded processing of the recorded ECGs. Based on this research area, 

we thus conclude that it has been possible to design a novel automatic QRS complex detection algorithm with high clinical 

performance and adequately low computational costs.  

 

Overall, the research described in this thesis has covered previously unanswered questions related to this novel outpatient 

recording technique. Of course, large-scale clinical studies on much larger patient populations are required to confirm the 

findings, but we believe that our findings generally indicate a high potential for the ePatch recorder in many different clinical 

applications in the future. These applications include both known areas where ambulatory ECG recordings are already 

applied as a clinical tool today and completely new areas where ambulatory ECG monitoring has not been feasible with the 

older technologies. We thus believe that the implementation of these recorders might help initiate a completely new way of 

looking at ambulatory ECG monitoring.     

6.1 Future Perspectives 

The potential future application areas of the ePatch recorder are quite extensive. As discussed above, this thesis serves to 

increase the knowledge about the clinical applicability of the ePatch recorder. It should, of course, be mentioned that the 

work described here is not exhaustive, and future research could be conducted to further investigate the potentials for the 

new technology. Some of the interesting directions for future work could therefore be the following: 

 

 An extensive comparison between the diagnostic yields obtained from simultaneous recordings obtained with the 

ePatch system and the traditional Holter recorders. It is recommended that this comparison would be conducted 

using the final analysis reports created by the ECG technicians and hereby investigate the potential differences in 

the diagnosis and treatment prescribed by the referring physician. Inspiration to the study design protocol might be 

gained from [9] and [7].  

 One of the advantages of the novel patch recorders is the possibility of prolonged monitoring. In our investigation, 

however, only 24-hour recordings were available. It was therefore not possible to investigate the diagnostic quality 

obtained beyond the initial 24 hours. The quality is not expected to decrease during the recording period, but an 

investigation of this might be an important future study. This investigation could be conducted quite easily using 

the designed quality assessment algorithm as soon as sufficient amounts of long-term recordings become 

available. However, it is recommended that the designed algorithm is first validated with respect to correct quality 

assessment in the presence of specific arrhythmia events.  

 Today, it is not known whether the quality of the ePatch recordings are affected by different factors, e.g. patient 

demographics (age, gender, BMI, activity level, and ethnicity), the experience level of the nurse attaching the 

device, and the experience level of the ECG technician analyzing the recording. This investigation might also be 

interesting in the future.  

 In this project, we have investigated the possibilities for the embedded real-time detection of individual heartbeats 

in the recorded ECGs. It should be noted that the designed algorithm should be validated in the presence of 

different types and amounts of artifacts. This could be conducted by a well-designed noise stress test. 
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Furthermore, it should be noted that the designed novel cascade of filters, and hereby the entire algorithm, is 

dependent on the sampling frequency. In future versions of the ePatch, the sampling frequency is user defined 

(128 Hz, 256 Hz, 512 Hz, or 1024 Hz). For future clinical application of the designed algorithm, it should therefore 

be updated to handle different sampling frequencies. In the next generation of the ePatch, additional recording 

modalities, e.g. accelerometers, are furthermore available. It might therefore also be very interesting to explore the 

possibilities of the “shutdown” approach using an automatic multi-modal algorithm that could detect segments with 

profound amounts of artifacts that could hinder the proper functionality of the algorithm.  

 The design of an automatic algorithm for heartbeat detection also opens a world of opportunities for the design of 

algorithms for the automatic detection of other relevant clinical markers. These future algorithms might again be 

based on information from both the ECG signal and the accelerometers. This could include the automatic 

estimation of, for instance, posture, activity level, and sleep quality, the signal real-time estimation of signal quality 

indexes, and the detection of potential arrhythmia events. The design of such algorithms could highly extend the 

potential application areas of the ePatch technology. 

 Finally, it is recommended to conduct large-scale clinical studies to explore new areas where cardiac monitoring 

might be highly beneficial for the management of different conditions but is omitted today due to the difficulties 

with the current Holter and event recorders. This could exponentially increase the market potential for the novel 

patch technologies.   
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Appendix A 

Description: This appendix contains a detailed description of the pre-processing of the ePatch ECG recordings applied for 

the comparison between clinically relevant information extracted from simultaneous recordings obtained with the ePatch 

ECG recorder and the traditional telemetry equipment. The study is further described in section 3.3.  

 

During this pre-processing of ECGs it is important to attenuate the influence of different types of artifacts. The most common 

artifacts in ECG signals include electrode motion artifacts, baseline wandering, muscle artifacts, and noise from the power 

line (50 Hz in Denmark). However, it is also important not to change the appearance of the ECG signal in a way that could 

lead to misinterpretation. This could for instance occur, if the ST segment was changed due to removal of baseline 

wandering and electrode motion artifacts using a regular HP filter with too high cut-off frequency. The pre-processing was 

therefore conducted as illustrated in Figure A.1. The sampling frequency of the raw ECGs was 512 Hz.   

 

 

Figure A.1: Block diagram of the pre-processing. The input is a raw ECG signal. The output is the pre-processed ECG signal that was 

provided to the cardiologist.  

First, the steady DC value of 2048 ADC counts was subtracted to obtain a signal located around 0 ADC counts. Then the 

raw ECG signal was filtered using a LP filter at 1.5 Hz. This result in an estimation of the baseline wandering that also 

includes some episodes of electrode motion artifacts with low frequencies. This baseline estimation is illustrated as the 

dashed red line in Figure A.2(b). This filtering step was conducted using a FIR equiripple filter with stop frequency at 1.5 Hz 

and pass frequency at 0.75 Hz. As observed from Figure A.1, the raw ECG signal was also filtered using a LP filter at 40 Hz. 

This filter provides a high attenuation of power line interference and some attenuation of muscle artifacts. The output from 

this filtering step is illustrated as the solid blue line in Figure A.2(b). This filtering step was conducted using a FIR filter with a 

Hamming window. The cut-off frequency was set to 40 Hz, and a filter order of N = 259 was applied. To obtain zero-phase 

distortion of the signal, forward and backward filtering was conducted (the “filtfilt” function in MATLAB). This filtering 

technique is applicable for offline analysis. The outputs from these two filtering steps were then subtracted to obtain a signal 

with attenuation of baseline wandering and high frequency noise. This is illustrated in Figure A.2(c). The last pre-processing 

step was smoothening of the signal. This was obtained using a FIR filter with a Bartlett window with cut-off frequency at 40 

Hz, and order N = 10. All digital filters were designed using the “fdatool” in MATLAB. An example of the final pre-processed 

ePatch ECG signal is provided in Figure A.2(d). It is observed that the baseline wandering is completely removed, and the 

muscle artifacts are attenuated.  
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Figure A.2: Illustration of the pre-processing of the raw ePatch ECG signal: (a) Illustrates a segment of raw ECG recorded with the ePatch 

technology, (b) illustrates the 40 Hz LP filtered ECG signal (blue solid line), and the 1.5 Hz LP filtered ECG signal (red dashed line), (c) 

illustrates the subtraction of the blue and red curves in (b), and (d) is the final pre-processed ECG signal after Bartlett smoothening of the 

signal obtained in (c). The amplitudes are in ADC counts. 
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Appendix B 

Description: This appendix contains a detailed description and reasoning for the correction of the performance obtained on 

record e0614 from the EDB in the “corrected” overall QRS detection performances stated in Table 4.8 in section 4.5.  

 

This correction originates from a problematic reference annotation for record e0614. This is illustrated in Figure B.1. It is 

observed that the reference annotations for many VEB beats are placed right before the actual position of the QRS complex. 

In spite of the applied 150ms match window [24], this sometimes causes an actual true detection of a VEB beat to be 

classified as a pair of a missed VEB beat and a false detection (a false positive). This is especially pronounced when 

channel II from this record is applied. The performance for record e0614 was therefore manually corrected according to 

Table B.1. The gross average performance for the database with this correction is provided in Table 4.8 on page 52. It is 

observed how this correction significantly improves the sensitivity with respect to VEB beats.  

 

 

Figure B.1: Illustration of performance correction for record e0614 from the EDB: (a) QRS detection using the BP filter based algorithm 

applied to channel I, (b) QRS detection using the PB filter based algorithm applied to channel II, and (c) QRS detection using the multi-

channel wavelet based algorithm. The green vertical lines indicate the detected QRS positions for each algorithm. The red vertical lines 

indicate the QRS positions from the reference database. The black squares indicate the right side of the 150ms match window defined in 

[24]. It is observed that the reference QRS positions are positioned a little left for each QRS complex. This implies that even though the 

detections for all algorithms are within the duration of the QRS complexes, the VEB beat is detected outside the match window in (b). This 

implies that the BP filter based algorithm applied to channel II will be wrongly “punished” with both a missed VEB beat and a false positive 

detection. This was manually corrected as stated in Table B.1.   

Table B.1: Correction of performance for record e0614 from the EDB. Only pairs of missed VEBs and false positive detections as 

illustrated in Figure B.1 were corrected.  

Method Performance measure Original After correction 

Wavelet based: 

Channel I & Channel II 

FP 97 7 

FN VEB 164 74 

BP filter based: 

Channel I 

FP 45 3 

FN  VEB 44 2 

BP filter based: 

Channel II 

FP 223 10 

FN VEB 228 15 
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I. WHY DELTA DESIGNED THE EPATCH 

Since the first Holter recorders were invented in the 

1940s there has been a tremendous development in the 

capabilities for ambulatory ElectroCardioGraphic (ECG) 

monitoring. A detailed overview of the different monitoring 

techniques is provided in [1] and [2]. Many applications of 

the older technologies induce significant issues related to 

patient comfort, duration of the monitoring period, and the 

integrity of the recorded data. The event and loop recorders 

only store ECG data when either a patient trigger system or 

an automatic event detection system is activated. This 

prevents full disclosure and investigation of potential 

dangerous but asymptomatic events which were not 

correctly detected by the automatic algorithms. This 

situation is overcome by the continuous Holter and 

telemetry systems. However, the nature of these systems 

induces significant issues related to patient comfort and 

compliance with wearing the systems for extended periods 

of time. The selection of monitoring technique in each 

situation was thus a compromise between sufficient 

diagnostic information from adequate continuous 

monitoring on one hand, and patient comfort and 

compliance on the other. The DELTA ePatch system was 

created to fit right in the middle of this compromise: The 

ePatch was designed to provide reliable high quality 

continuous ECG monitoring for long periods of time 

without any patient discomfort or impairment of normal 

daily life activities.  

The results of a patient satisfaction survey based on 

ePatch recordings from 169 different patients clearly 

illustrate how the comfort and daily activity level is not 

altered by wearing the ePatch system (see Fig. 1). This is 

achieved due to the “wear and forget” principle that was a 

key factor during the design phase. As illustrated in Fig. 2, 

the ePatch system is placed on the chest and consists of two 

parts: 1) The single-use ePatch electrode, and 2) the 

reusable ePatch sensor. To increase the comfort, the two 

 
*This paper was written by the ePatch research unit in collaboration 

with Professor, chief physician (cardiology), Dr. Med. Kenneth Egstrup 

(Department of Medical Research, OUH Svendborg Hospital, Denmark) 
and Professor, chief physician, Dr. Med. Poul Jennum (Danish Center of 

Sleep Medicine, Department of Clinical Neurophysiology, Glostrup 

Hospital, Denmark).  
Contact information: DELTA Danish Electronics, Light & Acoustics, 

Venlighedsvej 4, 2970 Hørsholm, Denmark. Phone: +45 72 19 40 00, Fax: 

+45 72 19 40 01, e-mail: ePatch@delta.dk.   
This white paper was released in August 2014. 

parts are connected directly without any cables. The ePatch 

is thus capable of providing the same clinical information 

as regular Holter or telemetry equipment. However, this 

information is gained in a much less intrusive way. This 

reveals an opportunity to monitor new patient populations, 

deploy large-scale screening programs, intensified follow-

up on known cardiac patients as well as post-operative 

monitoring, possibilities of close cardiac surveillance of 

patients in their own homes, and improved surveillance and 

guidance in rehabilitation and exercise programs. 

ePatch® - A Clinical Overview 

ePatch Research Unit
* 

Figure 2. (a) Illustration of the CE marked and FDA approved ePatch 
system placed on the chest. (b) The ePatch sensor and the ePatch electrode 

before assembly. The ePatch will automatically start recording after 

mounting of the system. (c) Illustration of normal sinus rhythm ECG 
recorded with the ePatch system.   

 

How did the ePatch recording  
affect your daily activities? 

No impact (75%)

Slight inconvenience
(16.4%)

Some inconvenience
(4.7%)

Normal activities were
hindered (3.9%)

Figure 1. Results from a patient satisfaction survey on 169 different 

patients undergoing up to 24 hours of continuous ePatch recording. 

Approximately half of the patients were hospitalized, and the other half 
were wearing the ePatch system ambulant in their own homes.   
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II. CLINICAL INTERPRETATION OF EPATCH ECGS 

Reliable interpretation and high quality of the recorded 

ECG signals are the primary conditions for a successful 

diagnosis and treatment of the patients. The ePatch ECGs 

can be visualized and analysed in the exact same ways as 

ECGs recorded with traditional equipment. Several 

commercially CE marked and FDA approved Holter 

analysis software systems are available for regular rhythm 

analysis of ECG recorded with the ePatch system, e.g. [3] 

and [4]. An example of a Heart Rate (HR) trend curve, and 

two ECG strips from a healthy test subject is provided in 

Fig. 3. This test subject is recruited from a fitness study [5], 

and the high HR observed in the last hours of the recording 

is due to high intensity exercise in a fitness centre. It is 

clearly observed how the HR drops during the night. The 

relatively low mean HR indicates the fitness level of this 

test subject. The different stages of sleep are also observed 

as short peaks in the HR trend curve during the night. The 

recording illustrates a case of Normal Sinus Rhythm (NSR) 

with only a few SupraVentricular Ectopic Beats (SVEBs). 

An example of NSR is illustrated in the first ECG strip and 

an episode of two SVEBs is illustrated in the second ECG 

strip. Additional examples of clinical ECGs recorded with 

the ePatch system are provided in section IV. 

   

The user-friendly design of the ePatch implies that the 

placement of the electrodes is different from the standard 

Holter/telemetry electrode locations. In addition, the 

distance between the recording sites is slightly shorter. This 

induces small changes in the appearance of the recorded 

ECGs. However, a variety of clinical studies have 

demonstrated the possibility of recording of diagnostic 

relevant ECG using prototype patch devices [6], [7], [8], 

[9]. To further confirm the clinical quality, diagnostic yield 

and recognizable appearance of clinically relevant heart 

rhythms, a number of different clinical studies were 

conducted with the novel ePatch system. The purpose of the 

first study was to confirm that individual ECG strips 

extracted from long-term recordings obtained with the 

ePatch system can be used for heart rhythm analysis. This 

application scenario is similar to the traditional Holter 

analysis applied today, where selected ECG strips are 

extracted by an experienced ECG technician and provided 

to the referring medical doctor together with a general 

description of the findings in the recording. Two medical 

doctors conducted an individual assessment of seven-

second ECG strips which were selected by an experienced 

ECG technician from 25 randomly selected admitted 

patients. As illustrated in Fig. 4, the result was that the two 

medical doctors found as much as 98.5% and 99.5% of the 

Figure 3. Example of a HR trend curve from a healthy test subject recruited from a fitness study [5]. The HR clearly drops during the night, and increases 
rapidly in the morning. The different stages of sleep are observed from the short HR peaks during the night. The last couple of hours with relatively high HR 

were recorded during heavy exercise. The lower plot illustrates two ECG strips extracted from the recording. The first strip illustrates NSR during the night, and 
the second ECG strip illustrates two SVEB beats. 
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TABLE 1. SUMMARY OF CLINICAL FINDINGS USING EPATCH ECG 

RECORDED ON 169 DIFFERENT PATIENTS. THE RIGHT COLUMN INDICATES 

THE NUMBER OF PATIENTS THAT DISPLAYED EACH ARRHYTHMIA TYPE. 
 

Arrhythmia type Number  

Atrial flutter (AFL) 5 

Atrial fibrillation (AF) 14 

Atrio-ventricular block (AV block) 4 

Sino-atrial block (SA block) 3 

Supraventricular tachycardia (ST) 2 

Supraventricular ectopic beats (SVEBs) 50 

Ventricular ectopic beats (VEBs) 44 

 

segments useful for rhythm analysis [10].  

In another clinical study, the overall diagnostic 

information from a 24-hour ePatch recording was compared 

with the diagnostic information from simultaneous 

monitoring with regular telemetry equipment [11]. This 

comparison was conducted by a cardiologist using 11 

randomly selected admitted patients. The cardiologist 

selected relevant alarm events from the telemetry recording, 

and these were compared with the same time period of the 

ePatch recordings to confirm the presence of the arrhythmia 

event in the ePatch recordings. An example of these 

comparisons is provided in Fig. 5. The general heart rhythm 

and HR trend curves were compared as well. For all 

patients, the same diagnostic information was extracted 

from the two monitoring techniques. The clinically relevant 

heart rhythms and beats observed in this investigation 

included NSR, Atrial Fibrillation (AF), paroxysmal AF, 

pauses, Ventricular Ectopic Beats (VEBs), and SVEBs. 

Furthermore, ventricular frequencies up to 150 Beats Per 

Minute (BPM) were represented. This study indicates that 

ECGs recorded with the ePatch system contain the same 

diagnostic information as traditional telemetry systems.  

In a third clinical study, data from the CE marked ePatch 

was applied as the primary ECG source. The ECG data was 

analysed by experienced ECG technicians using the CE 

marked MyDarwin software [4]. This implies that solely the 

ECG recorded with the ePatch was analysed in order to gain 

information about the patients. The study enrolled 169 

patients from two different patient groups: 1) 84 patients 

admitted after apoplexy, and 2) 85 patients that were 

monitored in their homes as a part of an ambulant 

PolySomnoGraphy (PSG) recording.  A total summary of 

the overall arrhythmia findings is provided in Table 1. 

Overall, 17 significant findings were reported (12 in the 

apoplexy group and five in the ambulant group).   

Figure 5. Example of comparison between an alarm event from the traditional telemetry equipment and the corresponding time in the ePatch recording. This case 

illustrates an episode with 9 seconds pause. The two telemetry ECG channels are provided in the upper traces. The two ePatch ECG channels are provided in the 

lower traces.   

Figure  4. Result from a clinical study investigating the usefulness of two 

channel ePatch ECG for heart rhythm analysis. Eight segments were 

selected from 25 different patients, yielding a total of 200 ECG segments. 
Each of the 200 segments was independently evaluated by two medical 

doctors. The score 1 indicates that the medical doctor found the segment 

useful for heart rhythm analysis, whereas the score 0 indicates that he did 
not find the segment useful for rhythm analysis [10]. 
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III. CLINICAL USABILITY OF THE EPATCH  

As mentioned earlier, the key design goals of the ePatch 

system were to develop a reliable, safe, comfortable ECG 

recording system which is easy to use for both the patients 

and the healthcare providers. This has been accomplished 

both by the easy handling and mounting of the system, and 

the cable free design.  

A. Mounting of the ePatch 

The simple mounting of the ePatch system is illustrated 

in Fig. 6. The mounting consists of six easy steps: 1) The 

ePatch sensor and the ePatch electrode are easily attached 

by clicking the two parts together; 2) The protective plastic 

back liner is removed from the electrode to expose the 

adhesive part; 3) The electrode is attached to the skin in the 

correct position; 4) The assistive front liner is removed 

from the electrode; 5) The corners of the electrode are 

carefully pressed to ensure firm adhesion to the skin; and 6) 

The patient can wear normal clothing immediately after the 

mounting and throughout the entire recording period. The 

simple mounting procedure even facilitates the possibility 

for patients to mount the ePatch and conduct an ambulatory 

recording themselves, for instance before a follow-up 

consultation. After the mounting, the ePatch sensor will 

automatically start recording. Of course, the skin should be 

prepared before mounting. This preparation follows the 

known procedure from other ECG equipment. The results 

from a clinical study including a total of 169 patients and 

three different hospital units show that more than 75% of 

the recordings were mounted in less than two minutes, and 

more than 99% were mounted in less than five minutes (see 

Fig. 7). After the recording, the ePatch system is easily 

removed from the chest. The ePatch sensor and the ePatch 

electrode are separated, and the data is extracted from the 

sensor using a standard USB cable. Studies show that the 

removal of the ePatch system is conducted in less than two 

minutes in more than 99% of the recordings.  

How long time did you spend  
on mounting the ePatch? 

0-2 minutes (75.8%)

2-5 minutes (23.6%)

> 5 minutes (0.6%)

Figure 7. Results from a survey on the mounting time for the ePatch 

system. The nurses from this survey conducted a total of 169 ePatch 

recordings during a period of approximately six months.  
 

Figure  6. Mounting of the ePatch is carried out in six easy steps: 1) Attach the ePatch sensor to the ePatch electrode by clicking them together; 2) Remove the 

back liner from the electrode to expose the adhesive part; 3) Place the adhesive electrode in the correct position; 4) Remove the assistive front liner from the 
electrode; 5) Press carefully around the corners of the electrode to ensure firm adhesion to the skin; and 6) The patient wears normal clothing immediately after 

mounting and throughout the entire duration of the recording.  
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B. Patient and Healthcare Provider Satisfaction 

The results from a user satisfaction survey based on the 

169 ePatch recordings clearly show how the design goals 

are reached by the ePatch system: 83.6% of the nurses 

indicated that the ePatch was simpler than the traditional 

ECG equipment (see Fig. 8). It was also indicated by 75% 

of the patients that they experienced no impact on their 

ability to perform normal daily life activities during the 

recording period (see Fig. 1). Only 3.9% of the patients 

experienced to be hindered in normal daily activities. 

Furthermore, another clinical study enrolling 50 patients 

admitted for cardiac surveillance shows that 92.5% of the 

patients answering the questionnaire regarding their 

satisfaction with wearing the ePatch system answered to be 

“very satisfied”. The remainder patients indicated to be 

“satisfied”. None of the patients were “dissatisfied” or 

“very dissatisfied”. Fourteen patients also made additional 

comments regarding either their non-awareness of wearing 

the ePatch system or that they preferred the ePatch over the 

traditional telemetry equipment which was worn 

simultaneously. These results demonstrate the simplicity of 

the system and the satisfaction with using the system – from 

both a patient and healthcare provider point-of-view.  

IV. EXAMPLES OF CLINICAL ECGS 

This section contains some interesting cases of clinical 

ECGs recorded with the ePatch system. Each example is 

illustrated by use of raw unfiltered ECG data recorded with 

a CE marked ePatch system. Each heart beat is 

automatically detected with DELTA’s proprietary 

embedded algorithm. The ECG strips are visualized with 

standardized square sizes to indicate time and amplitude 

(two vertical squares indicate 1mV and five horizontal 

squares indicate 1s). The HR trend curves contain one 

minute HR averages. Each Lorenz plot indicates the 

relationship between the current RR interval (time between 

two subsequent heart beats) and the subsequent RR interval 

for one hour of the recordings.  

