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ABSTRACT 
 
A fundamental premise of most applied transport models is the existence and 

uniqueness of an equilibrium solution that balances demand  and supply . 
The demand  consists of the people that travel in the transport system and on the 

defined network, whereas the supply  consists of the resulting level-of-service 
attributes (e.g., travel time and cost) offered to travellers. An important source of 
complexity is the congestion, which causes increasing demand to affect travel time in 
a non-linear way.  
 
Transport models most often involve separate models for traffic assignment and 
demand modelling. As a result, two different equilibrium mechanisms are involved, (i) 
the internal traffic assignment equilibrium, and (ii) the external equilibrium loop 
between the assignment model and the demand model. The main objective of the 
paper will be to analyse convergence performance of the external loop. Firstly, we 
investigate the method of repeated approximations (MRA) and the method of 
Successive Averages (MSA). Moreover, we discuss variations of the MSA algorithm, 
including weighted MSA, MSA with memory reset, and MSA with Polyak step-size. 
Secondly, we discuss the possibility of using polynomial smoothing. Finally, we 
perform a sequence of simulation tests on a “toy” network to investigate 
convergence properties of the different algorithms.  
 

1. INTRODUCTION 
 
In transport modelling, one of the most fundamental equilibrium principles is the 
internal route choice equilibrium, where a route choice model (demand) iterates with 
a time-flow model (supply). The complexity of this iteration scheme arise because 
increasing demand cause a disproportional increasing in travel time, which in turn 
will reduce the demand. It is generally recognised that the method of repeated 
approximations (MRA), which is basically a simple iteration scheme where the level-
of-service variables is fed directly to the route-choice and vice versa, may exhibit an 
unstable pattern and lead to cyclic unstable solutions. It can be shown that the 

contraction region, e.g. the region for which a starting solution  will render stable 
convergence, depends on the slope of the demand and supply curve. Generally, as 

the slope (i.e.,  and ) between the curves increases, the 
contraction region shrinks. To obtain stable convergence various techniques 



including the Method of Successive Averages (MSA) have been proposed. 
Convergence of the MSA under fairly weak regularity conditions was shown in 
Robbins and Monro (1951).  
 
The iteration between demand and assignment – the external equilibrium – are in 
many models either decoupled or follow the MRA principle. However, as demand 
models are often based on logit or probit models, and thus conform to the way 
demand is represented in stochastic assignment models, there is reason to believe 
that convergence problems could also be expected in the external equilibrium loop. 
The intuitive explanation is that, if an iterative solution algorithm may not converge in 
traffic assignment with fixed demand (base OD-matrix), adding the complexity of 
variable demand makes the problem even more difficult to solve. Another strong 
motivation for be concerned with the extern loop convergence relates to the 
computational effort. As the external equilibrium loop involves running a complete 
assignment model combined with a complete demand model, iterations are much 
more costly than for the inner loop. This does not justify a simple iteration scheme for 
the sake of simplicity. As only 3 to 8 iterations may be possible in practice, it is 
important that these are spent wisely. 
 
An additional motivation for the investigation of the external loop is that the authors 
recently have experienced “occasional” convergence problems in practice in several 
large-scale models when applying simple MRA.  
 
In the paper, we first give an introduction to fix point algorithms (in Section 2) In 
Section 3, we turn our focus to the convergence of the external loop and discuss 
averaging methods and introduce the concept of polynomial smoothing. Section 4, is 
concerned with simulation experiments on a medium sized “toy network” and we 
investigate convergence performance of the various algorithms under a variety of 
settings. In Section 5 we offer a summary and conclusions.  
 
 
2. INTRODUCTION TO FIX POINT ALGORITHMS 
 

Let demand be represented as a continuous vector function  and  
a non-empty, compact and convex set. By Brouwer theorem it has at least one fixed-

points  (existence). If it can also be proved that at most a fixed-point exist 
(uniqueness), the unique fixed-point may be found through many algorithms, whose 
general specification can be written as;  
 
(1)   

 

The algorithm is based on a starting solution , and a “duly” defined matrix  
(see among many others Kelley, 1995).  
 
