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Abstract 

 

In the last decade, great effort has been paid to the development of next generation batteries. 

Metal-O2 /Air batteries (Li-, Na-, Mg-, Al-, Fe- and Zn-O2 batteries) in both aqueous and 

nonaqueous (aprotic) electrolytes have gained much attention. Metal-air batteries have high 

theoretical specific gravimetric energy. In the case of Li-O2, it is comparable to that of gasoline. 

Thus, Li-O2 batteries could be attractive for electric vehicle manufacturers since the energy storage 

capacity accessible by commercially available Li-ion technology is too low to solve increasing 

capacity demands. However, current Li-O2 batteries suffer from several drawbacks, e.g. dendrite 

formation, poor rechargeability and low capacity  caused by the so-called “sudden death” at its 

cathode during the discharge process due to insulating discharge products. This thesis is devoted 

to understand the charge transport in the main reaction products of emerging nonaqueous Li- and 

Na-O2 batteries at the atomistic level using the Density Functional Theory (DFT) method to 

address the latter problem. The role of cathode-electrolyte interface on charge transport and the 

implication of impurities from the air, particularly the effect of CO2 poisoning, in the performance of 

the battery are addressed. The present work involves computational investigations of different 

charge transport mechanisms, i.e. ionic, coherent electron, and polaronic transport. In order to 

validate the outcome from DFT calculations, results are compared with relevant experiments and 

show a notable agreement. 

The results of charge transport calculations in bulk Li2O2 (main discharge product in Li-O2 

batteries) revealed that though it is a wide bandgap insulator (4.96 eV) it could offer fast ionic 

conduction with an activation barrier of 0.40 eV. Similarly, an accessible energy barrier for sodium 

ion diffusion is obtained in Na2O2 and in NaO2 (main discharge products in Na-O2 batteries). The 

transport mechanisms at the cathode-electrolyte interfaces, i.e. Li2O2@Li2CO3 interface, are also 

examined. Lithium vacancies accumulate at the peroxide side of this interface, reducing the 

coherent electron transport by two to three orders of magnitude compared to bulk pristine Li2O2. In 

contrast, the Li2O2@Li2CO3 interface shows an improved ionic conduction. For polaronic transport 

significant differences are also found in these two scenarios. In bulk Li2O2 the polaronic transport at 

room temperature is restricted to hole polarons, whereas electron polarons display very high 

hopping barriers (> 1.0 eV). By contrast, it is possible to have good mobilities for electron polarons 

at the Li2O2@Li2CO3 interface. Finally, our studies on the reaction mechanism of Li2O2 revealed 

that the CO2 poisoning, even at low concentrations of CO2 effectively blocks the step nucleation 

site and remarkably increases overpotentials and decreases the capacity of the battery. 
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Resume 
 
 

I det sidste årti er der blevet lagt en enorm indsats i at udvikle den næste generation af batterier. I 

særdeleshed metal-luft batterier (Li-, Na-, Mg-, Al-, Fe- og Zn-O2-batterier) i enten vandige eller 

ikke-vandige (aprotiske) elektrolyter har fået meget opmærksomhed. Metal-luft batterier har en høj 

gravimetrisk energitæthed, og for Li-O2 kemien er den sammenlignelig med benzins. Derfor kan Li-

O2 batterier åbne for produktion af nye forbedrede elektriske biler, eftersom den tilgængelige 

energikapacitet i markedets nuværende Li-ion batterier er for lav til at dække de stigende krav. 

Men Li-O2 batterier er begrænset af flere problemer, f.eks. dendrit dannelse, lav kapacitet, dårlig 

genopladelighed og det såkaldte “sudden death” forårsaget af de elektronisk isolerende 

afladningsprodukter, der passiverer katoden. Fokus I denne afhandling er på det sidstnævnte 

problem, der belyses gennem øget forståelse af ladningstransporten i hovedreaktionsprodukterne i 

de nye og fremadstormende aprotiske Li- og Na-oxygen-batterier, opnået gennem atomarskala 

modellering med tæthedsfunktionalteori. Katode-elektrolyt grænsefladens role i 

ladningstransporten samt effekten af urenheder i luften, i særdeleshed effekten af CO2 forurening, 

undersøges. Det præsenterede arbejde involverer computationelle undersøgelser af forskellige 

ladningstransportmekanismer, dvs. ionisk transport, koherent elektrontransport og polaronisk 

transport i Li- og Na-batterimaterialer. Ydermere er der udført enkelte relevante eksperimenter, der 

viser en rimelig overensstemmelse.  

Resultaterne af ladningstransport beregningerne af afladningsprodukternes masse afslørede, at 

selvom Li2O2 er en isolator med et stort båndgab (4.96 eV), viste materialet en god ionisk 

ledningsevne med en aktiveringsbarriere på 0.40 eV. Ligende energibarrierer findes for natrium-ion 

diffusion i Na2O2 og NaO2 (de dominerende afladningsprodukter i Na-O2 batteriet). Udover 

studierne af ladninstransporten i afladningsprodukternes masse har vi undersøgt 

transportmekanismerne ved katode-electrolyt grænsefladerne i ikke-vandige Li-luft batterier, dvs. 

Li2O2@Li2CO3 grænsefladen. Lithium vakancer akkumulerer ved peroxid delen af denne 

grænseflade, og reducerer dermed den koherente elektrontransport med to til tre størrelsesordner 

sammenlignet med transporten i en uberørt Li2O2 masse. I kontrast til dette forbedrer grænsefladen 

den ioniske ledningsevne. I Li2O2 massen er polarontransporten ved stuetemperatur styret af 

hulpolaroner, da electronpolaronerne har en hopping barriere på mere end 1 eV. I kontrast til dette 

er det muligt at have en god elektronisk polarontransport i Li2O2@Li2CO3 grænsefladen. Vores 

studier af vækstmekanismerne for Li2O2 viste at CO2 forurening, selv ved lave koncentrationer på 

1%, blokerer for trin nukleations pladsen, derudover forøges overpotentialet og kapacitetes faldet 

dramatisk med CO2 koncentrationen. 
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CHAPTER 1  

Introduction 

 

 

The accessibility of energy sources is a critical issue for the future of mankind. It is vital for the 

well-being and also determines the standard of living. Nowadays, billions of people do not have 

access to electricity and again billions of people worldwide still use conventional fuels for 

household purposes, especially in the developing countries. [1] Therefore, in order to secure their 

surplus energy demand, many developing nations are constructing grand power systems, mostly 

from renewable sources (for example Ethiopia is constructing a 6 GW hydro power on Nile River 

[2]). Whereas, most developed nations had already reached a steady state in terms of additional 

energy requirements about three decades ago. Currently, these countries engaged on the process 

of replacing traditional fuels with renewable ones. For example, Denmark has set a target to have 

fully phased out fossil fuels in 2050. [3]  

If the global fossil-fuel consumption continues at the current pace the concentration of CO2 in the 

atmosphere is anticipated to be doubled by 2050 and tripled by 2100. As a consequence, an 

average global warming is estimated to be about 4.5 oC by 2100. This global warming could 

potentially be reduced to 3 oC or increased to 6 oC depending on the degree to which society 

utilizes fossil fuels and renewable energy sources as illustrated in Figure 1.1. [4][5] Regardless of 

the remarkable oil-price drop during autumn 2014 and the increase in global energy consumption 

(annually growth, 1.5 % in recent years), the share from renewable energy grew persistently in 

2014, and for first time in the last 40 years the world-wide carbon emission linked with energy 

consumption remained steady [2], thanks to sustainable energy alternatives (renewables).              
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Figure 1.1: The surface air global temperature changes depend on net emissions of greenhouse gases in a 

low- and a high-emission mitigation scenario projected till 2100. Source: IPCC 2014 report [4]. 

 

1.1 Renewable Energy   

According to Renewables 2015 Global Status Report [2],  about 19.1 % of the 2013 global energy 

supply was input from all renewable energy sources such as wind energy, solar energy, 

hydroelectricity, geothermal, biomass and biofuel. However, above 78.3 % of the global energy 

supply is still coming from the fossil fuels, and the remaining 2.6 % share is from nuclear power. 

About 78 % of the total greenhouse gases (GHGs) emission increase in the last four decades is 

coming from direct CO2 emissions from fossil fuel combustion and industrial processes. In 

particular, in the last decade (2000-2010) the highest emission levels in human history were 

recorded. For instance, in 2010 alone, 49 (± 4.5) Gt of CO2 equivalents was released. [6] These 

emissions cause changes to the world climate and disrupts nature and human systems universally. 

Thus, it is necessary to reduce CO2 emissions. The only way to this, in a scenario in which global 

energy demand is rising, is to significantly increase the energy share from renewable sources. 

Considering that approximately half of the CO2 emissions originate from the transportation sector, 

a plausible measure is to gradually replace the fossil-fuel propelled vehicles by electric vehicles 

(EVs) charged using energy from a renewable source.  
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In this regard, the progress towards renewables particularly in the transport sector has been 

impressive in the recent times. Despite the fact that commercially available electric vehicles (EVs) 

are expensive and only offer short driving range per charge, the demand for electric vehicles is 

growing rapidly. For example, according to the latest REN21’s 2015 report [2],  the number of EVs 

in use in 2014 is nearly doubled compared to 2013, i.e. the number of electrified vehicles increased 

from 350, 000 to 665,000. According to recent energy reports, the higher share of CO2 emissions 

from energy supplies next to industries is that of the transportation sector.[6] Therefore, the 

ongoing electrification of vehicles in the transportation sector will play a very important role in 

mitigating a significant amount of direct CO2 emissions to the environment and thereby regulating 

the climate changes. As can be seen in Figure 1.2, the cost of Li-ion battery packs for electric 

vehicles are promptly decreasing. [7] A long-term global-emission goal can also boost further 

energy technology development. [4] 

 

1.1.1 Batteries: Li-ion Batteries 

 

Batteries or electrochemical cells convert the stored chemical energy directly into electrical energy. 

The first electrochemical battery was built in 1800 by Alessandro Volta using copper and zinc 

electrodes and brine (NaCI solution) socked paper as an electrolyte. Latter in 1836, John Frederic 

Daniell invented the Daniell cell that paved the way for modern battery technologies. A subsequent 

development and emergence of new battery technologies have taken place since then. Batteries 

can be divided into two major types: Primary and secondary batteries. The former one is a 

disposable battery type. Once this type of batteries stops producing currents, it is disposed of. 

However, the latter type of batteries, also known as rechargeable batteries, can be charged and 

discharged for multiple times.    

Nowadays, secondary batteries are present almost everywhere. Particularly the Li-ion batteries are 

used to power both small-sized appliances such as watches, hearing aids, smart phones, laptops 

and GPS devices and large devices such as power backups and electric vehicles. Rechargeable 

lithium batteries were introduced in 1978 by Whittingham et al. [8]. In 1981, Goodenough et al. [9] 

made a significant contribution to the technology by discovering the cathode material LixCoO2 for 

the Li-ion battery. Since then, countless efforts have been made to advance the technology and 

latter in 1991, Sony succeeded in commercializing the first Li-ion battery.  
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Figure 1.2: Cost of Li-ion battery packs in battery EVs til 2030. Figure is taken from.[7] 

 

The searches for improved Li-ion battery materials for versatile applications have been greatly 

accelerated. However, regarding the application of Li-ion batteries to EV, there are still several 

drawbacks associated with this technology compared to gasoline, such as low driving range, high 

price and low energy/power densities and theoretical limitations of the technology by itself. 

Therefore, in addition to the improvement of the existing Li-ion battery performance, it is also 

equally important to investigate other alternatives beyond Li-ion batteries, i.e. next generation 

batteries that comprise the metal-air battery technology as a promising candidate.  

The main motivation of this work is therefore to study the burgeoning renewable energy technology 

of metal-air batteries displaying the highest theoretical specific energy (see the comparison plot for 

various battery types in Figure 1.3). [7][10][11] In particular, the Li-O2 and Na-O2 batteries show 

great potential to provide a driving range competitive to that of fossil-fuel based locomotive 

technologies. 
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1.1.2 Next Generation Batteries: Metal-O2 /Air Batteries  

 

In the last decade, enormous effort has been paid to the development of next generation batteries. 

In particular metal-O2 /Air batteries (Li-, Na-, Mg-, Al-, Fe- and Zn-O2 batteries) in either aqueous or 

nonaqueous (aprotic) electrolytes have gained a lot of attention. [12][13] Metal-air batteries have 

high specific gravimetric energy comparable to gasoline in the case of Li-O2 chemistry. Thus Li-O2 

batteries could be an alternative to the existing Li-ion battery technology [14]. Metal-air batteries 

have high theoretical specific energies since the technology use metal as an anode and oxygen 

gas from air as a cathode. The reaction products are either oxides, peroxides or superoxides 

during discharge depending on the experimental conditions and cell components used in the 

system. The oxygen reduction (ORR) and oxygen evolution reaction (OER) are the two main 

reactions taking place reversibly during discharge and charge, respectively.  

Figure 1.3: Practical specific energies (Wh Kg
-1

) for prevalent secondary battery technologies, with the 

existing and estimated driving range and pack prices (US$ kW h
-1

). Figure is taken from  [11] with 

permission. 
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The aprotic Li-air (shortly, Li-O2) battery offer extremely high specific energy (comparable to 

gasoline, see Figure 1.4) [15] that is nearly an order of magnitude higher than that of the existing 

Li-ion batteries (latest specific capacity ~300 mAh/g) [16]. However, in practice nonaqueous Li-air 

batteries suffer from numerous drawbacks that must be solved before they enter to the market. 

The worst drawback of the Li-O2 battery is the so-called “sudden death” of the battery, due to the 

formation of a passivation layer in the cathode during the discharge. [17][18]  In the last couple of 

years nonaqueous Na-O2 battery was reported as a promising alternative to the Li-ion battery with 

a specific capacity of ~1500 mAh/g [19], which is about half of the state of the art Li-O2 battery 

specific capacity, i.e. ~3842 mAh/g [15]. The former could offer low cost and low overpotentials 

even at too high current densities that account for high electrical energy efficiency of ~ 90 % [20]. 

 

1.2 Thesis Outline  

This work collects theoretical investigations of the charge transport mechanisms at the cathode of 

Li- and Na-O2 batteries. The modeling presented in the thesis is based mainly on Density 

Functional Theory (DFT) calculations. [21][22] DFT+U (DFT combined with Hubbard’s correction 

(U) for insulator systems) [23] as it is implemented in the GPAW code [24] is used for polaronic 

conduction studies and a non-equilibrium Green’s function (DFT-NEGF) [25] is applied to obtain 

the coherent electron transport measurements (I-V curves) in the tunneling regime. In addition to 

the large volume of theoretical investigations some relevant experiments have been carried out by 

experimentalist colleagues in our group in order to validate the theory. The main tasks addressed 

in this thesis are the following: 

 We have looked at charge transport (ionic and coherent electronic and polaronic transport) 

in the bulk of different reaction products at the cathode of the newly emerging metal-air 

batteries, i.e. Li2O2 for the Li-O2 battery and NaO2 and Na2O2 for the Na-O2 battery.  

 In addition to the study of charge transport in the bulk of discharge products in Na- and Li-

O2 batteries, we have examined the transport mechanisms at the cathode-electrolyte 

interfaces in nonaqueous Li-O2 /Air battery, i.e. the Li2O2@Li2CO3 interface.  

 We have carried out reaction mechanism studies (growth/depletion) on some selected step 

surfaces with and without air impurities to reveal the effect of CO2 poisoning on the 

overpotential and capacity of the nonaqueous Li-air battery. Similarly, the effect of step 

surfaces of (001) and (100) facets of NaO2 and (11̅00) facets of Na2O2 on dis/charge 

overpotentials have also been studied. 



CHAPTER 1                                                                                                                                                    Introduction 

 

7 
 

Excluding the introduction chapter the rest of the thesis is organized in five chapters as follows. 

Chapter 2: This chapter covers the concepts and basic principles of electronic structure 

calculations in general and density functional theory (DFT) in particular. Different computational 

methods applied in the work are presented in subsections.   

Chapter 3: The pros and cons of nonaqueous rechargeable Li-O2 batteries (when only pure oxygen 

is considered) and the working principle of the state of the art Li-O2 battery are discussed. In 

addition, electronic properties and main results of the ionic, coherent electronic transport and 

polaronic conduction studies in Li2O2, the main discharge product, are presented.  

Chapter 4: The chapter focuses on the implication of air impurities, particularly the influence of 

carbon dioxide poisoning, on the overpotentials and capacity of the nonaqueous secondary Li-air 

battery. The results of the modeling are compared with experimental work carried out in our group. 

The stability of aprotic electrolytes and graphite cathode are discussed in brief. Moreover, the 

charge transport (ionic, coherent electron tunneling and polaronic) at the cathode-electrolyte 

interface (CIE), particularly the Li2O2@Li2CO3 interface is discussed in detail. Finally, the summary 

of the charge transport and CO2 poisoning studies are presented in brief. 

Chapter 5: This chapter provides a general overview of the nonaqueous rechargeable Na-O2 

battery and computational reaction mechanism studies on some selected stable step surfaces of 

NaO2 and Na2O2 (the two main reaction products in Na-O2 batteries). Moreover, the ionic 

conduction studies in both NaO2 and Na2O2 materials and polaronic conduction studies in Na2O2 

are discussed. Finally, the summary of the growth/depletion on step surfaces and charge transport 

studies in NaO2 and Na2O2 are presented in brief. 

Chapter 6: The summary of the present work and an outlook on the future are presented in this 

chapter.  
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CHAPTER 2  

Electronic Structure Methods  

 

 

This chapter provides an overview on the theoretical background and the computational tools that 

are applied in the work presented in this thesis. This chapter will cover the concepts and basic 

principles of electronic structure calculations in general and density functional theory (DFT) in 

particular. DFT is a technique that allows solving a Schrödinger equation in approximate, accurate 

and affordable way. In order to solve strongly correlated systems we apply a special DFT flavor 

that is DFT + U, which will be briefly introduced in section 2.2. Moreover, other algorithms based 

on DFT results such as NEB and NEGFs will be discussed in this chapter. The NEB method is 

used to describe the transition state energy between two stable sates. The NEGFs method is used 

to estimate the coherent electronic transport in the material that is connected between two leads. 

We will discuss these methods separately in sections. 

Firstly, we will start by introducing the time independent Schrödinger equation, which is the basis of 

all electronic structure methods, including DFT.   

2.1. The Time Independent Schrödinger Equation 

In principle, any observable properties of a given system can be obtained by solving the time 

independent Schrödinger equation which is an eigenvalue equation. The time independent 

Schrödinger equation for an isolated system containing N electrons and M nuclei is described by    

Ĥ = E                                                                                                                                                (2.1) 

where  (r1, r2, …rN, R1, R2, …RM) is the wave function (eigenfunction) describing the quantum 

state of the system depending on the spatial coordinates of the electrons, ri, and the nuclei Rj. E 

are the eigenvalues of the system. The Hamiltonian operator Ĥ of the system can be written as,  

 

 

Ĥ = −
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 (2.2) 
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where the first two terms  𝑇 𝑒 and 𝑇 𝑁 are the kinetic energy contributions from N electrons and M 

nuclei, respectively. The potential energies contributions from the electrostatic interactions are 

respectively, nucleus-electron (𝑉 𝑁𝑒), electron-electron (𝑉 𝑒𝑒) and nucleus-nucleus (𝑉 𝑁𝑁) 

interactions. The distance between electron and nucleus is described as  𝑟𝑖𝐴 = |𝑟𝑖 − 𝑅𝐴| and similar 

denotations apply to define distances between electron-electron (𝑟𝑖𝑗) and nucleus-nucleus(𝑅𝐴𝐵).  

Equation (2.2) is in general very complex, and in order to make tractable and solve it, some 

approximations need to be done. The first of these approximations is the so-called Born-

Oppenheimer Approximation. 

Born-Oppenheimer Approximation is an assumption that separates the electronic and nuclear 

motion for a given system and treats them independently. The approximation relies on the fact that 

the two particles have enormous differences in weight. A nucleus is much heavier than an electron, 

approximately 2000 times higher than that of an electron. Therefore, electronic motion is 3-5 orders 

of magnitude faster than that of the nuclei.  

Thus, in the Born-Oppenheimer Approximation the time independent Schrödinger equation is first 

solved for the electronic part fixing the nuclei positions at a given geometry.  

Ĥ𝑒𝑙𝑒𝑖
( r⃗𝑁, R⃗⃗⃗𝑀 ) =∈𝑖 (R⃗⃗⃗𝑀,) 𝑖

( r⃗𝑁, R⃗⃗⃗𝑀 )                                                                   (2.3) 

where  Ĥ𝑒𝑙𝑒 is the electronic Hamiltonian that can be solved is written as follows 

 

 

  

 

The three terms are the kinetic energy of the moving electrons(𝑇 𝑒), the electrostatic interaction 

between the electrons (𝑉 𝑒𝑒)  and the electrostatic interactions between the electrons and the frozen 

nuclei (𝑉 𝑁𝑒).  

It should be remarked that the coordinates of nuclei only enter as parameters in equation (2.4). 
𝑖
, 

is the eigenfunction of the reduced Schrödinger equation of the electronic Hamiltonian, �̂�𝑒𝑙𝑒, and ∈𝑖 

are the corresponding eigenvalues.  
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 (2.4) 
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Once the electronic part of the Hamiltonian is solved for a set of different nuclear coordinates, it is 

possible to solve the nuclear part of the Hamiltonian. 

Ĥ𝑛𝑢𝑐𝑗( R⃗⃗⃗𝑀 ) = E𝑡𝑜𝑡(R⃗⃗⃗𝑀 )𝑗( R⃗⃗⃗𝑀 )                                                                             (2.3) 

where Ĥ𝑛𝑢𝑐 can be described as 

 

 

 

 

E𝑡𝑜𝑡 is the total energy of the system (including nuclei and electrons).  

It should be noticed that the eigenvalues of the electronic part of the Hamiltonian, ∈𝑖, enter as a 

potential in the nuclear part of the Hamiltonian. The total wave functions of the system are then 

written as: 

( r⃗𝑁, R⃗⃗⃗𝑀,)  = 
𝑒𝑙𝑒( r⃗𝑁, R⃗⃗⃗𝑀,)𝑛𝑢𝑐(  R⃗⃗⃗𝑀 )                                                                  (2.5) 

 

 

2.2. Density Functional Theory (DFT) 

Density functional theory (DFT) is, by far, the most popular technique applied to solve the 

electronic part of the Schrödinger equation in systems within the range from 10 to 1000 atoms. 

DFT was initially introduced in 1964 when Hohenberg and Kohn come up with electron density, 

ρ(r), as an essential quantity to tackle a complex many body problem instead of the wave 

function.[21] [26] 

The density functional theory reduces the 3N variables in the wave function for N particles to only 3 

variables, keeping a reasonably high degree of accuracy. As a consequence, the electronic 

structure calculation reduces its cost drastically.  

Ĥ𝑛𝑢𝑐 = −
1

2
 

1

𝑀𝐴
𝛻𝐴

2

𝑀

𝐴=1

+   
𝑍𝐴𝑍𝐵
𝑅𝐴𝐵

𝑀

𝐵>𝐴

𝑀

𝐴=1

    +  ∈𝑖 (R⃗⃗⃗𝑀) 

𝑇 𝑁 𝑉 𝑁𝑁 

 (2.4) 
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DFT has its foundation on the Hohenberg-Kohn Theorems. The first theorem states that the 

electronic density, 𝜌(𝑟), of the ground state of a system is uniquely defined by the external 

potential applied to it. In our case the external potential is the electron-nuclei potential. 

According to this theorem, the ground state energy of a system can be expressed as a functional 

of the electron density as shown below.  

𝐸[𝜌(𝑟)] = 𝑇[𝜌(𝑟)] +   𝑈[𝜌(𝑟)] + 𝑉[𝜌(𝑟)]                                                                       (2.6) 

where the first term is the kinetic part, the second term refers the electron-electron interaction and 

the last term is the external potential due to stationary nuclei. The second theorem stated that the 

energy obtained from the trial density, �́�(𝑟), is always less than or equal to the ground state 

energy, 𝐸𝑂, described as  

𝐸𝑂 ≤ 𝐸|�́�(𝑟)|  ;  𝐸𝑂 = min
𝜌

𝐸|�́�(𝑟)|                                                                                                  (2.7) 

The ground state energy can be obtained according to the variational principle until we reach to the 

density that minimizes the total energy that corresponds to the exact ground state density. Once 

the ground state density of the N-electrons system is determined then other properties can be 

calculated as a response function.  

Once that the total energy of the ground state of a system has been demonstrated to be uniquely 

determined by its electronic density it is necessary is necessary to find a practical way to obtain 

both the electronic density of the ground state and its energy. This is done by solving the Kohn-

Sham equations. The starting point for solving the Kohn-Sham equations is a set of fictitious non-

interacting electrons. However, they are employed in such a way that the density of these fictitious 

non-interacting electrons is the same as the exact density of the real system. The Kohn-Sham 

equations are described by the local effective external potential usually denoted as 𝑉𝑒𝑓𝑓(𝑟) in 

which the fictitious electron move. This is also known as the Kohn-Sham potential, 𝑉𝐾𝑆(𝑟).  

 

𝑉𝐾𝑆(𝑟) = ∫
(𝑟′)

|r − r′|
𝑑𝑟′ + 𝑣𝑒𝑥𝑡(𝑟) + 𝑣𝑥𝑐(𝑟)                                                                                (2.8) 

The first term refers to the Hartree potential, 𝑉𝐻[𝜌(𝑟)] , which takes into account the coulombic 

repulsion interaction between one electron and the mean electron density. It should be noticed that 

𝑉𝐻[𝜌(𝑟)] contains the repulsive interaction of one electron with itself. The second term is the 

coulombic interaction between the electron and nuclei. The last term, 𝑣𝑥𝑐(𝑟), describes the 

𝑉𝐻[𝜌(𝑟)] 
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exchange-correlation functional that takes care of the exchange term (based on Pauli principle) 

and the correlation term. Apart of the exchange based on Pauli principle, the exchange part of 

𝑣𝑥𝑐(𝑟) contains an attractive interaction of an electron with itself which should, cancel out the 

repulsive self-interaction of the Hartree term. The correlation accounts for the potential that is not 

incorporated in the Hartree term; since in reality a single electron normally interacts not to the 

mean rather with the rest of all individual electrons.  

In the Kohn-Sham formalism 𝑉𝐻[𝜌(𝑟)] and 𝑣𝑒𝑥𝑡(𝑟) are treated exactly. However, the exact 

analytical expression for 𝑣𝑥𝑐(𝑟) is unknown and it needs to be approximated. We will present some 

of the most common approximations for 𝑣𝑥𝑐(𝑟) later in this chapter.  

The single particle Schrödinger equation for non-interacting particles is based on the Kohn-Sham 

potential is given by  

Ĥ𝑘𝑠𝑖(𝑟) = (−
1

2
∇2 + 𝑉𝐾𝑆(𝑟))𝑖(𝑟) = ∈𝑖 𝑖(𝑟)                                                        (2.9) 

The solution to the KS Hamiltonian is wave function which consists of a slater determinant of one-

electron wave functions for N particle system. 

 𝑘𝑠 =
1

√𝑁!
𝑑𝑒𝑡[𝜑1𝜑2 …𝜑𝑁]                                                                                                         (2.10) 

Thus, the total electronic density of the system is expressed as (𝑟) = ∑ 𝑖 
 ∗(𝑟)𝑖(𝑟)𝑖 . Since 𝑉𝐾𝑆 

depends on (𝑟) and (𝑟) depends on𝑖(𝑟), 𝑉𝐾𝑆(𝑟) depends itself on the solutions of equation 

(2.9). This makes that the KS equations must be solved consistently. An initial guess electron 

density, (𝑟) is used to solve equation (2.9). This allows obtaining a new electronic density which 

is used to build a new 𝑉𝐾𝑆(𝑟), which is used to solve equation (2.9) again. The convergence 

reaches numerically through some self-consistent iterations, see Figure 2.1.   
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Figure 2.1: A simplified flowchart that illustrate the self-consistency loop for solving KS equations. 

We will introduce now three of the most common exchange correlation functionals in DFT, namely, 

the Local Density Approximation (LDA), the General Gradient Approximation (GGA), and Hubbard-

Corrected DFT functionals (DFT + U). The local density approximation (LDA) [22] is one of the 

simplest approximations to the exchange correlation. This approximation relies only on the local 

density and is written as  

𝐸𝑋𝐶
𝐿𝐷𝐴 = ∫ 𝑋𝐶()𝜌(𝑟)𝑑

3𝑟                                                                                                  (2.11) 

where 𝑋𝐶() is the exchange correlation energy of a homogeneous electron gas. The exchange 

part for the homogenous electron gas can be solved analytically and it can be written as: 

𝑋[] =
3

4
(
3

𝜋
)
1 3⁄

𝜌1 3⁄  

Initial guess (r) 

Output quantities 
Energy, forces, eigenvalues… 

Self-consistent? 

𝑉𝐾𝑆(𝑟) = 𝑉𝐻[𝜌(𝑟)] + 𝑣𝑒𝑥𝑡(𝑟) + 𝑣𝑥𝑐(𝑟) 
Calculating  𝑉𝐾𝑆(𝑟) 

Ĥ𝑘𝑠 𝑖(𝑟) = (−
1

2
𝛻2 + 𝑉𝐾𝑆(𝑟)) 𝑖(𝑟) = ∈𝑖 (𝑟) 𝑖(𝑟) 

Solving KS equation 

Yes 

No 

(𝑟) =  𝑖
∗(𝑟) 𝑖(𝑟)

𝑖
 

Calculating electron density 
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However, to tackle the correlation part, high accuracy quantum Monte-Carlo simulations [27] 

method should be applied. By fitting these Monte-Carlo simulations to analytical expressions it is 

possible to obtain a correlation functional. The ones proposed by Perdew and Zunger [28], and by 

Vosko, Wilk and Nusair [29] are the most widely employed. Improvements relative to the LDA 

functionals are the GGA functionals which take into consideration the densities gradient as shown 

below 

𝐸𝑋𝐶
𝐺𝐺𝐴 = ∫ 𝑋𝐶(↑,  ↓,↑, ↓)𝜌(𝑟)𝑑

3𝑟                                                                  (2.12) 

There are a number of functionals formulate on GGA approximation that are optimized for different 

applications. Among the most used GGA based exchange and correlation functionals are PW-91 

(Perdew−Wang) [30], PBE (Perdew-Burke-Ernzerhof) [31] and RPBE (revised Perdew-Burke-

Ernzerhof [32] functionals.  

