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New Concepts for Shipboard Sea State Estimation

Ulrik D. Nielsen1,4, Mikkel Bjerregård2, Roberto Galeazzi2 and Thor I. Fossen3,4

Abstract—The wave buoy analogy is a tested means for
shipboard sea state estimation. Basically, the estimation principle
resembles that of a traditional wave rider buoy which relies, fun-
damentally, on transfer functions used to relate measured wave-
induced responses and the unknown wave excitation. This paper
addresses however a newly developed concept of the wave buoy
analogy but the approach presented herein is, on the contrary,
not relying exclusively on transfer functions. Instead, the method
combines a signal-based part, estimating wave frequency, and a
model-based part, estimating wave amplitude and phase, where
only the model-based part depends on transfer functions whereas
the signal-based part relies on the measured vessel response
alone. Case studies in terms of hypothetical examples show that
the method is capable to reconstruct fully the wave elevation
process of a sinusoidal regular wave; which include estimation
of the wave’s frequency, amplitude and phase. At this stage,
the method is far from being a useful means in practical, real-
situation applications but the method provides, indeed, a valuable
step towards developing new approaches for shipboard sea state
estimation.

I. INTRODUCTION

A. Context: Safety and Efficiency of Marine Operations

For ship masters of marine crafts at sea it is profitable to

have available knowledge of the prevailing sea state. In one

way or the other, ship masters therefore make or gain estimates

of the on-site sea state, as information about it can be used to

improve both safety and efficiency of any marine operation,

including, e.g., ships in transit, oil and gas production from

floating structures, general ship-to-ship actions, installation

and maintenance of fixed or floating offshore structures such

as wind farms. A concrete example relates to large container

and passenger ships, which typically operate with quite nar-

row operational windows and, at occasions, experience large

wave-induced motions and associated responses. However, the

increase in vessel size means that it has become ever more

difficult for the crew to make precise observations of the

seaway by sight, since the relative wave size and severity

become increasingly difficult to assess on larger vessels. This

is further complicated in rough seas, where quick and accurate

decisions have to be made to keep passengers, cargo and

equipment safe. It is therefore desirable to develop on-board,

real-time decision support systems (DSS), [1]–[7], which will

assist the crew to make proper decisions. Thus, the DSS

could raise a warning if the vessel were in an operational

region where any potentially dangerous phenomenon is likely
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to occur. In less critical situations, a DSS can be used

for route planning with respect to fuel consumption so to

evaluate and improve vessel and fleet propulsion performance

[8], [9]. Other applications include decision support and/or

control of dynamic positioning systems, where both station-

keeping behaviour and fuel consumption can be improved by

introducing feed-forward control [10], [11].

In general, decision support systems on marine crafts rely on

mathematical models relating the particular vessel responses

of interest and the on-site sea state. Thus, the on-site sea

state is fundamental input to any DSS, as it is directly re-

sponsible for the wave-induced loads to be likely experienced

by the marine craft in consideration. Obviously, the DSS

should be reliable (and accurate), as far as possible, under

all conditions and, hence, the sea state estimate should not be

based on observations by the ship master but on, objective,

measurements. Indeed, the present paper focuses on one such

means to estimate a sea state by use of measurements of

vessel responses. Specifically, the study provides a review, or a

condensed summary, on new approaches developed - and to be

developed - to estimate the sea state on operating marine crafts

from on-board measurements of wave-induced responses. It is

noteworthy that the particular study is much of a conceptual

kind, as its practical application very much depends on how

successful future work and developments are to become; if

properly addressed.

B. Composition of Paper

The paper is organised into five sections, including the

introduction, numbered I-V. Section II gives an overview of

methods and approaches for shipboard sea state estimation

and the section introduces the inherent problem(s) associated

to the means. In Section III, the theoretical aspects of the

new estimation concept are outlined, and examples including

associated results and discussions of it appear in Section

IV. Finally, conclusions are drawn in Section V which also

suggests further studies and/or developments.

