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Abstract

We present a variational formulation of the governing equations and introduce global indicators to describe the behavior of

acoustofluidic devices driven at resonance frequencies by means of a piezoelectric transducer. The individuation of the correct

Lagrangian densities for the different parts constituting the device (the piezo transducer, the silicon walls, the fluid-filled mi-

crochannel, and the glass lid) allows for the introduction of the weak formulation used in the finite element discretization of the

equations describing the system in its oscillatory regime. Additionally, the knowledge of the Lagrangian density leads to the

derivation of the correct structure of the Hamiltonian density, i.e. the energy density, which is important for the quantification of

the energy content of the whole system and its individual parts. Specifically, the energy content of the embedded microchannel is

quantified by means of the acoustofluidic yield η defined as the ratio between the energy in the channel and the total energy. From

the standpoint of acoustophoretic application, the introduction of the acoustophoretic mean orientation allows us to identify the

frequencies for which an acoustophoretic effect, i.e. the lateral motion of particle dragged by the axial main flow, is particularly

strong. Finally, the connection between the mechanical and electrical degrees of freedom of the system is addressed. This is

important for proper determination of the dissipated power, and it may lead to the detection of resonance states by means of purely

electrical measurements. Numerical simulations and preliminary experimental results show some features of the model introduced.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

Acoustophoretic devices represent an efficient and easy-to-set-up method for the manipulation of biological sam-

ples. Indeed, this method has been shown to be able to manipulate cell lines as well as micrometric-sized beads (1; 2),

by simply using an embedded microfluidic channel, or a capillary, in connection with the presence of a piezoelec-

tric actuator that in the simplest cases can be glued to the structure containing the micro-channel (3). Despite the

advantages in using this kind of technique with respect to other manipulation methods, e.g. (di-)electrophoresis and

magnetophoresis, the identification of optimal working frequencies is yet entrusted with the presence of the operator,

who has to search manually for resonance frequencies that afterwards can be tracked with the aid of electric mea-
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surements. Furthermore, the design of acoustofluidic systems deserves additional investigations, since optimization

of the geometric configuration of the device as well as the material properties can point out better ways to improve

the effectiveness of the separation process and lead to a broadening of the range of applicability.

To this end, the present manuscript addresses objective global indicators that aid both the designer and the ex-

perimentalist to locate optimal working frequencies (4). The introduction of these global indicators is based upon

a preliminary description of the equations governing the system in terms of Lagrangian densities. Specifically, the

mechanical Lagrangian density features the parts of the system obeying to Helmoltz–Navier equation which describes

elastic waves in the frequency domain. On the other hand, the acoustic Lagrangian density represents the propagation

of acoustic pressure wave in the inviscid fluid, meaning that the corresponding governing equation is the Helmoltz

wave equation for the pressure. Finally, the electro-mechanical Lagrangian density describes elastic waves in the

piezoelectric element driven by the coupling to the dielectric behavior of the material in the presence of an imposed

potential difference.

Addressing the exact form of the Lagrangian densities is important in two regards. First, the weak formulation of

the governing equations for the finite element implementation stems directly from the individuation of the Lagrangian

densities. This is important in the development of numerical methods that can be systematically checked by means of

physical considerations. Second, the Hamiltonian density can be retrieved by splitting of the Lagrangian density in the

kinetic and potential energy densities and summing them. The Hamiltonian density is important for the quantification

of the system energy in all of the subsequent quantities, and it can be used to characterize the system both from the

mechanical and electrical point of views.

Table 1. List of symbols.

