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Summary (English)

An important aspect of Internet security is the security of cryptographic pro-
tocols that it deploys. We need to make sure that such protocols achieve their
goals, whether in isolation or in composition, i.e., security protocols must not
suffer from any flaw that enables hostile intruders to break their security. Among
others, tools like OFMC [MV09b] and Proverif [Bla01] are quite efficient for the
automatic formal verification of a large class of protocols. These tools use dif-
ferent approaches such as symbolic model checking or static analysis. Either
approach has its own pros and cons, and therefore, we like to combine their
strengths. Moreover, we need to ensure that the protocol implementation coin-
cides with the formal model that we verify using such tools.

This thesis shows that we can simplify the formal verification of protocols in
several ways. First, we introduce an Alice and Bob style language called SPS
(Security Protocol Specification) language, that enables users, without requiring
deep expertise in formal models, to specify a wide range of real-world protocols
in a simple and intuitive way. Thus, SPS allows users to verify their protocols
using different tools, and generate robust implementations in different languages.
Moreover, SPS has the “ultimate” formal semantics for Alice and Bob notation
in the presence of an arbitrary set of cryptographic operators and their algebraic
theory. Despite its generality, this semantics is mathematically simpler than any
previous attempt.

Second, we introduce two types of relative soundness results that reduce com-
plex verification problems into simpler ones. The first kind is typing results
show that if a security protocol that fulfills a number of sufficient conditions
has an attack then it has a well-typed attack. The second kind considers the
parallel composition of protocols, showing that if the parallel composition of
two protocols, that fulfill a number of sufficient conditions, allows for an attack
then one of the protocols, at least, has an attack in isolation. In fact, we unify
and generalize over prior relative soundness results. The most important gen-
eralization is the support for all security properties of the geometric fragment
proposed by [Gut14].



iv



Summary (Danish)

Et vigtigt aspekt af internetsikkerhed er sikkerheden i de kryptografiske pro-
tokoller, der benyttes. Vi er nødt til at sørge for, at s̊adanne protokoller fungerer
korrekt, b̊ade hver for sig og i sammensætning. Dvs. sikkerhdesprotokoller m̊a
ikke lide af nogen fejl der gør det muligt for hackere til at bryde deres sikkerhed.
Blandt andet, værktøjer som OFMC [MV09b] og Proverif [Bla01] er ganske ef-
fektive til automatiseret formel verifikation af en stor klasse af protokoller. Disse
værktøjer bruger forskellige tilgange, s̊asom symbolsk model checking eller sta-
tisk analyse. Begge tilgange har fordele og ulemper, og derfor er vi nødt til at
kombinere deres styrker. Desuden er vi nødt til at sikre, at der er sammenfald
mellem protokolimplementeringerne, og de formelle modeller vi kontrollerer ved
at bruge disse værktøjer.

Denne afhandling viser, at vi kan forenkle formel verifikation af protokoller p̊a
flere m̊ader. Først introducerer vi et sprog, i Alice og Bob stilen, kaldet SPS
(Security Protocol Specification). Sproget giver brugere, uden stor ekspertise i
formelle modeller, mulighed for at specificere en bred vifte af protokoller fra
den virkelige verden p̊a en enkel og intuitiv m̊ade. S̊aledes giver SPS brugerne
mulighed for at kontrollere deres protokoller ved hjælp af forskellige værktøjer
og skabe robuste implementeringer i forskellige sprog. Desuden SPS har den
“ultimative” formelle semantik for Alice og Bob notationen i nærværelse af et
vilk̊arligt sæt af kryptografiske operatører og deres algebraiske teori. P̊a trods af
sin generalitet er denne semantik matematisk enklere end nogen tidligere forsøg.

Dernæst introducerer vi to slags relativ korrekthed, der kan forsimple komplekse
verifikationsproblemer. Den første slags er at skrive resultater, der viser, at hvis
en sikkerhedsprotokol, der opfylder en række betingelser, har et angreb s̊a har
et vel-typet angreb. Den anden slags betragter den parallelle sammensætning
af protokoller, og viser, at hvis den parallelle sammensætning af to protokoller,
der opfylder en række tilstrækkelige betingelser, giver mulighed for et angreb,
har mindst en ag protolollerne, et angreb i isolation. Mere konkret, forener og



vi

generaliserer vi forudg̊aende resultater inde for relativ korrekthed. Den vigtigste
generalisering er støtten til alle sikkerhedsegenskaber af geometriske fragment
foresl̊aede af [Gut14].
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external-stay supervisor Luca Viganò for their practical guidance and continu-
ous support. Many thanks are due to the reviewing committe: Alberto Lluch
Lafuente, Achim Brucker, and Christoph Sprenger.

I extend my thanks to all LBT professors, especially Flemming Nielson, Chris-
tian Probst; the feedback they gave me during LBT talks improved not only my
presentation skills, but also the results of my research.

Many thanks to all of my colleagues in LBT: Alessandro, Hugo, Jans, Lars,
Laust, Marieta, Roberto, Ximeng, Zara and Andreas. They have contributed
immensely to my personal and professional time at DTU-Compute. I also thank
my friends Mohammad, Othman, Qasim, Hasan, and Majdi. Many thanks to
Lotte and Cathrin for their help.

I gratefully acknowledge the funding for my Ph.D. the EU FP7 Project no.
318424, “FutureID: Shaping the Future of Electronic Identity”.

I would like to thank my parents, my brothers and sisters, my wife and my kids
for all their love, patience and encouragement. Thank you.

Lastly, “And the last of their call will be: Praise to Allah, Lord of the worlds!”.



x



xi



xii Contents



Contents

Summary (English) iii

Summary (Danish) v

Preface vii

Acknowledgements ix

Notations xix

1 Introduction 1

I Protocol Specification, Implementation
and Verification 7

2 SPS Syntax 9
2.1 Example and Grammar . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Operators and Types . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Context-Sensitive Properties . . . . . . . . . . . . . . . . . . . . . 20
2.5 Operational Strands . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Preprocessing of SPS Specification . . . . . . . . . . . . . . . . . 25
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 SPS Semantics 27
3.1 Message Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Message Derivation and Checking . . . . . . . . . . . . . . . . . . 30
3.3 High-level Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 32



xiv CONTENTS

3.4 Low-level Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Message Composition . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Message Decomposition and Checks . . . . . . . . . . . . 38

3.4.3 Implementing the Semantics . . . . . . . . . . . . . . . . . 43

3.4.4 Equivalence of Strands . . . . . . . . . . . . . . . . . . . 44

3.5 Operational Strands Semantics . . . . . . . . . . . . . . . . . . . 46

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Beyond the Semantics 51

4.1 Translation to JavaScript . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Translating to Applied π . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Case Studies 67

5.1 Case Studies Structure . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 EAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 EAC in SPS . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 EAC Formats . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 Analysis Results for EAC . . . . . . . . . . . . . . . . . . 75

5.3 PACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.1 PACE in SPS . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.2 PACE Formats . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.3 Analysis Results for PACE . . . . . . . . . . . . . . . . . 83

5.4 TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 TLS in SPS . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.2 TLS Formats . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.3 TLS with client authentication . . . . . . . . . . . . . . . 90

5.4.4 Analysis Results for TLS . . . . . . . . . . . . . . . . . . 91

5.5 ISO/IEC 9798-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.1 ISO/IEC 9798-4 in SPS . . . . . . . . . . . . . . . . . . . 93

5.5.2 ISO/IEC 9798-4 Formats . . . . . . . . . . . . . . . . . . 95

5.5.3 Analysis Results for ISO/IEC 9798-4 . . . . . . . . . . . . 96

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Related Work 101

II Protocol Typing and Composition 105

7 Introduction 107

7.1 Message Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Intruder Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



List of Figures xv

8 Symbolic Protocol Model 113
8.1 Symbolic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2 Operational Strands: Revisited . . . . . . . . . . . . . . . . . . . 115
8.3 Goal Predicates in the Geometric Fragment . . . . . . . . . . . . 116
8.4 Constraint Solving . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9 Typing and Compositionality Results 129
9.1 Typed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.3 Automated Protocol Composition Checker . . . . . . . . . . . . . 141
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10 Related Work 145

III Conclusion 147

11 Contributions and Future Work 149
11.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography 155



xvi CONTENTS



List of Figures

2.1 The Example Protocol as a Message Sequence Chart . . . . . . . 23
2.2 The Plain Strand of A . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 The Plain and Operational Strands of A . . . . . . . . . . . . . . 33

4.1 The SPS Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 The Job Execution Environment . . . . . . . . . . . . . . . . . . 55
4.3 Translation to JavaScript and Applied π of the role A . . . . . . . 57

9.1 The APCC tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



xviii LIST OF FIGURES



NOTATIONS

f Function, general
ch Channel(cf. Section 2.3) 19
insec Insecure channel(cf. Section 2.3) 19
S Operational strand (cf. Section 2.5) 21
fv Free variable of(cf. Section 2.5) 21
strand Operational strand(cf. Section 2.5) 21
steps Sequence of steps of an operational strand(cf. Section 2.5) 21
rest Rest of steps of an operational strand(cf. Section 2.5) 21
step Step in an operational strand(cf. Section 2.5) 21
request Event in operational strands(cf. Section 2.5) 21
receive Receive step in an operational strand(cf. Section 2.5) 21
fresh Fresh value step in an operational strand(cf. Section 2.5) 21
event Event in an operational strand(cf. Section 2.5) 21
X := t Strand-macro step in an operational strand(cf. Section 2.5) 21
Σ Set of a operators, function symbols(cf. Definition 3.1) 28
Σ0 Set of a protocol constants(cf. Definition 3.1) 28
Σp Set of public operators(cf. Definition 3.1) 28
Σm Set of private operators, mappings(cf. Definition 3.1) 28
Σd Set of destructors(cf. Definition 3.1) 28
Σc Set of constructors(cf. Definition 3.1) 28
X Label variable(cf. Definition 3.1) 28
V Set of variables(cf. Definition 3.1) 28
T Set of terms(cf. Definition 3.1 28
I Interpretation(cf. Definition 3.1) 28
t, s,m Term (cf. Definition 3.1) 28
X Label variable(cf. Definition 3.1) 28
L Set of label variables(cf. Definition 3.1) 28
≈ Congruence over ground terms(cf. Definition 3.1) 28



xx LIST OF FIGURES

Σf Set of formats(cf. Table 3.1) 29
f Format(cf. Table 3.1) 29
geti,f The getter of the ith field of the format f(cf. Table 3.1) 29
verifyf Verifier of the format f(cf. Table 3.1) 29
exp Modular exponentiation(cf. Table 3.1) 29
mult Modular multiplication(cf. Table 3.1) 29
sign Signing function(cf. Table 3.1) 29
open Open signature(cf. Table 3.1) 29
vsign Signing verifier(cf. Table 3.1) 29
shk Shared key of two agents(cf. Table 3.1) 29
shk Secret key of an agent(cf. Table 3.1) 29
pub Public key of a private key(cf. Table 3.1) 29
pk Public key of an agent(cf. Table 3.1) 29
inv Private key of a public key(cf. Table 3.1) 29
hash Hash function(cf. Table 3.1) 29
mac Message Authentication Code function, keyed hash(cf. Table 3.1) 29
crypt Asymmetric encryption(cf. Table 3.1) 29
vcrypt Asymmetric encryption verifier(cf. Table 3.1) 29
vscrypt Symmetric encryption verifier(cf. Table 3.1) 29
dcrypt Asymmetric decryption(cf. Table 3.1) 29
scrypt Symmetric encryption(cf. Table 3.1) 29
dscrypt Symmetric decryption(cf. Definition 3.6) 36
l Label of a term(cf. Definition 3.2) 29
tl Labeled message, term t labeled with l(cf. Definition 3.2) 29
M Knowledge, a set of labeled terms(cf. Definition 3.2) 29
|M | Length of the knowledge M(cf. Definition 3.2) 29
` Knowledge deduction relation(cf. Definition 3.3) 30
ccs Complete set of checks of a knowledge(cf. Definition 3.4) 32
ϕ Set of checks (cf. Definition 3.4) 32
[[·]]H General translator to operational strands (cf. Definition 3.5) 33
conf Confidential channel(cf. Section 3.3) 32
Σc Set of constructors(cf. Definition 3.6) 36
Σd Set of destructors(cf. Definition 3.6) 36
ΣA Set of all symbols except destructors(cf. Definition 3.6) 36
composeM Message composition function(cf. Definition 3.7) 37
analyze Knowledge analysis procedure(cf. Table 3.2) 39
[[·]]L Computable translator to operational strands(cf. Theorem 5) 46
v Subterm(cf. Section 3.4) 36
S Set of operational strands (cf. Section 3.5) 46
⇒ Transition relation over states(cf. Section 3.5) 46
ul Mapping a knowledge to a set of terms (cf. Section 3.5) 46
σ Substitution(cf. Section 3.5) 46
finished Event in operational strands(cf. Section 3.5) 46



Notation xxi

i The intruder (cf. Section 3.5) 46
own Owner of a strand(cf. Section 4.1) 53
par Parameters derived from a knowledge (cf. Section 4.1) 53
head JavaScript code header (cf. Section 4.1) 53
[[·]]JS Translator to JavaScript(cf. Section 4.1) 53
[[·]]π Translator to Applied π(cf. Section 4.2) 58
byte(n) One-byte constant n(cf. Section 5.3) 79
· Concatenation operator(cf. Section 5.3) 79
offco Offset with a fixed length of bytes(cf. Section 5.3) 79
tlv Tag-length-value encoding(cf. Section 5.3) 79

Σ̂ Set of operators (cf. Section 7.1) 109
C Set of constants (cf. Section 7.1) 109
TΣ∪C(V) Set of terms built with Σ, C and V(cf. Section 7.1) 109
atomic Atomic term(cf. Section 7.1) 109
Cpub Set of constants: long-term public constants(cf. Section 7.1) 109
Cpriv Set of constants: long-term secrets(cf. Section 7.1) 109
CPi Set of protocol Pi constants(cf. Section 7.1) 109
M Intruder’s Knowledge(cf. Definition 7.1) 111
� Knowledge deduction in the free-algebra(cf. Definition 7.1) 111
Ana Encoding for analysis rules(cf. Definition 7.1) 111
φ A symbolic constraint(cf. Section 8.1) 113
φσ A symbolic constraint, sub-language of φ(cf. Section 8.1) 113
φ Symbolic constraint(cf. Section 8.1) 113
|= Model relation (cf. Definition 8.1) 114
var The variables of(cf. Definition 8.1) 114
S Set of operational strands (cf. Section 8.2) 115
=⇒ Transition relation over symbolic states(cf. Section 8.2) 115
lts Event to indicates long-term secret (cf. Section 8.2) 115
Ψ State formulas in the geometric fragment, a goal (cf. Definition 8.3) 117
ψ Antecedent of a state formula (cf. Definition 8.3) 117
ψ0 Consequent of a state formula (cf. Definition 8.3) 117
ik Intruder knows a term (cf. Definition 8.3) 117
|=S Models relation for symbolic states(cf. Section 8.3) 117
trM,E Translating goals to symbolic constraint(cf. Section 8.4) 118
eq Constraint corresponding to a substitution(cf. Definition 8.5) 120
mgu Most general unifier(cf. Definition 8.5) 120
simple Simple constraint(cf. Definition 8.6) 121
size Size of symbolic constraint (cf. Theorem 8) 124
Σi Sum of the lengths of i knowledges (cf. Theorem 8) 124
t : τ Term t has the type τ (cf. Section 9.1) 129
Ta Set of atomic types (cf. Section 9.1) 129
Γ Typing function (cf. Definition 9.1) 129
MPt Message pattern of a term(cf. Definition 9.2) 131



xxii LIST OF FIGURES

MPS Message patterns of a strand(cf. Definition 9.2) 131
MPΨ Message patterns of a goal(cf. Definition 9.2) 131
MP Message pattern of a protocol(cf. Definition 9.2) 131
SMP Sub-message patterns(cf. Definition 9.2) 131
Φ Symbolic constraint, attack (cf. Theorem 9) 133
dom Domain, general
range Range, general



Chapter 1

Introduction

An important part of Internet security is the security of cryptographic protocols.
We need to make sure that such protocols achieve their goals and that they do
not suffer from any flaw that enables hostile intruders to break their security
(whether in isolation or in composition). Automatic formal verification tools
like [Mea96, Low97a, CJM00, Bla01, CMR01, AC04, Cre06, Tur06, MV09b,
EMM09] are quite efficient for a large class of security protocols [NS78, Low95,
ACC+08]. Those tools use different approaches, i.e., symbolic model checking
or static analysis. Either approach has its own pros and cons, and therefore we
need to combine their strengths. Moreover, we like to ensure that the protocol
implementations coincide with the formal models that we verify using such tools.

One goal of this work is the definition of an Alice-and-Bob style language that is
completely independent of the approach of the verification tools. Alice-and-Bob
notation is a simple and succinct way to specify security protocols: one only
needs to describe what messages are exchanged between the protocol agents in
an unattacked protocol run. However, it has turned out to be surprisingly subtle
to define a formal semantics for such a notation, i.e., defining an inference system
for how agents should compose, decompose and check the messages they send
and receive. Such a semantics is necessary in order to automatically generate
formal models and implementations from Alice-and-Bob specifications. How-
ever, even when modeling messages in the free algebra, defining the semantics
has proved far from trivial [BBD+05, BN07, CVB06, JRV00, Low97a, Mil97].



2 Introduction

To make matters worse, many modern protocols rely, for instance, on the Diffie-
Hellman key agreement where the algebraic properties of modular exponentia-
tion are necessarily part of the operational semantics, since the key exchange
would be non-executable in the free algebra. For practical purposes, one can
augment the semantics with support for just this special example like [Mod14],
but a general and mathematically succinct and rigorous theory is desirable.

In this work, we introduce a semantics for an arbitrary set of operators and
their algebraic properties. Despite this generality, the semantics is a much more
succinct and mathematically simple definition than in all the previous work (it
fits on half a page) because it is based on a few general and uniform principles
to define the behavior of the participants. This semantics was inspired by the
similar work of [Möd09, CR10], which we further simplify considerably. Our
semantics is also subsuming the previous works in the free algebra and lim-
ited algebraic reasoning, as they are instances of our semantics for a particular
choice of operators and algebraic properties (although this is not easy to show
as explained below). We thus see our semantics as one of our main contribu-
tions since, from a mathematical point of view, a simple general principle that
subsumes the complex definitions of many special cases is the most desirable
property of a definition.