As we have mentioned before, 𝑣𝑥𝑐(𝑟) should include an attractive potential between the electron 

and itself which has to cancel out the repulsive self-interaction part of the Hartree potential. In the 

case of the homogeneous electron gas this cancellation occurs, both in LDA and GGA. However, 

in many systems, in particular molecules, semiconductors and insulators, the 𝑣𝑥𝑐(𝑟) in LDA and 

GGA do not cancel completely the repulsion of one electron by itself. This is called the self-

interaction error (SIE). SIE is the main source of the underestimation of bandgaps observed with 

LDA and GGA. Moreover, SIE leads to a wrong description of the localization of charge (i.e. 

polarons) in solids. 

One possibility to palliate the SIE is to use the so-called Hubbard-corrected functional, referred 

also in the literature as DFT+U. In DFT+U an additional U parameter correction is introduced to the 

ordinary DFT method to account for the strong coulomb interaction of localized electrons at a 

particular orbital. The U parameter basically describes the strength of the on-site coulomb 

interactions and the on-site exchange interaction. The U parameter can be extracted from ab-initio 

calculations, but often is obtained semi-empirically. The DFT+U corrections can be implemented in 

different ways. In this thesis we use the one proposed by Anasimov et al. [23] In the Anasimov 

DFT+U implementation the total energy is written as:  

𝐸𝐷𝐹𝑇+𝑈 = 𝐸𝐷𝐹𝑇 +  
U𝑒𝑓𝑓

2
𝑇𝑟(𝜌𝑎 − 𝜌𝑎𝜌𝑎)                                                                                    (2.14)

𝑎
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where 𝜌𝑎 is the atomic orbital occupation matrix. Thus we add a penalty functional to the DFT total 

energy expression that forces the on-site occupancy matrix to be either fully occupied or fully 

unoccupied levels. 

DFT + U (precisely, RPBE+U) methodology is vastly employed in the work presented in this thesis. 

This method is mainly applied to investigate the localization of holes and electrons at the 2p 

orbitals of oxygen and/or carbon of systems that contain peroxide, carbonate, or superoxide ions.  

 

2.3. Transition State Theory (TST) 

TST explains the reaction times between two stable/meta-stable configurations of a system, i.e. the 

initial and final states. The energy barrier between the two configuration, 𝐸𝑏 , is usually called 

activation energy of transition. According to Arrhenius law the transition rate between the initial and 

final state depends on 𝐸𝑏 as follows: 

𝑟(𝑇) = 𝑣𝐸𝑥𝑝
(
−𝐸𝑏
𝑘𝐵𝑇

)
                                                                                                        (2.15) 

where the prefactor 𝑣 is the so-called attempt frequency or hopping rate, it is given by (𝑣 =
𝜔𝐼𝑆

𝜔𝑇𝑆
) 

where 𝜔𝐼𝑆 and 𝜔𝑇𝑆 are the vibrational frequencies at the initial and saddle points respectively 

within harmonic transition state theory. [33]  

The diffusion coefficient (D) of a particular defect can be determined using 𝐷 = 𝑣𝑎2𝑒−𝐸𝑏 𝑘𝐵𝑇⁄ . It can 

be simplified as D = a2r, where a is the jump length. 
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2.4. Nudge Elastic Band (NEB) Method 

 

The nudged elastic band (NEB) method [33-35] is the most popular computational tool to locate the 

transition states and their corresponding 𝐸𝑏. NEB method optimizes a set of intermediate images 

along the path that connects the initial and final states. Each image is optimized applying 

constrains that forces an equal spacing between neighboring images. The constrains are imposed 

through a force Fi
NEB, made of two components (see Figure 2.2), namely: The parallel force also 

known as the spring force (Fi
S||

) that tie the neighboring images and prevents them from moving 

into either the initial or final states. The other component is true force perpendicular to the path 

(Fi
). The force acting on an individual image 𝑖 is then changed from Fi to Fi

NEB (Fi
NEB =  Fi

S||
+ Fi

). 

 

 

 

 

 

 

 

 

 

 

 

The energy barrier for defect migrations ( ionic diffusion and polaron hopping) are obtained from a 

slightly modified NEB method, i.e. the climbing image nudge elastic band method (CI-NEB) [36]. 

The latter improves the energy barrier for finding the minimum energy pathway in such a way that 

the highest energy image is made to climb up to the saddle point. This image will be converged at 

the exact saddle point. 

 

Figure 2.2: An illustration of a potential energy land scape drawn by contour lines between the relaxed 

initial and final states separated by a number of intermediate images connected by a spring. Figure is 

taken  from [114]. 
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2.5. Nonequilibrium Greens Function (NEGFs) 

All presented coherent electronic transport calculations in the tunneling regime are carried out 

using the Non-equilibrium Green’s function (NEGF) formalism. The calculations are performed 

using a localized linear combination of atomic orbitals (LCAO) basis set (double-zeta plus 

polarization quality basis for all atomic species) as implemented in the Atomistix ToolKit (ATK) 

package [37] [25] [38]. The device region contains a central device region (C) that connects to two 

semi-infinite leads at fixed electronic chemical potential of the left and right electrodes μL, μR, 

respectively, see Figure 4.16. Electronic potential inside the leads in the device converges rapidly 

to their corresponding bulk values as a result of sets the boundary conditions and the electronic 

screening. Green’s function (GF) of the central region defined by. 

 

𝐺(𝐸) = [𝐸𝑆 − 𝐻𝐶 −  (𝐸) −  (𝐸)
𝑅𝐿

]
−1

                                                                                      (2.16) 

where 𝑆 and 𝐻𝐶 are the overlap and Hamiltonian matrix of the central region in the LCAO basis. 

The self-energies 𝑅/𝐿 , include the open boundary conditions of the infinite bulk electrodes.  

The transmission spectrum of the system is obtained from which current can be extracted after 

solving the self-consistent non-equilibrium density matrix in ATK. 

The transmission coefficient at energy 휀 is obtained by summing up the transmission from all the 

states at this energy, 

𝑇(𝐸) =    𝑡𝑘
†𝑡𝑘

†𝛿(휀 − 휀𝑘)

𝑘

                                                                                         (2.17) 

where 𝑡𝑘
†
 is the transmission amplitude at the fraction of a scattering state 𝑘 which propagates via a 

device.  

Alternatively, the retarded Green's function can also yield the transmission coefficient as shown 
below 

𝑇(휀) =  𝐺(휀)𝐿(휀)𝐺(휀)†𝑅(휀)                                                                                          (2.18) 

 

where 𝐿/𝑅(휀) = 𝑖(𝑅/𝐿(휀) − 𝑅/𝐿(휀)
†) and the trace is taken over the central region basis 

functions. In physical terms 𝑇(휀) gives the transmission coefficient (probability) for an electron 

incident on the interface with an energy E under an applied bias V. Finally, the current per unit cell 

is obtained from  the transmission coefficient using 
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𝐼(𝑉𝐿, 𝑉𝑅 , 𝑇𝐿 , 𝑇𝑅) = ∫ 𝑇𝜎(𝐸) [𝑓 (
𝐸 − 𝜇𝑅

𝐾𝐵𝑇𝑅
) − 𝑓 (

𝐸 − 𝜇𝐿

𝐾𝐵𝑇𝐿
)] 𝑑𝐸

µ𝑅

µ𝐿

                                                           (2.19) 

 

where 𝑓 is 𝑇𝐿/𝑅 is the electron temperatures of left/right electrode, and 𝑇𝜎(𝐸) is the transmission 

coefficient doe spin component 𝜎.   

 

The energy dependent conductance 𝐺(𝐸) is described as  

𝐺(𝐸) =
𝑒2

ℎ
𝑇(𝐸) 

For an ideal system 𝐺(𝐸) = 𝐺𝑂, where 𝐺0 = 2𝑒2 ℎ⁄  which is the quantum unit of conductance and 

corresponds to a resistance of 12.9 k. 

 

The chemical potentials of the left and right electrodes relative to Fermi level of their respective 

electrode are defined as 𝜇𝐿 = 𝐸𝐹
𝐿 − 𝑒𝑉𝐿 and 𝜇𝑅 = 𝐸𝐹

𝑅 − 𝑒𝑉𝑅, respectively.  

The applied bias voltage across the device region is obtained is defined as 𝜇𝑅 − 𝜇𝐿 = 𝑒𝑉𝑏𝑖𝑎𝑠 ; leads 

to 𝑉𝑏𝑖𝑎𝑠 = 𝑉𝐿 − 𝑉𝑅. 

 

2.6. Codes 

All DFT calculations presented in this thesis have been performed by means of GPAW code and 

the NEGF calculations have been carried out using the ATK code. We present the main features of 

both codes in the following paragraphs. 

 

GPAW [24][39] is a DFT package that uses a real space basis set calculated on a uniform grid 

algorithm. It is based on the projector-augmented wave (PAW) function method [40]. PAW method 

describes the non-valance electrons (core electrons) in a frozen core approximation since core 

electrons are localized around nuclei and are chemically inert. It is combined with the atomic 

simulation environment (ASE) [41] that can be used to setup and analyze atomistic simulations.  

 

ATK refers to Atomistix ToolKit [25] [37] [38] simulation software for nanoscience. ATK is used in 

this thesis popular to obtain the electron transport calculations for atomic scale systems connected 

to semi-infinite electrodes with an applied bias. The tool is based on DFT, using numerical atomic 

orbital basis sets. The effects of core electrons are described by using nonlocal norm-conserving 

pseudopotentials. The NEGF formalism takes into accounts both the self-consistency and the 

solution of the electrostatic problem.    



CHAPTER 3 

Li-O2 Batteries 

 

 

3.1. Introduction  

As use of renewable energy sources increases, the demand for high energy storage on various 

time scales is rapidly growing for a wide range of applications. For short time energy needs, 

batteries are preferable for instance to use as a backup in case of power fluctuations. 

Rechargeable batteries are used for electrification of vehicles in the transport services. Today, 

most electric and hybrid electric vehicles (HEV) rely on Li-ion batteries. The main drawbacks of Li-

ion batteries are their high price per kWh of storage energy, slow charging and low energy/power 

density compared to that of gasoline. [42] In other words, the capacity offered by the state of the 

art Li-ion technology is too low to solve the increasing energy storage demands. The latest 

capacity of Li-ion batteries is ~300 mAh/g [16]. This technology probably will not be able to 

increase appreciably from the present capacity since it has almost reached its theoretical 

limitations.[42] The number of HEV and electric vehicles on the road are rapidly increasing 

globally. The latest affordable electric vehicles offer a limited driving range at a maximum of 120 

miles. The luxury EV (Tesla S model) provides a driving range of up to 270 miles but it costs nearly 

~100, 000 $. The need for development of safe, long-lived rechargeable batteries, with 

considerably higher energy density and specific energy which can provide the desired driving 

range at a reasonable price, is evident. [18]   

Recently, technologies “beyond Li-ion batteries”, such as metal-air batteries, have gained great 

interest as a future alternative to Li-ion batteries in the transportation sector. Particularly, the Li-O2 

couple appears as a promising choice due to its superior energy storing capacity of all beyond Li-

ion batteries. The rechargeable Li-O2 battery using aprotic solvent, where Li2O2 is formed during 

discharge at the cathode, was initially reported by Abraham et al. in 1996. [43] The development of 

Li-O2 /Air batteries is making progress; however, to produce commercial working batteries 

substantial improvements are still needed. In the following section some pros and cons associated 

with this technology will be discussed. 
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3.1.1. Pros and Cons of Non-Aqueous Li-O2 Batteries   

 

As mentioned earlier, the Li-O2 battery is a potential breakthrough in battery technologies in 

general as it has the highest achievable specific capacity ~3842 mAh/g [15]. This is about ~5-10 

times greater than currently available Li-ion batteries, and it could probably offer the desired driving 

range (> 300 miles per charge), see Figure 1.3. Unlike Li intercalation in graphite in Li-ion 

batteries, the Li-O2 technology if succeed may use the lightest metal, lithium directly in pure form 

as anode. The other reaction component is oxygen gas (O2), which is taken from ambient 

atmosphere using some sort of purifying membrane.   

There are many fundamental and technical challenges linked with this emerging technology. Unlike 

the Li-ion batteries, the metal air batteries in general and Li-O2 in particular suffer from complex 

parasitic side reactions. Limited electric efficiency is caused by overpotential/polarization losses at 

the cathode in both discharge and charge processes. Less than 70 % electrical efficiency is 

attained due to typically observe high overpotential (> 1.0 V) during charging process. Moreover, 

the limited power and current densities currently achievable are main challenges. In order to solve 

these cons mentioned above it is crucial to gain a fundamental understanding of the reaction 

mechanisms of charge/discharge processes. Moreover, charge transport studies in the reaction 

products for example in Li2O2 and other side products such as Li2CO3 and various cathode-

electrolyte interfaces like Li2O2@LI2CO3 are equally important. 

In general, the Li-O2 chemistry is complex and this makes the charge transport mechanisms more 

challenging. Moreover, complex interfacial phenomena, influences of air impurities, the two 

electrodes stability, choice of appropriate electrolytes and safety are among critical issues that 

need to be addressed in non-aqueous rechargeable Li-O2 battery research. [44][45]   

According to GoWo calculations Li2O2 is an insulator material with a bandgap of 4.9 eV.[46][47] This 

material deposits at the cathode surface during discharge and significantly limits the electronic 

conduction from the cathode electrode to the active site where the discharge reaction is taking 

place. Thus, 5−10 nm thick Li2O2 film deposits lead to so called “sudden death” during discharge. 

[48-50] An electron transport mechanism alternative to tunneling is required, to obtain enhanced 

conductivity. DFT+U studies by Garcia-Lastra et al. [51] revealed a hole polaronic conduction as 

an alternative conduction mechanism in Li2O2. Moreover, HSE functional studies also found hole 

and electron polaronic hops as the preferable conduction mechanism in Li2O2. They also found that 

the hole polarons have higher mobility, i.e. low energy barrier compared to the electron polarons 

hops. Furthermore, Luntz et al, have shown that polaronic transport is more important in Li2O2 at 
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elevated temperatures and at low current densities.[52][53] In addition to coherent transports 

through tunneling and polaronic conduction mechanism, there are also other possible charge 

transport mechanisms under investigation such as adding dopants [54] [55] and surface 

conductance [56] among others.   

 

3.1.2. Li-O2 /Air Battery Working Principle 

 

The basic design of a Li-O2 cell is similar to any other conventional electrochemical cell as it 

contains two electrodes and an electrolyte. Namely, the lithium metal anode (-) and the air cathode 

(+) where oxygen gas (O2) is taken from air or tank and diffuse on the surface of a porous carbon, 

and the non-aqueous electrolyte in between the two electrodes as shown in Figure 3.1.  

 

Figure 3.1: Schematic of Li-O2 battery. 
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During the discharge process, a Li+ ion is released from the anode and moves to the cathode 

through the electrolyte. In the charging process Li+ ion is reduced to metallic lithium (Lio) and 

deposited back to the lithium electrode. The two processes occur at different chemical potentials 

and the difference of the two chemical potentials defines the open circuit voltage (OCV) as shown 

below.  

 OCV =  
∆𝐺𝜃

𝑧𝐹
                                                                                                                                      (3.1) 

where ∆𝐺𝜃 is the change in Gibbs free energy of the reaction, 𝐹 is the Faraday constant and 𝑧 is 

the charge number which is 1 for systems that use lithium.  

During discharge process, the electrons will move through an external circuit, whereas, the lithium 

ion moves through the electrolyte. In both cases the move is from anode (-) to cathode (+) during 

discharge. The electrolytes are supposed to be ionic conductors but not electron conductors. The 

amount of energy transferred to electric devices is equivalent to the OCV multiplied by z, the 

charge number.  

The ORR and OER mechanisms, and species formed during operation in Li-O2 batteries are 

dependent on the electrolyte selection, whether it is aqueous, non-aqueous (aprotic) or solid. In a 

rechargeable Li-O2 battery that uses aprotic solvents Li2O2 is formed during discharge at the 

cathode with lithium superoxide (LiO2) as an intermediate product (equation 3.3). The proposed 

electrochemical reaction mechanisms at the electrode following series of reports from McCloskey 

et al. [57], Abraham et al. [58] and Bruce et al. [59], and many other reports are given by: 

      Anode reaction:        2Li → 2(Li+ + e−)                                                                                                     (3.2) 

Cathode reactions:   Li+ + e− + O2
∗ ↔ LiO2

∗                                                                                         (3.3) 

                                LiO2
∗ + Li+ + e−  ↔ Li2O2

∗                                                                                    (3.4) 

LiO2
∗ + LiO2

∗  ↔ Li2O2
∗  + O2                                                                              (3.5) 

In an ideal rechargeable Li-O2 system, two electrons are consumed (evolved) per oxygen molecule 

in the discharge (charge) process, assuming that only oxygen gas is consumed or evolved, and no 

other side reaction products are formed due to electrolyte decomposition, air impurities or 

degradation. However, in reality there are a number of side reactions that could occur and result in 

formation of several species such as carbonates and hydroxides.  
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3.2. Electronic Properties of Li2O2 

3.2.1. Bulk Phases of Li and Li2O2 Crystal Structures 

 

Cota and Mora [60] reported that lithium peroxide (Li2O2) crystalizes with hexagonal crystal 

structure that belongs to the P63/mmc space group with the experimental lattice parameters of a = 

b = 3.187 Å, c = 7.726 Å [60]. It can effectively be viewed as individual peroxide O2
−2  ions 

embedded in sea of Li+ ions, as shown in Figure 3.2. 

 

 

 

 

 

 

The metallic lithium crystallizes in the body-centered cubic (BCC) structure at ambient temperature 

and pressure. [61][62] The cubic unit cell contains two lithium atoms and half of the total energy of 

the unit cell which corresponds to the single metallic lithium atom has been used to calculate the 

formation energies of lithium containing species.  

 

 

 

 

 

 

 

Figure 3.2: a) Body-centered cubic (BCC) Lithium structure with lattice a = 3.48 Å at room temperature. 

b) Hexagonal Li2O2 unit cell structure (top view) with lattice parameters a = b = 3.187 Å, c = 7.726 Å 

(space group P63/mmc). Color: Lithium (green) and oxygen (red). 
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3.2.2. Density of States (DOS) 

 

The states close to Fermi level of bulk Li2O2 originate from peroxide ions (O2
−2), not Li+ ions. Hence, 

DOS revealed that both the highest occupied molecular orbital (HOMO) and the lower unoccupied 

molecular orbital (LUMO) are almost entirely arising from the 2p orbitals of the peroxide ions (O2
−2). 

In Figure 3.3, we can see that Li2O2 is a wide bandgap insulator with a DFT + U (at U = 6 eV) 

calculated bandgap of 5.03 eV. The DOS of a defect system with a Li+ vacancy reveals that the 

vacancy levels pin the Fermi level. 

 

 

 

 

 

 

 

 

Figure 3.3: The total density of states (DOS) relative to the Fermi energy for pristine Li2O2 and 

with defect (neutral Li-vacancy) using RPBE + U (at U = 6 eV) 



CHAPTER 3                                                                                                                                                LiO2 Battery 

 
 

26 
 

3.2.3. Stable Surfaces of Li2O2  

 

In several computational studies it has been reported that reconstructed (0001), (11̅00) and (11̅20) 

surfaces are the most stable and predominantly exposed facets at battery operating potentials, 

being about 80% dominated by the (0001) surface. [63][64] Moreover, related works by Radin et al. 

[56][63] have shown that facets such as (0001), (11̅00) and (112̅0) have similar surface energies 

and Hummelshøj et al.[64], have also shown that surface energies are potential dependent and 

varies during discharge and charge. At lower current densities surface kinks and steps will control 

the growth of Li2O2.  In chapter 4 we will present the effect of CO2 poisoning on a stepped (11̅00) 

Li2O2 surface. 

A previous theoretical work by Hummelshøj et al. [65] reported that steps on a 

reconstructed (11̅00) surface could act as nucleation sites at low discharge overpotentials. The 

oxygen rich (0001) facet will also be exposed, in particular under charging conditions. The role of 

steps and kinks on the different (0001) terminations is, however, less investigated than on the 

(11̅00) surfaces as overpotentials on (0001) are expected to be slightly higher. [64] Apart from own 

CO2 poisoning effect studies on the reaction mechanisms on the (11̅00) Li2O2 surface [66], recent 

computational DFT results for SO2 adsorption on stepped (0001) and (11̅00) surfaces does, show 

preferential bonding to the highly investigated (11̅00) facet. [67]   
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3.3. Ionic Conductivity in Li2O2 

The lithium diffusion studies are modelled using a vacancy mediated approach in which a single Li 

atom is removed from the 3 × 3 × 1 Li2O2 supercell (consists of 72 atoms) and yields a total 

vacancy concentration [V0
Li] of 2.78 %. Thus, the activation energy of the lithium or vacancy (in the 

reverse direction) diffusion along the path between relaxed initial and final states is estimated using 

CI-NEB method as it is described in section (2.4). Revised Perdew-Burke-Ernzehof (RPBE) 

exchange correlation functional is used in all Li2O2 calculations [28]. All ground state energies are 

determined when Hellmann-Feynman forces were less than 0.03 eV/Å. Atoms in the super cell are 

free to relax during the optimization. The calculations are performed both at the neutral and -1 

compensating back ground charge. 

 

We have conducted six different Li diffusion channels along the three directions within two layers, 

two diffusion pathways are considered in each direction. These six hops are performed twice using 

0 and -1 compensating background charges. Accordingly, four hops in the intralayer direction (in 

the XY-plane, see Figure 3.4) are considered, namely BE(X) and AD(X) in the X directions and 

AF(Y) and BG(Y) in the Y directions. In both cases the energy barriers are close to 1 eV. 

Interestingly, we observe that the hops in the X and Y directions within the same intralayer are 

overlapping, as can be seen in Figure 3.4. Regarding the interlayer diffusion (in Z direction), there 

are two possible inequivalent hops, namely AB(Z) and BC(Z).  

 

The estimated barrier at neutral background charge is 𝐸𝑏 = 0.44 eV and 𝐸𝑏 = 0.36 eV for the AB(Z) 

hop and BC(Z) hop, respectively, giving an average 𝐸𝑏 = 0.40 eV. Thus it is clear that V0
Li diffusion 

has a preferential channel in the Z-direction. The microscopic diffusion channel follows A  B  C  

series along the Z-direction with an average rate of 𝑟 = 2𝑥106𝑠−1 and a diffusion coefficient of 

D = 1.5𝑥10−9 cm2 s⁄ . This relatively small barrier in the Z direction opens the possibility for both V0
Li 

V-
Li diffusion at ambient conditions (for more details see ref. [68][69]). The results obtained using -1 

compensating background charge (charged vacancies), are nearly identical, see Figure 3.4.  
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Figure 3.4: The calculated CI-NEB pathways for Li2O2 bulk of  3 × 3 × 1 supercell. The migration barriers for 

the neutral Li-vacancies, 𝑉𝐿𝑖
𝑜 , (upper) and charged Li-vacancies, 𝑉𝐿𝑖

−, with -1 compensating background 

charge (lower) in both intralayer and interlayer diffusion channels are almost similar.  

 

 

3.4. Coherent Transport in Li2O2 

The coherent electronic transport calculations in Li2O2 in the tunneling regime are carried out using 

the Nonequilibrium Green’s function (NEGF) formalism. The calculations are performed using a 

localized linear combination of atomic orbitals (LCAO) basis set (double-zeta plus polarization 

quality basis for all atomic species) as implemented in the Atomistix ToolKit (ATK) [37] [25] [38] 

package, where a central device region (or scattering region) is connected to two semi-infinite 

leads, which are kept at fixed electronic chemical potentials, µL and µR, respectively, to simulate an 

applied bias voltage across the device region given by 𝑉 = (µL − µR)/𝑒. The scattering region 

contains 16 formula units of Li2O2. The semi-infinite leads contain similar species, i.e. 8 formula 
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units of bulk Li2O2 as left and right electrodes. The RPBE exchange correlation functional and a 

4 × 6 × 100 k-point sampling is used during the NEGF self-consistent loop. In the finite bias 

calculations, a positive bias is defined as sending electrons from left to right.  

 

It is expected that in the Li2O2 structure for bias voltages (negative or positive) around 2.0−2.5 eV 

(i.e. half of the bandgap of Li2O2) we will start to see a relative good conductance in Li2O2 bulk, see 

Figure 3.5.  

 

Regarding the presence of vacancies in Li2O2 bulk, as shown in Figure 3.3 the DOS of the defect 

system reveals that the vacancy levels pin the Fermi level of the pristine system. This implies that 

𝑉𝐿𝑖
𝑜  vacancies are not going to open new electron tunneling channels in these systems and they are 

going to have a detrimental effect in the conductivity due to their action as scattering centers. 

 

In order to check the plausibility of these assumptions we perform DFT−NEGF calculations as 

described in section 2.4. As seen in Figure 3.5 significant current (around ~10 mA cm2⁄ ) begins to 

rise just around ± 2.0 V in pristine Li2O2 bulk. Furthermore, 𝑉𝐿𝑖
𝑜  vacancies reduce the current at 

relevant voltages, by a factor of 2. The 𝑉𝐿𝑖
𝑜  vacancies in Li2O2 have a substantial negative effect, on 

the coherent electronic transport at the oxygen electrode of Li-O2 batteries. 

 



CHAPTER 3                                                                                                                                                LiO2 Battery 

 
 

30 
 

 

 

Figure 3.5: Calculated IV curves from ATK using the RPBE exchange correlation functional with k-point 

sampling 4 × 6 × 100 at electron temperature of 300 K for pristine Li2O2 and in the presence of a neutral 

lithium vacancy. 
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3.5. Polaronic Conductivity in Li2O2 

The polaron hops in Li2O2 will be discussed in this subsection. Polaronic conduction studies in 

Li2O2 have been performed using the DFT+ U method. It includes hole and electron polaron hops 

in both intra and interlayer paths.  We found that Li2O2 bulk can hold hole polarons with sufficiently 

low migration barriers 0.53 eV (0.14 eV difference from [51] due to supercell size difference) and 

become an alternative path for electron transport.[51] It has been also found that the material can 

hold excess electron polarons. However, the migration barriers for electron polarons are much 

higher than the ones for hole polarons, i.e. 1.49 eV. When we consider polaron localization we 

observe that the hole (excess electron) polaron is localized by shortening (stretching) the bond 

length of one of the O−O bond from 1.55 to 1.33 Å (2.45 Å), see Figure 3.6. Apart from the 

geometry distortions we observe in all the cases the appearance of a magnetic moment in the 

oxyanions, which is another footprint of the hole (excess electron) localization. The localized states 

are more stable than the delocalized ones (charge dispersed in the crystal) and particularly the 

electron polaron is found to be strongly localized by > 2.0 eV relative to the delocalized state [51].   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: DOS of the pristine Li2O2 compared with a localized hole and electron polarons on one peroxide 

anion using DFT+U (at U = 6 eV). 
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Polaron localization results in some sort of distortion in the peroxide crystal structure of Li2O2, i.e. a 

hole localized in a peroxide ion involves a change in the O−O bonding distance of 0.2 Å, while the 

localization of an excess electron requires stretching the bonding by 0.9 Å. As shown in Figure 3. 

7, the barrier for transporting excess electron polarons is 1.41 eV in Li2O2 bulk. This implies that 

the excess electron polaronic transport across Li2O2 is an inaccessible channel for electronic 

transport. The polaron hopping barrier for holes in Li2O2 bulk is 0.39 eV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Calculated polaron hops in a 3 × 3 × 1 Li2O2 supercell along the intralayer and interlayer 

channels. Energies are obtained from RPBE+U (at U = 6 eV) method. 
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CHAPTER 4 

LiO2 / CO2 Battery 

 

 

4.1. Introduction 

In this chapter we extend the discussions to real Li–O2 /Air battery technology, it is anticipated to 

make use of ambient air as an oxygen source using a purification technique. However, few 

experimental results that have been obtained in ambient conditions have already revealed that, air 

impurity is one of the main bottlenecks to the development of the Li-O2 /Air battery technology. At 

ambient conditions the atmosphere contains an average of ~0.04 % (400 ppm) of carbon dioxide 

and 1.54 % of water vapor, for example at 25 oC and 50 % humidity the concentration of H2O in 

air is ~1.5 %. In fact, these values might vary with location and season.   

 

Currently, almost all the LiO2 /Air battery studies are carried out using either pure oxygen gas at 1 

atm or in ambient conditions with an oxygen partial pressure of 0.21 atm. For example, LiO2 /Air 

batteries using Ketjenblack carbon-based air electrodes can last for more than a month in ambient 

conditions offering a specific energy of 362 Whkg−1, considering the entire weight of the battery 

packaging [70]. In order to fully remove or reduce the amount of water contamination for the 

battery to operate in ambient air conditions, many types of O2-permeating membranes have been 

tested. A hydrophobic-type inorganic material silicalite zeolite and a polymeric material 

poly(tetrafluoroethylene) (PTFE) membrane were tested and results concluded that the PTFE film 

supported on a spongy metal sheet offer the highest battery efficiency [71].   

 

In this chapter we will discuss the influence of CO2 poisoning on both overpotentials and discharge 

capacities as it appears in paper II. We have combined the DFT calculations with experimental 

techniques such as galvanostatic and differential electrochemical mass spectrometry 

(DEMS) measurements. The results revealed that even small amounts of carbon dioxide 

contamination (< 1 % CO2) in the feed oxygen gas substantially increase the charging 

overpotential, which reduce the efficiency of the Li–O2 /Air battery at large [72][73]. Water vapor 

contaminations also results in similar efficiency losses. Moreover, in an aqueous Li − Air battery 
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the bottleneck issue is the corrosion of the metallic Li anode. The last but not the least is the safety 

part, hence, the Li foil is explosively reactive with water.[74]   

 

Apart from the air impurities, as much attention is given to the stability of aprotic electrolytes and 

carbon cathode materials that both play a significant role in limiting the performance of the battery. 

Many reports give emphasis to the formation of a carbonate species (LinCO3) from parasitic side 

reactions between Li2O2 or LiO2 and carbon sources such as CO and CO2 molecules from the 

atmosphere [72], reactive carbon from the graphite cathode or carbonate derivatives from 

decomposition of the aprotic electrolytes.    

