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PMU Applications – From Situation Awareness to 
Blackout Prevention 

 
Guangya Yang, Mark Gordon, Arne Hejde Nielsen, Jacob Østergaard 

 

I. State of the art of PMU Application Techniques 

 
The technique of phasor measurement has been made available from the application of global positioning 

system (GPS). With the satellite-triggered time stamp, phasor measurement unit (PMU) can provide 

synchronised and high speed measurement of positive sequence voltage and current of electric power 

systems [1]. From the birth of this technology, the potential of PMUs to improve the system operation has 

been attracting attention from power engineering communities worldwide. 

 

The earliest research involving the application of synchronized measurement signals was made in 1980s [2], 

[3]. With the propagation of PMU, the study on its application has become an attractive area since the 

middle of 1990s [4], [5], [6]. So far, the open literature regarding PMU applications covers various topics, 

such as model validation, stability assessment, corridor supervision and state estimation. In [7], based on 

PMU measurement, a variable impedance method combing trajectory sensitivity method is developed to 

find out the problematic parameters of the system. The method is presented to multiple-area dynamic 

simulation and can be used to reduce the searching area for the problematic component in big power 

systems. An online overhead line parameter identification method is proposed in [8]. The parameter 

variation caused by conductor sag is addressed based on PMU measurement. The accuracy of the method is 

verified with different data windows. 

 

The application of PMU signals to system stability analysis is of most concern. In [9] PMU signals selected 

from strategic locations have been processed in the time and frequency domains and then the result is 

presented to fuzzy rule-based classifiers initialized by large accurate decision trees. Rapid stability 

assessment can be achieved from 1 to 2 seconds post-disturbance records by wide area PMU measurement 

after fault clearing. Decision trees are also used in another work [10] for online security assessment. The 

real-time security indicators are obtained from PMU signals and presented to decision trees which are 

periodically updated by offline studies. Online estimation of electromechanical mode is addressed in [11]. 

A regularized robust recursive least squares method is proposed utilising an autoregressive moving average 

exogenous (ARMAX) model which is for the typical measurement data and a robust objective function for 

handling the nontypical measurement data. 

 

Voltage stability is addressed in several documents. In [12], a voltage instability risk indicator is developed 

based on fast local phasor measurements. The method is established for real-time adaptive identification of 
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Thevenin equivalent circuit parameters. To detect the voltage instability triggered by outages of 

transmission or generation equipment, the authors in [13] have proposed a sensitivity index of the reactive 

power generation to load. The model uses PMU measurements and can observe the voltage instability of 

the whole region for online use. Another work [14] exploits PMU data to estimate simple equivalent 

models of interconnected systems for PV curve calculation and stability prediction. 

 

Transmission corridor supervision is also an important PMU application. In [15], a measurement–based 

reactance and inertia extrapolating algorithm is developed to build up an equivalent model of a radial 

power system. The method can be used to represent the inter-area dynamics on the transmission path which 

is dominated by single inter-area mode. Energy function is employed in [16] to identify the transmission 

line transient and small-signal stability status associated with active power flow. The transmission path is 

modeled as a two-machine system and based on PMU data, the transmission corridor parameters and 

equivalent inertias can be estimated. The authors in [17] have proposed a new equivalent model for which 

the parameters can be estimated by the least square method using continuous samples of PMU 

measurement. Along with the model, the load margin of the transmission corridor can be available which 

can be used as voltage stability index. Reference [18] studies the online measurement of transmission line 

impedance with PMU input to adjust the distance relay settings for real-time use. 

 

Efforts have also been made in improving traditional state estimation with PMU data. In [19], a distributed 

state estimation algorithm has been proposed for large-scale power systems. Based on Diakoptic method, 

the system can be divided into several subsystems and the input from PMUs is used to solve each 

subsystem’s estimation. By this method, computational time can be saved without losing accuracy. The 

authors in [20] present the beneficial impacts and the challenges of utilising PMU data for state estimation.  

 

With the demand increase and power system liberalisation, the utility worldwide is exposing to increasing 

operation uncertainties and blackout risks. PMUs will be of help in providing strategic information for 

control room decision support. References [21], [22], [23] discuss the architecture of wide area monitoring 

and control system and some PMU application concepts in practice. The work in [24] presents the recorded 

real system events data to the designed system obtaining favorable results. 