The method of repeated approximations (MRA), as in the Banach theorem, is given 

by , but it may be proven to converge only for contractions (or for strictly non-
expansive functions). 
 
The Newton method (also referred to as the method of tangent approximations), is 

based on  and will usually convergence fast provided that 



the starting solution is close enough to the searched fixed-point. The Broyden 

method is a kind of secant approximations, where matrix  is update at each 

iteration, from ; it gives some computation advantages with 

respect to the Newton method since derivates need to be computed only at first 
iteration. 
 

The method of successive averages (MSA) is given by  with , and 
convergence conditions are given by the Blum theorem (Blum, 1954) or by an 
extension in Cantarella (1997). If the function is computed through Monte Carlo 
simulation which only provides an unbiased estimation of the value, only almost sure 
convergence can be considered. Since all intermediate solutions in the sequence are 
feasible, algorithms based on MSA are often called feasible, and the current solution 
may be considered an approximation to the searched equilibrium flows. These 
algorithms are also called simple since they only require computation of all the 
involved functions and will not require computation of derivative and no need of 
matrix algebra during iterations (Cantarella and Cascetta, 2009). 
 
The “success” of the MSA (and variants of the MSA) in the sense that it converge is 
due to the fact that “averaging” form a contraction principle. Although it is not a 
contraction in a strict mathematical sense, it is a contraction principle which will lead 
to convergence as the number of iterations goes to infinity. The principle of MSA is 
illustrated in Figure 1 below. 
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Figure 1: Illustration of cyclic unstable solution based on the MRA iteration scheme 
and the MSA contraction principle. 



 
Figure 2 illustrates how averaging will form a contraction and that the MSA is 
particular efficient in the start of the iterative scheme. The draw-back of the MSA is 
that the speed of convergence tends to be relative slow as we move towards the 
equilibrium. Figure 2 also illustrate how the MRA may fail to converge if the slope of 
the demand and supply curve is too steep. 
 
 
2.1 Route choice fix-point formulation 
 
A natural starting point for the discussion of external convergence is to consider 
convergence of the inner loop. Firstly, because the external loop is conditioned on 
the inner loop and secondly, because many of the principles applied in the inner loop 
is parallel to what may be applied in the external loop. 
 
As a starting point, we will consider a simple route choice example. Consider a 

simple system of two routes  connecting two nodes. We will assume that each 
route is only represented by a single link  as illustrated below in Figure 2.  

 

 

l1

l2

 
Figure 2: Simple two-route system. 
 
We assume a simple BPR formula for the time-flow relationship,  
 

(2)   

 

Where  define the loading on route  and  the capacity. Generally we will assume 
that  and . In (2) it is assumed that the two routes have the same 
free-flow travel time . 
 

Furthermore, we may define the route-choice probability on link  as a multinomial 
logit model  
 

(3)   

 

If we consider a fixed demand problem, where the OD matrix is fixed and equal to , 

the demand on the two links defined by  for  is given by the 

OD demand  multiplied by the corresponding route choice probability, hence;  
 
(4)   

 
(5)   



 
Mathematically, the system can be written as a fix-point system 
 

(6)   

 

(7)   

 

The equilibrium can be found as the solution to this dynamic system, e.g. . 
The dynamic properties of the dynamic system can be investigated by evaluating the 

determinant  of the Jacobian matrix; 
 

(8)   

 
As the current system is to-dimensional it is easy to assess that the dynamic 
properties depends on the slopes of the demand and supply curve.  
 
 
3 CONVERGENCE WHEN DEMAND IS VARIABLE 
 
The convergence of the external loop will generally be smoother than convergence 
of the inner loop. This is because the supply function is represented as a weighted 
averaged of LoS over all routes between OD pairs. The averaging tends to dampen 
volatility caused by single stretches.   
 