II. SHIPBOARD SEA STATE ESTIMATION

A. Wave Buoy Analogy

Different means exist to estimate a sea state; often given in

terms of characteristic sea state parameters such as significant

wave height, mean wave period and mean wave direction.

Since the 1970s (moored) directional buoys have been con-

sidered as the most reliable and accurate means for sea state

estimation. However, traditional wave-rider buoys suffer from

being subject to damage and/or loss; and, more importantly,

an enormous network would be required to cover all parts of

the oceans. For marine operations, considering ships or other

floating structures, a more practical and appealing approach is



to use on-board sensors, where wave-induced responses from

the vessel itself provide the basis for an estimate of the on-site

sea state [12]–[17]. Until recently, this approach - denoted the

wave buoy analogy - has been only explored in a model-based

framework and in the frequency domain, where knowledge

of transfer function(s) of the vessel is essential. Thus, the

governing equation system, having the directional wave spec-

trum as its solution, relies on spectral analysis where linearity

is assumed between waves and the associated wave-induced

(measured) response(s); related through the transfer functions.

As the outcome consists of the complete energy distribution of

the wave system, with frequency and directional information,

the approach is applicable to general decision support systems,

and, typically, reasonable estimates of the wave spectrum can

be expected [18]–[21]. The accuracy of the estimates depends

inherently on availability of accurate transfer functions and,

moreover, the reliability is highly dependent on the spectral

(response) analysis, by for instance fast Fourier transform

(FFT) procedures, in which aspects of stationarity influence

the outcome [22], [23]. In principle, stationary operational

conditions are necessary because a minimum time window,

in the order 10-15 minutes, is needed to perform the spectral

analysis. The reason is that if conditions are not stationary

during the considered period, either because of changing sea

state or, more likely, as a result of speed and/or heading

changes of the vessel - the sea state estimates are likely to

be unreliable. Moreover, the need for a certain minimum time

period has another consequence, as it implies that estimates,

strictly speaking, will be backdated; which in turn will be of

(negative) importance if response predictions are to be made

ahead of any measurements [7].

B. Model-based and Signal-based Estimation

The disadvantages, in terms of a model-based methodology

and the requirement related to stationarity, lead to a wish for

a purely signal-based version of the wave buoy analogy, not

dependent on transfer functions but on measurements solely,

and, in combination, a wish for a methodology that efficiently

can handle nonstationary conditions. Although it seems like

a very difficult task to find approaches accommodating these

wishes, in particular the former, work has been initiated in

the particular direction and thus signal-based procedures have

been developed [24]–[26] to estimate the encountered wave

peak frequency ωp, allowing for nonstationary conditions.

The estimation of the peak wave frequency itself is valuable

in many applications and, notably, it is useful for ship autopilot

and dynamic positioning systems of marine crafts. However,

so far a signal-based method has not been developed to

estimate additional characteristic wave parameters, which will

be necessary towards a complete description of the sea state

and, thus, required for general decision support systems for

safe and efficient marine operations. An intermediate step in

the direction would be a combined signal- and model-based

procedure which can handle measurements data that can be

nonstationary.

Methodologies of such a combined procedure have recently

been addressed [27] and in the following that work and

associated theoretical aspects and key elements are reviewed.

As pointed out previously, the work still needs elaboration, and

focus is restricted to estimation of the fundamental parameters

describing a regular wave; that is, frequency, amplitude, and

phase. Although this set of parameters allows the sea surface

elevation to be fully reconstructed, the practical application to

the method’s current development is rather limited, which is

obviously reflected by the somewhat theoretical examples to

be shown later.

III. THEORY

A. Conditions and Outcome

The procedure consists of a signal-based part and a model-

based part, in combination, where the former introduces a

filter [28] to identify the wave frequency while the latter

part, subsequently, considers the hydrodynamic behaviour of

the particular vessel when exposed to a (sinusoidal) seaway.

Physically, the model-based part sets up a mathematical model

which compares the vessel’s theoretical wave-induced beha-

viour with the corresponding measured behaviour, so that wave

amplitude and phase can be estimated.