 

4.2. Carbonate Formation: Cathode and Electrolyte Stability  

It has been reported in many publications that various electrolytes decompose by possible 

intermediates and discharge products such as Li2O2 and LiO2 and e.t.c. In other words the 

discharge products react either chemically or electrochemically with electrolytes. [15][75] [76]    

Younesi, et al., [77][78] reported the degradation of various electrolytes by Li2O2 and documented 

Li2CO3 as a decomposition product from aprotic electrolytes. Likewise, McCloskey et al., [50] have 

shown that small amounts of carbonates that accumulate at the C-Li2O2 and Li2O2-electrolyte 

interfaces are responsible for a large potential increase during recharge and a huge decrease in 

exchange current density. Other various studies on the stability of nonaqueous electrolyte have 

also been reported. [79-84] 

All presented experimental work were performed using a known aprotic electrolyte 1, 2-

dimethoxymethane, DME, that contain about 20 ppm of H2O impurity in 1M lithium 

bis(trifluoromethylsulfonly)imide salt abbreviated as LiTFSI (99.95 % purity), P50 AvCarb carbon 

paper cathode and a lithium anode. Both of them are dried for several days at different 

temperatures prior to mixing. They are purchased from Sigma Aldrich. The choice of the 

electrolyte, DME, is based on its relative stability compared to other nonaqueous electrolytes 

studied in the Li-O2 /Air battery studies. The experimental measurements have been conducted at 

DTU Energy by Kristian and Jonathan.    
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4.2.1. Ionic Conduction in Lithium Carbonate Li2CO3  

 

 

 

 

 

 

 

 

 

 

In this subsection, the details of the Li vacancy diffusion in bulk Li2CO3 across various pathways 

are discussed, see Figure 4.1. Lithium vacancies, V0
Li, diffusion studies are modeled by removing 

a single Li atom from a supercell followed by internal relaxation. We employ a 2 × 2 × 2 supercell 

(192 atoms) of bulk Li2CO3 with a 1 × 2 × 2  k-point sampling to analyze the effect of neutral and 

negatively charged vacancies (V-1
Li). The total vacancy concentration is found to be 1.6 %. 

 

We have conducted a diffusion studies in five different possible diffusion paths in Li2CO3, (see 

Figure 4.2). As shown in Figure 4.2, the CI-NEB calculations show several minimum energy 

barriers for the different Li vacancy diffusion channels, i.e ~0.2 eV in all the three directions for 

both neutral and charged Li vacancies. We found that the AD diffusion path is the most plausible 

low energy barrier channel in the Y direction, while the CE diffusion path is most favorable in the Z 

direction. For the X direction Li follows a sequence of diffusion paths. For instance, the microscopic 

diffusion channel along the X direction probably follow AB diffusion path as a first step then 

followed by BC  or AD diffusion path or vice versa (AD = BC ). The average rate (r) of Li vacancy 

diffusion and diffusion coefficient (D) of Li2CO3 is estimated using equation (2.15). The 

corresponding values are equal to 9𝑥108𝑠−1 and 1.6𝑥10−6 cm2 s⁄ , respectively.   

 

Figure 4.1: The monoclinic Li2CO3 crystal structure with space group 15 or C 2/c consists of 4 formula units 

per unit cell with lattice parameters a = 8.359 Å, b = 4.973 Å, c = 6.197 Å and β = 114.83°.[115] The planar 

CO3
−2 groups with C-O bond lengths of 1.284, 1.305 and 1.305 Å are surrounded by the sea of Li

+
 ions. The 

Li
+
 and CO3

−2 
groups are oriented alternating on the XY plane. Each Li

+
 ion is coordinated with four oxygens 

to form a tetrahedral structure. Color: Red (Oxygen), Gray (Carbon) and Purple (Lithium).  
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4.3. Air Impurities at the Air Cathode: CO2 Poisoning 

In this subsection, we address the influence of CO2 contamination on Li2O2 growth mechanism, 

discharge/charge overpotentials and capacity in nonaqueous Li-air batteries using computational 

tool (DFT) and experimental techniques such as galvanostatic and differential electrochemical 

mass spectrometer (DEMS) measurements. [66] Among other air contaminants, CO2 is the most 

critical subject due to its high solubility in aprotic electrolytes and high reactivity with Li2O2 to form 

an insulating material which oxidizes at higher overpotential, i.e. Li2CO3. [85][50] 

 

4.3.1. Galvanostatic Dis/charge Results with and without CO2 Impurity 

 

To investigate the effect of gaseous CO2, the assembled cells were purged with three different 

atmospheres: 0/100 CO2/O2, 1/99 CO2/O2, and 50/50 CO2/O2. Three individual batteries were 

assembled and investigated for each atmosphere and the corresponding results are presented in 

Figures 4.3 and 4.4. An average data of the three cells is therefore taken at the same atmosphere. 

The lowest discharge capacity was observed for the 50 % CO2 cells (blue line in Figure 4.3) and is 

most likely caused by the high concentration of electrochemically inactive CO2. A similar effect was 

observed, by Gowda et al. [72] for a pure CO2 cell, where the cell potential immediately dropped. It 

should however be noted that Takechi et al. [86] observed, quite to the contrary of our 

Figure 4.2: Calculated CI-NEB paths for Li vacancy (V
0
Li) diffusion in bulk Li2CO3 along different channels. A 

minimum energy barrier is obtained about 0.20 eV. Color: Purple (Lithium), Red (Oxygen), Grey (Carbon). 
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observations, higher discharge capacities up to 70 % CO2 with respect to pure O2 cells. 

Interestingly, a higher discharge capacity was observed for the 1 % CO2 cells in respect to the pure 

O2 cells as can be seen in Figure 4.3 (inset). A possible explanation is the dissolution of Li2CO3 

species in DME and/or, as also suggested by Gowda et al., a change in deposition morphology 

compared to that deposited in the pure O2 cells as suggested by Myrdal and Vegge.[67] Such 

morphological changes could increase the total electrodeposited layer and lead to higher 

capacities.  

 

Figure 4.3: Galvanostatic discharge profiles at a current density of 127.3 μA cm2⁄  at three different    

atmospheres: 50 %  CO2, 1 % CO2 and 0 % CO2. Inset shows the increase in discharge capacity in 1 % CO2. 

 

All CO2 cells have higher discharge overpotentials compared to cells with pure O2 at a discharge 

rate of 127.3 μA cm2⁄ , which may be caused by the blocking of the active nucleation sites by 

solubilized CO2, forcing the reactions to follow pathways with higher overpotentials. This effect can 

even be seen at 1 % CO2, as illustrated on Figure 4.3 above. The charge capacity is very 

dependent on the CO2 concentration, with high concentrations limiting charge capacity and thereby 

cell reversibly, see Figure 4.4.  

50 % CO2 cells reach the lower potential limit (2.0 V) early, at approx. 35 mAh/g, while 1 % CO2 

cells and pure CO2 cells continue until capacities in the range 1150-1600 mAh/g were reached 
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depending on current density. The low charge capacity at high CO2 contaminations should be 

attributed to the poor Li-CO2 electrochemistry, also reported by Gowda et al. The charging 

overpotentials are a function of both current density and the level of CO2 contamination, while there 

is no significant difference in overpotentials between cells charged at 127.3 and 63.6 μA cm2⁄   for 

50 % CO2 cells, which again can be attributed to the poor Li-CO2 electrochemistry. At 127.3 

μA cm2⁄ , there is an increase in overpotential of about 0.43 V and 0.34 V for 1 % CO2 cells and 0 % 

CO2 cells, respectively. The general increase in overpotentials with increasing current density can 

be explained by the Butler-Volmer model [87], while the larger overpotential for the 1 % CO2 cells 

than 0 % CO2 cells, is expectedly caused by the formation and oxidation of the carbonate like 

species (Figure 4.8b). A second charge at 63.6 μA cm2⁄  shows identical results for 1 % and 0 % 

CO2. This can be ascribed to the evolution of CO2 observed during the initial charge cycle, where 

CO2 is released at 4.5 V, as shown in Figure 4.5, resulting in residual CO2 in the electrolyte causing 

blocking of the step sites in subsequent charging experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Galvanostatic charge profiles at 127.3 (solid) and 63.6 (dotted) μA cm2⁄  at three different 

atmospheres: 50 % CO2, 1 % CO2 and 0 % CO2. 
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4.3.2. Gibbs Free Energy Diagram  

 

The computational lithium electrode approach is used in the free energy calculations.[65] Defined 

as, U = 0, when bulk Li anode and Li ions in solution (Li+ + e−) are at equilibrium. The free energy 

change of the reaction is shifted by –neU at an applied bias, U, where n  is the number of electrons 

coming from solution. The ground state energy of O2 is calculated from the water reference 

(E(O2) = 2EDFT(H2O) − 2EDFT(H2) − 2Eexp(H2O)) unless stated since DFT does not describe the 

triplet ground state of O2 correctly.[88] The entropy (-TS at STP) used for O2 and CO2 in the gas 

phase are -0.63 and -0.64 eV [89], respectively, while the entropy for solid phases (bulk Li and 

Li2O2) are assumed to be zero when estimating the free energy in Figure 4.9.   

 

 

 

 

Figure 4.5: Evolution of O2 and CO2 as a function of time during a constant current charge following a 

constant current discharge to 2.0 V. The current of both charge and discharge was 100 μA cm2⁄ . The tested 

cell configuration is Li|DME+1M LiTFSI|P50 carbon paper. The measurement is performed with a differential 

electrochemical mass spectrometer (DEMS) at DTU Energy by Jonathan. 
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4.3.3. CO2 Adsorption Energies at Various Sites on Stepped (𝟏�̅�𝟎𝟎) Surface 

 

The stepped (11̅00) Li2O2 surface is modeled as shown in Figure 4.6.  

 

 

 

Adsorption energies of CO2 at various nucleation sites such as step and terrace of valley and step 

of ridge on a stepped (11̅00) Li2O2 surface were determined; see Table 4.1. CO2 binds 

preferentially at the step valley site and binds weakly at the step ridge site.  

 

 

 

 

 

Figure 4.6: The stepped (11̅00) Li2O2 surface with 3 × 3 × 2 super cell consisting of a 56-64 atoms slab with a 

18 Å vacuum layer between periodic images along the Z-axis. 
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It is required to desorb CO2 from the surface prior to re-adsorbing at the step site. However, NEB 

calculations show that once CO2 is adsorbed at step valley site, the barrier for desorbing is around 

3.0 eV, which is not unlikely to remove, see Figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Climbing image Nudged elastic band calculations (CI-NEB) for CO2 migration from less favorable 

terrace site to more favorable step valley site on stepped (11̅00) Li2O2 surface with energy barrier of ~ 3.0 

eV. 

 

 

 

Table 4.1: Adsorption free energies of CO2 in the gas phase (using entropy of -0.64 eV) at (11̅00) Li2O2 

surface. 

Species Sites Adsorption Energy [eV] 
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Step Valley -0.73 

Terrace Valley -0.21 
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4.3.4. Li2O2 Reaction Mechanism with and without Trace CO2 gas 

 

As reported by Siegfried et al. [90] and Myrdal et al. [67] adsorption of sulfur containing compounds 

on oxide surfaces could control the electrochemical growth mechanism. Adsorbed species at 

surfaces can potentially block the nucleation sites, and therefore, alter the growth directions, 

overpotentials and capacities. 

Similarly, Hummelshøj et al. [65] also reported that kink and step sites of the stepped (11̅00) Li2O2 

 surface are favorable nucleation sites for the low overpotential Li2O2 growth mechanism. Likewise, 

we also use the stepped (11̅00) Li2O2 surface to investigate the influence of CO2 poisoning on the 

Li2O2 growth/ desorption mechanism, Figure 4.8. 

 

 

 

 

 

 

 

 

 

 

 

The calculations show a four step Li2O2 (two formula units) growth mechanism on the stepped 

(11̅00) Li2O2 surface with and without CO2.  The first step in the presence of CO2 is adsorption of 

Figure 4.8: Stepped Li2O2 (11̅00) surface before and after adsorption of CO2 followed by 4 steps of the 

Li2O2 growth pathway during discharge. a) Pure stepped Li2O2 surface. b) CO2 adsorbs to step valley site. 

c) 1
st
 LiO2 adsorbs. d) 2

nd
 LiO2. e) 1

st
 Li. f) 2

nd
 Li adsorbs to the surface completing the growth of 2 Li2O2 

formula units. Atoms labeled as: gray (Carbon), purple (Lithium) and red (Oxygen). Deposit atoms shown 

as: yellow (Lithium) and green (Oxygen). 

d) f) e) 

c) b) a) 
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LiO2 species (Fig 4.8c), and is found to reduce the binding energy by 0.44 V compared to the pure 

discharge. The next step is the addition of a second LiO2 species (Fig 4.8d), which is the potential 

limiting charge step that raises the binding energy by 0.20 V compared to pure Li2O2. This is 

followed by subsequent additions of two Li (Fig 4.8e) and (Fig 4.8f) with relatively small binding 

energies with respect to a pure discharge. In the pure O2 discharge mechanism, unlike in the 

presence of CO2, addition of the first Li is the limiting charge potential step. The two Li2O2 formula 

units growth at the step surface effectively displaces CO2 from the step to the less stable terrace 

site, causing in loss of equilibrium potential by 0.20 V.  

Hummelshøj et al. have reported that the pure Li2O2 growth mechanism follows a four step reaction 

mechanism, where all reaction steps are electrochemical, similar to what is seen in the presence of 

CO2. The equilibrium potential can be obtained as Uo = −∆G 2𝑒⁄ . The effective equilibrium potential 

on a pure surface becomes 2.73 V (compared to the experimental value, U0,Exp = 2.96 V), while in 

the presence of CO2, this is effectively reduced to 2.53 V for the first cycle due to a shift in binding 

energy of CO2 from a step valley to terrace site. As a result, discharge at other facets may become 

active.[64] At neutral bias all reaction steps are downhill, but at an applied potential, the free 

energy difference for each step is calculated as, 

             ∆Gi,u = ∆Gi − eU                                                                                                                                (4.1)               

The lowest free energy step, ∆Gi,min, along the reaction path that first becomes uphill at an applied 

potential is called the limiting discharge potential, Udischarge, while the largest free energy step, 

∆Gi,max, that is last to become downhill for the reversed reaction at an applied potential is called the 

limited charge potential, Ucharge, obtained as,    

          Udischarge = min[− ∆Gi 𝑒⁄ ]  and Ucharge = max[− ∆Gi 𝑒⁄ ]                                                                   (4.2)               

In the presence (absence) of CO2, Udischarge = 2.21 V (2.66 V) and Ucharge = 2.97 V (2.81 V) and 

the dis/charge overpotentials in the presence (absence) of CO2 are  discharge = 0.31 V (0.07 V) 

and charge = 0.44 V (0.08 V). CO2 poisoning forms Li2CO3 -like species that oxidize at high 

overpotentials.  
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Figure 4.9: Calculated free energy diagrams for a four steps discharge mechanism from stepped 

(11̅00) Li2O2 surface with and without adsorbed CO2. 
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4.4. Catalysis in Li-O2 /Air Battery 

The impacts of various selected catalysts have been surveyed in field of Li-O2 battery such as 

Au/C [91], Au/C and Pt/C [92], Pt-Au [93], -MnO2 [94], metallic mesoporous pyrochlore [95] and 

CNT/Co3O4 [96]. In the most cases what a catalyst does is to accelerate the degradation of the 

electrolytes. Some of them are even expensive e.g. gold and platinum. In fact, if the poor electronic 

conduction and the poor stability of the electrolyte/electrodes was not a problem, there would not 

be a need for catalysts.   

 

4.5. Cathode-Electrolyte Interfaces (CEI): Li2O2@Li2CO3 Interface  

4.5.1. Introduction 

 

The formation and oxidation of the main discharge product in nonaqueous secondary Li-O2 

batteries, i.e. Li2O2, has been studied intensively, but less attention has been given to the formation 

of cathode-electrolyte interfaces (CEI), which could significantly influence the performance of the 

Li-O2 /Air batteries.  

 

As already pros and cons associated to the Li-O2 /Air batteries have been clearly pointed out in 

chapter 3, one of the areas of interest need to be explored in this technology is an interfacial 

phenomenal. Numerous complex chemical and electrochemical side-reactions occur at the 

interfaces in practical nonaqueous Li-O2 /Air batteries could limit the rechargeability and cyclability. 

[50] Several kinds of parasitic compounds and interfaces are likely formed between/within the 

reaction products and cell components in the nonaqueous batteries. The types of interfaces 

depend on the type of electrodes and electrolytes used in the cell and the reaction conditions. 

Li2CO3 is readily formed at the cathode together with Li2O2 when carbonate based electrolytes, e.g. 

ethylene carbonates (EC), are used [77], [97], but if non-carbonate based electrolytes such as 

dimethoxyethane (DME) is used, Li2O2 is the main discharge product. In the latter case, layers of 

Li2CO3 can also form due to side reaction with the carbon cathode, DME or CO2 impurities from the 

air.[48], [66] The discharge capacity in Li-O2 batteries is primarily limited by the poor electronic 

conduction in Li2O2 [98] and the since electronic conductivity in Li2CO3 is even smaller than that of 

Li2O2, it is critical to determine the effect of such layers.   
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Experiments performed in carbonate or ether based electrolytes reported the evolution of CO2 gas 

when battery recharges at slightly above 3 V and 4 V, mainly comes from the electrolyte 

decomposition and carbonate deposit at the cathode surface, respectively.[50], [97], [66], [46] It has 

also been reported in Li-ion battery studies that, Li2CO3 is one of the most chemically [99] and 

mechanically [100] stable species formed at both cathode and anode electrodes. Thus, it is 

inevitably the formation of the Li2O2@Li2CO3 interface in the cathode in nonaqueous Li-O2 /Air 

batteries at various state of reaction conditions for instance at Li2O2@C(graphite) and 

Li2O2@electrolyte interfaces. [50] To summarize, Li2O2@Li2CO3 interfaces could be formed in 

different scenarios, e.g. a) liquid electrolyte |Li2CO3|Li2O2| carbon cathode, which may form when 

carbonate based electrolyte is used or due to the presence of atmospheric CO2. b) liquid 

electrolyte |Li2O2|Li2CO3| carbon cathode, which has been shown to formed due to the reactions 

between the Li ions and C cathode in the presence of oxygen, and c) liquid electrolyte 

|Li2CO3|Li2O2|Li2CO3| carbon cathode interfaces [50]. In the present work, we model a generic 

Li2O2@Li2CO3 interface, which should be representative for the different scenarios mentioned 

above, see the Figure 4.10. 

 

 

Figure 4.10: Li2O2@Li2CO3 Interfaces formed at different scenarios in nonaqueous Li-O2 /Air batteries. 

 

Here, we apply DFT+U and NEGF methods to investigate the role of Li2O2@Li2CO3 interface layers 

on the ionic and electronic transport properties at the oxygen electrode. We investigate the 
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implications of Li2O2@Li2CO3 interfaces for charge transport, i.e. mainly the Lithium diffusion and 

electronic transport properties in nonaqueous Li-O2 /Air batteries. [49] Regarding the electronic 

transport, we study both polaronic and tunneling conduction regimes. We also show that the Li 

vacancies have a thermodynamic driving force for accumulation at the Li2O2 part of the 

Li2O2@Li2CO3 interface compared to pristine Li2O2. Consequently, we have studied in detail the 

impact of these Li vacancies on the coherent transport properties at the interface. Lithium 

vacancies reducing the current by two to three orders of magnitude compared to pristine Li2O2. 

During discharge Li2O2@Li2CO3 interfaces may, however, provide an alternative in-plane channel 

for fast electron polaron hopping that could improve the electronic conductivity and ultimately 

increase the practical capacity in nonaqueous Li-O2 /Air batteries. In the following subsections we 

will discuss main findings of the interface studies. 

 

4.5.2. The Interface Setup 

 

Figure 4.11: (a) Hexagonal Li2O2 structure with lattice parameters a = b = 3.187 Å, c = 7.726 Å (space group 

P63/mmc). (b) Monoclinic Li2CO3 structure with space group 15 (C2/c) with lattice parameters a = 8.359 Å, b 

= 4.973 Å, c = 6.197 Å and b = 114.83°. (c) The Li2O2@Li2CO3 interface, with 4.8 % strains on Li2O2. 

 

The Li2O2@Li2CO3 interface explored in this study is assembled from Li2CO3 (adopting a two 

formula unit cell version of a Li2CO3 crystal structure) and Li2O2 (adopting a four formula unit cell). 

The interface is built from a (0001) facet of Li2O2 and a (011) facet of Li2CO3 with lattice parameters 
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a = 5.135 Å, b = 6.918 Å, c = 16.165 Å. In both components, oxygen terminated surfaces are used 

in such a way that the Li and O terminations come together to form the most stable interface. In the 

Li2CO3 part of the interface, the planes of the carbonate groups are aligned parallel to the 

peroxides along the z-axis. The facets are chosen based on their stability and presence in the 

discharge products: The (0001) facet is one of the most stable and predominant facets (80 %) on 

Li2O2 around the equilibrium potential during discharge and charge in nonaqueous Li-O2 /Air 

batteries, with an abundant portion of the oxygen rich (0001) surface at potentials suitable for 

charging. [63], [64], [101] Moreover, the Li2CO3 (011) surface is one of the low energy facets [102]   

which has an excellent lattice matching with Li2O2 (0001). As it can be seen in Figure 4.11c, the 

two facets match well and form a stable interface within less than 5 % lattice mismatch (the strain 

is on Li2O2). This constructed interface set-up contains a relatively small number of atoms (the unit 

cell contains 28 atoms), which makes the calculations tractable, and at the same time provides a 

reasonable description of the interface. Other calculations could give different results but this one 

was chosen based on their relative stability, lattice mismatch and size.  

 

4.5.3. Ionic Conduction in the Li2O2@Li2CO3 Interface 

 

The formation energies of Li vacancies, V0
Li, in Li2O2 bulk and Li2CO3 bulk are 3.00 eV and 4.20 eV, 

respectively, whereas the formation energies of V0
Li vacancies at the Li2O2@Li2CO3 interface are 

2.71 eV in the Li2O2 part of the interface and 3.24 eV in the Li2CO3 part. This means that in both 

materials, vacancies will accumulate at the Li2O2@Li2CO3 interface rather than in their respective 

bulk, see Figure 4.12. The concentration of the Li vacancies should be estimated using the 

formation energies of the different vacancy species at the working potentials of the battery. [52] We 

have also calculated that there is no barrier to move V0
Li vacancies from the Li2CO3 part of the 

interface to the Li2O2 at a neutral background charge, suggesting that V0
Li vacancies will tend to 

pile in the latter. This also implies that the presence of the interface will not cause the ionic 

conductivity to become rate limiting under practical operating conditions in Li-O2 /Air batteries.     

Regarding the Li vacancy migration studies, all the calculations are performed using the Revised 

Perdew-Burke-Ernzehof (RPBE) exchange correlation functional.  
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Figure 4.12: NEB calculations for the Li vacancy diffusion barrier at the Li2O2 (0001)@Li2CO3 (011), 

interface. The thermodynamic barrier is found to be 0.53 eV going from the peroxide to the carbonate; the 

blue dashed lines represent the vacancy formation energies of bulk Li2O2 (+0.3 eV) and Li2CO3 (+ ~1 eV) 

relative to the interface values. 

 

In order to describe properly the localization of polarons using the general gradient approximation 

(GGA) functionals, it has previously been reported that it is necessary to introduce Hubbard 

corrections to the DFT Hamiltonian. Following previous works in our group we use a U = 6 eV 

Hubbard correction applied on the 2p orbitals of carbon and oxygen atoms.[51] 

 

All ground state energies are determined when Hellmann-Feynman forces is less than 0.03 eV/Å. 

All the atoms in the supercell are free to relax during the optimization. From the computed 𝐸𝑏 , it is 

possible to obtain the rate (r) and the diffusion coefficient (𝐷) using the relations in equation (2.15) 

i.e. 𝑟 = 𝑣𝑒−𝐸𝑏 𝑘𝐵𝑇⁄  and D = 𝑎2𝑟, respectively, where 𝑣 is the hopping rate (in this work we use 𝑣 

=1013 s-1)  and 𝑎 is the jump length. 
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Figure 4.13: The total density of states (DOS) relative to the Fermi energy for (upper) pristine Li2O2, Li2CO3 

and Li2O2@Li2CO3 interface (bottom) pristine Li2O2@Li2CO3 and with a defect (neutral Li-vacancy, V Li
o ) at the 

peroxide part of the Li2O2@Li2CO3 interface is obtained using RPBE+U (U = 6 eV)).  
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The bandgap is also varies depend on the Hubbard’s correction (U), as shown in the Figure 4.14 

the bandgap increases with U nearly same in both pristine Li2O2 and Li2O2@Li2CO3 interface. 

Since the origin of the LUMO and HOMO for the Li2O2@Li2CO3 interface is the Li2O2 part of the 

interface as shown in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Bandgap of bulk pristine Li2O2 as a function of Hubbard’s correction (U), bandgap increases 

linearly with U. In the rest of the DFT+U calculations, we use U = 6 eV fits well with GoWo results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: NEB calculations for intralayer Li diffusion barrier in the Li2O2@Li2CO3 interface at a) Neutral 

b) -1 compensating background charge. Both in-plane channels are within the Li2O2 part of the interface. 

The minimum barrier is found to be ~0.3 eV compared to ~1 eV in pristine Li2O2. 
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As shown in Figure 4.15, too low energy barrier (~ 0.3 eV) is obtained for in-plane lithium diffusion 

(both at neutral and -1 compensating background charge) in the Li2O2 part of the Li2O2@Li2CO3 

interface compared to pristine Li2O2 which is about 1 eV. This is mainly due to slight morphology 

change exhibited at the interface. In Figure 4.11 we have seen that there is no barrier to move V Li
o  

vacancies from the Li2CO3 part of the interface to the Li2O2 at a neutral background charge, 

suggesting that V Li
o  vacancies will tend to pile in the latter. This also implies that the presence of 

the interface will not cause the ionic conductivity to become rate limiting under practical operating 

conditions in Li-O2 /Air batteries.      

 

4.5.4. Coherent Transport in the Li2O2@Li2CO3 Interface 

 

The coherent electronic transport calculations in the Li2O2@Li2CO3 interface are carried out using 

the Nonequilibrium Green’s function (NEGF) formalism as implemented in ATK described 

previously in chapter 2 section 2.5. It has been performed using a LCAO dzp basis set (double-

zeta plus polarization). A central device region is connected to two semi-infinite leads, which are 

kept at fixed electronic chemical potentials, μL and μR, respectively, to simulate an applied bias 

voltage across the device region given by 𝑉 = (μL − μR)/𝑒. The scattering region describing the 

Li2O2@Li2CO3 interface contains 4 formula units of Li2CO3 and 8 formula units of Li2O2. The 

electrode regions, i.e. 2 formula units of bulk Li2CO3 (left lead) and 4 formula units of Li2O2 (right 

lead), are calculated with the RPBE exchange correlation functional. A 4 × 6 × 100 k-point 

sampling is used during the NEGF self-consistent loop. In the finite bias calculations, a positive 

bias is defined as sending electrons from the left to the right, i.e. in the case of the interface Li2CO3 

is the left electrode and Li2O2 is the right electrode, see Figure 4.16.  

 

 

Figure 4.16: Structural setup for the device region for the pristine interface Li2O2@Li2CO3 (upper), and with a 

Li-vacancy at the peroxide part of the interface, Li2O2vac@Li2CO3 (lower). 
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In order to have a comprehensive understanding of the coherent electron transport at the 

Li2O2@Li2CO3 interface it is instructive to examine the density of states (DOS) of Li2O2 and Li2CO3 

bulks and compare them with the one of the interface. In Figure 4.13, we can see that both Li2O2 

and Li2CO3 are both wide bandgap insulators with calculated bandgaps (using RPBE+U functional 

with U = 6 eV) of 5.03 eV for Li2O2 and 8.01 eV for Li2CO3. The Li2O2@Li2CO3 interface shows a 

4.82 eV bandgap (very close to the one of pristine Li2O2 bulk) and it can be viewed as the 

superposition of individual DOS of the Li2O2 and Li2CO3, with no presence of mid-gap interface 

states. In this situation it is expected that for bias voltages (negative or positive) around 2-2.5 eV 

(i.e. half of the bandgap of Li2O2) we will start to see a relatively good conductance in Li2O2 bulk. 

However, for the same bias we will expect a drastic drop in the conductance at the Li2O2@Li2CO3 

interface since there are no Li2CO3 levels at these energies. 

 

Figure 4.17: Calculated IV curves for a) pristine Li2O2@Li2CO3 interface. b) and c) in the presence of a 

neutral Li vacancy at Li2O2vac@Li2CO3 and Li2O2@Li2CO3vac interfaces, respectively.  
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Regarding the presence of vacancies in Li2O2 bulk and at the Li2O2@Li2CO3 interface (vacancies 

are located at the Li2O2 part of the interface, following the results in section 3.3). As the DOS of 

both Li2O2 and Li2O2@Li2CO3 interface revealed the presence of lithium vacancies pin the Fermi 

level to the right, see Figure 4.18. This implies that V0
Li vacancies are not going to open new 

electron tunneling channels in these systems and they are going to have a detrimental effect in the 

conductivity due to their action as scattering centers. 

 

In order to check the plausibility of these assumptions we perform DFT-NEGF calculations as 

described in section 2.4. We can see in Figure 3.4a that significant current (around ~10 mA cm2⁄ ) 

begins to show up just around ± 2.0 V in pristine Li2O2 bulk. However, at the interface current start 

rising at higher potentials (above ± 3.8 V, see Figure 4.17a), due to the wider gap of Li2CO3, and 

currents are also reduced three orders of magnitude with respect to the ones in Li2O2 bulk. 

Furthermore V0
Li vacancies reduce the currents at relevant voltages, of both Li2O2 bulk and 

Li2O2@Li2CO3 interface, by a factor of 2. The vacancy formation energy of the defect interface, 

when a Li vacancy is created at the carbonate part of the interface, is found to around 3.3 eV. 

According to NEGFs calculations a Li vacancy at the interface reduces the amount of drawn 

discharge currents. This even extends to charge currents when the defect (Li vacancy) is seized at 

carbonate part of the interface, see Figure 4.17c.     