Fig. 9 illustrates ECG strips and a Lorenz plot recorded 

from a patient with nodal rhythm. The nodal rhythm is 

clearly observed from the first ECG strip. The recording is 

furthermore described by a high number of VEBs which 

often are present as bigeminy. This is illustrated in the 

second ECG strip. The bigeminy is also observed from the 

Lorenz plot. The red marks in the Lorenz plot indicate the 

heart beats that are illustrated in the second ECG strip.  

  Fig. 10 illustrates an overview of a recording on a patient 

that suffers from paroxysmal AF. The irregular heart 

rhythm is clearly observed from the first ECG strip, and a 

case of AF termination, including the sinus recovery period, 

is represented in the second ECG strip. During the first hour 

of the recording, there are three shifts from AF to NSR. 

This is also observed from the sudden drops in the HR trend 

curve.  

Figure 9. Clinical ECG strips from a patient with nodal rhythm. The 

retrograde P-waves positioned after the QRS complex are marked with 

black arrows in the first ECG strip. The lower ECG strip illustrates a case 
of bigeminy for the same patient. The bigeminy present during this hour is 

also observed from the Lorenz plot where the red marks indicate the heart 

beats from the second ECG strip.  

 

How did you find the application of the 
ePatch compared to traditional ECG 
equipment? 

Simpler (83.6%)

Equal (14.5%)

Harder (0%)

Don't know (1.9%)

Figure 8. Results from a clinical study regarding the nurse evaluation of 

the ePatch system compared to traditional ECG equipment: 83.6% of the 

nurses from three different regular hospital units found the ePatch system 
simpler than the traditional ECG equipment. A total of 169 ePatch 

recordings were evaluated for this survey.  
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Figure 10. Overview of a clinical ECG recording from a patient with paroxysmal AF. The HR trend curve indicates a high HR in the first hour with a few drops. 

This part of the recording represents episodes of paroxysmal AF, and the drops in the HR curve represent episodes of NSR. The first ECG strip illustrates a period 
with AF. The heart beats in this strip are illustrated with green marks in the left Lorenz plot. The red marks in the left Lorenz plot indicate the beats from the 

second ECG strip that illustrates a case of AF termination. It is observed that the first beats from this ECG strip are placed in the “chaotic AF region” of the 

Lorenz plot. The sinus recovery period causes two beats to be located away from most other beats, and the last 3 beats are located in the “cigar shaped” area of the 
Lorenz plot that represents periods of NSR. The third ECG strip illustrates a period of NSR. These beats are indicated by red marks in the middle Lorenz plot. 

The last ECG strip illustrates a period with two SVEBs. The red marks on the right Lorenz plot illustrate the beats from this ECG strip. The right Lorenz plot 

generally illustrates that this hour of data contains a very high number of SVEBs.      
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The first Lorenz plot in Fig. 10 represents both the irregular 

nature of RR intervals during episodes of AF as well as a 

“cigar shaped” group of RR intervals which represent the 

episodes of NSR. The green marks in the first Lorenz plot 

indicate the heart beats that are illustrated in the first strip. 

The red marks in the first Lorenz plot indicate the heart 

beats from the second ECG strip (AF termination episode). 

The combination from AF to sinus recovery to NSR is 

observed from the red marks in the first Lorenz plot. The 

second Lorenz plot is taken from one hour of the recording 

with primarily NSR and only a few SVEBs. The ECG strip 

with NSR is marked with red in the second Lorenz plot. 

The third Lorenz plot is from one hour with a very high 

number of SVEBs. This is observed from the four distinct 

areas in the Lorenz plot. Again, the red marks indicate the 

heart beats represented in the fourth ECG strip.  

An overview of a recording with primarily NSR is 

illustrated in Fig. 11. The recording contains scattered 

VEBs as illustrated in the first ECG strip. The second ECG 

strip illustrates a period of NSR. The patient also has two 

episodes of 2
nd

 degree AV block during the night. An 

example of this is illustrated in the third ECG strip. At the 

end of the recording there is an episode of sinus 

tachycardia. An ECG segment from the one minute with the 

highest average HR is presented in the fourth strip. A slight 

decrease in the HR is observed during the night.  

Figure  11. Overview of a clinical ECG recording from a patient with primarily NSR. The recording has scattered VEBs, as illustrated in the first ECG strip, and 

two cases of 2nd degree AV block, as illustrated in the third ECG strip. The second strip illustrates a period of NSR, and the fourth strip illustrates a data segment 

from the period with the highest one minute HR.  
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Another interesting clinical example is illustrated in Fig. 

12. This patient suffers from AF during the entire duration 

of the recording. It is observed from the three Lorenz plots 

that the nature of the irregularity of the RR intervals differs 

from the one observed for the patient in Fig. 10. The two 

ECG strips illustrate examples of AF with different 

ventricular frequencies. The first strip has a relatively low 

frequency. The heart beats from this strip are illustrated by 

red marks in the second Lorenz plot. The second ECG strip 

illustrates a period of relatively high ventricular frequency. 

The heart beats from this strip are illustrated by red marks 

in the third Lorenz plot. It is observed how the different 

ventricular frequencies are located in different regions of 

the Lorenz plots.  

The last clinical example is provided in Fig. 13. This 

patient suffers from AF with a high number of VEBs that 

are often present as bigeminy.   

These clinical examples illustrate how ECG recorded 

with the ePatch system can be applied to diagnose and 

monitor patients with different kinds of rhythm disorders. 

Together with the described results from the clinical studies 

regarding the ePatch interpretability, this demonstrates that 

the ePatch system is easily used as a substitute for 

traditional ECG equipment (e.g. Holter or telemetry 

recorders). Moreover, the high patient satisfaction 

facilitates the possibility of very long-term monitoring, and 

Figure 12. This patient suffers from AF, and the irregularity of the QRS complexes is observed in the three Lorenz plots. The two ECG strips illustrate AF with 

different ventricular frequencies. The red marks in the second and third Lorenz plots correspond to the heart beats illustrated in the two ECG strips.  
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consequently improved diagnosis and treatment for a high 

number of patients where ECG monitoring is not conducted 

today, or is limited by patient compliance or other obstacles 

related to the healthcare system.  

V. TECHNICAL SPECIFICATIONS OF THE EPATCH 

The adhesive ePatch electrode is bio-compatible and 

contains the skin contact points that allow the recording of 

bio-potentials. The ePatch sensor contains all the electronic 

parts, a rechargeable battery, data storage module, a signal 

processing module, and equipment for wireless data 

transmission. The ePatch is placed on the chest of the 

patient, and the recording of high quality ECG starts 

automatically after the mounting of the system.   

The ePatch is shower proof, it is easily worn under 

normal clothing, and it can thus be applied during most 

normal daily life activities. The unique modular design of 

the ePatch system allows easy adaptation and customization 

to match the specific needs in every monitoring situation. 

The current standard EU version of the ePatch is CE 

approved for 24-hour ambulatory ECG recording. It is able 

to record two ECG channels with a sampling frequency of 

512 Hz, and a bit resolution of 12 bits. The current US 

version is FDA approved for ambulatory recording of two 

ECG channels for 72 hours with a sampling frequency of 

256 Hz. One of the major advantages of the ePatch system 

is the possibility of continuous ECG recording for long 

periods of time. All ECG data can be stored, and full 

disclosure of the recorded data is therefore possible. This 

ensures that no critical events are lost. After the recording, 

the data is transferred to a computer with fast data 

transmission using a USB cable. The ECG can then be 

analysed offline.  

The next generation of the ePatch will be available 

during the fall 2014. This generation can record a varying 

number of channels (one to three) for multiple days with a 

bit resolution of up to 16 bits, and a user-defined sampling 

frequency from 128 Hz to 1024 Hz. Furthermore, the next 

generation is born with additional recording modalities, e.g. 

accelerometers for activity estimation and adaptive quality 

assurance. There is also possibility of real-time embedded 

signal processing and real-time transmission of e.g. ECG 

strips, events or HR trend curves. The data can either be 

analysed offline after the recording, or it can be wirelessly 

transmitted to for instance a central monitoring station (e.g. 

regular hospital telemetry equipment, monitoring of cardiac 

patients in their own homes). This transmission is secure 

and follows standard protocols for transmission of private 

information. Each ECG file is stored in the proprietary 

ePatch File System (EFS) format, and can be converted to 

other formats to allow analysis with commercial software, 

e.g. [3] and [4].  

VI. OTHER RESEARCH ACTIVITIES 

Research activities related to the ePatch platform have 

been carried out and are still ongoing. Some of them have 

already been presented in this paper. These studies were 

primarily related to the usefulness of two ECG channels 

recorded on the sternum with the novel ePatch ECG 

recorder. Research is also conducted to investigate the 

correlation between ECG recorded with the ePatch placed 

in different chest locations and the standard 12-lead ECG. 

This particular investigation will provide knowledge about 

the morphological content of ECGs recorded with the 

ePatch in various chest locations. A schematic overview of 

the experimental set-up is provided in Fig. 14. The ePatch is 

placed in three different locations: X, Y and Z. Each ePatch 

sensor records two ECG channels (X1, X2, Y1, Y2, Z1, and 

Z2). Simultaneous recordings were conducted using 

standard 12-lead ECG equipment. An example of the 

recorded ECGs is provided in Fig. 15. The experiment was 

conducted on 10 healthy volunteers. As observed from Fig. 

Figure 13. Clinical ECG strips from a patient with AF and a high number of 

VEBs. The irregular nature of the RR intervals is observed from the Lorenz 

plot. The red marks in the Lorenz plot represent the heart beats included in the 
upper ECG strip, whereas the green marks represent the heart beats included 

in the lower ECG strip.  
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15, the similarity is highest between Y1 and V2. This may 

indicate that the morphological information from V2 could 

also be extracted from the ePatch lead Y1. The mean 

correlation between Y1 and V2 for the 10 test subjects was 

found to be 0.8715 with a standard deviation of 0.1232. 

Further research is conducted to explore the potential for 

reconstruction of some of the standard leads in the 12-lead 

ECG system based on information from ePatch sensors 

placed in different chest locations.  

Besides these studies, a number of research projects have 

already obtained benefits from the advantages gained from 

this technology. One study includes the application of the 

ePatch system for automatic classification of acute stress 

[12]. Another study is related to automatic assessment of 

the overall quality of long-term ECG recordings obtained 

using patch type ECG recorders [13]. A third study applies 

different features based on the T-wave amplitude to 

estimate fitness level of the test subjects [5]. A fourth study 

investigated the relation between heart rate variability 

obtained with photoplethysmography (PPG) and ECG on 

the sternum [14]. Furthermore, DELTA has participated in 

a number of larger projects where the possibilities with the 

ePatch platform were investigated. One of these studies 

include the European REACTION project that aimed at 

finding solutions for online diabetes management and 

therapy in different healthcare settings [15]. During this 

project, the ePatch was successfully tested in the primary 

care setting. The ePatch was applied to monitor high risk 

patients for heart rhythm abnormalities. Other ongoing 

research activities are related to areas like design of 

automatic algorithms for real-time analysis of the ePatch 

ECG signals, implementation of new sensor modalities, and 

investigation of new potential areas where all the 

advantages of the ePatch system provide benefits and 

possibilities that were not present with the older 

technologies.  

VII. SUMMARY AND CONCLUSIONS 

The novel CE marked and FDA approved ePatch ECG 

monitor was designed to overcome the disadvantages with 

older ambulatory ECG recorders. The ePatch system thus 

allows continuous recording of high quality ECG for 

extended periods of time without patient discomfort and 

impairment of normal daily life activities. The usability of 

the ePatch system has been evaluated in a number of 

clinical studies. These studies include both investigations of 

the clinical usefulness of the ECG signals recorded with the 

system and the user satisfaction. The studies clearly 

indicate the potential for the application of this system for 

Figure 14. Illustration of the experimental set-up. Three ePatch recorders 

were placed in various chest locations, and simultaneous recordings from 
the three ePatch sensors and the standard 12-lead ECG equipment were 

obtained from 10 healthy test subjects. Modified from [16].   

Figure 15. Illustration of ECG example from the three ePatch ECG 
recorders and the standard 12-lead ECG equipment. The top six traces 

illustrate the two channels from each of the three ePatch sensors, and the 

lower 12 traces illustrate the traditional 12-lead ECG. A high similarity is 
observed between Y1 and V2.  
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future ECG monitoring. This opens the possibilities of 

applying the ePatch for a wide range of situations, e.g. tele-

monitoring of patients at home, rehabilitation programs, 

large-scale screening programs, and follow-up on known 

cardiac or high risk patients.   
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Abstract: According to the World Health Organization, cardiovascular diseases are the number one cause of death 
globally. Early diagnosis and treatment of many of these patients depend on ambulatory electrocardiography 
recordings. Therefore a novel wireless patch technology has been designed for easy, reliable long-term ECG 
recordings. The device is designed for high compliance and low patient burden. This novel patch technology 
is CE approved for ambulatory ECG recording of two ECG channels on the sternum. This paper describes a 
clinical pilot study regarding the usefulness of these ECG signals for heart rhythm analysis. A clinical 
technician with experience in ECG interpretation selected 200 noise-free 7 seconds ECG segments from 25 
different patients. These 200 ECG segments were evaluated by two medical doctors according to their 
usefulness for heart rhythm analysis. The first doctor considered 98.5% of the segments useful for rhythm 
analysis, whereas the second doctor considered 99.5% of the segments useful for rhythm analysis. The 
conclusion of this pilot study indicates that two channel ECG recorded on the sternum is useful for rhythm 
analysis and could be used as input to diagnosis together with other clinical tests and medical history. 

1 INTRODUCTION 

According to the World Health Organization (2013), 
cardiovascular diseases (CVDs) are the number one 
cause of death globally. They state that CVDs were 
responsible for 30% of all deaths in 2008.  

CVDs are not only lethal, but they are also 
associated with a high economic burden on the 
healthcare system. Furthermore, diseases like 
ischemic stroke can have high human costs and 
decrease significantly the quality of life. Early 
diagnosis and treatment of cardiac related diseases is 
therefore crucial. For more than hundred years, the 
12-lead electrocardiogram (ECG) has served as the 
“gold standard” for diagnosis of different heart 
conditions, including arrhythmias (Mittal et al., 
2011). The well-chosen and standardized selection 
of electrode positions allows a full investigation of 
different projections of the electrical activity of the 
heart. This allows a careful investigation of the heart 
in different “spatial plans”. 

However, for some conditions, it is more 
important to obtain long-term information about the 
general rhythm of the heart from a rhythm analysis. 
In this case, an ambulatory long-term ECG 
recording is desired. Some examples of conditions 
that are not sufficiently managed by baseline 12-lead 
ECG recordings are paroxysmal atrial fibrillation 
(AF), non-sustained ventricular tachycardia, 
unexplained episodes of syncope, and diagnosis of 
other cardiac symptoms not explained by a baseline 
12-lead resting ECG (Mittal et al., 2011), 
(Zimetbaum and Goldman, 2010). It is, however, 
important to notice the different possibilities with a 
standard 12-lead ECG and an ambulatory recording. 
Some of the main advantages of ambulatory ECG 
recordings are long monitoring period, detection of 
paroxysmal and asymptomatic arrhythmias, remote 
monitoring of the patient and correlation between 
specific symptoms and the ECG signals.  

It is however still important that the ambulatory 
long-term ECG recordings have a sufficient quality 
for analysis of specific ECG patterns. Some of the 
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key features in rhythm analysis include the 
depolarization of the atria (the P-wave) and the 
depolarization of the ventricles (the QRS complex). 
An example of a short unfiltered ECG segment 
recorded with the ePatch is provided in Figure 1. 

 

Figure 1: Illustration of a normal sinus rhythm ECG 
recorded with the novel ePatch technology. The important 
ECG markers are indicated in channel 1 for one heart 
cycle. The ECG is raw without any digital filtering. 

A number of different long-term ambulatory 
monitoring techniques are accepted today. One of 
the most commonly applied ambulatory ECG 
recorders is the HOLTER monitor.  

1.1 Traditional Holter Analysis 

The HOLTER monitor typically records 2 – 3 ECG 
leads continuously for 24 – 48 hours (Zimetbaum 
and Goldman, 2010). During a traditional HOLTER 
recording, a medical technician attaches the 
electrodes and the HOLTER recorder to the patient. 
The electrodes are attached to the recorder through 
wires. After the monitoring period, the recorder with 
the ECG data is returned to the hospital or healthcare 
facility. At the hospital, a specially trained nurse 
looks through the recorded data using automatic 
software and generates a report for the referring 
medical doctor. This report contains a general 
description of the rhythm during the recording, any 
special findings, and a number of descriptive ECG 
“snippets” displaying the different rhythms found 
during the recording. The report serves as input to 
the diagnosis together with other clinical tests and 
the medical history of the patient. If the recording is 
of sufficient quality, the following parameters may 
be determined based on a traditional HOLTER 
recording: Average heart rate and heart rate range, 
quantification of atrial and ventricular ectopic beats, 
and determination of whether AF is present – 
including information about pattern of AF initiation 

and termination, shortest and longest duration of AF, 
heart rate during AF and AF burden (Mittal et al., 
2011). 

However, this monitoring technique possesses a 
number of disadvantages including cables that affect 
the ability to perform some daily activities during 
the recording and the lack of real-time data 
transmission and analysis. Furthermore, the 
relatively short monitoring duration might not be 
sufficient for investigation of infrequent arrhythmias 
(Zimetbaum and Goldman, 2010), (Rosenberg et al., 
2013). To account for some of these disadvantages, 
a novel wireless ECG patch technology was 
designed. 

1.2 The ePatch Technology Platform 

The ePatch heart monitoring platform is designed 
according to a “wear and forget” principle. Thus, the 
device is designed to be reliable, safe, comfortable 
and easy to use for both the patient and the 
healthcare professionals. The ePatch is designed as a 
technology platform that can be customised to 
account for the needs in a high variety of situations. 
Some of the advantages and possibilities with this 
novel technology platform are listed below: 

 Possibility of multi-sensor design with e.g. 
accelerometer recordings for activity estimation. 

 Splash proof design: Patients can shower while 
wearing the ePatch. 

 No cables are needed to connect the electrodes to 
the recording device. This highly increases the 
patient comfort and decreases the patient burden. 

 Possibility of wireless data transmission and/or 
local data storage. The platform can be adapted 
to any desired communication protocol.  

 Home monitoring of cardiac patients that might 
reduce hospitalizations. 

 Possibility of long-term monitoring due to the 
expected higher patient comfort and compliance 
with wearing the device. 

 Module design allows easy adaptation to 
different applications. 

 Real-time embedded signal processing, e.g. 
automatic detection of cardiac events.  
 

In this pilot study, the focus is to investigate the 
application of the ePatch for heart rhythm analysis. 
The ePatch version applied in this study is CE 
approved for 24 hour ambulatory ECG recordings, 
and the ECG signals are stored locally on an internal 
memory. An illustration of the applied ePatch is 
provided in Figure 2. As observed from Figure 2, the 
ePatch is placed at the sternum. 
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Figure 2: Illustration of the placement of the ePatch 
electrode and sensor on the sternum.  

The ePatch system consists of two parts: 1) A 
bio-compatible, single-use adhesive electrode with 
multiple skin contact points that is attached directly 
to the skin surface (this part is termed the ePatch 
electrode) and 2) A reusable device that contains a 
rechargeable battery, electronic parts, data storage 
module, equipment for wireless data transmission, 
and a signal processing module (this part is termed 
the ePatch sensor). The ePatch sensor is attached 
directly on the ePatch electrode. This makes the 
system completely free of cables. This is designed so 
that patients can perform normal daily activities 
during the recording. Furthermore, the ePatch is 
easily worn under normal clothing and the cable free 
design makes it possible for the patient to easily 
change clothes during the recording. This patch 
design also facilitates a very small and light weight 
construction that minimizes the awareness of the 
system while wearing it. The two ECG channels are 
measured as bipolar derivations from the multiple 
skin contact points, cf. Figure 3.  

 

 

Figure 3: Illustration of the ePatch electrode and sensor 
before assembly. The ePatch version applied in this study 
records two ECG channels using bipolar derivations from 
the multiple skin contact points in the ePatch electrode.  

The placement of the ePatch electrode results in 
a shorter distance between the bipolar recording 
electrodes. This might influence the quality of the 
ECG signal. This reservation toward the quality of 
ECG signals recorded using patch technologies with 
near-field recording electrodes was also stated by 
Mittal et al., (2011). However, Rosenberg et al., 
(2013) compared the ability of a patch type ECG 
recorder to recognize episodes of AF with a 
traditional 24-hours HOLTER recording. They 
found an excellent agreement between the patch 
recorder and the HOLTER recorder for both AF 
episode detection and AF burden estimation during a 
24 hour recording in 74 consecutive patients.  

The selected electrode placement furthermore 
changes the different projections of the cardiac 
vector, and hereby changes the appearance of the 
ECG slightly. This might induce issues regarding the 
medical professional’s ability to recognize different 
heart rhythms and hereby reduce the practicability of 
the system. On the other hand, the advantages of this 
placement are expected to include the benefits of 
reduced artefacts from large muscles and large 
movements of electrodes and wires. Furthermore, 
several studies have shown promising results with 
experimental ECG recorders placed at a midsternal 
location. Two research groups, (Janata et al., 2008) 
and (Lemmert et al., 2011), conducted studies where 
7 seconds noise free HOLTER recordings were 
visually compared with 7 seconds noise free ECG 
recordings from a prototype device developed by 
Phillips Healthcare. Janata et al., (2008) investigated 
different placements of the experimental device and 
compared the ability to recognize the presence of P 
waves, PR time, ventricular morphology (QRS 
width ≤ 0.12 seconds or prolonged), and rhythm 
diagnosis. They found that for the presence of P 
waves, PR time and general rhythm diagnosis, the 
device location had a significant influence, and that 
a midtsternal location was optimal. They generally 
obtain a good agreement between the two devices. 
Lemmert et al., (2011) investigated the ability to 
visually recognize ventricular ectopic beats (VEBs) 
and ventricular fibrillation (VF) with ECGs recorded 
with the prototype device and EASI lead. The 
authors found a very high accuracy between the two 
devices for recognition of VEBs and VEB 
configuration counts. The results furthermore 
showed a perfect agreement between the two devices 
for the recognition of VF. The recognition of pace 
spikes was better on the standard device. 
Furthermore, studies conducted by Puurtinen et al., 
(2009), indicate that, with respect to P-wave 
amplitude, the optimal placement of closely spaced 
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bipolar electrodes is diagonally above the standard 
12-lead precordial leads V1 and V2.  