Without loss of generality the motion response considered

in the study is the heave component and, for matters of con-

venience, the associated response amplitude operator (RAO)

is obtained by closed-form expressions. Thus, RAOs have

been implemented for a semisubmersible [29] and for a large

container ship [30] to produce two different case studies. The

case studies deal with numerical simulations (of measurements

data) only and, hence, the (absolute and relative) accuracy of

the RAOs are of minor importance for what reason nothing

further is said about the RAOs.

B. Peak-frequency Estimate

Purely signal-based methods for estimation of the (en-

countered) peak frequency of a wave system already exist

and a novel procedure [25] has been applied successfully to

full-scale response data of an in-service container vessel. In

the somewhat conceptual and theoretical study made in the

present paper, robustness is not important as it is for real-

world applications studied by [25]. Thus, a simpler version

of the procedure is considered herein and, consequently, the

present method handles, at this stage, only sinusoidal signals.

The simplifications could quite easily be relaxed, but as the

subsequent estimation of wave amplitude and phase by the

model-based part of the present method is restricted (so far)

to sinusoidal signals there is no need for a ’global exponential

stable nonlinear wave encounter frequency estimator’ which

cannot estimate amplitude and/or phase.

The filter utilised in this work to estimate in real-time the

frequency of a sinusoidal signal was initially derived in [28].

However, herein a slightly more general version of the filter

is applied and the outline is given by [27], but with the main

points repeated below:



A sine wave with unknown constant amplitude Ay , fre-

quency ωe and phase ε is given

y(t) = Ay sin(ωet+ ε) (1)

and the objective is to estimate the frequency ωe on the basis

of only noisy measurements of y(t).
Basically, any sinusoidal signal represents the solution to

the problem of an undamped harmonic oscillator

ÿ = −ω2
ey = ϕy (2)

and thus ϕ = −ω2
e is the parameter to be estimated. The

equivalent critically-damped mass-spring system with forcing

was studied in [28], wherein it was shown that the auxiliary

filter:

ξ̇1 = ξ2 (3)

ξ̇2 = −2ξ2 − ξ1 + y (4)

(5)

with the equivalent second order transfer function

ξ1(s) =
1

(s+ 1)2
y(s) (6)

tracks the measured sinusoid; until a cut-off frequency at 1

rad/s. For any wave with higher frequency the filter can be

modified as follows

ξ1(s) =
ω2
f

(s+ ωf )2
y(s) (7)

where the cut-off frequency ωf should be chosen such that

ωf > ωe to ensure that the auxiliary filter is sufficiently fast to

keep track of the wave. The frequency estimator thus becomes,

cf. [27]:

ξ̇1 = ξ2

ξ̇2 = −2ωfξ2 − ω2
fξ1 + ω2

fy

˙̂ϕ = kaξ1

(

ξ̇2 − ϕ̂ξ1

)

ω̂e =
√

|ϕ̂|

(8)

(9)

(10)

(11)

which often will be referred to as the ’Aranovskiy filter’ in the

remaining parts of the paper. The original work is given by

[28], but it is noteworthy that additional experimental results

are found in [25], which also includes a stability proof for

global exponential stability.

C. Wave-amplitude and -phase Estimates

C.1 Nonlinear least squares fitting:

Application of the Aranovskiy filter on any (sinusoidal)

signal facilitates determination of the (peak) frequency of the

signal. Thus, the filter can be directly applied to real-time

vessel response measurements and the task left is to make

estimates of the wave amplitude and phase. In case of a model-

based approach the typical way to obtain these estimates, by

the wave buoy analogy, is to conduct spectral analysis on the

measured vessel responses whereafter the obtained response

spectra are compared to theoretically calculated ones obtained

by combined use of RAOs and a guessed wave spectrum;

but iteratively improving the guess by some mathematical

technique. The consequence of this approach is that wave

amplitude and phase are not directly estimated, since the

solution is given in terms of wave spectral ordinates in the

frequency domain. The necessity of spectral analysis and

associated transformation to frequency domain by standard

FFT, or parametric methods [31], [32], implies that the wave

estimations are backdated and may be unreliable in case of

nonstationary conditions, as discussed previously in Section

II. These disadvantages are ever present, to smaller or larger

degree, and efforts should/could be introduced to mitigate

them; for instance, spectral procedures to handle nonstationary

conditions could be introduced/developed [22], [33], [34].