ρ Density c Speed of sound

ε Dielectric tensor P Piezoelectric coupling matrix

Σ Stiffness tensor

L Lagrangian density H Hamiltonian density

u Displacement p Pressure

φ Electric potential

L̂ Lagrangian Ĥ Hamiltonian

Ŵ Work P̂ Power

L Effective Lagrangian H Effective Hamiltonian

η Acoustofluidic yield α Acoustophoretic mean orientation

2. Theory

The free Lagrangian densities, i.e. with no boundary contributions, for a system constituted by an elastic solid, an

inviscid fluid, and a piezoelectric element driven at a given frequency in an oscillatory regime are

Lm(u,∇u) = ρω2u∗ · u − ∇u∗ : Σ : ∇u, (1)

La(p,∇p) =
∇p∗ · ∇p
ρω2

− p∗p
ρc2
, (2)

Lem(u,∇u, φ,∇φ) = ρω2u∗ · u − ∇u∗ : Σ : ∇u + ∇φ∗ · ε · ∇φ − 2∇φ∗ · P : ∇u . (3)

The meaning of the symbols appearing in these equations is given in table 1. We note that for the system we are

considering, the field variables, i.e. the displacement, the pressure and the electric potential, should be labeled to

address which subsystem of the device, they refer to. For the sake of clarity we omit this index to better illustrate

the general idea of the variational framework. Thus, the corresponding Euler–Lagrange equations for the system

of equations (1)–(3) that govern the behavior of the system in the oscillatory regime with angular frequency ω, can

be retrieved by varying the Lagrangian densities with respect to the field variables u, p, and φ. When we want to

implement the governing equations in a finite element software, such as Comsol Multiphysics, we need just to provide

the Lagrangian densities (1)–(3) and the boundary contributions to these. The latter are given by

L bnd
m (u,σbnd

m ) = u∗ · σbnd
m · n̂, (4)
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L bnd
a (p, ubnd

f ) = p∗ ubnd
f · n̂, (5)

L bnd
em (u,σbnd

em , φ, d
bnd
em ) = u∗ · σbnd

em · n̂− φ∗ dbnd
em · n̂, (6)

in the case of boundaries for that Dirichlet boundary conditions are assigned.

Remarkably, in the structure of the Lagrangian densities (1)–(3) the kinetic and the potential energy densities can

be recognized and the derivation of the Hamiltonian densities is quite straightforward, being

Hm = ρω
2u∗ · u + ∇u : Σ : ∇u (7)

Ha =
∇p∗ · ∇p
ρω2

+
p∗p
ρ c2

(8)

Hem = ρω
2u∗ · u + ∇u∗ : Σ : ∇u − ∇φ∗ · ε · ∇φ + 2∇φ∗ · P : ∇u . (9)

With the aid of these densities, it is possible to compute the total energy of the system by integrating over the different

parts of the devices, i.e. Ĥ =
∫

H dx and retrieving the effective value of the energy by means of the relation

H = 1
2
�[Ĥ]. Additionally, electrical related quantities can be computed, such as the Q-value, which is given by

Q = �[Ĥ]/�[L̂] and the (complex valued) impedance Ẑ = iφ2
app/ωL̂, where φapp is the potential applied to the

piezo transducer. These expressions can be derived by considering the virtual work theorem and recognizing that the

external power is given by P̂ = −iωL̂ as well as P̂ = φapp Î, where Î is the complex valued current.

Electro-mechanical features alone do not provide information about the usability of a frequency in terms of

acoustophoretic capabilities of the device. Therefore, we also introduce the acoustofluidic yield

η(ω) =
Ha(ω)

H(ω)
, (10)

being the ratio between the acoustic energy in the channel and total energy of the device, and the acoustophoretic
mean orientation

α(ω) = arctan

∥∥∥∂y p(x, ω)
∥∥∥

L1(Ωchannel)

‖∂z p(x, ω)‖L1(Ωchannel)

, (11)

where ‖g‖L1(Ω) =
∫
Ω
|g∗g|1/2 dΩ is the L1-norm of the complex scalar field g(x) for x ∈ Ω. This quantity provides a

measure the inclination of the pressure wave vector with respect to the horizontal plane.

3. Results

Figure 1(a) shows the schematic of the acoustofluidic chip used in the numerical simulations. The chip is consti-

tuted by a piezoelectric element attached to a silicon structure in which an acoustofluidic channel has been etched.

