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Abstract

A new signaling system in Denmark aims to ensure fast and reliable train
operation, imposing very strict time limits on recovery plans. This makes
it necessary to rethink the whole maintenance scheduling process. In the
largest region of Denmark, the Jutland peninsula, there is a decentralized
structure for maintenance planning, where the crew start their duties from
different locations rather than starting from a single depot. In this paper, we
partition the Jutland problem into subregions before the scheduling phase,
according to the tasks and crew locations. To undertake this region split-
ting, we propose a perturbative clustering hyper-heuristic framework. The
framework improves an initial solution by reassigning outliers (those tasks
that are far away) to a better cluster choice at each iteration while taking
balanced crews workloads into account. The framework introduces five low-
level heuristics and employs an adaptive choice function as a robust learning
mechanism. The results of adaptive clustering hyper-heuristic are compared
with two exact and heuristic assignment algorithms from the literature and
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with the random hyper-heuristic framework on 12 datasets. In comparison
with the exact formulation, the proposed framework could obtain promis-
ing results and solved the data instances up to 5000 number of tasks. In
comparison with heuristic assignment and the random hyper-heuristic, the
framework yielded approximately 11%, 27% and 10%,13% improvement on
total distance and the maximum distance availability, respectively. Finally,
to assess the closeness of the tasks within each cluster the compactness mea-
sure was compared across the three different solutions.

Keywords: Combinatorial Optimization, hyper-heuristic, maintenance
scheduling, transportation, partitioning, European Rail Traffic
Management System

1. Introduction

The introduction of a common European Rail Traffic Management Sys-
tem (ERTMS) [1] throughout Europe aims at enhancing the connectivity
between European cities and capitals. The ERTMS is a major European in-
dustrial project to allow for faster travel within the EU by creating a unified
Europe-wide standard for railway signaling. Since ERTMS is in its early
stage of operation, only few research works treated the maintenance issues
related to the ERTMS project [2]. Denmark will be the first country in
Europe to upgrade its entire signaling system to ERTMS at once. The rail-
way track and signalling system is a complex, highly interdependent system,
where the failure of one part, e.g. a train signal, can shut down large parts of
the whole system. Given the large investments in tracks and signalling sys-
tem, Denmark is right now investing approx. 3 billion Euro in the signals[3],
correct maintenance becomes even more important. Banedanmark, a state-
owned Danish company responsible for maintenance and traffic control of
most of the Danish railway network, wishes to develop such a system.

Using completely different hardware in the new system requires different
maintenance tasks, consequently very strict time limits and constraints on
recovery operations compared to the existing system. To handle the un-
expected failures and the breakdowns, there should be at least one crew
available at the breakdown location within a certain time limit. According
to the industrial partner of the ERTMS project in Denmark, the mainte-
nance plan should help in defining the subregions, in which each crew is
working. The workload in each sub-region should be balanced, the regions
should be logical, and the geography of the regions should ensure that crew
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can come from any place in the region to any other place in the region in
short time when needed by corrective maintenance.

The focus of this paper is on partitioning of the maintenance tasks for
the Jutland peninsula, the largest region of Denmark. The reason behind
this idea is the decentralized structure of the current maintenance planning
in Denmark, where the crew start their duties from different locations rather
than starting from a single depot. This structure calls for a more accurate
assignment of the tasks to the crew to avoid a high total driving distance cost
or even finding a feasible plan. In this way, we make each crew responsible
for undertaking the tasks in their own subregion.

According to the literature, partitioning is a sub class of clustering prob-
lem. Due to various practical application of the clustering concept, the
notation of ”cluster” in not precisely defined [4]. It embraces various scien-
tific disciplines from mathematics and statistics to biology and genetics [5],
[6], [7]. But, the problem is identical for all the fields: forming categories
of entities and assigning individuals to the proper groups within it. The
most well-known clustering algorithms are hierarchical clustering, partition-
ing methods, density-based, model-based, grid-based and soft-computing
methods [8]. In addition, because the clustering problem is an NP-hard
problem [9], heuristics [10] have been broadly used in finding an approxi-
mate solution of such problem in a reasonable amount of time, too.

The partitioning problem we deal with in this paper is similar to clus-
tering techniques of [11], [8], [12], all of which use a pre-specified number of
clusters. The most well-known approaches are K-means [13] and K-medoids
[14]. These approaches create an initial set of k partitions, where parame-
ter k is the number of partitions to construct. They then use an iterative
relocation technique that attempts to improve the partitioning by moving
objects from one group to another. However, by changing their cluster rep-
resentatives they cannot be a choice for our partitioning problem.

Since the region splitting is being used before scheduling phase, the whole
crew scheduling maintenance problem can be seen as Multi Depot Vehicle
Routing Problem[15], where the vehicles start and end their routes at differ-
ent depots. The MDVRP in general can be seen as the clustering problem in
the sense that the result is a set of vehicle schedules clustered by depot. This
interpretation proposes a class of approaches that clusters customers as a
prior phase to scheduling the vehicles over each cluster[16]. Accordingly, in
cluster-first, route-second approaches, the clustering part of the approaches
is usually solved by assignment algorithms [17]. In the literature, there are
mainly four different classes of assignment algorithms to deal with MDVRP
problems. The main class of these approaches are assignment through urgen-
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cies which define a precedence relationship between customers to determine
the order in which customers are allotted to depot. The heuristics of Parallel
assignment [18], the Simplified assignment [16] and the Sweep assignment
belong to this category and are only different in the precedence order they
use to assign the customers. Another category of assignment approaches are
assigning the customers to depots through formulation of the Assignment
Problem as a sub class of Transportation Problem. This gives an assignment
of the customers to depot through an exact approach.

Presently, many scholars have paid attention to use a hyper-heuristic
framework for solving combinatorial optimization problems, [19]. The term
hyper-heuristic was coined in the early 2000s [20] to refer to the idea of
heuristics to choose heuristics. The latest classification of hyper-heuristics
is proposed in [21] according to the nature of the heuristic search space,
and the source of feedback during learning. Considering the nature of the
heuristics search space, low-levels could be either constructive or perturba-
tive. Several approaches have recently been proposed to generate efficient
construction heuristics in different domains [22], [23], [24]. Hyper-heuristics
based on perturbation have been applied to different domain such as person-
nel scheduling, timetabling and vehicle routing problems [25], [26]. However,
quite few hyper-heuristics has been studied for the clustering problem in the
literature. A hyper-heuristic clustering algorithm based on two diversifica-
tion and intensification detector presented in [27]. Another hyper-heuristic
called HHWDC for web document clustering is presented in [28]. In software
fields, a fast multi-objective hyper-heuristic Genetic Algorithm (MHypGA)
for the solution of Multi-objective Software Module Clustering Problem has
been represented in [29].