Instead of a solution derived by use of spectral analysis, it

has recently been investigated [27] to possibly make the fitting

of the measured response and the corresponding theoretically

calculated one directly in the time domain. This is done

using nonlinear least squares (NLLS) fitting of a batch of

time-series data of the response, and hence one advantage is

considered to be the fact that calculations of response spectra

are unnecessary. It is noteworthy that the use of recursive

NLLS methods might be able to provide real-time estimates

without the need of using batch data, although this is outside

the scope of the current paper.

In the following the proposed solution is discussed and for

matters of convenience a specific response, the heave motion

z, is considered. The solution process is illustrated as a block

diagram in Figure 1. The Aranovskiy filter is used to provide

the frequency estimate in order to simplify the nonlinear fitting

since global convergence otherwise has been found unreliable

due to both local minima in the nonlinear cost function and

regions with small gradients. Herein, the nonlinear optimisa-

tion is implemented with the Levenberg-Marquardt algorithm

which is an iterative least squares algorithm addressed to non-

linear minimisation problems specifically. The actual fitting is

done using a batch process as shown in Figure 2, where each

batch contains measurements from 512 samples equivalent to

51.2 seconds. A batch overlap of 75% has been used and

an estimate is thus calculated every 51.2
4

= 12.8 seconds.

Marine craftζ +

v

Aranovskiy

NLLS

RAO−1(ω̂e) ζ̂a

z y = z̃

ω̂e

ẑa

Figure 1: Wave amplitude estimation using nonlinear least

squares fitting (NLLS). [27]



t

y ti ti+1 ti+2 ti+3 ...

Batch i

Batch i+ 1

Batch i+ 2

Batch i+ 3

Figure 2: Batch data with 75% overlap. Batch i is processed at time ti. [27]

Obviously, this practice leaves room for a bit of ’tuning’

depending on the physical problem; however, in this work such

a parameter study has not been considered.

The batch data is fitted with the regression function

y = ẑa cos(ω̂et+ ε̂) (12)

where the independent variables to be fitted are the heave amp-

litude estimate ẑa and phase estimate ε̂, respectively. In order

to avoid erroneous fitting results, it has been found necessary

to split the fitting into two subsequent steps: First fitting the

phase ε̂ using a fixed initial amplitude guess ẑa = max(y) and

then fitting the amplitude ẑa using the previously determined

phase estimate. This strategy requires the algorithm to be

followed twice, thus increasing the computing time. On the

other hand, by experimenting with varying initial conditions,

calculations have been found more robust against local minima

if the following trigonometric relation is used

y = ẑa cos(ω̂et+ ε̂)

= ẑa cos(ε̂) cos(ω̂et)− za sin(ε̂) sin(ω̂et)

= a1 cos(ω̂et)− a2 sin(ω̂et) (13)

and fit for both a1 and a2 simultaneously where a1 = ẑa cos(ε̂)
and a2 = ẑa sin(ε̂). The heave amplitude estimate ẑa and

phase estimate ε̂, respectively, are thus given by

ẑa =
√

a21 + a22 (14)

ε̂ = atan2(a2, a1); −π < atan2(...) ≤ π (15)

Consequently, using Eq. (13) as the regression function, it is

only needed to run the NLLS algorithm once.

C.2 Other methods:

In the original study [27], partly summarised in the present

paper, two other procedures were also investigated for their

possible usefulness in shipboard sea state estimation. The two

methods are based on the Extended Kalman Filter (EKF) [35],

[36] and recursive least squares (RLS) fitting, respectively. In

any data analysis, the given method would, like NLLS fitting,

be a complement to the frequency-estimate by the Aranovskiy

filter. In the following, both procedures are briefly outlined,

but leaving out mathematical details which can be found in

[27].