 

So far many countries have installed PMUs and gained valuable practices [25]. The potential of PMU in 

improving power system operation and control has been recognised. In USA, wide area monitoring system 

(WAMS) is adopted to validate system performance and model by probing tests [26]. In China, WAMS is 

being used for system model validation and stability monitoring [27]. Canada Hydro-Québec currently 

employs wide-area monitoring and control system for frequency regulation and prevention of geomagnetic 

storm-induced contingencies [28]. These practices enrich the understanding of the ability of PMU in real 

time system supervision. Table I lists the current PMU application practice in some parts of the world [29]. 
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Table 1 Practices of PMU applications in different parts of the world** 

PMU applications North America Europe China India Brazil Russia 

Post-disturbance analysis √ √ √ P T √ 

Stability monitoring √ √ √ P P √ 

Thermal overload monitoring √ √ √ P P √ 

Power system restoration √ √ √ P P P 

Model validation √ √ √ P T √ 

State estimation T P P P P P 

Real-time control T T T P P P 

Adaptive protection P P P P P P 

Wide area stabiliser T T T P P P 

** T: Under testing; P: Under planning. 

 

II. Potential PMU Applications in Network Situation Awareness 

 
PMU installations worldwide bear witness to a general belief in the value of the additional phase 

information in the voltage and current measurements and high speed synchronised measurement including 

solutions of secure and reliable operation. PMU is seen as the fundamental device enabling the real–time 

system measurement and security assessment for control room application. Many new topics have been 

derived from this change. 

 

Topics suggested to be addressed in PMU applications are listed below. 

A. Visualisation of PMU information  

The large size of data obtained from PMU measurements is bringing out a problem for online visualisation. 

The numerical representation of system states need to be visualised for being read and understood by 

operators. The information shall include the variance of voltage, angle, frequency, topological changes, 

thermal conditions, harmonics, etc. Available techniques for visualisation also include worst case alarm or 

graphic interface [30]. Beside this, possible solution includes proposing static system performance indices 

which can be instantly calculated based on strategic PMU input to generally reflect the operating state of 

the system. 

B. Dynamic security assessment (DSA) 

Online DSA depends on the quality of system model and the measured data. Reliable methods are required 

for online model validation and state estimation using PMU signals. DSA has to fulfill the functions of 

identifying and predicting stability or instability, distance to security margin and power oscillations. 

Sensitivity indicators for interconnected power systems need to be developed to properly interpolate 
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different operating regions of power systems containing different generating topologies. These indicators 

can be used and applied in coordinated control framework as well as preventive and emergency control. Of 

particular interest are indicators for proximity to voltage collapse, frequency instability and transient (angle) 

instability. Therefore DSA is classified into the following categories [31]: 

1) Voltage security 

Voltage stability can be categorised into different time spans. For the short-term issue, (real-time or quasi-

real-time, 1~2 seconds), static local bus or line voltage stability indices together with system reactive power 

margin may be a feasible way for real-time use. For mid-term or long-term voltage stability detection 

(above 10 seconds to minutes), possible solutions may include using system equivalent circuits, such as 

Thevenin or Telegen, or power flow Jacobian eigenvalue analysis, or trajectory sensitivity based analysis 

etc, to identify and predict system voltage instability during or after events.  

2) Small signal stability 

There are basically two kinds of methods for small signal stability study. The first type of methods is 

traditional eigenvalue analysis which presents the dominant frequency and damping to the operator. It is 

heavily dependant on the accuracy of system model and computationally expensive especially for large-

scale systems. Another kind of way is measurement-based method. This method uses measured data to 

estimate a defined model which represents current system. It avoids solving nonlinear differential equations. 

PMU data can be used as the input signal to adaptively tune the model and hence the oscillation and 

damping of the power system can be estimated. In addition, signal processing methods, such as Fourier 

transform, wavelet transform and Prony analysis, are also candidate solutions for oscillation detection. 

3) Transient security assessment 

Methods for transient security need to provide automated real time computation for stability prediction 

after the fault inception and clearance. So far analysis tools include extended equal area criterion or energy 

function. This assessment can also be done with off-line analysis in order to build up data warehouse for 

online stability identification based on real-time measurement. Available data mining methods include 

decision trees, artificial neural network, support vector machine, etc. 

 

Therefore security assessment of power systems needs to consider: 

 System Monitoring 

 Security Analysis 

 Security Margin Determination 

 

With the increased power system complexity over many different spatial horizons security assessment 

needs to consider both steady state as well as dynamic system properties. 