This paper is organized into six sections. In the next section, we present
the mathematical model of the partitioning problem. Section three explains
the proposed clustering hyper-heuristic framework used as region splitter
for the Danish railway systems. Section four describes the dataset and
section five presents the experimental result and discussion of the proposed
framework. Finally, this paper encloses with a conclusion in Section six.

2. Mathematical model

The mathematical model of the partitioning problem we are dealing with
in this paper is mainly an initial task assignment to the crew/clusters before
scheduling phase. The objective function (1) is multi criteria and the first
term in the objective function minimizes the total travel time from a crew
to the assigned tasks for that crew. The second term aims at minimizing the
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maximum distance of the pair tasks within each cluster. In addition, fair
distribution of the tasks among the crew is considered as a third criteria in
this phase to reduce the complexity of the problem in routing and scheduling
phase. w is the upper bound for work load balancing mismatches across
different clusters as described by constraint (4). We consider the balancing
in the task duration as fair distribution of the tasks factor in our model.

Constraint (2) imposes that each task should be assigned to only one
crew. Together with second term ψ in the objective function, constraint
(3) minimize the maximum distance among pair tasks within each cluster.
This reflects the definition of the diameter of a cluster as the maximum
distance between any two points of the cluster(C). C is defined as set of
crew and M is set of maintenance tasks. k = v = {1, .., c} are crew indices
and l = h = {1, ..,m} are indices of the maintenance tasks. Ckl is parameter
showing the distance between crew k and task l | k ∈ C and l ∈ M . Slh
- Distance between task l and task h | l, h ∈ M and dl is duration of task
l. Decision variable Xkl is 1 if task l belongs to cluster containing crew k
otherwise 0

Min
C∑

k=1

M∑
l=1

Xk,l ∗ Ck,l + ψ + w (1)

subject to:

M∑
l=1

xkl = 1 ∀ k ∈ C (2)

Xk,l ∗Xk,h ∗ Sk,l ≤ ψ ∀ k ∈ C ∀ l, h ∈M (3)

∑
l∈M

xk,l ∗ dl −
∑
l∈M

xv,l ∗ dl ≤ w ∀ k ∈ C and ∀ v ∈ C (4)

3. Proposed clustering hyper-heuristic framework

In this paper, we propose a perturbative hyper-heuristic framework for
solving clustering problems as illustrated in Figure 1. Like the most of per-
turbative hyper-heuristic frameworks, search is executed with a single candi-
date solution. Such hyper-heuristics, iteratively, attempt to improve a given
solution throughout two consecutive phases: heuristic selection and move
acceptance. A candidate solution (St) at a given time (t) is changed into a
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new solution using a selected heuristic. Then, a move acceptance method is
employed to decide whether to accept or reject the altered solution.

             Domain barrier 

Low-level heuristics:

Domino                   Pair

Interchange         Balancing               Join

Initial 

solution 

  Outlier 

detection 
S0 St 

St+1 

Objective function

Stopping condition

Randomly / Adaptive Choice function 

End 
 heuristic  

selection 

heuristic  

apply 

acceptance 

criteria 

(decision points) 

Figure 1: Proposed perturbative clustering hyper-heuristic framework

In the proposed framework, the clusters are improved by means of de-
tecting faraway tasks from cluster center within clusters and try to assign
them to a better cluster. The faraway tasks are representative of the con-
cept of outliers in a clustering problem explained in more details in Section
4.3. The algorithm starts with an initial solution generated in a separate
phase. Next, at each iteration, the algorithm tries to detect the outlier of a
chosen cluster. If no outlier was found for any of the clusters of the current
solution, the algorithm terminates and the best solution is returned as the
final solution. But if an outlier was detected, the algorithm continues by
optimizing the solution within the hyper-heuristic framework.

Five new low-level heuristics are introduced to be selected and applied in
the framework. Once an outlier was found, one of the heuristics is selected
to improve the solution by removing the outlier and assigning it to the best
possible neighboring cluster. In this framework, the heuristic selection is
being done based on an adaptive choice function which acts as a high level
strategy to guide the framework to a better search space. Choice function
provides the high level strategy with knowledge of the problem domain.
The high level strategy selects one low-level heuristic at each decision point
according to the information obtained from the feedback mechanism. The
main components of the framework are described as follows.
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3.1. Initial solutions

To generate initial solutions for our hyper-heuristic framework, we pro-
pose an heuristic which use an ordering strategy to assign the objects to the
clusters. Table 1 represents the pseudo-code of the algorithm. It takes input
parameter k which shows number of crew and partitions a set of n number
of maintenance tasks into k number of crew.

1. order the task list according to farthest-first strategy
2. Initial tabuList ← empty
3. Do
4. If the number of clusters equals to the size of Tabu list

empty the tabuList
//assigning the task with the farthest distance to its closest crew:

5. t ← taskList(n)
6. c ← set c as the closest crew of t
7. If (c is in tabuList)
8. c ← a nonTabu crew
9. assign t to crew c
10. remove t from taskList
11. add crew c to tabuList
12. While(taskList is not empty)

Table 1: ordering heuristic for generating initial solutions

The algorithm follows a dynamic way to classify a given number of main-
tenance tasks through a certain number of clusters/crew. The algorithm
starts with a sorted list of the tasks according to the distance of each task
location to all the crew start location. The task with the farthest distance
from its closest crew is placed in the first position in the sorted list meaning
that algorithm gives higher priority to the farthest task to be assigned to
its closest crew. In this way, algorithm prevents lately assigning of the far
away tasks to the farther depots with higher distance cost. The motivation
is due to balancing the workload of the crew, in terms of number of tasks
assigned, there might not be any close crew left by postponing assignment
of the far away tasks.

From the crew point of view, to prevent assigning the far away tasks
just to a single crew, a tabu list keeps tracking on the crew assigned task at
each assignment. Then, in the algorithm, if there was a task which should
be allocated to the same crew recently received a task, the algorithm stops
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Dataset TotalDistance MaxDistance AVG MaxDistance

E100 5546.58 230.97 115.34
E500 25568.81 166.12 109.32
E1000 51971.83 165.99 113.80
E5000 260743.92 241.39 175.65
M100 5401.86 228.03 110.16
M500 31378.27 230.48 161.86
M1000 55425.76 230.97 163.66
M5000 280743.47 233.46 166.61
R100 7526.52 236.84 152.11
R500 33290.35 233.84 161.86
R1000 64619.51 236.67 167.45
R5000 333591.41 236.20 169.75

Table 2: Results of the initial solution by ordering heuristic

assigning this task to the crew. Then it selects a non recently visited crew to
assign the task to it, in turn. Hence, we take care of balancing the number
of tasks assigned to each crew, gradually during construction of the solution.