Our simple mathematical semantics, however, cannot be directly used as a trans-
lator from Alice-and-Bob notation to formal models or implementations since it
entails an infinite representation and several of the underlying algebraic prob-
lems are in fact not recursive in general. We thus consider a particular set of
operators and their algebraic properties that supports a large class of protocols,
including modular exponentiation and multiplication. Our considered theory
not only subsumes the theories of previous works, but also clarifies subtle de-
tails of the behavior of operators that were left implicit previously. For this
theory, we define a low-level semantics that is much more complex than the
mathematical high-level one but it is computable, and we formally prove that
the low-level semantics is a correct implementation of the high-level one. The
division into a simple mathematical high-level semantics as a “gold standard”
and a low-level “implementable” semantics not only allows for a reasonable cor-
rectness criterion of the low-level semantics, but also it is in our opinion a major
advantage over previous works that are a blending between mathematical and
technical aspects.

To make our work applicable in practice, we have designed the Security Proto-
col Specification language SPS as a variant of existing Alice-and-Bob languages
that contains many novel features that are valuable in practice. In particular,
our notion of formats allows us to integrate the particular way of structuring
messages of real-world protocols like TLS, rather than academic toy implemen-
tations; at the same time, we can use a sound abstraction of these formats in the
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formal verification. We have implemented the low-level semantics in a translator
that can generate both formal models in the input languages of popular security
protocol analysis tools, (e.g., Applied π calculus for ProVerif [Bla01, BS11] or
AVISPA IF for AVANTSSAR [AAA+12]) and implementations in JavaScript
for the execution environment of the FutureID project (www.futureid.eu). We
have demonstrated practical feasibility with a number of major and minor case
studies, including TLS and the EAC/PACE protocols used in the German eID
card.

Part of the SPS compiler is the APCC: Automatic Protocol Composition Checker
that implements our relative soundness results. Relative soundness results, in
general, have proved helpful in the automated verification of security protocols
as they allow for the reduction of a complex verification problem into a simpler
one, if the protocol in question satisfies sufficient conditions. These conditions
are of a syntactic nature, i.e., can be established without an exploration of the
state space of the protocol.

A first kind of relative soundness results are typing results [HLS03, BP05,
Möd12a, AD14]. In this work, we consider a typed model : a restriction of
the standard protocol model in which honest agents do not accept any ill-typed
messages. This may seem unreasonable at first sight, since in the real-world
agents have no way to tell the type of a random bitstring, let alone distinguish
it from the result of a cryptographic operation; yet in the model, they “magi-
cally” accept only well-typed messages. The relative soundness of such a typed
model means that if the protocol has an attack, then it also has a well-typed
attack. This does not mean that the intruder cannot send ill-typed messages,
but rather that this does not give him any advantage as he could perform a
“similar” attack with only well-typed messages. Thus, if we are able to verify
that a protocol is secure in the typed model, then it is secure also in an un-
typed model. Typically, the conditions sufficient to achieve such a result are
that all composed message patterns of the protocol have a different (intended)
type that can somehow be distinguished, e.g., by a tag. The restriction to a
typed model, in some cases, yields a decidable verification problem, allows for
the application of more tools and often significantly reduces verification time in
practice [BP05, AC04].

Another kind of relative soundness results appears in compositional reasoning.
Here, we consider the parallel composition of protocols, i.e., running two proto-
cols over the same communication medium, and these protocols may use, e.g.,
the same long-term public keys. (In the case of disjoint cryptographic material,
compositional reasoning is relatively straightforward.) The compositionality re-
sult means to show that if two protocols satisfy their security goals in isolation,
then their parallel composition is secure, provided that the protocols meet cer-
tain sufficient conditions. Thus, it suffices to verify the protocols in isolation.

www.futureid.eu
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The sufficient conditions in this case are similar to the typing result: every com-
posed message can be uniquely attributed to one of the two protocols, which
again may be achieved, e.g., by tags.

The contributions of the second part of the thesis are twofold. First, we unify
and thereby simplify existing typing and compositionality results: we recast
them as an instance of the same basic principle and of the same proof tech-
nique. In brief, this technique is to reduce the search for attacks to solving
constraints in a symbolic model. For protocols that satisfy the respective suffi-
cient conditions, constraint reduction will never make an ill-typed substitution,
while for compositionality “ill-typed” means to unify messages from two differ-
ent protocols.

Second, this systematic approach also allows us to significantly generalize exist-
ing results to a larger set of protocols and security properties. For what concerns
protocols, our soundness results do not require a particular fixed tagging scheme
like most previous works, but use more liberal requirements that are satisfied
by many existing real-world protocols like TLS.

While many existing results are limited to simple secrecy goals, we prove our re-
sults for the entire geometric fragment suggested by Guttman [Gut14]. We even
augment this fragment with the ability to directly refer to the intruder knowl-
edge in the antecedent of goals; while this does not increase expressiveness, it is
very convenient in specifications. In fact, handling the geometric fragment also
constitutes a slight generalization of existing constraint-reduction approaches.

Synopsis

This thesis is organized in two parts. The first part is “Protocol Specification,
Implementation and Verification”; in this first part we proceed as follows: we
define the syntax and semantics of SPS in Chapters 2 and 3 respectively. Then
we discuss the connections from SPS to implementations and to formal models
in Chapter 4. We give case-study protocols in Chapter 5, and discuss the related
work of the first part in Chapter 6.

In the second part of the thesis titled “Protocol Composition”, we introduce
a symbolic protocol model based on strands in Chapters 7 and 8. Then we
define security properties in the geometric fragment and how to reduce their
verification to solving constraints. In Chapter 9, we give our typing and parallel
compositionality results, we also introduce APCC : a tool that checks if protocols
are parallel-composable. We discuss the related work of the second part in
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Chapter 10. Finally, we conclude the thesis Chapter 11.
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Chapter 2

SPS Syntax

In this chapter we introduce the syntax of SPS using a running example that
illustrates the main features of SPS. A protocol specification in SPS consists of
several sections. Each section describes an aspect of the protocol, for example
in the Goals section we specify the goals a protocol is supposed to achieve,
while in the Actions section we specify the actions that agents perform in a
protocol, e.g., the messages that the agents exchange. This chapter proceeds as
follows: in Section 2.1 we give the running example and the grammar of SPS.
In Section 2.2 we list of predefined types and operators of SPS and how the
user can customize them. We give more details about the channels that we
have in SPS in Section 2.3. Section 2.4 includes the context-sensitive properties
of SPS. We introduce the operational strands in Section 2.5 being the target
language upon which we define the semantics of SPS. In Section 2.6 we explain
the preprocessing steps that we perform on SPS specifications before translating
them to operational strands. We conclude this chapter in Section 2.7.

2.1 Example and Grammar

In our running example, shown in Listing 2.1, two agents A and B use a symmetric
key shk(A, B) to establish a fresh Diffie-Hellman key and securely exchange a
Payload message.
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Protocol: example

Types:

Agent A,B;

Number g, Payload , X, Y;

Mappings:

shk: Agent ,Agent -> SymmetricKey;

Formats:

f1(Agent , Agent , Msg);

f2(Number);

Knowledge:

A: A, B, shk(A,B), g;

B: A, B, shk(A,B), g;

Actions:

A : Number X

A -> B : scrypt(shk(A,B), f1(A,B,exp(g,X)))

B : Number Y

B -> A : scrypt(shk(A,B), f1(B,A,exp(g,Y)))

A : Number Payload

A -> B : scrypt(exp(exp(g,Y),X), f2(Payload))

Goals:

Payload secret of A,B

Listing 2.1: Example Protocol in SPS

Now we give an overview of each section that appears in the SPS specification
of the running example shown in Listing 2.1. Later, we explain all the sections
of an SPS specification (including the ones that appear in the example).

1. Protocol section: the user gives a name to the specified protocol.

2. Types section: the user declares the identifiers of the protocol, and asso-
ciates them with types, i.e., agents, symmetric keys, etc..

3. Mappings section: the user declares the mappings that we use in a proto-
col. A mapping is used to relate different protocol objects to each other
e.g., an agent to its public key, or a public key to its private key.

4. Formats section: the user specifies the structure of plain data.

5. Knowledge section: the user shows the initial knowledge of each participant
of the protocol.
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6. Actions section: the user specifies exchanged messages and fresh data in
an ideal run of the protocol.

7. Goals section: the user specifies the goals that the protocol is supposed
to achieve, e.g., the secrecy of a message.

We give the syntax of SPS in EBNF, where we set all meta-symbols in blue
and write Xs (for a non-terminal symbol X) to denote a comma-separated list
X(,X)∗ of X elements; Const and Func are alphanumeric strings starting
with a lower-case letter (e.g., g and scrypt in the example) and Var is an
alphanumeric string starting with an upper-case letter (e.g., X in the example).

SPS ::= [Protocol : Ident]

Types : (Type Idents; )∗

[Mappings : (Func : Types→ Type; )∗]

[Formats : (Func(Types); )∗]

[Macros : (Msg = Msg; )∗]

Knowledge : (Role : Msgs; )∗

[where Role 6= Role ( & Role 6= Role )∗]

Actions : ( Role Channel Role : Msg

| Role : Type Var

| let Ident = Msg)∗

Goals : ( Role authenticates Role on Msg

| Msg secret of Roles )∗

[Private : Msgs]

Msg ::= Const | Var | Func(Msgs)

Ident ::= Const | Var | Func
Role ::= Const | Var
Type ::= Agent | Number | PublicKey | PrivateKey

| SymmetricKey | Bool | Msg
Channel ::= [ • ]→ [ • ]

We begin our explanation with the atomic elements: constants (Const) and
variables (Var). One may think of the variables as parameters of a protocol
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description that must be instantiated for a concrete execution of the protocol;
in our example, the variables A and B shall be instantiated with concrete agent
names such as a, b or the intruder i, whereas X and Y should be instantiated
with random numbers that are freshly chosen by A and B, respectively. Now we
explain the SPS specification section-by-section.

Protocol Section:

This section gives a name to the protocol. The name of our example protocol
is example. As it has no semantical significance, it is an optional section, i.e.,
the user may skip naming his protocol.

Types Section:

In the Types section, all constants and variables are declared with one of the
pre-defined types, where the type Msg subsumes all types. By default, the
interpretation of SPS is untyped, i.e., types are used only by the SPS translator to
check that the user did not specify any ill-typed terms. The types can however be
used to generate a more restrictive typed model and under certain conditions this
restriction is without loss of attacks as we show in the second part of this thesis.
The type Agent has a special relevance: we call the variables of this type roles,
and the symbol Role in the above grammar must only be used for identifiers
of type Agent. (This is an additional check that we cannot directly express in
a context-free grammar.) A proper instantiation of roles must guarantee that
each role can be played by any agent (including the intruder); we give more
details on how we achieve this instantiation in Section 4.2.

While the semantics of Alice-and-Bob style languages that we give in the next
section is generic for an arbitrary set of function symbols and their algebraic
properties, the concrete implementation of SPS is for a set of fixed cryptographic
function symbols. These are asymmetric and symmetric encryption functions
(crypt and scrypt), digital signatures (sign), hash and keyed-hash functions
(hash and mac), and modular exponentiation (exp) and multiplication (mult).
There are of course corresponding operations for decryption and verification,
but these are not part of an SPS specification; instead, their use is derived by
the SPS translator according to the semantics in the next section.
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Mappings Section:

In the Mappings section, one can specify a special kind of function symbols.
These do not represent any actual operation that honest agents or the intruder
can perform, but are used to describe the pre-existing setup of long-term keys.
In our example, the mapping shk assigns to every pair of agents a unique value
of type symmetric key; this is the easiest way to define shared keys for agents—
including the intruder who will then share keys shk(i, A) and shk(A, i) with every
other agent A. Public key infrastructures can be modeled in a similar way.

Formats Section:

In the Formats section, one can specify a third kind of function symbols called
formats. They abstractly represent how the concrete implementation structures
the clear-text part of a message, such as XML-tags or explicit message-length
fields. A format thus basically represents a concatenation of information, but in
contrast to a plain concatenation operator as in other formal languages, the ab-
stract format function symbols allow us to generate implementations with real-
world formats such as TLS (see below). In the example, we have two formats: f1
is used to exchange the Diffie-Hellman half-keys together with the agent names,
and f2 indicates the transmission of the Payload message. For simplicity, we
model a payload message using a fresh random number Payload, representing
a placeholder for an arbitrary message (depending on the concrete application);
alternatively, this could be modeled using a mapping (e.g., payload(A, B)) that
A knows initially and sends to B after the key establishment.

The three kinds of function symbols are thus: the cryptographic function sym-
bols, the mappings and the formats. Except for the mappings, these are all
public: all agents, including the intruder, can apply them to messages they
know. Additionally, formats are transparent : every agent can extract the fields
of a format. We can now build composed messages with these function symbols,
where we assume the additional check that all SPS messages are well-typed (and
are used with the proper arity). We discuss the details of the type expressions
in the “Protocol Composition” part of this thesis (Chapters 7—9).
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Macros Section:

To keep our running example concise and short, we have not include a Macros

section to it. However, in the case of lengthy protocol specifications, this section
is very useful as it improves readability and abbreviation. For example, suppose
we added to our example this code:

Macros:

aMacro(A1,A2,N)=scrypt(shk(A1 ,A2), f1(exp(g,N)))

Then we can replace the line:

A -> B : scrypt(shk(A,B), f1(A,B,exp(g,X)))

with an abbreviated version of it as follows:

A -> B : aMacro(A, B, X)

This is also applicable to the next line where B → A and the abbreviation
becomes more obvious with lengthy specifications like the protocols that we
specify in our case studies (Chapter 5.2).

To handle the macros that appear in a message, we simply replace the message
with a macro with a new one in which we “unfold” all macros. This is so because
macros have no effect on the semantics of the specification, i.e., the two lines of
code that we presented above are semantically equivalent.

Note that in a macro declaration, variables on the right hand side must ap-
pear on the left hand side of the equal sign (recall that upper-case identifiers
represent variables in SPS). Another way to provide code abbreviation is the
let statement that we explain in the Actions section (as they occur there).
Finally, note that we have another type of macros that will appear in the op-
erational strands: the target language that we translate SPS to and that we
discuss later in this chapter. Accordingly, from now on, we call this type of
macros “syntax-macros”, while the other type that we introduce later will be
called strand-macros or shortly macros.
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Knowledge Section:

In the Knowledge section, we specify the initial knowledge of each of the protocol
roles. This is essential as it determines how (and if) honest agents can execute
the protocol. For instance, if in the example we were to omit the item shk(A, B)
in the knowledge of role B, then B could not decrypt the first message from A and
thus not obtain A’s half key. Moreover, in the next step, B could not build the
response message for A. Also, as we will define below, this specification indirectly
determines the initial knowledge of the intruder: if a role is instantiated with i,
then the intruder obtains the corresponding knowledge (in our case, all shared
keys shk(A, B) where A = i or B = i). We require that all variables in the
knowledge section be of type Agent. Finally, one can optionally forbid some
instantiations of the roles, e.g., by the side condition A 6= i or A 6= B.

Actions Section:

The Actions section is the core of the specification as in it we specify the mes-
sages that are exchanged between the roles of a protocol. In addition to message
exchanges, we also specify freshly created values and in-line abbreviations as fol-
lows:

1. Fresh values: we specify here explicitly when agents freshly create new
values. In our example, A first creates the secret exponent X for the Diffie-
Hellman exchange, computes the half-key exp(g, X), inserts it into format
f1 and encrypts the message with the shared key shk(A, B) to compose the
message scrypt(shk(A, B), f1(A, B, exp(g, X))).

2. Message exchange: In the exchange, a token-passing order must be
followed, i.e., the receiver of the previous message is the sender of the
next one.1 In reference to our example, in order to send the message
scrypt(shk(A, B), f1(A, B, exp(g, X))), A uses the standard insecure channel
(denoted with →) on which the intruder can read, intercept, and insert
messages arbitrarily. SPS also supports a notion of authentic, confidential,
and secure channels as in [Möd09], denoted with •→ , →• and •→• ,
respectively. For instance, one may specify the exchange of the half-keys
using authentic channels (without the encryption) where the intruder can
see messages, but not insert messages except under his real name. This
represents the assumption that the messages between A and B cannot be

1Given a protocol that initially does not follow the token-passing order, we can rewrite it
as is standard, e.g., adding dummy messages to ensure this type of message flow.
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manipulated by an intruder, e.g., in device pairing of mobile devices, when
A and B meet physically in a public place. The assumptions are reflected
only in the formal model (by restricting the intruder behavior on such
channels), while in the implementation it is the duty of the surrounding
software module to connect a properly secured channel to the protocol
module.

3. In-line abbreviation: The let statement is the second way to provide
code abbreviation in addition to the Macros section, we call this kind
of abbreviation in-line. To improve specification readability in SPS and
prevent code repetition, we support two syntactical ways that the user may
use to abbreviate lengthy messages and reuse repeated message patterns.
The second way to support specification readability in SPS is the use
of let statements in the Actions section. A let statement is a non-
parameterized abbreviation method (i.e., has no argument as opposed to
macros). It is placed in the Actions section and applicable to all actions
that follows it, i.e., it provides a local abbreviation and not applicable to
the whole specification in contrast to the macros.

One last point about the Actions section is that it shows the simplicity of
an SPS specification, i.e., this section is very similar to the way one would
informally describe a protocol in Alice and Bob notation.

Goals Section:

In the Goals section, we specify the goals the protocol aims to achieve. SPS
provides built-in goals for the standard secrecy and authentication goals. In
general, we instrument the description with events that reflect what is happening
during the protocol execution, e.g., the event secret(A, B, Payload)2 reflects that
Payload is supposed to be a secret between A and B. We then define attack
states as predicates over these events. The events allow us to formulate security
goals in a protocol-independent way rather than referring to the messages of the
protocol.

2Strictly speaking, we should write event(secret(A, B, Payload)) but, for readability, here
and below we will omit the outer event(·) when it is clear from context.
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Private Section:

In the final Private section, we specify the long-term secrets of a protocol, e.g.,
private keys. This section is mainly for the compositional reasoning of protocols
that we discuss in more details in Chapters 7—9.

2.2 Operators and Types

Now we list all the predefined operators and types in SPS language. Those are
considered as keywords in SPS.

Operators

The list of the predefined operators is:

1. Functions (public operators):

• scrypt(·, ·) for symmetric key encryption.

• crypt(·, ·) for asymmetric key encryption.