Below, we will investigate the convergence of the external in sequential convergence 
scheme, where an external demand model interacts with an internal assignment 
model. Hence, we do not consider an integrated approach (Cantarella, 1997), as this 
is rarely used in practise for large scale modelling. More, specifically, we apply an 
iterative scheme consisting of five steps as illustrated below;  

 
 

Step1: Calculation of Initial Level-of-service (traffic assignment of base-line 
matrices).  
 
Step2: Demand model (outer-loop), based on possible scenario data and initial LoS 
(Step 1). 
 
Step3: Generation of matrices from Step2.  
 
Step4: Calculation of Level-of-service (assignment of new demand matrices, the 
Inner-loop). 
 
Step5: Iterate Step2-Step4 until convergence. 

 
 
3. 1 Averaging methods 
 



As discussed in the introduction, averaging is a popular method to obtain 
convergence under mild regularity conditions. Applying the MSA in the external loop 

is straightforward and implies that demand  at iteration , is represented as a 
moving average  
 
(9)   

 

Demand  will in this example represent the set of OD pairs. In the original paper 
by Robbins and Monro (1951) it was suggested that . With this 
parameterisation of , the MSA puts most weight on the “history” and less weight on 
the current iteration. This generally works quite well if we have a “spider-
convergence” as illustrated in Figure 1 where the iteration scheme jumps between 
the curves and in particular for the first couple of iterations. However, it tends to be 
less efficient as the iteration number increases. The problem is that the complete 
iteration history is inherited in the new demand update including the very “noisy” first 
iterations. Figure 3 illustrates an example where the performance of the MSA will be 
particular weak, namely when the slope of the supply curve are relative flat towards 
the equilibrium. As this is usually the case for low and medium congested sections of 
the network, this type of convergence behaviour will usually account for a majority of 
the network loading. 
 
To deal with this issue several methods has been proposed. The underlying idea of 
most of these methods is to define a sequence  that conform to the regularity 
conditions (Blum, 1954) and where the weight of the first part of the iteration process 
is gradually damped.  
 
A simple idea was made by Cascetta and Postorino (2001) as they suggest resetting 

the iteration history at some points in the iterative process. If we let  be the number 
of MSA iterations before reset, the resetting can be accomplished by defining a new 

iteration index  equal to; 
 
(10)   

 
(11)   

 

The MSA is then simply defined with step-size , which will produce a repeated 

sequence   
 
Cascetta and Postorino (2001) suggest resetting the history for every 5 steps, 
however, the optimal choice is strongly network dependent and will also depend on 
the acceptable precision level for the final iteration and the number of iterations we 
are willing to run. It should also be said, however, that in order for the resetting 
approach to be consistent with the regularity conditions (Blum’s theorem) stating that 

 and , there should always be a point from where the reset is no 

longer used. Moreover, choosing a value of  which is to small can be dangerous 
and it is generally not recommended to use values less than 5.  
 
Polyak and Juditsky (1990) introduce an alternative step-size for the MSA equal to 

. Compared to the original suggestion by Robbins and Monro (1951), this 



specification put more weight on the newest iterations which should be preferable in 
this context.  
 

A weighted MSA approach was considered in Liu et al. (2009) where  is given by  
 

(12)  

 

 

Where . Clearly, for  the ordinary MSA emerge, however, as  increases 
more emphasis is put on the latest iterations. 
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Figure 3: Illustration of slow MSA when the slope of the supply curves is flat. 
 
 
3.2 Polynomial smoothing  
As discussed in the previous section, many heuristic MSA variants can be proposed. 
Although some of these are fairly efficient the efficiency is generally a function of the 
network and the structure of the OD. It is therefore relevant to consider approaches, 
which are “self-adjusted” and adopts with respect to the curvature of the iteration 
scheme. Interestingly, many OD pairs will converge in a smooth and monotone way, 
where the iterative process “crawl” on the supply curve and stays under the 
equilibrium all the time. This situation was illustrated in Figure 3. Typically, these 
situations are characteristic by monotonous convergence with decreasing absolute 
slope. 
 