A review of the literature thus indicates a strong 
potential for the recording of relevant ECG signals 
on the sternum. However, the described systems are 
not completely comparable to the ePatch system and 
it is therefore desirable to investigate the practical 
usefulness of two ECG channels recorded with the 
novel ePatch technology placed at the sternum. This 
investigation is thus the focus of this clinical pilot 
study. During the study, the analysis of the recorded 
ECG signals is performed in a setting fairly similar 
to the setting for the traditional HOLTER or 
telemetry recordings. 

2 METHODS AND DESIGN 

This study includes ECG data segments from 25 
different hospitalized patients. The choice of 
hospitalized patients ensures a realistic amount of 
abnormal beat morphologies and abnormal heart 
rhythms. Each of the patients was monitored with an 
ePatch for approximately 24 hours. All patients were 
simultaneously monitored with the regular telemetry 
equipment at the hospital department. The ePatch 
ECG signals were recorded using a sampling 
frequency of 512 Hz and a resolution of 12 bits. In 
compliance with IEC 60601-2-47, the ePatch front 
end had an analog bandpass filter between 0.67 and 
40 Hz. The study was conducted in accordance with 
the principles of Good Clinical Practice (GCP) 
(Research Ethics Committee ID: S-20120132). All 
patients were informed about the study and signed a 
written consent form before their inclusion in the 
study.  The patients were furthermore questioned 
about any discomfort and their general satisfaction 
with wearing the system. They were asked regarding 
their level of satisfaction on an analog scale from 
“very satisfied” to “very dissatisfied”. The study 
included 15 males and 10 females. The mean Body 
Mass Index (BMI) was 27.5 with a standard 
deviation of 6.3. The mean age was 71.7 years with 
a standard deviation of 13.0 years.  

As mentioned, the purpose of the study was to 
investigate whether two channel ECG signals 
recorded with the ePatch placed at the sternum is 
useful for heart rhythm analysis. In a realistic 
setting, a medical technician with speciality in 
HOLTER or telemetry analysis extracts relevant 
ECG segments that are provided to the referring 
medical doctor. This step was also performed in this 
study. An experienced nurse was asked to extract 7 
seconds ECG segments where the interpretation of 

the ECG signal was not hindered by noise, in other 
words, the data should be of sufficient signal quality. 
The definition of sufficient signal quality was thus 
based on a subjective judgement by an experienced 
ECG analyzer. This is somehow similar to the 
extraction of ECG snippets during a traditional 
HOLTER analysis. The ECG segments were 
provided to both the nurse and the medical doctors 
without any form of digital filtering, that is, the 
analysis was based on raw ECG signals. A total of 8 
segments were extracted from each patient 
according to the scheme illustrated in Figure 4.  

 

 

Figure 4: Illustration of the data extraction and selection 
process. The red marks on the top panel indicate the three 
one hour segments that were extracted for the study for a 
recording of exactly 24 hours. The bottom panel illustrates 
the process of selection of 7 seconds segments from the 
extracted data. Green segments are selected for the study, 
whereas red segments are excluded.  

For each patient, three hours of data was 
considered. The three hours were extracted as 1 hour 
in the beginning, 1 hour in the middle, and 1 hour at 
the end of the recording. The first and last 30 
minutes were, however, not considered to ensure 
that artefacts from mounting and removal of 
electrodes did not affect the extracted data. The three 
hours of extracted data for a recording of exactly 24 
hours is illustrated by red colour marks in Figure 4. 
This ensures that a patient is only excluded from the 
analysis if the general signal quality is insufficient 
throughout the recording.  

The 7 seconds ECG segments are extracted from 
these three hours of data according to the following 
scheme: 1) If the current 7 seconds data segment is 
considered noise free, it is selected for the study, and 
a new 7 seconds segment is investigated 5 minutes 
later. 2) If the current 7 seconds data segment is not 
considered noise free, it is excluded from the study, 
and a new 7 seconds segment is investigated 1 
minute later. 3) If it is not possible to extract 8 
segments of sufficient signal quality within these 
three hours of data, the patient is excluded from the 
study.  

The data was selected with a custom designed 
Graphical User Interface (GUI) using MATLAB 
R2012B. The GUI provided an illustration of 7 
seconds of two channel ECG data, and the nurse was 
asked to use two check boxes to choose between 
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“noise free segment” and “noise disturbed segment”. 
The study included a total of 200 two channel ECG 
segments.  

After selection of the 200 ECG segments, two 
medical doctors with experience in ECG 
interpretation performed an independent individual 
evaluation of each of the ECG segments according 
to the usefulness for heart rhythm analysis.  

The medical evaluation of each segment was 
conducted using another GUI designed in MATLAB 
R2012B. This GUI is illustrated in Figure 5. The two 
channel ECG signal is visualized and the medical 
doctor was asked to choose between two check 
boxes, indicating the usefulness of the ECG segment 
for rhythm analysis.  

3 RESULTS 

Each ECG segment was evaluated according to the 
usefulness for heart rhythm analysis. The score 
“good” indicates that the ECG segment was found 
useful for heart rhythm analysis, whereas the score 
“bad” indicates that the ECG segment was not 
considered useful for rhythm analysis. The 

evaluation from both medical doctors is illustrated in 
Figure 6. 

Table 1: Results from the evaluation for ECG segment 
relevance for rhythm analysis from the two medical 
doctors.  

Segments marked as “good” Number Percentage 
Medical doctor 1 197 98.5% 
Medical doctor 2 199 99.5% 

Both medical doctors 196 98% 
At least one medical doctor 200 100% 

 

As observed from Figure 6, the doctors did not 
agree on the segments that were not useful for 
rhythm analysis. This is also illustrated in Table 1 
that contains the percentage of “good” ECG 
segments for each doctor, the percentage of ECG 
segments considered as “good” by both doctors and 
the percentage of segments considered as “good” by 
at least one of the doctors.  

Of the 25 patients, 22 indicated that they were 
very satisfied with wearing the device, 1 indicated to 
be satisfied, and 2 did not answer the question. 
Furthermore, several patients mentioned that they 
did not even notice that they were wearing it. 

 

 

Figure 5: Illustration of the designed GUI used for the medical doctor evaluation of each 7 seconds ECG segment. The two 
channel ECG segment was visualized on a computer screen, and the medical doctor was asked to check one of the check 
boxes dependent on his evaluation of the relevance of the current ECG segment for rhythm analysis. Note, that this segment 
illustrates a case of AF. 
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Figure 6: Illustration of the evaluation from both medical 
doctors for each of the 200 ECG segments. The score “1” 
is “good” and indicates that the ECG segment was 
considered useful, whereas the score “0” indicates that the 
ECG segment was not considered useful for rhythm 
analysis. 

4 DISCUSSION 

Both medical doctors indicated that more than 98% 
of the selected ECG segments were diagnostically 
meaningful to them, and that the ECG could help 
toward a rhythm analysis and diagnosis of the 
patient. It should, of course, be stated that the 
diagnosis of the patient would contain results from 
other relevant clinical tests, medical history, review 
of the entire long-term ECG recording, and general 
comments from the nurse preparing the ECG report 
for the referring medical doctor. The diagnosis is not 
imagined to be based solely on the 7 seconds ECG 
segments investigated in this study. However, the 
results from this pilot study are very promising and 
indicate the potential for this novel device for 
ambulatory cardiac monitoring.  

The fact that the “bad” segments were not the 
same for both medical doctors, could indicate a 
certain degree of inter reader variability. The 
number of doctors could be increased in a future 
study to investigate the true inter reader variability. 
For the purpose of this pilot study, it is, however, 
considered sufficient with the evaluation by two 
medical doctors. It should also be stated that even 
using the “worst case” of judging all segments 
evaluated as “bad” by at least one of the doctors as a 
“bad” segment, still results in 98% of the segments 
being useful. Furthermore, a traditional HOLTER 
recording might also contain segments of data that is 
not useful for rhythm analysis. In a real life 
situation, cases of doubt about a diagnosis are solved 

by discussion and consensus with other doctors. This 
is also expected to be the case when ePatch ECG 
signals are applied for rhythm analysis.  

Another interesting finding is the generally high 
patient satisfaction with wearing the system. This is 
one of the expected advantages of this novel 
technology. The high patient comfort is expected to 
allow very long-term monitoring in the future. This 
could increase the likelihood of detecting 
paroxysmal and infrequent arrhythmias. The higher 
patient comfort is also expected to increase the 
compliance with wearing the system, and a high 
patient compliance is necessary for reliable 
monitoring results (Ackermans, Solosko, Spencer, 
Gehman, Nammi, Engel and Russell, 2012).   

The focus of this pilot study was to obtain 
preliminary knowledge about the overall 
applicability of ECG signals recorded with the 
ePatch on the sternum. Future studies might include 
more direct comparisons between ECG signals 
recorded synchronously with the ePatch and 
traditional HOLTER recordings. Future studies 
might also investigate the ability to correctly detect 
specific ECG features, e.g. the presence of the P-
wave.  

The future possibilities of this type of long-term 
ambulatory ECG recorders seem to be very high in 
areas like home monitoring, screenings, and follow-
up consultations. However, the knowledge about the 
practical application of these new technologies is 
still relatively limited due to the lack of large-scale 
applications of the technology in everyday clinical 
situations. This study contributes to the currently 
limited amount of knowledge about the usability of 
these patch type ECG recorders. Further 
investigations could be conducted to investigate the 
usefulness for specific cardiac conditions on a larger 
database. Furthermore, in this study, only noise free 
ECG segments were presented to the medical 
doctors. This mimics the everyday selection of 
representative ECG “snippets” for the referring 
medical doctor and serves the purpose of this study. 
However, large-scale studies should be conducted to 
investigate the general level of artefacts and signal 
quality with this new patch technology.  

5 CONCLUSIONS 

This clinical pilot study indicates the medical 
usefulness of two channel ECG signals recorded at 
the sternum using the novel ePatch technology for 
heart rhythm analysis. Furthermore, the 25 included 
patients provided positive declarations regarding 
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their experience with the device. Further studies 
should be conducted to establish possible new 
application areas for this new technology and to 
determine the general quality of the signal and the 
vulnerability to different types of artefacts.  

ACKNOWLEDGEMENTS 

The clinical study was supported by funding from 
the Danish Business Innovation Fund. The authors 
wish to thank the clinical staff at the Department of 
Medical Research, OUH Svendborg hospital, for 
conducting the clinical recordings.  

REFERENCES 

Ackermans, P. A. J., Solosko, T. A., Spencer, E. C., 
Gehman, S. E., Nammi, K., Engel, J. & Russell, J. K. 
(2012). A user-friendly integrated monitor-adhesive 
patch for long-term ambulatory electrocardiogram 
monitoring. Journal of Electrocardiology, 45(2), 148-
153.  doi:10.1016/j.jelectrocard.2011.10.007. 

IEC 60601-2-47:2012 Medical electrical equipment – Part 
2-47: Particular requirements for the basic safety and 
essential performance of ambulatory 
electrocardiographic systems.  

Janata, A., Lemmert, M. E., Russell, J. K., Gehman, S., 
Fleischhackl, R., Robak, O., Pernicka, E., Sterz, F. & 
Gorgels, A. P. M. (2008). Quality of ECG Monitoring 
with a Miniature ECG Recorder. Pacing and Clinical 
Electrophysiology, 31(6), 676-684. doi: 
10.1111/j.1540-8159.2008.01070.x. 

Lemmert, M. E., Janata, A., Erkens, P., Russell, J. K., 
Gehman, S., Nammi, K., Crijns, H. J. G. M., Sterz, F. 
& Gorgels, A. P. M. (2011). Detection of ventricular 
ectopy by a novel miniature electrocardiogram 
recorder. Journal of Electrocardiology, 44(2), 222-
228. doi: 10.1016/j.jelectrocard.2010.10.028 

Mittal, S., Movsowitz, C. & Steinberg, J. S. (2011). 
Ambulatory External Electrocardiographic Monitoring 
Focus on Atrial Fibrillation. Journal of American 
College of Cardiolog, 58(17), 1741-1749. doi: 
10.1016/j.jacc.2011.07.026. 

Puurtinen, M., Viik, J. & Hyttinen, J. (2009). Best 
Electrode Locations for a Small Bipolar ECG Device: 
Signal Strength Analysis on Clinical Data. Annals of 
Biomedical Engineering, 37(2), 331-336. doi: 
10.1007/s10439-008-9604-y.  

Rosenberg, M. A., Samuel, M., Thosani, A. & Zimetbaum, 
P. J. (2013). Use of a Noninvasive Continuous 
Monitoring Device in the Management of Atrial 
Fibrillation: A Pilot Study. Pacing and Clinical 
Electrophysiology, 36(3), 328-333. doi: 
10.1111/pace.12053.  

World Health Organization (March 2013). Cardiovascular 

diseases (CVDs). Retrieved June 6, 2013, from 
http://www.who.int/mediacentre/factsheets/fs317/en/ 

Zimetbaum, P. & Goldman, A. (2010). Ambulatory 
Arrhythmia Monitoring: Choosing the Right Device. 
Circulation, 122(16), 1629-1636. doi: 
10.1161/CIRCULATIONAHA.109.925610. 

Heart�Rhythm�Analysis�using�ECG�Recorded�with�a�Novel�Sternum�based�Patch�Technology�-�A�Pilot�Study

21



124 
 

 

 

  



125 
 

Paper III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TITLE: Comparison of diagnostic information from regular telemetry equipment and a novel patch type electrocardiogram 

recorder 

 

AUTHORS: Dorthe B. Saadi, Kenneth Egstrup, Karsten Hoppe, and Helge B. D. Sorensen 

 

JOURNAL: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2014. 

 

STATUS: Presented as a late breaking research poster 

  



126 
 

 

  



  

 

I. INTRODUCTION 

 

Abstract—The purpose of this pilot study is to compare the 
diagnostic information obtained using regular telemetry 
equipment and the novel ePatch heart monitor. The comparison 
was conducted by a cardiologist on 24-hour recordings from 11 
admitted patients. For all 11 recordings, the same diagnostic 
information was found using the two recording techniques.  

The diagnosis and treatment of many life threatening 
cardiovascular diseases depend on analysis of long-term 
electrocardiogram (ECG) recordings. The nature of traditional 
equipment is characterized by high patient burden and low 
compliance. To overcome this, the ePatch heart monitor was 
designed. The wireless ePatch is CE marked for ambulatory 
recording of two ECG channels, see Fig. 1(a). The location of 
the ePatch and the small distance between the bipolar 
recording electrodes cause the projection of the cardiac vector 
to be slightly different from the regular equipment. This might 
induce changes in the appearance of the ECG signals. It is 
therefore highly relevant to compare the diagnostic 
information obtained using the ePatch recordings and 
simultaneous recordings with standardized equipment. This 
investigation is exactly the purpose of this pilot study.  

II. METHODS 
To obtain a meaningful investigation, it is important to 

ensure representation of a realistic amount of abnormal beat 
morphologies. We therefore decided to use ECG data from 11 
different patients that were admitted and selected for regular 
telemetry monitoring. The ePatch system was attached to 
obtain simultaneous recordings with the two systems. After 
each recording, information from the telemetry reports was 
extracted from the telemetry software. This included ECG 
segments of automatically generated alarms indicating 
potential arrhythmias, arrhythmia event overviews, and heart 
rate (HR) trend curves. Furthermore, information and 
potential notes from the electronic patient journal was 
available. This information was compared to the information 
that could be extracted by visual inspection and analysis of the 
24-hour ePatch recordings. The comparison was conducted by 
a cardiologist. This investigation thus allows for a high level 
comparison of the clinically relevant information available 
using the two recording techniques.    
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III. RESULTS 
An example of a HR trend curve from an ePatch recording 

is provided in Fig. 1(b). The overall HR observed from the 11 
recordings was up to 150 beats per minute (BPM). A high 
number of relevant heart rhythms and abnormal beat 
morphologies were correctly found in the ePatch recordings 
and confirmed by the telemetry alarms and/or the patient 
journal. Examples of this include the nine seconds pause 
illustrated in Fig. 1(c), and a case of termination of atrial 
fibrillation (AF) illustrated in Fig. 1(d). Overall, the 
cardiologist found that the same clinically relevant 
information could be extracted from the two monitoring 
techniques for all 11 patients. Furthermore, the cardiologist 
judged the signal quality of the ePatch recording to be 
excellent for ten of the 11 patients. In these recordings, the 
clinically relevant ECG fiducial points were clearly observed. 
The last ePatch recording contained several episodes of very 
noisy data, but the telemetry alarms from this patient also 
contained a high number of false detections due to noise.  

IV. DISCUSSIONS 
This pilot study clearly indicates the clinical usefulness of 

ECG recorded with the ePatch system, and facilitates the 
possibility of applying the ePatch system for cardiac 
monitoring instead of the regular telemetry or Holter 
recorders. Future studies might include a validation of the 
findings on a larger database with representation of a higher 
number of different abnormal beat morphologies and more 
relevant abnormal heart rhythms.  

 
Figure 1. (a) Illustration of the ePatch system. (b) HR trend curve for an 
ePatch recording. (c) Example of a nine seconds pause. (d) Example of 
termination of AF from the same ePatch recording used in (b). The 
alternating pattern between AF and sinus rhythm is observed in the first hour.  
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Automatic QRS Complex Detection Algorithm Designed for a Novel
Wearable, Wireless Electrocardiogram Recording Device*

Dorthe B. Nielsenab, Kenneth Egstrupc, Jens Branebjergb, Gunnar B. Andersenb and Helge B.D. Sorensena

Abstract— We have designed and optimized an automatic
QRS complex detection algorithm for electrocardiogram (ECG)
signals recorded with the DELTA ePatch platform. The algo-
rithm is able to automatically switch between single-channel
and multi-channel analysis mode. This preliminary study in-
cludes data from 11 patients measured with the DELTA ePatch
platform and the algorithm achieves an average QRS sensitivity
and positive predictivity of 99.57% and 99.57%, respectively.
The algorithm was also evaluated on all 48 records from
the MIT-BIH Arrhythmia Database (MITDB) with an average
sensitivity and positive predictivity of 99.63% and 99.63%,
respectively.

I. INTRODUCTION

The advantages of a small, wireless electrocardiogram
(ECG) recording device for ambulatory ECG monitoring are
numerous. Therefore, DELTA has developed the ePatch. This
is a small wireless prototype ECG recorder that measures two
ECG channels on the sternum. These channels do not corre-
spond to any standard HOLTER leads. The projections of the
electrical activity of the heart, and hereby the recorded ECG
signals, are thus slightly different from standard HOLTER
leads. This requires special attention in the design of new
algorithms that are specialized for analysis of these signals.
The basis for being able to perform ECG analysis is a robust,
reliable and automatic QRS detection algorithm. Therefore
this study is aimed at the design of a novel QRS detection
algorithm that is optimized for the special ePatch ECG
signals.

Many QRS detection algorithms described in the literature
are designed for one channel analysis only [9], [8]. However,
several different approaches have also been proposed for two
or three channel QRS detection [1], [2], [3]. The motivation
for including more channels arise from the assumption that
the signal quality of one channel might occasionally or
permanently decrease during a long term ambulatory record-
ing. Noise is often only contaminating one of the channels.
Therefore, the inclusion of clean ECG from addition chan-
nels is expected to improve detection performance. In [3],
information from three different ECG channels is constantly
applied for QRS detection. This approach may have some

*This research and this paper has been co-financed by the Danish Agency
for Science, Technology and Innovation as part of a Performance Contract
with DELTA 2010-2012.

Corresponding author: Dorthe B. Nielsen, dbni@elektro.dtu.dk
Contact information: HBDS: hbs@elektro.dtu.dk, JB: jab@delta.dk,

GBA: gba@delta.dk, KE: Kenneth.Egstrup@ouh.regionsyddanmark.dk
aDTU Electrical Eng., Ørsteds Plads, Bldg. 349, DK-2800 Kgs. Lyngby
bDELTA, Venlighedsvej 4, DK-2970 Hørsholm
cOUH Svendborg Sygehus, Valdemarsgade 53, DK-5700 Svendborg

limitations: High amounts of noise in one channel might
deteriote otherwise good performance obtained from analysis
of the other channel [1]. Furthermore, the application of more
channels, introduces more computational complexity. This is
especially important when designing algorithms for a small
wearable device. Another important aspect of automatic QRS
detection is the ability to correctly detect QRS complexes
with abnormal morphologies. The appearance of abnormal
beats may be different in two different ECG channels. There-
fore, the inclusion of an addition channel might increase the
QRS detection performance of anormal beats. This study
is thus focosed on the design of an automatic, intelligent
algorithm that is able to apply information from both avail-
able ECG channels. To overcome some of the mentioned
limitations, the proposed QRS detection algorithm can be
applied in two different modes: Single-channel and multi-
channel mode. The multi-channel mode applies information
from both available channels. The single-channel mode is
derived from the multi-channel mode, but with the exclusion
of information from one channel. The algorithm can auto-
matically switch between the two modes when predefined
artefacts are present in one channel. If these artefacts are
present in both channels, a complete shutdown occurs. The
idea of generally applying both channels and then exclude a
potentially noisy channel was also investigated by the authors
of [1]. A slightly different approach was introduced by the
authors of [2]. In this study, the QRS detection is generally
based on channel I of the MIT-BIH Arrhythmia Database
(MITDB), and then a combination of the two channels is
applyed if the current RR interval exceeds a predefined
interval.

II. METHODOLOGY
A. Data

The applied ePatch database contains data recorded from
11 different patients. The patients were hospitalized at
Svendborg Hospital for diagnostic monitoring during the
recordings and they were simultaneously monitored with
conventionel telemetry equipment. The 2 ECG channels
were recorded with a sampling frequency of 500 Hz and a
resolution of 13 bits. The electrode placement is illustrated
in Fig. 1. Records with 30 minutes of data were extracted
from each measurement. For all patients, the 30 minutes were
extracted one hour after the beginning of the recording. The
patients were allowed to move around in the monitoring unit
during the recordings. This ensures a fair amount of realistic
in-hospital artefacts in each record. A reference annotation
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file was created for each record, cf. Fig 1. During the first
three steps, all beats were annotated as ”normal”. During the
final manual scoring by the cardiologist (KE), the beats were
divided into different beat types, cf. Fig 1.

Fig. 1. Illustration of the DELTA ECG ePatch platform and the electrode
placements. The annotation file was created in several steps: Automatic pre-
scoring using the ”sqrs” program available from [4], automatic placement
correction with a maximum algorithm in MATLAB, manual correction by
one of the authours (using ”WAVE” - available from [4]), and finally manual
correction by the cardiologist (KE) (using ”WAVE”). Noise annotations were
also included as well as indication of atrial fibrillation (AF).