Independently, EKF or RLS, the frequency-estimate ω̂e is

used to initiate the subsequent estimation process of wave

amplitude and phase. If the EKF procedure is applied it is

necessary to write the physical model, i.e. the equation of

motion, in a state-space representation. This is achieved by

modelling the harmonic wave as an undamped oscillator, and

the system equations are thus defined by:

z̈ +B(κ, ωn)ż + C(ωn)z = F (ωe)ζ (16)

ζ̈ = −ω2
eζ (17)

y = z̃ = z + v (18)

where, in general, the motion component z will be a function

of the damping ratio κ, the natural frequency ωn of the system,

and a forcing function F (ωe) depending explicitly on the

wave (encounter) frequency. Implicitly, the functions B(...),
C(...), F (...), depend also on vessel geometry and wave-fluid

characteristics. In the lower equation, v is an added noise

contribution. In this formulation, the state vector is chosen as

x =
[

z ż ζ ζ̇
]T

and the problem is then cast in a matrix

form suitable for the EKF, e.g., [35], [36], where the amount

of necessary algebraic and mathematical operations depend on

the specific physical problem. In the end, the solution leaves a

tracking of the wave elevation, represented by the state variable

x3(t) that depends on time t. Further details are given in [27].

The third approach resembles to some extent the ”tradi-

tional” approaches of the wave buoy analogy, and the proced-

ure relies on a fitting of response spectra. Specifically, the fast

Fourier transform (FFT) of a batch of data samples provides

the spectrum, SR(ω), of the given response R. The Aranovskiy

Marine craft

ζ

+

v

FFTAranovskiy

|RAO|2 · FFT(sinusoid) RLS ζ̂a

z

y = z̃ y = z̃

ω̂e SR(ω)

S̃R(ω)

Figure 3: Wave amplitude estimation using RLS fitting of

spectrum.



frequency-estimate and the response RAO, in combination, are

used to generate a reference spectrum, S̃R(ω), of the response

caused by a regular wave with amplitude ζa = 1 m. The two

spectra are fitted using RLS giving an estimate of the wave

amplitude. The procedure is summarised in Figure 3 as a block

diagram. In the particular application, the RLS fitting is based

on an adaptive algorithm that recursively estimates the wave

height by minimising a weighted cost function derived from

the response spectra; details and a more general description of

RLS fitting are given in [27]. It should be noted that, contrary

to the other two methods, the RLS fitting procedure does not

yield an estimate of the wave phase which means that the

actual wave elevation process cannot be reconstructed fully.

The main focus in the present paper is on the NLLS fitting

procedure. Therefore, the case studies considered in the next

section are, almost exclusively, dealt with by this procedure

in combination with application of the Aranovskiy filter to

estimate wave frequency, amplitude and phase. However, a

few remarks about the three procedures are put forward in a

sort of comparative study made in [27].

IV. EXAMPLES: RESULTS AND DISCUSSIONS

A. Numerical Simulations at Zero-forward Speed

Two vessels of different type are studied; a semi-

submersible and a container ship. Photos of the container

ship and a model-version of the hull structure of the semi-

submersible are shown in Figure 4. Main dimensions of the

vessels are left out, since the particulars are of little relevance

as conceptual examples solely are studied. Independent on

vessel type, the considered response is the heave motion, and

(a) Large panamax container vessel.

(b) Model-version of the semi-submersible (hull structure only).

Figure 4: Photos of the two considered vessel.

in any case the response amplitude operator (RAO) is given

in terms of closed-form expressions implemented according to

[27] and [30] for the semi-submersible and the container ship,

respectively.

The examples deal purely with numerical simulations and

apply to long-crested, regular wave trains, numerically simu-

lated in terms of sinusoidal signals. Moreover, the effect of

forward speed is not addressed. These somewhat hypothetical

conditions are selected because the model-based part, at this

stage, is capable to handle only conditions of a seaway made

up by a regular wave, although the signal-based part, yielding

the encountered peak frequency of a wave system, has been

shown previously [25] to provide fair estimates for full-scale

operational data of an in-service container ship. Nonetheless,

the case studies are limited to regular waves but with results

derived for nonstationary conditions.