 

Summarizing, we can conclude that the presence of Li2O2@Li2CO3 interfaces and V0
Li vacancies in 

Li2O2 has a substantial negative effect on the coherent electronic transport at the oxygen electrode 

of Li-O2 batteries. 
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4.5.5. Polaronic Conduction in the Pristine Li2O2@Li2CO3 Interface 

 

Garcia-Lastra et al. have already reported that both Li2O2 and Li2CO3 bulks can hold hole polarons 

with sufficiently low migration barriers (0.39 eV for the former and 0.55 eV for the latter) to become 

an alternative path for electronic transport.[51] We have also found very similar results for polaron 

studies in Li2O2 bulk, as shown in section 3.5. They also found that both materials can hold excess 

electron polarons. However, the migration barriers for electron polarons are much higher than the 

ones of hole polarons (1.408 eV in Li2O2 and 1.05 in Li2CO3). In this subsection polaronic 

conduction (for both holes and excess electrons) at the Li2O2@Li2CO3 interface will be discussed. 

 

Table 4. 2: Energy Difference between Localized (Polaron) and Delocalized States (Eloc-del) in Electronvolts 

for the Li2O2@Li2CO3 interface 
a
. 

 

method 
hole polaron in 

the Li2O2 part 

hole polaron in 

the Li2CO3 part 

electron polaron 

in the Li2O2 part 

electron polaron 

in the Li2CO3 part 

RPBE delocalized delocalized delocalized Delocalized 

RPBE+U  -1.40 -0,57 -2.57 -2.67 

 

aHole and excess electron are localized at the Li2O2 and Li2CO3 parts of the interface 

using RPBE + U (U = 6 eV), as shown in Table 4.2. 

 

When we consider polaron localization at the Li2O2 part of the interface we observe that the hole 

(excess electron) polaron is localized by shortening (stretching) the bond length of one of the O−O 

peroxide bond from 1.55 to 1.33 Å (2.45 Å). Apart from the geometry distortions we observe the 

appearance of a magnetic moment in one of the oxyanions, which is another footprint of the hole 

(excess electron) localization at the Li2O2 part of the interface. The polaron localization can also 

take place at the Li2CO3 part of the interface. In this case the hole (excess electron) is localized in 

one of the carbonate ions which shortens (stretches) its C-O bond lengths from an average of 1.31 

Å to an average of 1.23 Å (1.35 Å).These localized states are more stable than the delocalized 

ones and particularly the electron polaron is found to be strongly localized, i.e. by more than 2 eV 

relative to the delocalized state (see Table 1.1). All these features are very similar to the ones we 

found for Li2O2 and Li2CO3 bulks in section 3.5 and 4.2.2, for detail refer[51]. 
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It is interesting to notice that hole polarons are more stable in the Li2O2 part of the Li2O2@Li2CO3 

interface by 0.83 eV, whereas the excess electron polarons are more stable in the Li2CO3 part by 

0.10 eV (see Table 4.2 and Figure 4.16). This is due to the different magnitude of the distortions in 

the peroxide ions of Li2O2, i.e. a hole localized in a peroxide ion involves a change in the O−O 

bonding distance of 0.2 Å, while the localization of an excess electron requires stretching the 

bonding by 0.9 Å.  

 

Accordingly to the NEB calculations, the energy barriers for the polaronic transport of excess 

electrons across the interface (see direction z in Figure 4.16) are very similar to the ones observed 

in Li2O2 and Li2CO3 bulks. The barrier for transporting excess electron polarons from Li2O2 to 

Li2CO3 is 1.39 eV (and 1.48 eV from Li2CO3 to Li2O2), very close to the Li2O2 bulk and Li2CO3 bulk. 

This implies that the excess electron polaronic transport in Li2O2, Li2CO3 and across Li2O2@Li2CO3 

interfaces (from Carbonate to peroxide part of the interface) is inaccessible channel for electronic 

transport. The polaron hopping barrier for holes is much more asymmetric: the barrier for the hop 

from Li2CO3 to Li2O2 is 0.4 eV (in Li2O2 bulk is 0.39 eV [51]), while it is 1.3 eV in the opposite 

direction. In this scenario we can conclude that Li2O2@Li2CO3 interfaces act like a diode, which 

allows hole polaronic transport only from the Li2CO3 part of the interface to the Li2O2 one. 

 

Regarding the polaronic transport parallel to the Li2O2@Li2CO3 interface we observe that an 

alternative channel for electron polaron hopping opens within the peroxide part of the interface 

(intralayer in the X and Y directions in Figure 4.16) with a low hopping barrier of less than 0.5 eV, 

providing an improved conduction channel compared to bulk Li2O2. The corresponding rates (r) in 

X and Y intralayer electron polaron hopping are found to be 5x105s−1 and 9x107s−1 with the 

diffusion coefficients of 5𝑥10−10 cm2 s⁄  and 1𝑥10−7 cm2 s,   ⁄ respectively. Unlike what is observed 

for bulk Li2O2, the hole polaron hopping barriers in the Li2O2@Li2CO3 interface are significantly 

larger compared to the low barriers reported for Li2O2 by Garcia, et al [51]. On the other hand, the 

intralayer hole polaron hopping at the Li2O2@Li2CO3 interface is quite limited in comparison with 

that of Li2O2 bulk (the barriers at the interface are at least twice larger than in Li2O2 bulk). 
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Figure 4.18. Calculated polaron hopping paths using the NEB method along the intralayer in X and Y 

directions and interlayer along Z direction in a 2 × 2 × 1 Li2O2@Li2CO3 interface supercell. Energies are 

obtained from RPBE + U (U = 6 eV) method for a) Electron and b) Hole.    
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4.6. Summary of Charge Transport and CO2 Poisoning Studies  

 

The overall plausible charge transport mechanisms in the materials of interest in nonaqueous Li-O2 

batteries are clearly envisioned in Figure 4.10. To summarize only a few most important aspects of 

charge transport calculations in the bulk (dominant discharge product in ether based electrolytes 

like DME) in the Li-O2 batteries revealed that though the Li2O2 is a wide bandgap insulator (4.96 

eV) it could offer a fast ionic conduction with an activation barrier of 0.40 eV only along interlayer 

channel (1D diffusion mechanism). An average rate of 𝑟 = 2𝑥106𝑠−1 and a diffusion coefficient of 

D = 1.5𝑥10−9 cm2 s⁄  is estimated using equation (2.15). This relatively small barrier opens the 

possibility for Li ion diffusion at ambient conditions. However, the ionic diffusion along the intralayer 

in both X and Y directions are found to be limiting the ionic transport ( 1.0 eV). Moreover, we have 

also conducted ionic charge transport studies in one of the dominant side reaction product in Li-O2 

/Air, i.e. Li2CO3, resulting in several minimum energy barriers for different negative Li vacancy 

diffusions, i.e. ~0.2 eV in all the three directions. Accordingly, the average rate of negative Li 

vacancy (Li+ missing) diffusion and diffusion coefficient in Li2CO3 are found to be 9𝑥108𝑠−1 

and 1.6𝑥10−6 cm2 s⁄ , respectively. Regarding the polaron transport across these two materials 

(Li2O2 and Li2CO3 bulk) the polaronic transport at room temperature is restricted to hole polarons, 

whereas electron polarons display very high hopping barriers (> 1.0 eV). Therefore, as a summary 

of the charge transport investigations in these two materials the plausible charge transport 

mechanisms are  the two defect systems i.e. negative lithium vacancy (missing Li+) and hole 

polaron (removing an electron). 

 

We have also comprehensively examined the charge transport mechanisms at the cathode-

electrolyte interfaces (CEI) in nonaqueous Li-O2 /Air battery, i.e. Li2O2@Li2CO3 interface on top of 

the study of charge transport in the bulk of discharge products. Since their roles on charge 

transport have not been clearly studied earlier nevertheless some experiments reports that various 

interface layers potentially influence the performance of the battery. We model the interface from 

(0001) Li2O2 facets (the most stable and highly exposed facets) and (011) Li2CO3 facet which 

matches well with the peroxide with < 5% strain (lattice mismatch). The main findings are lithium 

vacancies accumulate at the peroxide part of this interface and reducing the coherent electron 

transport by two to three orders of magnitude compared to pristine Li2O2 bulk. By contrast, the 

Li2O2@Li2CO3 interface improves the ionic conduction. The Li2O2@Li2CO3 interface show a barrier 

of < 0.35 eV in all directions unlike that of the one dimensional diffusion in Li2O2. Regarding the 

polaronic transport significant differences are also found in these two scenarios. In Li2O2 bulk the 
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polaronic transport at room temperature is restricted to hole polarons, whereas electron polarons 

display very high hopping barriers (> 1.0 eV). By contrast, it is possible to have good mobilities for 

electron polarons at the Li2O2@Li2CO3 interface. During discharge the Li2O2@Li2CO3 interfaces 

may, however, provide an alternative in-plane channel for fast electron polaron hopping that could 

improve the electronic conductivity and ultimately increase the practical capacity in non-aqueous 

Li-O2 batteries (Paper II). 

Moreover, the implications of air impurities particularly the influence of CO2 poisoning on discharge 

capacity and overpotentials in nonaqueous Li-O2 /Air batteries were studied in depth both 

computationally (DFT calculations) and experimentally (using some electroanalytical and 

spectroscopy techniques) performed at DTU Energy by Kristian and Jonathan. The presence of 

small concentration of CO2 gas in nonaqueous Li-O2 battery results in the formation of Li2CO3 like 

species from the reactions between CO2 and Li2O2 at the cathode surface. To study this 

computationally we have used the step (11̅00) Li2O2 surface model. The galvanostatic charge-

discharge measurements were also studied as shown in paper I. From both DFT results and 

experimental works we concluded that even low concentration of CO2 gas effectively blocks the 

step nucleation site and alters the Li2O2 shape due to Li2CO3 formation. Moreover, the nudge 

elastic band calculations showed that once CO2 is adsorbed on a step valley site, it is effectively 

unable to diffuse and therefore cause an impact on capacity and overpotentials. The charging 

processes are strongly influenced by CO2 poisoning, and exhibits increased overpotentials and 

increased capacity already at 1 % CO2. Though, large capacity and overpotentials losses are seen 

at even higher CO2 concentrations (Paper I). 

 

 

 

 

 



CHAPTER 5 

Na-O2 Batteries 

 

 

5.1 Introduction  

In this chapter we will present another newly emerging metal-air battery, i.e. Na-O2 /Air battery. In 

the last decade, significant efforts have been paid to the development of next generation batteries. 

In particular, the metal-air batteries (Li-, Na-, Mg-, Al-, Fe- and Zn−O2 batteries) in either aqueous 

or non-aqueous (aprotic) electrolytes have gained a lot of attention,[12],[13] e.g. for use in electric 

vehicles. The cost of commercially available Li-ion batteries is generally too high and the energy 

storage capacity is too low to solve the increasing demands on batteries for transportation [14]. 

Metal-air batteries have high theoretical specific energies since the technology, once it is mature, 

would apply metal as an anode and oxygen gas from air on the cathode side. The reaction 

products are peroxides and/or superoxides during discharge depending on the experimental 

conditions and cell components used in the system. The oxygen reduction (ORR) and oxygen 

evolution reaction (OER) are the two main reactions taking place reversibly during discharge and 

charging, respectively. However, metal-air battery technologies are limited by a number of 

drawbacks and challenges, which must be resolved before becoming commercially viable, i.e. low 

accessible capacity (sudden death), poor electronic conductivity and rechargeability, limited 

chemical and electrochemical stability of electrodes, electrolytes [78], salts [103] and high 

sensitivity to air impurity-like water and CO2. [45],[18],[66],[104],[42] 

Among the battery systems reported so far, the Li−O2 couple offers higher equilibrium potential 

(~2.96 V) and extremely high specific capacity (~3,842 mAh/g), which is comparable to gasoline 

[15] and nearly an order of magnitude higher than that of current Li-ion batteries [16]. However, in 

practice non-aqueous Li-O2 batteries suffer from poor rechargeability and high overpotentials, 

particularly at charging process. [17] Although the capacity and equilibrium potential is lower, the 

Na−O2 battery technology displays some advantages over the Li−O2 battery and other similar 

batteries. The non-aqueous secondary Na−O2 battery operates at low dis/charge overpotentials (< 

200 mV) even at higher current densities (0.2 mA/cm2) and yields high electrical energy efficiency 
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(90 %), which is consistently observed for many cycles.[105],[20],[19]. The theoretical specific 

capacity of the Na−O2 battery is ~1,500 mAh/g [19] when NaO2 deposited on carbon nanotubes. 

This is lower compared to the Li−O2, but still higher than the existing Li-ion batteries; at least twice 

the Li-ion batteries, which is about half of the state of the art Li−O2 battery specific capacity. If, 

however, Na2O2 can be formed reversibly, it would be possible to increase the specific capacity to 

~2,800 mAh/g. [106] 

Among the battery systems reported so far, the Li−O2 couple offer higher equilibrium potential 

(~2.96 V) and extremely high specific capacity (~3842 mAh/g), which is comparable to gasoline 

[15] and nearly an order of magnitude higher than that of current Li-ion batteries [16]. However, in 

practice nonaqueous Li-O2 batteries suffer from poor rechargeability and high overpotential 

particularly at the charging process. Although the capacity and equilibrium potential is lower, the 

Na−O2 battery technology displays some advantages over the Li−O2 battery and other similar 

batteries. The nonaqueous rechargeable Na−O2 battery operates at low dis/charge overpotentials 

(< 200 mV) even at higher current densities (0.2 mA/cm2) and yield high electrical energy efficiency 

(90 %), which is consistently observed for many cycles.[105],[20],[19]. The theoretical specific 

capacity the Na−O2 battery is about 1500 mAh/g [19] when NaO2 is grown on carbon nanotubes 

which is lower compared to the Li−O2 but still higher than the existing Li-ion batteries, at least 

twice the Li-ion batteries, which is about half of the state of the art Li−O2 battery specific capacity. 

If, however, Na2O2 can be formed reversibly, it would be possible to increase the specific capacity 

to 2800 mAh/g. [106] 

Hartmann et al. [20],[107] and McCloskey et al. [108] have reported sodium superoxide (NaO2) as 

the dominant reaction product.  Whereas, Kim et al. [106] have reported sodium peroxide (Na2O2) 

as dominant discharge product instead. Poor rechargeability (< 10 cycles) and high charging 

overpotential (> 1.3 V) is exhibited when Na2O2 is formed at the cathode at room temperature, 

which is also similar to the challenges observed in Li−O2 system. However, sufficiently low 

dis/charge overpotentials and interestingly high rechargeability are observed when NaO2 is formed 

[19]. 

Scanning electron microscopy (SEM) image have revealed that highly ordered cubic NaO2 is 

grown at the carbon cathode surface. [20],[108],[107] A recent computational study by Ceder et al. 

reports that NaO2 is more stable at the nanoscale level (up to about 5 nm), whereas bulk Na2O2 is 

thermodynamically stable at standard conditions (in agreement with experimental observations). 

For electrochemical growth during battery discharge, the size of the NaO2 particles is, however, 

found in the micrometer size (1-50 micro meters). [20] The size of the particle cannot be explained 
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from the effect of the differences in surface energy, nor the effect of e.g. oxygen partial pressure or 

temperature, which may lead to the formation of larger NaO2 particles (up to 20 nm based on the 

calculations by Ceder et al. It is therefore clear that NaO2 formation is not only kinetically but also 

thermodynamically favored in an increased oxygen partial pressure even at higher temperatures 

and lead to a higher scale growth (up to 20 nm). [109]   

The equation for non-aqueous Na−O2 cathode electrochemistry using, e.g. ether based 

electrolytes like diglyme is shown below [108].    

Na+ + e− + O2 ↔ NaO2,         E0 = 2.27 V, Vs  Na/Na+ 

According to a previous report by Kang et al., [110] flat low index surfaces of NaO2 are activated by 

a chemical barrier up to 0.8 V. Moreover, according to HSE Hybrid functional calculations the 

bandgap of NaO2 is found to be as low as 1.11 eV [110]. Siegel et al. [111] however, reported that 

GW calculations revealed wide bandgap of 5.30 eV and 6.65 eV for NaO2 and Na2O2, respectively. 

Nevertheless, a 1.3 eV experimental bandgap is previously reported for KO2 (similar to NaO2) 

[112].  

 

In this study, reaction pathways on some selected stepped model surfaces i.e., (001) and (100) for 

NaO2 and (11̅00) for Na2O2 is investigated. We will discuss overpotentials and free energies of the 

reaction mechanisms as a function of temperature. Hence, the step surfaces are likely to give 

accessible barriers and favorable nucleation sites for minimum overpotentials, as it has been 

reported in case of Li−O2 [64]. Furthermore, in this chapter we will discuss the charge carrier 

transport in NaO2 and Na2O2. 

 

5.2 Crystal Structures and Computational Models 

Similarly, here present fundamental investigations at the DFT-level using PBE. The study is 

conducted in the materials of interest in the Na−O2 battery, i.e. NaO2 and Na2O2. The face-

centered cubic NaO2 structure space group of 𝑃𝑎3̅ with a lattice constant of 5.523 Å (Figure 5.1b) 

[110] is used to build the supercell model to study the NaO2 growth/depletion mechanism on 

stepped (001) and (100) surfaces of NaO2. The supercell consists of 60-72 atoms. The vacuum 

layer between periodic images along the Z-axis is 20 Å. All presented calculations are spin-

polarized with an initial magnetic moment values of 0.5 located in each O atom in NaO2. The k-

points are sampled with a 2 × 4 × 1 Monkhorst-Pack mesh. For the ionic diffusion studies in NaO2 

is conducted in a 3 × 3 × 3 supercell. Regarding the Na2O2 surface reaction mechanism studies, 
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due to the computational complexity (3 formula units per unit cell) in describing stepped surfaces of 

Na2O2, the highly similar and well-studied stepped (11̅00) surface model of Li2O2 (space group 

P63/mmc) is adopted instead for Na2O2 reaction mechanism studies on the stepped surface. The 

stepped (11̅00) Na2O2 surface with a super cell consisting of a 56-64 atoms slab with a 18 Å 

vacuum layer between periodic images along the z-axis is used to study the reaction mechanism. 

The k-points are sampled with a (4,4,1) Monkhorst-Pack mesh and 0.18 Å grid point spacing  is 

used. Atomic energy optimization calculations are performed until all forces are less than 0.03 

eV/Å. For ionic diffusion studies a 2 × 2 × 2 supercell of a hexagonal Na2O2 structure space group 

of 𝑃6̅2𝑚 with lattice constants of a = 6.39 Å, b = 6.39 Å and c = 4.6 Å is used.   

  

 

 

 

 

 

                     

 

 

 

5.3   Enthalpy of Formation and Equilibrium Potential 

It should be noted that this significant discrepancy is obtained using higher-level computational 

methods like HSE and GW. This illustrates the computational complexity of the Na-O2 system, 

which in part, is due to the computational challenges in describing the thermodynamics of reactions 

involving superoxide vs. peroxide species and to the high temperature phase of NaO2 (𝑃𝑎3̅) being 

dynamically stabilized relative to the orthorhombic low temperature phase (Pnnm) by procession of 

misaligned superoxide species (see Figure 5.1). Such effects and energetics are generally not 

accounted for in DFT or higher-level calculations, making it highly challenging to describe the 

relative stability of NaO2 vs. Na2O2 at finite temperatures. In the following, we describe a 

comparatively simple GGA-level computational approach using metal chloride reference energies 

and entropic contributions, which yields excellent agreement with experimental observations.   

b c

b

) 

a

) 

Figure 5.1: Figure 2: a) Pnnm NaO2 orthorhombic structure with lattice constant a = 4.26 Å, b = 5.44 Å, 

c = 3.36 Å. b) Face-centered cube Pa3̅ NaO2 structure (Pyrite) with lattice constant a = 5.523 Å. c) 

Hexagonal Na2O2 structure space group of 𝑃6̅2𝑚 with lattice constants of a = 6.39 Å, b = 6.39 Å and c 

= 4.6 Å. Color: Grey (Sodium), Red (Oxygen). 
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To evaluate the accuracy of the calculations, bulk enthalpies of formation are compared with 

experiment [89] as seen in Table 1. The calculated formation enthalpies are converted to free 

energies at standard conditions (Hform -> Gform) using experimental entropies [89] and the 

equilibrium potential calculated.  As an alternative to using experimental entropies, we predict the 

equilibrium potentials with the approximation that the temperature dependence can be described 

solely considering the translational and rotational degrees of freedom of O2(g). As superoxide ions 

are known to rotate easily in the NaO2 pyrite phase at room temperature, rotational degrees of 

freedom will to a good approximation cancel for NaO2. This is not the case for NaO2, where the 

orientation of peroxide ions is well defined at relevant temperatures.  The approximation has 

obvious flaws, e.g. will it not be able to capture the low temperature structural changes of NaO2 

due to differences in the rotational degrees of freedom of superoxide ions in different phases. It 

does, however, have the advantage of being very simple to calculate with standard 

thermodynamics. Comparison with experiment also proves the simple assumption to be 

reasonable (see Figure 5.2). It can also be seen that the experimental data for NaO2 at 0 K is 

identical to the calculational result for the Pnnm structure. 

‘ 

 

 

 

 

 

 

 

 

 

Figure 5.2: DFT-based equilibrium potentials predicted with the approximation that the temperature 

dependence is only due to the translational and rotational degrees of freedom for O2(g). This simple 

approximation is in good alignment with experimental data and reproduces relatively small free energy 

differences between Na2O2 and NaO2.  
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As seen in Table 5.1, the difference in equilibrium potential for NaO2 and Na2O2 at standard 

conditions is less than 0.1 eV, for purely experimental results, calculated enthalpies with 

experimental entropies, and purely theoretical calculations with approximated entropies. This 

indicates that required overpotentials in electrochemical reactions to Na2O2 and NaO2 could be 

decisive for the product formation. 

Table 5.1: Calculations for Na2O2 and the pyrite phase of NaO2 are compared with experimental values [89] 

in parentheses. Equilibrium potentials are calculated both using experimental entropies and with the 

approximation that all temperature dependence is due to translational and rotational degrees of freedom of 

O2(g). 

 

 ΔfH° (eV) Equil. Pot. (eV) 

(experimental ΔS) 

Equil. Pot. (eV)  

(approximation) 

𝐏𝐚�̅� 𝐍𝐚𝐎𝟐 -2.74 (-2.71) -2.30 (-2.27) -2.29 (-2.27) 

𝐏�̅�𝟐𝐦 𝐍𝐚𝟐𝐎𝟐 -5.29 (-5.32) -2.39 (-2.33) -2.39 (-2.33) 

 

In general, the NaCl-correction scheme has improved the understanding of this system and 

similarly why only including the translational O2 contributions is a simple and reasonable way to 

estimate the temperature dependence of the NaO2 to Na2O2 transition. 

 

5.4 Reaction Mechanism Studies on NaO2 and Na2O2 Step Surfaces 

 

For the free energy calculations, we calculate the translational contributions to the entropy and 

enthalpy (through the heat capacity) for O2 in the gas phase at STP and the difference in the 

rotational contribution between Na2O2 and NaO2/O2, where the O2
2- species are constrained 

whereas the O2
- and O2(g)  species are effectively free rotors at STP. To a first approximation, we 

only include these contributions, since the vibrational properties of O2(g), O2
- and O2

2- are very 

similar and expected to cancel, and the rotational properties of O2(g)  and O2
- ions are equally 

similar and expected to cancel. 

The computational sodium electrode approach is used in the free energy calculations, analogous to 

the lithium electrode approach used for Li-Air batteries.[65],[88] Defined as, U = 0, when bulk Na 

anode and Na ions in solution (Na+ + e-) are at equilibrium. The free energy change of the reaction 
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is shifted by −𝑛𝑒𝑈 at an applied bias, where 𝑛 is the number of electrons. From Hummelshøj et al. 

reports kinks and step surfaces are favorable nucleation sites for low overpotential reaction 

mechanisms. [64] 

At neutral bias all reaction steps are downhill, but at an applied potential, the free energy difference 

changes for each step calculated from equation (4.1). 

The limiting discharge potential (Udischarge) is the lowest free energy step, ∆Gmin, along the reaction 

path which becomes uphill at an applied potential. Likewise, the largest free energy step, ΔGi,max, 

that is last to become downhill for the reversed reaction at an applied potential called limited 

charge potential (Ucharge) obtained from equation (4.2). The calculated effective equilibrium 

potential can be obtained as  Uo = −∆G 𝑛𝑒⁄ . All reaction steps are downhill at neutral bias, however 

at an applied potential, the free energy difference changes for each step calculated from equation 

(1), where n is the number of electrons.  

Systematic errors in description of superoxides, peroxides and monoxides have previously been 

documented by various groups and accounted for in various ways [64],[109],[113]. Here, we adopt 

the approach of Christensen et al.[113] using NaCl as reference to obtain the metallic Na energy. 

In line with Christensen et al.[113] an energy correction is applied to O2(g), which is notoriously 

difficult to describe correct with DFT. With the used computational code the optimal energy 

correction of O2(g) is -0.33 eV. The used approach is chosen as it reduces the systematic errors 

significantly, while allowing consistent calculation of surfaces with various oxide species present 

required for studying reactions in Na-O2 batteries. 

 

5.4.1 NaO2 Growth/desorption Mechanisms on Selected Step Surfaces 

 

The four steps NaO2 growth/depletion is investigated on stepped (001) and (100) NaO2 surface. 

The method does not include specific effects of the electrolyte or possible kinetic barriers. DFT 

calculations can estimate the preferred pathways for the dis/charge mechanisms comparing the 

energies of the adsorbed species at every single step. The stepped surface is constructed 

manually from the bulk crystal in a specific direction in such a way that four sodium superoxide 

species are added (removed) at the step site for the complete pathways of growth (depletion).  

 

In general, NaO2 growth/depletion mechanisms on the step NaO2 surfaces follows a four step 

mechanism; each step comprises of either Na* or NaO2* species (electrochemical steps) or O2 
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species (chemical step) and both are taken in to account to generate all possible pathways. Among 

which, the most thermodynamically favorable path with the low overpotential is selected. Thus, as 

shown in Figure 5.3a and Figure 5.4, the first step for (001) step surface is adsorption of the first 

NaO2 on bottom left site, which is the limiting discharge potential (2.39 V) step and is followed by 

adsorption of the second NaO2 species to the bottom right site with the binding energy of 2.57 V, 

the third and the fourth NaO2 species are adsorbed by 2.63 V and 2.71 V, respectively, see Table 

5.2. The fourth step is the limiting charge potential step and the growth mechanism is completed by 

forming 4 sodium superoxide species. The charging or desorption process follows the same 

reaction steps applied in reverse order (right to left), see Figure 5.3.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2: (Dis)/charge potentials and overpotentials (in V) estimated for NaO2 growth/depletion mechanism 

studies on (001) and (100) step surfaces. Metallic Na energy is obtained from NaCl reference [113]. 

 Step (001) Step (100) 

 𝐔𝐨 2.57 2.56    

𝐔𝐝𝐢𝐬𝐜𝐡𝐚𝐫𝐠𝐞 2.39 2.32    

𝐔𝐜𝐡𝐚𝐫𝐠𝐞 2.71 2.85    

𝐝𝐢𝐬𝐜𝐡𝐚𝐫𝐠𝐞 0.18 

 

0.28    

𝐜𝐡𝐚𝐫𝐠𝐞 0.14 

 

0.28    

a b 

c d  

a b 

c d 

Step (001) Step (100) 

 
Figure 5.3: A 4 step growth/desorption mechanism on the step surface (001) and (100) of NaO2. a) and b) 

NaO2 adsorbs to the bottom site. c) and d) 2 NaO2 adsorbs to the top site to complete the 4 formula units 

NaO2 reaction mechanism. Color: Na purple and O red. Deposit atoms: Na yellow and O green. 
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The growth/depletion mechanisms studies on the stepped NaO2 surface revealed that the 

fundamental overpotentials in both discharge and charge processes are very low, which also has 

been experimentally observed [108]. Fundamentally, the overpotential in Li2O2 is also very low but 

experimentally different depending on the experimental conditions e.g. current density and 

parasitic chemistry. 

Thus, the limiting discharge (charge) potential for the (001) stepped surface calculated using GGA 

is found to be 2.39 V (2.71 V) and the calculated effective equilibrium potential is 2.57 V (compared 

to the experimental value, U0,Exp = 2.27 V) leads discharge (charge) overpotential of  

0.18 V (0.14 V) for the growth (depletion) mechanism, see Figure 5.4. The growth/desorption 

mechanisms studies on the stepped NaO2 surface revealed that the fundamental overpotentials in 

both discharge and charge processes are very low which also has been experimentally observed 

[108]. Fundamentally, the overpotential in Li2O2 is also very low but experimentally different 

depending on the experimental conditions e.g. current density and parasitic chemistry. [64] 
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Figure 5.4: The calculated free energy diagram for NaO2 growth/desorption mechanisms on stepped (001) 

and (100) NaO2 surfaces using PBE. 

 

 

Pathways involving a purely thermochemical step for O2 ab/desorption are all found to be inactive 

due to high activation energy. The NaO2 growth/depletion mechanism studies revealed a low 

overpotential path consists of four steps addition or removal of NaO2 species electrochemically. 

The bulk equilibrium potential is in a good agreement with the experimental value of 2.27 V.   

 

The NaO2 growth/desorption mechanism studies revealed a low overpotential path consists of four 

electrochemical steps addition or removal of NaO2 species. Pathways involving a purely 

thermodynamic step for O2 ab/desorption are all found to be inactive due to high overpotentials. 

The bulk equilibrium potential is in a good agreement with the experimental value of 2.27 V 

however the surface equilibrium potential is off by 0.3 V compared to the bulk, it could be due to a 

variation in O-O bond length and magnetic moment at the surface and in bulk.   