• sign(·, ·) for signing messages.

• exp(·, ·) for modular exponentiation, we omit the modulus for ease of
notation.

• mult(·, ·) modular multiplication, we also omit the modulus for ease
of notation.

• hash(·) for message hashing.

• mac(·, ·) for message authentication code.

Note that we do not specify the decryption and verifying operators here
(e.g., the symmetric decryption operator or the signature verifier operator)
as those are not allowed to appear in the SPS specification. Instead, the
main task of the SPS semantics is to find them. The user is only supposed
to specify the exchanged message between different agents in a protocol,
then the actual action of message decomposition/decryption, checking is
defined by the semantics as we show later in Chapter 3.

2. Mappings (private operators):
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• pk: Maps an agent to a public key. For example pk(A) gives the
public key of the agent A.

• inv: Maps a public key to its private key. inv(pk(A)) gives the
private key of A.

• shk: Maps two agents to a relation of both, it can be used to represent
a key shared between them.

Note that the use of mappings allows us to systematically generate proper in-
stantiations for formal models as we explain in Chapter 4. Finally, we would
like to point out that we allow users to add their own mappings, formats and
one-way functions, by simply adding them to the corresponding sections as we
discussed earlier in this chapter.

Types

The predefined data types of SPS are as follows:

1. Agent: Used to declare agents. Agent type is special in the sense that
a special constant this type is i and represents the intruder. All other
constants of this type (called honest agents hereafter) represent honest
agents, and they cannot be instantiated with any other agent including
the intruder i. Variables of this type (called roles hereafter) can be either
honest or not; and can be instantiated with the agent i or any other
concrete agent.

2. PublicKey: Used to declare public keys.

3. Number: Used to declare number identifiers such as an exponent or a group
element.

4. Nonce: Used to declare random numbers.

5. SymmetricKey: Used to declare symmetric keys.

6. Msg: A generic data type used to in the untyped model. It represents
the data type of composed messages, i.e., the data-type of sign(k,m)
in the untyped model is Msg. However, in the typed model, the type of
sign(k,m) is sign(PrivateKey, Number) given that k is of type PrivateKey
and m is of type Number. The details of the typed model will be given in
Chapter 7.
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Customization of SPS operators and types

As we mentioned earlier, the primary goal of SPS is to generate implementa-
tions and formal models for real-world protocols and that both generated results
coincide. In order to generate more realistic implementations from SPS spec-
ifications, SPS allows the user to customize the operators and types. With
customization we mean the ability to specify attributes of the operator or type,
e.g., the size of the type Number or the algorithm used for the symmetric encryp-
tion scrypt. A user can customize an operator (or a type) simply by adding an
annotation to it in the style of a comma-separated list of name/value pairs. In
each of these pairs, the name must be a string, while the value can be numeric
or a term, a string enclosed in double quotation marks, or a term that was
previously used in the SPS specification. Consider the following code examples:

• A : SymmetricKey[size = 2048] K
means that the agent A creates a symmetric key K that has the size of
2048 bits.

• A→ B : p1, p2
B→ A : crypt[algorithm = p1, keysize = p2](k, Hi)
means that A first sends to B the two parameters p1 and p2, then B sends
to A the message Hi encrypted with the public key k using the encryption
algorithm and the keysize specified in p1 and p2 respectively. This can
be seen in the context of a negotiation stage of a protocol, in which one
participant sends to the other his preferences and the other comply with.

Note that this customization affects only the generated implementation and
not the formal model; we think that the elimination of such fine details is an
accepted over-approximation at least in the symbolic model.

2.3 Channels

In SPS, we distinguish between several types of channels:

1. Insecure channel: A → B : M represents the default insecure channel
from A to B, controlled by the intruder. Intruder can read, send under
any sender’s name, and intercept messages.
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2. Authentic channel: A •→B : M represents an authentic channel from A
to B. Here B is guaranteed that the message is sent from A (and meant
for B). However, the intruder can see the message M .

3. Confidential channel: A→•B : M means that A has the guarantee that
only the intended receiver B can see the message M . However, B has no
guarantee of authenticity.

4. Secure Channel: A •→•B : M represents an authentic and confidential
channel.

5. Pseudonymous channels: [A]ψ •→•B : M and B •→• [A]ψ : M . This
represents a secure channel, but with an unauthenticated party A that
acts under pseudonym ψ. This is different from a channel where the end-
point A is simply not secured, i.e., A→•B or B •→A, because the channel
is bound to pseudonym ψ. The idea is to model channels like the ones we
get from TLS without client authentication: we have a secure line between
a client and a server, but the identity of the client is not proved. However,
an intruder cannot hack into this line any more. This is crucial when the
client uses the channel for a login to authenticate itself. We also allow to
drop the notation ψ of the pseudonym if not relevant for the protocol: it
then means that at the beginning of each protocol run, each pseudonymous
user picks a fresh pseudonym to use throughout the session.

6. Mutual pseudonymous channel [A]ψ •→• [B]ϕ : M represents a secure
channel with both parties unauthenticated to each other. Each partic-
ipant is under a pseudonym (A under ψ and B under ϕ that can be both
dropped as in the previous channel type).

2.4 Context-Sensitive Properties

Now we present some of the properties of SPS syntax that we did not express
in the grammar previously. SPS is case-sensitive and any line that starts with
# is a comment. More precisely, whatever lies between a # and the end of the
line is a comment. The only variables that may appear in the initial knowledge
of any agent (the Knowledge section) must be of type Agent. The identifiers
cannot be reused, e.g., an identifier defined as a constant cannot be re-defined
as a format. The arity of a user-defined function is derived from the first occur-
rence of that function, i.e., if the user declares a function in the Types Section,
and he uses it with four arguments in the first occurrence, then it must be
consistently used with four arguments. The arity of a format is the number of
fields in its declaration. The arity of pre-defined operators is fixed, e.g., scrypt
and exp take two arguments. In case the user wants to encrypt a message of
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three fields, then he needs to use a format. i.e., instead of crypt(k ,m1 ,m2 )
use crypt(k , f2 (m1 ,m2 )) where f2 is a format with two arguments. Formats,
mappings and functions must be used with the proper arity, e.g., a format de-
clared with three arguments must be always given three arguments. The atomic
messages that appear on the right-hand side of a macro declaration must be
bound, i.e., they must be either declared previously in the Types section or oc-
cur on the left-hand side of the macro declaration. For example, the declaration
aMacro(X,Y ) = f1(A,B, c,X, Y ) is not accepted by the SPS compiler unless
A,B and c are previously declared in the Types section.

2.5 Operational Strands

As a preparation for defining the SPS semantics, we first define the target lan-
guage that we call operational strands. We define operational strands as an ex-
tension of the popular strands [THG99]. In the original definition of [THG99],
a strand denotes a part of a concrete protocol execution, namely, a sequence
of ground messages that an agent sends and receives. Our operational strands
extends the strands of [THG99] with several notions that we explain shortly.

The Syntax of Operational Strands

The syntax of operational strands is a slight extension of the well-known strand
spaces:

Strand ::= Knowledge: ( send(Channel,Msg). | receive(Channel,Msg).
| event(Msg). | Msg

.
= Msg. | Var:=Msg. | fresh Var. )∗ 0

The non-terminals Channel, Msg, and Var are as in the SPS syntax. Knowl-
edge, typically denoted by M in concrete strands, stands for a knowledge as
defined in Definition 3.2, i.e., a substitution from label variables to protocol
terms. We may omit this knowledge prefix of an operational strand when not
relevant, as it is mainly used as an annotation in the semantics of SPS. More-
over, operational strands may include equations on messages that we discuss
later in Section 8.2.

Finally, we have a restricted version of operational strands that we call plain
strands. Each agent of a protocol has his own plain strand that shows how the
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protocol looks like from the point of view of that agent in an ideal protocol run:
what messages it is supposed to send and what messages it receives. Unlike
operational strands, plain strands do not give the exact details of how messages
should be derived or checked. Syntactically speaking, plain strands do not
include equalities. Moreover, the set of variables that occur in plain strands are
disjoint from the ones that appear in operational strands, but these details will
be given later. Plain strands are the result of the first step towards the definition
of our operational semantics. This step is simply splitting the SPS specification
into a strand for each agent. From now on we say plain strand when we strictly
refer to one of the non-detailed strands, otherwise we use strand or operational
strand to refer to the full version of operational strands. A concrete example
of a plain strand is shown Figure 2.2, and the splitting step is indicated by the
dotted line in Figure 2.1. Furthermore, we give in Figure 3.1 the plain and
operational strands of the agent A of our example protocol. The goal of SPS
semantics is to translate plain strands to operational strands; we give the formal
details of this translation in and operational strands in Chapter 3.

We extend the strands of Guttman [THG99] as follows:

First, send and receive steps can be annotated with a channel. Recall that
SPS supports default insecure channels as well as authentic, confidential and
secure ones. For the SPS semantics, this is only a label on the channels that
is left unchanged in the translation; for the semantics of operational strands,
the channels mean a restriction on the operations that the intruder can perform
on the channel as explained in Section 3.5. In the following, we use a textual
representation for strands for simplicity and brevity. We write send(ch, t) and
receive(ch, t) for sending and receiving message t over channel ch. For example
the plain strand for A in Figure 2.2 would be written as: (Let MA be the initial
knowledge of A.)
MA : fresh X.send(ch, scrypt(shk(A, B), f1(A, B, exp(g, X)))).

receive(ch, scrypt(shk(A, B), f1(B, A, exp(g, Y)))).
fresh Payload.send(ch, scrypt(exp(exp(g, X), Y), f2(Payload)).
event(secret(A, B, Payload)))

Second, we annotate each strand with the initial knowledge of the role it rep-
resents, denoted by a box above the strand (we define knowledge formally in
Definition 3.2). The annotation has no meaning for the behavior of strands
and is only needed during the translation process. In textual representation, we
write the annotation with the knowledge M as M : steps at the beginning of
the strand as we shown in the previous example.

Third, recall that the original strand spaces are used to characterize sets of
protocol executions and contain only ground terms. In contrast, we use them
like a “light-weight” process calculus: terms may contain variables (representing
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input3Dots

A : X1 7→ A, X2 7→
B, X3 7→ shk(A, B),
X4 7→ g

B : X1 7→ A, X2 7→
B, X3 7→ shk(A, B),
X4 7→ g

fresh X

◦
scrypt(shk(A, B), f1(A, B, exp(g, X)))

// ◦
fresh Y

◦ oo
scrypt(shk(A, B), f1(B, A, exp(g, Y)))

◦
fresh Payload

◦
scrypt(exp(exp(g, X), Y), f2(Payload))

// ◦

secret(A, B, Payload) secret(A, B, Payload)

1

Figure 2.1: The Example Protocol as a Message Sequence ChartinputA

A : X1 7→ A, X2 7→
B, X3 7→ shk(A, B),
X4 7→ g

fresh X

◦
scrypt(shk(A, B), f1(A, B, exp(g, X)))

//

◦ oo
scrypt(shk(A, B), f1(B, A, exp(g, Y)))

fresh Payload

◦
scrypt(exp(exp(g, X), Y), f2(Payload))

//

secret(A, B, Payload)

input1

fresh X

◦
scrypt(shk(A, B), f1(A, B, exp(g, X)))

// ◦
fresh Y

◦ oo
scrypt(shk(A, B), f1(B, A, exp(g, Y)))

◦
fresh Payload

◦
scrypt(exp(exp(g, X), Y), f2(Payload))

// ◦

1

Figure 2.2: The Plain Strand of A
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values that are instantiated during the concrete execution). Also, we have the
construct fresh X where the variable X will be bound to a fresh value. An
important requirement is that operational strands are closed in the following
sense: every variable must be bound by first occurring in the initial knowledge,
in a fresh operation, in a strand-macro (that we introduce shortly), or in a
receive step. A bound variable must not occur subsequently in a fresh operation
(i.e., it cannot be “re-bound”). In contrast, a bound variable may occur in a
subsequent receive step, meaning simply that the agent expects the same value
that the variable was bound to before.

Fourth, we extend strands with events (predicates over terms) to formulate
security goals in a protocol-independent way. For instance, as we already re-
marked above, we may use the event secret(A, B, Payload) to express that mes-
sage Payload is regarded as a secret between protocol roles A and B. Then we
can define (independent of the concrete protocol) a violation of secrecy as a
state where the intruder has learned Payload but is neither A nor B. We do not
give here more details on goals, because from a semantical point of view we just
treat the events as if they were messages on a special channel to a “referee” who
decides if the present state is an attack; the handling of these events is uniform
for a wide class of goals (explained in the second part of this thesis) and only
limited by the abilities of current verification tools. In textual representation,
we will simply write event(t) where t is a term characterizing the event.

Fifth, we add checks of the form s
.
= t. The meaning is that the agent can

only continue if the terms s and t are equal and aborts otherwise. Also, we have
strand-macros of the form Xi := t, which mean that we consider the same strand
with all occurrences of Xi replaced by t. This is helpful for generating protocol
implementations, because the result of a computation t is stored in a variable
Xi and does not need to be computed again later. Note that strand-macros are
different from the syntax-macros that we presented in the SPS specification (in
Macros section), the latter are abbreviations that occur in the SPS specifications
while the strand-macros are the ones that occur in the strands. From now on,
we use the term macros to refer to the strand-macros.
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We define the free variables of an operational strand as follows:

fv(M : steps) = fv(steps) \ dom(M)

fv(send(ch, t).rest) = fv(ch) ∪ fv(t) ∪ fv(rest)
fv(receive(ch, t).rest) = (fv(rest) \ fv(t)) ∪ fv(ch)

fv(event(t).rest) = fv(t) ∪ fv(rest)
fv(s

.
= t.rest) = fv(s) ∪ fv(t) ∪ fv(rest)

fv(x := t.rest) = (fv(rest) \ {x}) ∪ fv(t)
fv(fresh x.rest) = fv(rest) \ {x}

fv(0) = ∅
fv(x) = {x}

fv(f(t1, . . . , tn)) = fv(t1) ∪ . . . ∪ fv(tn)

We require that all operational strands are closed, i.e., all variables, before
being “used”, are bound by occurring in the knowledge, in a received message,
or in a fresh step. Further, a bound variable cannot occur in a fresh step (e.g.,
fresh x.fresh x.0 is not allowed) or a macro (e.g., x := x cannot occur in a
strand, since then x is bound earlier, violating that it cannot be re-bound, or
x is a free variable of the strand). When a bound variable occurs in a receive
step, it is not “re-bound”, i.e., receive(ch, x).receive(ch, x).rest by the following
semantics will be equivalent to receive(ch, x).receive(ch, y).x

.
= y.rest . A formal

definition of operational strands can be given as a process (interacting with a
given environment). We define the semantics of operational strands at the end
of the next chapter (namely in Section 3.5) as it relies on some definitions that
we need to give first.

2.6 Preprocessing of SPS Specification

In the next chapter (Chapter 3), we define the semantics of SPS by a translation
to operational strands. Before that translation can take place in the compiler,
we need to perform a preprocessing stage on the SPS specification. This stage
aims at removing the details that do not affect the semantics. The steps of this
preprocessing stage are as follows.

1. Translation to plain strands: in this step we split the SPS specification
into several plain strands (a plain strand for each participant of the pro-
tocol). This step does not define the exact actions of each participant,
instead it only specifies the protocol specification from the point of view
of one participant. This step is also referred elsewhere as end-point projec-
tion [CHY07, BBD+05] . In reference to our example shown in Listing 2.1
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and depicted as a message sequence chart (MSC) in Figure 2.1, the result
of this step is the two plain strands of the agents A and B, and we show
the plain strand of A in Figure 2.2.

2. Type checking: we make this step optional for users who would like to
apply a sanity check over the data types and their consistency throughout
the specification. This step results in error messages in case of type flaws
occurring in the specifications. More details about the typed model of
SPS is found in Chapter 9.

3. Unfold syntax-macros and let statements: As both of them are just for
abbreviation and have no semantical significance, we perform a prepro-
cessing step of unfolding syntax-macros and let statements. i.e., we sim-
ply replace them wherever they occur in the specification with what they
abbreviate.

4. Channel preprocessing: Since we support different channel types in pro-
tocol specification, we perform a channel preprocessing step in which we
model channels via cryptographic operations, e.g., signing for authentic
channels as in [MV09a].

2.7 Summary

In this chapter we introduced the syntax of SPS using a running example and the
grammar of the language. Of the many modeling features that we have in SPS,
we introduced the formats that abstractly represent how concrete implemen-
tations structure the clear-text of a message. Mappings are another modeling
feature of SPS that allows for a proper instantiation of agents needed for in-
stance in key distribution. We listed the pre-defined primitives and types, and
we also specified the channels that we support in SPS. We explained the context-
sensitive properties to conclude the syntax of SPS. We also presented the syntax
of the operational strands, being the target language that we translate SPS to
it in order to the semantics of SPS in the next chapter. Before we perform this
translation, we need to run a preprocessing step on SPS specifications that we
have explained as well. In the next chapter, we define the semantics of SPS.



Chapter 3

SPS Semantics

In Chapter 2 we described the SPS syntax for a fixed set of cryptographic op-
erators (for which we give a fixed set of algebraic equations). We also described
the syntax of the operational strands being the target language that we define
the semantics of SPS upon. In this chapter, we give a semantics that is pa-
rameterized over an arbitrary set of operators and algebraic properties, inspired
by [Möd09, CR10]. One of the main contributions of our work is to give this
general definition of a semantics for Alice-and-Bob style languages in a concise,
mathematical way that is based on a few simple, general principles shown in
Sections 3.1—3.3. The semantics is a function from SPS to operational strands
(via plain strands); this function is in general not recursive because many of
the underlying algebraic reasoning problems are not. The value of this general
definition is its simplicity and uniformity: this is in fact the best mathematical
argument why to define a concept in a particular way and not differently. In
Section 3.4, we then show that we can actually implement this semantics for
the operators of SPS; in fact, we define a “low-level” semantics that is a com-
putable function from SPS to operational strands and prove that it coincides
with the general “high-level” semantics. In Section 3.5, we define the semantics
of operational strands as an infinite transition system based on the definitions
that we give in the previous sections.
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3.1 Message Model

We define messages as algebraic terms and use the words message and term
interchangeably. We distinguish between two kinds of messages: (1) the protocol
messages that appear in an SPS specification and (2) labels (or recipes) that are
the messages in the strands which the semantics translates to. It is necessary
to make this distinction as the SPS specification reflects the ideal protocol run,
while the semantics reflects the actual actions and checks that an honest agent
performs in the run of the protocol. For the same reason, we will also distinguish
between two kinds of variables: protocol variables and label variables.

