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Numerical Simulation of an  

Tapered Bed AMR 
Stefano Dall’Olio, Tian Lei, Kurt Engelbrecht, Christian R. H. Bahl 

Department of Energy Conversion and Storage, Technical University of Denmark – Frederiksborgvej 399, DK-4000 Roskilde – Denmark 
 
 ■ The objective of this poster is to show how the tapering angle of a regenerator influences the AMR performance, displaying results based on simulations. 

Results of the 1-D simulations 
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Introduction 

Conclusions and Outlook 
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 Considering the results of the simulations, tapering in the right direction does not have any evident disadvantages for the performance of the AMR. 
 A negative tapering angle of around -12 degrees gives a slight improvement of the performance of the AMR. 
 The improvement of the performance increases with frequency. 
 The viscosity of the heat transfer fluid plays an important role in the behaviour of the AMR, and this can be seen by the values of the Reynolds number 

and of the local NTU along the regenerator. 
 In a radial distribution of regenerators, tapering gives a significant space optimization advantage compared to the parallel wall configuration. 
 Tapering a regenerator is analogous to increasing the volume of MCM in the same magnetized volume. 
 Performance of the AMR begins to decrease significantly for a large value of the tapering angles, i.e. 35 degrees. 
 A more complete analysis of the tapering effect will be performed in order to study in more detail the effect of the working fluid, the geometry of the 

regenerator, the MCM and of the frequency on the performance of an AMR. 
 

 

■ To optimize cooling power and COP of an AMR, we analysed numerically the effect of having a 
tapered regenerator. 
■ Rowe and Barclay [1], deriving an expression describing the ideal magnetocaloric effect (MCE) 
as a function of temperature for the case of zero entropy generation, concluded that a possible 
solution is to have a linear variation of the adiabatic temperature change throughout the bed. 
■ We satisfied this condition by increasing the amount of magnetocaloric material (MCM) along 
the bed, by means of tapering the AMR regenerator. 

Fig. 8. Cooling power and COP as function of angle α , f= 1 Hz. 

(c) Weakly FOPT and thermal hysteretic behaviour around TC. 

Fig. 5. Area progress along the regenerator for (a) α= - 45˚, and (b) α= 45˚. 

Fig. 2 . Radial distribution of parallel walls regenerators. Fig. 3. Radial distribution of tapered regenerators. 

 Using a tapered regenerator allows for better utilization of the volume (more MCM volume) 
 By fixing several geometrical parameters, it is possible to quantify the advantages given by the tapering 

due to the better utilization of the magnetized volume: 
  

The geometric advantage: 
 Tapering increases the specific cooling power (per unit volume) 

Fixing: 
• the number of regenerators, N 
• the distance a between the beds 
• the internal radius of the regenerators, 𝑅𝑖 = 𝑁 ∙ 𝑊 + 𝑎   
• the total MCM volume N x L x W x H of the parallel walls 

regenerators  

There is an increase of the MCM 
volume of 𝑵 ∙ 𝑳𝟐 ∙ 𝐭𝐚𝐧𝜶 , using tapered 
regenerators with a tapering angle of α 
 

Model of Active Magnetic Regenerator 

Figure 1: Active magnetic regeneration cycle 

Considering the irreversibility of magnetic hysteresis, the 
governing equations for modelling the AMR are [2-3]: 
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Parameters of the simulations 

MCM 
• Gadolinium 
• Tc = 292 K 
• Mass = 200 g 
• Spheres diameter = 0.3 mm 
• Porosity = 0.36 

 

Simulation general settings 
• 1 Hz 
• B= 1.4 T 
• Tamb=295 K 
• TH=300 K 
• ΔTspan= 20 K 
• Demagnetization – off 
• Working fluid: water 

Regenerator geometry 
• Cross sectional area: 900 mm2 

• Length= 50 mm 
• Height= 15 mm 
• Tapering angle α:  -45 to 45 degrees 

 

Fig. 4. Cross section of the tapered regenerator – main geometrical parameters. 

Fig. 11. Cooling power and COP function of angle α , f= 2 Hz. 

Fig. 9. Cooling power and COP as function of angle α , f= 1Hz. 

Conduction and viscosity set to 0. 

Fig. 10. Maximum Cooling power and COP as function of angle 

α , f= 1 Hz.  

Fig. 13. Maximum Cooling power and COP as function of angle 

α , f= 2 Hz.  
Fig. 12. Cooling power and COP as function of angle α , f= 2Hz. 

Conduction and viscosity set to 0. 

(a) (b) 

Fig. 6. Reynolds number  and local NTU values along the regenerator , α= - 45˚. 

Fig. 7. Reynolds number  and local NTU values along the regenerator , α= 45˚. 
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