 

U0 = 2.57 V (001) 
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5.4.2 Na2O2 Growth/Desorption Mechanisms on (𝟏�̅�𝟎𝟎) Step Surface 

 

The free energy diagram in Figure 5.6 show four steps growth mechanism consists of two formula 

units of Na2O2 growth mechanism on the step (11̅00) Na2O2 surface (from a to d). The first step 

adsorption of NaO2* species (Fig. 5.5a) adsorbs with the binding energy by 1.89 V which is the 

potential limiting step for discharge. The next step is the addition of Na* species (Fig. 5.5b) 

adsorbed with the binding energy of 2.02 V. This is again followed by additions of NaO2* and Na* 

respectively with the binding energies of 2.69 V and 2.15 V (the third step is potential limiting step 

for charge) (Fig. 5.5c and d). The full growth mechanism is accomplished with the two formula 

units of Na2O2 growth at the step surface with equilibrium potential of 2.19 V. The charging process 

follows the reverse order. 

Previous work by Hummelshøj et al. [65] have reported that the pure Li2O2 growth mechanism 

follows 4 steps reaction mechanism, where all reaction steps are electrochemical. The equilibrium 

potential can be obtained as U0 = -ΔG/2e. The equilibrium potential of bulk Na2O2 is found to be 

2.39 which is in good agreement with the experimental value of 2.33 V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 
b 

c d 

Figure 5.3: Figure 5: Reaction mechanism studies on stepped Na2O2 (11̅00) surface follows 4 steps Na2O2 

growth pathways during discharge. a) First NaO2 adsorbs. d) Second NaO2. c) First Li.  f) Second Na 

adsorbs to the surface completing growth of 2 formula units of Na2O2. Atoms labeled as: Na purple and O 

red. Deposit atoms shown as: Na yellow and O green. 
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Figure 5.6: Calculated free energy diagrams for a four steps discharge mechanism from stepped 

(11̅00) Na2O2 surface. The sodium metallic energy is obtained from NaCl reference.  

A four steps reaction mechanism on stepped (11̅00) Na2O2 surface were studied using DFT 

calculations. The Na2O2 growth mechanism consists of four electrochemical steps. The discharge 

occurs as described in Figure 5.5 and 5.6, among various paths the minimum low overpotential 

path resulting in discharge (charge) potential of 1.80 V (2.69 V) and overpotentials of 0.3 V (0.5 V). 

The preferred growth mechanism follows the following subsequent adsorption steps NaO2*, Na*, 

NaO2* and Na* respectively to form 2 formula units of Na2O2 at the step surface to complete the 

growth (* refers to surface adsorption). Here, the charging process follows the same reaction steps 

as discharging but in reverse (from d-a in Figure 5.5 and right to left in Figure 5.6). Pathways 

involving a purely thermochemical step for O2 ab/desorption are all found to be inactive due to high 

overpotential. In general, the DFT calculations and few experimental results show that, the Na2O2 

reaction mechanism has high overpotentials compared to low overpotential paths in NaO2 

formation.  

 

 

 

U0 = 2.19 V  

dis = 0.3 V  

ch = 0.5 V  



CHAPTER 5                                                                                                                                               NaO2 Battery 

 

72 
 

5.5   Ionic Conduction in NaO2 

Activation energies for the dominant charge carrier in NaO2, i.e. negative sodium vacancy (missing 

Na+), were evaluated. We apply the vacancy mediated ionic charge carrier transport using -1 

compensating back ground charge. As shown in Figure 5.8, results revealed that the sodium ion 

diffusion can take place at low activation energy barrier close to ~0.4 eV for intralayer diffusion 

channels and ~0.6 eV of activation barrier is estimated for interlayer diffusion pathway. The 

microscopic diffusion mechanism along the intralayer directions diffuse through the face center 

(follow zigzag pathways). Thus, the microscopic diffusion channel follows A  C  X  series along 

the X- and A  C  Y in the Y-directions. Regarding the interlayer diffusion (in Z direction), the 

minimum interlayer diffusion barrier AZ(Z) path is about 0.58 eV. For the detail charge carrier 

transport in NaO2 and Na2O2, refer [111]. 

 

 

 

 

We can conclude that sodium ion diffusion in NaO2 has a preferential channel along the intralayer 

channels, and this relatively small barrier could open the possibility of ionic conduction at ambient 

conditions. Thus, the ionic charge carrier transport in NaO2 is not limiting. 

 

 

Figure 5.4:  Na ion diffusion activation barrier along X, Y and Z directions in NaO2 estimated using NEB 

method in PBE functional at -1 compensating background charge. The minimum activation energy barrier 

is found to be 0.40 eV and 0.58 eV along the intra and interlayer diffusion channels, respectively. 
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5.6   Ionic Conduction in Na2O2 

In order to investigate the dominant charge carrier transport (Na+) in Na-O2 battery we have used 

the 2 × 2 × 2 supercell of hexagonal Na2O2 which consists of a total of 96 atoms and yields a total 

vacancy concentration [V-
Li] of 2 %. The activation energy of the Na+ diffusion along all the three 

directions are estimated using the climbing image nudge elastic band method as it is described in 

section (2.3). The calculations are performed introducing -1 compensating back ground charge. 

Accordingly, as shown in Figure 5.9 the interlayer diffusion channel OZ (Z) is the minimum energy 

barrier, note that similar behavior is observed in the case of Li2O2. Along the intralayer in X 

direction the activation barrier id found to be ~1.0 eV, thus it is inaccessible at ambient conditions. 

However, unlike to that of Li2O2 where intralayer ionic conduction is limiting, in Na2O2 we found a 

minimum barrier along the intralayer in Y direction; see the OY (Y) path which is less than 0.5 eV. 

Therefore, we can conclude that ionic diffusion in Na2O2 is also not the limiting process like that of 

in NaO2. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Na ion diffusion paths in Na2O2 obtained using PBE. The minimum energy barrier estimated 

along the X, Y  and Z directions are ~ 1.0, 0.5 and  0. 4 eV, respectively. 
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5.7 Polaronic Conduction in Na2O2 

We have used DFT+U method to investigate the polaron conduction in Na2O2 Hole polaron is 

localized at one of the O-O bond of the peroxide where the bond length is reduced by 0.22 Å (from 

1.56 Å to 1.33 Å). Likewise, the excess electron is localized by stretching the bond length from 

1.56 Å to 2.45 Å. In both cases localization involve an entire geometry distortion apart from change 

in bond length of one of the peroxide ion. The total magnetic moment that appeared in a single 

oxyanions is 1 in both hole and electron. The localized states are more stable than that of the 

delocalized ones particularly the excess electron polaron offer strong stability over the delocalized 

states.We have found that Na2O2 can hold excess electron polarons. However, the migration 

barriers for electron polarons are higher than the ones of hole polarons 1.5 eV.     
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Polaronic conduction in Na2O2 is also studied and will be discussed in this section. Intralayer and 

interlayer hops for both electron and hole polarons studies are explored. In many cases, Na2O2 

exhibits almost similar properties as Li2O2. It displays low hole polaron hopping barriers and 

significantly high excess electron hopping barrier. Thus, hole polaron transport mechanism in 

Na2O2 could be an alternative path for fast electronic transport. Almost similar results are recently 

reported by Yang et al, [111].  

Figure 5.6: The DFT (Kohn-Sham) bandgap of bulk Na2O2 as a function of Hubbard’s correction (U), the 

U value opens the bandgap above 4 eV is beyond U = 6 eV. 
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Figure 5.7: Hole and Electron polaron hopping in Na2O2 using PBE+U (at U = 6 eV). 

 

5.8 Summary of Na-O2 Studies 

In this section I would like to summarize the main outcomes of the reaction mechanism studies on 

some selected step surfaces, as well as charge transport in NaO2 and Na2O2. We have presented 

the fundamental investigation in the materials of Na−O2 system. This technology holds great 

potential as a low cost and high energy density battery. To summarize the DFT calculations, 

equilibrium potentials and free energies as a function of temperature for different phases of NaO2 

and Na2O2, using an improved metal chloride correction scheme, showing cubic 𝑃𝑎3̅  NaO2 to be 

the thermodynamically preferred discharge product up to 223 K, after which Na2O2 is 

thermodynamically preferred. Regarding the charge transport studies in NaO2 and Na2O2 bulk, we 

found that the negative sodium (Na+ missing) transport is taking place at an accessible energy 

barrier at the battery operation conditions (< 0.5 eV). Moreover, hole polaron hops are also taking 

place at low energy barrier in Na2O2.  

Furthermore, the reaction mechanism studies on stable step surfaces (11̅00) facet in Na2O2 and 

(001) and (100) facets in NaO2 showing low overpotentials for NaO2 formation (< 0.2 V) and high 

discharge (charge) overpotentials of 0.3 V(0.5 V) for Na2O2, which is excellent agreement with 

experiments. These findings provide the first kinetic explanation for why NaO2 is the main 

discharge product in Na-O2 batteries under normal operating conditions (Paper III). 
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CHAPTER 6 

Summary and Outlook  

 

 

In previous chapters I have presented the results of my research during the last three years. The 

three topics covered in the thesis were presented separately in different chapters. A summary of 

the main findings is included at the end of each chapter. Here I will not repeat the summaries, but I 

will outline what I consider to be the highlights. A brief outlook of the thesis is included at the end.  

 

6.1 Summary of the main results  

 

During my Ph.D. thesis, I have carried out theoretical investigations based on DFT calculations 

about the growth mechanisms and charge transport processes in the discharge product materials 

of Li-O2 and Na-O2 batteries. The main outcome of this work can be summarized as follows: 

1. It was shown that the detailed understanding of charge transport across the Li2O2@Li2CO3 

interfaces can shed new light on the limited performance of aprotic Li-O2 batteries. Our 

calculation pointed out that Li vacancies are prone to trapping at the peroxide part of 

interface based on the relative vacancy formation energies. This leads to substantial 

reduction in the coherent transport. Remarkably, low electron polaron hopping barriers are 

found in the plane of the interface which does not exist in the bulk of either Li2O2 not Li2CO3. 

2. We explained the impact of carbonate species originating from reactions between CO2 and 

Li2O2 at the cathode of Li-air batteries on the overpotentials of the battery. It was shown 

that, even at low concentrations, CO2 effectively blocks   the step nucleation site and alters 

the Li2O2 shape due to Li2CO3 formation. The calculations showed that once CO2 is 

adsorbed on a step valley site, it is effectively unable to diffuse and hinders the Li2O2 

growth mechanism, reducing the capacity and increasing the overpotentials of the battery. 

This effect, predicted from DFT calculations, was confirmed experimentally, already at 1 % 

CO2 concentration in the air.   
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3. Using an improved metal chloride correction scheme, we calculated cubic NaO2 to be the 

thermodynamically preferred discharge product in Na-O2 batteries up to 223 K, after which 

Na2O2 is thermodynamically preferred. Despite of this, the experimentally observed 

discharge product at room temperature is NaO2. We showed that this is due to the kinetics 

of the formation processes of Na2O2 which exhibits overpotentials above 0.5 V, while for 

NaO2 the overpotentials are smaller than 0.2 V.  

 

 

6.2  Outlook  

 

From these summarized calculations we can envisage some future lines of work, both from the 

modeling and experimental point of view. Here I have gathered five ideas at this respect: 

1. Our prediction of good electron polaron conductivities at Li2O2@Li2CO3 interfaces could 

lead to the experimental design of nanostructured cathodes with graphene nanopillars to 

improve the capacity of Li-O2 batteries. In these structure it would be possible to alternate 

between electrochemical discharge (leading to Li2O2 formation), and short rest periods 

allowing some level of chemical degradation to form Li2CO3 inclusions. This should allow 

the formation of a sufficient number of Li2O2@Li2CO3 interfaces capable of supplying the 

required electronic conduction to fill the space between the nanopillars.  

2. The poisoning of other species different that of CO2, e.g. nitrogen or water from the air, 

could also have an impact on the overpotential and capacity of the Li-O2 battery. Thus, it 

would recommend carrying out DFT calculations about the interaction of Li2O2 surfaces with 

these new species.  

3. Many of the calculations performed in this thesis rely on DFT+U method. Typically the U 

value in the DFT+U approximation is chosen in such a way that the experimental bandgap 

of material is reproduced. However, the experimental data about bandgaps of superoxides 

and peroxides of alkali ions is scarce or inexistent. In many cases bandgaps from high-level 

calculations, e.g. GW calculations, is taken as a reference. However, the GW techniques 

results, although much more accurate than conventional DFT results, do not always agree 

with the experimental figures. For this reason it would be very valuable to conduct 

photoemission and inverse photoemission experiments on these materials in order to get 

their bandgaps. 
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4. There is a significant amount of theoretical studies about Li-O2 batteries in the literature, 

while there are only a few of Na-O2 batteries. Thus, there are still several aspects of NaO2 

and Na2O2 materials in which DFT simulations could help to shed light on. Here I give one 

example: We mentioned in chapter 5 that superoxide ions in NaO2 are freely rotating in the 

high-temperature pyrite phase. However, these rotations affect to the electronic properties 

of the material (i.e. bandgap or diffusion barriers for polarons) is a question that remains 

open. 

5. A natural continuation of this work would be to investigate other interfaces that occur both 

at the anode and cathode sides of the battery. Ideally these new investigations should 

combine computational studies and experiments. From the computational point of view it 

would be recommendable to use methods such as Montecarlo simulations to study the 

interaction between the electrolyte and the discharge products. 

 

 

 

 



Bibliography 

 

[1] R. Jones, “Energy Poverty: How to make modern energy access universal?,” Spec. early 
excerpt World Energy Outlook, no. September, p. 52, 2010. 

[2] T. Foley, K. Thornton, R. Hinrichs-rahlwes, S. Sawyer, M. Sander, R. Taylor, S. Teske, H. 
Lehmann, M. Alers, and D. Hales, Renewables 2015 global status report. 2015. 

[3] Sfoe, “Energy Strategy 2050,” Http://Www.Bfe.Admin.Ch/Themen/00526/00527/, no. 
February, 2014. 

[4] Ipcc, “Summary for Policy Makers,” Clim. Chang. 2014 Impacts, Adapt. Vulnerability - 
Contrib. Work. Gr. II to Fifth Assess. Rep., pp. 1–32, 2014. 

[5] IEA, “Energy and climate change,” 2015. 

[6] Ipcc, “Summary for Policymakers,” Ipcc Wgiii Ar5, pp. 1–33, 2014. 

[7] B. Nykvist and M. Nilsson, “Rapidly falling costs of battery packs for electric vehicles,” Nat. 
Clim. Chang., vol. 5, no. April, pp. 329–332, 2015. 

[8] M. S. Whittingham, Chemistry of intercalation compounds: Metal guests in chalcogenide 
hosts, vol. 12, no. 1. 1978. 

[9] F. O. R. Batteries, O. F. High, and E. Density, “LixCoO2 (0<x≤1): a new cathode material for 
batteries of high energy density,” Solid State Ionics, vol. 4, pp. 171–174, 1981. 

[10] M. M. Thackeray, C. Wolverton, and E. D. Isaacs, “Electrical energy storage for 
transportation—approaching the limits of, and going beyond, lithium-ion batteries,” Energy 
Environ. Sci., vol. 5, no. 7, p. 7854, 2012. 

[11] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, “Li–O2 and Li–S 
batteries with high energy storage,” Nat. Mater., vol. 11, no. December 2011, pp. 19–30, 
2012. 

[12] J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, and J. Cho, “Metal-Air Batteries 
with High Energy Density: Li-Air versus Zn-Air,” Adv. Energy Mater., vol. 1, no. 1, pp. 34–50, 
Jan. 2011. 

[13] M. S. Whittingham, Metal-Air Batteries: A Reality Check. Meeting Abstract. 2012, p. 1099. 

[14] D. Linden and T. B. Reddy, HANDBOOK OF BATTERIES. . 

[15] M. Balaish, A. Kraytsberg, and Y. Ein-Eli, “A critical review on lithium-air battery 
electrolytes.,” Phys. Chem. Chem. Phys., vol. 16, pp. 2801–2822, Feb. 2014. 



Bibliography 

 

80 
 

[16] M. Armand and J. M. Tarascon, “Building better batteries,” Nature, vol. 451, pp. 652–657, 
Feb. 2008. 

[17] J. Hojberg, K. B. Knudsen, J. Hjelm, and T. Vegge, “Reactions and SEI Formation during 
Charging of Li-O2 Cells,” ECS Electrochem. Lett., vol. 4, pp. A63–A66, 2015. 

[18] A. C. Luntz and B. D. Mccloskey, “Nonaqueous Li − Air Batteries : A Status Report,” 2013. 

[19] N. Zhao, C. Li, and X. Guo, “Long-life Na-O₂ batteries with high energy efficiency enabled by 
electrochemically splitting NaO₂ at a low overpotential.,” Phys. Chem. Chem. Phys., vol. 16, 
no. 29, pp. 15646–52, Aug. 2014. 

[20] P. Hartmann, C. L. Bender, M. Vračar, A. K. Dürr, A. Garsuch, J. Janek, and P. Adelhelm, 
“A rechargeable room-temperature sodium superoxide (NaO2) battery.,” Nat. Mater., vol. 12, 
no. 3, pp. 228–32, Mar. 2013. 

[21] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. B, vol. 136, no. 3B, 
pp. B864–B871, 1964. 

[22] W. Kohn and L. J. Sham, “Self-Consistent Equation Including Exchange and Correlation 
Effects,” Phys. Rev., vol. 140, p. A 1133–A 1138, 1965. 

[23] S. L. Dudarev, S. Y. Savrasov, C. J. Humphreys, and a. P. Sutton, “Electron-energy-loss 
spectra and the structural stability of nickel oxide:  An LSDA+U study,” Phys. Rev. B, vol. 
57, no. 3, pp. 1505–1509, 1998. 

[24] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. 
Glinsvad, V. Haikola, H. a Hansen, H. H. Kristoffersen, M. Kuisma, a H. Larsen, L. 
Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, 
N. a Romero, J. Stausholm-Møller, M. Strange, G. a Tritsaris, M. Vanin, M. Walter, B. 
Hammer, H. Häkkinen, G. K. H. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. 
Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, “Electronic structure calculations 
with GPAW: a real-space implementation of the projector augmented-wave method.,” J. 
Phys. Condens. Matter, vol. 22, p. 253202, Jun. 2010. 

[25] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, “Density-functional 
method for nonequilibrium electron transport,” Phys. Rev. B, vol. 65, p. 165401, Mar. 2002. 

[26] M. Ernzerhof and G. E. Scuseria, “Perspective on ‘Inhomogeneous electron gas,’” Theor. 
Chem. Acc., vol. 103, pp. 259–262, Feb. 2000. 

[27] D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” 
Phys. Rev. Lett., vol. 45, no. 7, pp. 566–569, 1980. 

[28] J. P. Perdew and A. Zunger, “Self-interaction correlation to density-functional 
approximations for many-electron systems,” Phys. Rev. B, vol. 23, no. 10, pp. 5048–5079, 
1981. 

[29] S. H. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation 
energies for local spin density calculations: a critical analysis,” Can. J. Phys., vol. 58, no. 8, 
pp. 1200–1211, 1980. 



Bibliography 

 

81 
 

[30] J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson, D. Singh, and C. Fiolhais, 
“Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient 
approximation for exchange and correlation,” Phys. Rev. B, vol. 48, no. 7, pp. 4978–4978, 
1993. 

[31] J. P. Perdew, K. Burke, M. Ernzerhof, D. of Physics, and N. O. L. 70118 J. Quantum Theory 
Group Tulane University, “Generalized Gradient Approximation Made Simple,” Phys. Rev. 
Lett., vol. 77, no. 18, pp. 3865–3868, 1996. 

[32] B. Hammer, L. Hansen, and J. Nørskov, “Improved adsorption energetics within density-
functional theory using revised Perdew-Burke-Ernzerhof functionals,” Phys. Rev. B, vol. 59, 
pp. 7413–7421, Mar. 1999. 

[33] T. Vegge, T. Rasmussen, T. Leffers, O. Pedersen, and K. Jacobsen, “Determination of the 
of rate cross slip of screw dislocations,” Phys. Rev. Lett., vol. 85, pp. 3866–3869, Oct. 2000. 

[34] H. Jonsson, G. Mills, and K. W. Jacobsen, “Nudged elastic band method for finding 
minimum energy paths of transitions,” in Classical and Quantum Dynamics in Condensed 
Phase Simulations (edited by B. J. Berne, G. Ciccotti, D. F. Coker (World Scientific, 
Singapore, 1998), pp. 385–404. 

[35] G. Henkelman and H. Jonsson, “Improved tangent estimate in the nudged elastic band 
method for finding minimum energy paths and saddle points,” J. Chem. Phys., vol. 113, pp. 
9978–9985, 2000. 

[36] B. P. U. Graeme Henkelman  Hannes Jonsson, “ A climbing image Nudge elastic band 
methos for finding saddle points and minimum energy paths,” J. Chem. Phys., vol. 113, no. 
113, 2000. 

[37]     Atomistix ToolKit version 2014.1, QuantumWise A/S (www.quantumwise.com). 

[38] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-
Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. 
Matter, vol. 14, pp. 2745–2779, 2002. 

[39] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “A real-space grid implementation of 
the Projector Augmented Wave method,” Phys. Rev. B, vol. 71, p. 035109, Nov. 2005. 

[40] P. E. Blochl, “Projected augmented-wave method,” Phys. Rev. B, vol. 50, pp. 17953–17979, 
1994. 

[41] S. R. Bahn and K. W. Jaconsen, “An Object-Oriented Scripting Interface to a Legacy 
Electronic Strcture Code,” Comput. Sci. Eng., vol. 4, pp. 56–66, 2002. 

[42] J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium 
batteries.,” Nature, vol. 414, pp. 359–67, Nov. 2001. 

[43] K. M. Abraham, Z. Jiang, and J. E. Soc, “A Polymer Electrolyte − Based Rechargeable 
Lithium / Oxygen Battery TECHNICAL PAPERS ELECTROCHEMICAL SCIENCE AND 
TECHNOLOGY A Polymer Electrolyte-Based Rechargeable lithium / Oxygen Battery,” vol. 
143, no. 1, pp. 1–5, 1996. 



Bibliography 

 

82 
 

[44] T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, and P. G. Bruce, “Rechargeable LI2O2 
electrode for lithium batteries.,” J. Am. Chem. Soc., vol. 128, pp. 1390–3933, Feb. 2006. 

[45] G. Girishkumar, B. McCloskey, a. C. Luntz, S. Swanson, and W. Wilcke, “Lithium−Air 
Battery: Promise and Challenges,” J. Phys. Chem. Lett., vol. 1, no. 14, pp. 2193–2203, Jul. 
2010. 

[46] P. Albertus, G. Girishkumar, B. McCloskey, R. S. Sánchez-Carrera, B. Kozinsky, J. 
Christensen, and A. C. Luntz, “Identifying Capacity Limitations in the Li/Oxygen Battery 
Using Experiments and Modeling,” J. Electrochem. Soc., vol. 158, pp. A343–A351, 2011. 

[47] J. M. Garcia-Lastra, J. D. Bass, and K. S. Thygesen, “Communication: Strong excitonic and 
vibronic effects determine the optical properties of Li2O2,” J. Chem. Phys., vol. 135, no. 12, 
pp. 3–7, 2011. 

[48] V. Viswanathan, K. S. Thygesen, J. S. Hummelshøj, J. K. Nørskov, G. Girishkumar, B. D. 
McCloskey, and A. C. Luntz, “Electrical conductivity in Li2O2 and its role in determining 
capacity limitations in non-aqueous Li-O2 batteries,” J. Chem. Phys., vol. 135, p. 214704, 
Dec. 2011. 

[49] J. Chen, J. S. Hummelshøj, K. S. Thygesen, J. S. G. Myrdal, J. K. Nørskov, and T. Vegge, 
“The role of transition metal interfaces on the electronic transport in lithium–air batteries,” 
Catal. Today, vol. 165, pp. 2–9, May 2011. 

[50] B. D. Mccloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. 
K. Nørskov, and A. C. Luntz, “Twin Problems of Interfacial Carbonate Formation in 
Nonaqueous,” J. Phys. Chem. Lett., vol. 3, pp. 997–1001, 2012. 

[51] J. M. Garcia-Lastra, J. S. G. Myrdal, R. Christensen, K. S. Thygesen, and T. Vegge, 
“DFT+U Study of Polaronic Conduction in Li2O2 and Li2CO3 : Implications for Li–Air 
Batteries,” J. Phys. Chem. C, vol. 117, pp. 5568–5577, Mar. 2013. 

[52] J. B. Varley, V. Viswanathan, J. K. Nørskov, and a. C. Luntz, “Lithium and oxygen vacancies 
and their role in Li2O2 charge transport in Li–O2 batteries,” Energy Environ. Sci., vol. 7, pp. 
720–727, 2014. 

[53] A. C. Luntz, V. Viswanathan, J. Voss, J. B. Varley, and A. Speidel, “Tunneling and Polaron 
Charge Transport through Li2O2 in Li−O2 Batteries,” pp. 2–7, 2013. 

[54] M. D. Radin, C. W. Monroe, and D. J. Siegel, “How Dopants Can Enhance Charge 
Transport in Li2O2,” Chem. Mater., vol. 27, no. 3, pp. 839–847, 2015. 

[55] V. Timoshevskii, Z. Feng, and K. Bevan, “Improving Li2O2 conductance via polaron 
preemption : an ab initio study of Si doping,” 1800. 

[56] M. D. Radin, J. F. Rodriguez, F. Tian, and D. J. Siegel, “Lithium peroxide surfaces are 
metallic, while lithium oxide surfaces are not.,” J. Am. Chem. Soc., vol. 134, no. 2, pp. 1093–
1103, Jan. 2012. 



Bibliography 

 

83 
 

[57] B. D. McCloskey, R. Scheffler, A. Speidel, G. Girishkumar, and A. C. Luntz, “On the 
mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials: Some 
implications for Li-air batteries,” J. Phys. Chem. C, vol. 116, no. 45, pp. 23897–23905, 2012. 

[58] C. O. Laoire, S. Mukerjee, K. M. Abraham, E. J. Plichta, and M. a. Hendrickson, “Elucidating 
the mechanism of oxygen reduction for lithium-air battery applications,” J. Phys. Chem. C, 
vol. 113, no. 46, pp. 20127–20134, 2009. 

[59] Z. Peng, S. a. Freunberger, L. J. Hardwick, Y. Chen, V. Giordani, F. Bardé, P. Novák, D. 
Graham, J. M. Tarascon, and P. G. Bruce, “Oxygen reactions in a non-aqueous Li+ 
electrolyte,” Angew. Chemie - Int. Ed., vol. 50, no. 28, pp. 6351–6355, 2011. 

[60] L. G. Cota and P. De La Mora, “On the structure of lithium peroxide, Li2O2,” Acta 
Crystallogr., vol. B61, pp. 133–136, 2005. 

[61] M. . Nadler and C. P. Kempter, “Lithium,” Anal. Chem., vol. 31, no. 12, pp. 2109–2109, 
1959. 

[62] A. Liu, A. Quong, J. Freericks, E. Nicol, and E. Jones, “Structural phase stability and 
electron-phonon coupling in lithium,” Phys. Rev. B, vol. 59, no. 6, pp. 4028–4035, 1999. 

[63] M. D. Radin, F. Tian, and D. J. Siegel, “Electronic structure of Li2O2 {0001} surfaces,” J. 
Mater. Sci., vol. 47, pp. 7564–7570, May 2012. 

[64] J. S. Hummelshøj, a C. Luntz, and J. K. Nørskov, “Theoretical evidence for low kinetic 
overpotentials in Li-O2 electrochemistry.,” J. Chem. Phys., vol. 138, p. 034703, Jan. 2013. 

[65] J. S. Hummelshøj, J. Blomqvist, S. Datta, T. Vegge, J. Rossmeisl, K. S. Thygesen, a C. 
Luntz, K. W. Jacobsen, and J. K. Nørskov, “Communications: Elementary oxygen electrode 
reactions in the aprotic Li-air battery.,” J. Chem. Phys., vol. 132, no. 7, p. 071101, Feb. 
2010. 

[66] Y. S. Mekonnen, K. B. Knudsen, J. S. G. Mýrdal, R. Younesi, J. Højberg, J. Hjelm, P. Norby, 
and T. Vegge, “Communication: The influence of CO2 poisoning on overvoltages and 
discharge capacity in non-aqueous Li-Air batteries,” J. Chem. Phys., vol. 140, p. 121101, 
Mar. 2014. 

[67] J. S. G. Mýrdal and T. Vegge, “Selective poisoning of Li–air batteries for increased 
discharge capacity,” RSC Adv., vol. 4, no. 30, p. 15671, 2014. 

[68] M. D. Radin and D. J. Siegel, “Charge transport in lithium peroxide: relevance for 
rechargeable metal–air batteries,” Energy Environ. Sci., vol. 6, pp. 2370–2379, 2013. 

[69] Y. S. Mekonnen, J. M. Garcia-Lastra, J. S. Hummelshøj, C. Jin, and T. Vegge, “Role of Li2O2 
@Li2CO3 Interfaces on Charge Transport in Non-Aqueous Li-Air Batteries,” J. Phys. Chem. 
C, vol. 119, no. 32, pp. 18066–18073, 2015. 

[70] J.-G. Zhang, D. Wang, W. Xu, J. Xiao, and R. E. Williford, “Ambient operation of Li/Air 
batteries,” J. Power Sources, vol. 195, no. 13, pp. 4332–4337, Jul. 2010. 



Bibliography 

 

84 
 

[71] J. Zhang, W. Xu, X. Li, and W. Liu, “Air Dehydration Membranes for Nonaqueous Lithium–
Air Batteries,” J. Electrochem. Soc., vol. 157, no. 8, p. A940, 2010. 

[72] S. R. Gowda, A. Brunet, and B. D. Mccloskey, “Implications of CO2 Contamination in 
Rechargeable Nonaqueous Li −,” pp. 2–5, 2013. 

[73] B. D. Mccloskey, R. Sche, A. Speidel, G. Girishkumar, and A. C. Luntz, “On the Mechanism 
of Nonaqueous Li−O2 Electrochemistry on C and Its Kinetic Overpotentials : Some 
Implications for Li−Air Batteries,” J. Phys. Chem. C, 2012. 

[74] E. L. Littauer and K. C. Tsai, “Corrosion of Lithium in Alkaline Solution,” Electrochem. Sci. 
Technol., vol. 124, pp. 850–855, 1977. 

[75] L. O. L. Crystallization, R. Black, S. H. Oh, J. Lee, T. Yim, B. Adams, and L. F. Nazar, 
“Screening for Superoxide Reactivity in Li-O 2 Batteries : Effect on,” 2012. 