An obvious idea is therefore to consider polynomial smoothing of the demand curve. 
We are not considering smoothing of demand as a function of supply in a classical 



sense as the supply curve cannot be represented as a curve and may not even be 
monotone and continuous. Rather we suggest considering the iteration scheme as a 
mapping from the domain of iterations to the external demand model, e.g. 
 
(13)   

 
The external loop, whether it is iterated as MSA or MRA, can be considered as a set 
of equally spaced data points, in the sense that we assume an equal space between 
the iterations. Due to the equally spaced data points, we can apply a numerical 
smoothing process as suggested in Savitzky and Golay (1964). 
 
The smoothing will require a set of data points, which is why the strategy is to first 
run a MSA variant for at least three iterations, and then do a 2-order polynomial 
smoothing. As the MSA tends to be fairly efficient during the first iterations this 
makes good sense. 
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Figure 4: Polynomial smoothing. 
 

By solving  we attain a minimum or maximum  and  may then be 
considered as the next step on the demand curve. Hence, in Figure 4  is the 
estimated starting point prior to iteration 4, which in turn will produce the true point 

. If the curve is monotone decreasing (or increasing) it is possibly to “jump” quite 
a few iterations as illustrated in Figure 4. 
 
The polynomial fit for the first there points is straightforward. If we choose the 

smoothing point as the latest point, hence , we may define a change of 

variable, e.g. . A polynomial is now defined for  
 



(14)   

 

The “convolution” coefficients  can now be calculated by solving the 
following equation system 
 

(15)   

 

Where  represent the data points and  the Jacobian. As we 
consider only a second-order polynomial, the Jacobian is simply given by    
 

(16)   

 
A suggested iteration scheme of the smoothing approach might be; 
 

Step1: Process three points using MSA. 
 

Step2: Fit a second-order polynomial  on the available data points developed 
around the most recent point.  
 

Step3: Find  such that  and let it be the starting point prior to the next 
iteration.  
 
Step4: Carry out the next iteration of the external loop and attain the next data point. 
 
Step5: Construct a new data point by doing MSA (or a variant) based on the 
previous data points. 
 
Step6: Iterate Step 2-Step 4 until convergence. 
 

 
There are a couple of issues related to the suggested iteration scheme that should 
be discussed. Firstly, it should be pointed out that although the smoothing approach 
might work well when the iterative process is smooth it will work quite badly (for only 
three points) when the iteration process oscillate. An idea might be to assign MSA to 
oscillating entries and smoothing to smoothly developing entries, however, this is 
complicated by the fact that the convergence type may change while iterating.    
 
Another issue is that the above algorithm may fail to converge if we do not embed 
the MSA in Step 5. Clearly, if we “jump” iterations, running an ordinary MSA with 

 will automatically put more emphasis on the newest iterations compared to 

a traditional MSA iteration scheme. An example is that we jump from  to , 

which in turn will cause the MSA to represent  for the fourth point compared to 

 if a normal MSA had been processed.  

 

More importantly, however, the sequence  will be a function of the curvature of the 
demand model and in this sense be “self-adjusted” and less sensitive to external 
parameters.  



 
 
4. SIMULATION EXPERIMENTS 
 
To analyse how various specifications affect the convergence of the external loop, a 
small “toy” network has been constructed as illustrated in Figure 5 below.  
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Figure 5: Network layout for synthetic test case. 
 
The network is represented 9 nodes (or zones), which by elimination of inter-zone 
traffic gives 72 OD pairs connected by 16 arcs. There is no assumption of limitations 
in the network (e.g., closed links or one-way links) and the total combination of 
routes is 3,804 representing 22,404 connected arcs. As a result, the average route 
consists of 5.88 arcs.  
 
Different OD matrix structures have been generated randomly to reflect different OD 
flow patterns and congestion levels.  
 
The arc cost table is presented below in Table 1. 
 