Definition 3.1 A message model is a four-tuple (Σ, V,L,≈). Σ is a countable
set of function symbols, all denoted by lower-case letters, where: Σ0 ⊆ Σ is
a countable set of constants, Σp ⊆ Σ is a finite set of public operators such
as public-key encryption, and Σm ⊆ Σ is a finite set of mappings (or private
operators), disjoint from Σp. We assume a global public constant > ∈ Σp ∩Σ0.
V is a countable set of protocol variables. L = {X1,X2,X3 . . .} is a countable
set of label variables disjoint from Σ and V . ≈ is a congruence relation over
ground terms over Σ (i.e., terms without variables), which are denoted by TΣ.
A term is thus a constant, a variable, or an application of a function f (f ∈ Σ)
of arity n on n terms. We write TS(A) for the set of terms over a signature S
and variables from set A.

As we define a deduction relation below, the public operators in Σp are those
functions that every agent and the intruder can apply to messages they know,
i.e., the cryptographic operators (including operators for decryption that do not
occur in the SPS specification) and the non-cryptographic formats. In contrast,
the mappings in Σm are private, like shk in our example protocol that maps
from two agents to their shared secret key, or inv that maps from public to
private keys.

Example 3.1 As a concrete example of a message model that is representa-
tive for a large class of security protocols, let Σp contain all operators of the
equations in Table 3.1, where ≈ is the least congruence relation satisfying the
equations. For instance, scrypt represents symmetric encryption, dscrypt is
the corresponding decryption operator and vscrypt is a verifier: given a term t
and a key k, it tells us whether t is a valid symmetric encryption with key k.
This models the fact that most symmetric ciphers include measures to detect
when the decryption fails (e.g., when it is actually not an encrypted message or
the given key is not correct) and in concrete implementations this verification
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Table 3.1: Example of an equational theory ≈

(1) dscrypt(k , scrypt(k ,m)) ≈ m
(2) vscrypt(k , scrypt(k ,m)) ≈ >
(3) dcrypt(inv(k), crypt(k ,m)) ≈ m
(4) vcrypt(inv(k), crypt(k ,m)) ≈ >
(5) open(sign(k ,m)) ≈ m
(6) vsign(k , sign(inv(k),m)) ≈ >
For every f ∈ Σf with arity n and for every i ∈ {1, . . . , n}
(7) geti,f(f(t1, . . . , tn)) ≈ ti
(8) verifyf(f(t1, . . . , tn)) ≈ >
(9) exp(exp(t1, t2), t3)) ≈ exp(t1, mult(t2, t3))
(10) mult(t1, t2) ≈ mult(t2, t1)
(11) mult(t1, mult(t2, t3)) ≈ mult(mult(t1, t2), t3)

will be part of the call to dscrypt. We emphasize that our message model explic-
itly describes such fine details that most security protocol analysis tools silently
assume; we could similarly define a set of primitives that do not have verifiers
(e.g., vcrypt) and the semantics will accordingly define which verifications honest
agents can and cannot do.

Similarly, the operators crypt, dcrypt and vcrypt formalize asymmetric en-
cryption, and sign, open and vsign formalize digital signatures.

Let Σf ⊆ Σp be a set of formats declared in an SPS specification. Then, for
each format f ∈ Σf of arity n, geti,f ∈ Σp is an extraction function for the
i-th field of the format (for all 1 ≤ i ≤ n) and verifyf ∈ Σp is a verifier to
check that a given message has format f.

Moreover, we have exp and mult for modular exponentiation and multiplication
as needed in Diffie-Hellman-based protocols. As is often done, we omit the
modulus for ease of notation. Σp also contains hash and mac representing hash
and keyed hash functions, respectively (hash and mac do not appear in Table 3.1
since they have no algebraic properties). Finally, a typical set of mappings could
be: shk : Agent×Agent→ SymmetricKey to denote a shared key of two agents,
pk : Agent→ PublicKey for the public key of an agent, and inv : PublicKey→
PrivateKey for the private key corresponding to a given public key. Although
pk is typically publicly available, it should not be a public operator as it does
not correspond to a computation that honest agents or the intruder can perform
(rather the initial distribution of keys should be specified in the knowledge section
of SPS). 2

Definition 3.2 A labeled message tl consists of a protocol message t ∈ TΣ(V )
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and a label l ∈ TΣp(L). A knowledge is a substitution of the form M = [X1 7→
t1, . . . ,Xn 7→ tn], where Xi ∈ L and ti ∈ TΣ(V ). We call the set {X1, . . . ,Xn}
the domain of M and write |M | = n for the length of M . We may also refer to
M as a set of entries and write, e.g., M ∪ {Xj 7→ tj} to add a new entry (where
Xj is not in the domain of M).

Intuitively, the label variables represent memory locations of an honest agent.
A label l is composed from label variables and public operators, and reflects
what actions an honest agent has performed on elements of its knowledge. A
labeled message tl expresses that an honest agent performed the actions of l to
obtain what the SPS specification represents by the term t.

A knowledge M = [X1 7→ t1, . . . ,Xn 7→ tn] thus represents the local state of
an honest agent as a set of memory positions and corresponding SPS terms.
For instance, we represent the initial knowledge of A in Listing 2.1 by [X1 7→ A,
X2 7→ B, X3 7→ shk(A, B), X4 7→ g] to express that A stores her name and B’s
name in her memory locations X1 and X2, a key shared with B in X3, and the
group g in X4.

3.2 Message Derivation and Checking

We now define how honest agents can derive terms from their knowledge. This is
in the style of Dolev-Yao deduction relations, but extended to labeled messages
to keep track of the operations that have been applied. The relation has the
form M ` tl where M is a knowledge and tl a labeled term.1

Definition 3.3 ` is the least relation that satisfies the following rules:

M ` tXi

Ax ,
[Xi 7→ t ] ∈M

M ` tl
M ` sm

Eq ,
s ≈ t, l ≈ m

M ` tl11 . . . M ` tlnn
M ` f (t1, . . . , tn)f (l1,...,ln)

Cmp ,
f ∈ Σp

The rule Ax expresses that an agent can deduce any message that it has in its
knowledge, Eq expresses that deduction is closed under equivalence in ≈ (on

1One may employ an entirely different model for the intruder (e.g., a cryptographic one);
using a Dolev-Yao style deduction for honest agents is simply the semantical decision that
they perform only standard public operations (that would be part of a crypto API), but no
operations that would amount to cryptographic attacks.
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terms and their labels), and Cmp allows agents to apply any public operator to
deducible terms.

Example 3.2 Consider again the algebraic theory of Table 3.1 and the knowl-
edge M = [X1 7→ k,X2 7→ X,X3 7→ scrypt(k, exp(g, Y))]. M contains three
messages (or “memory locations”) X1, . . . ,X3 that we associate with the corre-
sponding messages of the SPS specification. We explain later how to reach a
particular memory state, but for the intuition let us just consider an example
scenario that would produce M for an agent A: the constant k could be part
of the initial knowledge of A, X could be her secret Diffie-Hellman exponent,
and the message stored in X3 could be what she received from another agent—
supposedly the Diffie-Hellman half-key exp(g, Y) encrypted with the key k. The
tricky part here is that in general A will be unable to check that the received
message has the correct form (i.e., that she did not receive just some garbage);
it is part of the semantics to describe what A can check and what messages she
will construct on the basis of the labels X1, . . . ,X3. Let us for instance consider
the case that A should now—according to the SPS specification—generate the
Diffie-Hellman full-key t = exp(exp(g, X), Y). That amounts to finding a label l
such that M ` tl, i.e., that would produce the Diffie-Hellman key, if the received
message has the required form. Indeed, there is such a label as the following
proof tree shows:

M ` XX2
Ax

M ` kX1
Ax

M ` scrypt(k, exp(g, Y))X3
Ax

M ` dscrypt(k, scrypt(k, exp(g, Y)))dscrypt(X1,X3)
Cmp

M ` exp(g, Y)dscrypt(X1,X3)
Eq

M ` exp(exp(g, Y), X)exp(dscrypt(X1,X3),X2)
Cmp

M ` exp(exp(g, X), Y)exp(dscrypt(X1,X3),X2)
Eq

In fact, we see the “recipe” to generate the term exp(exp(g, X), Y) in the label
exp(dscrypt(X1, X3),X2), i.e., A has to first apply decryption to term X3 using
the term X1 as decryption key; if the received X3 message was indeed of the
right form, this gives the other agent’s half-key (exp(g, Y) in SPS), and this is
further exponentiated with X2 to supposedly yield the full key (exp(exp(g, Y), X)
in SPS). Note that the semantics also tells us what happens if A in the actual
execution receives some improper term for X3. In such a case, A will simply
apply the operations to the term as prescribed and that may lead for instance to
the protocol getting stuck (if nobody else can generate the key) or to an attack
(if the intruder manages to find a term that breaks some security goals), or
the garbage term may actually be detected by the checks on messages that we
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describe next, which in this example amounts to checking that the given term is
indeed an encryption with the right key. 2

The definition of the checks that honest agents can make on their knowledge is in
fact based on the deduction relation `. The checks will be written as equations
between terms. To that end, we introduce the symbol

.
= and define

.
=-equations

as follows: an interpretation I is a total mapping from L to TΣ(V ) that we
extend to a function from TΣ(V ∪ L) to TΣ(V ) as expected; then we define
I |= s

.
= t iff I(s) ≈ I(t), and extend this to (finite or infinite) conjunctions

of equations as expected. We define φ |= ψ iff I |= φ implies I |= ψ for every
interpretation I; and φ ≡ ψ iff both φ |= ψ and ψ |= φ.

Definition 3.4 We define a complete set of checks ccs(M) for a knowledge M
as follows: ccs(M) =

∧{l1 .
= l2 | ∃ m ∈ TΣ(V ).M ` ml1 ∧M ` ml2}.

ccs(M) yields an infinite conjunction of checks that an agent can perform on
his knowledge. Intuitively, M ` ml1 and M ` ml2 express that, according
to the SPS specification, computing l1 and l2 should yield the same result m,
and the agent can thus check that they actually do. For instance, consider
M = [X1 7→ k,X2 7→ hash(m),X3 7→ scrypt(k,m)]. Amongst others, ccs(M)
then entails the checks φ = vscrypt(X1,X3)=̇> ∧ hash(dscrypt(X1,X3))

.
= X2,

i.e., the agent A can verify that X3 is an encryption and that X2 is the hash
of the content of the encrypted message X3. Note that there are many more
equations (e.g., X1

.
= X1) and for every equation s

.
= t, we also have h(s)

.
= h(t)

for every unary public operator h. However, it holds that ccs(M) ≡ φ, i.e.,
ccs(M) is logically equivalent to φ and thus all other checks are redundant.

We will later show in the low-level model how to generally compute for our
example message model such a finite set φ of checks equivalent to ccs(M).

3.3 High-level Semantics

Now we can put everything together to define the semantics of SPS specifica-
tions by translating specifications to operational strands. Figure 2.1 shows our
example protocol in the style of message sequence charts. The first step towards
an operational semantics is to split the protocol into plain strands, one for each
role as indicated by the dotted line in Figure 2.1. The result of applying this
step on Figure 2.1 is shown in Figure 2.2. Recall that each plain strand shows
how the protocol looks like from the point of view of that role in an ideal pro-
tocol run: what messages it is supposed to send and what messages it receives.
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The second step towards the operational semantics is to identify the precise set
of actions, i.e., how messages are composed or decomposed, and what checks
need to be performed on received messages. The right part of Figure 3.1 shows
how this operational description looks like for role A of the example (role B is
very similar).

A : X1 7→ A, X2 7→ B,
X3 7→ shk(A, B), X4 7→ g

fresh X

◦
scrypt(shk(A, B), f1(A, B, exp(g, X)))

//

◦ oo
scrypt(shk(A, B), f1(B, A, exp(g, Y)))

fresh Payload

◦
scrypt(exp(exp(g, X), Y), f2(Payload))

//

secret(A, B, Payload)

A : X1 7→ A, X2 7→ B,
X3 7→ shk(A, B), X4 7→ g

fresh X5

◦
scrypt(X3, f1(X1,X2, exp(X4,X5)))//

◦ oo X6

vscrypt(X3,X6)
.
= >

X7 := dscrypt(X3,X6)
verifyf1(X7)

.
= >

X8 := get1,f1(X7)
X9 := get2,f1(X7)
X10 := get3,f1(X7)
X8

.
= X2

X9
.
= X1

fresh X11

◦
scrypt(exp(X10,X5), f2(X11))//

secret(X1,X2,X11)

1

Figure 3.1: The Plain and Operational Strands of A

Now we define the high-level semantics as a function [[·]]H (with initial case
[[·]]H0

) that maps from plain strands like (a) to the operational strands like (b).

In a nutshell, we use the labeled deduction M ` tl to define how an agent
composes an outgoing message (or event), and we use the ccs function whenever
an agent receives a new message, formalizing the set of checks that the agent
can perform at this point. Note that this is an infinite conjunction and we later
show how to obtain an equivalent finite conjunction for the example theory.

Definition 3.5 [[·]]H translates from plain to operational strands as follows:
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[[M : steps]]H0 = M : ccs(M).[[steps]]H(M)
[[receive(ch, t).rest ]]H(M) = receive(ch,X|M |+1).ccs(M ∪ [X|M |+1 7→ t]).

[[rest ]]H(M ∪ [X|M |+1 7→ t])
[[send(ch, t).rest ]]H(M) = send(ch, l).[[rest ]]H(M)

where l is some label with M ` tl
[[event(t).rest ]]H(M) = event(l).[[rest ]]H(M)

where l is some label with M ` tl
[[fresh X.rest ]]H(M) = fresh X|M |+1.[[rest ]]H(M ∪ {X|M |+1 7→ X})
[[0]]H(M) = 0

The first rule initializes the translation, by computing the checks that can be
made on the initial knowledge of the strands. The second rule says that each
received message is associated with a new label variable X|M |+1 in the agent’s
knowledge and afterwards we use ccs to generate all the checks that the agent
can perform on the augmented knowledge. The third rule is for sending the
SPS protocol message t. Here we use the relation M ` tl to require that the
agent can generate the required term t from the current knowledge M using the
concrete sequence of actions l; this is explained in more detail below. The event
rule is very similar to sending. The fifth rule translates the construct fresh X:
we simply pick a new label variable X|M |+1 that will store the fresh value in the
translated strand, and bind it in the knowledge to the protocol variable X. The
final rule is straightforward.

Example 3.3 Let us continue on Example 3.2, where we considered an agent
with knowledge M = [X1 7→ k,X2 7→ X,X3 7→ scrypt(k, exp(g, Y))]. (As ex-
plained above, this may result from a strand that initially knows a key in X1,
has freshly generated an exponent X2, and has received the message X3.) Sup-
pose that the next step is send(insec, exp(exp(g, X), Y)) (in fact, in a more realistic
example, it would be a message encrypted with this term as a key). The seman-
tics tells us to determine any label l such that M ` exp(exp(g, X), Y)l, which
is possible for the label l = exp(dscrypt(X1,X3),X2) as shown in the previous
example. Thus, a possible translation is send(insec, exp(dscrypt(X1,X3),X2)).
Note that we said “ possible” here, because there are other labels, e.g., any label
l′ such that l ≈ l′. 2

More generally, given M and t, there is in general not a unique l such that
M ` tl. First, consider the case that there is no such l. In this case, the agent
has no means (within the deduction relation) to obtain the term t from its cur-
rent knowledge. We thus say the protocol is non-executable and its semantics is

2It is common to attach to a Diffie-Hellman exchange also a zero-knowledge proof that the
sender knows indeed the exponent behind his half-key. This could easily be modeled by our
equational theory with vexp(g, exp(g, X)) ≈ > for a new operator vexp: then honest agents
would only accept exponentiations of the “proper form” as half-keys [CEvdGP87].
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undefined. This executability check is an important sanity check on SPS specifi-
cations, ensuring that all the steps of the protocol can actually be performed at
least when no intruder is interfering and the network does not loose messages.
Other formal specification language like Applied π that specify the different
roles separately as processes cannot have such an executability check, because
unlike SPS, there is no formal relationship between the messages that one role is
sending and another is receiving. Thus, if a modeler accidentally specifies mes-
sages slightly differently in two processes, they may be unable to communicate
and get stuck in their execution; then a flawed protocol may be trivially verified
as secure because of the specification mistake. The executability check in SPS
drastically reduces the chance of such mistakes.

Second, if there is a label l, then there will typically be infinitely many of them
(trivially by performing redundant encryptions and decryptions). Our semantics
does not prescribe which of the labels has to be taken (and the implementation
below will take in some sense the simplest one). A key insight is that this does
not make the semantics ambiguous: if M ` tl1 and M ` tl2 then ccs(M) |=
l1
.
= l2. Thus, since we always perform the checks on the knowledge after each

received message, we know that the choice of labels does not make a difference.

As an example, observe that the operational strand we have given in Fig-
ure 3.1(right) for our example protocol is correct according to this semantics
(when resolving the X := t macros): all outgoing messages have an appropriate
label (for which M ` tl holds), and all checks s

.
= t do indeed logically follow

from ccs(M) for the respective M . In fact, we claim that the checks are logically
equivalent to ccs(M), i.e., all other checks are redundant; it is part of the results
of the next section to prove that and derive the given checks automatically.

We emphasize the succinctness of the definitions: Definitions 3.1–3.5 together
fit on a page and yet we define the semantics for an arbitrary set of crypto-
graphic operators and algebraic properties. We believe that this is the best
argument that the semantics of Alice-and-Bob notation should be defined this
way—deriving from simple, general, and uniform principles. However, this sim-
ple semantics cannot be directly used as a translator from Alice-and-Bob nota-
tion to formal models or implementations as it entails an infinite representation
and several of the underlying algebraic problems are in fact not recursive in
general.

Theorem 1 The problem to compute a finite representation of [[S]]H for a
strand S, if it exists, is not recursive.

Proof. First, pick any undecidable ≈, then follows immediately that the
set A≈ = {(s, t) | s ≈ t} is also undecidable. Now, assume that Bccs =
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{(M,X1,X2) | ccs(M) |= X1
.
= X2} is decidable. Let h(s, t) = ([X1 7→ s,X2 7→

t],X1,X2) that is obviously computable. Moreover, h reduces A≈ to Bccs since:
if (s, t) ∈ A≈, then from the definition of ccs(M) follows that ccs(M) |= s

.
= t

holds, therefore h(s, t) ∈ Bccs , and if (s, t) /∈ A≈, then from the definition of
ccs(M) follows that ccs(M) |= s

.
= t does not hold, and therefore h(s, t) /∈ Bccs .