It is believed that firstly assignment of the tasks with farther distance
from the closest crew, generates better clustering compared to assigning the
tasks in a greedy way (Assigning the tasks to their closest crew first), despite
of some penalty. In fact, using Farthest First ordering, we start assigning
from the most difficult tasks towards the easiest ones to the crew.Therefore,
the algorithm penalizes the solution at the early steps of the algorithm, more
than using a greedy approach, but at final steps (last tasks) the solution
will survive from receiving high penalties from assigning remaining far away
tasks to the crew.

Table 2 summarizes the clustering result obtained by the ordering heuris-
tic on 12 datasets. The datasets represent the geographical points in the
maintenance area introduced in section 4. The table shows three different
measurements. First is the total distance cost which is total spatial distance
of locations of the assigned tasks to the location of each crew as the cluster
representative. The calculated cost here is not the traveling distance cost
but the routes going to be generated in scheduling phase later on, will be
a subset of total distance cost in clustering phase. Therefore we aim at
minimizing this cost as one of the main cost of any maintenance planning.
Second, to assess the maximum distance availability of the crew in future
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breakdowns, the farthest two tasks assigned to a crew within the whole so-
lution is calculated. This measurement is used to indicate the maximum
distance where a crew can be far from the failures, if it may be responsible
for future breakdowns happening within its cluster. Last, to have a bet-
ter understanding of the solution state in possible future breakdowns, we
calculate the average of the maximum distance traveled by each crew.

In the result section, these solutions are tested as inputs to the clustering
hyper-heuristic framework with and without learning mechanism and the
effect of the framework will be discussed on the initial solutions.

3.2. Handling outliers

An outlier is an observation of the data that deviates from other obser-
vations such that it arouses suspicions that it was generated by a different
mechanism from the most part of data [30]. They are typically further away
from the mean and are thus shifted a larger distance due to the shrinking.
Outlier detection methods aims at finding of the rare data with exceptional
behavior compared with other data, because they would affect the result
more significantly.

In the region splitting problem described, in order to deal with the unex-
pected failures and breakdowns happening in the Danish railway network,
we make the crew in each cluster responsible for any breakdown happen-
ing within their own cluster. In order to keep the crews available within
the time limit requested by stakeholders, the maximum distance among the
tasks should be minimized within each cluster. This exactly reflects the def-
inition of the diameter of a cluster as the maximum distance between any
two points of the cluster(C).
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Figure 2: Module of outlier handling

One way to find and remove the outlier in this problem, is calculating
the diameter of the cluster by running time of O(n2) for n ∈ C. Doing this,
we find the two farthest tasks from each other in a cluster and remove the
task with farther distance from cluster center, as outlier from the cluster.

To have less time complexity, we suggest using the radius of the cluster
instead of diameter to detect the outlier by running time of O(n) for n ∈ C
. The radius of a cluster is the maximum distance between all the points
and the centroid. A cluster centroid is typically the mean of the points in
the cluster. Although, the radius and diameter of a cluster are not related
directly, as they are in a circle, but there is a tendency for them to be
proportional [31].

We may choose the radius of the cluster which is the farthest task from
cluster center as outlier and continue until the radius(farthest task from the
centroid) is not farther than half of the maximum allowed distance of a crew
to the breakdown within its cluster diameter of the cluster). In this way,
every task/point farther than radius are considered as outlier and it can be
assigned to the best possible cluster. Hence, the algorithm will make sure
that maximum distance from crew location to the the breakdown location
could be twice as the radius of the cluster in the worst case.

To make sure the reachability of the crew within the defined time limit,
we improve the clusters by removing the outliers and assigning them to the
best possible choice available among the clusters.

Figure 2 shows the outlier module in the proposed framework. Once the
initial solution was constructed, firstly, a cluster of the solution is selected
randomly. This module attempts to find an outlier of the selected cluster by
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finding a task having distance from its crew location more than half of the
allowed distance between the two farthest tasks (diameter of the cluster).
To avoid re-selecting the same clusters without any outlier, we have defined
a tabu list. The newly chosen clusters without any outlier are added into the
tabu list which has a length of clusters number. Therefore, if a cluster with
outlier was found, the tabu list would be empty and the algorithm enters the
second phase of improvement by the hyper-heuristic framework. Otherwise,
the algorithm adds the selected cluster to the tabu list and keeps selecting
a non tabu cluster until it finds either a cluster with outlier or no more non
tabu cluster to choose.

3.3. Low-level heuristics

Within our clustering hyper-heuristic, we introduce five heuristics shown
in Figure 3 to improve the clusters at each iteration of the algorithm. The
circles represent the clusters and the points indicate tasks/objects within
that particular cluster. Red points are outliers while the black points could
be either an outlier or a normal object/task. These low-level heuristics
are used and their performances are discussed in the proposed clustering
hyper-heuristic framework both with randomness selection and chosen by
the choice function:

Figure 3: Proposed Low-level heuristics

Domino: This heuristic works like a domino game but only in two steps
such that removing the outlier from current cluster and assign it to the next
cluster leads to the same trend on the second cluster. Domino heuristic
removes the outlier of the current seed cluster whether selected randomly
or by learning mechanism and gives it to the cluster with the closest center
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distance to the outlier. Consequently, the cluster which has received the
outliers does the same and removes its farthest object(outlier) to another
cluster with the closest center distance to the outlier. The second assignment
could return to the first cluster which leads to have a balanced exchange.

Pair: This heuristic removes two outliers sequentially from the current
seed cluster and assign them to the best possible cluster in terms of distance
of the outlier to the candidate clusters centers. The destination cluster
for the two outliers could be same or different. This heuristic changes the
balance of the clusters.

Interchange: This heuristic tries to give the outlier to the closest cluster
and get an object back from the same cluster, in turn. The object from the
second cluster could be an outlier(in the best case) or any other object with
closer distance to the center of the first cluster than its own. The order
of finding the right choice from the second cluster is sorting order of N/C
object where N is number of whole tasks and C is number of the clusters.
The benefit of using this heuristic is that it keeps an eye on improvement
and at the same time balances the clusters. However, due to running time,
we could not limit our methods/low-level to use only this type of strategies.