Finally, the top lid consists of Pyrex glass. A potential difference of 1 V is applied between the electrodes on the top

and bottom edges of the piezo transducer. Note that since the Lagrangian depends on the square of the field vari-

ables, the energies scale with the square of the applied potential (the initial problem is linear). Figure 1(b) depicts

the behavior of the acoustophoretic mean orientation (top dashed line), the logarithm of the energy (bottom blue line)

and the acoustofluidic yield (bottom red line). Let us describe the method used to locate the optimal frequencies.

The gray shaded area(s) are the acoustophoretic bands, that are the frequency intervals for which the acoustophoretic

mean orientation is above a specified threshold θ, in this case θ = 0.9 × π/2. A mean orientation above this threshold

is a necessary condition to observe an acoustophoretic effect, being the alignment of the particles along the vertical

pressure node. Within these intervals, the energy states with a high amount of energy are candidates to produce an ef-

fective separation, these are the frequencies at which resonances occur namely the local maxima of the energy and can

be termed as the acoustophoretic energy peaks. However, the occurrence of both of these conditions is not sufficient to

ensure a strong acoustophoretic force. Indeed, since the system is compounded by different parts, it is not possible to

say a priori where the energy is located. This third and last information is given by the acoustofluidic yield (or better

the product of the acoustofluidic yield and the total energy) which allows to select between the acoustophoretic energy
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peaks that have the maximum energy inside the channel. Therefore, predictions based on the total energy suggest an

optimal frequency around 2.070 MHz, while if one considers the acoustofluidic yield the maximum is about 2.0 MHz.

It must be noticed that informations about the acoustic energy content in the microchannel can be obtained by just

measure displacement of particles by means of optical methods, e.g. μ-PIV, while informations about the energy

content of the whole system can be obtained by means of electrical measurements.
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Fig. 1. (a): Schematic of the cross-section of the acoustophoretic device used in the numerical simulations. (b): Behavior of the normalized

acoustophoretic mean orientation 2/π α (top axes), the energy log10 H (bottom axes, blue line) and the acoustofluidic yield log10η (bottom axes,

red line) as function of the excitation frequency f . Symbols are the acoustophoretic energy peaks (filled symbol is the optimum according to H)

and the vertical dashed red line is the optimal working frequency.

In order to show preliminary results for the accordance of numerical predictions compared to experiments, figure

2(a) reports the orientation, the energy and the yield relatives to simulations of an acoustophoretic device similar to

that depicted in figure 1(a), except for the channel width and the piezo displacement, that in this new case are 300 μm
and 1 mm, respectively. The graph depicts also the focusability of the chip. This quantity has been computed by

statistical analysis of the particle position recorded by means of fluorescence images. Panel (b) and (c) in figure 2

show two examples of these images in the case of unfocused (b) and focused (c) particle streams. Panel (a) shows that

the optimal acoustophoretic frequency derived from numerical simulations agrees very well with the maximum of the

focusability, and in general the predictions of the acoustophoretic bands in the range f = 2.3 ÷ 2.5 MHZ agree with

the result of the focusability experiments.
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Fig. 2. (a): Behavior of the normalized acoustophoretic mean orientation 2/π α (top axes), the energy log10 H (bottom axes, blue line) and the

acoustofluidic yield log10η (bottom axes, red line) as function of the excitation frequency f . Symbols are the acoustophoretic energy peaks (filled

symbol is the optimum according to H) and the vertical dashed red line is the optimal working frequency. Purple line is the focusability of the

device. (b) & (c): Fluorescence images used in the derivation of focusability parameter.
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4. Concluding Remarks

In this paper a variational model for the characterization of optimal working frequency for acoustophoretic devices

has been introduced. The model allows to compute for the mechanical and electrical features of the device and the

mathematical connection between these. Acoustophoretic orientation and acoustofluidic yield provide the additional

informations to characterize the device in terms of acoustophoretic capabilities. A rationale for the detection of

optimal frequencies has been addressed by introducing acoustophoretic bands and acoustophoretic energy peaks.

Finally, preliminary experimental results have shown the agreement of the numerical simulations for a frequency

sweep and a specific configuration of the acoustophoretic device.
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