We reach a contradiction, and therefore Bccs is undecidable. It follows that for
a given knowledge M , the problem to compute a finite conjunction φ, such that
φ ≡ ccs(M), if one exists, is not recursive.

Similarly, we can prove that ` is in general an undecidable relation. Let B` =
{(M, t, l) | M ` tl} and assume that it is decidable. Let g(s, t) = ([X1 7→
s], t,X1) that is also obviously computable and reduces A≈ to B` as follows: if
(s, t) ∈ A≈, then from the definition of ` follows that [X1 7→ s] ` tX1 holds,
therefore g(s, t) ∈ B`, and if (s, t) /∈ A≈, then from the definition of ` follows
that [X1 7→ s] ` tX1 does not hold, therefore g(s, t) /∈ B`. Again, we reach
a contradiction, and therefore B` is undecidable. It follows that for a given
knowledge M and a term t, the problem to compute a label l, such that M ` tl,
if one exists, is not recursive. �

3.4 Low-level Semantics

In this section, we define the procedures for message composition and decom-
position (compose and analyze respectively), but we first need some necessary
definitions. First, we need to partition the public operations into constructors
and destructors.

Definition 3.6 Let Σd = {dscrypt, vscrypt, dcrypt, vcrypt, open, vsign, get·,
verify·} be the destructors, where, abusing notation, we include get· and verify·
for all formats. All other public operators Σc = Σp \Σd are called constructors.
Let finally ΣA = Σ\Σd contain all symbols except destructors. We require that
the terms in the SPS specification are from TΣA

(V ) (except label variables in
the initial knowledge).

Let us also denote by ≈F the least congruence relation that satisfies proper-
ties (9)-(11) shown in Table 3.1 (which address modular exponentiation and
multiplication). Since we have here no destructors for exp and mult, ≈F is a
finite theory; i.e., for any term t, the equivalence class of t under ≈F is finite
(moreover, unification is finitary, i.e., we can find finitely many most general
unifiers for every pair of terms). We also define `C as a restriction of ` (Def-
inition 3.3) where ≈ is replaced with ≈F and restricting Σp to Σc. Thus, `C
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is the “compositional” part of the ` relation that allows only composing terms
and application of ≈F (which never “decomposes” terms).

3.4.1 Message Composition

We now define the compositional part of message deduction, i.e., computing `C ,
realized by the function composeM (t) that computes all labels for generating the
term t from knowledge M using only `C .

Definition 3.7 Let M be a knowledge and t ∈ TΣA
(V ).

composeM (t) = {Xi | ∃t′. [Xi 7→ t′] ∈M ∧ t ≈F t′} ∪
{f(l1, . . . , ln) | ∃t1, . . . , tn. t ≈F f(t1, . . . , tn) ∧ f ∈ Σc ∧

l1 ∈ composeM (t1) ∧ . . . ∧ ln ∈ composeM (tn)} .

The first part of composeM checks whether the term t is directly contained
in the knowledge modulo ≈F , and returns corresponding label variables if so.
The second part computes all ways to recursively compose t from its direct
subterms (modulo ≈F ). For instance, for M = [X1 7→ c,X2 7→ hash(c)] we
have composeM (hash(c)) = {X2, hash(X1)}, and for M = [X1 7→ a · b,X2 7→
c,X3 7→ a · c,X4 7→ b] (writing a · b for mult(a, b)), we have composeM (a · b · c) =
{X1 · X2,X3 · X4}.

The composeM function does not involve any decomposition steps or generate
checks—for this we define an analysis procedure in the next subsection. The
interface between the two procedures is the notion of an analyzed knowledge (in
which every possible analysis step has already been done). We define this notion
succinctly by requiring that every term that can be derived from M using ` can
also be derived using `C , i.e., analysis steps do not yield any further messages:

Definition 3.8 We say a knowledge M is analyzed iff

{t ∈ TΣA
(V ) | exists l. M ` tl} = {t ∈ TΣA

(V ) | exists l. M `C tl}.

For an analyzed knowledge M , composeM is in fact correct:

Theorem 2 The composeM function terminates and is sound in the sense that
l ∈ composeM (t) implies M ` tl. Moreover, if M is analyzed and neither M
nor t contain symbols from Σd , then composeM is also complete in the sense
that M ` tl implies l′ ∈ composeM (t) for some label l′ with ccs(M) |= l

.
= l′.
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Proof. For Termination, consider the tree of recursive calls that composeM (t)
can invoke. The tree is finitely branching since ≈F is a finite theory (every
term has a finite equivalence class). Suppose the tree has infinite depth, and let
t1, t2, t3, . . . be the terms in the recursive calls. Then there are terms t′1, t

′
2, t
′
3, . . .

such that ti ≈F t′i = ti+1 for all i ≥ 1. Then there are contexts C1[·], C2[·], . . .
and Ci[x] 6= x such that t1 ≈F C1[t2] ≈F C1[C2[t3]] ≈F . . . and thus t1 has an
infinite equivalence class modulo ≈F , which is absurd, so the tree also has finite
depth.

Soundness is immediate as we assume that functions are treated as strict, i.e.,
when recursively building a composition and the result for any subterm is ∅ then
the whole expression is ∅. For each step in composeM it is straightforward that
it is covered by rules in the inductive definition of `.

For Completeness, consider M ` tl, where M is analyzed and M and t do not
contain any symbols from Σd . Since M is analyzed, we also have M `C tl

′
for

some l′, and thus ccs(M) |= l
.
= l′. Due to `C , l′ cannot contain any symbol

from Σd either (while l can). Consider now the proof tree for M `C tl
′
: leaf

nodes are axioms and inner nodes are either composition steps with f ∈ Σc

or algebraic equivalences modulo ≈F . It is straightforward to map them into
corresponding steps of composeM (t) to yield label l′. �

3.4.2 Message Decomposition and Checks

To compute an analyzed knowledge and the checks that one can perform on it,
we define the procedure analyze that takes as input a pair (M,ϕ) of a knowledge
and a (finite) conjunction of equations and yields a saturated extension (M ∪
M ′, ϕ ∧ ϕ′) of (M,ϕ). The notion of saturated means that M ∪M ′ is analyzed
and that ϕ ∧ ϕ′ is equivalent to ccs(M ∪M ′). Note that this algorithm works
incrementally, so when augmenting M with a received message in the generation
of operational strands, we do not need to start the analysis from scratch. Also,
we assume that we never add redundant checks, i.e., the ones that are already
entailed by previous checks.
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Table 3.2 summarizes the procedure analyze(M,ϕ). The table is divided into
two parts: the upper part represents the first phase of the algorithm, saturating
M with derivable subterms, whereas the lower part represents the second phase
saturating ϕ with additional equations.

Phase 1. Here we check for every entry in M whether it can be analyzed, i.e., if
it has one of the forms of column 1 (the head symbol being scrypt, crypt, sign,
or a format) and that has not yet been marked as analyzed (initially no term
is). We then check according to column 2 whether the necessary decryption key
can be derived. For this, we use the composeM procedure yielding a label l if
the key is available; if there are several labels, we simply pick one. We then
mark the entry Xi 7→ . . . as analyzed, choose a new label variable Xi′ and add
the analyzed message to the knowledge M according to column 3. Further,
we add the condition of column 4 and the recipe of column 5 to φ. (We treat
the recipe here like an equation for simplicity.) We repeat this until no more
analysis step can be performed. (Note: whenever new terms are added to M ,
encrypted messages that have not been marked as analyzed need to be checked
again.)

Phase 2. We now consider every entry of M once and check for all alternative
ways to generate it according to the first row in the lower part of the table.
If we find more than one such label, we add the respective checks to φ. The
second row is to check if a private key fits to its corresponding public key if it
is known.3

Next, we have rules for products and exponents (last three rows of the lower
table). Here we consider any pair of entries in M where the head symbol is exp
or mult (according to the form of column 1), again writing · for multiplication.
Here, we require a match such that none of the si and ti is itself a product. We
then consider the fraction (t1 · . . . · tn)/(s1 · . . . ·sm) and shorten it, i.e., removing
common factors in enumerator and denominator. Let td/sd be the remaining
products after shortening. If all the ti or all the si are shortened away (i.e.,
td = 1 or tsd = 1) we do not apply this rule (as it is already covered by the
first row, saving us from introducing 1 into the algebraic theory). We now try
to compose the products td and sd according to column 2. If there is at least
one label for each (if there are several, again we pick one), then we add to φ the
condition of column 3.

Example 3.4 We compute analyze(M,>) for the knowledge M = [X1 7→ y,

3This check is actually quite academic, as the agent has either generated the key pair
itself (and thus knows by construction that they form a key pair) or it has received it from
a key server, e.g., in identity-based encryption (but then needs to trust that server anyway).
However, without this check the correctness theorem and its proof would require a more
complicated formulation.



3.4 Low-level Semantics 41

X2 7→ scrypt(exp(exp(g, y), x), n),X3 7→ scrypt(k, exp(g, x)),X4 7→ k,X5 7→
hash(n)].

For phase 1, entries X1, X4, and X5 do not match any entry in the first column
(they cannot possibly be decrypted). For X2, we have composeM (exp(exp(g, y), x)) =
∅, i.e., the decryption key is not (yet) available. However, we can decrypt X3

since composeM (k) = {X4}. We thus add X6 7→ exp(g, x) to the knowledge,
and to φ the check vscrypt(X4,X3)

.
= > and the recipe X6 := dscrypt(X4, X3).

We mark X3 as analyzed, and check again the unanalyzed X2. This time (for
the updated M) we have composeM (exp(exp(g, y), x)) = {exp(X6,X1)}, and thus
add X7 7→ n to the knowledge, and to φ the check vscrypt(exp(X6,X1),X2)

.
= >

and recipe X7 := dscrypt(exp(X6,X1),X2). Since neither X6 and X7 can be
further analyzed, phase 1 is finished. For phase 2, we can of course re-construct
the encryptions, e.g., scrypt(X4,X6)

.
= X3 but that is already implied by the

equation X6 := dscrypt(X4,X3) and we do not add redundant checks. The
only new check is for X5, since composeM (hash(n)) = {X5, hash(X7)} yields
X5

.
= hash(X7).

As another example for equational reasoning, analyze([X1 7→ a · b · c,X2 7→
a · c · d,X3 7→ b,X4 7→ d],>) yields the check X1 · X4=̇X2 · X3. �

Theorem 3 For a knowledge M with no symbols in Σd and a finite conjunction
φ of equations, analyze(M,φ) terminates with a result (M ′, φ′) where M ′ = M∪
[X|M |+1 7→ t1, · · · ,X|M |+n 7→ tn], φ′ = φ∧X|M |+1 := l1 ∧ · · · ∧X|M |+n := ln ∧ψ
and M ` tl11 , · · · ,M ` tlnn such that {t | exists l.M ` tl} = {t | exists l.M ′ ` tl}
(soundness), analyzed(M ′) (completeness), and ccs(M) ≡ φ ∧ ψ (correctness
of checks).

Proof. Termination: The newly added terms of M ′ are always subterms of
some term in M , so the M ′ component must eventually reach a fixed point.
Adding new equations to φ′ is bounded by pairs of entries of M ′ and the finite-
ness of composeM .

Soundness: This is immediate, as in all cases of analyze we merely add derivable
messages to the knowledge M , i.e., we can check that we add only new messages
that are really derivable from M .

Completeness: We first show that M ′ is analyzed, i.e., we have to show that
for any term t ∈ TΣA

(V ) with M ′ ` tl, we also have M ′ `C tl
′

for some
l′ (i.e., using only constructors of Σc and equivalence in ≈F ). For this, we
consider the proof tree for M ′ ` t. Intermediate nodes may well contain de-
structors, but we can exclude so-called garbage terms, namely terms that are
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not ≈-equivalent to any term in TΣA
(V ). For instance, dscrypt(c, c) is garbage

(while dscrypt(k, scrypt(k,m)) ≈ m is not for m ∈ TΣA
(V )). Suppose the

proof contains a node with a garbage term s, then there must be a construction
in the proof to remove s (since the final term must be in TΣA

(V )), for instance
constructing dscrypt(s, scrypt(s,m)) ≈ m eliminates garbage s, but in all such
cases, all occurrences of s must have been composed, so there exists a simpler
proof without garbage.

We thus first show the following: for any M ′ ` tl where t is not garbage we have
M ′ `C sk for some s ≈ t and some label k. This is shown by induction over the
proof tree of M ′ ` tl. For Ax and Eq the proof is immediate as well as for Cmp
with f ∈ Σc . For f ∈ Σd , consider the term t0 being analyzed. By induction
M ′ `C sk00 for some s0 ≈ t0, so is (modulo ≈F ) either composed or an axiom. If
it is composed, then the intruder decomposes a term he has composed himself
and this proof can be simplified. If it is an axiom, then the intruder applies
decomposition to a term in his knowledge, and analyze has already added the
resulting term t (modulo ≈) to M ′.

Note we have only proved that for M ′ ` tl (where t is not garbage) there is
M ′ `C sk for some s ≈ t. We have to show that M ′ `C tl

′
for some l′, but only

for t ∈ TΣA
(V ), i.e., without destructors. We claim that in this case we have

s ≈F t (and thus follows M ′ `C tk as `C is closed under ≈F ). This claim follows
from the fact that our destructor equations (1)–(8) can be read as rewrite rules
(from left to right) that are convergent modulo ≈F , and thus terms that do not
contain constructors are in normal form modulo ≈F . The idea for proving this
convergence is that the rewriting rules have disjoint symbols from the equations
in ≈F (so they cannot conflict) and we can prove convergence for the rewrite
rules using the critical pair method, see e.g. [BN98].

Correctness of Checks: Now for ccs(M) ≡ φ∧ψ. For brevity let ψ′ = φ∧ψ. The
soundness (ccs(M) =⇒ ψ′) is obvious by checking that each step in analyze
adds only sound equations. The completeness we prove again indirectly, i.e.,
suppose we have a term t and two derivation proofs M ` tl and M ` tl′ such
that l

.
= l′ is not implied by ψ′. Suppose in either of the derivation trees for l

and l′ appears a composition step with a destructor. Suppose the message being
decomposed is tl11 and the result of decomposing is tl00 . Again assume that there
are no decompositions in the subtrees. One possible case is the analysis of inv
which is covered by the sixth case in analyze (Table 3.2). In all other cases,
analyze(M,φ) must have added t0 under some new label Xi to M ′ and ψ′ must
entail Xi

.
= l0 (and a constraint about verifiability of l1). Let us thus replace

the derivation tl00 with tXi
0 : this changes a subterm in labels l and l′, but for

these changed labels still l
.
= l′ does not follow from ψ′. In this way we can step

by step eliminate all analysis steps and thus have two trees without analysis for
tl and tl

′
such that l

.
= l′ is not implied by ψ′.
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Now we consider the case that either of the two trees (say for l′) is an application
of only axiom and equality steps, thus l′ = Xi for some variable Xi. Then M ′

contains [Xi 7→ t] for a term that can be composed in a different way using only
constructors and ≈F , i.e., l ∈ composeM (t) and thus ψ′ must contain l

.
= l′,

contradicting the assumption. Otherwise it must be two trees consisting of
composition steps. We can exclude composition with any operator but exp or
mult since otherwise we can simply go to one of the subterms. If it is exp or
mult, then it has the form of adding factors to initially known exp or mult terms.
Again we can exclude adding the same factor in both trees (since otherwise we
can reduce again to a simpler case). The remaining case is however covered by
our check rules for exp and mult, again showing that l ≈ l′ must be entailed by
ψ′.

3.4.3 Implementing the Semantics

Now we put it all together to define a more low-level, procedural semantics that
computes the semantics for the example theory in Table 3.1 based on compose
and analyze procedures. We require that the SPS specification (and thus the
plain strands) does not contain any destructors or verifiers. We prove later
that this low-level semantics is actually computable and prove that it correctly
implements the high-level semantics.

We define the following computable low-level semantics that translates from
plain strands to operational strands and mirrors the structure of the high-level
semantics as follows.

Definition 3.9 Given a plain strand S with no destructors or verifiers, [[S ]]L
translates S to an operational strand as follows with the initial rule [[·]]L0

[[M : steps]]L0(∅,>) = M : ϕ.[[steps]]L(M ′, ϕ)
where (M ′, ϕ) = analyze(M,>)

[[receive(ch, t).rest ]]L(M,ϕ) = receive(ch,X|M |+1).ϕ′.[[rest ]]L(M ′, (ϕ ∧ ϕ′))
where (M ′, ϕ ∧ ϕ′) = analyze(M ∪ [X|M |+1 7→ t], ϕ)

[[send(ch, t).rest ]]L(M,ϕ) = send(ch, l).[[rest ]]L(M,ϕ)
where l ∈ composeM (t)

[[event(t).rest ]]L(M,ϕ) = event(l).[[rest]]L(M,ϕ)
where l ∈ composeM (t)

[[fresh X.rest]]L(M,ϕ) = fresh X|M |+1.[[rest]]L(M ∪ {X|M |+1 7→ X}, ϕ)

[[0]]L(M,ϕ) = 0
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Theorem 4 For our example theory in Table 3.1, for every strand S in which
no destructors or verifiers occur, [[S]]L is recursive and has a finite representa-
tion.

Proof. First, by Theorem 2, compose is recursive and produces a finite set
of labels. Second, by Theorem 3, analyze is recursive and produces a finite
conjunction of checks and a finite knowledge. Finally, given a strand S that is
finite (being defined by context-free grammar), one can easily see from the rules
of [[·]]L and from the previous two points that [[·]]L is recursive and it has a finite
representation. �

Now we proceed by showing that the two levels of our semantics ([[·]]H and [[·]]L)
coincide, i.e., given the same plain strand as input, they produce in some sense
equivalent operational strands.

3.4.4 Equivalence of Strands

The missing point now is the connection between the two semanticses ([[·]]H
and [[·]]L), i.e., given the same plain strand, whether they produce equivalent
operational strands. We thus need to define a notion of equivalence between
strands. Intuitively, two strands are equivalent if they have the same initial
knowledge, corresponding send and receive steps, equivalent checks and events.
Based on this notion of equivalence, we now discuss the rules of the two semantics
to show that they produce equivalent operational strands.