[76] R. Black, B. Adams, and L. F. Nazar, “Non-Aqueous and Hybrid Li-O2 Batteries,” Adv. 
Energy Mater., vol. 2, no. 7, pp. 801–815, Jul. 2012. 

[77] R. Younesi, M. Hahlin, F. Bjorefors, P. Johansson, and K. Edstrom, “Li−O2 Battery 
Degradation by Lithium Peroxide (Li2O2): A Model Study,” Chem. Mater., 2013. 

[78] R. Younesi, P. Norby, and T. Vegge, “A New Look at the Stability of Dimethyl Sulfoxide and 
Acetonitrile in Li-O2 Batteries,” ECS Electrochem. Lett., vol. 3, no. 3, pp. A15–A18, 2014. 

[79] Y. Chen, S. A. Freunberger, Z. Peng, F. Barde, and P. G. Bruce, “Li−O2 Battery with a 
Dimethylformamide Electrolyte,” pp. 2–7, 2012. 

[80] J. Lu and K. Amine, “Recent Research Progress on Non-aqueous Lithium-Air Batteries from 
Argonne National Laboratory,” Energies, vol. 6, no. 11, pp. 6016–6044, Nov. 2013. 

[81] J. Read, “Characterization of the Lithium/Oxygen Organic Electrolyte Battery,” J. 
Electrochem. Soc., vol. 149, no. 9, p. A1190, 2002. 

[82] J. Read, “Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery,” J. 
Electrochem. Soc., vol. 153, no. 1, p. A96, 2006. 

[83] H.-D. Lim, K.-Y. Park, H. Gwon, J. Hong, H. Kim, and K. Kang, “The potential for long-term 
operation of a lithium-oxygen battery using a non-carbonate-based electrolyte.,” Chem. 
Commun. (Camb)., vol. 48, no. 67, pp. 8374–6, Aug. 2012. 

[84] C. O. Laoire, S. Mukerjee, E. J. Plichta, M. a. Hendrickson, and K. M. Abraham, 
“Rechargeable Lithium/TEGDME-LiPF[sub 6]∕O[sub 2] Battery,” J. Electrochem. Soc., vol. 
158, no. 3, p. A302, 2011. 

[85] H.-K. Lim, H.-D. Lim, K.-Y. Park, D.-H. Seo, H. Gwon, J. Hong, W. a Goddard, H. Kim, and 
K. Kang, “Toward a lithium-‘air’ battery: the effect of CO2 on the chemistry of a lithium-
oxygen cell.,” J. Am. Chem. Soc., vol. 135, no. 26, pp. 9733–42, Jul. 2013. 

[86] K. Takechi, T. Shiga, and T. Asaoka, “A Li-O2/CO2 battery.,” Chem. Commun. (Camb)., vol. 
47, no. 12, pp. 3463–3465, 2011. 



Bibliography 

 

85 
 

[87] V. Viswanathan, A. Speidel, S. Gowda, and A. C. Luntz, “Li−O2 Kinetic Overpotentials: Tafel 
Plots from Experiment and First- Principles Theory,” 2013. 

[88] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, D.- Lyngby, and H. Jo, “Origin of the 
Overpotential for Oxygen Reduction at a Fuel-Cell Cathode,” pp. 17886–17892, 2004. 

[89] Chase, M. W.; National Institute of, S.; Technology, NIST‐JANAF thermochemical tables. American 

Chemical Society; American Institute of Physics for the National Institute of Standards and 

Technology: [Washington, D.C.]; Woodbury. N.Y. 1998  

 [90] M. J. Siegfried and K.-S. Choi, “Electrochemical Crystallization of Cuprous Oxide with 
Systematic Shape Evolution,” Adv. Mat., vol. 16, no. 19, pp. 1743–1746, Oct. 2004. 

[91] Y.-C. Lu, D. G. Kwabi, K. P. C. Yao, J. R. Harding, J. Zhou, L. Zuin, and Y. Shao-Horn, “The 
discharge rate capability of rechargeable Li–O2 batteries,” Energy Environ. Sci., vol. 4, no. 8, 
pp. 2999–3007, 2011. 

[92] Y.-C. Lu, H. a. Gasteiger, M. C. Parent, V. Chiloyan, and Y. Shao-Horn, “The Influence of 
Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries,” 
Electrochem. Solid-State Lett., vol. 13, no. 6, p. A69, 2010. 

[93] Y.-C. Lu, Z. Xu, H. a Gasteiger, S. Chen, K. Hamad-Schifferli, and Y. Shao-Horn, “Platinum-
gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air 
batteries.,” J. Am. Chem. Soc., vol. 132, no. 35, pp. 12170–1, Sep. 2010. 

[94] A. Débart, A. J. Paterson, J. Bao, and P. G. Bruce, “α-MnO2 Nanowires: A Catalyst for the 
O2 Electrode in Rechargeable Lithium Batteries,” Angew. Chemie, vol. 120, no. 24, pp. 
4597–4600, 2008. 

[95] S. H. Oh, R. Black, E. Pomerantseva, J.-H. Lee, and L. F. Nazar, “Synthesis of a metallic 
mesoporous pyrochlore as a catalyst for lithium–O2 batteries.,” Nature chemistry, vol. 4, no. 
12. Nature Publishing Group, pp. 1004–10, Dec-2012. 

[96] T. H. Yoon and Y. J. Park, “Carbon nanotube/Co3O4 composite for air electrode of lithium-air 
battery.,” Nanoscale Res. Lett., vol. 7, no. 1, p. 28, Jan. 2012. 

[97] W. Xu, J. Hu, M. H. Engelhard, S. A. Towne, J. S. Hardy, J. Xiao, J. Feng, M. Y. Hu, J. 
Zhang, F. Ding, M. E. Gross, and J.-G. Zhang, “The stability of organic solvents and carbon 
electrode in nonaqueous Li-O2 batteries,” J. Power Sources, vol. 215, pp. 240–247, Oct. 
2012. 

[98] J. Højberg, B. D. McCloskey, J. Hjelm, T. Vegge, K. Johansen, P. Norby, and A. C. Luntz, 
“An Electrochemical Impedance Spectroscopy Investigation of the Overpotentials in Li–O2 
Batteries,” ACS Appl. Mater. Interfaces, vol. 7, pp. 4039–4047, 2015. 

[99] S. Shi, Y. Qi, H. Li, and L. G. Hector, “Defect Thermodynamics and Diffusion Mechanisms in 
Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries,” J. Phys. 
Chem. C, 2013. 



Bibliography 

 

86 
 

[100] P. F. Fracassi, M. L. Klein, and R. G. Della Valle, “Lattice dynamics of ionic molecular 
crystals in the rigid ion approximation, phases II and III of sodium superoxide ’,” Canada J. 
Phys., 1984. 

[101] Y. Mo, S. P. Ong, and G. Ceder, “First-principles study of the oxygen evolution reaction of 
lithium peroxide in the lithium-air battery,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 
84, p. 205446, 2011. 

[102] M. Bruno and M. Prencipe, “Ab initio quantum-mechanical modeling of the (001), and (110) 
surfaces of zabuyelite (Li2CO3),” Surf. Sci., vol. 601, pp. 3012–3019, Jul. 2007. 

[103] R. Younesi, G. M. Veith, P. Johansson, K. Edström, and T. Vegge, “Lithium salts for 
advanced lithium batteries: Li–metal, Li–O2 , and Li–S,” Energy Environ. Sci., vol. 8, no. 7, 
pp. 1905–1922, 2015. 

[104] S. Yang and H. Knickle, “Design and analysis of aluminum / air battery system for electric 
vehicles,” vol. 112, pp. 162–173, 2002. 

[105] S. K. Das, S. Lau, and L. a. Archer, “Sodium–oxygen batteries: a new class of metal–air 
batteries,” J. Mater. Chem. A, 2014. 

[106] J. Kim, H.-D. Lim, H. Gwon, and K. Kang, “Sodium-oxygen batteries with alkyl-carbonate 
and ether based electrolytes.,” Phys. Chem. Chem. Phys., vol. 15, no. 10, pp. 3623–9, Mar. 
2013. 

[107] P. Hartmann, C. L. Bender, J. Sann, A. K. Dürr, M. Jansen, J. Janek, and P. Adelhelm, “A 
comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery.,” Phys. 
Chem. Chem. Phys., vol. 15, no. 28, pp. 11661–72, Jul. 2013. 

[108] B. D. Mccloskey, J. M. Garcia, and A. C. Luntz, “Chemical and Electrochemical Di ff erences 
in Nonaqueous Li−O2 and Na−O2 Batteries,” pp. 2–7, 2014. 

[109] S. Kang, Y. Mo, S. P. Ong, and G. Ceder, “Nanoscale stabilization of sodium oxides: 
implications for Na-O2 batteries.,” Nano Lett., vol. 14, no. 2, pp. 1016–20, Feb. 2014. 

[110] B. Lee, D.-H. Seo, H.-D. Lim, I. Park, K.-Y. Park, J. Kim, and K. Kang, “First-Principles 
Study of the Reaction Mechanism in Sodium–Oxygen Batteries,” Chem. Mater., vol. 26, no. 
2, pp. 1048–1055, Jan. 2014. 

[111] S. Yang and D. J. Siegel, “Intrinsic Conductivity in Sodium-air Battery Discharge Phases: 
Sodium Superoxide vs. Sodium Peroxide,” Chem. Mater., p. 150508165039003, 2015. 

[112] A. U. Khan and S. D. Mahanti, “Collective electron effects of O2
− in potassium superoxide,” 

J. Chem. Phys., vol. 63, no. 6, p. 2271, 1975. 

[113] R. Christensen, J. S. Hummelshøj, H. a. Hansen, and T. Vegge, “Reducing Systematic 
Errors in Oxide Species with Density Functional Theory Calculations,” J. Phys. Chem. C, 
vol. 119, no. 31, pp. 17596–17601, 2015. 

[114] D. Sheppard, R. Terrell, and G. Henkelman, “Optimization methods for finding minimum 
energy paths,” J. Chem. Phys., vol. 128, no. 13, pp. 1–10, 2008. 



Bibliography 

 

87 
 

[115] J. Mizusaki, H. Tagawa, K. Saito, K. Uchida, and M. Tezuka, “Lithium carbonate as a solid 
electrolyte,” Solid State Ionics, vol. 53–56, pp. 791–797, 1992.  

 



88 
 

List of Papers 

 

 

Paper I 

The Influence of CO2 Poisoning on Overpotentials and Discharge Capacity in Nonaqueous 

Li-Air Batteries 

Yedilfana S. Mekonnen, Kristian B. Knudsen, Jon S. G. Mýrdal, Reza Younesi, Jonathan Højberg, 

Johan Hjelm, Poul Norby, Tejs Vegge 

 The Journal of Chemical Physics 140, 121101 (2014); doi: 10.1063/1.4869212 

 

Paper II 

Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li-Air Batteries  

Yedilfana S. Mekonnen, Juan M. Garcia-Lastra, Jens S. Hummelshøj, Chengjun Jin, Tejs Vegge 

The Journal of Physical Chemical C 2015, 119 (32), 18066-18073 DOI: 10.1021/acs.jpcc.5b04432 

 

Paper III 

Thermodynamic and Kinetic Limitation of Sodium Peroxide and Formation of Sodium 

Superoxide in Na-O2 Batteries (to be submitted) 

Yedilfana S. Mekonnen, Rune Christensen, Juan M. Garcia-Lastra, Tejs Vegge 

 

 

 

 



89 
 

 

Paper I 

The Influence of CO2 Poisoning on Overpotentials and Discharge Capacity in Nonaqueous 

Li-Air Batteries 

Yedilfana S. Mekonnen, Kristian B. Knudsen, Jon S. G. Mýrdal, Reza Younesi, Jonathan Højberg, 

Johan Hjelm, Poul Norby, Tejs Vegge 

 The Journal of Chemical Physics 140, 121101 (2014); doi: 10.1063/1.4869212 

 

 

 



The Journal of
Chemical Physics

28 March 2014 Volume 140 Number 12

jcp.aip.org



Communication: The influence of CO2 poisoning on overvoltages and discharge
capacity in non-aqueous Li-Air batteries
Yedilfana S. Mekonnen, Kristian B. Knudsen, Jon S. G. Mýrdal, Reza Younesi, Jonathan Højberg, Johan Hjelm,

Poul Norby, and Tejs Vegge 
 
Citation: The Journal of Chemical Physics 140, 121101 (2014); doi: 10.1063/1.4869212 
View online: http://dx.doi.org/10.1063/1.4869212 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/140/12?ver=pdfcov 
Published by the AIP Publishing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  81.31.92.44

On: Mon, 24 Mar 2014 18:25:47

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/586982248/x01/AIP-PT/JCP_CoverPg_101613/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Yedilfana+S.+Mekonnen&option1=author
http://scitation.aip.org/search?value1=Kristian+B.+Knudsen&option1=author
http://scitation.aip.org/search?value1=Jon+S.+G.+M�rdal&option1=author
http://scitation.aip.org/search?value1=Reza+Younesi&option1=author
http://scitation.aip.org/search?value1=Jonathan+H�jberg&option1=author
http://scitation.aip.org/search?value1=Johan+Hjelm&option1=author
http://scitation.aip.org/search?value1=Poul+Norby&option1=author
http://scitation.aip.org/search?value1=Tejs+Vegge&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4869212
http://scitation.aip.org/content/aip/journal/jcp/140/12?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 140, 121101 (2014)
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(Received 31 January 2014; accepted 11 March 2014; published online 24 March 2014)

The effects of Li2CO3 like species originating from reactions between CO2 and Li2O2 at the cathode
of non-aqueous Li-air batteries were studied by density functional theory (DFT) and galvanostatic
charge-discharge measurements. Adsorption energies of CO2 at various nucleation sites on a stepped
(11̄00) Li2O2 surface were determined and even a low concentration of CO2 effectively blocks the
step nucleation site and alters the Li2O2 shape due to Li2CO3 formation. Nudged elastic band calcu-
lations show that once CO2 is adsorbed on a step valley site, it is effectively unable to diffuse and im-
pacts the Li2O2 growth mechanism, capacity, and overvoltages. The charging processes are strongly
influenced by CO2 contamination, and exhibit increased overvoltages and increased capacity, as a
result of poisoning of nucleation sites: this effect is predicted from DFT calculations and observed
experimentally already at 1% CO2. Large capacity losses and overvoltages are seen at higher CO2

concentrations. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869212]

I. INTRODUCTION

As energy storage needs are growing rapidly, there is also
an increase in research into high energy density materials for
energy storage. Significant attention has been given to metal-
air batteries, particularly Li-air batteries, as future environ-
mentally friendly high energy density storage for vehicles,
where the capacity offered by existing Li-ion technology is
too low to solve the increasing demands on batteries.1 The
Li-O2 couple is particularly attractive and could have ∼5–
10 times greater specific energies than currently available Li-
ion batteries, though there are severe scientific and technical
challenges that need to be addressed.2, 3 Such as a clear un-
derstanding of the Li2O2 growth mechanisms, transport pro-
cesses, interfacial phenomena, air impurities, and stability of
the key components are vital parts of non-aqueous recharge-
able Li-air cell research.4

As first reported by Abraham and Jiang in 1996, the
Li-O2 battery with aprotic solvent is shown to be recharge-
able, when Li2O2 is formed during discharge at the cathode.5

Detailed understanding of the Li2O2 growth mechanism is im-
portant to solve the problem associated with the practical lim-
itations of the battery. Previous theoretical works by Hum-
melshøj et al.6 and Radin et al.7, 8 showed that steps on a
reconstructed (11̄00)surface could act as nucleation sites for
low discharge overvoltage and facets such as (0001), (11̄00),
and (112̄0) have similar surface energies. Hummelshøj et al.9

have also shown that surfaces are potential dependent and
vary during discharge and charge. According to G0W0 cal-
culations, both Li2O2 and Li2CO3 are insulating materials
with wide band gap of 4.9 and 8.8 eV, respectively.10–12

Therefore, as these materials deposit at the cathode surface

a)E-mail: teve@dtu.dk

during discharge they will limit the electronic conduction
and lead to sudden death during discharge within 5–10 nm
thick Li2O2 deposits.13, 14 However, recent DFT calculations
found that hole and electron polaronic transports at the sur-
face and in bulk Li2O2 and Li2CO3 can take place. Using
a PBE+U (Hubbard-corrected Perdew–Burke–Ernzerhof) ex-
change correlation functional, Garcia-Lastra et al.11 revealed
that the hole polarons have higher mobility than electron po-
larons and Li2CO3 exhibits lower conduction than Li2O2. Re-
cent works by Luntz et al. have shown that hole tunneling
should dominate and polaronic transport is only expected to
be significant in Li2O2 at elevated temperatures and low cur-
rent densities.15, 16

Li2CO3 like crystalline species are formed by parasitic
side reactions between the Li2O2 or LiO2 and carbon sources
from air impurities such as CO and CO2 gases,17 the graphite
itself, or the decomposition of aprotic electrolytes. Younesi
et al.18, 34 reported the degradation of various electrolytes by
Li2O2 and documented Li2CO3 as a decomposition product
from aprotic electrolytes. Likewise, McCloskey et al.3 have
shown that carbonates accumulate at the C-Li2O2 and Li2O2-
electrolyte interfaces and are responsible for a large poten-
tial increase during recharge and a huge decrease in exchange
current density. This makes growth of Li2O2 on Li2CO3 an
equally important process to investigate, but this is beyond
the scope of this communication. As reported by Siegfried
et al.19 and Myrdal and Vegge20 adsorption of sulfur contain-
ing compounds on oxide surfaces could also control the elec-
trochemical growth mechanism. Adsorbed species at surfaces
can potentially block the nucleation sites, and therefore, alter
the growth directions, overvoltages, and capacities.

In this communication, we address the influence of
CO2 contamination on the Li2O2 growth mechanism, dis-
charge/charge overvoltages, and capacity in non-aqueous

0021-9606/2014/140(12)/121101/5/$30.00 © 2014 AIP Publishing LLC140, 121101-1
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TABLE I. Adsorption energies of CO2 in the gas phase at (11̄00) Li2O2

surface.

Species Sites Adsorption energy (eV)

CO2 Step valley −0.73
Terrace valley −0.21
Step ridge −0.02

Li-air batteries using density functional theory (DFT) and
galvanostatic measurements. Among other air contaminants,
CO2 is the most critical subject due to its high solubility in
aprotic electrolytes and high reactivity with Li2O2 to form an
insulating material Li2CO3.

II. COMPUTATIONAL RESULTS AND ANALYSIS

DFT21–23 as implemented in the GPAW (grid-based
projector-augmented wave method) code24 is used to per-
form the presented calculations through the atomic simu-
lation environment (ASE).25 GPAW is built on real space
grids and non-valence electrons are described by PAW (pro-
jector augmented-wave method).26, 27 Electron exchange and
correlation is approximated by the revised Perdew–Burke–
Ernzerhof (RPBE) functional.28 The stepped (11̄00) Li2O2

surface with a super cell consisting of a 56–64 atoms slab
with a 18 Å vacuum layer between periodic images along
the z-axis, see Fig. S1 in the supplementary material.35 Since
the oxygen rich (0001) facet will also be exposed, in particu-
lar under charging conditions,9 and subsequent investigations
should be performed to analyze the detailed mechanisms of
CO2 bonding to this facet. Recent computational DFT results
for SO2 adsorption on stepped (0001) and (11̄00) surfaces do,
however, show preferential bonding to the (11̄00) facets,20

which is investigated here. The k-points are sampled with a
(4,4,1) Monkhorst-Pack mesh and 0.15 grid points is used.
Atomic energy optimization calculations are performed until
all forces are less than 0.01 eV/Å. Energy barriers are cal-
culated by the climbing image nudged elastic band (CINEB)
method.29–31

Adsorption energies of CO2 at various nucleation sites on
a stepped (11̄00) Li2O2 surface were determined, see Table I.
CO2 binds preferentially at the step valley site and weakly
binds at the step ridge site. NEB calculations show that once
CO2 is adsorbed at step valley site, it is bound by barriers up-
wards of 3 eV, see Fig. S2 in the supplementary material,35

since the CO2 molecule is required to desorb from the surface
prior to re-adsorbing at the step site. The detailed nature of a
conversion of adsorbed CO2 to Li2CO3 warrants further inves-
tigations, but we find the adsorption of a single CO2 molecule
forms a Li∼3CO3-type complex (Fig. 1(b)), which could act
as a nucleation site for further growth of Li2CO3.

The computational lithium electrode approach is used in
the free energy calculations.6, 32 Defined as, U = 0, when bulk
Li anode and Li ions in solution (Li+ + e−) are at equilib-
rium. The free energy change of the reaction is shifted by
−neU at an applied bias, where n is the number of transferred
electrons; other assumptions are listed in the supplementary
material.35 As reported by Hummelshøj et al., kinks and steps

sites of the stepped (11̄00) Li2O2 surface are favorable nucle-
ation sites for a low overvoltage Li2O2 growth mechanism.
The influence of CO2 poisoning on the Li2O2 growth mecha-
nism is studied while CO2 is already adsorbed at step valley
site (Fig. 1(b)).

The free energy diagram in Fig. 2 shows a four steps,
two formula units Li2O2 growth mechanism on the stepped
(11̄00) Li2O2 surface with and without CO2. The first step in
the presence of CO2 is adsorption of LiO2 species (Fig. 1(c)),
and which reduces the binding energy by 0.44 V compared
to the pure discharge. The next step is the addition of a sec-
ond LiO2 species (Fig. 1(d)), which is the potential limiting
charge step that raises the binding energy by 0.20 V com-
pared to pure Li2O2. This is followed by subsequent additions
of two Li (Figs. 1(e) and 1(f)) with relatively small binding
energies with respect to a pure discharge. In the pure O2 dis-
charge mechanism, unlike in the presence of CO2, addition of
the first Li is the limiting charge potential step. The 2Li2O2

growth at the step surface effectively displaces CO2 from the
step to the less stable terrace site.

Hummelshøj et al. have reported that the pure Li2O2

growth mechanism follows a 4 steps reaction mechanism,
where all reaction steps are electrochemical, similar to what
is seen in the presence of CO2. The equilibrium potential can
be obtained as U0 = −�G/2e. The effective equilibrium po-
tential on a pure surface becomes 2.73 V (experimental value,
U0,Exp = 2.85 V), while in the presence of CO2, this is effec-
tively reduced to 2.53 V for the first cycle due to the shift in
binding energy of CO2 from a step valley to terrace site. As
a result, discharge at other facets may become activate.9 At
neutral bias all reaction steps are downhill, but at an applied
potential, the free energy difference changes for each step cal-
culated as

�Gi,U = �Gi − eU. (1)

The lowest free energy step, �Gi,min, along the reaction path
becomes uphill first at an applied potential called limited dis-
charge potential, Udischarge, while the largest free energy step,
�Gi,max, that is last to become downhill for the reversed re-
action at an applied potential called limited charge potential,
Ucharge, obtained as

Udischarge = min [−�Gi/e] and Ucharge = max [−�Gi/e].
(2)

In the presence (absence) of a single CO2 molecule, this dis-
charge occurs as described in Fig. 1, resulting in Udischarge

= 2.21 V (2.66 V), and Ucharge = 2.97 V (2.81 V) and the
discharge and charge overvoltages in the presence (absence)
of CO2 are ηdischarge = 0.31 V (0.07 V), and ηcharge = 0.44 V
(0.08 V). The calculated 0.44 V overvoltage for charge corre-
sponds to low CO2 concentrations, where only a single CO2

molecule is adsorbed on the Li2O2 step forming a Li∼3CO3

type complex (see Fig. 1). Here, the charging process follows
the same reaction steps as the discharge, but in reverse (from
right to left in Fig. 2), i.e., the first two steps are desorption
of two Li and followed by desorption of 2 LiO2 species: in
total desorbing 2 Li2O2 units from the surface and returning
to the configuration in Fig. 1(b). Quantitative agreement with
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FIG. 1. Stepped Li2O2 (11̄00) surface before and after adsorption of CO2 and 4 steps Li2O2 growth pathways during discharge. (a) Pure stepped Li2O2 surface.
(b) CO2 adsorbs to step valley site forming a Li∼3CO3 type complex. (c) 1st LiO2 adsorbs. (d) 2nd LiO2 adsorbs. (e) 1st Li. (f) 2nd Li adsorbs to the surface
completing growth of 2 Li2O2 formula units. Atoms labeled as: C (gray), Li (purple), and O (red). Deposited atoms shown as: Li (yellow) and O (green).

experimental overvoltages can therefore only be expected for
low concentrations of CO2 (e.g., 1%). For higher CO2 con-
centrations, the formation of crystalline Li2CO3 would be ex-
pected, resulting in significantly larger overvoltages.3

III. EXPERIMENTAL RESULTS AND ANALYSIS

Li-air batteries were constructed using a Swagelok de-
sign and assembled inside an Ar-filled glovebox (≤3 ppm
O2 and H2O). Each battery contained a 200 μl 1 M LiTFSI
(99.95%, Sigma-Aldrich) and 1,2-dimethoxymethane, DME,
(H2O < 20 ppm, BASF) electrolyte. Cathodes consisted of
P50 AvCarb carbon paper (Fuel cell store), which were son-
icated using 2-propanol (99.5%, Sigma-Aldrich) and acetone
(≥99.8%, Sigma-Aldrich), introduced into a glovebox where
they were rinsed with DME before drying in vacuum at 80 ◦C
for 12 h. Cathodes were supported by a 316 steel mesh. A

FIG. 2. Calculated free energy diagrams for a four steps discharge mecha-
nism on a stepped (11̄00)Li2O2 surface with and without adsorbed CO2.

10 mm diameter lithium foil (99.9%, Sigma-Aldrich) was
used as anode. Two Celgard separators 2500 (Celgard) were
placed in between the two electrodes. The separators were
sonicated in EtOH (99.9%, Sigma-Aldrich), transferred to a
glovebox, and rinsed with DME before drying in vacuum at
80 ◦C for 12 h. Experiments were performed using a Bio-
Logic VMP3 Multichannel galvanostat (Bio-Logic, Claix,
France). Batteries were operated in two galvanostatic modes:
First, at 100 μA (127.3 μA/cm2) where cells were discharged
to 2 V and charged to 4.6 V vs. Li+/Li. Second, at 50 μA
(63.6 μA/cm2) using the same potential limits.

To investigate the effect of gaseous CO2, the assembled
cells were purged with three different atmospheres: 0/100
CO2/O2, 1/99 CO2/O2, and 50/50 CO2/O2. Three individ-
ual batteries were assembled and investigated for each atmo-
sphere and each curve presented in Figs. 3 and 4 is there-
fore an average of three cells with the equal atmosphere as
shown in Fig. S3 in the supplementary material.35 The lowest
discharge capacity was observed for the 50% CO2 cells and
is likely caused by the high concentration of electrochemi-
cally inactive CO2. A similar effect was observed, by Gowda
et al.17 for a pure CO2 cell, where the cell potential immedi-
ately dropped. It should however be noted that Takechi et al.33

observed, quite to the contrary of our observations, higher
discharge capacities up to 70% CO2 with respect to pure O2

cells. Interestingly, a higher discharge capacity was observed
for the 1% CO2 cells in respect to the pure O2 cells as shown
in Fig. 3 (inset). A possible explanation is the dissolution of
Li2CO3 species in DME and/or, as also suggested by Gowda
et al., or a change in deposition morphology compared to that
deposited in the pure O2 cells as suggested by Myrdal and
Vegge.20 Such morphological changes could increase the to-
tal electrodeposited layer and lead to higher capacities.

All CO2 cells have higher discharge overvoltages com-
pared to cells with pure O2 at a discharge rate of 127.3
μA/cm2, which may be caused by the blocking of the
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FIG. 3. Galvanostatic discharge profiles at 127.3 μA/cm2 discharge at three
different atmospheres: 50% CO2, 1% CO2, and 0% CO2. Inset shows the
increase in discharge capacity in 1% CO2.

active nucleation sites by solubilized CO2, forcing the
reactions to follow pathways with higher overvoltages. This
effect can even be seen at 1% CO2, as illustrated in Fig. 3
above. The charge capacity, as seen in Fig. 4 and Fig. S4 in
the supplementary material,35 is very dependent on the CO2

concentration, with high concentrations limiting charge ca-
pacity and thereby the cell reversibly. The 50% CO2 cells
reach the lower potential limit (2.0 V) early, at approximately
35 mAh/g, while 1% CO2 cells and pure O2 cells continued
until capacities in the range 1150–1600 mAh/g were reached
depending on current density. The low charge capacity at high
CO2 contaminations should be attributed to the poor Li-CO2

electrochemistry, also reported by Gowda et al. The charging
overvoltages are a function of both current density and the
level of CO2 contamination. While there is no significant dif-
ference in overvoltages between cells charge at 127.3 and 63.6
μA/cm2 for 50% CO2 cells, which again can be attributed to
the poor Li-CO2 electrochemistry. At 127.3 μA/cm2, there is
an increase in overvoltage of about 0.4 and 0.3 V for 1% CO2

cells and 0% CO2 cells, respectively. The general increase in
overvoltages with increasing current density can be explained

FIG. 4. Galvanostatic charge profiles at 127.3 (solid) and 63.6 (dotted)
μA/cm2 at three different atmospheres: 50% CO2, 1% CO2, and 0% CO2.

by the Butler-Volmer model, while the larger overvoltage for
the 1% CO2 cells than 0% CO2 cells is expectedly caused
by the formation and oxidation of the carbonate like species
(Fig. 1(b)). A second charge at 63.6 μA/cm2 shows identical
results for 1% and 0% CO2. This can be ascribed to the evo-
lution of CO2 observed during the initial charge cycle, where
CO2 is released at 4.5 V, as shown in Fig. S5 in the sup-
plementary material,35 resulting in residual CO2 in the elec-
trolyte causing blocking of the step sites in subsequent charg-
ing experiments.

IV. CONCLUSIONS

Influences of CO2 poisoning at a stepped (11̄00) Li2O2

surface in non-aqueous Li-air battery were studied using DFT
calculations and cells were characterized by electrochemical
charge-discharge measurements. CO2 preferentially binds at
step valley site at the Li2O2 surface and the Li2O2 growth
mechanism consists of four electrochemical steps, following
the same sequence for both pure and contaminated systems.
Accordingly, the first step of the growth mechanism is the ad-
sorption of two LiO2 species and followed by addition of two
Li to form 2 Li2O2 at the cathode surface. For charge in the
low CO2 limit, a similar reaction will occur, but in reverse
order.