To further evaluate the algorithm and allow comparison
with other studies, all 48 records from the MITDB were
applied [5]. Each record contains 2 ECG channels digitalized
with a sampling frequency of 360 Hz. In compliance with
[6], each record was re-sampled to 500 Hz using the ”xform”
program available from [4]. The automatic QRS complex
detection algorithm was implemented in MATLAB R2010b.
The WFDB Toolbox for MATLAB [4] was applied to convert
the data files between WFDB readable files and mat-files.

B. Automatic QRS Complex Detection Algorithm
An overview of the algorithm is provided in Fig. 2. The

channel exclusion block marks the point of separation of the
single-channel and multi-channel modes. The channel exlu-
sion, high maximum removal, adaptive threshold calcuation,
and decision fusion blocks were executed in 1 second non-
overlapping analysis windows.

Fig. 2. Schematic overview of the QRS complex detection algorithm.

1) Channel Exclusion Criteria: Saturation of the raw
ECG signals produces false detections and disturbs the
adaptive algorithm parameters. The channel was therefore
excluded if the raw ADC counts of 15 consecutive samples
in the current analysis window obtained the maximum or
minimum possible value. Furthermore, it was expected that
the feature signals might be disturbed immediately after a
saturation. The channel was therefore also shutdown in the
first ”clean” analysis window after saturation. The threshold
of 15 samples was found by visual and experimental analysis
of challenging ECG examples.

2) Bandpass Filtering: The raw ECG signals were band-
passed filtered to reduce baseline wandering, power line
interference and high frequency muscle artifacts. A simple
FIR bandpass filter with integer coefficients and passband
between 9.2 and 29.3 Hz was designed in line with [7]. After
correction for the filter delay, the bandpass filtered signal will
ideally have a zero-crossing at the R peak position in the raw
ECG signal.

3) Wavelet Transform: The non-downsampling a trous
algorithm has been widely applied for wavelet transforma-
tion (WT) of ECG signals [8], [3]. Some advantages of the
WT are a good balance between detection performance and
efficient hardware implementation [8], and the possibililty
of dividing the ECG signal into different relevant frequency
subbands [3]. The WT consists of a cascade of lowpass (LP)
and highpass (HP) filters. The WT output of level m was
implemented as [8]:

am(n) =
∑
l

hLP,m(l) · am−1(n− l) (1)

dm(n) =
∑
l

hHP,m(l) · am−1(n− l) (2)

where am is the LP output and dm is the HP output. The
impulse responses were implemented as described in [8]. In
each filtering step throughout the algorithm, the input signal
was padded with the last value of the signal, and the filter
delay was corrected to ensure correct location of the QRS
complexes relative to the original signal.

The frequency content of the QRS complex is mainly in
the interval 5-15 Hz [9]. With a sampling frequency of fs =
500 Hz, this correpsonds approximately to d4 and d5 of the
WT. Therefore the first feature was calculated from eq. 3. The
absolute value was used to ensure equal detection of QRS
complexes with positive and negative polarity. However, in
some cases this feature signal obtained high values at the P
and T wave locations. Therefore an additional feature signal
representing the higher frequency components was computed
using eq. 4. Both features were calculated for both channels.

f1 = |d4|+ |d5| (3)

f2 = |d1|+ |d2| (4)

It is thus expected that f1 obtains high values during QRS
complexes as well as during high P and T waves, whereas f2
should obtain high values during QRS complexes and high
frequency noise. Periods where both feature signals obtain
high values are thus expected to correspond to the location
of QRS complexes.

4) Detection of QRS Candidates: To detect QRS candi-
dates, an adaptive threshold was calculated for each of the
feature signals in eq. 3 and 4 in each analysis window:

Tk = λ · Tk−1 + (1− λ) · (µk + c · σk) , (5)

where 0 < λ < 1 is a forgetting factor, c is a scaling
parameter, Tk is the final threshold in the current window,
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Tk−1 is the threshold value in the previous window, σk and
µk are the mean and standard deviation of the feature signal
in the current window. This threshold calculation ensures a
smooth adaptation to changes in the feature signal. Based
on simulations on the ePatch database λ = 0.4 and c = 0.8
was chosen. In cases with abnormal beat morphologies, the
threshold might be increased to a level that hinder detection
of subsequent QRS complexes. To avoid this, a high maxi-
mum removal was applied before the threshold calculation.
This block contains information about the maximum value
in the 8 previous analysis windows. Application of the 8
most recent beats (approximately corresponding to the 8
previously 1 second analysis windows) has also been applied
for tracking the ”normal” behaviour of an ECG signal in
other studies [9]. Any samples in the current analysis window
excedding the median value of this maximum register were
set to the median value before the threshold calculation.
The adaptive threshold and the maximum register were
not updated for channel j when it was excluded from the
analysis. Based on the adaptive thresholds, binary feature
signals were created from:

fbin = {1 if f > Tk, 0 otherwise} (6)

These binary signals were then combined in a decision
fusion scheme to detect QRS candidates: If both channels
were selected for analysis, at least three of the four binary
features should be asserted to indicate a QRS candidate. If
one channel was excluded from the analysis, both binary
features from the other channel should be asserted. The new
binary feature signal was denoted ffinal and it contained
the QRS candidates. To the best knowledge of authors, this
combintation of wavelet based features is novel. As is the
later described confirmation block.

5) QRS Localization and Confirmation Block : The tem-
porary duration of the QRS candidate was defined from the
rising edge of ffinal and 100 ms forward. The bandpass
filtered signal was investigated for zero crossings in this time
interval. The QRS candidate was confirmed if at least one
active channel possessed at least one zero crossing during
this period. This zero-crossing corresponds to a peak in the
original signal. The first zero-crossing in this interval might
correspond to the position of the Q peak. It was therefore
decided to apply the location of the second zero-crossing
if more than one zero-crossing occurred in the bandpass
filtered signal during this time interval. The position of
the selected zero-crossing was extracted for each active
channel. In multi-channel mode, the final QRS position was
estimated as the minimum sample number suggested by
the two active channels. This location was saved as the
new position of the QRS candidate. To further decrease the
number of false detections, an additional confirmation block
with three possible outputs was implemented: Case 1: Accept
both the previously detected QRS complex and the current
QRS candidate, Case 2: Delete the previously detected QRS
complex, and accpet the current QRS candidate, and Case 3:
Accept the previously detected QRS complex, but reject the

current QRS candidate. This block was initiated if the current
RR interval was less than half the median of the 8 previous
RR intervals. The assumption in this block was that the
feature values of two closely located QRS complexes should
not vary significantly. This was measured with the maximum
amplitude value in both feature signals (f1 and f2) in all
active channels. For each of the included feature signals,
the maximum value was calcluated in a 100 ms interval
around the position of the previously detected QRS complex
(Fold) and the current QRS candidate (Fnew). The decision
rule depends on the algorithm mode, cf. Table I. This block
was developed based on experiments and visual inspection
of different challenging ECG examples. After confirmation
of a QRS candidate, a refractory period of 200 ms was
implemented in line with [9].

TABLE I
DECISION RULE IN THE FINAL QRS CONFIRMATION BLOCK.

Case Multi-channel Single-channel
1 At least 3 of 4 maximun Both maximun values

values should satisfy the should satisfy the
requirement: requirement:
Fold
2

< Fnew < 2 · Fold
Fold
2

< Fnew < 2 · Fold

2 At least 3 of 4 maximun Both maximun values
values should satisfy the should satisfy the
requirement: requirement:
Fnew ≥ 2 · Fold Fnew ≥ 2 · Fold

3 Otherwise Otherwise

III. RESULTS
In compliance with [6], the beat detection accuracy was

evaluated using the QRS sensitivity, Se, and positive pre-
dictivity, +P . The mean QRS detection performance on the
ePatch database is stated with both the gross and the average
statistics [6], see Table II. The statistics was calculated with
the default settings of the ”bxb” and ”sumstats” programs
available in the WFDB Software Package [4] (match window
= 150 ms, 5 minutes initiation time). The performance was
evaluated using only channel I, only channel II (single-
channel modes) and both channels (multi-channel mode).
The QRS detection sensitivity in multi-channel mode was
100% with respect to both supraventricular ectopic beats
(SVEBs) and ventricular ectopic beats (VEBs).

The detection performance on the 48 records of the
MITDB using the ePatch optimized algorithm is provided
in Table III. In compliance with [6], episodes of ventric-
ular flutter or fibrillation were excluded from the perfor-
mance evaluation. Table III also contains detection accuracy
for three other studies using multi-channel QRS detection.
However, the authors of [3] evaluated their multi-channel
approach using only channel I of the MITDB.

IV. DISCUSSION
The multi-channel detection performance on the 11

records from the ePatch database is acceptable, but not
excellent. The poorer performance originates from 2 records
with considarable amounts of artefacts: Record 11 contains
approximately 2.5 minutes with very poor data quality, and
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TABLE II
DETECTION PERFORMACE ON THE EPATCH DATABASE. THE AVERAGE

AND GROSS STATISTICS ARE INDICATED BY µ1 AND µ2 , RESPECTIVELY.

Pt. # of Channel I Channel II Both channels
# beats Se(%) +P(%) Se(%) +P(%) Se(%) +P(%)
1 1450 99.52 98.97 99.52 99.31 99.93 99.52
2 1617 100 100 100 100 100 100
3 1594 99.69 99.94 99.94 100 99.87 100
4 1727 99.94 100 99.07 92.69 100 100
5 1465 99.66 99.59 98.98 99.72 99.86 99.80
6 3049 99.97 100 99.93 100 100 100
7 1762 99.72 100 99.89 100 100 100
8 1984 99.80 100 99.55 99.95 99.95 100
9 2562 99.49 94.69 99.88 96.46 99.88 96.75
10 1651 99.94 99.94 100 100 99.94 99.94
11 3219 92.58 92.00 97.20 99.36 95.84 99.26
µ1 22080 99.12 98.65 99.45 98.86 99.57 99.57
µ2 22080 98.73 98.09 99.34 98.81 99.35 99.46

TABLE III
COMPARISION OF QRS DETECTION PERFORMACE ON THE MITDB FOR

DIFFERENT STUDIES. NA = NOT AVAILABLE. TW = THIS WORK.

Algorithm Number Overall QRS SVEB VEB
of beats Se(%) +P(%) Se(%) Se(%)

TW, channel I & II 91285 99.63 99.63 98.80 98.71
TW, channel I 91285 99.63 99.43 98.25 98.52
TW, channel II, 91285 99.03 95.22 98.43 97.95
Ghaffari et al. [3], 109428 99.94 99.91 NA NA
Boqiang et al. [2], 109496 99.91 99.93 NA NA
Chiarugi et al. [1], 109494 99.76 99.81 NA NA

record 9 contains a number of episodes with high frequency
noise. The average Se and +P on the remaining 9 patients
in the multi-channel mode were 99.95% and 99.92%, respec-
tively, which is an excellent performance. Furthermore, the
sensitivity for detection of abnormal beats is considered to
be very high.

Even though the algorithm was designed and optimized
for the ePatch data, the performance on the MITDB is only
slightly lower than [1]. The lower performance might be
caused by the optimization to the ePatch database or the very
simple channel exclusion criteria. The performance is lower
than obtained in [2]. However, this study used a different
approach, where channel I was used for analysis unless no
R peak was detected in a predefined interval. Since the
general appearance of QRS complexes is better in channel
I of the MITDB [4], it might be uncertain whether this
approach will provide a reliable result in a real-life situation
with no prior knowledge about the optimal channel. The
performance difference between the two individual channels
on the MITDB is clearly observed from Table III. As with
the ePatch database, the sensitivity to detection of abnormal
beat morphologies is considered fairly high. However, it is
difficult to compare these results with other studies since
these sensitivities are rarely stated in spite of their importance
for subsequent arrhythmia analysis. This study shows that
the sensitivity regarding detection of these beats increases
with the inclusion of an additional channel. Furthermore,
it is observed for the ePatch database that both single-

channel modes obtains a considerably lower performance
than the multi-channel mode. This furthermore indicates the
importance of applying both channels in the analysis. During
a real-life recording, it would probably be impossible to
know the optimal channel on before hand and the optimal
channel might even change during the recording. The overall
detection performance is furthermore not decreased by the
inclusion of the addition channel on the MITDB, and this
method is thus considered ”safer” than a single-channel
appraoch using an abitrary channel. It should, of course, be
mentioned that the channel I performance on the MITDB is
slightly lower than other studies using only channel I [8].
However, their approaches are developed for single-channel
use, and it would be interesting to know the performance
on channel II of the database to clarify how the performance
would be if this channel was arbitrary selected for the single-
channel analysis.

The overall conclusion of this preliminary study is that the
proposed algorithm achieves good performance. The algo-
rithm might be further improved by implementation of more
sophisticated channel exclusion criterias. This might be able
to lower the false detections. However, the potential decrease
in false detections should not be achieved at the expense of
the high detection sensitivity to abnormal beats. The benefits
from more sophisticated channel exclusion criterias should
therefore be carefully investigated and the algorithm should
generally be evaluated on a larger ePatch dataset.

REFERENCES

[1] F. Chiarugi, V. Sakkalis, D. Emmanouilidou, T. Krontiris, M. Varanini,
and I. Tollis, Adaptive threshold QRS detector with best channel
selection based on a noise rating system, Comput. Cardiol., pp.
157160, 2007.

[2] H. Boqiang and W. Yuanyuan, Detecting QRS complexes of two-
channel ECG signals by using combined wavelet entropy, 3rd Inter-
national Conference on Bioinformatics and Biomedical Engineering,
vols. 1-11, pp. 24392442, 2009.

[3] A. Ghaffari, M. R. Homaeinezhad, and M. M. Daevaeiha, High
resolution ambulatory holter ECG events detection-delineation via
modified multi-lead wavelet-based features analysis: Detection and
quantification of heart rate turbulence, Expert Syst. Appl., vol. 38,
no. 5, pp. 52995310, 2011.

[4] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H.
E. Stanley, PhysioBank, PhysioToolkit and PhysioNet: Components of
a new research resource for complex physiologic signals, Circulation,
vol. 101, no. 23, pp. e215220, June 2000.

[5] G. B. Moody and R. G Mark, The impact of the MIT-BIH arrhythmia
database, IEEE Eng. Med. Bio. Mag, vol. 20, no. 3, pp. 4550, May-
June 2001.

[6] Association for the Advancement of Medical Instrumentation (AAMI),
ANSI/AAMI EC57:1998/(R)2003: Testing and reporting performance
results of cardiac rhythm and ST-segment measurement algorithms,
1999.

[7] M. Cvikl, F. Jager, and A. Zemva, Hardware implementation of
a modified delay-coordinate mapping-based QRS complex detection
algorithm, EURASIP Journal on Advances in Signal Processing, vol.
2007, pp. 57286, 2007.

[8] X. Liu, Y. Zheng, M. W. Phyu, B. Zhao, M. Je, and X. Yuan, Multiple
functional ECG signal is processing for wearable applications of long-
term cardiac monitoring, IEEE Trans. Biomed. Eng., vol. 58, no. 2,
pp. 380389, Feb. 2011.

[9] J. Pan and W. J. Tompkins, A real-time QRS detection algorithm,
IEEE Trans. Biomed. Eng., vol. 32, no. 3, pp. 230236, Mar. 1985.

2916



135 
 

Paper V 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TITLE: Automatic real-time embedded QRS complex detection for a novel patch-type electrocardiogram recorder 

 

AUTHORS: Dorthe B. Saadi, George Tanev, Morten Flintrup, Armin Osmanagic, Kenneth Egstrup, Karsten Hoppe, Jørgen 

Jeppesen, Poul Jennum, Helle K. Iversen, and Helge B. D. Sorensen 

 

JOURNAL: IEEE Translational Engineering in Health and Medicine 

 

STATUS: Submitted in November 2014, Decision: “minor revision” obtained in January 2015. 

  



136 
 

  



Copyright © 2014 IEEE 1 

 

Abstract Cardiovascular diseases are projected to remain the single leading cause of death globally. Timely diagnosis and 

treatment of these diseases are crucial to prevent death and dangerous complications. One of the important tools in early 

diagnosis of arrhythmias is analysis of electrocardiograms (ECGs) obtained from ambulatory long-term recordings. The design 

of novel patch type ECG recorders has increased the accessibility of these long-term recordings. In many applications, it is 

furthermore an advantage for these devices that the recorded ECGs can be analyzed automatically in real-time. The purpose of 

this study was therefore to design a novel algorithm for automatic heart beat detection, and embed the algorithm in the CE 

marked ePatch heart monitor. The algorithm is based on a novel cascade of computational efficient filters, optimized adaptive 

thresholding, and a refined search back mechanism. The design and optimization of the algorithm was performed on two 

different databases: The MIT-BIH Arrhythmia Database (Se=99.90%, P
+
=99.87) and a private ePatch Training Database 

(Se=99.88%, P
+
=99.37%). The offline validation was conducted on the European ST-T Database (Se=99.84%, P

+
=99.71%). 

Finally, a double-blinded validation of the embedded algorithm was conducted on a private ePatch Validation Database 

(Se=99.91%, P
+
=99.79%). The algorithm was thus validated with high clinical performance on more than 300 ECG records from 

189 different subjects with a high number of different abnormal beat morphologies. This demonstrates the strengths of the 

algorithm, and the potential for this embedded algorithm to improve the possibilities of early diagnosis and treatment of 

cardiovascular diseases.    
 

Index Terms—automatic QRS complex detection, embedded ECG analysis, ePatch ECG recorder, patch type ECG recorder, real-time 

ECG analysis 

 

I. INTRODUCTION1 

Cardiovascular diseases (CVDs) are projected to remain the 

single leading cause of death globally, and according to the 

World Health Organization (WHO), as much as 30% of all 

deaths in 2008 were caused by CVDs [1]. These diseases 
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are also a major economic burden to the World’s healthcare 

facilities. One of the important diagnostic tools for timely 

detection and diagnosis of heart arrhythmias is ambulatory 

electrocardiography (ECG) recordings. The standard 

equipment for this has for many years been the Holter 

recorder. However, the traditional Holter system possesses 

a number of issues that prevents prolonged monitoring. To 

overcome this, a number of patch type ECG recorders have 

recently reached the market [2], [3]. We have chosen to 

apply the ePatch ECG recorder designed by DELTA [3]. 

The ePatch is illustrated in Fig. 1 together with a short two-

channel ECG snippet. These type of recorders provide a 

possibility of an extended monitoring period, and studies 

have shown how this can ensure detection of more 

significant arrhythmias and lead to a definitive diagnosis for 

more patients [2], [4], [5]. Furthermore, some patches 

possess the possibility of wireless data transmission and 

automatic real-time embedded processing of the recorded 

signals. This might allow real-time transmission of e.g. 

arrhythmia events to a central monitoring station. The first 

step in this analysis is automatic detection of QRS 

complexes. This field has been investigated in the literature 

for at least 30 years [6]. Generally, the automatic QRS 

complex detection can be divided into two steps: 1) The 

feature extraction step, where the QRS complexes are 

enhanced, and 2) the detection step, where the position of 
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the QRS complexes are found based on the feature signal 

and a classification procedure. Two of the commonly 

applied techniques for feature extraction include different 

variations of digital bandpass (BP) filtering [6] and wavelet 

decomposition [7]–[14], but several other techniques have 

also been proposed, e.g. morphological operators [15] or 

the phasor transform method [16]. For the detection step, a 

well-known and accepted method is different variations of 

adaptive thresholding [6]–[10], [13]–[15]. This method has 

proven robust with respect to both secure detection of 

abnormal beat morphologies and varying signal to noise 

ratios (SNRs). An extensive review of methods for software 

QRS detection can be found in [17]. However, many of the 

traditional algorithms applied in ECG analysis software 

today are not optimized for real-time embedded analysis. 

Furthermore, the location of the ePatch and the short 

distance between the bipolar recording sites imply that the 

morphology of the recorded ECGs is slightly different. The 

focus of this study is therefore to design, implement, and 

validate a novel algorithm which is optimized for automatic 

embedded detection of QRS complexes in patch ECGs. The 

requirements of the algorithm are thus high clinical 

performance and low computational costs.  

   

 

 
 

Fig. 1. (a) Example of two channel raw ePatch ECG. The most relevant 

ECG fiducial points are indicated. (b) Illustration of the ePatch ECG 
recorder correctly placed on the chest. Each recording contains two ECG 

channels sampled at 512 Hz with a resolution of 12 bits. In compliance 

with [18], the ePatch sensor has an analog BP filter between 0.67 Hz and 
40 Hz. Modified from [3].  

II. METHODS AND PROCEDURES 

An overview of the study is provided in Fig. 2. In the first 

step, we designed and optimized the algorithm using 

MATLAB R2013b (The MathWorks Inc., Massachusetts, 

USA). In the second step, we conducted an offline 

validation to ensure that the clinical performance on unseen 

data was satisfactory. The third step was to implement the 

algorithm in ANSI C and embed it in the ePatch sensor to 

allow real-time QRS detection. During the design and 

validation, it is important to apply ECGs with a high 

number of different beat morphologies from many different 

patients. As indicated in Fig. 2, we therefore decided to 

apply four different databases according to the following 

scheme: The design and optimization phase was based on 

the MIT-BIH Arrhythmia Database (MITDB) [19] and a 

private ePatch Training Database (eTDB). The offline 

validation was conducted using the European ST-T 

Database (EDB) [20]. And finally, the double blinded 

embedded validation was conducted using the private 

ePatch Validation Database (eVDB). An overview of the 

characteristics of each database is provided in Table I, and a 

detailed description is provided in the section “Data 

Description”. This database selection ensures both a solid 

impression of the performance on ECGs recorded with the 

ePatch and allows for comparison with other published 

work. The algorithm is designed with special attention to 

overcome some of the difficulties related to the placement 

of the recording sites applied in the ePatch. Some of the 

challenges include relatively large changes in signal 

amplitude related to changes in patient posture (including 

changes in QRS polarity), and cases of very pronounced P-, 

Q- and/or S-waves. During the design and optimization 

phase, priority was therefore given to improve detection 

performance on challenging ePatch ECGs. However, 

consideration for these issues during the design phase is not 

expected to necessarily decrease the performance on ECGs 

recorded with traditional equipment represented by the 

MITDB and the EDB. 

 

Fig. 2. Overview of the study design. The algorithm was designed and 
optimized in MATLAB using the MIT-BIH Arrhythmia Database 

(MITDB) and the private ePatch Training Database (eTDB). The 

performance of the algorithm was then tested offline in MATLAB using 
the European ST-T Database (EDB). Finally, the algorithm was 

implemented in ANSI C and embedded in the ePatch sensor. The 

performance of the embedded algorithm was tested in a double-blinded 
validation scheme using the ePatch Validation Database (eVDB).   

  

TABLE I 
SUMMARY OF DATABASE CHARACTERISTICS. 