Altogether, the novel approach for sea state estimation

consists of the Aranovskiy filter [28], used to estimate the

(encountered) wave peak frequency in a manner similar to [25]

and, subsequently, NLLS fitting is applied to estimate wave

amplitude and phase. However, before the combined estima-

tion method is illustrated the performance of the Aranovskiy

filter is investigated exclusively.

B. Performance of the Aranovskiy Filter

As reported [27], the behaviour of the filter depends on the

chosen cut-off frequency ωf , the observer gain ka and on the

measured signal y that carries the information to be estimated.

In the following, a general sinusoidal signal with frequency

ωf = 1.0 rad/s and amplitude A = Ay is analysed by the

Aranovskiy filter; whether the signal is that of a wave or a

response is in this particular case irrelevant.

The effect of the cut-off frequency is shown in [25] where it

is concluded that a trade-off is made between convergence rate

and steady-state error of the estimate. A low cut-off frequency

leads to slower convergence while a larger cut-off frequency

results in larger steady-state errors. The choice of observer

gain presents a similar trade-off which is seen in Figure 5a. A

smaller observer gain results in slower convergence rate while

a too large gain increases the steady-state error and introduces

oscillations in the estimate. Finally, in Figure 5b it seen that

the amplitude Ay of the measured signal has the same effect

on convergence rate and steady-state error.

Simulations with different levels of white Gaussian meas-

urement noise and constant observer gain ka = 0.2 are shown

in Figure 6a. The level of noise is controlled by the signal-

to-noise ratio SNR. It it seen that high levels of white noise

increase the steady-state error and the estimate becomes noisy.

The rise-time is not affected significantly. By applying lowpass

filtering to the estimated signal, it is possible to obtain a

smoother signal with less variance at the expense of a longer

rise-time. The filtered estimate is shown in Figure 6b where

a first order lowpass filter with the time-constant τ = 30 s

has been applied. The standard deviations are listed in Table

I based on 2000 seconds of time-series data after steady-state

has been reached. It is seen that the standard deviation is



Table I: Standard deviation of the estimate for varying levels

of measurement noise. [27]

Lowpass filtered

SNR Std. deviation Std. deviation

0 dB 0.0257 rad/s 0.0068 rad/s
6 dB 0.0107 rad/s 0.0030 rad/s
12 dB 0.0049 rad/s 0.0011 rad/s
18 dB 0.0024 rad/s 0.0005 rad/s
24 dB 0.0012 rad/s 0.0004 rad/s

significantly reduced for the lowpass filtered cases. Moreover,

the steady-state errors are seen to become negligible around

12 dB SNR, corresponding to a signal with four times the

power of the noise.

As another test on the performance of the filter, a nonstation-

ary situation is studied where a sudden relatively large change

in the frequency of the sinusoidal signal occurs. Basically, this

case corresponds to the situation of an advancing vessel that

changes its speed (momentarily) resulting in a change in the
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Figure 5: Trade-off between convergence rate and steady-state

error.

encountered wave frequency. The example is therefore made

up by simulating the heave motion of the semi-submersible

exposed to a regular wave with changing wave frequency

from 0.4 to 1.0 rad/s at time t = 100 s; although the

semi-submersible is at zero-forward speed during the whole

process, the sudden change in wave frequency resembles the

aforementioned speed change. The result is shown in Figure

7 and it should be noted that measurement noise is not

included for this case. From the upper plot it is observed

that the sudden change in true frequency introduces transients

in the frequency estimate, which shows large oscillations

from the time the change occurs but gradually converging

to the true value and reaching it after about 200 seconds.