Low concentrations of CO2 (1%) effectively block the
surface-active nucleation sites and alter the shape and growth
directions of Li2O2 on the surface; resulting in an increased
capacity of the battery at the expense of an increase in the
overvoltage in the presence of CO2. A similar behavior is seen
in pure oxygen following charging to 4.5 V, resulting from
decomposition reactions. The effective discharge potential is
reduced by 0.20 V on a stepped (11̄00) Li2O2 surface, shifting
the reaction to alternate nucleation sites. In general, the DFT
calculations and experimental results show that the recharging
process is strongly influenced by CO2 contamination, and ex-
hibits significantly increased charging overvoltage, which is
observed already with 1% CO2 contamination, while at 50%
CO2 a large capacity loss is also seen.
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FIG S1: The stepped (  ̅  ) Li2O2 surface with 3x3x2 super cell consisting of a 56-64 atoms slab with a 18 

Å vacuum layer between periodic images along the z-axis. 

 

 

 

 

 

 

 

 

 

FIG S2. Climbing image Nudged elastic band calculations for CO2 migration from less favorable terrace 

site to more favorable step valley site on stepped (  ̅  ) Li2O2 surface with energy barrier above 3 eV.  



 

3 
 

a) 

b) 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

FIG S3: The average discharge and charge curves of each of the three atmospheric conditions (0, 1 and 50 % 

CO2) are taken from the three cells measurements at 127.3 µA/cm
2
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FIG S4: A Complete Galvanostatic charge profiles at 127.3 µA/cm
2
 (solid) and 63.6 (dotted) µA/cm
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(dotted) at three different atmospheres: 50 % CO2, 1 % CO2 and 0 % CO2. 

 

 

 

 

 

 

 

 

 

 

 

FIG S5. Evolution of O2 and CO2 as a function of time during a constant current charge following a constant 

current discharge to 2 V. The current of both charge and discharge was 100 µA/cm
2
. The tested cell is 

Li|DME+1M LiTFSI|P50 carbon paper. The measurement is performed with a differential electrochemical 

mass spectrometer. 
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ABSTRACT: The formation and oxidation of the main discharge
product in nonaqueous secondary Li−O2 batteries, that is, Li2O2,
has been studied intensively, but less attention has been given to
the formation of cathode−electrolyte interfaces, which can
significantly influence the performance of the Li−O2 battery.
Here we apply density functional theory with the Hubbard U
correction (DFT+U) and nonequilibrium Green’s function
(NEGF) methods to investigate the role of Li2O2@Li2CO3
interface layers on the ionic and electronic transport properties at
the oxygen electrode. We show that, for example, lithium vacancies
accumulate at the peroxide part of the interface during charge,
reducing the coherent electron transport by two to three orders of
magnitude compared with pristine Li2O2. During discharge,
Li2O2@Li2CO3 interfaces may, however, provide an alternative in-plane channel for fast electron polaron hopping that could
improve the electronic conductivity and ultimately increase the practical capacity in nonaqueous Li−O2 batteries.

1. INTRODUCTION

Today, most electric vehicles and hybrid electric vehicles rely
on Li-ion batteries. The main drawbacks of Li-ion batteries are
their high price, slow charging, and low energy/power density
compared with that of gasoline.1 The latest specific energy of
Li-ion batteries is ∼300 mAh/g,2 which is an order of
magnitude lower than that of the Li−air battery, ∼3842
mAh/g.3 Recently, metal−air batteries have gained significant
attention as a future alternative to Li-ion batteries in the
transportation sector. In particular, the Li−O2 couple appears
to be a promising choice due to its superior energy storing
capacity.
Li−air batteries, however, suffer from several drawbacks that

must be resolved before they can enter the market. Various
complex chemical and electrochemical side-reactions occur at
the interfaces in practical nonaqueous Li−air batteries, which
limits the rechargeability and cyclability.4 Several kinds of
parasitic compounds and interfaces are likely formed between/
within the reaction products and cell components in the
nonaqueous Li−air batteries. The types of interfaces depend on
the type of electrodes and electrolytes used in the cell and the
reaction conditions. Li2CO3 is readily formed at the cathode
together with Li2O2 when carbonate-based electrolytes, for
example, ethylene carbonates (ECs), are used,5,6 but if
noncarbonate-based electrolytes such as dimethoxyethane
(DME) are used, Li2O2 is the main discharge product. In the

latter case, layers of Li2CO3 can also form due to side reactions
with the carbon cathode, DME, or CO2 impurities from the
air.7,8 The discharge capacity in Li−O2 batteries is primarily
limited by the poor electronic conduction in Li2O2

9 and
because electronic conductivity in Li2CO3 is even smaller than
that of Li2O2, it is critical to determine the effect of such layers.
Experiments performed in carbon- or ether-based electrolytes
reported that the evolution of CO2 gas when the battery
recharges at slightly above 3 and 4 V mainly comes from the
electrolyte decomposition and carbonate deposit at the cathode
surface, respectively.4,6,8,10 It has also been reported in Li-ion
battery studies that Li2CO3 is one of the most chemically

11 and
mechanically12 stable species formed at both cathode and
anode electrodes. Thus, it is inevitably the formation of Li2O2@
Li2CO3 interfaces in the cathode of nonaqueous Li−air
batteries, for instance, at Li2O2@C(graphite) and Li2O2@
electrolyte interfaces.4 To summarize, Li2O2@Li2CO3 interfaces
could be formed in different scenarios, namely, (a) liquid
electrolyte |Li2CO3|Li2O2| carbon cathode, which appears when
a carbon-based electrolyte is used or due to the presence of
atmospheric CO2; (b) liquid electrolyte |Li2O2|Li2CO3| carbon
cathode, which has been shown to be formed due to the
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reactions between the Li ions and C cathode in the presence of
oxygen; and (c) liquid electrolyte |Li2CO3|Li2O2|Li2CO3|
carbon cathode, which is the combination of the above
scenarios a and b. We should stress that in the present work
we only model the Li2O2@Li2CO3 interface, disregarding
where the interface appears. Thus, our model is valid in the
three scenarios previously mentioned.
Here we investigate the implications of Li2O2@Li2CO3

interfaces for charge transport, that is, mainly the lithium
diffusion and electronic transport properties in nonaqueous Li−
O2 batteries.13 Regarding, the electronic transport we study
both polaronic and tunneling conduction regimes. We also
show that the Li vacancies have a thermodynamic driving force
for accumulation at the Li2O2 part of the Li2O2@Li2CO3
interface compared with pristine Li2O2. Consequently, we
have studied in detail the impact of these Li vacancies on the
coherent transport properties at the interface.
The paper is structured in four major sections. The

description of the crystal structures, computational methods,
and electronic properties of the materials is covered in Section
2. In Section 3, the main results are discussed in three
subsections. The first subsection (3.1) covers the ionic
transport calculations in the materials of interest in nonaqueous
Li−air batteries, that is, Li2O2, Li2CO3, and Li2O2@Li2CO3
interface. The coherent electron transport properties with and
without lithium vacancies in Li2O2 and Li2O2@Li2CO3 interface
are discussed in subsection 3.2, while the polaronic conduction
in the Li2O2@Li2CO3 interface is detailed in subsection 3.3.
Finally, we present our main conclusions in Section 4.

2. CRYSTAL STRUCTURES AND COMPUTATIONAL
METHODS

Li2O2 crystallizes in a hexagonal crystal structure with lattice
parameters a = b = 3.187 Å, c = 7.726 Å (space group P63/mmc,
see Figure 1a), and it can effectively be viewed as individual
peroxide O2

2− ions embedded in sea of Li+ ions.14−16

Moreover, in previous DFT calculations it has been reported
that the reconstructed (0001), (11 ̅00), and (11 ̅20) surfaces are
the most stable and predominant exposed facets at operating
potentials, being ∼80% dominated by (0001) surface.17,18

The monoclinic Li2CO3 crystal structure with space group
C2/c (see Figure 1b) consists of four formula units per unit cell
with lattice parameters a = 8.359 Å, b = 4.973 Å, c = 6.197 Å,
and β = 114.83°.19 The planar CO3

−2 groups with C−O bond
lengths of 1.284, 1.305, and 1.305 Å are surrounded by the sea
of Li+ ions. The Li+ and CO3

−2 groups are oriented alternatively
on the XY plane. Each Li+ ion is coordinated with four oxygens
to form a tetrahedral structure.
The Li2O2@Li2CO3 interface explored in this study is

assembled from Li2CO3 (adopting a two formula unit cell
version of a Li2CO3 crystal structure) and Li2O2 (adopting a
four formula unit cell). The interface is built from a (0001)
facet of Li2O2 and a (011) facet of Li2CO3 with lattice
parameters a = 5.135 Å, b = 6.918 Å, and c = 16.165 Å (see
Figure 1c). In both components, oxygen-terminated surfaces
are used. In the Li2CO3 part of the interface, the planes of the
carbonate groups are aligned parallel to the peroxides along the
z axis. The facets are chosen based on their stability and
presence in the discharge products: The (0001) facet is one of
the most stable and predominant facets (80%) on Li2O2 around
the equilibrium potential during discharge and charge in
nonaqueous Li−air batteries, with an abundant portion of the
oxygen-rich (0001) surface at potentials suitable for charg-
ing.17,18,20 Moreover, the Li2CO3(011) surface is one of the
low-energy facets,21 which has an excellent lattice matching
with Li2O2 (0001). As it can be seen in Figure 1c, the two facets
match well and form a stable interface with <5% lattice
mismatch (the strain is on Li2O2). This setup of the interface
contains a relatively small number of atoms (the unit cell
contains 28 atoms), which makes the calculations tractable and
at the same time provides a reliable description of the interface.
Regarding the polarons and Li vacancy migration studies, all

of the calculations are performed within density functional
theory (DFT),22,23 as implemented in the GPAW package24,25

combined with the Atomic Simulation Environment (ASE).26

The package uses a real-space grid algorithm based on the
projector-augmented wave function method27 with the frozen
core approximation. The revised Perdew−Burke−Ernzehof
(RPBE) exchange correlation functional is used in all
calculations.28 For bulk Li2O2, we use a 3 × 3 × 1 supercell
(72 atoms) with a 3 × 3 × 3 k-point sampling. For bulk
Li2CO3, we employ a 2 × 2 × 2 supercell (192 atoms) with a 1
× 2 × 2 k-point sampling. The calculations of the ionic
transport in the Li2O2@Li2CO3 interface are carried out using
the setup previously described (Figure 1c) with 2 × 2 × 1 k-
point sampling (112 atoms in the supercell) to minimize the
electrostatic interactions between replicas. A similar supercell
size is implemented for the polaronic transport calculations
study in the Li2O2@Li2CO3 interface.
It has been previously reported that it is necessary to

introduce Hubbard corrections to the DFT Hamiltonian to
describe properly the localization of polarons using general
gradient approximation (GGA) functionals. Following previous
works in our group, we use a U = 6 eV Hubbard correction
applied on the 2p orbitals of carbon and oxygen atoms
The energy barrier, Eb, in both the lithium diffusion and

polaronic (hole and electron) hopping is calculated using the
climbing image nudged elastic band method (CI-NEB).29−31

All ground-state energies are determined when Hellmann−

Figure 1. (a) Hexagonal Li2O2 structure with lattice parameters a = b
= 3.187 Å and c = 7.726 Å (space group P63/mmc). (b) Monoclinic
Li2CO3 structure with space group 15 (C2/c) with lattice parameters a
= 8.359 Å, b = 4.973 Å, c = 6.197 Å, and β = 114.83°. (c) Interface,
Li2O2@Li2CO3, with 4.8% strains on Li2O2.
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Feynman forces are <0.03 eV/Å. All of the atoms in the
supercell are free to relax during the optimization. From the
computed Eb, it is possible to obtain the rate (r) and the
diffusion coefficient (D) using the relations r = ve−Eb/kBT and D
= a2r, respectively, where v is the hopping rate (in this work we
use v = 1013 s−1) and a is the jump length.
The coherent electronic transport calculations in the

tunneling regime are carried out using the Nonequilibrium
Green’s function (NEGF) formalism. The calculations are
performed using a localized linear combination of atomic
orbitals (LCAO) basis set (double-ζ plus polarization quality
basis for all atomic species), as implemented in the Atomistix
ToolKit (ATK)32−34 package, where a central device region (or
scattering region) is connected to two semi-infinite leads, which
are kept at fixed electronic chemical potentials, μL and μR,
respectively, to simulate an applied bias voltage across the
device region given by V = (μL − μR)/e. The scattering region
describing the Li2O2@Li2CO3 interface contains four formula
units of Li2CO3 and eight formula units of Li2O2. The electrode
regions consist of two formula units of bulk Li2CO3 (left lead)
and four formula units of Li2O2 (right lead). For the sake of
consistency, RPBE exchange correlation functional is employed.
A 4 × 6 × 100 k-point sampling is used during the NEGF self-
consistent loop. In the finite bias calculations, a positive bias is
defined as sending electrons from the left lead to the right lead
(see Figure 2).

3. RESULTS AND DISCUSSION

Here the main results and discussions are presented in three
subsections as shown later. The first subsection (3.1) covers the
ionic transport calculations in the bulk Li2O2, Li2CO3, and
Li2O2@Li2CO3 interface. The coherent electron transport
properties with and without lithium vacancies in Li2O2 and
Li2O2@Li2CO3 interface are discussed in subsection 3.2, while
the polaronic conduction in the Li2O2@Li2CO3 interface is
detailed in subsection 3.3.
3.1. Ionic Transport in Li2O2, Li2CO3, and Li2O2@Li2CO3

Interface. In this subsection, the details of the lithium vacancy
diffusion in bulk Li2O2, Li2CO3, and Li2O2@Li2CO3 interface
across various pathways are discussed. Lithium vacancies, V0

Li,
are modeled by removing a single Li atom from a supercell and
subsequently relaxing the system internally. Here we analyze
the effect of neutral vacancies, but positive (V+1

Li) and
negatively charged vacancies (V−1

Li) can also be present,
depending on the potential.35 For lithium diffusion studies, a
single Li atom is removed from the corresponding supercells
with a total vacancy concentration [V0

Li] of 2.78, 1.6, and 2% in
the peroxide, carbonate, and interface systems, respectively. We
have checked that the formation energy of a second [V0

Li]
vacancy in all of the systems is practically the same as that of
the first [V0

Li] vacancy; that is, the formation energy of the
vacancies is nearly independent of their concentration.

In Li2O2, there are four possible inequivalent hops in the
intralayer direction (in the XY plane, see Figure 4), namely,

BE(X) and AD(X) in the X direction and AF(Y) and BG(Y) in
the Y direction, being in all of the cases the energy barriers close
to 1 eV. Regarding the interlayer diffusion (in Z direction),
there are two possible inequivalent hops, namely, AB(Z) and
BC(Z). We find Eb = 0.44 eV and the Eb = 0.36 eV for AB(Z)
hop and BC(Z) hop, respectively, giving an average Eb = 0.40
eV. Thus, it is clear that V0

Li diffusion has a preferential channel
in the Z direction. The microscopic diffusion channel follows A
→ B → C series along the Z direction with an average rate of r
= 2 × 106 s−1 and a diffusion coefficient of D = 1.5 × 10−9 cm2/
s. This relatively small barrier in the Z direction opens the
possibility of V0

Li diffusion under ambient conditions (For
more details, see ref 36.)
We have conducted a similar analysis in Li2CO3, studying five

different possible hops (see Figure 5). As it can be seen in
Figure 5, the NEB calculations show low-energy barriers, that is,
∼0.2 eV, for V0

Li vacancy diffusion in all directions (X, Y, and
Z). The most plausible diffusion channel follows the D → A
hop in the Y direction, while the C → E hop is preferred in the
Z direction and the A → B → C (D → A = B → C) hop

Figure 2. Structural setup for the device region for the pristine interface Li2O2@Li2CO3 (upper) and with a Li vacancy at the peroxide part of the
interface, Li2O2 vac@Li2CO3 (lower).

Figure 3. Total density of states (DOS) relative to the Fermi energy
for (a) pristine Li2O2, Li2CO3, and Li2O2@Li2CO3 and (b) pristine
Li2O2@Li2CO3 and with a defect (neutral Li vacancy, V0

Li) at the
peroxide part of the interface Li2O2 vac@Li2CO3 is obtained using
RPBE + U (U = 6 eV).
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sequence is favored in the X direction. The average rate (r) of
Li vacancy diffusion in Li2CO3 yields r = 9 × 108 s−1 with a
corresponding diffusion coefficient of D = 1.6 × 10−6 cm2/s.
The formation energies of V0

Li vacancies relative to metallic
lithium in Li2O2 bulk and Li2CO3 bulk are 3.00 and 4.20 eV,
respectively, whereas the formation energies of V0

Li vacancies at
the Li2O2@Li2CO3 interface are 2.71 eV in the Li2O2 part of
the interface and 3.24 eV in the Li2CO3 part. This means that in
both materials vacancies will accumulate at the Li2O2@Li2CO3
interface rather than in their respective bulk. We have also
calculated that there is no barrier to move V0

Li vacancies from
the Li2CO3 part of the interface to the Li2O2, suggesting that
V0

Li vacancies will tend to pile in the latter (see Figure 6). This
also implies that the presence of the interface will not cause the
ionic conductivity to become rate-limiting under practical
operating conditions in Li−O2 batteries.
The relatively large V0

Li vacancy formation energy could lead
us to think that the concentration of these vacancies should be
negligible; however, it should be noted that the concentration
of V0

Li vacancies should be estimated using the formation
energies at the working potentials of the battery. Varley et al.35

and Radin et al.36 have shown that at these potential V0
Li

vacancy formation energies are much lower, leading to a
sufficient concentration to have significant ionic conduction.
3.2. Coherent Electron Transport in Li2O2 and Li2O2@

Li2CO3 Interface. It is instructive to examine the density of
states (DOS) of Li2O2 and Li2CO3 bulks and compare them
with the one of the interface to have a comprehensive
understanding of the coherent electron transport at the

Li2O2@Li2CO3 interface. In Figure 3 we can see that both
Li2O2 and Li2CO3 are both wide bandgap insulators with
calculated band gaps (using RPBE+U functional with U = 6
eV) of 5.03 eV for Li2O2 and 8.01 eV for Li2CO3. The Li2O2@

Figure 4. Calculated NEB paths for migration of neutral Li-vacancies, V0
Li, following various diffusion paths in bulk Li2O2 using a 3 × 3 × 1 supercell.

The minimum barrier is found to be 0.35 eV.

Figure 5. Calculated NEB paths for migration of neutral Li vacancies, V0
Li, following various diffusion paths in bulk Li2CO3. The minimum barrier is

found to be 0.20 eV.

Figure 6. NEB calculations for the Li vacancy diffusion barrier at the
Li2O2(0001)@Li2CO3(011) interface. The thermodynamic barrier is
found to be 0.53 eV going from the peroxide to the carbonate; the blue
dashed lines represent the vacancy formation energies of bulk Li2O2
(+0.3 eV) and Li2CO3 (+∼1 eV) relative to the interface values.
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Li2CO3 interface shows a 4.82 eV band gap (very close to the
one of pristine Li2O2 bulk), and it can be viewed as the
superposition of individual DOS of the Li2O2 and Li2CO3, with
no presence of midgap interface states. In this situation it is
expected that for bias voltages (negative or positive) around 2
to 2.5 eV (i.e., half of the bandgap of Li2O2) we will start to see
a relative good conductance in the Li2O2 bulk; however, for the
same bias we will expect a drastic drop in the conductance at
the Li2O2@Li2CO3 interface because there are no Li2CO3 levels
at these energies.
Regarding the presence of vacancies in Li2O2 bulk and at the

Li2O2@Li2CO3 interface (vacancies are located at the Li2O2

part of the interface, following the results in Section 3), the
DOS of both defect systems reveals that the vacancy levels pin
the Fermi level of the pristine systems. This implies that V0

Li

vacancies are not going to open new electron tunneling
channels in these systems, and they are going to have a
detrimental effect in the conductivity due to their action as
scattering centers.
To check the plausibility of these assumptions, we have

performed DFT-NEGF calculations, as described in Section 2.
We can see in Figure 7a that a significant current (∼10 mA/
cm2) begins to show up just around ±2.0 V in pristine Li2O2

bulk; however, the current at the interface only starts rising at
higher potentials (above ±3.80 V) due to the wider gap of
Li2CO3 (see Figure 8). We also observe that the current at
relevant voltages is reduced 3 orders of magnitude with respect
to the one in Li2O2 bulk. Furthermore, V

0
Li vacancies reduce

the currents at relevant voltages, of both Li2O2 bulk and
Li2O2@Li2CO3 interface, by a factor of 2. In summary, we can
conclude that the presence of Li2O2@Li2CO3 interfaces and
V0

Li vacancies in Li2O2 has a substantial negative effect on the
coherent electronic transport at the oxygen electrode of Li−O2

batteries.
3.3. Polaronic Transport in Li2O2@Li2CO3 Interface. We

have already reported that both Li2O2 and Li2CO3 bulks can
hold hole polarons with sufficiently low migration barriers (0.39
eV for the former and 0.55 eV for the latter) to become an
alternative path for electronic transport.37 We also found that
both materials can hold excess electron polarons; however, the
migration barriers for electron polarons are much higher than
those of hole polarons (1.408 eV in Li2O2 and 1.05 in Li2CO3).
Here we will focus on polaronic conduction (for both holes and
excess electrons) at the Li2O2@Li2CO3 interface.
When we consider polaron localization at the Li2O2 part of

the interface we observe that the hole (excess electron) polaron

Figure 7. Calculated I−V curves from ATK using the RPBE exchange correlation functional with k-point sampling 4 × 6 × 100 using an electronic
temperature of 300 K for (a) pristine Li2O2 and (b) in the presence of a neutral lithium vacancy.

Figure 8. Calculated I−V curves for (a) pristine Li2O2(0001)@Li2CO3(011) and (b) with a neutral lithium vacancy at the Li2O2(0001) vac@
Li2CO3(011) interface.

Table 1. Energy Difference between the Localized (Polaron) and Delocalized States (ΔEloc‑del) in Electronvolts for the Li2O2@
Li2CO3 Interface

a

method
hole polaron in the Li2O2

part
hole polaron in the Li2CO3

part
electron polaron in the Li2O2

part
electron polaron in the Li2CO3

part

RPBE delocalized delocalized delocalized delocalized
RPBE+U (U = 6 eV) −1.40 −0.57 −2.57 −2.67

aHole and excess electron are localized at the Li2O2 and Li2CO3 parts of the interface using RPBE + U (U = 6 eV), as shown in Table 1.
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is localized by shortening (stretching) the bond length of one
of the O−O peroxide bond from 1.55 to 1.33 Å (2.45 Å). The
localization can also take place at the Li2CO3 part of the
interface. In this case the hole (excess electron) is localized in
one of the carbonate ions that shortens (stretches) its C−O
bond lengths from an average of 1.31 Å to an average of 1.23 Å
(1.35 Å). Apart from the geometry distortions we observe in all
of the cases the appearance of a magnetic moment in the
oxyanions, which is another footprint of the hole (excess
electron) localization. These localized states are more stable
than the delocalized ones, and particularly the electron polaron
is found to be strongly localized, that is, by >2 eV relative to the
delocalized state (see Table 1). All of these features are very
similar to the ones we found for Li2O2 and Li2CO3 bulks.

37

It is interesting to notice that hole polarons are more stable
in the Li2O2 part of the Li2O2@Li2CO3 interface by 0.83 eV,
whereas the excess electron polarons are more stable in the
Li2CO3 part by 0.10 eV (see Table 1 and Figure 9). This is due

to the different magnitude of the distortions in the peroxide
ions of Li2O2; that is, a hole localized in a peroxide ion involves
a change in the O−O bonding distance of 0.2 Å, while the
localization of an excess electron requires stretching the
bonding by 0.9 Å.
Accordingly to the NEB calculations, the energy barriers for

the polaronic transport of excess electrons across the interface

(see direction z in Figure 9) are very similar to the ones
observed in Li2O2 and Li2CO3 bulks. The barrier for
transporting excess electron polarons from Li2O2 to Li2CO3
is 1.39 eV (and 1.48 eV from Li2CO3 to Li2O2), very close to
the 1.41 eV in Li2O2 bulk and 1.05 in Li2CO3 bulk. This implies
that the excess electron polaronic transport across Li2O2@
Li2CO3 interfaces is an inaccessible channel for electronic
transport. The polaron hopping barrier for holes is much more
asymmetric: the barrier for the hop from Li2CO3 to Li2O2 to is
0.4 eV (in Li2O2 bulk is 0.39 eV), while it is 1.3 eV in the
opposite direction. In this scenario we can conclude that
Li2O2@Li2CO3 interfaces act like a diode, which allows hole
polaronic transport only from the Li2CO3 part of the interface
to the Li2O2 one.
Regarding the polaronic transport parallel to the Li2O2@

Li2CO3 interface we observe that an alternative channel for
electron polaron hopping opens within the peroxide part of the
interface (intralayer in the X and Y directions in Figure 9) with
a low hopping barrier of <0.5 eV, providing an improved
conduction channel compared with bulk Li2O2. The corre-
sponding rates (r) in X and Y intralayer electron polaron
hopping are found to be 5 × 105 and 9 × 107 s−1 with the
diffusion coefficients of 5 × 10−10 and 1 × 10−7 cm2/s,
respectively. By contrast, the hole polaron hopping barriers
parallel to the Li2O2@Li2CO3 interface are significantly larger
compared with the low barriers reported for bulk Li2O2 by
Garcia-Lastra et al.37 (The barriers at the interface are at least
two times larger than in bulk Li2O2.)

4. CONCLUSIONS

The detailed understanding of charge carrier transport across
the Li2O2@Li2CO3 interfaces can shed new light on the limited
performance of nonaqueous Li−O2 batteries. DFT+U and
NEGF’s calculations have been applied to study the neutral
lithium vacancy and electron/hole polaron migration barriers
and I−V curves of the Li2O2 and Li2O2@Li2CO3 interface with
and without defects. The role of Li vacancies in the cycling
process is investigated and found to be prone to trapping at the
peroxide part of the interface based on the relative vacancy
formation energies, resulting in substantial reduction in the
coherent transport. According to NEB calculations, the Li
vacancy diffusion revealed low-energy barriers both across and
parallel to the interface. The hole polaron conduction seems to
be limited at the interface compared with values obtained for
Li2O2.

37 The NEGF calculations also showed that the coherent
transport is reduced due to the presence of interfaces and
defects; however, low electron polaron hopping barriers are
revealed in the plane parallel to the interface, opening an
alternative conduction pathways, which may improve the
electronic conduction under charge/discharge conditions,
where the electron polaron formation energy is low and the
concentration near the interface is consequently expected to be
high.35 Experimental realization of such well-defined interfaces
may prove highly challenging, but this effect could possibly be
investigated using nanostructured cathodes, (e.g., pillared
graphene nanostructures as recently tested for Li-ion battery
anodes38). In this case, alternating between electrochemical
discharge (leading to Li2O2 formation) and short rest periods
allowing some level of chemical degradation to form Li2CO3
inclusions should allow for a sufficient number of Li2O2@
Li2CO3 interfaces capable of supplying the required electronic
conduction to fill the space between the nanopillars.

Figure 9. Calculated polaron hopping paths using the NEB method
along the intralayer in X and Y directions and interlayer along Z
direction in a 2 × 2 × 1 Li2O2@Li2CO3 interface supercell. Energies
are obtained from RPBE + U (U = 6 eV) method for (a) excess
electron and (b) hole.
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Abstract 
 

The Na−O2 system holds great potential as a low cost, high energy density battery, but under 

normal operating conditions, the main discharge product is sodium superoxide (NaO2), whereas 

the high capacity peroxide (Na2O2) remains elusive. Here, we apply density functional theory 

calculations to determine equilibrium potentials and free energies as a function of temperature for 

the different phases of NaO2 and Na2O2, using an improved metal chloride correction scheme, 

showing the high temperature cubic NaO2 phase to be the thermodynamically preferred discharge 

product up to ~120 K, after which Na2O2 is thermodynamically preferred. We also investigate the 

reaction mechanisms and resulting overpotentials on stepped model surfaces of the NaO2 and 

Na2O2 systems, showing low overpotentials for NaO2 formation (0.18 V) and depletion (0.14 V), 

which are in excellent agreement with experiments, whereas the overpotentials for Na2O2 formation 

(0.3 V) and depletion (0.5 V) are found to be prohibitively high. These findings are in excellent 

agreement with experimental data on the thermodynamic properties of the NaxO2 species and 

provide the first kinetic explanation for why NaO2 is the main discharge product in Na-O2 batteries 

under normal operating conditions.  

 

Key Words: NaO2, Na2O2, Na-O2 batteries, DFT, Thermodynamic and Kinetic, Overpotential 
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I. Introduction 

 

In the last decade, significant efforts have been paid to the development of next generation 

batteries. In particular metal-air batteries (Li-, Na-, Mg-, Al-, Fe- and Zn−O2 batteries) in either 

aqueous or non-aqueous (aprotic) electrolytes have gained a lot of attention,1,2 e.g. for use in 

electric vehicles. The cost of commercially available Li-ion batteries is generally too high and the 

energy storage capacity too low to solve the increasing demands on batteries for transportation 3. 