 

Steady State Assessment: Online methods are needed complimentary to the existing SCADA and EMS 

system which would verify bus voltages and line power flow limits especially considering topological 
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transitions between pre-contingency and post-contingency operating states. One such example is system 

separation event, or system islanding. 

 

Dynamic Assessment: Real time and automated tools are needed for continuously evaluating system 

stability margins as well as margins following up on contingency occurrence by examining system 

damping and quality of service.  

 

The basic functions of an online DSA need to consider the following actions: 

 

1. Evaluation of system snapshot 

2. Combination of dynamic and contingency data in performing real time DSA 

3. Report on results via online ‘Visualization’ tools to system operators 

4. Invoke alarm state responses for both automated and HMI interfaces depending on short term, 

mid-term or long term predictability 

5. Identify security issues and make recommendations to system operators for responsive 

procurement of actions (optimization) 
 

Table II lists some online DSA installations. 
 

Table II. DSA Installations 

Country Company TSA VSA SSSA FSA  IS / OS 

Australia  NEMMCO  √   √  √  I/S  

Bosnia  NOS  √  √    I/S  

Brazil  ONS  √  √  √  √  I/S  

Canada  BCTC  √  √    U/D  

Canada  Hydro-Quebec  √  √    I/S  

China  Beijing Electric Power Corp  √     I/S  

China  CEPRI  √     I/S  

China  Guangxi Electric Power Co.  √   √  √  I/S  

Finland  Fingrid   √  √   I/S  

Greece  Hellenic Power System   √    I/S  

Ireland ESB  √  √    I/S  

Italy and Greece  Omases Project  √  √    O/S  

Japan  TEPCO  √  √    I/S  

Malaysia  Tenaga Nasional Berhad  √  √    I/S  

New Zealand  Transpower  √  √   √  I/S  

Panama  ETESA  √  √    I/S  

Romania  Transelectrica  √  √    I/S  

Russia  Unified Electric Power System  √  √    I/S  

Saudi Arabia  SEC  √  √    U/D  

South Africa  ESKOM  √  √    U/D  

USA  PJM  √  √  √   I/S  

USA  Southern Company  √     I/S  

USA  Northern States Power  √     I/S  

USA  MidWest ISO   √    I/S  

USA  Entergy   √    I/S  

USA  ERCOT  √  √    I/S  

USA  FirstEnergy   √    U/D  

USA  BPA   √    I/S  

USA  PG&E   √    U/D  

USA  Southern Cal Edison   √    U/D  

TSA: Transient Stability Assessment VSA: Voltage SA 

SSSA: Small Signal SA   FSA: Frequency SA 

IS: In Service   OS: Tested but out of Service 

UD: Under Development 

 



DTU – Siemens, Future Energy Systems Workshop, 11-12 May 2009 

 6 

C. State estimation 

Another potential of PMU is to improve the performance of state estimators from which further system 

studies and anlyses can benefit. PMU data gathered by the Phasor Data Concentrator Basic Software may 

be transferred directly to SCADA system for further processing. One significant reason is the expected 

improvements in state estimation in regards to reliability and accuracy. PMUs measure the voltage and 

current phasors at bus systems and feeders with very high accuracy in regards to magnitude and phase 

angle, offering a time synchronization capability better than 1 microsecond. In addition, PMUs are capable 

to send measured data with validity stamp, which can indicate if the "quality" of the sent data is inside 

defined limits or not. Research work results have shown significant improvement of the state estimators, if 

in some case more then 10% of all busses in a power system are equipped with PMUs [32] [33]. 

 
The new approach must manage classical transducer measurements (rms voltage, active and reactive power, 

topological information without time stamp), which are transferred to the control centre computer via 

Remote Terminal Units (RTUs), Additionally Phasor quantities and topology information, which are 

transferred with precise time stamp, have to be processed as well. 

 

A rather new proposal for the improvement of the power system state estimator is made by Prof. Sakis 

Meliopoulos of the University of Georgia, Atlanta, USA. According to his research work, all data measured 

by numerical intelligent electronic devices (IEDs) in a substation can be used for topology identification 

(status of breakers and isolators) and precise estimation of voltage & current phasors [34]. With this 

principle, and with the measurement of the same quantities (voltage & current) with various primary VTs 

and CTs - for example in a high voltage substation - and the connected IEDs, it was found out that the final 

evaluation in a substation computer could bring higher accuracy than selected single measurements. Thus, 

the substation computer may be used as a first stage of a distributed state estimator. Therefore, a distributed 

state estimator may be built up with this strategy, sending compressed and exact data to the control center 

computer for further processing [35]. 