Database Fs (Hz)a Recordsb Length (min)c Beatsd 

MITDB 360 48 30 91,285 

EDB 250 90 120 759,878 
eTDB 512 120 10 45,248 

eVDB 512 61 15 38,429 

a The original database sampling frequency (fs).  
b Total number of records in the database. 
c Entire duration of each record. Note that the first five minutes of each 

record is allowed as initialization time and is not included in the evaluation.  

 d The total number of beats in the evaluation period of the database. 

Database: EDB 
Programming: MATLAB 

Databases: MITDB & eTDB 
Programming: MATLAB 

Algorithm design  
and optimization 

Offline performance 
validation 

Database: eVDB 
Programming: ANSI C 

Embedded implementation 

Implementation  
in ANSI C 

Embed algorithm 
in ePatch sensor 
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A. Algorithm Overview 

An overview of the algorithm is provided in Fig. 3. The 

feature extraction and detection steps are indicated by the 

dashed green and blue squares, respectively. The output of 

the feature extraction is a feature signal (Feature) that is 

directly applied as input to the detection step. We designed 

the algorithm for real-time embedded functionality in a 

clinical setting. This was achieved by the design of a novel 

cascade of simple finite impulse response (FIR) filters that 

allow efficient enhancement of the QRS complexes and 

artefact attenuation. For the detection step, we applied two 

adaptive thresholds in a search back scheme. This is a well-

known procedure [6]. However, we have simplified the 

calculation of the adaptive thresholds to decrease the 

computational load, and we have refined the adaptation of 

the search back procedure in cases of irregular heart 

rhythms.  

 
 

Fig. 3. Schematic overview of the designed QRS complex detection 

algorithm. The algorithm processes the ECG signal sample by sample, 
indicated by n. The input to the algorithm is one channel raw ECG. The 

feature extraction is indicated by the dashed green square. It consists of BP 

filtering, removal of signs, and smoothening. The output of the feature 
extraction block is a feature signal (Feature) that is directly applied in the 

detection block (indicated by the dashed blue square). RRn indicates the 

current RR interval, if a QRS complex is detected at the current sample, n. 
If the refractory period (Tref) is exceeded, the algorithm is allowed to 

continue to the detection block. This block can operate in three different 

modes dependent on the distance to the previously detected QRS complex 
(RRn). This implies that only one of the three modes is applied for each 

sample. The second mode includes the search back (Sb) procedure. The 

expected maximum distance between two subsequent QRS complexes is 
termed RRmax. If the relevant threshold is exceeded, a QRS complex is 

detected, and the localization block is initiated.  

 

 

As observed from the dashed blue square in Fig. 3, the 

QRS detection block can function in three different modes. 

The first mode applies the high threshold, Thigh, and is 

active when the distance from the previous QRS detection 

is within the expected maximum RR interval (RRmax). If 

RRmax is exceeded, a search back is performed using the low 

threshold value, Tlow. If several samples exceed Tlow in the 

search back interval, the sample with the highest feature 

value is selected as the preliminary QRS position. This 

search back procedure is the second mode. If no QRS 

complex is detected during the search back, Tlow is applied 

until a new QRS complex is detected. This is the third 

mode. When a QRS complex is detected, a delineation 

procedure is applied to locate the QRS complex at the 

correct position, and the detection block switches back to 

the first mode. The algorithm is designed to analyze the 

ECGs in a sample-by-sample manner. This enables real-

time embedded detection with only minor insignificant 

delays in the detection of each QRS complex. The 

following sections contain a detailed description of each 

part of the algorithm.  

B. Bandpass Filtering 

The purpose of the BP filtering step is two-fold: 1) 

Increase the influence of the QRS complexes, and 2) 

attenuate the influence of different types of noise, as well as 

pronounced P- and T-waves. However, it is also important 

to keep in mind that BP filtering might unintentional 

decrease the influence of abnormal beat morphologies, 

especially ventricular ectopic beats (VEBs) that are 

generally recognized by an increase in the width of the QRS 

complex. The performance of the PB filtering step is a 

major determinant of the necessary complexity of the 

remaining parts of the algorithm. It is generally accepted 

that the frequency components of the QRS complex 

primarily is between approximately 5 to 22 Hz [6], [9], 

[14], [15]. As mentioned, we designed a novel cascade of 

simple FIR filters that obtain a favorable passband in the 

region of the QRS complex. The cascade of filters consists 

of two BP filters followed by one lowpass (LP) filter. The 

impulse responses for the two successive BP filters are 

defined by (1) and (2).  

 

ℎ𝐵𝑃1[𝑛] =  {−𝛿[𝑛 + 10] − 𝛿[𝑛 + 9] + 𝛿[𝑛 + 2] +

𝛿[𝑛 + 1] + 𝛿[𝑛] + 𝛿[𝑛 − 1] − 𝛿[𝑛 − 8] − 𝛿[𝑛 − 9]} (1) 

ℎ𝐵𝑃2[𝑛] =  {−𝛿[𝑛 + 14] − 𝛿[𝑛 + 13] + 𝛿[𝑛 + 2] +
𝛿[𝑛 + 1] + 𝛿[𝑛] + 𝛿[𝑛 − 1] − 𝛿[𝑛 − 12] − 𝛿[𝑛 − 13]} (2) 

 

 The LP filter, with impulse response defined by hLP, is an 

average filter with 16 points. This cascade of filters 

corresponds to an equivalent BP filter with impulse 

response h defined by (3), where ∗ is the convolution 

operation. The amplitude characteristics of the three 

individual filters, and the equivalent BP filter is provided in 

Fig. 4.  
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ℎ[𝑛] =  ℎ𝐵𝑃1[𝑛] ∗ ℎ𝐵𝑃2[𝑛] ∗ ℎ𝐿𝑃[𝑛] (3)  

 

 
 

Fig. 4. The amplitude characteristics of the three individual filters (the dark 
blue line represents BP1, the green line represents PB2, and the light blue 

line represents LP), and the resulting equivalent BP filter (red line) using a 

sampling frequency of 512 Hz. For frequencies above 100 Hz, the final 
equivalent BP filter has attenuation of at least -30 dB.  

A. Final Feature Extraction 

The final feature signal, Feature, is obtained by 

smoothening the absolute value of the output from the BP 

filtered ECG signal using an 8 point FIR average filter. The 

absolute value is applied to ensure equal detection of QRS 

complexes with positive and negative polarity. As 

mentioned, this is especially important for ECGs recorded 

with the ePatch technology. An illustration of the feature 

extraction is provided in Fig. 5. It is observed how muscle 

artefacts, electrode motion artefacts, and P- and T-waves 

are attenuated. The total delay of all four cascaded filters is 

34 samples. Using a sampling frequency of 512 Hz, this 

corresponds to 66.4ms, which we considered to be within 

the acceptable limit for clinical applications.  

B. The QRS Detection Block 

As mentioned, the QRS detection block consists of two 

adaptive thresholds that are applied in a search back 

manner. One of the important components in such an 

algorithm is timely initiation of the search back procedure. 

This initiation is decided by the maximum expected RR 

interval between two subsequent QRS complexes, RRmax. 

The assumption in this study was that RRmax should vary 

with the general variation of the RR intervals. The timely 

initiation of the search back procedure is especially 

important in the presence of abnormal beats that might not 

be detected using Thigh. In many cases, it is therefore 

advantageous to initiate the search back procedure earlier in 

a recording with high variability in the RR intervals. The 

algorithm was therefore designed to function in two 

different variability modes (low variability and high 

variability) described below.   

 

 
 

Fig. 5. Illustration of each step in the feature extraction block: (a) Example 

of raw ECG signal recorded with the ePatch sensor. The amplitude is 
illustrated in analog-to-digital count (ADC) values for all plots. Note the 

presence of both muscle artefacts and electrode motion artefacts. (b) The 

ECG signal after BP filtering using the novel cascade of simple filters. (c) 
Absolute value of the BP filtered ECG signal. (d) Smoothening of the 

feature signal. The red lines indicate Thigh and Tlow. The green circles 

indicate the detected positions of the QRS complexes.  
 

Estimation of the Optimal Variability Mode 

 To estimate the optimal variability mode and RRmax, three 

different set of previous RR intervals are saved: 

1) RRlong: This contains the 34 previously detected RR 

intervals, disregarding the detection mode used for 

detection. The number of RR intervals is chosen to 

obtain enough RR intervals to provide a reliable 

estimate of the variability, but without losing the 

adaptive capability if the heart rhythm suddenly 

changes.  

2) RRshort: This contains the 8 previously detected RR 

intervals, disregarding the detection mode. This can be 

derived directly from RRlong, but it contains a shorter 

history, and is thus faster adapted to changes in the 

heart rhythm.   

3) RRsearchback: This contains the 8 previously detected RR 

intervals that were detected during search back. This 

implies that information about the general RR intervals 

during previous episodes of search back is saved, even 

though the search back procedure might not have been 

initiated during the previous 34 RR intervals. 

 

The current variability parameter, θ, is then estimated as: 

1) Calculate the median of RRlong. 

2) Calculate the absolute deviation between each RR 

interval in RRlong and the median. The deviation vector 

is termed ε.  

3) Remove the two largest values from ε.  

4) θ is then defined as the mean value of the remaining 32 

entries in ε.  

 

The third step is included to prevent a single ectopic beat 

detection, a single missed detection, or a single false 

positive from pushing the algorithm in the high variability 

mode. This mode is only intended to be activated for 

records with many ectopic beats or generally high variation 
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in the RR intervals, e.g. cases of AF. In these records, it is 

expected that the risk of missing a beat is increased, and to 

prevent this, the “sensitivity” of the search back is 

increased. The high and low variability modes are defined 

based on θ being above or below a threshold, Tθ. The 

threshold was set to Tθ = 35 samples. This was obtained by 

visual inspection of the time course of θ calculated from the 

reference annotations from the MITDB relative to the heart 

rhythms that are intended to initiate the high variability 

mode.  

 

Estimation of the Expected Maximum RR Interval (RRmax) 

RRmax is calculated according to (4) and (5).  

 

𝑅𝑅𝑡𝑒𝑚𝑝 = {
𝑅𝑅𝑙𝑜𝑛𝑔

̃                                           𝑖𝑓 𝜃 ≤ 𝑇𝜃

𝑀𝑖𝑛(𝑅𝑅𝑠ℎ𝑜𝑟𝑡
̃ , 𝑅𝑅𝑠𝑒𝑎𝑟𝑐ℎ𝑏𝑎𝑐𝑘

̃ )   𝑖𝑓 𝜃 >  𝑇𝜃

} (4) 

 

𝑅𝑅𝑚𝑎𝑥 =  𝑅𝑅𝑡𝑒𝑚𝑝  ∙  𝑅𝑅𝑠𝑐𝑎𝑙𝑒 . (5) 

          

In (4) and (5) 𝑥̃ is the median value of the elements in x, 

Min(x) is the minimum value of the elements in x, and 

RRscale is a scaling parameter. The median value is applied 

to avoid high influence of a single false high or low RR 

interval. In the low variability mode, RRlong provides a good 

estimate of the expected RR interval. In the high variability 

mode, the minimum of the two more sensitive RR variables 

is used to increase the search back sensitivity. RRmax and θ 

are updated every two seconds together with the adaptive 

thresholds.  

 

Adaptive Thresholding 

 The purpose of adaptive thresholding is to obtain 

thresholds that follow the changes in the signal. This is 

especially important for analysis of ePatch ECG signals. 

The goal is to obtain smooth adaptation to changes in both 

ECG signal amplitude and changes in the amount and types 

of artefacts. We decided to update the threshold parameters 

in non-overlapping windows of two seconds. This ensures 

the presence of at least one QRS complex in each window 

within the normal heart rate range. The high threshold, Thigh, 

is based on the median of the maximum feature value in the 

eight previous windows: 

 

𝑇ℎ𝑖𝑔ℎ[𝑚] =  (𝑚𝑎𝑥𝐹[𝑚−8], … 𝑚𝑎𝑥𝐹[𝑚−1])̃   ∙ 𝛼.  (6) 

 

In (6) m indicates the window number, F[m] represents 

the final feature signal in window m, 𝑚𝑎𝑥𝑥 is the maximum 

value of the elements in x, and α is a scaling factor slightly 

lower than 1. It most cases, the maximum value of a two 

second ECG segment is expected to represent the amplitude 

of a QRS complex. Thigh is thus designed to float right 

below the expected amplitude of the QRS complexes.  

The low threshold, Tlow, is intended to adjust faster to 

rapid changes in the amount of artefacts. This threshold is 

therefore based on information about the mean value of the 

final feature signal in the two previous windows. It is 

known that an increase in heart rate induces an increase in 

the mean value of the feature signal. Tlow is not intended to 

increase as a consequence of increased heart rate. 

Therefore, Tlow is scaled according to the number of QRS 

detections obtained in the two successive windows applied 

for the threshold calculation. This modification is termed s1. 

The s1 parameter is furthermore bounded as follows: 

1) If no QRS complexes were detected, set s1 = 1.  

2) If > 8 QRS complexes were detected, set s1 = 8.  

 

It is furthermore important to note that episodes of very 

noisy data might disturb the QRS detection and produce a 

number of false positive detections that might induce RR 

variability similar to e.g. episodes of AF. To prevent the 

increased sensitivity of the search back procedure from 

exacerbating the number of false positive detections in 

noisy data, a modification of Tlow is also needed in the high 

variability mode. Therefore the s2 parameter is defined as: 

 

𝑠2 = {
10          𝑖𝑓 𝜃 ≤  𝑇𝜃

12          𝑖𝑓 𝜃 > 𝑇𝜃
}. (7) 

 

These values were obtained by visual inspection of 

different challenging ECG snippets from the training data 

(MITDB and eTDB). The temporary low threshold, Tlow,temp, 

is thus calculated by (8), where 𝜇𝑥 is the mean value of the 

elements in x. 

 

𝑇𝑙𝑜𝑤,𝑡𝑒𝑚𝑝[𝑚] = (𝜇𝐹[𝑚−2], 𝜇𝐹[𝑚−1])
̃  ∙  

𝑠2

𝑠1
. (8) 

 

Finally, Tlow is furthermore bounded by a percentage, β, of 

Thigh. This is defined in (9). This ensures a proper 

functionality of Tlow to detect beats missed by Thigh:  

 

𝑇𝑙𝑜𝑤 = {
𝑇𝑙𝑜𝑤,𝑡𝑒𝑚𝑝               𝑖𝑓 𝑇𝑙𝑜𝑤,𝑡𝑒𝑚𝑝 ≤ 𝑇ℎ𝑖𝑔ℎ ∙ 𝛽

𝑇ℎ𝑖𝑔ℎ ∙ 𝛽               𝑖𝑓 𝑇𝑙𝑜𝑤,𝑡𝑒𝑚𝑝 > 𝑇ℎ𝑖𝑔ℎ ∙ 𝛽
} (9) 

 

QRS Localization and Refractory Blanking 

The preliminary QRS location is the first sample where 

the feature signal exceeds the relevant threshold. However, 

this point is probably not the location of the R peak. To 

allow better delineation, a search is performed for the 

maximum point in the feature signal for a period of time 

after the exceedance of the threshold. The sample point that 

obtains the maximum feature value during this time interval 

was selected as the QRS position. The search period is 

chosen to be equal to the refractory period (Tref), in which 

detection of a new QRS complex is not allowed.  

C. Data Description 

As mentioned, we applied four different databases to 

ensure thorough evaluation of the algorithm performance. 

An overview of the different databases is provided in Table 

I, whereas this section contains a detailed description. For 

all four databases, only the first ECG channel was applied.  

The eTDB was generated by extracting 10 minute ECG 



segments from two large existing ePatch databases. The 

first original database contains recordings from patients 

admitted to the stroke unit at Glostrup Hospital. The second 

original database contains ECG recordings from patients 

undergoing ambulatory diagnosis for obstructive sleep 

apnea at Glostrup Hospital. Each ECG recording in the two 

databases was associated with an ECG analysis report 

(similar to a traditional Holter analysis report). It was 

important to include ECG recordings from many different 

patients. We therefore selected 30 patients from the stroke 

unit database and 30 patients from the ambulatory database.  

It was furthermore important to ensure representation of 

many different abnormal beat morphologies as well as 

normal sinus rhythm with different ventricular frequencies. 

To ensure this, we selected the 60 patients based on the 

summaries in the associated ECG analysis reports. From the 

selected patients, we extracted a total of 120 ECG segments 

of which 40% were selected randomly and the remaining 

60% were selected based on markings of interesting data 

segments in the analysis reports. This segment extraction 

ensures a database with realistic amounts of artefacts as 

well as representation of many different types of abnormal 

beat morphologies. Some examples of included arrhythmia 

events are: Atrial fibrillation (AF), episodes of 

supraventricular tachycardia (SVT) with different 

frequencies, supraventricular ectopic beats (SVEBs), runs 

of SVEBs, VEBs, ventricular bigeminy (B), ventricular 

trigeminy (T), bradycardia, and  AV blocks.  

The eVDB was generated from three ECG recordings 

obtained from three different healthy volunteers. The 

volunteers continued normal daily life activities throughout 

the recordings. The embedded algorithm output was 

calculated in real-time during the recordings, and saved in a 

special channel in the data file. The algorithm output was 

not investigated before the manual annotation of the eVDB. 

For each subject, a 15 minute segment was automatically 

extracted from minute 30 to 45 in each hour of the 

recording. The mean recording time was 21.0 hours, 

yielding a total of 20-21 segments for each subject. This 

ensures representation of realistic amounts of normal daily 

life activities and provides an overview of a potential 

change in performance during the recording period.  

The ePatch reference annotations were created based on 

manual corrections of the output from the “sqrs” function 

from the WFDB Toolbox [21]. The manual corrections 

were conducted by a biomedical engineer with experience 

in ECG interpretation. All beats were labelled as normal. 

To validate the annotation performance of the biomedical 

engineer, 12 randomly selected records from the eTDB 

(10%) were also annotated by a medical doctor. The 

medical doctor did not find any errors in the manual 

annotations conducted by the biomedical engineer. The 

manual corrections were conducted using the WAVE 

program from the WFDB Toolbox [21].   

The MITDB and EDB were downloaded from Phyisonet 

[21]. To obtain similar sampling frequencies for all 

databases, the recordings from the MITDB and EDB were 

resampled to 512 Hz using the “xform” function from the 

WFDB Toolbox [21], and they were converted to mat-files 

using the WFDB Toolbox for MATLAB [21]. All beats in 

both databases are manually labelled according to the beat 

type. This allows evaluation of the detection performance 

with respect to VEBs and SVEBs.  

D. Evaluation of QRS Detection Performance 

The QRS detection performance was evaluated as the 

QRS sensitivity (Se = TP/(TP+FN)) and positive 

predictivity (P
+ 

= TP/(TP+FP)), where TP is the number of 

true positive detections, FP is the number of false positive 

detections, and FN is the number of false negative 

detections (missed QRS complexes). In compliance with 

[22], TP, FP, and FN for each record, were calculated using 

the default settings of the “bxb” function from the WFDB 

toolbox. This implies that the first five minutes of each 

record is allowed as a training period and episodes of 

ventricular flutter or fibrillation (VF) were excluded [21]. 

The performance for each database is stated as gross 

statistics [22]. No records were excluded in the 

performance evaluation.    

E. Evaluation of Embedded Algorithm Processing Time 

After the offline validation, the algorithm was 

implemented in ANSI C, compiled and embedded in the 

ePatch sensor. The sensor has a 32 bit micro controller 

based on the ARM Cortex-M3 processor from Energy 

Micro (now acquired by Silicon Labs). A low processing 

time for each sample allows the processor to enter “sleep” 

mode and hereby save energy. Furthermore, it is important 

that the processing time of each sample will never exceed 

the time between two samples. The processing time for 

each sample will among other things depend on the 

algorithm mode applied for that specific sample and 

whether a QRS complex is detected or not. Furthermore, 

every two seconds the thresholds and other adaptive 

parameters are updated. This will clearly require more 

processor time than processing a non-boundary ECG 

sample between two QRS complexes. We therefore decided 

to investigate the processing time using a histogram. The 

histogram was created with a clock cycle counter that 

counted how many clock cycles the algorithm spends on 

processing each sample in a real-life recording. The 

duration of the recording was approximately 2.3 hours, 

yielding a total of 4,271,185 samples.  

III. RESULTS 

A. Algorithm Parameter Optimization 

Four of the algorithm parameters were chosen based on a 

parameter grid search on the training databases (MITDB 

and eTDB). The four parameters were the refractory 

blanking period (Tref = 0.2ms, 0.25ms, or 0.3ms), the 

scaling of the expected RR interval (RRscale= 1, 1.2, or 1.3), 

the boundary for Tlow (β = 0.4, 0.5, or 0.6), and the scaling 

parameter for Thigh (α = 0.8, 0.9, or 0.99). The investigated 
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values were selected based on clinical relevance, theoretical 

sense, and experience from the literature. The parameters 

are mutually dependent on each other. Therefore, the 

performances of all 81 different combinations of parameter 

values were investigated. The relationship between Se and 

P
+
 for all 81 combinations is provided in Fig. 6. Fig. 6(a) 

illustrates the performance on the MITDB. The blue marks 

indicate the performance on the entire database, the green 

marks indicate Se on SVEB beats only, and the red marks 

indicate Se of VEB beats only. The black circles indicate 

the parameter combination selected for further embedded 

implementation. Fig. 6(b) illustrates the performance on the 

eTDB. The selected parameter combination was Tref = 

0.25ms, RRscale = 1.2, α = 0.8, and β = 0.4.  

 

 
 
Fig. 6. Relation between P+ and Se for (a) the MITDB and (b) the eTDB. 

Each mark indicates the performance for one of the 81 investigated 

parameter combinations. In (a), the blue marks indicate performance on 
the entire database, the green marks indicate Se on SVEB beats only, and 

the red marks indicate Se on VEB beats only. The black circles indicate the 

parameter combination that was selected for further embedded 
implementation.  Note, that the axes are zoomed to allow a better view of 

each point.  

B. QRS Detection Performance 

With the selected parameter combination, the obtained Se 

and P
+
 on the eTDB was 99.88% and 99.37%, respectively. 

The performance obtained on the MITDB and the EDB 

using this parameter combination is provided in Table II. 

Table II furthermore contains examples of the performance 

on these databases reported in the literature. For the 

MITDB, Se with respect to VEBs and SVEBs was 99.44% 

and 99.67, respectively. For the EDB, Se with respect to 

VEBs and SVEBs was 97.60% and 99.53%, respectively. 

The results from the double-blinded performance evaluation 

on the eVDB are provided in Table III. The performance is 

stated for both the MATLAB code, the offline C code, and 

the embedded code for comparison between the three 

implementations of the algorithm.  