Join: This low-level looks for adjacent objects/tasks which belong to
the different clusters and tries to join these two tasks together by assigning
one of them to the cluster of the other task. The decision is made based on
average closeness of the two objects from the centers of the clusters.

Balancing: This heuristic tries to remove the objects from clusters
with extra objects and assign them to the clusters with less objects to have
a balanced clustering at the end.

All of the proposed low-level heuristics except balancing have been de-
fined as improvement methods. It means that when they are chosen to apply
on the solution, the solution either is improved or remained the same by the
current chosen low-level. While balancing low-level does not care about its
effect on the objective function and it aims only at balancing the current
selected cluster in the current solution.

3.4. Choice function

Different low-level heuristics have different impacts depending on their
characteristics and the time they are applied to the solution space. Hence,
a mechanism to recognize the nature of the solution space and consequently
apply the appropriate heuristic at each step can persuade the solution to a
better region in the solution space. The choice function is a smart selection
method which scores heuristics based on their performance statistics.
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At each decision point in the framework, the choice function is calculated
based on a combination of three different measures considering the improve-
ment the low-level heuristic makes to the clustering solution and the time
taken to achieve that improvement. The choice function uses the informa-
tion about the individual impact of each low-level heuristic(f1), joint impact
of pairs of heuristics(f2), and the amount of time elapsed since the low-level
heuristic was last called(f3). The first two parts of the choice function main-
tain the exploitation of the search space by collating the information of both
individual and pair performance of the heuristics. While the third part of
the formula takes care of exploration by selecting the heuristic that has not
been called recently. At each decision point, the choice function is evaluated
for all heuristics, and the heuristic with the highest score is selected for the
next iteration:

f(hj) = αf1(hj) + βf2(hk, hj) + γf3(hj) (5)

in more details:

f(hj) =
∑
n

αn−1 In(hj)

Tn(hj)
+
∑
n

βn−1
In(hk, hj)

Tn(hk, hj)
+ γτ(hj) (6)

Where In(hj) (respectively Tn(hj)) is the change in the evaluation func-
tion (respectively the amount of CPU time taken) the nth last time heuristic
hj was called. In(hk, hj(respectively Tn(hk, hj) is the change in the evalu-
ation function (respectively the amount of CPU time taken) then nth last
time heuristic hj was called immediately after heuristic hk. τ(hj) is the
number of seconds of CPU time which have elapsed since heuristic hj was
last called.

To enhance the generality and the robustness of our clustering hyper-
heuristic framework, it is desirable to apply a self-adoptive hyper-heuristic
which is able to adjust itself to the condition of its operating area(e.g. heuris-
tic space, solution space). One way to achieve self-addictiveness in the choice
function is to maintain an adaptive ranking of the heuristics based upon
which the hyper-heuristic makes an appropriate heuristic selection. In this
way, rather than applying a choice function with constant parameters (α,
β and γ) during the search, we apply the adaptive choice function based
on that of Soubeiga [32] that adaptively adjust the choice function param-
eters at each decision point. Consequently, the framework no longer needs
parameter specification from the user side.
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3.5. Pseudo-code of the proposed framework

The clustering hyper-heuristic framework that we present in this paper is
composed of three phases: generating initial solution, detecting the outlier
and improvement of the solution through the hyper-heuristic framework.
In each run of the algorithm one initial solution is generated and then the
solution is improved by collaboration of outlier detection and improvement
hyper-heuristic phases.

Table 3 presents the pseudo-code of the proposed hyper-heuristic ap-
proach for clustering problem. The search space of the high level heuristic
consists of all of the possible permutations of the low-level heuristics defined
in Section 3.2. The algorithm starts with generating a solution using order-
ing heuristic and the initialization of the low-level heuristics (Line 1 and 2).
Once the solution was constructed, the algorithm enters the main loop to
find an outlier of one of the clusters and improve the solution iteratively un-
til the stopping condition met. Outlier detection(Line 6) has been explained
in details in section 3.2.
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1. generate initial solution
2. initialize clustering heuristic list hl = h1 h2 h3 h4 h5
3. N: No of tasks in dataset, C: No of clusters, iteration = 0
4. Do
5. NoImprovment = 0
6. Detecting the outlier
7. If (any outlier was found)

{
8. Compute choice function for each heuristic
9. Select heuristic hj for which f is max
10. If (NoImprovment is ≤ N)
11. if (NoImprovment = N)
12. select H2 for which f3 is max and H2 6= hj
13. else
14. Select hi for which f -f3 is max
15. Identify biggest contributor G
16. if (G = f3 or NoImprovment = N)
17. Select hi for which f -f3 is max and Apply in steepest descent
18. if (there is any improvement and hi 6= hj) Punish G
19. if (G = f1 or f2)
20. Apply hj in steepest decent , Punish or Reward α or β
21. if (G 6= f1 or f2 or f3)
22. Apply hj in steepest decent
23. Calculate Absolute improvement
24. update NoImprovement (zero or NoImprovement + 1 )
25. If (NoImprovment > N)
26. Reward f3 , Apply H2 in steepest decent, NoImprovement = 0
27. if (there is no improvement) undo steepest decent and apply H2 once

}
28 iteration = iteration + 1
29 While (stopping condition met)

Table 3: Pseudo-code of the proposed perturbative clustering hyper-heuristic framework

After initial solution construction, if an outlier was found, the algo-
rithm starts improving the solution through the proposed clustering hyper-
heuristic framework. As explained earlier, to enhance the robustness of the
presented framework in this paper, we employ the adaptive choice function
which is able to adjust itself to the condition of search space it is operating
in. At the beginning of the search, variable NoImprovement is defined to
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keep track of number of consecutive iterations which makes no changes in
the objective function. Then the choice function value is computed for each
heuristic to select the one with highest f value (Line 8 and 9). In order to
determine whether we need to exploit or explore the solution space at each
iteration, the biggest contributor of the highest f is distinguished. This
prescribes the way the chosen heuristic is applied.

In general, when the algorithm recognizes that we are in an exploitation
phase (G = f1 or G = f2), the chosen heuristic is applied in a steepest
decent fashion (line 19 and 20). If the solution needs the exploration (G =
f3), the chosen heuristic is applied once. But as suggested in the adaptive
choice function, it is better to be applied in a steepest decent way if it led
to improvement otherwise the solution is returned to the previous solution
and the heuristic is applied once (line 16 to 18). H2 is the heuristic used
to set up an appropriate level of exploration when both of f1 and f3 are
maximum[32].