D. Penetration from distributed generation 

Large share of distributed generation in different kinds of renewable energy technologies, such as wind 

energy, combined heating plant or photovoltaics, will interact the transmission network from planning, 

operation and control levels. Interesting topics also include the effect of increasing use of electric vehicles 

on the grid. These energy sources provide variant outputs to the grid which bring uncertainties to the 

network performance, such as security, reliability, harmonics, etc. For control room applications, energy 

forecasting and real-time PMU measurement need to be combined for the entire network situation 

awareness, where possible services could include online visualisation, real-time stability margin evaluation, 

early alerting, etc. 
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III. PMUs-Based Countermeasure Selection for Blackout Prevention 
Major North American and European 2003 power system blackouts have drawn concerning attention to the 

risk and exposure of modern power systems to catastrophic failures. Several IEEE and Cigré task forces 

have been established since, to understand and determine the cause and countermeasures of catastrophic 

power network failures [36]. Generally, large blackouts are caused by a sequence of dependent failures on 

individual components. These failures are usually caused by different kinds of instability, such as voltage 

stability or transient stability. Also, protection malfunction is a non-neglectable reason. The prevention 

scheme of cascading failures have to consider system and device loadings, improved instability detection 

and predefined or automated countermeasure selections. 

 

For blackout prevention, countermeasures should be coordinated in a global manner to optimise the total 

risk. The corrective and emergency control actions of a system may include but not limited to: 

 Out-of-step protection 

 Under-frequency load shedding 

 Generator rescheduling and voltage control 

 Interchange scheduling 

 Capacitor and reactor switching 

 Transformer Tapping 

 FACTS control 

 HVDC power modulation 

 Unstable device tripping 

 System islanding 

The implementation of control actions has to be based on different instability detection and participation of 

each action to the instability mode. The quantities of actions need to be optimised to minimise the control 

risk. Large scale offline studies are required to investigate the effect of each control action or combination 

of control actions in different operating conditions. Verification needs to be done either by hardware or 

software based experiments. Data mining techniques may be necessary to distinguish the situation and help 

to find out the efficient action. With PMU data, observability of the system can be improved. Several 

derivatives of system states can be available based on fast measurements where the system condition in the 

future time interval can be predicted with a relatively good accuracy. The result can be useful for stability 

detection and countermeasure selection. 

 

A. WAMS and Control Systems 

From wide area perspective, the following applications are expected: 

1. Voltage Control 

2. WAMS for Oscillations, Voltage Stability or thermal limitations 

3. Wide area protection 



DTU – Siemens, Future Energy Systems Workshop, 11-12 May 2009 

 8 

Most functions of these systems are separate from those of the existing SCADA systems. The 

implementation of such systems in addition to SCADA systems with the focus on the supervision of 

network interconnections would offer much more accurate network information across interchange borders. 

The higher transparency for corridors and interconnections is a first step towards an optimal utilization of 

available transfer capabilities in the transmission system. By means of measurement and recording of the 

frequency or phase-angle oscillations the current stability condition of the power system can also be 

evaluated and monitored. The second step is to actively influence the system to use available transmission 

reserves. In order to use network Var, Generator Active Power rescheduling capabilities in a most 

beneficial way it is necessary to have automated control schemes for normal and emergency situations. 

These control schemes have to take system aspects into account, which means the usage of dynamic wide 

area information. All automatic interactions have to be well defined and transparent for the operator to 

avoid unpredictable interactions. Beside these new technologies the more traditional ways of discontinuous 

mechanical control should be considered as well, like generator/load tripping, shunt capacitors or reactor 

bank switching, etc. 

 

IV. Conclusion 
PMUs are considered a fundamental measurement device for real-time power system monitoring. The 

penetration of this technique has a deep impact on the methodologies or even principles of system analysis 

and control. So far there is still a general lack of available methods for integrating PMU information for 

system security assessment and blackout prevention. However, the potential and benefits of PMU’s have 

been recognised and significant application studies and implementation projects are in development stages. 
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