 



FromArc ToArc Cost Capacity 

1 2 6.28 100 

1 4 6.28 100 

1 5 2 80 

2 1 6.28 100 

2 3 6.28 100 

2 6 2 80 

3 2 6.28 100 

3 4 6.28 100 

3 7 2 80 

4 1 6.28 100 

4 3 6.28 100 

4 8 2 80 

5 1 2 80 

5 6 3.14 75 

5 8 3.14 75 

5 9 2 50 

6 2 2 80 

6 5 3.14 75 

6 7 3.14 75 

6 9 2 50 

7 3 2 80 

7 6 3.14 75 

7 8 3.14 75 

7 9 2 50 

8 4 2 80 

8 5 3.14 75 

8 7 3.14 75 

8 9 2 50 

9 5 2 50 

9 6 2 50 

9 7 2 50 

9 8 2 50 

Table 1: Arc cost and capacity in the network. 
 
In the simulation experiment, for the inner loop, we consider a full stochastic loading 
on all routes for each loop in the assignment (approximately 50 routes per OD pair). 
This is in contrast to a normal assignment model, where routes are sampled 
sequentially in the MSA loop. As a result, each iteration conform to approximately 50 
inner-loop iterations and hence, the convergence is fast and will normally fully 
converge after 10 iterations. 
 
In the following we will address four issues in a range of simulation experiments. 
 
4.1 Non-convergence of the outer loop  
 
The first and very obvious issue is whether we need to consider convergence 
problems in the outer loop at all? As many models have applied MRA iteration 
schemes with success it is a question whether it is possible to construct a counter 
example?  
 
However, it turns out to be straightforward to generate an infinite number of counter 
examples where the external loop will diverge. If the slopes of the demand and 
supply curves are moderately flat, usually the performance of the MRA will be quite 



good and generally better than the MSA. However, as the slope increases the 
divergence is amplified and at some point it will be cyclic unstable.  
 
Rather than illustrating this in a separate figure we refer to Figure 8, which indicate a 
nearly cyclic unstable MRA convergence and in all cases converge very slowly.  
 
4.2 Benchmark of averaging methods 
 
In the following we will present a series of convergence benchmarks for the MRA 
and five averaging methods.   
 
A first and interesting observation is that although the MRA may fail to converge in 
certain cases it will generally be quite efficient compared to many averaging methods 
if it converges. The main explanation for this is that many averaging methods will 
tend to converge slowly when the slope of the supply curve up to the point where it 
crosses the demand curve is relative flat.  
 

 
Figure 6: Convergence performance measured in terms of % deviation from 
equilibrium of six methods (iterations in the horizontal axis); “normal” congestion. 
 
Figure 6 represent at situation with normal congestion. The BPR parameters are 

given by , logit demand parameter (route choice) -0.5 and logit 
parameter for demand model -1. 
 

The weighted MSA with  performs quite well for only 3 iterations. The MSA with 
reset is also efficient; however, it requires that we pass the reset point (in this case 5 
iterations). In fact, from an infinitesimal point of view the MSA reset performs best 
from 10 iterations and out. 
 
Figure 7 below illustrate a situation where the congestion level is higher. For the 

BPR , logit demand parameter (route choice) is -0.5 and logit 
parameter for demand model is -1.3. As can be seen, the performance decline for all 
of the methods.  
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Figure 7: Convergence performance measured in terms of % deviation from 
equilibrium of six methods (iterations in the horizontal axis); “aggressive” congestion. 
 

It is however interesting to see that the weighted MSA with ( ) is generally 
relative efficient for event a small number of iterations. The MSA with reset tends to 
be efficient after the reset point of 5 iterations. 
 

 
Figure 8: Convergence performance measured in terms of % deviation from 
equilibrium of six methods (iterations in the horizontal axis); “hyper” congestion. 
 
Figure 8 illustrate a situation where the congestion level is “extensive”. The BPR 

parameters are now given by , and logit demand parameter (route 
choice) is -0.5 and logit parameter for demand model is -2. 
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Generally, the performance of the MSA as well as the MSA with Polyak step size 

and weighted MSA ( ) decline and tend to be unacceptable for a small number 
of iterations. However, the weighted MSA ( ) and MSA with reset perform well. 
The best performing method is again the weighted MSA with . The MSA with 
reset is again quite good, although “jumps” can occur, especially around reset points. 
Also, note the oscillating pattern for the MRA and the extreme slow convergence of 
the MSA.  
 