C. QRS Detection Examples 

Fig. 7 illustrates the algorithm performance in different 

challenging clinically relevant cases from the eTDB. The 

top plot of each subfigure illustrates one channel of raw 

ePatch ECG. The bottom plot illustrates the final feature 

signal (blue line) together with Tlow and Thigh (red lines). The 

green circles indicate QRS complexes detected using Thigh 

(mode 1), the black circles indicate QRS complexes 

detected in search back (mode 2), and the magenta circles 

indicate QRS complexes detected using Tlow (mode 3).  

 

TABLE II 

QRS DETECTION PERFORMANCE ON THE MITDB AND THE EDB. 

Method 
MITDB EDB 

P+ (%)  Se (%) P+ (%)  Se (%) 

This work # 99.87 99.90 99.71 99.84 
Di Marco and Chiari [7] 99.86 99.77 99.56 99.81 

Ghaffari et al. [13] 99.88 99.91 99.55 99.63 

Ghaffari et al. [14] 99.91 99.94 - - 
Liu et al. [10] $ 99.86 99.80 - - 

Li et al. [11] + 99.94 99.89 - - 

Martìnez et al. [16] 99.97 99.71 99.73 99.67 
Martìnez et al. [12] 99.86 99.80 99.48 99.61 

Zhang and Bae [15] * 99.82 99.76 - - 

Pan and Tompkins[6] + # 99.54 99.75 - - 
Zidelmal et al. [9] 99.82 99.64 - - 

 - Not stated in paper. 

 # Algorithm is implemented and tested in a microprocessor. 
 $ Algorithm is implemented and tested on an ASIC. 

 *Algorithm is implemented and tested on a FPGA.  

 +A discrepancy was found between the stated total number of beats and the 

record-by-record total number of beats. In this table, the record-by-record 

numbers are applied.  

TABLE III 

PERFORMANCE OF THE DOUBLE-BLINDED VALIDATION OF THE QRS DETECTION ALGORITHM ON THE EVDB. 

Subject Recordsa Beatsb MATLAB Offline C code Embedded  

Se (%) P+ (%) Se (%) P+ (%) Se (%) P+ (%) 

Subject1 20 11,510 99.83 99.72 99.83 99.72 99.83 99.72 

Subject2 20 12,396 99.99 99.85 100 99.86 100 99.86 

Subject3 21 14,523 99.92 99.80 99.91 99.79 99.89 99.80 

Total 61 38,429 99.92 99.79 99.92 99.79 99.91 99.79 

a The number of records extracted from each healthy test subject.  
b The total number of beats in the evaluation period for each test subject.  

 



 
 
Fig. 7. Illustration of performance on three challenging cases from the 

eTDB: (a) Sudden onset of tachycardia, (b) AF with VEBs, and (c) sudden 

change in amplitude. The top plot in each subfigure is one channel of raw 
ECG. The amplitude is illustrated in analog-to-digital counts (ADC). The 

bottom plot in each subfigure is the final feature signal (blue line) together 

with Thigh and Tlow (red lines). The green circles indicate QRS positions 
detected using Thigh (mode 1), the black circles indicate QRS positions 

detected during search back (mode 2), and the magenta circles indicate 

QRS complexes detected using Tlow (mode 3).  

 

 Fig. 7 (a) illustrates two interesting issues: 1) Very 

pronounced P-waves with high slopes, and 2) a run of 

SVEBs/sudden tachycardia onset. It is observed that all 

QRS complexes are correctly detected by the algorithm. 

This is obtained through a timely initiation of the search 

back procedure for all QRS complexes in the SVEB run 

with amplitude lower than Thigh (indicated by black 

circles).  This illustrates the high adaptability of the search 

back initiation in this algorithm. It is furthermore observed 

that the QRS complexes after the SVEB run are detected 

using Tlow in the third algorithm mode (magenta circles). 

This occurs because it requires some time to adapt to the 

slower heart rate by decreasing the sensitivity of the search 

back procedure again. The pronounced P-waves are also 

observed in the final feature signal. In cases using Thigh, this 

is not problematic. In cases using the search back procedure 

or Tlow, this could induce false detections of the P-wave 

when they exceed Tlow. However, the localization block is 

observed to correctly prevent false detections of the P-wave 

for all QRS complexes. 

Fig. 7 (b) illustrates a case of AF with VEBs. The VEBs 

are wider, and therefore less pronounced in the final feature 

signal. This is, again, not problematic due to timely 

initiation of the search back procedure in the VEB positions 

(black circles). It is furthermore observed that the normal 

beats after two of the VEBs are detected in the third 

algorithm mode (magenta circles). In these two cases, the 

algorithm thus proves to function exactly as intended. At 

fourteen seconds, one QRS complex is detected using the 

search back mode even though the amplitude exceeds Thigh. 

This is due to a very sensitive search back that is initiated 

on the rising slope of the QRS complex. The localization 

block is then initiated from the search back procedure and 

ensures correct localization of the QRS complex. The high 

search back sensitivity for this recording is caused by the 

characteristic irregularity of the RR intervals that is 

observed during episodes of AF.  

Fig. 7 (c) illustrates the performance during a sudden 

change in amplitude. It is observed how Thigh is quickly 

adapted to the new level of the QRS complexes. Even in the 

meantime, no QRS complexes are missed due to the correct 

functionality of the search back procedure. This feature of 

the algorithm is very important in real-life clinical 

applications where patients would wear the ePatch during 

normal daily life activities for extended periods of time. 

Furthermore, it is observed that the minor muscle and 

motion artefacts present in Fig. 7 (c) does not disturb the 

automatic QRS detection.  

D.  Embedded Processing Time 

The histogram of the processing times for a real-life 

recording is provided in Fig. 8. Two distinct peaks are 

observed from the histogram. The first peak represents 

samples with a processing time between 30µs and 90µs. 

This peak corresponds to processing of a non-boundary 

sample. The smaller peak represents samples with 

processing times between 120µs and 240µs. This 

corresponds to samples lying on a two second boundary 

where all the adaptive parameters are updated. It is 

furthermore observed that no sample has a processing time 

of more than 240µs. Furthermore, 99.82% of the recorded 

samples belong to the second histogram bin. To provide a 

theoretical estimate of the worst case energy consumption, 

we therefore apply the upper limit of this bin corresponding 

to a processing time of 60µs. This implies that we expect 

the algorithm to be active in less than 3.07% of the time 

with a sampling frequency of 512Hz. This allows the 
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processor to enter sleep mode or perform other activities for 

almost 97% of the time. The typical energy consumption of 

the processor is 5.62mA. Theoretically, the algorithm thus 

uses up to 0.1726mA. During normal operation (recording, 

sampling, storage etc.) the ePatch sensor uses 3.125mA. 

This implies that the algorithm causes a theoretical worst 

case increase in the energy consumption compared to the 

normal ePatch sensor activity of 5.5%. This corresponds to 

a decrease from a maximum recording time of 80 hours to a 

maximum recording time of 75.8 hours using a 250mAh 

battery.  

 

 
 
Fig. 8. Histogram of the embedded algorithm processing time for each 

sample in a real-life recording of 2.3 hours. The x-axis indicates the center 

value of each histogram bin. This implies that the first bin contains 
samples with a processing time of 0-30µs, the second bin contains samples 

with a processing time of 30-60µs etc.  

IV. DISCUSSION 

On the MITDB, we obtained a sensitivity and positive 

predictivity of 99.90% and 99.87%, respectively. This 

performance is definitely comparable to the best results 

obtained in the literature (see Table II). These results [13], 

[14] are, however, not obtained by an embedded algorithm 

that have been tested in real-life situations. When compared 

to other embedded algorithms [6], [10], [15] the 

performance obtained by our novel algorithm is slightly 

superior. The sensitivity with respect to detection of 

abnormal beat morphologies was unfortunately not stated 

by the other authors, which makes comparison impossible. 

However, we consider our detection sensitivity with respect 

to VEBs and SVEBs to be very high. This is especially 

relevant if the algorithm is intended to be applied in a 

clinical setting. In a clinical setting, it can be imagined that 

the automatic QRS complex detection algorithm works as a 

pre-processor or initiator of a beat or event classification 

procedure. This could be highly relevant in applications like 

tele-monitoring, “admission” of patients in their own home, 

or rehabilitation programs. Reliable products that can 

manage tasks like these could highly increase the diagnosis 

and treatment of many different groups of patients.  

On the EDB, we obtained a sensitivity and positive 

predictivity of 99.84% and 99.71%, respectively. As 

observed from Table II, this performance is slightly 

superior to the other algorithms from the literature. It 

should furthermore be noted that this database was used 

only as a validation database. This implies that the 

algorithm design and parameter selection was not changed 

prior to the processing of this database. This result can thus 

provide a relatively realistic impression of the performance 

on unseen ECG signals with different types of abnormal 

beat morphologies from a large number of different 

patients.  

The sensitivity (Se = 99.88%) on the eTDB is also 

considered to be very high. The positive predictivity (P
+
 = 

99.37%) is, however, slightly lower than for the other 

databases. This is primarily caused by low P
+
 in two 

records from the same patient. These records contain ECG 

data of relatively poor quality. The rhythm is AF, and the 

fibrillating “P-waves” are very pronounced compared to the 

QRS complexes. These records were, however, included in 

the study to ensure that the parameter optimization would 

be more realistic.  

Furthermore, the performance in the double-blinded 

validation of the embedded algorithm is also considered 

superior (Se = 99.91% and P
+
 = 99.79%). This 

demonstrates how the algorithm can obtain a high 

performance throughout a long-term recording with 

artefacts from normal daily life activities. Furthermore, 

there is no significant difference between the performances 

of the three implementations of the algorithm.  

From the literature it is observed that especially the 

wavelet decomposition method has been investigated with 

good performance in a high number of studies. The 

difference equations for implementation of the commonly 

applied a trous wavelet scheme can be found in [10]. The 

computational complexity of the proposed novel cascade of 

filters is similar to the traditional a trous wavelet 

decomposition. However, using the wavelet decomposition, 

the relevant frequencies of the QRS complex is often 

divided across several wavelet detail sub-bands. Therefore, 

a combination of the information in several different sub-

bands is usually required when applying the wavelet 

technique [7]–[14]. This combination of information 

requires additional computations. Furthermore, the 

application of the wavelet transform often requires 

additional blocks after the wavelet decomposition to obtain 

satisfactory enhancement of the QRS complexes or to 

confirm a QRS candidate. This includes for instance 

calculation of maximum-minimum-difference [7], 

confirmation of zero-crossings [8], multiplication of detail 

coefficients from selected scales [9], [10], denoising of 

wavelet output [10], detection of modulus-maxima 

exceeding thresholds in several detail bands [11], [12], 

calculation of area-curve length [13], [14], normalization 

using standard deviation [14], and non-linear exponential 

amplification of the feature signal [14]. These additional 



algorithm steps decrease the computational efficiency of the 

algorithms.  The desired low computational burden 

associated with our algorithm is obtained partly by the 

novel cascade of simple FIR filters. The output from these 

filters is a feature signal that is smooth enough to allow 

direct detection of QRS complexes using only two adaptive 

thresholds. However, it should be noted that many studies 

have also obtained high performance in P- and T-wave 

delineation using the wavelet transform. If the intended 

application requires this delineation, it should therefore be 

investigated whether the decreased computational load in 

our QRS complex detection algorithm might be out 

weighted when P- and T-wave delineation is included. 

However, the influence of this depends highly on the 

intended application of the QRS complex detection 

algorithm and the features selected for subsequent potential 

arrhythmia and event classification.      

The application of two adaptive thresholds and timely 

initiation of the search back procedure is another advantage 

of our algorithm. This design decreases algorithm 

sensitivity with respect to detection of noise events without 

decreasing the sensitivity with respect to detection of 

abnormal beats. The idea of increasing algorithm sensitivity 

when irregular RR intervals is observed was already 

suggested by [6]. However, we propose a different solution 

where the algorithm sensitivity is increased directly by fast 

adjustments of RRmax instead of decreasing the detection 

thresholds. This method increases the likelihood of 

detecting premature beats. Using this method, it is possible 

to obtain high clinical detection performance without 

application of computationally costly thresholds.   

The superior performance of the algorithm observed from 

the challenging, but clinically very relevant cases in Fig. 7 

is promising. Furthermore, the performance in the double-

blinded validation and on the standard databases is 

considered very high. This high clinical performance is 

obtained using an algorithm that is simple enough for 

embedded real-time implementation in the ePatch sensor. 

This is also illustrated in Fig. 8: 99.82% of the samples are 

processed in less than 60µs. Even every two seconds when 

a boundary is reached and the adaptive algorithm 

parameters are updated, the maximum processing time is 

240µs. This feature is very attractive since it allows the 

processor to enter “sleep” mode and hereby save energy. 

Furthermore, it leaves valuable overhead for the recording 

functionality and processing of other potential embedded 

algorithms in future applications.  

It should be noted that future work could include specific 

noise stress tests of the algorithm. In our study, we include 

artefacts from normal daily life activities (especially in the 

eVDB), but the investigation of algorithm performance 

during specific types and amounts of artefacts could be 

further investigated. In extremely noisy data segments there 

is always a risk of obtaining a high number of FP or FN 

detections. In extreme cases, this might disturb the adaptive 

parts of the algorithm. This might in extreme cases, 

exacerbate a poor performance. This could be accounted for 

in future versions of the algorithm. This improvement could 

for instance include a pre-qualification of the signal quality 

that could decide whether the adaptive parameters should 

be updated, or it could include hard boundaries on the 

adaptive parameters. A compensation for this could 

furthermore include a possibility of resetting the adaptive 

parameters when it is detected that the previous data 

segment was very noisy. However, the amount of noise 

needs to be very pronounced for a longer period of time 

before this becomes problematic.  

It should also be noted that the algorithm can produce 

some FP detections during episodes of AF if the baseline is 

very influenced by the unorganized electrical activity of the 

atria. Due to the placement of the ePatch, this atrial activity 

during episodes of AF is sometimes very pronounced on 

ECG recorded with the ePatch. This is actually expected to 

be an advantage for heart rhythm analysis, but it might 

increase the difficulty of automatic QRS complex detection. 

However, a few false detections during episodes of AF are 

not expected to disturb subsequent automatic rhythm 

analysis and automatic classification of AF versus other 

heart rhythms. The characteristic irregularity of the RR 

intervals during AF is still expected to be clearly observed 

in case of a few false positive detections.  

Our overall impression is that this novel algorithm is very 

relevant in clinical applications. The high performance on 

both normal and abnormal beat morphologies and the 

possibility of embedded implementation opens possibilities 

of real-time monitoring of clinically relevant parameters 

like heart rate, rhythm analysis, and detection of cardiac 

events on patients outside the hospital.   

V. CONCLUSION 

We have designed a computationally efficient algorithm 

for real-time automatic QRS complex detection. The 

performance of the algorithm has been validated on ECG 

signals from two large standard databases and two private 

ePatch databases (MITDB: Se=99.90%, P
+
=99.87, EDB: 

Se=99.84%, P
+
=99.71%, eTDB: Se=99.88%, P

+
=99.37%, 

and eVDB: Se=99.91%, P
+
=99.79%). Together, these four 

databases contain a high number of abnormal beat 

morphologies, normal sinus rhythm with different 

ventricular frequencies, and different amount of artefacts 

originating from daily life activities. The performance of 

the algorithm is thus considered high enough for clinical 

application of the embedded algorithm in the ePatch ECG 

recorder. The implementation of automatic ECG analysis 

functionality in small wearable patch type ECG recorders is 

expected to highly increase the possibilities of early 

diagnosis, timely treatment, and regular follow-up on 

patients with life threatening heart diseases like AF.   
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I. INTRODUCTION 

 

Abstract—Recently, new patch type electrocardiogram 
(ECG) recorders have reached the market. These new devices 
possess a number of advantages compared to the traditional 
Holter recorders. This forms the basis of questions related to 
benefits and drawbacks of different ambulatory ECG 
recording techniques. One of the important questions is the 
ability to obtain high clinical quality of the recordings during 
the entire monitoring period. It is thus desirable to be able to 
obtain an automatic estimate of the global quality of entire 
ECG recordings. The purpose of this pilot study is therefore to 
design an algorithm for automatic classification of entire ECG 
recordings into the groups “noisy” and “clean” recordings. 
This novel algorithm is based on three features and a simple 
Bayes classifier. The algorithm was tested on 40 ECG 
recordings in a five-fold cross validation scheme and it obtained 
an average accuracy of 90% on the test data.  

Realistic long-term electrocardiogram (ECG) recordings 
will always contain certain amounts of artifacts including 
muscle artifacts, baseline wandering, electrode motions, and 
power line interference. This has been an unavoidable 
premise since the development of the first Holter recorders in 
the 1940s. The artifacts arise partly from normal daily life 
activities that neither can nor shall be avoided during the 
long-term recordings. The levels of noise in long-term Holter 
recordings have been silently tolerated, and automatic 
assessment of the general signal quality of Holter recordings 
has only obtained limited research efforts. This acceptance of 
the quality level is partly related to the previous lack of 
competitive devices. Recently, new cable-less patch type 
ECG recorders have reached the market [1], [2], [3]. These 
new devices possess a number of advantages compared to the 
traditional Holter recorders. These advantages include much 
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higher patient comfort and compliance with wearing the 
system for extended periods of time. The extended 
monitoring period (up to 14 days for one device) has shown 
to result in the detection of more significant arrhythmias, an 
overall higher diagnostic yield, and a higher degree of 
definitive diagnosis based on the ambulatory recordings [1], 
[2]. However, questions concerning the long-term stability of 
the obtained signal quality using closely spaced recording 
electrodes have also been raised in the literature [4]. These 
new technologies thus form the basis of questions related to 
benefits and drawbacks of different ambulatory ECG 
recording techniques. This highly increases the relevance of 
research into areas related to automatic quantification of the 
clinical recording quality obtained using different techniques. 
Furthermore, the new technologies allow for recording of 
previously unknown amounts of data that need analysis. If 
the quality of the increased amount of data is not controlled, 
it might overwhelm the healthcare facilities and decrease the 
efficiency. This issue was also addressed by the Physionet 
Challenge from 2011, where participants should classify 10 
seconds 12-lead ECG signals into the two groups acceptable 
and unacceptable [5]. In Denmark, long-term ECG 
recordings are analyzed by highly experienced nurses. They 
create the analysis reports for the referring medical doctor. 
These highly trained ECG technicians are accustomed to 
recognize disturbances as noise, and conduct the 
interpretation on clean data segments. However, when the 
general signal quality of a recording is decreased enough to 
interfere with the clinical interpretation and thus induces 
uncertainty about the analysis, the nurses write remarks of 
this in the analysis reports. It is highly relevant to design 
automatic algorithms that can mimic these subjective 
comments on noise levels in entire ECG recordings. The 
purpose of this pilot study is thus to design an algorithm that 
can distinguish between entire ECG recordings that are 
essentially noisy or essentially clean. To the best knowledge 
of the authors, this is the first study investigating automatic 
noise classification of entire ECG recordings.  

II. METHODOLOGY 

A. Data Description 
We decided to use ECG data from an existing database 

recorded with the CE marked DELTA ePatch system that 
records two ECG channels with a sampling frequency of 512 
Hz and an analog-to-digital converter (ADC) resolution of 12 
bits [3]. The ePatch system is illustrated in Fig. 1. This pilot 
study includes 20 noisy recordings and 20 clean recordings. 
The data was extracted from a database of patients that 
underwent an ambulatory polysomnography at Glostrup 
Hospital as a part of diagnosing potential obstructive sleep 
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TABLE I.  DEMOGRAPHIC INFORMATION FOR EACH GROUP. 

 Noisy Recordings Clean Recordings 

Age (mean ± std) 53.6 ± 12.9 years 50.4 ± 13.9 years 

Gender 17 males, 3 females 15 males, 5 females 
Recording length  
(mean ± std) 19.3 ± 2.0 hours 19.3 ± 1.5 hours 

 

apnea. The demographic from each group is provided in 
Table I. Each of the recordings was analyzed by experienced 
ECG technicians using the automatic myDarwin software [6]. 
The noisy recordings were extracted as random recordings 
from the database where the ECG technician conducting the 
analysis included any comments on bad recording quality in 
either one or both channels. To ensure inclusion of both very 
clean and normal recordings, the 20 clean recordings were 
extracted as five random recordings with remarks on good 
quality and 15 random recordings without remarks on 
quality. This database thus allows for a top-level 
classification of entire recordings that only contains small 
non-disturbing amounts of noise and recordings that contain 
noise to an extent where the ECG technician felt enough 
insecure due to noise to make remarks in the analysis report. 
In some recordings, the system was obviously detached from 
the patient before the end of the data file. This is especially 
pronounced in the clean recordings, whereas it is difficult to 
judge in many of the noisy recordings. The length of all clean 
recordings was therefore defined by visual inspection of the 
recorded data. 

B. Algorithm Overview 
The algorithm consists of two steps: Feature extraction 

and classification. The algorithm output is a classification of 
entire two-channel ECG recordings into one of the two 
groups “noisy” and “clean” recordings. The algorithm applies 
three different features that are designed to describe some of 
the characteristic differences between a clean and a noisy 
ECG signal. The features are generally based on measuring 
the amount of time where the recording is noisy based on 
simultaneous information from both ECG channels.  

C. Feature Extraction 
The first feature, F1, describes the amount of saturation in 

the signal. Saturation is not intended in a clean ECG signal. 
The feature is defined by (1), where j indicates the channel 
number, N is the total length of the recording in samples, xj is 
the j’th ECG channel, “logical” is the value 1, when the 
expression is true, and 0 otherwise, “|” is the or operator, α is 
the maximum possible ADC value (12 bit resolution, α = 
4095), and β is the minimum possible ADC value (β = 0).  

 𝐹𝐹1 = 1
𝑁𝑁
∑ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗 (𝑛𝑛) =  𝛼𝛼 | 𝑥𝑥𝑗𝑗 (𝑛𝑛) =  𝛽𝛽�𝑁𝑁

𝑛𝑛=1
2
𝑗𝑗=1  (1) 

The second feature, F2, is a measure of the general mean 
value of the absolute value of the raw ECG signal in non-
overlapping one minute windows. In a clean ECG signal, 
most samples are expected to obtain a low value 
corresponding to the isoelectric line between the T-waves and 

the P-waves. A noisy segment, on the other hand, will 
typically contain a certain amount of samples that are 
significantly different from (numerical higher than) the 
expected isoelectric line. The mean value of a clean ECG 
signal is thus expected to be lower than the mean value of a 
noisy ECG signal with the same heart rate (HR). It is 
extremely important to scale the signal to attenuate the 
influence of the general amplitude in the recording. The 
amplitude can vary significantly between recordings, and 
even within the same recording. A scaling parameter is 
therefore calculated for each of the non-overlapping one 
minute windows. The scaling parameter was found by 
dividing each one minute window into 30 new equally sized 
non-overlapping windows. The scaling parameter was set to 
the median value of the maximum value in each of the 30 
small windows. This scaling parameter is expected to 
estimate the general amplitude of the QRS complexes in the 
current one minute window, and is thus expected to scale the 
absolute value of the ECG signal between 0 and 1. The 
scaling is illustrated in Fig. 2(b)-(c). It is observed how this 
novel scaling technique allows a measurement of the noise 
level relative to the individual QRS amplitude for each 
window. For each channel, the temporary feature, F2,temp,j is 
thus calculated by (2), where m is the one minute window 
number, sj is the scaling parameter, Q is the number of 
samples in each one minute window, and ”| |” is the absolute 
value operator. This corresponds to the mean value of the 
signal in Fig. 2(c). Fig. 2(d) illustrates F2,temp,1 for the entire 
duration of a noisy and a clean recording.  