The explanation for the misbehaviour of the filter in this

intermediate period can be found in the spectrogram of the

heave motion. The spectrogram is seen as the lower plot of

Figure 7 and it is evident that the transient excites the semi-

submersible at the heave resonance frequency ωn. The power

contents at the resonance frequency and at the wave frequency,
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(b) Frequency estimate with lowpass filtering. [27]

Figure 6: Frequency estimation of noisy sinusoid using the

Aranovskiy filter.
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Figure 7: Top: Estimate of ”encounter” frequency for a regular

wave with changing frequency. [27] Bottom: The associated

power spectrogram of the heave position z. [27]

respectively, are of similar strength leaving no distinct peak for

the Aranovskiy filter to detect. Since the resonance oscillations

are only excited at the transient, they will diminish due to the

damping in the system. The content at the encounter frequency

thus becomes more prominent and the filter converges to the

”encounter” frequency with (nearly) no error at steady-state.

In conclusion, it has thus been shown that the Aranovskiy

filter is robust to significant levels of measurement noise;

although a less elaborate implementation is made in the study

herein compared to [25]. Furthermore, the Aranovskiy filter

is able to estimate the (encounter) frequency in regular waves

during nonstationary conditions.

C. Analysis of Simulated Vessel Responses

C.1 Semi-submersible without measurement noise:

In the first case study, the semi-submersible is exposed

to regular beam waves in terms of a sinusoidal wave with

frequency ω = 0.6 rad/s, phase ε = π rad, and an initial

amplitude ζa = 1.0 m but increasing linearly to ζa = 1.5 m

during the time t = [200; 220] s. Thus, the measured heave

response is simulated by combined use of the wave elevation

process and the heave RAO; whereupon the resulting signal is

analysed by the wave estimation procedure outlined in Section

III and summarised in Figure 1. In this case, measurement

noise has not been added and, hence, all parameters are known

exactly.

The outcome of the NLLS algorithm is shown in Figure 8

which has the frequency estimate and the amplitude estimate

as the upper and the lower plot, respectively. It is observed that

that the wave amplitude estimate has converged at about 270 s,

which means that the convergence time is near the batch time

length (51.2 s); noting that the period of increasing amplitude

ends at 220 s. The steady-state error of the amplitude estimate

is seen to be insignificant both before and after the increase in

wave amplitude. Similarly, the frequency estimate is (close to)
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Figure 8: Frequency estimate (top) by Aranovskiy filter and

wave amplitude estimate (bottom) using NLLS fitting. [27]

spot on before and after the increase; and with a very small

relative error during the period where the increase in wave

amplitude occurs.

The estimated wave phase is shown in Figure 9, and it

is observed that the estimate is rather sensitive to the wave

frequency estimate. This is explained by looking at the instant-

aneous phase of the wave given by ω̂et+ ε̂. Any uncertainty

in the first term will be compensated with the phase estimate

ε̂ during the NLLS fitting process. As time t increases, any

uncertainty in ω̂e increases proportionally. The estimation

procedure therefore needs to change the phase estimate ε̂

in order to minimise the cost function. It is however still

possible to reconstruct the wave elevation using the estimated

wave frequency ω̂e, wave amplitude ζ̂a and phase delay ε̂,

since the estimated instantaneous phase error is minimised.

Indeed, this is seen by Figure 10 where the complete wave

elevation process is shown as the top plot, containing both the

estimated and the true process. The bottom plot depicts the

reconstruction error, and it is evident that the agreement is
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Figure 9: Phase estimation (bottom) together with frequency

estimate (top). [27]
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Figure 10: Top: Reconstruction of wave elevation based on

estimated parameters. Bottom: Reconstruction error. [27]

good. The actual reconstruction of the wave elevation process

is made by combining segments from each of the batch

estimates. As illustrated by Figure 2, the estimate from batch

i is used for the reconstruction in the time interval [ti−1; ti].
At steady-state the reconstruction error shows oscillations with

an amplitude less than 3% of the wave amplitude.

C.2 Container ship with measurement noise:

This case study is made for the container ship being exposed

to a regular wave train; nearly identical to that of the previous
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(a) Estimated wave amplitude.
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(b) Reconstruction of wave elevation process.

Figure 11: Sea state estimation based on heave response of the

container vessel exposed to bow-quartering regular waves (U

= 0 knots) and considering measurement noise (12 dB SNR).

case study: ω = 0.6 rad/s, ε = π rad, ζa = 1.0 m → 2.0 m

during the time t = [300; 320] s. The main difference in

the present case study is the addition of measurement noise

taken as Gaussian white noise produced with a 12 dB SNR

and, moreover, the measured heave response is simulated in

a seaway with bow-quartering waves (relative wave heading

equal to 135 deg).