4.2 MSA with reset  
As indicated in the simulation experiments, the MSA with reset will generally perform 
reasonable well. However, it requires as a minimum that the number of iterations 
exceed the first reset point and at best 2 or 3 reset points. Also as we saw in Figure 
8, “jumps” can occur.  
 
An obvious question is what reset point is optimal? Although the answer cannot be 
answered in any precise way as it is network dependent, simulation can give 
indications on how choice of reset point affect the iteration history.  
 

 
Figure 7: Convergence performance of MSA reset with different reset points; “hyper” 
congestion. 
 
Figure 7 suggest an interesting finding, namely that the choice of reset point, 
whether it is 2, 3, 4, 5, 6 or 7 are not so important even in a “hyper” congestion 
regime. What is important is to choose the correct stoppage point after the reset 
point. Given that iterations are costly, the optimal point seems to always be 1 plus 
the reset point. Hence, for a reset point of 2 we should stop after the third iteration, 
for a reset point of 5, we should stop at 6, etc. The finding has been consistent for a 
range of different random OD matrices.  
 
To fully investigate whether this is due to “peculiarities” in the data or point to a more 
general finding needs to be assessed in more details.  
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4.2 Weighted MSA  
 
Another interesting question is whether it may be efficient to further decrease the 

emphasis on “history” in the weighted sequence; hence increase the value of  to 3 
or 4. Again we turn to the “hyper” congestion regime from Figure 9 as it provides the 
greatest challenge to the algorithms. 
 

 
Figure 7: Convergence performance of weighted MSA with different -values; 
“hyper” congestion. 
 
As can be seen, there is an optimal value somewhere between 1 and 4. However, 

 seems to be the more efficient choice.  
 
 
5. SUMMARY AND CONCLUSIONS 
 
The present paper has investigated the convergence between a demand model as 
represented by a linear-in-parameter logit model and an assignment model. 
Whereas much research has been invested in the inner-loop convergence of the 
assignment model, the convergence of the external loop has not been given any 
attention to our knowledge. This somehow contradicts the fact that the external loop 
iterations are far more costly as they (for every iteration) involve a complete 
assignment convergence.  
 
All though the results of the current paper relates to a “toy network” and should be 
seen as “work in progress” a range of interesting indications has been revealed.  
 

- The common MRA algorithm will usually be relative efficient in low-congested 
networks, however, convergence is not guaranteed and cyclic unstable 
convergence may be present. Generally, as the congestion level increase, the 
performance of the MRA decline.  
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- The MSA in it its original form with  will generally converge very 
slowly and in particular when the iteration scheme are non-oscillating. 
 

- A number of MSA variants has been analysed to deal with the slow MSA 
convergence. It has been found that; 
 

o A weighted MSA ( ) is particular efficient, even in situations with 
few iterations and “hyper” congestion.  
 

o A MSA with reset is also very efficient, although the reset point and the 
iteration stoppage point needs to be chosen carefully. It appears to be 
efficient to stop the algorithm one iteration after the reset points 
irrespectively of the reset length.   

 

o MSA with Polyak step size and weighted MSA with ( ) is 
significantly better than the MSA but also significantly worth than the 
two methods mentioned above.  

 
It has also been pointed out that the MSA variants, although some of these may be 
efficient, will be network dependent and as a result require MSA parameters to be 
fitted to specific applications. As this heuristic principle is not very appealing it has 
been suggested to derive methods that take the curvature of the demand function 

into account. As this principle will make the  sequence a function of demand it will 
be “self-adjusting”.   

 
 
5.1 Further research 
 
The paper represents “work in progress” and additional research needs to be carried 
out along several lines; 
 

- Large scale Monte Carlo experiments 
 

- Application of Smoothing techniques to integrate information about the 
curvature of the demand function in the algorithm 
 

- Robustness test of the MSA with reset 
 

- Application to real world applications  
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