The parameters of α , β and γ will be rewarded or punished if the
resulting solution is better or worse than the previous solution, respectively.
This adaptivity in the framework allows interplay between the parameters
of the choice function regularly by modifying the weighting assigned to each
parameter according to the performance of the each low-level heuristic.

The algorithm stops under three different criterion. First, when no out-
lier was found either in the generated initial solution or in the improved
version of solution when all of the outliers are assigned to a better cluster
choice. Therefore if we make an initial solution without outlier, the solution
is returned unchanged through our framework.Second, when the algorithm
has detected an outlier but the hyper-heuristic could not improve the solu-
tion after a certain number of iteration. In this condition, we consider 0.1 of
number of the tasks as stopping criteria. Lastly, if the algorithm didn’t fall
under the previous conditions, the framework stops when a given thresh-
old(number of tasks in each dataset) is achieved by consecutive iterations.

4. Datasets

In this section we define test cases used in the experimental results sec-
tion. The geographical points are all located in the Danish peninsular of
Jutland. To standardize our test cases, we follow the file format from clas-
sical benchmark test sets for Vehicle Routing Problem with Time Windows
(VRPTW) introduced by Solomon in 1998 (http://w.cba.neu.edu/ msolomon/prob-
lems.htm). The tasks should be assigned to a number of crew members. The
coordinates representing the geographical location of the tasks generated by
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utilizing the Google Map API. This is done based on three different task
locations:

1. Tasks are all located on the rail tracks of maintenance area.

2. Tasks are located randomly on or off-track.

3. Tasks are scattered around the whole area randomly.

(a) Exact100 (b) Exact500 (c) Exact1000 (d) Mix100 (e) Mix500 (f) Mix1000 (g) Random100 (h) Random500 (i) Random1000

Figure 4: Geographical Visualization of the Dataset

Figure 4 represents a geographical visualization of the datasets. Each
set of test cases has four different number of tasks which are: 100, 500, 1000
and 5000. These should be serviced by a team of 8 crew members. These
numbers are chosen respectively according to the number of maintenance
tasks which needs to be done on a daily, weekly, monthly and annually
bases. The datasets and the documentation about how the datasets has
been created are accessible at https://github.com/ShahrzadMP/Dataset.

5. Results and discussion

This section reports the result of the experiments carried out in this
study to present the proposed clustering hyper-heuristic framework. Ini-
tially, the results of the clustering hyper-heuristic is compared with the re-
sults of formulating the problem as Assignment Problem(AP) and with the
Simplified assignment algorithm which is a heuristic approach. Then the
proposed framework with and without learning mechanism is compared to
the results of the initial solution by ordering heuristic and the ability of the
low-level heuristics in design level are discussed. Third, the performance of
the heuristics are analysed through the frequency of their calls on the three
biggest datasets and then the heuristics are ranked according to their perfor-
mance result. Forth, the trend of improvement by the Adaptive clustering
hyper-heuristic framework is shown on the E5000 dataset. Finally, we com-
pare the cohesion of the clusters result obtained by the ordering heuristic,
RCHH and ACHH are calculated and compared together to see the effect of
partitioning on scheduling phase.
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5.1. Comparison with previous approaches

The purpose of this set of experiments is to making a comparison be-
tween the proposed clustering approach with two other exact and heuris-
tic assignments algorithms from the literature. As mentioned earlier, in
cluster-first, route-second approaches, the clustering part of the approaches
for MDVRP is usually solved by mainly assignment algorithms. Assignment
Problem(AP) as special case of Transportation Problem is the only exact
approach introduced to give an assignment of the customers to depots[33].

Our heuristic candidate to compare our obtained results is the Simplified
assignment[16]. This algorithm is one of the common algorithms as sub-
class of urgency algorithms[34]. Urgency algorithms are recommendable for
big real life problems due to their medium execution time and the good
results compared to the other heuristics[17]. In the simplified algorithm,
the comparison is between the cost of assigning a customer to its closest
depot with the cost of assigning it to its second closest depot.

Since AP is only concerned with finding the minimum cost of trans-
portation from depots to the customers, it is not fair to compare AP with
our approach without taking the balancing of the depots/crew into account.
Hence, to have a fair comparison between AP and our proposed approach,
we have added the balancing as a second objective function to the AP. In
this way each depot/crew needs to be given approximately the same amount
of work. The transportation problem is therefore formulated as follows:

K is set of crew(depot), M is set of maintenance tasks/customers. Ckl

is distance between crew/depot k and task(customer) l such that k ∈ K and
l ∈M . dl is duration of task(demand) l.

xkl is decision variable which is 1 if task l belongs to the cluster contain-
ing crew k, and otherwise is 0.
w is positive variable representing an upper bound for maximal workload
difference between crew pairs in terms of task duration.

Min λ ∗
∑
k∈K

∑
l∈M

xk,l ∗ Ck,l + (1− λ) ∗ w (7)

subject to: ∑
k∈K

xkl = 1 ∀ l ∈M (8)

∑
l∈M

xkl ∗ dl −
∑
l∈M

xvl ∗ dl ≤ w ∀ k ∈ K and ∀ v ∈ K (9)
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The objective function (7) becomes multi criteria and aims to find the
optimal trade-off between assigning tasks to the crew based on their spa-
tial proximity while taking the balancing crew workload into account. The
second term in the objective function, w, is the upper bound for work load
balancing mismatches across different clusters as described by constraint
(9). The weights assigned to the two terms of the objective function are
given as λ and 1− λ. For our numerical results presented in this paper we
have chosen (0.3) and (0.7) on the first and second term respectively. By
applying the weighted sum approach, this gives a reasonable trade-off be-
tween work balance and the total distance covered. Constraint (8) imposes
that each task should be assigned to only one crew. To compare with the
Assignment Problem, the model was coded in GAMS and run on 2.10GHz,
8.00GB RAM, 64-bit operating system, Intel (R) Core (TM) i7-4600U CPU.

Table 4 shows the results obtained by AP (by taking the crew/depot
balancing into account), Simplified assignment and ACHH on three different
measurement; The total distance of task locations to the crew location in
each cluster(TD), the maximum distance of a crew from the unexpected
failures(MDD) and the average of the maximum distance(AVG MDD). Each
set of results obtained by AP and S A is followed by a column showing the
percentage of the ACHH improvement on corresponded measurement in
comparison with AP and S A results, respectively.