The wave amplitude estimate, from a single simulation,

is shown in Figure 11a and the complete reconstruction of

the wave elevation process in Figure 11b. The plots show

that the wave parameters, including the actual time history,

are estimated with a reasonable accuracy. The accuracy can

be quantified by running multiple simulations and based on

findings, equivalent to those illustrated by Figure 11, it is

concluded that the reconstruction error is less than ±15% of

the wave amplitude in case of measurement noise with 12 dB

SNR. It is noteworthy that similar analyses have been made

for the semi-submersible [27], where the findings were the

following: a reconstruction error less than ±30% of the wave

amplitude for 9 dB SNR, ±20% for 12 dB SNR and ±15%
for 18 dB SNR, respectively.

D. Other Methods: EKF and RLS

The two other methods proposed for sea state estimation

were based on the Extended Kalman Filter (EKF) and re-

cursive least squares (RLS) fitting. A large discussion on

their application to data is beyond the scope of this paper

but many findings can be found in [27], which examines

results/estimates using simulated measurements of the semi-

submersible’s heave response (with measurement noise). A

comparison in this respect, can be seen from Figure 12, where

the three procedures - NLLS, EKF, and RLS - are compared

for different levels of measurement noise. It can be observed

that the EKF method is more precise, both in terms of steady-

state error and variance. The RLS and NLLS methods show

a slightly reduced performance in this regard; anyhow, while

not as precise as the EKF method, the estimated steady-state

error is less than 3% of the true wave height, based on noisy

measurements with 9 dB SNR.
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Figure 12: Comparison of amplitude estimates. [27]

V. CONCLUDING REMARKS

Methods for shipboard estimation of the descriptive para-

meters of regular waves have been developed and tested.

Special attention was given to a combined procedure based



on the Aranovskiy filter [28] and subsequent nonlinear least

squares (NLLS) fitting; used to estimate the (encountered)

wave peak frequency and, respectively, applied to estimate

wave amplitude and phase. It was demonstrated that the

procedure provides accurate estimates for two different types

of vessels; both exposed to regular wave trains and at zero-

forward speed.

One main advantage of the method’s first part, i.e. the

estimate of the wave frequency by the Aranovskiy filter, is

that this part is purely signal-based and thus will be unaffected

by (uncertain) model parameters. The second part of the

procedure, estimating amplitude and phase, is model-based

for what reason availability of accurate transfer functions

to model the particular vessel’s hydrodynamic behaviour is

fundamental. Ultimately, it would be of much interest to make

the combined method fully signal-based but, indeed, this will

require some elaborate and novel approaches and, currently,

their development are difficult to predict about. However, some

other elaborations and suggested further developments could

be seen as important and useful. This would include, but not

necessarily limited to nor in the arranged order:

• Verification of the presented results using model-scale

experiments with regular waves.

• The application of the Aranovskiy filter requires the gain

to be tuned properly, and efforts could be made to allow

the gain tuning to be completely automated, which is not

the case in the procedure as is. Work in this direction

has been explored already and one feasible approach is

developed in [25].

• Until now, cases of zero-forward speed have been con-

sidered only and, obviously, the procedure should also be

capable to handle data from advancing marine crafts.

• As an intermediate stage, the extension to consider a

regular (sinusoidal) wave train composed by two wave

components could be beneficial, as it would provide

knowledge about how to handle estimation of an irregular

wave train made up by a (very) large number of regular

wave components. Specifically, work could address the

use of several notch or bandpass filters to select individual

harmonic components from a wave spectrum, and then

use regular wave estimators in parallel for each compon-

ent. In the end, this would make the method applicable

to real (full-scale) data.

• The combination/consideration of several responses sim-

ultaneously, e.g., {heave; roll; pitch} could possibly be

used to estimate also the relative wave heading.
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