 𝐹𝐹2,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑗𝑗 (𝑚𝑚) =  1
𝑠𝑠𝑗𝑗 (𝑚𝑚 )∙Q

∑ |𝑥𝑥𝑗𝑗 (𝑞𝑞)|𝑄𝑄
𝑞𝑞=1  (2) 

The final feature, F2, is then calculated as the sum of the 
percentage of one minute windows from each channel, where 
F2,temp,j exceeds a predefined threshold, T2. This is defined in 
(3), where M is the total number of one minute windows. The 
threshold value was set to 0.2 by visual inspection of 
illustrations similar to Fig. 2(d). 

 𝐹𝐹2 =  1
𝑀𝑀
∑ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙{ 𝐹𝐹2,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑗𝑗 (𝑚𝑚) > 𝑇𝑇2}𝑀𝑀

𝑚𝑚=1
2
𝑗𝑗=1  (3) 

The third feature, F3, is a measure of the number of 
significant signal peaks in each of the one minute windows. 
The assumption in this feature is somehow similar to the 
assumption in F2: There will be more significant signal peaks 
in a noisy segment than a clean segment. A significant signal 
peak is defined as any sample that obtains higher amplitude 
than the three preceding samples and the three subsequent 
samples. The detection of significant signal peaks is 
illustrated for a noisy and a clean ECG segment in Fig. 2(a). 
The number of peaks in channel 1 in each window is 
illustrated for the entire duration of the two recordings in Fig. 

Figure 1 

Figure 1. (a) Illustration of the ePatch system correctly placed at the 
sternum. (b) Illustration of the ePatch sensor and the ePatch electrode before 
assembly. The two ECG channels are recorded as bipolar derivations from 
the three skin contact points within the ePatch electrode. Modified from [3].  
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2(e). The final feature is calculated from (4), where T3 is a 
threshold, and Pj is the number of significant signal peaks in 
channel j. The threshold was set to 2000 by visual inspection 
of illustrations similar to Fig 2(e).  

 𝐹𝐹3 =  1
𝑀𝑀
∑ ∑ 𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜{ 𝑃𝑃𝑗𝑗 (𝑚𝑚) > 𝑇𝑇3}𝑀𝑀

𝑚𝑚=1
2
𝑗𝑗=1  (4) 

D. Classification 
For this pilot study, different types of discriminant 

functions were investigated for the classification task.  We 
decided to use a simple Bayes classifier that is known to have 
high performance with low computational costs. A diagonal 
covariance matrix is applied, corresponding to assuming that 
the features are non-correlated. The discriminant function, di, 
is thus calculated according to (5), where ∑i is the covariance 
matrix of class i, “ln” is the natural logarithm operator, pi is 
the prior probability of class i (p1 = p2 = 0.5), µi is the mean 
vector of the feature vectors from class i in the training data, 
y is the feature vector to be classified (y = [F1, F2, F3]), and c 
is a constant equal to the natural logarithm of the determinant 
of the class covariance matrix, ∑i. 

 𝑑𝑑𝑖𝑖(𝒚𝒚) = − 1
2

(𝒚𝒚 − 𝝁𝝁𝒊𝒊)𝑇𝑇 ∑ (𝒚𝒚 − 𝝁𝝁𝒊𝒊)−1
𝑖𝑖 + ln(𝑝𝑝𝑖𝑖) + 𝑐𝑐 (5)  

The feature vector under classification, y, is then 
classified to the class obtaining the highest value of di. The 
signal processing was conducted in MATLAB R2013b, and 
the classification was implemented using the build-in 
function “classify” with the option “diagQuadratic”.  

III. RESULTS 

The algorithm performance was evaluated as the 
sensitivity (Se=TP/(TP+FN)), specificity (Sp=TN/(TN+FP)), 
and accuracy (Acc=(TP+TN)/(TP+TN+FP+FN)), where TP 
is the number of clean recordings correctly classified as clean 
(true positive), TN is the number of noisy recordings 
correctly classified as noisy (true negative), FN is the number 
of clean recordings wrongly classified as noisy (false 
negative), and FP is the number of noisy recordings wrongly 
classified as clean (false positive). Due to the intermediate 
number of recordings in this pilot study, the performance was 
evaluated by a five-fold cross validation. Each fold consists 
of training the classifier on 32 recordings (16 from each 
class), and testing the performance of the obtained classifier 

Figure 2. Illustration of feature calculation for a noisy and a clean recording (left and right panel, respectively). (a) Illustration of the raw ECG from channel 
1 without any filtering. However, the DC value corresponding to 211 (12 bit resolution) is removed to center the signal on 0. This raw ECG is applied for the 
calculation of F2 and F3. The green lines in the bottom indicate the samples where significant signal peaks were detected for F3. (b) Calculation of the scaling 
parameter. The green lines indicate the maximum value in each two second window, and the red lines indicate the resulting scaling parameter for the current 
one minute window. (c) Scaling of the signal according to the scaling parameter. The green lines indicate the value of F2,temp,j for the current one minute 
window, and the red lines indicate the threshold, T2. It is observed that F2,temp,1 is above T2 for the noisy segment and below for the clean segment. (d) The 
value of F2,temp,j for the entire duration of the signals. The red lines indicate T2.  (e) The number of detected signal peaks in each one minute window 
throughout the entire recordings. The red lines indicate T3. The green marks in (d)-(e) indicate the position of the example illustrated in (a)-(c). The 
calculated feature values for each recording are also provided in (d)-(e). The value of F1 is 0.015 and 0.000 for the noisy and clean recording, respectively. 
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TABLE II.  PERFORMANCE EVALUATION. TRAINING: *. TEST: ¤. 

 Se* Sp* Acc* Se¤ Sp¤ Acc¤ 

Fold 1 93.8% 81.3% 87.5% 100% 75% 87.5% 

Fold 2 93.8% 87.5% 90.6% 75% 100% 87.5% 

Fold 3 93.8% 87.5% 90.6% 100% 75% 87.5% 

Fold 4 93.8% 93.8% 93.8% 100% 75% 87.5% 

Fold 5 93.8% 75.0% 84.4% 100% 100% 100% 

Average 93.8% 85.0% 89.4% 95% 85% 90% 

 

on the remaining eight recordings. The training and test 
performances for each fold, as well as the average 
performances are provided in Table II.  

IV. DISCUSSION 

The proposed novel algorithm is capable of obtaining an 
average accuracy of 90% on the test data. This is considered 
a high clinical performance. It should be stated that this high 
performance is obtained on clinically relevant ambulatory 
ECG recordings acquired from real patients in their homes. 
This was chosen to ensure a realistic amount of abnormal 
heart rhythms and beat morphologies. It is, of course, very 
important to ensure that automatic noise classification 
algorithms will not classify a recording with a high number 
of abnormal beat morphologies as noisy. The general HR, 
non-disturbing baseline wandering, and different P- and T-
wave morphologies might affect the values of F2 and F3. This 
was not accounted for in the calculation of the features in this 
pilot study. Further improvements of the algorithm might 
include adjustments to account for these issues. The values of 
T2 and T3 were furthermore found by visual inspection. The 
overall performance of the algorithm depends on the 
performance of these thresholds, and the overall performance 
might therefore be increased, if the threshold values were 
corrected using a proper parameter optimization method, e.g. 
Receiver Operator Curves (ROCs). Furthermore, some of the 
algorithm parameters (e.g. α and β), should be adjusted to 
different recording devices with different front-end 
specifications. However, the novel adaptive scaling of the 
ECG signal before calculation of F2 ensures the possibility of 
a global T2 value that is not neither patient nor device 
dependent. Due to the high clinical performance of the 
algorithm, this novel approach to quantification of noise 
levels in entire ECG recordings is expected to be very useful 
in many different applications in the future. It is extremely 
important to gain solid knowledge related to the benefits and 
drawbacks of the new technologies for long-term ambulatory 
ECG monitoring in different situations. Choosing the right 
device in each application can increase the diagnostic yield 
and decrease the burden on the patients and the healthcare 
facilities. An automatic classification of entire ECG 
recordings provides the possibility of an objective and fast 
assessment of the clinical quality of a high number of ECG 
recordings acquired using the different technologies. This 
could provide important information to answers related to the 
benefits and drawbacks of the new technologies. Another 
application scenario is related to pre-screening of recordings 
before the manual analysis. If a specific recording is 
classified as being very noisy, it might be beneficial to 
exclude the recording from manual analysis to increase the 
efficiency of the healthcare facilities. Furthermore, the 
algorithm is designed using very simple features that can be 
efficiently calculated in real-time. This could allow for future 
embedded implementation of the algorithm in the patch type 
ECG recorders. This could be imagined to provide a real-time 
estimate of the recorded signal quality, and allow prober 
actions to increase the quality if the recording quality is 
generally too low, or if the quality suddenly decreases during 
a recording. Another approach to noise estimation is using a 
shut-down algorithm. The shut-down approach might provide 
a percentage of analyzable data, but this does not necessarily 
directly translate to an estimate of the general quality of the 

entire recording: It is extremely difficult from an engineering 
point of view to determine the specific types, amounts, and 
duration of artifacts that might interfere with the clinical 
interpretation of a signal. The shut-down approach might be 
less sensitive to long periods of data with relatively poor 
quality that would not trigger the detection of an artifact 
event, but that would still impose difficulties in the 
interpretation of the recorded ECG signal. We therefore find 
it highly relevant, not only to attempt to detect the noise 
events, but also to provide an overall estimate of the quality 
of entire ECG recordings. Future work might include 
dividing the recording into smaller segments, and for instance 
disregard data based on an hour basis instead of the entire 
recording. It should, of course, also be stated that the 
algorithm performance might be further improved by 
exploring new features, adaptive thresholds, and more 
advanced classification schemes. Furthermore, the algorithm 
should be tested on a larger database to confirm the 
performance in the general population and in ECG signals 
with a higher variety of abnormal beat morphologies.  
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 

Abstract— Objective: The advantages of novel patch type 

electrocardiogram (ECG) recorders are irresolvable conditioned 

by the assurance of the ability to obtain high-quality diagnostic 

ECGs throughout the recording period. The purpose of this 

study was therefore to investigate the percentage of analyzable 

time achieved in ECG recordings obtained with a novel patch 

type recorder. Methods: First, we designed a novel algorithm for 

automatic estimation of the percentage of analyzable time in 

ECG recordings. This algorithm was then applied to a large 

database with patch ECG recordings obtained from 250 different 

patients. The patient population was selected to ensure a high 

representation of both arrhythmia events and normal daily life 

activities. Results: We found that 10% of the 250 recordings 

obtained <10% analyzable time. These recordings where 

considered as incorrect measurements. The median and mean 

analyzable time of the remaining 225 recordings were found to be 

100% (interquartile range: 97.9% - 100%) and 92.4±18.8%, 

respectively. Furthermore, 83.6% of the 225 recordings obtained 

an analyzable time equivalent to ≥22 hours/day. Conclusion: We 

found the analyzable time in the patch recordings to be high. 

This indicates that the many advantages of the patch ECG 

recorders are not counterbalanced by low signal quality. 

Significance: Our findings add to the limited knowledge about 

the diagnostic quality obtained in clinical long-term patch ECG 

recordings.    
 
Index Terms— analyzable time in patch ECG recordings, 

automatic ECG quality estimation, ePatch ECG recorder, quality 

of patch ECG recordings.  
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I. INTRODUCTION 

HE implementation of patch type electrocardiogram 

(ECG) recorders is expected to revolutionize the field of 

ambulatory ECG monitoring. However, outpatient ECG 

monitoring remains to be sensitive to artefacts arising from 

daily life activities that neither can nor shall be avoided during 

long-term recordings. It has been questioned whether the short 

inter-electrode distance necessary in patch designs can resist 

the influence of these artefacts and record satisfactory high 

quality ECG signals throughout the entire monitoring period 

[1]. It is therefore highly important to investigate the actual 

analyzable time in patch ECG recordings. Only few studies in 

the literature have addressed this important area. One study 

states that they obtained a median analyzable time of 99% 

(interquartile range: 94% to 99%) and that 87.1% of the 

patients obtained an analyzable time equivalent to ≥22 

hours/day using a patch type ECG recorder [2]. Another 

recently published study showed that 69% of data recorded by 

another patch type ECG recorder during different activities 

were of at least moderate quality [3]. The purpose of this study 

was to add to the limited knowledge about the signal quality 

obtained using patch type ECG recorders. In order to achieve 

this, we have designed a novel algorithm for automatic 

estimation of the percentage of analyzable time (PAT) in ECG 

recordings. The first part of this paper thus describes the 

design and validation of our novel quality estimation 

algorithm, whereas the second part describes the application of 

the algorithm to gain knowledge about the overall PAT for a 

high number of ECG recordings acquired with the DELTA 

ePatch ECG recorder illustrated in Fig. 1. 

 
Fig. 1. Illustration of the ePatch sensor, the ePatch electrode, and the correct 

placement of the ePatch on the sternum. Modified from [4] and [5]. The CE 

marked ePatch applied in this study records two ECG channels with a 
sampling frequency of 512 Hz and a resolution of 12 bits. The ePatch system 

is further described in [5].      

A. Literature on Automatic ECG Quality Assessment 

Our group recently suggested an approach to classification 
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of entire long-term patch ECG recordings into the two groups 

“bad” (defined as recordings were the analyzing ECG 

technician made comments on poor quality) and “good” 

(defined as recordings with comments on high quality or no 

comments on quality) [4]. However, to our knowledge, this is 

the first paper describing an algorithm designed specifically 

for estimation of the overall PAT in ambulatory ECG 

recordings, and hereby providing a continuous score of the 

obtained signal quality. Many of the published papers in the 

field of automatic ECG quality assessment are related to the 

Physionet Challenge from 2011. In this challenge, 10 second 

12-lead ECG recordings should be classified as “acceptable” 

or “non-acceptable”. The original challenge obtained a high 

number of participants of which nine groups achieved an 

accuracy of 90–93.2% on unknown test data [6]. Generally, 

the existing quality assessment algorithms can be divided into 

two steps: The feature extraction step and the classification 

step. The underlying assumptions in the feature design step 

can be further divided into three different paradigms. The first 

paradigm aims at designing individual features for detection of 

specific artefact types. This could include features designed 

for detection of missing leads or flat lines [7]–[11], detection 

of peak or spike artefacts [10], [11], detection of power line 

interference [7], [10], detection of baseline wandering [7], [9], 

[10], or detection of muscle artefacts [7], [10]. The second 

paradigm includes features designed to capture general 

statistical differences between clean and noisy ECG segments. 

Examples of these features include skewness [9], kurtosis [9], 

[12], Shannon entropy [13], mean value [13], and variance 

[13]. The third paradigm includes features designed to 

recognize the characteristic appearance of a clean ECG 

segment. This includes features like comparison of multiple 

automatic beat detection algorithms [9], [12], beat detection 

comparison in different leads [9], [12], regularity of detected 

QRS complexes [11], and the relative spectral power in the 

region of the QRS complexes (5-14 Hz) [8], [9], [12]. Using 

the first feature extraction paradigm, the performance of the 

algorithm is naturally limited by the types of artefacts that are 

accounted for in the feature design phase. The generalization 

of the algorithm therefore highly depends on representation of 

sufficient amounts of all likely artefacts in the training 

database. This issue might be further increased when the 

classification is based on empirically found thresholds applied 

to each feature individually [10], [11], [13]. This methodology 

excludes information about decreased quality caused by 

simultaneous influence of small amounts of several different 

types of artefacts. It is therefore not surprising that some of the 

highest classification accuracies were obtained by more 

sophisticated classifications schemes, e.g. the matrix of 

regularity defined by [8] or the support vector machine (SVM) 

and the multi-layer perceptron neural network investigated by 

[9]. We therefore decided to base our algorithm on features 

extracted using the second and third paradigm and an SVM 

classifier.  

II. METHODS AND PROCEDURES 

To allow estimation of the overall PAT, we divided the 

long-term recordings into several smaller non-overlapping 

segments and automatically assigned each of these segments 

to one of the two classes “analyzable” (class I) or “non-

analyzable” (class II). As illustrated in Fig. 2, this procedure 

facilitates easy evaluation of the overall PAT.  

 
 

 
 

 
Fig. 2. The long-term recordings were divided into smaller non-overlapping 

segments, i. Each segment was then classified as being either analyzable 
(class I) or non-analyzable (class II) using our proposed quality assessment 

algorithm. The algorithm is based on three features and an SVM classifier. 

The input to the quality assessment algorithm is a two-channel ECG segment, 
and the output is an assignment to one of the two classes. For the calculation 

of F1 and F2, each segment was further divided into smaller analysis windows, 

m. For the calculation of F2, each analysis window was also divided into even 
smaller scaling windows, w. This segment division is further described later.  

A. Selection of Segment Length 

During ECG interpretation, the human experts (e.g. ECG 

technicians and cardiologists) are accustomed to recognize 

artefacts and conduct the interpretations based on periods with 

diagnostic ECG. This includes “looking through” short 

periods of data with even pronounced amounts of artefacts, 

and still be able to interpret the underlying heart rhythm with 

certainty. This is possible due to contextual information 

provided from periods of diagnostic ECG surrounding the 

artefact event. This implies that short periods of even very 

pronounced amounts of artefacts might not interfere with the 

clinical interpretation of the ECG. On the other hand, 

prolonged periods with apparently small amounts of artefacts 

might preclude proper clinical interpretation if the quality of 

the isoelectric line is affected. This implies that both the 

duration of a specific artefact event and the quality of the 

surrounding ECG is highly important when analyzing the 

potential clinical impact of an artefact event. It is therefore 

important to include adequate amounts of contextual 

information in each segment. In our experience, the types of 

activities that would often cause artefacts that could 

significantly impair clinical interpretations occur on the scale 

of several minutes. This could for instance include running on 

stairs, carrying shopping baskets, or exercising. We therefore 

subjectively decided to apply segments of 10 minutes. We 

found this segment length to provide a good compromise 

between including adequate contextual information (longer 

segment length) and keeping a high “resolution” of the overall 

PAT (shorter segment lengths). 

B. Feature Extraction 

All three features were designed to obtain small values 

(close to 0) for the analyzable ECG segments and high values 
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(close to 1) for the non-analyzable ECG segments. The first 

two features, F1 and F2, were designed to measure the quality 

of the important isoelectric line. These features thus fall in the 

second feature extraction paradigm described earlier. Simpler 

variations of these two features were also investigated by our 

group in [4]. The third feature, F3, was based on the 

assumption that the performance of an automatic QRS 

complex detection algorithm depends on the quality of the 

ECGs. This feature thus belongs to the third feature extraction 

paradigm. Variations of this feature was also investigated by 

[7], [9], [12]. In our implementation, an automatic QRS 

complex detection algorithm was applied to estimate R peak 

positions in each channel individually, and the similarity 

obtained between the two channels was applied for calculation 

of F3. Fig. 3 contains ECG snippets from three different ECG 

segments. The final and temporary feature values obtained for 

each segment are furthermore provided in Table I. The 

calculation of each of the stated features is described in details 

in the following sections. It should be noted that the stated 

feature values are based on the entire 10 minute duration of 

each segment and not only the illustrated snippet. This is 

especially observed from segment C, where channel II 

apparently seems more noisy than channel I in the illustrated 

snippet, but it is observed from Table I that based on the entire 

10 minute segment F1,2 < F1,1 and F2,2 < F2,1.  

 

 
Fig. 3. Illustration of three ECG snippets with different quality characteristics. 

The amplitudes are illustrated in analog-to-digital counts. Segment A and B 
were manually annotated to class I (analyzable), whereas segment C was 

manually annotated to class II (non-analyzable). The temporary and final 

feature values for each segment are provided in Table I.  

1) Calculation of F1 

The first feature, F1, provides a measure of the number of 

significant signal peaks observed in the current segment. It is 

expected that a noisy non-analyzable ECG segment obtains 

significantly more signal peaks than a clean segment. The 10 

minute ECG segment was divided into smaller analysis 

windows, m (see Fig. 2). The length of each analysis window 

was, again, a compromise between including adequate 

contextual information and obtaining a high “resolution” on 

the possible feature values. We therefore decided to apply 

analysis windows of 30 seconds, yielding a total of 20 

windows (M = 20). For each analysis window, the number of 

significant signal peaks, Pj(m), was estimated for each channel 

j. A significant signal peak was defined as any sample 

obtaining a higher value than the three previous and the three 

subsequent samples. For each channel, F1,j was calculated 

according to (1), where logical{} obtains the value 1 when the 

expression is true and 0 otherwise. The threshold, T1, was 

optimized using a parameter grid search described later. The 

final value of F1 for each segment was defined as the 

minimum value obtained from the two channels, see (2). This 

prevents the final feature value from being wrongly increased 

in cases where only one of the two channels obtains poor 

quality. An example of this is provided in Fig. 3 (Segment A). 

 

𝐹1,𝑗 =  
1

𝑀
∑ 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 {𝑃𝑗(𝑚) > 𝑇1}𝑀

𝑚=1  (1) 

𝐹1 = 𝑀𝑖𝑛{[𝐹1,1  𝐹1,2] } (2) 

 

2) Calculation of F2 

The second feature, F2, was designed as a measure of the 

mean value of the baseline-corrected, rectified, and scaled 

ECG signal. This mean value is expected to be higher for a 

noisy ECG segments that for an analyzable segment. The 

baseline was removed to avoid the influence of high P- and T-

waves and non-disturbing amounts of baseline wandering and 

electrode motion artefacts. The baseline was estimated using a 

32 point average filter. The baseline corrected ECG signal, 

ECGfilt,j was obtained by subtracting the estimated baseline 

from the raw ECG signal. Then ECGfilt,j was rectified. The 

baseline-corrected rectified ECG segment was termed 

|ECGfilt,j|. It is important to account for the known differences 

in the general amplitude in ECG recordings. A scaling 

parameter, sj(m), was therefore calculated for |ECGfilt,j|  in 

each analysis window. We decided to design the scaling 

parameter to theoretically obtain a value close to 1 in the R 

peak positions in the scaled |ECGfilt,j|. This ensures that the 

mean value estimates the noise level relative to the R peak 

amplitudes. To achieve this, each analysis window was 

divided into even smaller scaling windows, w (see Fig. 2). The 

length of each scaling window was two seconds. This implies 

that at least one QRS complex is expected in each scaling 

window. In most scaling windows, the maximum value of 

|ECGfilt,j| is thus expected to represent the amplitude of a QRS 

complex. The scaling parameter in the m’th analysis window 

was calculated as the median value of the maximum value of 

|ECGfilt,j| obtained from each of the 15 scaling windows. This 

TABLE I 

CALCULATION OF FEATURE VALUES FOR THE THREE ECG SEGMENTS 

ILLUSTRATED IN FIG. 3.  