Comparing ACHH result with AP as an exact approach, we can see
that the quality of solutions obtained by ACHH is approximately within
10% improvement gap with AP results in TD and AVG MDD. Looking at
MDD, ACHH could obtain better maximum distance on the railway track
dataset(E100, E500, E1000), while AP gained better results at MDD on the
two other sets of instances (M100,M500,M1000 and R100, R500, R1000).
It is worth to mention that MDD only highlights the worst cluster among the
others and AVG MDD is a better representative than MDD by calculating
the average of maximum distance for all of the clusters. Regarding the size
of data solvable by AP and ACHH, GAMS could not solve AP for the biggest
data instances with 5000 number of tasks.
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Table 4: Comparison of the result found by Assignment Problem(AP), Simplified
Assignment(S A) algorithm and Adaptive Clustering Hyper-Heuristic(ACHH) on three
different measurements of total distance(TD), maximum distance availability(MDD), and
the average of the maximum distance(AVG MDD)

Dataset TD

AP % S A % ACHH

E100 4596.11 -3.94 5233.94 8.73 4777.15
E500 22554.32 -4.06 25460.18 7.81 23470.77
E1000 46168.23 -0.28 51901.78 10.80 46297.18
E5000 X X 260694.49 8.24 239216.47
M100 4315.46 -6.58 5154.75 10.78 4599.21
M500 26781.42 -1.10 31302.68 13.50 27075.32
M1000 49203.80 3.65 55317.69 14.30 47407.02
M5000 X X 280666.80 12.85 244597.76
R100 6564.27 1.42 7413.68 12.71 6471.16
R500 30369.95 5.17 33214.83 13.30 28798.41
R1000 58270.62 8.27 64545.90 17.19 53450.73
R5000 X X 333471.23 10.61 298091.19

MDD

AP % S A % ACHH

E100 156.53 12.04 255.07 46.02 137.69
E500 156.04 0.90 189.40 18.36 154.63
E1000 166.43 26.23 190.00 35.38 122.77
E5000 X X 265.03 29.82 186.01
M100 149.08 -35.83 248.63 18.55 202.50
M500 202.77 -6.19 254.40 15.36 215.33
M1000 167.18 -20.65 258.02 21.82 201.71
M5000 X X 257.41 14.15 220.98
R100 192.37 -20.47 245.83 5.73 231.74
R500 201.61 -28.27 259.71 0.42 258.61
R1000 209.73 -22.87 264.88 2.71 257.69
R5000 X X 265.10 -6.36 281.97

AVG MDD

AP % S A % ACHH

E100 94.72 -2.85 143.78 32.24 97.42
E500 94.66 -9.87 138.19 24.74 104.00
E1000 102.37 9.66 142.47 35.09 92.48
E5000 X X 208.30 40.86 123.18
M100 95.77 -3.98 143.31 30.51 99.58
M500 126.57 -9.28 193.42 28.49 138.31
M1000 118.47 0.81 197.56 40.52 117.51
M5000 X X 197.96 22.22 153.97
R100 136.81 -5.96 166.05 12.70 144.96
R500 139.16 -11.06 184.87 16.40 154.55
R1000 139.93 -8.18 197.26 23.26 151.37
R5000 X X 195.81 21.74 153.24
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ACHH in comparison with Simplified Assignment, gave an improvement
of 11%, 17% and 27% in terms of TD, MDD and Avg MDD, respectively. We
believe that the notable improvement on MDD and Avg MDD compared to
TD is attributed to the nature of proposed hyper-heuristic framework which
mainly improves MDD of the clusters through reshuffling the outliers.

5.2. Clustering hyper-heuristic framework

The second set of experiments aimed at making a direct comparison
between the random clustering hyper-heuristic (RCHH), and the adaptive
choice-function based clustering hyper-heuristic (ACHH). Results (best over
5 runs) are given in Table 5 for 12 instances. Both RCHH and ACHH starts
with a solution produced earlier by an ordering heuristic.

The table shows the total distance of task locations to the crew location
in each cluster, the maximum distance of a crew from the unexpected failures
and the average of the maximum distance traveled by each crew. Each
of these measurements is followed by a column showing the percentage of
the improvement on corresponded measurement compared to initial solution
results shown earlier in Table 2. The last row of the table represents the
average percentage of the improvement achieved by RCHH and ACHH on
overall dataset.

From Table 5 we can see that both RCHH and ACHH improved the re-
sults of the heuristic algorithm. We believe this happens by rationale behind
the proposed low-level heuristics; Domino, Pair and Join which minimize the
maximum distance of a cluster, accordingly, minimize the overall distance
of a clustering result through reassigning the outliers to a better cluster.
These heuristics helps intensification of the search space by focusing only on
minimizing the total distance in order to give a better solution with less cost.
Interchange which tends to both minimize the total distance and keep the
balancing of the clusters, tries to intensify the search space like the others,
despite that it does not affect the balancing state of the solution. Finally,
Balancing heuristic just takes the balancing of the clusters into account.
The effect of this heuristic is basically the diversification of the search space
in order to avoid getting trapped in a local optimum. However, there will be
also possibility of exploitation the search space if it leads to a solution with
less total cost compared to previous solution. The obtained results proves
that although the effect of these methods are very dependent on when and
how long they are applied to a solution in the framework, they still have
been designed in an appropriate way to be able to explore different areas of
the search space, effectively.
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TotalDistance MaxDistance Avg MaxDistance

RCHH % ACHH % RCHH % ACHH % RCHH % ACHH %

E100 5337.73 3.77 4777.15 13.87 166.12 28.08 137.69 40.39 109.15 5.37 97.42 15.54

E500 25143.12 1.66 23470.77 8.21 176.43 -6.21 154.63 6.92 113.07 -3.43 104.00 4.87

E1000 51156.28 1.57 46297.18 10.92 174.74 -5.27 122.77 26.04 121.50 -6.77 92.48 18.73

E5000 258495.71 0.86 239216.47 8.26 192.68 20.18 186.01 22.94 137.41 21.77 123.18 29.87

M100 4980.06 7.81 4599.21 14.86 202.50 11.20 202.50 11.20 110.85 -0.63 99.58 9.60

M500 30131.16 3.97 27075.32 13.71 220.95 4.13 215.33 6.57 157.03 2.98 138.31 14.55

M1000 52698.16 4.92 47407.02 14.47 208.75 9.62 201.71 12.67 145.62 11.02 117.51 28.20

M5000 270948.83 3.49 244597.76 12.87 217.10 7.01 220.98 5.35 157.72 5.34 153.97 7.59

R100 7184.99 4.54 6471.16 14.02 272.11 -14.89 231.74 2.15 159.43 -4.81 144.96 4.70

R500 32587.91 2.11 28798.41 13.49 277.53 -18.68 258.61 -10.59 181.21 -11.95 154.55 4.52

R1000 61558.06 4.74 53450.73 17.28 225.64 4.66 257.69 -8.88 159.94 4.48 151.37 9.60

R5000 324239.05 2.80 298091.19 10.64 236.20 0.00 281.97 -19.38 162.84 4.07 153.24 9.73

Avg 3.52 12.72 3.32 7.95 2.29 13.12

Table 5: Result of Adaptive and Random Clustering hyper-heuristic on initial solution

As Table 5 shows, ACHH return significantly better results than RCHH.
Interestingly, the results correspond to the best value of total distance and
average of maximum distance found by adaptive hyper-heuristic for all of the
dataset comparing to random one. ACHH yielded roughly 13% improvement
in both total distance and average of maximum distance and 8% in maximum
distance at the final clustering result. While RCHH improved the heuristic
results approximately only 3% on all of the three measurements.