• The initial case:

[[M : strand ]]H0 = M : ccs(M).[[strand ]]H(M)

compared with the corresponding rule:

[[M : strand ]]L0
(∅,>) = M : ϕ.[[strand ]]L(M ′, ϕ),

where (M ′, ϕ) = analyze(M,>)

The first difference between the results of the two rules is the checks,
i.e., in the first one we have ccs(M) and in the second one we have ϕ
that is the conjunction of checks that analyze procedure produces. By
Theorem 3 we have that they are equivalent, i.e., ccs(M) ≡ ϕ in our case.
The second difference is the knowledge carried out for the next steps, i.e.,
in the first rule we have M while in the second rule we have M ′ that is an
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analyzed version of M . Recall that a knowledge and its analyzed version
are equivalent in a sense that one can derive the same terms from both.
The main difference between the two versions of a knowledge (the original
and the analyzed) is that the analyzed version has no further analysis steps
and this is needed for the termination of compose (cf. Definitions 3.7 and
3.8).

• send case:

[[send(ch, t).rest ]]H(M) = send(ch, l).[[rest ]]H(M),
where M ` tl for some label l

compared with the corresponding rule:

[[send(ch, t).rest ]]L(M,ϕ) = send(ch, l).[[rest ]]L(M,ϕ)
where l ∈ composeM (t)

The only difference between the two rules is the way the recipe l is derived,
i.e., in the first rule we have M ` tl and in the second rule we have
l ∈ composeM (t). By Theorem 2 (soundness and completeness of compose)
and by Theorem 3 we have that we either have the same label for t, or if
we have different labels for t (say l and l′) then a check must be added to
reflect that (l

.
= l′) cf. Definition 3.4.

• event case: similar to the send case.

• receive case:

[[receive(ch, t).rest ]]H(M) = receive(ch,X|M |+1).ccs(M ∪ [X|M |+1 7→ t]).
[[rest ]]H(M ∪ [X|M |+1 7→ t])

compared with the corresponding rule:

[[receive(ch, t).rest ]]L(M,ϕ) = receive(ch,X|M |+1).ϕ′.[[rest ]]L(M ′, (ϕ ∧ ϕ′)) ,
where (M ′, ϕ ∧ ϕ′) = analyze(M ∪ [X|M |+1 7→ t], ϕ)

The difference between the two rules is the check and knowledge parts.
For the checks part, note that by Theorem 3, we have ccs(M) ≡ ϕ and
ccs(M ∪ [X|M |+1 7→ t]) ≡ ϕ ∧ ϕ′. For the knowledge part, note that M ′ is
an analyzed version of M ∪ [X|M |+1 7→ t] as the later rule indicates. Note
that the labels could be different; because an analyzed knowledge has in
general more terms than the original version of it. Therefore, the result of
these two rules may not be identical as they may be receiving the term t
with different labels. However, a proper α-renaming can resolve that and
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make the two resulting strands identical; except that the knowledge of one
of them is the analyzed version of the other one, but in principle they are
still equivalent, i.e., one can derive the same terms from both.

• fresh case:

[[fresh X.rest ]]H(M) = fresh X|M |+1.[[rest ]]H(M ∪ {X|M |+1 7→ X})

with the corresponding rule:

[[fresh X.rest]]L(M,ϕ) = fresh X|M |+1.[[rest]]L(M ∪ {X|M |+1 7→ X}, ϕ)

Again, the only difference that may occur between the two is the label
of the fresh value X, but as we discussed in the previous case, a proper
α-renaming can resolve it with no semantical effect.

By this, we can conclude that for our example theory in Table 3.1, [[·]]L is an
implementation of [[·]]H .

Theorem 5 For our example theory in Table 3.1, for every strand S in which
no destructors or verifiers occur, [[S]]H can be finitely represented and it is re-
cursive.

Proof. We have just shown that for a given strand S with no destructors nor
verifiers [[S ]]H is equivalent to [[S ]]L. We also proved in Theorem 4 that [[·]]L is
recursive and has a finite representation. �

3.5 Operational Strands Semantics

We conclude the semantics chapter by giving the semantics of operational strands.
Similar to [CM05], we define the semantics of operational strands as an infinite-
state transition system, where a state (S;M;E) consists of (1) a set S of closed
strands, (i.e., every variable occurs first in a receive message, in a macro, or in
a creation of a fresh value), (2) a set M of messages (the intruder knowledge),
and (3) a set E of events that have occurred. For instance, if S contains the
strand send(insec, t).rest , where insec represents an insecure channel, then we
can make the transition to a successor state where t is added to M and the
send step is removed from the given strand. This transition system is defined
by an initial state and a transition relation as follows.
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The initial state Recall that in an SPS specification, only variables of type
agent may be used in a knowledge declaration; therefore the co-domain of the
knowledge M of each operational strand of the protocol will only contain such
agent-typed variables. The first step in defining the semantics is to consider all
possible instantiations of these agent variables with concrete agent names; and
create infinitely many copies of these operational strands to model an unbounded
number of sessions between any agents.

Let therefore S = {s1, · · · , sk} be the set of operational strands of a protocol,
one for each role of the protocol. Let us further denote by Ri the name of
the role (i.e., a constant or variable of type agent) that is described by the
operational strand si, Mi be the knowledge of si and stepsi be the steps of si,
i.e., si = Mi : stepsi. Let Ag be a countably infinite set of constants of type
Agent, including i denoting the intruder, and let VA be the set of all variables
that occur in the Mi (and are thus of type Agent in every SPS translation).
Let Subs be the set of substitutions from VA to Ag . Thus Subs represents all
possible instantiations of the roles of the protocol with concrete agent names.
If the SPS knowledge declarations contain some inequalities, such as A 6= i or
A 6= B, then this set Subs is accordingly restricted.

Even though a knowledge itself is a substitution (cf. Definition 3.2), we now
define what it means to apply a substitution (from Subs) to it. Let σ ∈ Subs
and M = [X1 7→ t1, · · · ,Xl 7→ tl] be a knowledge. Then, we define σ(M) =
[X1 7→ σ(t1), · · · ,Xl 7→ σ(tl)]. The initial state of the transition system is
(S0;M0; ∅) where:

S0 =
⋃k
i=1{σ(Mi)(stepsi.finished(n)) | σ ∈ Subs, σ(Ri) 6= i, n ∈ N}

M0 =
⋃k
i=1{σ(ul(Mi)) | σ ∈ Subs, σ(Ri) = i} ∪Ag

where ul is a function that maps from a knowledge to a set of terms by discarding
the labels, e.g., ul([X1 7→ t1, · · · ,Xn 7→ tn]) = {t1, · · · , tn}.

Here we use a new event finished(n) (for each n ∈ N) to create a countable
number of unique operational strands for each instance σ ∈ Subs. Note that
we apply the instantiation σ first to the knowledge of the role, and the so
instantiated knowledge to the entire operational strand. For instance, for the
operational strand

[X1 7→ A,X2 7→ B,X3 7→ shk(A, B)] : fresh X4.send(insec, scrypt(X3,X4)

and the instance σ = [A 7→ a, B 7→ i], we get the countably many operational
strands [X1 7→ a,X2 7→ i,X3 7→ shk(a, i)] : fresh X4.send(insec, scrypt(shk(a, i),
X4)).finished(n).0 for each n ∈ N. All remaining variables in the instantiated
operational strands represent freshly created values and (parts of) received mes-
sages.
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Note that here we have created only the instances for the honest agents (because
of the side condition σ(Ri) 6= i); this is so since the behavior of the honest
agents is subsumed by the abilities of the intruder when given the appropriate
knowledge of the role in all instances where he plays the role.4 With M0 we
therefore define the initial knowledge that the intruder needs to play in all
roles under his real name. Here we model the intruder knowledge simply as a
set of messages (rather than a substitution M as for honest agents) as for the
standard Dolev-Yao intruder deduction, we do not need labels (and we do not
consider notions like behavioral equivalence here). Accordingly, let `′ denote
the standard unlabeled intruder deduction on unlabeled messages defined as
follows: ul(M) `′ t iff M ` tl for some l.

The transition relation The transition relation =⇒ is defined as the least
relation closed under the following rules:

T1 ({send(insec, t).rest} ∪ S;M;E) =⇒ ({rest} ∪ S;M∪ {t};E)

T2 ({receive(insec, t).rest} ∪ S;M;E) =⇒ ({σ(rest)} ∪ S;M;E)
for any substitution σ such that M `′ σ(t)

T3 ({event(t).rest} ∪ S;M;E) =⇒ ({rest} ∪ S;M;E ∪ {event(t)})

T4 ({s=̇t.rest} ∪ S;M;E) =⇒ ({rest} ∪ S;M;E)
if s ≈ t

T5 ({fresh Xi.rest} ∪ S;M;E) =⇒ ({σ(rest)} ∪ S;M;E)
where σ = [Xi 7→ c] and c is a fresh constant

T6 ({Xi := t.rest} ∪ S;M; E ) =⇒ ({σ(rest)} ∪ S;M;E)
where σ = [Xi 7→ t]

T7 ({0} ∪ S;M;E) =⇒ (S;M;E)

The rules T1 and T2 handle the sending and receiving over an insecure channel:
we add every sent message t to the intruder knowledge; for an agent who wants
to receive a message of the form t (note that t may contain variables that are
bound in this step), the intruder can use any instance σ(t) that he can derive
from his knowledge and we apply σ to the rest of the strand, i.e., instantiating
all variables that have been bound in this step. We have only discussed the
standard case of insecure channels here, other kinds of channels can be defined
as in the ideal channel model of [MV09a].

4In fact, we define here the semantics of operational strands using a standard Dolev-Yao
style intruder deduction relation; stronger models could be employed, we just require that
the intruder can at least perform the actions that honest agents can, i.e., encryption and
decryption with known keys and the like.
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The rule T3, simply adds the event(t) to the set of events E indicating that
event(t) has occurred. T4 says that if we face the check s

.
= t then we proceed

if the check is met. In the rule T5, we handle the creation of a fresh value Xi
by substituting all the next occurrences of Xi by a fresh constant c. A fresh
constant is simply a constant that does not occur elsewhere, we assume that
each agent (including the intruder) has an infinite reservoir of fresh constants.
T6 removes the strand-macro Xi := t by replacing Xi with what it abbreviates,
i.e., the term t. The last rule T7 handles the end of the strand.

Note that the following invariant holds over all transitions: the intruder knowl-
edge is a set of ground terms, all strands are closed, and all terms that the
intruder can derive and send are thus also ground.

3.6 Summary

In this chapter, we defined the semantics of SPS in a concise and simple way
that works for an arbitrary theory. Our high-level semantics [[·]]H gives a math-
ematically succinct and uniform definition of Alice-and-Bob notation following
from a few general principles, and at the same time it supports an arbitrary set
of operators and algebraic properties. The succinctness and generality are, in
our opinion, a strong argument for this semantics as a standard. As [[·]]H entails
problems that are not recursively computable in general, we defined the low-level
semantics [[·]]L for a particular theory and proved its correctness with respect
to [[·]]H , i.e., we proved that [[·]]L implements [[·]]H and that both semanticses
produce equivalent operational strands given then same plain strand. In the
next chapter we define translators from operational strands to implementations
and formal models.
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Chapter 4

Beyond the Semantics

We now come to the “last mile” of the translation: to translate operational
strands into actual implementations and into formal models for automated ver-
ification. We implemented these translations (and others) in the SPS compiler1

that we depict in Figure 4.1. We give the details of the “JEE” later in this chap-
ter, and the details of “APCC” in Chapter 9. As target languages, we have here
JavaScript2 for protocol implementations and Applied π for the formal model.

One can easily see a very close correspondence between the two translations:
roughly, they both use the same operators in the same way, only in the formal
model they are function symbols in an “abstract” term algebra, whereas in the
implementation they are corresponding API calls. It is one of the contributions
of this work to achieve such a close correspondence. While the use of crypto-
APIs is of course standard, our notion of formats extends this API idea also to
the non-cryptographic operations: all the technical details of parsing and pretty-
printing are hidden in the classes for the given formats. Of course, just like the
crypto-API, also the “non-crypto-APIs” require a robust implementation (that
does not suffer from buffer overflows, for instance), but we want to argue that
our setup with APIs is a suitable way to “cut the cake”.

1available at http://www2.imm.dtu.dk/~samo/SPS.zip
2One may argue that JavaScript is not suitable for implementing security protocols, but

in fact, using systematic mechanisms such as our formats, we can produce robust implemen-
tations that do not suffer from type flaw attacks, for instance.

http://www2.imm.dtu.dk/~samo/SPS.zip
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Figure 4.1: The SPS Compiler

The close correspondence allows us to argue that there is no systematic dis-
crepancy between formal model and implementation, if the function symbols
have the corresponding meaning—but that is indeed subtle. Comparing the
translation with the input strand of Figure 3.1(right), there are only two sig-
nificant differences: all the explicit verifiers of the strands are removed (as we
explain later) and the implementation does not contain events; besides that, the
translation is mainly adapting to the syntax of the target language.

We proceed by giving the translations to JavaScript as a representative for
implementations, and Applied π as a representative for formal models.

4.1 Translation to JavaScript

We define the function [[·]]JS that translates from operational strand to JavaScript
code. In the definition below we use + for string concatenation.

where: head(M : steps) = “void proc ”+own(M : steps)+“(”+par(M)+“){”,
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[[M : steps]]JS = head(M : steps) + [[steps]]J
[[receive(ch,Xi).rest ]]J = “var ” + Xi + “ = ch.receive(); ” +[[rest ]]J
[[send(ch, l).rest ]]J = “ch.send(” + l + “); ” + [[rest ]]J
[[fresh Xi.rest ]]J = “var ” + Xi + “ = genNumber();” + [[rest ]]J
[[verifyf(l)

.
= >.rest ]]J = f + “ ” + l + “a = new ” + f + “(” + l + “); ”

+[[rest ]]J
[[Xi := geti,f(l).rest ]]J = “var ” + Xi + “ = ” + l + “a.get” + i+ “(); ”

+[[rest ]]J
[[Xi := t.rest ]]J = “var ” + Xi + “ = ” + t+ “; ” + [[rest ]]J
[[t
.
= >.rest ]]J = [[rest ]]J

[[t
.
= s.rest ]]J = “if(” + t+ “! = ” + s+ “) error(); + [[rest ]]J

[[0]]J = “}”

own(M : steps) is the agent that owns the strand M : steps, and par(M) is the
knowledge M formed as a list of parameters, i.e., a comma separated list of
the label variables of the knowledge M . We add to this list a channel object
ch given as an additional parameter that the code uses to send and receive
messages as we explain later. In a nutshell, the first rule gives the header of
the JavaScript code that we want to generate from the operational strand S.
For example, let S be the operational strand given in Figure 3.1(right), then
head(S) = function proc A(X1, X2, X3, X4, ch){. The left bracket that we have
at the end starts the function.

In the receive rule, we declare a new variable Xi and assign to it the value
received from the channel ch via the method receive(), i.e., the value obtained
from ch.receive() is assigned to that variable Xi. Next, the send rule uses the
method send() to send the term l over the channel ch . Recall that l is a recipe
that tells how to construct some value in reference to the given parameters
(initial knowledge), received messages, or derived messages. The fresh Xi rule
simply translates to a creation of a new value Xi.

The forth rule of [[·]]J handles a special case of checks, namely the case of a
format verifier (verifyf(l)

.
= >) where l represents what is supposed to be a

“serialized” f object, i.e., a byte string that is supposed to be parsed as an
object of type f. In this case, we create an object of that format where the
name of the object is obtained simply by appending the letter ‘a’ to the string
name l (there is no significance in choosing the letter ‘a’, it is just that we need
to distinguish between the byte string called l and the new object that we need
to create when we parse l, so we called the object l + “a”). The reason behind
the creation of an object is of twofold. First, we need this object for later use (in
obtaining the different fields of the formatted message as we see in the next rule);
for that we cannot directly use the byte string l. Second, we need to verify that
the string l is indeed of the format f. This verification is not explicitly done,
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instead it is left to the constructor that maps l to an object of type f. The
constructor here is basically a format parser. The next rule is dedicated to
macros in which format getters are involved. Recall that by a format getter we
mean the format methods that obtain different fields of a format object. This is
achieved simply by calling the get method of the format object that we created
when we encountered the format verifier (verifyf(l)). Here we rely on the fact
that our model generates a format verifier before decomposing a format. Note
that this case is a special case of macros, the next rule ([[Xi := s.rest ]]J) handles
the other cases of macros. When we have the macro Xi := t, we simply create
a new variable Xi and give it the value t.

In the seventh rule we handle another special case of checks, namely the case
with operator verifiers except the format verifiers (we already handled format
verifiers in the third rule). The operator verifiers that we have in SPS as we
discussed earlier are {vcrypt, vsign, vscrypt}. In this case, we do not produce
any JavaScript code; simply because the verification is left to the deconstructors
{dcrypt, open, dscrypt}; since they implement a verification mechanism, e.g.,
the decryption will raise an exception if it failed to decrypt a supposedly en-
crypted message. Here, we rely on the fact that our model calls the decryption
step immediately after the verification (cf. Table 3.2), so we delay the verifi-
cation to the decryption that implements it. The eighth rule is for the other
cases of checks, namely when we require that two terms (none of them is >)
are equal. We translate this check into an if-statement, i.e., if the two labels of
the check are not equal then we arise an error. The last rule handles the end of
the operational strand that we translate to a right bracket (}) closing the left
bracket we opened in the very first rule (by calling head(·)). Figure 4.3 shows
this translation for the role A of our example in Figure 3.1(right).

We designed SPS in FutureID project to enable a service called the Univer-
sal Authentication Service (UAS) [Fut13b] to execute arbitrary authentication
protocols.UAS consists of an execution environment (called the “Job Execution
Environment” and depicted in Figure 4.2 and specified in [Fut14]) that pro-
vides libraries of cryptographic functions to link abstract code calls to concrete
functions e.g., crypt to RSA or scrypt to AES. This link is maintained by a set
of configuration files for each SPS specification (or protocol). Moreover, UAS
provides required format classes that a protocol needs. This setting makes our
generated code inter-operable with any given message formats (any mechanism
of message parsing) and with cryptographic libraries. This enables us to model
real-world protocols like EAC used in German eID and TLS.