 F1,1 F1,2 F1 F2,1 F2,2 F2 

FD/
TP 

η F3 

A 0.00 1.00 0.00 0.00 1.00 0.00 0.41 0.28 0.11 

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 

C 

0.45 0.20 0.20 1.00 0.90 0.90 0.60 0.99 0.60 
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calculation of sj(m) thus provides a reliable estimate of the 

general R peak amplitude in the m’th analysis window. The 

mean value of the scaled, rectified, and baseline-corrected 

ECG signal was calculated for each analysis window. This is 

defined in (3), where Q is the total number of samples in each 

analysis window [4]. For each channel, F2,j was then 

calculated according to (4). The threshold, T2, was optimized 

by a parameter grid search described later. As for F1, the final 

value of F2 for each segment was defined as the minimum 

value obtained from the two channels, see (5).  

 

𝜇𝑗(𝑚) =  
1

𝑠𝑗(𝑚)∙𝑄
∑ |𝐸𝐶𝐺𝑓𝑖𝑙𝑡,𝑗(𝑞)|𝑄

𝑞=1  (3) 

𝐹2,𝑗 =  
1

𝑀
∑ 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 {𝜇𝑗(𝑚) > 𝑇2}𝑀

𝑚=1  (4) 

𝐹2 = 𝑀𝑖𝑛{[𝐹2,1  𝐹2,2] } (5) 

 

3) Calculation of F3 

For the calculation of F3, the segment was not divided into 

the previously described analysis windows. The input to this 

feature is an array of R peak positions estimated from each 

ECG channel individually. We applied an automatic QRS 

complex detection algorithm designed by our group [14]. The 

algorithm was designed to obtain high performance in the 

ePatch ECG recordings. For each segment, we calculated the 

number of true positive detections (TP) and the number of 

false detections (FD). TP was defined as the number of QRS 

complexes simultaneously detected in both channels and FD 

as the number of QRS complexes only detected in one 

channel. In compliance with [15], we used a match window of 

150ms. This implies that the absolute distance between QRS 

complexes detected in channel I and channel II should not 

exceed 150ms in order for the pair of QRS complexes to be 

counted in TP. The third feature was then based on the relation 

between FD and TP (see (7)). However, this relation is 

expected to be high when either one or both channels obtain 

poor quality. This is not intended (see Fig. 3, segment A). To 

account for this, we designed a novel scaling parameter, η, 

defined by (6), where σ(x) is the variance of the elements in x, 

and RRj represents the RR interval vector for channel j. If both 

channels display the same quality (either good or poor), the 

variation between the detected RR intervals is expected to be 

similar in both channels. In this case, η will obtain a value 

close to 1, and the relation between FD and TP will not be 

altered significantly. On the other hand, when the quality is 

different for the two channels, η is expected to decrease, and 

hereby reduce the influence of a potentially high relation 

between FD and TP caused by poor quality in only one 

channel. The performance of η is observed from Table I.  

 

𝜂 =  
𝑀𝑖𝑛{[𝜎(𝑹𝑹1)  𝜎(𝑹𝑹2)]}

𝑀𝑎𝑥{[𝜎(𝑹𝑹1)  𝜎(𝑹𝑹2)]}
 (6) 

𝐹3 =  
𝐹𝐷

𝑇𝑃
 ∙  η (7) 

 

The final feature vector was then defined by (8). 

 

𝑭 =  [𝐹1  𝐹2   𝐹3] (8) 

 

The discriminative capabilities of the three designed 

features are observed from Fig. 4. This difference provides the 

foundation for an automatic classifier to obtain high 

performance in differentiating between the two classes.  

 
 

Fig. 4. Illustration of the three dimensional feature space for the ECG 

segments from the training database. The plot is thus based on feature values 
obtained from 292 diagnostic ECG segments (class I) and 58 non-analyzable 

ECG segments (class II). It is observed that most feature vectors from the 

analyzable class are located in a very small area in the three dimensional 
feature space. This is very promising for subsequent automatic classification 

between the two classes.    

C. Classification 

With inspiration from [9], we decided to apply a soft margin 

SVM with a radial basis function (RBF) kernel. A detailed 

description of the SVM classifier and the kernel trick applied 

for non-linearly separable data is available in [16]. For the 

implementation, we applied the svmtrain and svmclassify 

functions in MATLAB R2013b [17]. Since the feature values 

were designed to be approximately in the range [0; 1], no 

additional scaling was conducted prior to the classification. 

The RBF kernel parameter, γ, and the SVM soft margin 

parameter, C, were optimized using a parameter grid search 

described later. 

D. Algorithm Performance Estimation 

To ensure thorough evaluation of the algorithm 

performance, we applied five different performance measures: 

Sensitivity (Se), specificity (Sp), accuracy (Acc), negative 

predictive value (P
-
), and positive predictive value (P

+
) 

defined in (9) – (13). Positive refers to the clean segments, 

whereas negative refers to the noisy segments. Each of the five 

performance measures and their mutual relations contain 

important information regarding the ability to correctly 

classify each segment, and hereby the algorithms ability to 

provide a reliable estimate of the overall PAT.   

 

𝑆𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
∙ 100% (9) 

𝑆𝑝 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
∙ 100% (10) 

𝑃+ =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
∙ 100% (11) 

𝑃− =  
𝑇𝑁

𝑇𝑁+𝐹𝑁
∙ 100% (12) 

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∙ 100% (13) 
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E. Database Description 

To investigate the overall PAT, we applied 250 long-term 

ECG recordings extracted from four different existing 

databases. An overview of the four databases is provided in 

Table II. All patients from the Stroke Database (STRDB) were 

admitted after an episode of stroke, the Telemetry Database 

(TDB) contains recordings from patients who were admitted 

and selected for regular telemetry monitoring, the patients 

from the Cardio-Respiratory Monitoring Database (CRMDB) 

were monitored ambulant as a part of diagnosing potential 

obstructive sleep apnea, and the Fitness Database (FDB) 

contains ambulatory recordings from subjects recruited in a 

fitness study [18]. The patients from the first two databases are 

thus considered a high risk population with respect to the 

presence of abnormal heart rhythms, especially atrial 

fibrillation, whereas the recordings from the last two databases 

are expected to represent patients with a high prevalence of 

physical activity during the recording period. This database 

selection is thus expected to ensure a small overrepresentation 

of both arrhythmia events and episodes of artefacts arising 

from everyday activities. This ensures a very realistic 

investigation of the overall PAT in 24-hour ePatch recordings.  
 

1) Algorithm Design and Validation Database 

For the algorithm design and validation, we decided to 

randomly select two ECG segments of 10 minutes from each 

patient, yielding a total of 500 ECG segments. The random 

selection of segments from each patient ensures a realistic 

amount of artifacts, a realistic distribution of the types of 

artifacts (e.g. power line interference, muscle artifacts, 

electrode-motion artifacts), representation of normal sinus 

rhythm with different ventricular frequencies, and a realistic 

amount of abnormal heart rhythms and different beat 

morphologies. Each of the 500 ECG segments were manually 

annotated and assigned to one of the two classes. The 

annotation was conducted in two steps. The first step was 

designed to point out challenging segments and provide the 

final annotation of non-challenging segments. This was 

accomplished by asking three engineers with experience in 

ECG interpretation (D.B.S., L.B., and K.H) to provide an 

independent assessment of the quality of each of the 500 ECG 

segments. For all ECG segments where the three engineers 

agreed on the quality, this consensus was considered 

appropriate for the final annotation. Of the 500 segments, 

agreement between the engineers was obtained for 402 

segments. The annotation of the remaining 98 segments was 

considered more challenging. These segments were therefore 

also annotated independently by a set of doctors. All 98 

segments were annotated by two different cardiologists (K.E. 

and J.L.J.) and one of two medical doctors (A.O. or H.M.S.). 

The final annotation for the 98 segments was based on 

majority voting between the three medical annotations for 

each segment. Table II contains information about the total 

number of segments, the number of challenging segments, and 

the number of analyzable segments obtained from each of the 

four original databases.  

III. RESULTS 

A. Algorithm Parameter Optimization 

As mentioned, four algorithm parameters (T1, T2, C, and γ) 

were optimized using a grid search. The optimal value of each 

parameter depends on the value of the other parameters. We 

therefore optimized all four parameters simultaneously. To 

ensure the possibility of estimating the performance on unseen 

data, we randomly selected 30% of the patients as a validation 

group. The parameter optimization was only based on ECG 

segments from the remaining 70% of the patients (the training 

database). For each cross validation fold, 80% of the training 

data was applied to train the classifier and the performance 

was evaluated on the remaining 20%. The performance might 

depend on the random selection of the training and test data in 

the training database. To obtain a reliable estimate of the 

average performance as well as performance variations for 

each parameter combination, we therefore conducted 100 

folds with random division of the training database. For each 

parameter combination, the average and standard deviation of 

Se, Sp, P
-
, and P

+
 over the 100 folds was calculated. These 

results are provided in Fig. 5. The Acc was not applied for 

optimization since this performance measure might result in a 

biased optimization when the classes are unbalanced. We 

selected the parameter combination with the best compromise 

between the four performance measures. The performance of 

this parameter combination is indicated with a black circle in 

Fig. 5. This combination was T1 = 1200, T2 = 0.12, C = 0.7, 

and γ = 2. The performance of this parameter combination 

was: Se = 98.5±1.3, Sp = 95.0±6.5, P
+
 = 99.1±1.1, P

-
 = 

92.6±7.0, and Acc = 98.0±1.5.  

B. Performance of the Final Algorithm 

The algorithm was then retrained using all the segments in 

the training database and the selected parameter combination. 

The performance of this final algorithm on the training 

database is provided in Table III. The final algorithm was then 

applied to the unseen validation database. These results are 

also provided in Table III together with the performance of 

each human expert annotator with respect to the final manual 

annotations. 

 

TABLE II 

DATABASE INFORMATION. 

Database STRDB  CRMDB TDB FDB Total 

Patients 84 84 50 32 250 
Segments 168 168 100 64 500 

Lengtha 20.3±6.7 18.3±3.6 23.2±3.4 23.8±1.9 20.7±5.1 

Trainingb 59 59 35 22 175 
Validationb 25 25 15 10 75 

Simplec 82.7% 87.5% 69.0% 73.4% 80.4% 

Class Id 85.1% 76.2% 91.0% 92.2% 84.2% 

 a Length of the recordings in hours, stated as mean ± standard deviation. 
b The number of patients from each database that were randomly selected 

for the training and validation phase, respectively. The training and 

validation phases are further described in the section “Algorithm parameter 
optimization”.   

 c Percentage of segments with agreement between the three engineers.  

 d Percentage of analyzable segments (class I).  
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Fig. 5. Each grey point indicates the performance obtained by one of the 750 

different parameter combinations investigated. (a) Relation between average 

Sp and average P- obtained from the 100 random folds. (b) Relation between 
average Se and average P+ obtained from the 100 folds. (c) Relation between 

the standard deviation of Sp and -+ obtained from the 100 folds. (d) Relation 

between the standard deviation of Se and P+ obtained from the 100 folds. The 
black circle indicates the performance of the selected parameter combination.   

C. Analyzable Time in ePatch ECG Recordings 

The final version of the algorithm was then applied to 

estimate the overall PAT for each of the 250 patients. These 

results are provided in Fig. 6. The x-axis indicates the 

recording numbers sorted according to their overall PAT. It is 

observed that 25 recordings (10%) obtained less than 10% 

analyzable time. These recordings were considered incorrect 

measurements, and were thus not included in the overall 

statistics for the analyzable time. For the remaining 225 

recordings, the median analyzable time was 100% 

(interquartile range: 97.9% to 100%), and the mean analyzable 

time was 92.4±18.8%. Furthermore, 83.6% of the 225 

recordings obtained more than 91.7% analyzable time 

(equivalent to ≥22 hours/day). These recordings are located to 

the right of the black circle in Fig. 6.   

 

 
 
Fig. 6. Illustration of the overall analyzable time obtained in each recording. 

The analyzable time was estimated by the novel proposed automatic 

algorithm. As observed from the curve, 25 recordings (10%) obtained less 
than 10% analyzable time. The recordings to the right of the black circle 

obtained an overall analyzable time equivalent to ≥22 hours/day.  

IV. DISCUSSION 

This study is the first study to investigating the overall 

analyzable time in ECG recordings obtained with the novel 

DELTA ePatch recorder and compares this to published 

analyzable times of other similar devices.  However, the 

reliability of the estimated signal quality score highly depends 

on the performance of the designed algorithm. Therefore the 

performance of the algorithm is discussed first, and then the 

general signal quality of the patch recordings is discussed.    

A. Algorithm Performance 

The performance of our novel algorithm on the unseen 

validation data was Se = 98.4%, Sp = 95.2%, P
+
 = 99.2%, P

-
 = 

90.9%, and Acc = 98.0%. For comparison, the highest Acc 

obtained on test data in the original Physionet challenge was 

93.2% [6]. Our algorithm thus obtains much better Acc. 

However, care should be taken when comparing Acc on 

different unbalanced databases. Furthermore, the Acc does not 

provide any information about the relative performance in 

detection of the two classes. The authors of [9] extended their 

Physionet entry by relabeling the database and balancing it by 

adding artificially generated noisy segments. Using this 

database and an algorithm based on five features and a MLP 

classifier, they obtained Acc = 95.9%, Sp = 96.0%, and Se = 

95.8% on their test data. In [13], the achieved performance on 

a private database of unseen data was Acc = 95.36%, Se = 

94.73%, and Sp = 96.63%. Comparing to the literature, our 

obtained performance is thus very satisfactory. The high 

performance obtained both during the cross validation and 

validation on unseen data is expected to be achieved from the 

design of appropriate features with high discriminative 

capabilities and the choice of an SVM classifier. Furthermore, 

it is observed that the standard deviations obtained from the 

cross-validation are relatively low. This furthermore indicates 

stability and high reproducibility of the designed algorithm.   

The selection of the optimal parameter combination 

depends on the requirements for each application. In some 

TABLE III 

PERFORMANCE OF FINAL ALGORITHM AND THE HUMAN EXPERTS RELATIVE TO 

THE FINAL MANUAL REFERENCE ANNOTATION. 

Annotator Na Se  
(%) 

Sp  
(%) 

P-  
(%) 

P+  
(%) 

Acc 
(%) 

Eng. I b 500 96.9 98.7 85.7 99.8 97.2 

Eng. II b 500 81.0 92.4 47.7 98.3 82.8 

Eng. II b 500 99.5 82.3 97.0 96.7 96.8 
MD I c 64 100.0 100.0 100.0 100.0 100.0 

MD II c 34 93.3 100.0 66.7 100.0 94.1 

Card. I d 98 90.0 100.0 69.2 100.0 91.8 
Card. II d 98 93.7 66.7 70.6 92.5 88.7 

Training e 350 98.6 96.6 93.3 99.3 98.3 

Validation f 150 98.4 95.2 90.9 99.2 98.0 

a N indicates the number of segments analyzed by each annotator. 
b Eng. = Engineer.  
c MD = Medical Doctor. 
d Card. = Cardiologist. 
e Performance on the entire training database when all segments from the 

 training database was applied to train the final algorithm classifier.  
f Performance on the unseen validation database when the final algorithm 

 trained on the entire training database was applied.  
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applications, it is crucial that only noisy segments are detected 

for exclusion. In this case, high performance of Se and P
-
 

should be valued at the expense of Sp and P
+
. In other 

applications, it might be more important to ensure that a 

selected data segment is in fact clean and therefore useful for 

rhythm analysis. In this case, the compromise between the 

four performance measures should be opposite. Since our goal 

was to estimate the overall PAT, we decided to allow each of 

the four performance measures equal weights during the 

parameter selection phase. However, it is observed that Sp is 

higher than P
-
 and Se is slightly lower than P

+
. Looking at (9)-

(13), this indicates an overrepresentation of FNs compared to 

FPs. This implies that more clean segments are wrongly 

classified than noisy segments, and thus the algorithm might 

have a small tendency to overestimate the overall noise level. 

However, the mean analyzable time obtained from all 250 

recordings was 83.4%. This number is very comparable to the 

number of randomly selected segments that were manually 

annotated as analyzable (84.2%, see Table II). The high 

similarity between these numbers might suggest that the novel 

designed ECG quality estimation algorithm still provides a 

fairly reliable estimate of the overall PAT. Furthermore, the 

algorithm performance is well within the performance 

obtained by each human expert annotator (see Table III). This 

does not necessarily indicate a higher performance of the 

algorithm. The difference in the human expert annotations 

might originate from different experience levels with respect 

to ECG interpretation. Furthermore, each individual annotator 

might look for different ECG characteristics to judge whether 

each segment is diagnostic or not. However, the high 

algorithm performance compared to the human expert 

annotators does indicate that the algorithm provides a more 

reproducible estimate of the overall PAT than it would be 

possible to achieve using human expert annotations. The 

results might also indicate that the automatic estimation of the 

overall PAT provides a good compromise between potential 

disagreements between the human experts. 

It should, of course, be mentioned that the possibilities of 

improving the quality estimation algorithm are not exhausted. 

Improvements might include adding noisy segments to obtain 

a better balance between the classes. Improvements might also 

include investigation of new and more advanced features or 

different classification schemes. It should furthermore be 

noted that the most appropriate design choices (the definition 

of analyzability, the segment length, and the combination of 

the two channels) depends on the intended application of the 

algorithm. It could also be interesting to test the algorithm 

performance in the presence of specific arrhythmia events. In 

this study, the ability to correctly classify abnormal ECG 

segments as being analyzable or non-analyzable was based on 

a random selection from ECG recordings in a high risk 

population, but it was not investigated specifically. It is 

important to keep these algorithm limitations in mind when 

analyzing the overall PAT. However, our overall impression is 

still that the designed algorithm provides a useful estimate that 

can provide important new knowledge about the general signal 

quality obtained in patch ECG recordings.  

B. Analyzable Time in Patch ECG Recordings 

As observed from Fig. 6, 147 of the recordings obtain an 

analyzable time of 100%. It should be noted that this does not 

imply that we claim that these recordings display no artefacts 

or noisy episodes. The algorithm is designed to detect periods 

of the recording where diagnostic interpretation is impossible. 

This does not imply that no artefacts can be present. It implies 

that using contextual information it is possible with certainty 

to recognize the heart rhythm. On the other end of the scale, 

25 recordings obtained an analyzable time of <10%. As 

mentioned, these recordings were considered to be incorrect 

measurements. This could for instance be caused by improper 

mounting of the device or disconnected electrodes. These 

recordings would not be useful for diagnostic purposes and a 

new recording should therefore be obtained if any diagnostic 

information was to be extracted. These recordings were 

therefore treated separately, and they were not included in the 

calculation of the mean and median analyzable times. Our 

estimated median analyzable time corresponds well with the 

findings in [2]. Furthermore, the analyzable time is higher than 

found in [3]. This is also expected since the data analyzed in 

[3] was obtained during different kinds of physical activities 

(walking, running, Nordic walking, and biking), whereas the 

ePatch recordings were obtained during normal daily life. 

Physical activity is therefore not expected to be present 

constantly in our recordings. The percentage of ePatch 

recordings obtaining analyzable data equivalent to at least 22 

hours/day was 83.6%. Comparing to [2], this number is 

slightly lower, but still comparable. We thus believe that our 

findings correspond well with the limited available literature. 

Furthermore, it should be noted that the authors of [2] don’t 

disclose the methodology behind their proprietary algorithm 

applied for estimation of the percentage of analyzable time. 

We aimed at a high reproducibility by applying a fully 

disclosed algorithm for estimation of the overall PAT.     

There is, of course, always a risk of missing a single 

important arrhythmia event experienced by a patient during an 

episode of non-analyzable data. However, this unfortunate 

situation might also occur using the traditional Holter 

recorders. It is never possible to completely remove this risk, 

and it is not known with certainty whether this occurs more 

frequently in patch type ECG recorders than the traditional 

Holter recorders. It is furthermore difficult to find literature 

describing the actual analyzable time in Holter recorders, and 

therefore direct comparison with the traditional devices was 

not possible. Furthermore, it is expected that some of the 

artefacts observed in patch recordings originate from the 

increased possibility of continuing normal daily life activities 

throughout the monitoring period compared to traditional 

Holter recorders. The recording conditions might therefore be 

considered quite different for the patch recorders and the 

traditional recorders. Furthermore, it has been shown that the 

extended monitoring period facilitated by the novel patch 

recorders can result in an overall higher diagnostic yield, 

detection of more significant arrhythmias, and a higher degree 

of definitive diagnosis compared to traditional Holter 

recordings [2], [19], [20]. This indicates that a potential 
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increase in the amount of artefacts recorded with the patch 

recorders is out weighted by the advantages of the increased 

monitoring period. Overall, we thus consider the analyzable 

time in the patch recordings to be high. It should, of course, be 

mentioned that these findings are based on the designed 

quality assessment algorithm, and their validity is therefore 

strongly connected to the performance of the designed 

algorithm.  

V. CONCLUSIONS 

In this study we have designed a novel algorithm for 

automatic estimation of the overall PAT in long-term ECG 

recordings. The algorithm was applied to investigate the 

general quality of 250 different ePatch recordings. The novel 

patch ECG recorders possess a high number of advantages 

compared to the traditional Holter recorders. Some of these 

advantages include simplicity (the systems are very easy to 

use), increased patient comfort and compliance, and 

possibilities of prolonged monitoring. These advantages unveil 

opportunities to monitor completely new patient populations, 

initiate large-scale screening programs, monitoring of cardiac 

patients in their own homes, as well as improved surveillance 

and guidance in rehabilitation programs. The implementation 

of these devices is thus expected to revolutionize the field of 

outpatient ECG monitoring. However, these advantages are 

irresolvable conditioned by the assurance of the ability to 

obtain high-quality ECGs throughout the recording period. In 

agreement with other published work, we found the overall 

PAT in the ePatch recordings to be high. This indicates that 

the many advantages of the patch ECG recorders are not 

counterbalanced by low signal quality. We therefore find the 

new patch type ECG recorders very promising for future 

outpatient ECG monitoring. This should, of course, be further 

confirmed in a larger population to ensure the generalizability 

to all possible applications of the patch devices.  
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