Since we use the same low-level heuristics in both frameworks, the signif-
icant improvement of ACHH than RCHH is owing to the self-adaptiveness
ability throughout the hyper-heuristic search. This characteristic takes care
of the proportion of exploitation/exploration appropriately by adjusting pa-
rameters α, β and γ in every iteration. While, in RCHH, choosing the
low-level heuristics randomly may lead the solution to the area of the search
space at are difficult to quickly move to another area. For instance, applying
those proposed low-level heuristics which only pay attention to minimizing
the distance without taking care of balancing of clusters such as Domino,
Pair or even Join, might lead the space to an area with very high quality
in terms of overall total distance and the maximum distance but very low
quality in balancing. In this situation, moving the solution space back to a
space resulting in a balanced solution might cause paying too much penalty
in the objective function.

We note that the gap in terms of TD, MDD and Avg MDD between
ACHH and RCHH is greatest with R1000(+12.5%), E1000(+31%), E1000(+25%)
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and smallest with E500(+6.5%), M100 (0%), M5000(+2.5%), respectively.
Contrary to expectations, it seems that though ACHH outperforms RCHH
in dataset with size of 1000, but no clear relation appears as the size and
type of the instances to solve varies. This might be associated with the
nature of dataset which are only different from each other in terms of size
and location of the tasks in the area(on the rail tracks, out of the tracks
and mix of them). Due to nature of distance based objective function, con-
sequently, the nature of presented low-level heuristics, the result should not
be dependent on the dataset, since the datasets are different only in terms
of geographically located in different places. Because the distance factor is
consistent despite of the location of objects.

Regarding the size, the result shows no general rule associated with
growth of the size of dataset. For instance, the results obtained on E100,
M100 and R100 shows values of 13.87%, 14.86% and 14.2% on Total distance
which is over the average of the total distance(12.72%) on whole dataset.
Similarly, on maximum distance E100 achieved 40% and M100 obtained
11.20%. We believe that this may be caused by ability of ACHH in learning
at early stages which makes the framework more robust and stable even in
small instances. In other words, adjustment of the parameters α, β and γ in
adaptive manner may speed up the convergence of a hyper-heuristic without
knowledge at first iterations to a learning framework as iteration increases.

To analyze this, in the next set of experiments, we deal with the low-level
behaviour of the ACHH and the frequency of the heuristic calls when the
iteration increases in the framework.

5.3. Low-level heuristics performance

In Table 6 we give the ratio of call, by ACHH, of each clustering low-
level heuristic during the first 100 heuristic calls and during the last 100
heuristic calls to the best solution of biggest dataset(e.g E5000, M5000 and
R5000). From the ratio of calls during the 1st 100 calls it is clear that in
the early stage of the search calls are not spread as moderately as the last
100 calls of the search. It is interesting that Domino has the most call(83,60
and 50) and Balancing(2,3 and 1) has the least call during the 1th 100 calls
in all three dataset. This indicates that the framework still can recognize
the improvement heuristic and the destroying one in terms of minimizing
the distance even in the early stages. However, applying Domino heuristic
which only affect on improvement of the total distance is still indicator of a
greedy behavior of the framework at this stage. Therefore, it is interesting
to analyse how the learning progresses as the iteration increases.

23



E5000 M5000 R5000

Balancing 2/19 3/15 1/21

Domino 83/23 60/16 50/20

Join 9/23 18/37 1/20

Interchange 6/16 5/16 1/19

Pair 0/19 14/16 47/20

Table 6: Heuristic calls during 1st
100 calls/during last 100 calls to the
solution by ACHH

E5000 M5000 R5000

787/10000 5 1207/10000 5 819/5650 5

1253/10000 2 1539/10000 4 940/5650 4

5883/10000 1 3987/10000 1 1927/5650 1

990/10000 4 1682/10000 2 1012/5650 2

1087/10000 3 1585/10000 3 952/5650 3

Table 7: Overall proportion of call and
overall rank of designed heuristics by
ACHH

From the last 100 calls it is noticeable how the propagation of calls
over the heuristics converge to the more fairly way when the size of dataset
grows. It is interesting to note that all the low-level heuristics are called at
this late stage which express how good the low-level heuristics are designed
and combined in such a way that all of the them are almost equally involved
until the final steps of the algorithm. Since the three problem instances
share almost the same distribution trend of the low-level heuristics in the
last 100 calls, it seems that ACHH shows the same behaviors for different
problem instance. As discussed earlier in this section, we still believe that
it is because of the dataset are different only in the form of distribution of
the tasks and the size of dataset.

In Table 7, we rank the clustering heuristics according to their overall
ratio of call so that the top (bottom) heuristic is the one that has been called
most (least) often. In dataset E5000 and M5000, the stopping condition has
been the third stopping criteria when algorithm overrun twice of the size of
dataset (here 2× 5000) explained in section 3.5. But R5000 stops in either
first or second stopping condition because the iteration number(5650) is less
than the iteration threshold (10000) in the third stopping condition.

From the overall ratio of calls we see that overall (across the 3 instances),
heuristics Join and Interchange appear among the top two heuristics whereas
heuristic Balancing is at the bottom. This can be regarded as a feature
common to the Join and Interchange which explore the solution space in
different way comparing the other designed low-level heuristics. Join is the
only low-level that tries to minimize the total distance not by dealing with
the outliers but by joining the close tasks of the different clusters. There
could be many tasks in close neighborhood but belonging to different clusters
which can be joined to the same clusters and improve the total driving
distance differently. Specifically, when the algorithm cannot improve the
solution by dealing with the outliers, whether the best assignment is the
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current cluster or the solution space gets stuck in a local optimum.
Interchange is designed in a way that not only improves the solution

without being limited to dealing with the outliers but also takes care of
balancing factor in the solution space. Regarding the rank of Balancing
heuristic, it is not a surprise, since it doesn’t care about minimizing the total
distance as the objective function at all. However, the number of calls for
Balancing shows that how the parameter γ has been appropriately tuned to
explore the search space by calling the forgotten Balancing heuristic during
the search.