Metal-air batteries have high theoretical specific energies since the technology, once it is mature, 

would apply metal as an anode and oxygen gas from air on the cathode side. The reaction 

products are peroxides and/or superoxides during discharge depending on the experimental 

conditions and cell components used in the system. The oxygen reduction (ORR) and oxygen 

evolution reaction (OER) are the two main reactions taking place reversibly during discharge and 

charging, respectively. However, metal-air battery technologies are limited by a number of 

drawbacks and challenges, which must be resolved before becoming commercially viable, i.e., low 

accessible capacity (sudden death), poor electronic conductivity and rechargeability, limited 

chemical and electrochemical stability of electrodes, electrolytes 4, salts 5 and high sensitivity to air 

impurity-like water and CO2. 
6,7,8,9,10 

Among the battery systems reported so far, the Li−O2 couple offers higher equilibrium potential 

(~2.96 V) and extremely high specific capacity (~3,842 mAh/g), which is comparable to gasoline 11 

and nearly an order of magnitude higher than that of current Li-ion batteries 12. However, in 

practice non-aqueous Li-O2 batteries suffer from poor rechargeability and high overpotentials, 

particularly at charging process. 13 Although the capacity and equilibrium potential is lower, the 

Na−O2 battery technology displays some advantages over the Li−O2 battery and other similar 

batteries. The non-aqueous secondary Na−O2 battery operates at low dis/charge overpotentials (< 

200 mV) even at higher current densities (0.2 mA/cm2) and yields high electrical energy efficiency 

(90 %), which is consistently observed for many cycles.14,15,16. The theoretical specific capacity of 

the Na−O2 battery is ~1,500 mAh/g 16 when NaO2 deposited on carbon nanotubes. This is lower 

compared to the Li−O2, but still higher than the existing Li-ion batteries; at least twice the Li-ion 

batteries, which is about half of the state of the art Li−O2 battery specific capacity. If, however, 

Na2O2 can be formed reversibly, it would be possible to increase the specific capacity to ~2,800 

mAh/g. 17 
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Among the battery systems reported so far, the Li−O2 couple offer higher equilibrium potential 

(~2.96 V) and extremely high specific capacity (~3842 mAh/g), which is comparable to gasoline 11 

and nearly an order of magnitude higher than that of current Li-ion batteries 12. However, in 

practice nonaqueous Li-O2 batteries suffer from poor rechargeability and high overpotential 

particularly at the charging process. Although the capacity and equilibrium potential is lower, the 

Na−O2 battery technology displays some advantages over the Li−O2 battery and other similar 

batteries. The nonaqueous rechargeable Na−O2 battery operates at low dis/charge overpotentials 

(< 200 mV) even at higher current densities (0.2 mA/cm2) and yield high electrical energy efficiency 

(90 %), which is consistently observed for many cycles.14,15,16. The theoretical specific capacity the 

Na−O2 battery is about 1500 mAh/g 16 when NaO2 is grown on carbon nanotubes which is lower 

compared to the Li−O2 but still higher than the existing Li-ion batteries, at least twice the Li-ion 

batteries, which is about half of the state of the art Li−O2 battery specific capacity. If, however, 

Na2O2 can be formed reversibly, it would be possible to increase the specific capacity to 2800 

mAh/g. 17 

Hartmann et al. 15,18 and McCloskey et al. 19 have reported sodium superoxide (NaO2) as the 

dominant reaction product.  Whereas, Kim et al. 17 have reported sodium peroxide (Na2O2) as 

dominant discharge product instead. Poor rechargeability (< 10 cycles) and high charging 

overpotential (> 1.3 V) is exhibited when Na2O2 is formed at the cathode at room temperature, 

which is also similar to the challenges observed in Li−O2 system. However, sufficiently low 

dis/charge overpotentials and interestingly high rechargeability are observed when NaO2 is formed 

16.   

Scanning electron microscopy (SEM) image have revealed that highly ordered cubic NaO2 is 

grown at the carbon cathode surface. 15,19,18 A recent computational study by Ceder et al. reports 

that NaO2 is more stable at the nanoscale level (up to about 5 nm), whereas bulk Na2O2 is 

thermodynamically stable at standard conditions (in agreement with experimental observations). 

For electrochemical growth during battery discharge, the size of the NaO2 particles is, however, 

found in the micrometer size (1-50 micro meters).15 The size of the particle cannot be explained 

from the effect of the differences in surface energy, nor the effect of e.g. oxygen partial pressure or 

temperature, which may lead to the formation of larger NaO2 particles (up to 20 nm based on the 

calculations by Ceder et al. It is therefore clear that NaO2 formation is not only kinetically but also 

thermodynamically favored in an increased oxygen partial pressure even at higher temperatures 

and lead to a higher scale growth (up to 20 nm). 
20   

The equation for non-aqueous Na−O2 cathode electrochemistry using, e.g. ether based 

electrolytes like diglyme is shown below 19.    
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Na+ + e− + O2 ↔ NaO2,         E0 = 2.27 V, Vs  Na/Na+ 

According to a previous report by Kang et al., 21 flat low index surfaces of NaO2 are activated by a 

chemical barrier up to 0.8 V. Moreover, according to HSE Hybrid functional calculations the 

bandgap of NaO2 is found to be as low as 1.11 eV 21. Siegel et al. 22 however, reported that GW 

calculations revealed wide bandgap of 5.30 eV and 6.65 eV for NaO2 and Na2O2, respectively. 

Nevertheless, a 1.3 eV experimental bandgap is previously reported for KO2 (similar to NaO2) 
23.  

 

It should be noted that this significant discrepancy is obtained using higher-level computational 

methods like HSE and GW. This illustrates the computational complexity of the Na-O2 system, 

which in part, is due to the computational challenges in describing the thermodynamics of reactions 

involving superoxide vs. peroxide species and to the high temperature phase of NaO2 (𝑃𝑎3̅) being 

dynamically stabilized relative to the orthorhombic low temperature phase (Pnnm) by procession of 

misaligned superoxide species (see Figure 1). Such effects and energetics are generally not 

accounted for in DFT or higher-level calculations, making it highly challenging to describe the 

relative stability of NaO2 vs. Na2O2 at finite temperatures. In the following, we describe a 

comparatively simple GGA-level computational approach using metal chloride reference energies 

and entropic contributions, which yields excellent agreement with experimental observations.   

 

Here, we will discuss overpotentials and free energies of the reaction mechanisms as a function of 

temperature. In this study, other alternative pathways on some selected stepped model surfaces 

i.e., (001) and (100) for NaO2 and (11̅00) for Na2O2. Hence, the step surfaces are likely to give 

accessible barriers and favorable nucleation sites for minimum overpotentials, as it has been 

reported in case of Li−O2 
24.   
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II. COMPUTATIONAL METHODOLOGY 
 

Here, we present fundamental investigations at the DFT-level 25,26 using the PBE (Perdew-Burke-

Ernzerhof) 27 exchange correlation functional as implemented in the GPAW package 28 using the 

Atomic Simulation Environment (ASE) 29. The GPAW package is built on a real space grid 

algorithm based on the projector augmented wave (PAW) function method with frozen core 

approximation 30,31. The study is conducted in the materials of interest in the Na−O2 battery, i.e. 

NaO2 and Na2O2.  

The NaO2 growth/depletion mechanism is studied on stepped (001) and (100) surfaces of the face-

centered Pa3̅ NaO2 structure with a lattice constant of 5.523 Å.21 All presented calculations are 

spin-polarized with an initial magnetic moment values of 0.5 located in each O atom in NaO2. The 

k-points are sampled with a 2 × 4 × 1 Monkhorst-Pack mesh. The supercell consists of 60-72 

atoms. The vacuum layer between periodic images along the Z-axis is 20 Å. Here, due to the 

computational complexity in describing stepped surfaces of Na2O2, the highly similar and well-

studied stepped (11̅00) surface model of Li2O2 (space group P63/mmm) is adopted instead for 

Na2O2 reaction mechanism studies on the stepped surface. The stepped (11̅00) Na2O2 surface 

with a super cell consisting of a 56-64 atoms slab with a 18 Å vacuum layer between periodic 

images along the z-axis is used to study the reaction mechanism. The k-points are sampled with a 

(4,4,1) Monkhorst-Pack mesh and 0.18 Å grid point spacing  is used. Atomic energy optimization 

calculations are performed until all forces are less than 0.03 eV/Å.  

For the free energy calculations, we calculate the translational contributions to the entropy and 

enthalpy (through the heat capacity) for O2 in the gas phase at STP and the difference in the 

rotational contribution between Na2O2 and NaO2/O2, where the O2
2- species are constrained 

whereas the O2
- and O2(g)  species are effectively free rotors at STD. To a first approximation, we 

only include these contributions, since the vibrational properties of O2(g) , O2
- and O2

2- are very 

similar and and expected to cancel, and the rotational properties of O2(g)  and O2
- ions are equally 

similar and expected to cancel (see Section 3). 
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Figure 1: a) Pnnm NaO2 orthorhombic structure with lattice constant a = 4.26 Å, b = 5.44 Å, c = 3.36 Å. b) 

Face-centered cube 𝐏𝐚�̅� NaO2 structure (Pyrite) with lattice constant a = 5.523 Å. c) Hexagonal Na2O2 

structure space group of 𝑷�̅�𝟐𝒎 with lattice constants of a = 6.39 Å, b = 6.39 Å and c = 4.6 Å. Color: Grey 

(Sodium), Red (Oxygen). 

 

The computational sodium electrode approach is used in the free energy calculations, analogous to 

the lithium electrode approach used for Li-Air batteries.32,33 Defined as, U = 0, when bulk Na anode 

and Na ions in solution (Na+ + e-) are at equilibrium. The free energy change of the reaction is 

shifted by −𝑛𝑒𝑈 at an applied bias, where 𝑛 is the number of electrons. From Hummelshøj et al. 

reports kinks and step surfaces are favorable nucleation sites for low overpotential reaction 

mechanisms. 24 

At neutral bias all reaction steps are downhill, but at an applied potential, the free energy difference 

changes for each step calculated as, 

                            ΔGi,U = ΔGi  - eU                                                                                    (1) 

The limiting discharge potential (Udischarge) is the lowest free energy step, ∆Gmin, along the reaction 

path which becomes uphill at an applied potential. Likewise, the largest free energy step, ΔGi,max, 

that is last to become downhill for the reversed reaction at an applied potential called limited 

charge potential (Ucharge) obtained as,    

                           Udischarge = min[-ΔGi/e]  and  Ucharge = max[-ΔGi/e]                                   (2) 

b c

b

) 

a

) 
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The calculated effective equilibrium potential can be obtained as  Uo = −∆G 𝑛𝑒⁄ . All reaction steps 

are downhill at neutral bias, however at an applied potential, the free energy difference changes for 

each step calculated from equation (1), where n is the number of electrons.  

Systematic errors in description of superoxides, peroxides and monoxides have previously been 

documented by various groups and accounted for in various ways 24,20,34. Here, we adopt the 

approach of Christensen et al.34 using NaCl as reference to obtain the metallic Na energy. In line 

with Christensen et al.34 an energy correction is applied to O2(g), which is notoriously difficult to 

describe correct with DFT. With the used computational code the optimal energy correction of 

O2(g) is -0.33 eV. The used approach is chosen as it reduces the systematic errors significantly, 

while allowing consistent calculation of surfaces with various oxide species present required for 

studying reactions in Na-O2 batteries. 

 

III. RESULTS AND DISCUSSIONS 
 

3.1. Enthalpy of Formation and Equilibrium Potential 

 

To evaluate the accuracy of the calculations, bulk enthalpies of formation are compared with 

experiment 35 as seen in Table 1. The calculated formation enthalpies are converted to free 

energies at standard conditions (Hform -> Gform) using experimental entropies 35 and the 

equilibrium potential calculated.  As an alternative to using experimental entropies, we predict the 

equilibrium potentials with the approximation that the temperature dependence can be described 

solely considering the translational and rotational degrees of freedom of O2(g). As superoxide ions 

are known to rotate easily in the NaO2 pyrite phase at room temperature, rotational degrees of 

freedom will to a good approximation cancel for NaO2. This is not the case for NaO2, where the 

orientation of peroxide ions is well defined at relevant temperatures.  The approximation has 

obvious flaws, e.g. will it not be able to capture the low temperature structural changes of NaO2 

due to differences in the rotational degrees of freedom of superoxide ions in different phases. It 

does, however, have the advantage of being very simple to calculate with standard 

thermodynamics. Comparison with experiment also proves the simple assumption to be 

reasonable (see Figure 2). It can also be seen that the experimental data for NaO2 at 0 K is 

identical to the calculational result for the Pnnm structure. 
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Figure 2: DFT-based equilibrium potentials predicted with the approximation that the temperature 

dependence is only due to the translational and rotational degrees of freedom for O2(g). This simple 

approximation is in good alignment with experimental data and reproduces relatively small free energy 

differences between Na2O2 and NaO2.  

 

As seen in Table 1, the difference in equilibrium potential for NaO2 and Na2O2 at standard 

conditions is less than 0.1 eV, for purely experimental results, calculated enthalpies with 

experimental entropies, and purely theoretical calculations with approximated entropies. This 

indicates that required overpotentials in electrochemical reactions to Na2O2 and NaO2 could be 

decisive for the product formation. 
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Table 1: Calculations for Na2O2 and the pyrite phase of NaO2 are compared with experimental values 
32

 in 

parentheses. Equilibrium potentials are calculated both using experimental entropies and with the 

approximation that all temperature dependence is due to translational and rotational degrees of freedom of 

O2(g).  

 

 ΔfH° (eV) Equil. Pot. (eV) 

(experimental ΔS) 

Equil. Pot. (eV)  

(approximation) 

𝐏𝐚�̅� 𝐍𝐚𝐎𝟐 -2.74 (-2.71) -2.30 (-2.27) -2.29 (-2.27) 

𝐏�̅�𝟐𝐦 𝐍𝐚𝟐𝐎𝟐 -5.29 (-5.32) -2.39 (-2.33) -2.39 (-2.33) 

 

 

3.2. NaO2 Growth/desorption Mechanisms on Selected Step Surfaces 

 

The four steps NaO2 growth/depletion is investigated on stepped (001) and (100) NaO2 surface. 

The method does not include specific effects of the electrolyte or possible kinetic barriers. DFT 

calculations can estimate the preferred pathways for the dis/charge mechanisms comparing the 

energies of the adsorbed species at every single step. The stepped surface is constructed 

manually from the bulk crystal in a specific direction in such a way that four sodium superoxide 

species are added (removed) at the step site for the complete pathways of growth (depletion).  

 

In general, NaO2 growth/depletion mechanisms on the step NaO2 surfaces follows a four step 

mechanism; each step comprises of either Na* or NaO2* species (electrochemical steps) or O2 

species (chemical step) and both are taken in to account to generate all possible pathways. Among 

which, the most thermodynamically favorable path with the low overpotential is selected. Thus, as 

shown in Figure 5, the first step for (001) step surface is adsorption of the first NaO2 on bottom left 

site, which is the limiting discharge potential (2.39 V) step and is followed by adsorption of the 

second NaO2 species to the bottom right site with the binding energy of 2.57 V, the third and the 

fourth NaO2 species are adsorbed by 2.63 V and 2.71 V respectively. The fourth step is the limiting 

charge potential step and the growth mechanism is completed by forming 4 sodium superoxide 

species. The charging or desorption process follows the same reaction steps applied in reverse 

order (right to left), see Figure 3.  
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Table 2: (Dis)/charge potentials and overpotentials (in V) estimated for NaO2 growth/depletion mechanism 

studies on (001) and (100) step surfaces. Metallic Na energy is obtained from NaCl reference 
34

.  

 

 

 

 

 

 

 

 

The growth/depletion mechanisms studies on the stepped NaO2 surface revealed that the 

fundamental overpotentials in both discharge and charge processes are very low, which also has 

been experimentally observed 19. Fundamentally, the overpotential in Li2O2 is also very low but 

experimentally different depending on the experimental conditions e.g. current density and 

parasitic chemistry. 

 Step (001) Step (100) 

 𝐔𝐨 2.57 2.56    

𝐔𝐝𝐢𝐬𝐜𝐡𝐚𝐫𝐠𝐞 2.39 2.32    

𝐔𝐜𝐡𝐚𝐫𝐠𝐞 2.71 2.85    

𝐝𝐢𝐬𝐜𝐡𝐚𝐫𝐠𝐞 0.18 

 

0.28    

𝐜𝐡𝐚𝐫𝐠𝐞 0.14 

 

0.28    

a b 

c d  

a b 

c d 

Step (001) Step (100) 

Figure 3: A 4 step growth/desorption mechanism on the step surface (001) and (100) of NaO2. a) and b) 

NaO2 adsorbs to the bottom site. c) and d) 2 NaO2 adsorbs to the top site to complete the 4 formula units 

NaO2 reaction mechanism. Color: Na purple and O red. Deposit atoms: Na yellow and O green. 
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Thus, the limiting discharge (charge) potential for the (001) stepped surface calculated using GGA 

is found to be 2.39 V (2.71 V) and the calculated effective equilibrium potential is 2.57 V (compared 

to the experimental value, U0,Exp = 2.27 V) leads discharge (charge) overpotential of  

0.18 V (0.14 V) for the growth (depletion) mechanism. The growth/desorption mechanisms studies 

on the stepped NaO2 surface revealed that the fundamental overpotentials in both discharge and 

charge processes are very low which also has been experimentally observed 19. Fundamentally, 

the overpotential in Li2O2 is also very low but experimentally different depending on the 

experimental conditions e.g. current density and parasitic chemistry. 24 

 

 

 

 

 

Pathways involving a purely thermochemical step for O2 ab/desorption are all found to be inactive 

due to high activation energy. The NaO2 growth/depletion mechanism studies revealed a low 

overpotential path consists of four steps addition or removal of NaO2 species electrochemically. 

The bulk equilibrium potential is in a good agreement with the experimental value of 2.27 V.   

U0 = 2.57 V (001) 

Figure 4: The calculated free energy diagram for NaO2 growth/desorption mechanisms on stepped 

(001) and (100) NaO2 surfaces using PBE. 
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The NaO2 growth/desorption mechanism studies revealed a low overpotential path consists of four 

electrochemical steps addition or removal of NaO2 species. Pathways involving a purely 

thermodynamic step for O2 ab/desorption are all found to be inactive due to high overpotentials. 

The bulk equilibrium potential is in a good agreement with the experimental value of 2.27 V 

however the surface equilibrium potential is off by 0.3 V compared to the bulk, it could be due to a 

variation in O-O bond length and magnetic moment at the surface and in bulk.   

 

3.3. Na2O2 Growth/Desorption Mechanisms on (𝟏�̅�𝟎𝟎) Step Surface 

 

The free energy diagram in Figure 5 show four steps growth mechanism consists of two formula 

units of Na2O2 growth mechanism on the step (11̅00) Na2O2 surface (from a to d). The first step 

adsorption of NaO2* species (Fig. 1a) adsorbs with the binding energy by 1.89 V which is the 

potential limiting step for discharge. The next step is the addition of Na* species (Fig 1b) adsorbed 

with the binding energy of 2.02 V. This is again followed by additions of NaO2* and Na* 

respectively with the binding energies of 2.69 V and 2.15 V (the third step is potential limiting step 

for charge) (Fig 1c and 1d). The full growth mechanism is accomplished with the two formula units 

of Na2O2 growth at the step surface with equilibrium potential of 2.19 V. The charging process 

follows the reverse order. 

Previous work by Hummelshøj et al. 32 have reported that the pure Li2O2 growth mechanism 

follows 4 steps reaction mechanism, where all reaction steps are electrochemical. The equilibrium 

potential can be obtained as U0 = -ΔG/2e. The equilibrium potential of bulk Na2O2 is found to be 

2.39 which is in good agreement with the experimental value of 2.33 V. 
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Figure 6: Calculated free energy diagrams for a four steps discharge mechanism from stepped (11̅00) Na2O2 

surface. The sodium metallic energy is obtained from NaCl reference.  

a 
b 

c d 

Figure 5: Reaction mechanism studies on stepped Na2O2 (11̅00) surface follows 4 steps Na2O2 growth 

pathways during discharge. a) First NaO2 adsorbs. d) Second NaO2. c) First Li.  f) Second Li adsorbs to the 

surface completing growth of 2 formula units of Na2O2. Atoms labeled as: Li purple and O red. Deposit atoms 

shown as: Li yellow and O green. 

U0 = 2.19 V  

dis = 0.3 V  

ch = 0.5 V  
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The discharge occurs as described in Figure 5 and 6, among various paths the minimum low 

overpotential path resulting in discharge (charge) potential of 1.80 V (2.69 V) and overpotentials of 

0.3 V (0.5 V). The preferred growth mechanism follows the following subsequent adsorption steps 

NaO2*, Na*, NaO2* and Na* respectively to form 2 formula units of Na2O2 at the step surface to 

complete the growth (* refers to surface adsorption). Here, the charging process follows the same 

reaction steps as discharging but in reverse (from d to a in Figure 5 and right to left in Figure 6). 

Pathways involving a purely thermochemical step for O2 ab/desorption are all found to be inactive 

due to high overpotential. 

IV. CONCLUSIONS 
 

A rechargeable Na-O2 battery could display a number of advantages over other similar 

technologies at STD, but too low overpotentials for NaO2 formation at the cathode compared to the 

high overpotential for Na2O2 formation/depletion is limiting the performance of the Na-O2 battery. 

Here, reaction mechanism studies on selected step surfaces of NaO2 and Na2O2 materials that are 

formed at the cathode of rechargeable non-aqueous Na-O2 battery.  

The NaO2 discharge/charge mechanism on stepped (001) and (100) NaO2 surfaces in nonaqueous 

Na-O2 batteries were studied using DFT (PBE) calculations. In this model, the effect of low index 

step surface on the growth/depletion mechanisms is investigated. The NaO2 reaction mechanism 

model consists of four electrochemical steps, adsorption of four NaO2 species step by step at the 

cathode surface. The equilibrium potential for bulk high temperature NaO2 structure calculated 

from sodium chloride reference and oxygen reference is found to be 2.29 V that is in good 

agreement with the experiment 2.27 V. Moreover, this studies also revealed low discharge 

(charge) overpotential 0.18 V (0.14 V).    

Similarly, four steps reaction mechanism on stepped (11̅00) Na2O2 surface were studied using 

DFT calculations. The Na2O2 growth mechanism consists of four electrochemical steps. 

Accordingly, the subsequent growth mechanism steps are adsorption of NaO2*, Na*, NaO2* and 

Na* to form 2 Na2O2 at the cathode surface. For charge similar reaction steps apply in reverse 

order. The equilibrium potential of bulk Na2O2 is 2.39 V estimated using the sodium chloride 

reference is in excellent agreement with the experimental value of 2.33 V. In general, the DFT 

calculations and few experimental results show that, the Na2O2 reaction mechanism has high 

overpotentials compared to low overpotential paths in NaO2 formation.   
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The NaCl-correction scheme has improved the understanding of this system and similarly why only 

including the translational O2 contributions is a simple and reasonable way to estimate the 

temperature dependence of the NaO2 to Na2O2 transition. Further, it is shown that by going beyond 

room temperature, it may be possible to circumvent the higher overpotentials for Na2O2 formation 

and thereby increase the specific capacity of the Na-O2 battery 

 

Acknowledgements 

The authors acknowledge support of this work from the ReLiable project (project nr. 11-116792) 

funded by the Danish Council for Strategic Research Programme Commission on Sustainable 

Energy and Environment.  

 

References 

(1)  Lee, J.-S.; Tai Kim, S.; Cao, R.; Choi, N.-S.; Liu, M.; Lee, K. T.; Cho, J. Metal-Air Batteries 
with High Energy Density: Li-Air versus Zn-Air. Adv. Energy Mater. 2011, 1 (1), 34–50. 

(2)  Whittingham, M. S. Metal-Air Batteries: A Reality Check. Meeting Abstract; 2012; p 1099. 

(3)  Linden, D.; Reddy, T. B. HANDBOOK OF BATTERIES. 

(4)  Younesi, R.; Norby, P.; Vegge, T. A New Look at the Stability of Dimethyl Sulfoxide and 
Acetonitrile in Li-O2 Batteries. ECS Electrochem. Lett. 2014, 3 (3), A15–A18. 

(5)  Younesi, R.; Veith, G. M.; Johansson, P.; Edström, K.; Vegge, T. Lithium Salts for Advanced 
Lithium Batteries: Li–metal, Li–O 2 , and Li–S. Energy Environ. Sci. 2015, 8 (7), 1905–1922. 

(6)  Girishkumar, G.; McCloskey, B.; Luntz, a. C.; Swanson, S.; Wilcke, W. Lithium−Air Battery: 
Promise and Challenges. J. Phys. Chem. Lett. 2010, 1 (14), 2193–2203. 

(7)  Luntz, A. C.; Mccloskey, B. D. Nonaqueous Li − Air Batteries : A Status Report. 2013. 

(8)  Mekonnen, Y. S.; Knudsen, K. B.; Mýrdal, J. S. G.; Younesi, R.; Højberg, J.; Hjelm, J.; 
Norby, P.; Vegge, T. Communication: The Influence of CO2 Poisoning on Overvoltages and 
Discharge Capacity in Non-Aqueous Li-Air Batteries. J. Chem. Phys. 2014, 140, 121101. 

(9)  Yang, S.; Knickle, H. Design and Analysis of Aluminum / Air Battery System for Electric 
Vehicles. 2002, 112, 162–173. 

(10)  Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. 
Nature 2001, 414, 359–367. 



Paper III 

 

126 
 

(11)  Balaish, M.; Kraytsberg, A.; Ein-Eli, Y. A Critical Review on Lithium-Air Battery Electrolytes. 
Phys. Chem. Chem. Phys. 2014, 16, 2801–2822. 

(12)  Armand, M.; Tarascon, J. M. Building Better Batteries. Nature 2008, 451, 652–657. 

(13)  Hojberg, J.; Knudsen, K. B.; Hjelm, J.; Vegge, T. Reactions and SEI Formation during 
Charging of Li-O2 Cells. ECS Electrochem. Lett. 2015, 4, A63–A66. 

(14)  Das, S. K.; Lau, S.; Archer, L. a. Sodium–oxygen Batteries: A New Class of Metal–air 
Batteries. J. Mater. Chem. A 2014. 

(15)  Hartmann, P.; Bender, C. L.; Vračar, M.; Dürr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. A 
Rechargeable Room-Temperature Sodium Superoxide (NaO2) Battery. Nat. Mater. 2013, 
12 (3), 228–232. 

(16)  Zhao, N.; Li, C.; Guo, X. Long-Life Na-O₂ Batteries with High Energy Efficiency Enabled by 
Electrochemically Splitting NaO₂ at a Low Overpotential. Phys. Chem. Chem. Phys. 2014, 
16 (29), 15646–15652. 

(17)  Kim, J.; Lim, H.-D.; Gwon, H.; Kang, K. Sodium-Oxygen Batteries with Alkyl-Carbonate and 
Ether Based Electrolytes. Phys. Chem. Chem. Phys. 2013, 15 (10), 3623–3629. 

(18)  Hartmann, P.; Bender, C. L.; Sann, J.; Dürr, A. K.; Jansen, M.; Janek, J.; Adelhelm, P. A 
Comprehensive Study on the Cell Chemistry of the Sodium Superoxide (NaO2) Battery. 
Phys. Chem. Chem. Phys. 2013, 15 (28), 11661–11672. 

(19)  Mccloskey, B. D.; Garcia, J. M.; Luntz, A. C. Chemical and Electrochemical Di Ff Erences in 
Nonaqueous Li − O 2 and Na − O 2 Batteries. 2014, 2–7. 

(20)  Kang, S.; Mo, Y.; Ong, S. P.; Ceder, G. Nanoscale Stabilization of Sodium Oxides: 
Implications for Na-O2 Batteries. Nano Lett. 2014, 14 (2), 1016–1020. 

(21)  Lee, B.; Seo, D.-H.; Lim, H.-D.; Park, I.; Park, K.-Y.; Kim, J.; Kang, K. First-Principles Study 
of the Reaction Mechanism in Sodium–Oxygen Batteries. Chem. Mater. 2014, 26 (2), 1048–
1055. 

(22)  Yang, S.; Siegel, D. J. Intrinsic Conductivity in Sodium-Air Battery Discharge Phases: 
Sodium Superoxide vs. Sodium Peroxide. Chem. Mater. 2015, 150508165039003. 

(23)  Khan, A. U.; Mahanti, S. D. Collective Electron Effects of O2− in Potassium Superoxide. J. 
Chem. Phys. 1975, 63 (6), 2271. 

(24)  Hummelshøj, J. S.; Luntz, a C.; Nørskov, J. K. Theoretical Evidence for Low Kinetic 
Overpotentials in Li-O2 Electrochemistry. J. Chem. Phys. 2013, 138, 034703. 

(25)  Ernzerhof, M.; Scuseria, G. E. Perspective on “Inhomogeneous Electron Gas.” Theor. 
Chem. Acc. 2000, 103, 259–262. 

(26)  W. Kohn and L. J. Sham. Self-Consistent Equation Including Exchange and Correlation 
Effects. Phys. Rev. 1965, 140, A 1133 – A 1138. 



Paper III 

 

127 
 

(27)  Perdew, J. P.; Burke, K.; Ernzerhof, M.; of Physics, D.; Quantum Theory Group Tulane 
University, N. O. L. 70118 J. Generalized Gradient Approximation Made Simple. Phys. Rev. 
Lett. 1996, 77 (18), 3865–3868. 

(28)  Enkovaara, J.; Rostgaard, C.; Mortensen, J. J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, 
J.; Glinsvad, C.; Haikola, V.; Hansen, H. a; et al. Electronic Structure Calculations with 
GPAW: A Real-Space Implementation of the Projector Augmented-Wave Method. J. Phys. 
Condens. Matter 2010, 22, 253202. 

(29)  Bahn, S. R.; Jaconsen, K. W. An Object-Oriented Scripting Interface to a Legacy Electronic 
Strcture Code. Comput. Sci. Eng. 2002, 4, 56–66. 

(30)  Blochl, P. E. Projected Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. 

(31)  Mortensen, J. J.; Hansen, L. B.; Jacobsen, K. W. A Real-Space Grid Implementation of the 
Projector Augmented Wave Method. Phys. Rev. B 2005, 71, 035109. 

(32)  Hummelshøj, J. S.; Blomqvist, J.; Datta, S.; Vegge, T.; Rossmeisl, J.; Thygesen, K. S.; 
Luntz, a C.; Jacobsen, K. W.; Nørskov, J. K. Communications: Elementary Oxygen 
Electrode Reactions in the Aprotic Li-Air Battery. J. Chem. Phys. 2010, 132 (7), 071101. 

(33)  Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Lyngby, D.-; Jo, H. Origin of the 
Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. 2004, 17886–17892. 

(34)  Christensen, R.; Hummelshøj, J. S.; Hansen, H. a.; Vegge, T. Reducing Systematic Errors 
in Oxide Species with Density Functional Theory Calculations. J. Phys. Chem. C 2015, 119 
(31), 17596–17601. 

(35)  Chase, M. W.; National Institute of, S.; Technology, NIST‐JANAF thermochemical tables. 
American Chemical Society ; American Institute of Physics for the National Institute of 
Standards and Technology: [Washington, D.C.]; Woodbury. N.Y. 1998. 

 