Crypto API. We of course rely on the execution environment to have suit-
able implementations of the cryptographic primitives, e.g., the exp operator will
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Figure 4.2: The Job Execution Environment

in fact be mapped to elliptic curve cryptography. We assume that the call
dscrypt(k ,m) will fail (aborting execution) if m is not a message encrypted
with key k . This is why we do not include verifier checks in this translation.
For simplicity, we omitted the optional annotation of primitives with the precise
algorithm and key length (that is only necessary when using different ones in
the same protocol).

Formats. The notion of formats allows us to integrate the actual message
formats of real-world protocols like EAC and TLS. Similar to the cryptographic
operators, we also rely on what we like to call a non-crypto API that is an
implementation of non-cryptographic operators: for each format declared in the
specification, we require a Java class that implements it. Each format class must
have the following:

1. A private member variable for each of its fields.

2. A constructor that gets values for member variables. It corresponds to
our abstract function symbol in SPS.
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3. A constructor that gets a string in concrete syntax and parses it throwing
an exception if required elements are missing or the message is not well-
formed; i.e., it preforms the check that corresponds to the format that
verifyf function represents in SPS.

4. A method encode to “pretty-print” the object into a concrete string.

The latter two are respectively called serializer and de-serializer in pro-
tocol implementation slang.

5. A get function for every element of the object; this corresponds to geti,f.

For the example format f1, we have the class f1 must have three member
variables of type byte string to represent the three fields of the form (as raw
data). It must have two constructors: the first takes three byte strings as
input and just stores them in the member variables (cf. the first new f1 in the
example), the second takes a single byte string and tries to parse it as format f1,
and this may fail (cf. the second new f1 in the example). Further, we have the
geti() functions to obtain the i-th field and encode() to output a byte string.
For a more detailed discussion of formats of EAC, TLS and other protocols see
Chapter 5.
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4.2 Translating to Applied π

Proverif allows for the verification of protocols for an unbounded number of
sessions. Proverif uses abstraction and produces sound security proofs, i.e., the
absence of attacks in the given protocol model. However, the abstraction may
lead to false positive attacks due to the over-approximation, i.e., some attacks
may be unrealistic. Proverif accepts as input specifications in Applied π [AF01].

In order to connect SPS to ProVerif, we implemented within the SPS compiler
a translation to Applied π code. The generated code is composed of three parts:
declarations, processes and a global process. Now we give some details using
the Applied π generated code for our example protocol using the SPS compiler.

The Declaration Part

The first part of the generated Applied π code is the declaration part, in which
we declare all identifiers and functions to be used in the rest of the code. List-
ing 4.1 shows a chunk of this part, where one can find the declaration of the
following:

• A channel ch (Line 2) that agents use to exchange message.

• The intruder name (Line 3).

• The mappings that we use in the protocol, like shk (Line 4). Note that
it has the property of being private, i.e., agents (including the intruder)
cannot use it to compose messages.

• The used functions such as the symmetric encryption function scrypt

(Line 15) followed by its decryption property; namely that if the key is
known then the message is also known. Proverif considers all functions to
be public unless they are followed by [private] as in the mapping shk,
thus another property of scrypt is that it is public (all agents including
the intruder can use it to compose messages).

• The used formats, e.g., f1(Line 5) followed its properties (Lines 6, 7 and
8), i.e., if one has a formatted message then he can get the fields of that
formats (decompose the format). Recall that formats are also public.

• Finally, the goals. (Line 21) is a query for Proverif to answer if the attacker
can get the enclosed secret PayloadAB that is declared to be private in the
previous line.
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1 (*Auto -Generated by SPS*)

2 free ch: channel.

3 free i:bitstring.

4 fun shk(bitstring ,bitstring):bitstring [private ].

5 fun f1(bitstring ,bitstring ,bitstring):bitstring.

6 reduc forall a,b,c:bitstring; f1get1(f1(a,b,c))=a.

7 reduc forall a,b,c:bitstring; f1get2(f1(a,b,c))=b.

8 reduc forall a,b,c:bitstring; f1get3(f1(a,b,c))=c.

9 const g: bitstring.

10 fun exp(bitstring ,bitstring):bitstring.

11 equation forall x, y: bitstring;

12 exp(exp(g,x),y)=exp(exp(g,y),x).

13 fun f2(bitstring):bitstring.

14 reduc forall a:bitstring;f2get1(f2(a))=a.

15 fun scrypt(bitstring ,bitstring):bitstring.

16 reduc forall k: bitstring , m: bitstring;

17 sdecrypt(k,scrypt(k,m))=m.

18

19 (* END OF FUNCSansPROPS *)

20

21 free PayloadAB:bitstring[private ].

22

23 query attacker(PayloadAB).

Listing 4.1: Declaration part of the example protocol in Applied π

Note that in this part we handled the most subtle problem: the algebraic prop-
erties of the cryptographic and non-cryptographic operators. We can express
cancellation, e.g.,

reduc forall m, k : bitstring; dscrypt(k, scrypt(k, m)) = m.

Note that directly formulating the equations for exp and mult will cause non-
termination in ProVerif [BS11, BSC14]. Thus, for standard Diffie-Hellman, we
use the property in lines 9–12 that is a sound restriction that ProVerif can
handle [KT09, Möd11]:

equation forall x, y : bitstring; exp(exp(g, x), y) = exp(exp(g, y), x) .

The translator can give a warning when the SPS specification is outside the
fragment for which the soundness result holds.
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The Processes Part

The second part of the generated Applied π code consists of the processes of
the protocol participants, i.e., A and B in our example protocol. These processes
contain all actions each participant performs such as sending and receiving mes-
sages, performing checks and the events he issues. The events are used later to
verify goals. Here, we present [[·]]π (with [[·]]π0

as the initial case) that translates
an operational strand to an Applied π calculus process. We use the syntax
provided in [RS11]. Note that the semantics of operational strands is actually
similar to a process calculus and this translation to it is mainly a matter of
pretty-printing. We define [[·]]π as follows (+ denotes string concatenation):

[[M : steps]]π0
=“let process“+own(M : steps)+ “(”+ par(M )+“)=” + [[strand ]]π

where: own(M : steps) is the name of the agent that owns the strand strand ,
and par(M ) is a list of the process parameters

derived from its initial knowledge M (an example is given below)

[[send(ch, l).rest ]]π = “out(”+ ch + “,”+ l+ “);”+ [[rest ]]π
[[receive(ch, l).rest ]]π = “in(”+ ch + “,”+ l+ “);”+ [[rest ]]π
[[fresh l.rest ]]π = “new ” + l+ “:bitstring;”+ [[rest]]π
[[x := t.rest ]]π = “let ”+ x+ “=”+ t+ “in ”+ [[rest ]]π
[[t
.
= >.rest ]]π = [[rest]]π

[[s
.
= t.rest ]]π = “if(”+ s+ “=”+ t “) then ” + [[rest ]]π

[[event(t).rest ]]π = “event(t);” + [[rest ]]π
[[0]]π = “0.”

The first rule declares the agent’s process by giving it a name and parameterizing
it over the initial knowledge of the agent. For example, Let S A = MA : stepsA

be the strand shown in our example in Figure 3.1(right), then own(S A) = A,
and par(M A) = x1, x2, x3, x4 : bitstring, so the process will be process as
shown in the first line of Listing 4.2. The second and the third rules deal with
the sending and receiving of messages over a channel ch. The forth rule deals
with the creation of a fresh value, and the fifth rule covers the macro case of
a strand and how it is translated in Applied π code. The sixth and the sev-
enth rules deal with the checks. Note that we simply ignore checks with > on
one side; since such checks are implicitly performed by the next destruction
step. For example, in the translation of S A, we ignore vscrypt(X3,X6)

.
= >

as it is followed by X7 := dscrypt(X3,X6), which according to the property
(reduc forall m, k : bitstring; dscrypt(k, scrypt(k, m)) = m.) will not be de-
crypted X6 unless it is a valid encrypted message and X3 is a valid encryption
key. The eighth rule pretty-prints the event event(t) in the process and the last
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rule ends the strand. The result of applying [[·]]π to the operational strand of
the agents A and B is shown in Listing 4.2.

1 (* Agent A process in protocol:Example is *)

2 let processA(x1:bitstring ,x2:bitstring ,x3:bitstring ,x4

:bitstring) =

3 new x5:bitstring;

4

5 out(ch , scrypt(x3 , f1(x1 , x2 , exp(x4 , x5))));

6 in(ch , x6:bitstring);

7 let x7:bitstring = sdecrypt(x3 , x6) in

8 let x8:bitstring = f1get1(x7) in

9 let x9:bitstring = f1get2(x7) in

10 let x10:bitstring = f1get3(x7) in

11 if(x8 = x2) then

12 if(x9 = x1) then

13 new x11:bitstring;

14

15 out(ch , scrypt(exp(x10 , x5), f2(x11)));

16 if(x2 <> i) then

17 out(ch , scrypt(x11 ,PayloadAB));0.

18 (* -------------------------- *)

19 (*EOP*)

20 (* Agent B process in protocol:Example is *)

21 let processB(x1:bitstring ,x2:bitstring ,x3:bitstring ,x4

:bitstring) =

22 in(ch , x5:bitstring);

23 let x6:bitstring = sdecrypt(x3 , x5) in

24 let x7:bitstring = f1get1(x6) in

25 let x8:bitstring = f1get2(x6) in

26 let x9:bitstring = f1get3(x6) in

27 if(x7 = x1) then

28 if(x8 = x2) then

29 new x10:bitstring;

30 out(ch , scrypt(x3 , f1(x2 , x1 , exp(x4 , x10))));

31 in(ch , x11:bitstring);

32 let x12:bitstring = sdecrypt(exp(x9 , x10), x11) in

33 let x13:bitstring = f2get1(x12) in

34 if(x1 <> i) then

35 out(ch , scrypt(x13 ,PayloadAB));0.

Listing 4.2: The processes part in Applied π
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This part also handles a subtlety of algebraic properties, i.e., during the veri-
fication process of ProVerif, where processes get translated into Horn clauses,
ProVerif encodes the destructors (declared in the declaration part and explained
above) into pattern matching—in the Horn clauses occur no destructors or ver-
ifiers. This transformation corresponds to an implicit verifier: in our exam-
ple, the let x6 clause in Line 23 will fail if the message x5 is not of the form
scrypt(x3, ·). Moreover, the subsequent three “let“ clauses will fail if x5 is not
formatted with f1. Thus, the ProVerif translation does not have verifiers either.

The Global Process Part

The third part is the “global” process that instantiates the above processes
with their initial knowledges and allows the intruder to instantiate some of
these process to model the dishonest agents behavior. In the generated code,
we formulate all possible instantiations of the protocol: every role can be played
by any agent, including the intruder, and we want to allow for any number of
sessions of the protocol in parallel. It is not trivial to specify this manually, but
the SPS compiler offers a systematic way to generate the instantiation. Recall
that the initial knowledge of each role in the SPS specification can only contain
variables of type Agent and long-term keys have to be specified using functions
like shk. This allows us to instantiate the knowledge for any value of the role
variables. For our example, we have the code in Listing 4.3 (where ch is the
insecure channel that we declared previously):

1 process

2

3 !new x:bitstring;

4 out(ch , x)|

5 !in(ch ,(b:bitstring));

6 processA(x, b, shk(x, b), g) |

7 out(ch ,(i, b, shk(i, b), g))|

8 !in(ch ,(a:bitstring));

9 processB(a, x, shk(a, x), g) |

10 out(ch ,(a, i, shk(a, i), g))

Listing 4.3: The “global” process part

The first replication operator (!) generates an unbounded number of honest
agent names (in variable x) that are broadcast on ch. Then we generate an
unbounded number of instances of processA for each x and each name b that
we receive from the public channel (thus, the intruder can choose who will play
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role B). We also output on ch the initial knowledge that the intruder needs for
playing role A under his real name i. The last two lines are similar but for role
B. The full generated code is shown below (in Listing 4.4).

1 (*Auto -Generated by SPS*)

2 free ch: channel.

3 free i:bitstring.

4 fun shk(bitstring ,bitstring):bitstring [private ].

5 fun f1(bitstring ,bitstring ,bitstring):bitstring.

6 reduc forall a:bitstring ,b:bitstring ,c:bitstring;

f1get1(f1(a,b,c))=a.

7 reduc forall a:bitstring ,b:bitstring ,c:bitstring;

f1get2(f1(a,b,c))=b.

8 reduc forall a:bitstring ,b:bitstring ,c:bitstring;

f1get3(f1(a,b,c))=c.

9 const g: bitstring.

10 fun exp(bitstring ,bitstring):bitstring.

11 equation forall x: bitstring , y: bitstring; exp(

exp(g,x),y)=exp(exp(g,y),x).

12 fun f2(bitstring):bitstring.

13 reduc forall a:bitstring;f2get1(f2(a))=a.

14 fun scrypt(bitstring ,bitstring):bitstring.

15 reduc forall k: bitstring , m: bitstring; sdecrypt

(k,scrypt(k,m))=m.

16

17 (* END OF FUNCSansPROPS *)

18

19 free PayloadAB:bitstring[private ].

20

21 query attacker(PayloadAB).

22

23 (* Agent A process in protocol:Example is *)

24 let processA(x1:bitstring ,x2:bitstring ,x3:bitstring ,x4

:bitstring) =

25 new x5:bitstring;

26

27 out(ch , scrypt(x3 , f1(x1 , x2 , exp(x4 , x5))));

28 in(ch , x6:bitstring);

29 let x7:bitstring = sdecrypt(x3 , x6) in

30 let x8:bitstring = f1get1(x7) in

31 let x9:bitstring = f1get2(x7) in
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32 let x10:bitstring = f1get3(x7) in

33 if(x8 = x2) then

34 if(x9 = x1) then

35 new x11:bitstring;

36

37 out(ch , scrypt(exp(x10 , x5), f2(x11)));

38 if(x2 <> i) then

39 out(ch , scrypt(x11 ,PayloadAB));0.

40 (* -------------------------- *)

41 (*EOP*)

42 (* Agent B process in protocol:Example is *)

43 let processB(x1:bitstring ,x2:bitstring ,x3:bitstring ,x4

:bitstring) =

44 in(ch , x5:bitstring);

45 let x6:bitstring = sdecrypt(x3 , x5) in

46 let x7:bitstring = f1get1(x6) in

47 let x8:bitstring = f1get2(x6) in

48 let x9:bitstring = f1get3(x6) in

49 if(x7 = x1) then

50 if(x8 = x2) then

51 new x10:bitstring;

52

53 out(ch , scrypt(x3 , f1(x2 , x1 , exp(x4 , x10))));

54 in(ch , x11:bitstring);

55 let x12:bitstring = sdecrypt(exp(x9 , x10), x11) in

56 let x13:bitstring = f2get1(x12) in

57 if(x1 <> i) then

58 out(ch , scrypt(x13 ,PayloadAB));0.

59 (* -------------------------- *)

60 (*EOP*)

61

62 process

63

64 !new x:bitstring;

65 out(ch , x)|

66 !in(ch ,(b:bitstring));

67 processA(x, b, shk(x, b), g) |

68 out(ch ,(i, b, shk(i, b), g))|

69 !in(ch ,(a:bitstring));

70 processB(a, x, shk(a, x), g) |
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71 out(ch ,(a, i, shk(a, i), g))

Listing 4.4: The Auto-generated Applied π code by SPS compiler for the

running example

4.3 Summary

The SPS compiler enables the formal verification of protocols via the connection
to several back-end tools such as the static analysis tool Proverif and the model
checker OFMC. Moreover, SPS generates JavaScript implementations that are
based on robust APIs for cryptographic and formats. Both the formal models
and the implementations are derived from the same operational strands. In this
chapter, we explained two translations from operational strands in detail. First,
we explained our translation to JavaScript giving some contextual details about
the SPS compiler in general and how it fits within the FutureID project. Then,
we explained our translation to Applied π [AF01] as representatives for formal
models. We detailed how each part of the generated code is handled. We think
that the systematic instantiation of Applied π processes tackles a subtlety that
many non-expert users may face, namely that such users may make mistakes
in the instantiation of processes. In the next chapter, we consider in details
some real-world protocols as case studies, namely: EAC [Ger08], PACE [Fed12],
TLS [DR08], and two of the ISO/IEC 9798 [Int99] standard authentication
protocols.
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Chapter 5

Case Studies

We introduce the SPS files for some selected protocols that are highly relevant
to electronic identity systems (eID) in general and the FutureID project in par-
ticular. The selected protocols are: (1) the Extended Access Control protocol
(EAC) that is used in the European e-passports to protect sensible data. (2)
The Password Authenticated Connection Establishment protocol (PACE) that
establishes a secure channel between an eID card chip and a terminal. PACE is
the recommended first step in EAC. (3) The Transport Security Layer protocol
(TLS) that is one of the most widely used protocols to establish secure channels
between a client and a server. (4) A group of ISO/IEC 9798 standard authenti-
cation protocols. Next in Section 5.1, we present each of the selected protocols
in a separate section, but following the same structure for all protocols as we
explain: for each of the selected protocols, we introduce it briefly, then explain
in details its specification in SPS. After that we give a tabular summary for the
results of our test suite.

5.1 Case Studies Structure

In order to improve the readability of this chapter, we follow the same structure
in presenting the selected protocols. We introduce each protocol in a separate
section that has the following subsections:
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• An introduction, in which we give a brief description of the protocol.

• The SPS specification of the protocol, in which we explain how we modeled
different aspects of the protocol. As a natural choice, we present the
protocol’s SPS specification following its structure as explained in details
in Chapter 2.

• The protocol formats, in which we discuss the message formats of the
protocol.

• The analysis results, in which we discuss the formal verification of the pro-
tocol. We also present the most important aspects of the auto-generated
code. Then we summarize the results obtained from running the back-end
tools (ProVerif and OFMC) on the auto-generated code of the protocol.

5.2 EAC

The Extended Access Control (EAC) protocol [Ger08] is used in eID cards
(ePassports) to secure sensitive data like fingerprints. EAC is a two-party pro-
tocol that aims to provide a mutual authentication between an eID card and a
terminal. The protocol takes place in the environment of the German ID card.
Through EAC (1) a terminal (Proximity Coupling Device, PCD) authenticates
itself to the ID card (Proximity Integrated Circuit Card, PICC) to get access to
the sensitive data stored on the card and (2) the PICC proves its authenticity to
the PCD. In brief, EAC works as follows: (1) PCD sends his certificate (issued by
a certificate authority) to PICC, (2) PICC replies with a freshly generated ran-
dom number say R1. Then, (3) PCD sends back his Diffie-Hellman half key, and
(4) PICC replies with another freshly generated random number say R2. Now,
(5) PCD signs R1 and his Diffie-Hellman half key, and sends the signature to
PICC. Finally, (6) PICC sends his Diffie-Hellman half key signed by a certificate
authority that PCD accepts. Both PICC and PCD can then construct a shared
authenticated key.