5.4. ACHH improvement trend

Figure 5 shows the trend of improvement of the best solution on dataset
E5000 over one run. The y-axis in (a) is the total cost of driving distance.
Similarly, it is the maximum distance of a crew to a cluster(Red plot) and
average of the maximum distance obtained by all of the crew over the itera-
tions in (b). Because the choice function has shown almost the same trend
in all big instances, only trend of one dataset is being investigated.
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Figure 5: Trend of improvement of E5000 solution over the iteration

It is evident that ACHH showed overall downward trend in minimizing
the distance throughout the iterations. In early iterations, it seems that
ACHH improves the initial solution fast means that the ACHH does not
much time to start improving the solution. However the best solution fluc-
tuated between the 1000 to 4000 iterations. One possible explanation might
be due to postponing the call of Balancing heuristic since whenever it calls,
it causes a bad penalty in the total distance.We think this trend could be
improved by somehow considering the balancing of the framework as a value
instead of calculating only the penalty of increase at the total distance. In
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this way, Balancing could be called more often,consequently, led to less fluc-
tuation comparing to the current trend. However, it is notable how the
algorithm stabilizes approximately after half of the iteration passes. Simi-
larly, the average of maximum distance (green plot) shows the same trend
with a significantly drop in early iterations, following by fluctuation and
finally remaining steadily by a marginal change over the average distance.

In contrast to total distance and average of maximum distance, max dis-
tance plot (red) fluctuates more in the next half of the iteration than early
stage of the algorithm. This indicates how the designed low-level heuristics
can fairly correlate with each other to improve all of the embedded factors
(minimizing total distance, minimizing the maximum distance and the bal-
ancing of the clusters) in them, after the algorithm reach to a appropriate
level of adaption through the parameters α, β and γ.

5.5. Compactness validation

As mentioned earlier, the clustering framework presented in this paper is
being used as the region splitter for partitioning of the danish railway system.
This phase is a prior phase to the preventive maintenance planning in the
signaling system based on ERTMS technology. In this way, the planner
makes sure that no far away task will be assigned to any crew in scheduling
phase. Moreover, it is interesting to see how the railway network looks
like from a scheduling problem point of view. Applying this partitioning,
the maintenance planning in Denmark resembles the classical problem of
vehicle routing problem(VRP) within in each cluster, despite having just one
crew/team responsible for scheduling of the tasks. Mainly in any scheduling
problem, the objective is to minimize the total cost (i.e., a weighted function
of the number of routes and their length) to serve all the tasks. Therefore,
the closeness of the tasks in each cluster can affect the length of routes and
then the total cost in the scheduling phase.

To calculate the cohesion of the clusters, in addition to discussed results
by the other problem-specific measurements, we calculate the validity factor
of the compactness which is a well known measurement in the literature.

Compactness factor is measure of cohesion of the objects in every single
cluster. it indicates how well a clustering algorithm partitions the objects
sets in a distinct clusters in terms of object homogeneity by the mean nor-
malized variance. In other words, this index is formulated to decide whether
a given subset is internally dense or not. The higher this value is, the lower
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average cohesion of the cluster is:

C =
K∑
k=1

N∑
i=1

Pk,i ‖Xi − Ck‖2 (10)

Where C is the compactness value for the clusters desired to be mini-
mized. K is the number of the clusters. N is the number of the nodes. P is
the partition matrix and Pi,k specifies if the Xi is in partition k. Ck is the
center of partition k.

Figure 6 presents the comparative results of compactness measure of the
initial clustering result, random hyper-heuristic framework and the adaptive
framework on E5000. The compactness of the clustering results obtained
by RCHH and ACHH are shown as ratio of compactness measurement ob-
tained by them to compactness of the initial clustering result. As the lower
compactness measurement shows the denser clusters, it is so evident how
ACHH generates much more compact clusters compare to RCHH and the
initial solutions. It is notable that ACHH could improve approximately
32% on compactness of the initial solution, while RCHH improved 11% of
the measurement,respectively, on average in all of the dataset.
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Figure 6: Compactness clustering measurement

The single highlight result is the performance of the RCHH on R100
dataset , when it cannot improve the compactness of the initial result by
giving roughly 5% worse in compactness factor. However this was not an
unanticipated outcome, when the RCHH could not gain any improvement
on average(−4.81%) and maximum distance(−14.89%)the initial clustering
solution shown in Table 5, earlier.
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6. Conclusions

In this study, we have proposed a perturbative clustering hyper-heuristic
framework. The novelty of the framework lies in the design level which im-
proves a clustering solution through handling the outliers within a new clus-
tering hyper-heuristic framework. Five low-level heuristics have been intro-
duced and employed as local searchers. Domino, Pair, Join and Interchange
are designed to improve the total distance. The Balancing heuristic aims
for result in a more balanced clustering solution by reshuffling the outliers
between clusters. The first group of heuristics intensively search the search
space whilst the latter heuristic explores the search space by only attempt-
ing to give a balanced result. To have a robust hyper-heuristic framework,
an adaptive choice function has been embedded as a learning mechanism to
select and apply appropriate heuristics at each decision point.

The behavior of the introduced low-level heuristics using randomness and
the adaptive choice function has been investigated. The designed heuristics
are able to improve a clustering result even by calling them randomly which
relies on their capability to exploit and explore the solution space effec-
tively. In addition, employing the adaptive tail-made choice function, yields
a more effective combination of the heuristics by selecting the appropriate
probabilities for calling heuristics. The adaptive framework(ACHH) led to
an improvement of approximately 10% in both total driving distance and
average of maximum distance compared to the random framework (RCHH).

The experiments showed that the presented framework could be em-
ployed as a region splitter in railway systems. We suggested this partitioning
as a prephrase to preventive maintenance planning. By making each crew of
the cluster responsible for future breakdowns in their own cluster, the plan-
ners are able to estimate the maximum time availability of the crew when
a failure happens. In the proposed framework, we try to achieve lower dis-
tance availability during failures by reassigning the outliers iteratively to a
better cluster choice. Moreover, this partitioning results in rescaling the size
of the problem in the scheduling phase, having the possibility to undertake
parallel scheduling, and accordingly use of sophisticated and higher qual-
ity approaches like metaheuristics/hyper-heuristics to plan the maintenance
tasks.
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