5.2.1 EAC in SPS

In Listing 5.1, we give the complete specification of EAC followed by a detailed
explanation for this specification.

1 Protocol: EAC

2 Types:

3 Agent PCD , PICC , ca;
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4 Number g, certDesc , rChat , oChat , auxData , noCert , cHAT , cAR , eFC , idPICC ,

null ,

5 handle , didName;

6 Formats:

7 eac1input(Msg , Msg , Msg , Number , Number , Number , Number);

8 eac1output(Number , Number , Number , Number , Number);

9 eac2input(Msg , Msg , Number , Number , Number);

10 eac2output(Number , Msg , Msg , Number);

11 eacadditionalinput(Msg , Msg , Msg);

12 certForm(Agent , PublicKey);

13 x59d(Agent , Number , PublicKey);

14 Knowledge:

15 PCD: PCD , sign(inv(pk(ca)),certForm(PCD ,pk(PCD))), pk(PCD), pk(ca),

16 inv(pk(PCD)), g, handle , didName , certDesc , rChat , oChat , auxData , noCert

, null;

17 PICC: PICC , sign(inv(pk(ca)),certForm(PICC ,exp(g,sk(PICC)))), pk(ca),

18 sk(PICC), g, cHAT , cAR , eFC , idPICC , null;

19 where PCD!=ca , PICC !=ca;

20 Actions:

21 [PCD]*->*[PICC]: eac1input(handle , didName , sign(inv(pk(ca)), certForm(PCD ,

pk(PCD))), certDesc , rChat , oChat , auxData)

22

23 PICC: Number RC

24 [PICC]*->*[PCD]: eac1output(cHAT , cAR , eFC , idPICC , RC)

25

26 PCD: Number X

27 let PK_PCD=exp(g,X)

28 [PCD]*->*[PICC]: eac2input(handle , didName , noCert , PK_PCD , null)

29

30 PICC: Number Rpicc

31 [PICC]*->*[PCD]: eac2output(Rpicc , null , null , null)

32

33 [PCD]*->*[PICC]: eacadditionalinput(handle , didName , sign(inv(pk(PCD)),

x59d(PICC , Rpicc , PK_PCD)))

34

35 PICC: Number Rmac

36 let PK_PICC=exp(g,sk(PICC))

37 let DHKey= exp(PK_PCD ,sk(PICC))

38 [PICC]*->*[PCD]: eac2output(null , sign(inv(pk(ca)),certForm(PICC ,PK_PICC)),

mac(hash(DHKey , Rmac), PK_PCD), Rmac)

39

40 Goals:

41 PICC authenticates PCD on DHKey

42 PCD authenticates PICC on DHKey

43 DHKey secret of PICC , PCD

Listing 5.1: EAC in SPS

Types: In EAC, we have three agents: (1) PCD represents a terminal (Prox-
imity Coupling Device), (2) PICC represents an eID card (Proximity In-
tegrated Circuit Card), and (3) ca that represents a trusted certificate
authority that issued certificates for the other two agents. We also declare
a number g to represent a base to use it later for Diffie-Hellman key agree-
ment. We assume that g is a primitive root modulo some prime p that
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both agents agreed upon; we later use exp(g, X) to denote g to the powerX
modulo p. Finally, we declare several identifiers like certDesc,rChat,oChat,
and eFC. Those are used later by the agents as parameters in their ex-
changed messages. We explain them when they appear in the messages in
the Actions section.

Formats: EAC has several formats, e.g., the format eac1input represents
an XML structuring for seven fields: a certificate and six numeric values
that describe the certificate and provide auxiliary information; we describe
these six fields below when eac1input is used in the protocol message
exchange. Note that in this section we only name each protocol format
and specify the data types for its fields, the details of the format structure
are abstracted away and left for the implementation (a Java class for each
of the protocol formats). More about the formats of EAC is given in
Section 5.2.2 that is dedicated to this purpose.

Knowledge: The initial knowledge for each of the participants of EAC is as
follows:

PCD knows initially his name, a certificate issued by the certificate author-
ity ca in which ca signs the public key of PCD. In EAC a certificate
chain may be used instead of a single one, but in our specification
we model them as a single certificate as it is a realistic abstraction.
PCD also knows his public and private keys, the public key of ca,
and the Diffie-Hellman base g. Additionally, PCD knows handle,

didName, certDesc, rChat, oChat, auxData, noCert and null

that he uses afterward as parameters in his messages. We explain
them when they appear in the exchanged messages in the Actions
section.

PICC knows initially his name, a certificate issued by the certificate au-
thority ca in which the half key of PICC is signed. PICC also knows
the public key of ca, his secret key sk(PICC), and finally the base
g. Finally, PICC knows cHAT, cAR, eFC, idPICC and null; he uses
these constants as parameters in his messages.

Actions: This section specifies what messages are exchanged among protocol
participants as well as what data is created freshly during an EAC run.

1. PCD initiates the EAC protocol; he sends a handle handle and a
didName that are both used to identify him. PCD also sends his cer-
tificate signed by ca along with a certificate description certDesc, a
required and an optional Certificate Holder Authorization Template
(CHAT) represented here with rCHAT and oCHAT, and some auxil-
iary data auxData. PCD wraps this data using the eac1input format
before he sends them to PICC.
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In the original specification of the EAC protocol [Ger08], PCD sends a
certificate chain, in here we use a single certificate to model the chain.
Finally, PCD sends this message over a secure pseudonymous channel
that we denote by [PCD]∗ → ∗[PICC]. By secure we mean that the
intruder cannot get the exchanged messages over this channel, and
by pseudonymous we mean that they both do not know each other.
Due to the lack of tool support, we simulate this channel between
any two agents A and B (that do not know each other), by: A sends
first a fresh public-key to B, then B replies with a fresh symmetric
key encrypted with the public-key of A. After this, they can both
exchange message securely using the symmetric key to encrypt all
exchanged messages among them; still without knowing each other.
More about secure pseudonymous channels can be found in [MV09a].
This channel is the result of performing the PACE protocol step
before EAC (we discuss PACE protocol in Section 5.3). This channel
is used in all the steps of EAC.

2. After receiving the first message from PCD, PICC verifies the received
certificate and extracts the public key of PCD. Then, PICC generates
a random number (challenge) RC and sends it along with his iden-
tifier idPICC, a Certificate Holder Authorization Template cHAT, a
Certification Authority Reference cAR, and eFC. The message has
the format eac1output. Note that this message is dedicated to PCD

as he is the only one able to decrypt it.

3. PCD then computes an ephemeral Diffie-Hellman half-key by generat-
ing the nonce X. Then he send his half key and the parameter noCert
to PICC both formatted with eac2input. Recall that the let is an
in-line macro used to improve readability.

4. PICC generates the random number Rpicc and send it to PCD format-
ted with eac2output.

5. Now PCD signs (with his private key) PICC’s name, the received ran-
dom number Rpicc and his half key exp(g, X), then sends them to
PICC. null is used to model the null value for any optional parame-
ter. Note that the signed message is formatted with the format x59d
and the whole message is formatted with eac2additionalinput.

6. Finally, PICC performs checks on the values of PCD half-key and
Rpicc. Then he generates the random number Rmac, and computes:
mac(hash(DHKey, Rmac), PK PCD) where mac is a keyed hash, hash is
a hash function, DHKey is the full Diffie-Hellman key, and PK PCD

is the ephemeral half-key of PCD that PICC received previously, i.e.,
exp(g, X). After this computation, PICC sends the certificate issued
by ca that signs his static half-key along with the mac above and the
random number Rmac. Note that PCD can compute the full Diffie-
Hellman key using the half-key of PICC and X that he previously
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generated, thanks to the algebraic properties of the modular expo-
nentiation exp. Note that the users of SPS do not have to specify
how agents decrypt the received messages nor how they are verified
(if a message is of a certain format); these details are defined in
the semantics of SPS (defined in [Fut13c]) and implemented by SPS
compiler.

Goals: Here we specify the goals of the EAC protocol. EAC aims at achieving
mutual authentication between its two participants, PCD and PICC. The
goals are explained later in the verification tools section (to check if EAC
achieves them or not). We discuss the verification of EAC in Section 5.2.3.

5.2.2 EAC Formats

The EAC protocol has several formats for its XML-messages as shown in List-
ings 5.2- 5.6. Note that the messages are slightly simplified, i.e., Name-spaces
and organizational XML attributes were left out.

1 EAC1INPUT(handle , did -name , certs , cert -desc , req -chat , opt -chat , aux -data ,

transact) =

2 <DIDAuthenticate >

3 handle

4 <DIDName >did -name </DIDName >

5 <AuthenticationProtocolData Protocol="urn:oid :1.3.162.15480.3.0.14">

6 {certs: c | <Certificate >c</ Certificate >}
7 <CertificateDescription >cert -desc </ CertificateDescription >

8 { i f req -chat: <RequiredCHAT >req -chat </ RequiredCHAT >}
9 { i f opt -chat: <OptionalCHAT >res -chat </ OptionalCHAT >}

10 { i f aux -data: <AuthenticatedAuxiliaryData >aux -data </

AuthenticatedAuxiliaryData >}
11 { i f transact: <TransactionInfo >transact </ TransactionInfo >}
12 </AuthenticationProtocolData >

13 </DIDAuthenticate >

Listing 5.2: EAC1INPUT format

1 EAC1OUTPUT(chat , cars , ef -ca , id -picc , challenge) =

2 <DIDAuthenticateResponse >

3 <Result >

4 <ResultMajor >http ://www.bsi.bund.de/ecard/api /1.1/ resultmajor#ok</

ResultMajor >

5 </Result >

6 <AuthenticationProtocolData Protocol="urn:oid :1.3.162.15480.3.0.14">

7 { i f chat: <CertificateHolderAuthorizationTemplate >chat </

CertificateHolderAuthorizationTemplate >}
8 {cars: c | <CertificationAuthorityReference >c</

CertificationAuthorityReference >}
9 <EFCardAccess >ef -ca </ EFCardAccess >

10 <IDPICC >id -picc </IDPICC >

11 <Challenge >challenge </Challenge >
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12 </AuthenticationProtocolData >

13 </DIDAuthenticateResponse >

Listing 5.3: EAC1OUTPUT format

1 EAC2INPUT(handle , did -name , certs , key , sig) =

2 <DIDAuthenticate >

3 handle

4 <DIDName >did -name </DIDName >

5 <AuthenticationProtocolData Protocol="urn:oid :1.3.162.15480.3.0.14">

6 {certs: c | <Certificate >c</ Certificate >}
7 <EphemeralPublicKey >key </ EphemeralPublicKey >

8 { i f sig: <Signature >sig </Signature >}
9 </AuthenticationProtocolData >

10 </DIDAuthenticate >

Listing 5.4: EAC2INPUT format

1 EAC2OUTPUT(ef -cs , token , nonce , challenge) =

2 <DIDAuthenticateResponse >

3 <Result >

4 <ResultMajor >http ://www.bsi.bund.de/ecard/api /1.1/ resultmajor#ok</

ResultMajor >

5 </Result >

6 <AuthenticationProtocolData Protocol="urn:oid :1.3.162.15480.3.0.14">

7 { i f challenge: <Challenge >challenge </Challenge >

8 else:

9 <EFCardSecurity >ef -cs </ EFCardSecurity >

10 <AuthenticationToken >token </ AuthenticationToken >

11 <Nonce >nonce </Nonce >}
12 </AuthenticationProtocolData >

13 </DIDAuthenticateResponse >

Listing 5.5: EAC2OUTPUT format

1 EACADDITIONALINPUT(handle , did -name , sig) =

2 <DIDAuthenticate >

3 handle

4 <DIDName >did -name </DIDName >

5 <AuthenticationProtocolData Protocol="urn:oid :1.3.162.15480.3.0.14">

6 <Signature >sig </Signature >

7 </AuthenticationProtocolData >

8 </DIDAuthenticate >

Listing 5.6: EACADDITIONALINPUT format

For each of the formats, the SPS compiler provides a Java class skeleton. Here
we give as an example the class for eac1input format, in which we have a parser,
a pretty printer and other methods of eac1input format.

1 //Auto -generated by SPS

2 // Format class prototype

3 public class eac1input{
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4 private byte [ ] field1;

5 private byte [ ] field2;

6 private byte [ ] field3;

7 private byte [ ] field4;

8 private byte [ ] field5;

9 public eac1input( byte [ ] input){// insert your format parser code

10 }
11 public eac1input(byte [ ] x1, byte [ ] x2, byte [ ] x3, byte [ ] x4, byte [ ] x5){

// insert your format setter here

12 field1=x1;

13 field2=x2;

14 field3=x3;

15 field4=x4;

16 field5=x5;

17 }
18 public boolean verify (){
19 // insert your verifier code here

20 }
21 public byte [ ] get1(){
22 // insert your getter code here

23 return field1;

24 }
25 public byte [ ] get2(){
26 // insert your getter code here

27 return field2;

28 }
29 public byte [ ] get3(){
30 // insert your getter code here

31 return field3;

32 }
33 public byte [ ] get4(){
34 // insert your getter code here

35 return field4;

36 }
37 public byte [ ] get5(){
38 // insert your getter code here

39 return field5;

40 }
41 public byte [ ] encode (){// insert your format pretty -printer code here

42 }
43 }

Listing 5.7: eac1input Class

As shown Listing 5.7 we have the following methods:

• Two constructors, one that parses a byte array into an eac1input object
(this corresponds to a deserializer), and another that constructs such an
object from the given fields values.

• A verify method to check whether a message is a valid eac1input object.

• An encode method that returns the object in concrete syntax, also referred
as a serializer or a pretty-printer.
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• For each element of the object, a get method that returns that element.

5.2.3 Analysis Results for EAC

Here we present the formal verification aspects and results of EAC, i.e., Proverif
counter examples or proofs and OFMC attacks or bounded verification.

We use EAC as our key example, i.e., we discuss in details different aspects of
the analysis of this protocol. However, in the other protocols we only point out
the differences if they exists, in order to avoid any redundancy.

Proverif

Using the SPS compiler, we translated the EAC specification into an Applied π
code. To improve the presentation of this code, we will explain the main parts
using code chunks. The first part is the declarations part in which we declare
all identifiers and functions used in the rest of the code. Listing 5.8 shows a
chunk of this part, where one can find the declaration of the following:

• A channel ch (Line 1) that agents use to exchange message.

• The intruder name (Line 2).

• The used mappings like inv (Line 3) and their only property of being
private, i.e., agents (including the intruder) cannot use it to compose
messages.

• The used functions such as the symmetric encryption function scrypt

(Line 3) followed by its decryption property; namely that if the key is
known then the message is also known. Proverif considers all functions to
be public unless they are followed by [private] as in the mapping inv,
thus another property of scrypt is that it is public (all agents including
the intruder can use it to compose messages).

• The used formats, e.g., certform (Line 6) followed its properties (Lines 7
and 8), i.e., if one has a formatted message then he can get the fields of
that formats (decompose the format). Formats are also public.

• Finally, the goals. (Line 10) is a query for Proverif to answer if the attacker
can get the enclosed secret expexpgxskpiccPICCPCD that is declared to
be private in the previous line.
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1 free ch: channel.

2 free i:bitstring.

3 fun inv(bitstring):bitstring [private].

4 fun scrypt(bitstring ,bitstring):bitstring.

5 reduc forall k: bitstring , m: bitstring; sdecrypt(k,

scrypt(k,m))=m.

6 fun certform(bitstring ,bitstring):bitstring.

7 reduc forall a:bitstring ,b:bitstring;certformget1(

certform(a,b))=a.

8 reduc forall a:bitstring ,b:bitstring;certformget2(

certform(a,b))=b.

9

10 free expexpgxskpiccPICCPCD:bitstring[private].

11 query attacker(expexpgxskpiccPICCPCD).

Listing 5.8: Declaration part of EAC in Applied π

The second part is the processes of the EAC participants, i.e., PCD and PICC.
These processes contain all actions each participant performs such as sending
and receiving messages, performing checks and what event he issues. The events
are used later to verify goals accordingly. Listing 5.9 shows the process of PCD.

1 (* Agent PCD process in protocol:EAC is *)

2 let processPCD(x1:bitstring ,x2:bitstring ,x3:bitstring ,

x4:bitstring ,x5:bitstring ,x6:bitstring ,x7:bitstring

) =

3 new x8:bitstring;

4

5 out(secCh(x2 ,x1), eac1input(x3 , x8));

6 in(secCh(x1 ,x2), x9:bitstring);

7 let x10:bitstring = eac1outputget1(x9) in

8 let x11:bitstring = eac1outputget2(x9) in

9 let x12:bitstring = eac1outputget3(x9) in

10 if(x11 = x1) then

11 new x13:bitstring;

12

13 new x14:bitstring;

14

15 out(secCh(x2 ,x1), eac2input(x14 , exp(x7 , x13)));

16 in(secCh(x1 ,x2), x15:bitstring);

17 let x16:bitstring = eac2outputget1(x15) in
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18 out(secCh(x2 ,x11), eac2additionalinput(sign(x6 , x59d(

x11 , x16 , exp(x7 , x13)))));

19 in(secCh(x11 ,x2), x17:bitstring);

20 let x18:bitstring = eac22outputget1(x17) in

21 let x19:bitstring = eac22outputget2(x17) in

22 let x20:bitstring = eac22outputget3(x17) in

23 let x21:bitstring = open(x5 , x18) in

24 let x22:bitstring = certformget1(x21) in

25 let x23:bitstring = certformget2(x21) in

26 if(x22 = x11) then

27 if(x23 = exp(x7 , sk(x11))) then

28 if(x19 = mac(hash((exp(exp(x7 , x13), sk(x11)), x20)),(

exp(x7 , x13)))) then

29 if(x1 <> i) then

30 out(ch , scrypt(hash((sk(x1), exp(x7 , x13), x20)),

hashskpiccexpgxrmacPICCPCD));out(ch, scrypt(hash((

sk(x1), exp(x7 , x13), x20)),

hashskpiccexpgxrmacPICCPCD));0.

31 (* -------------------------- *)

32 (*EOP*)

Listing 5.9: Process of PCD in Applied π

The third part is the “global” process that instantiates the above processes
with their initial knowledges and allows the intruder to instantiate some of
these process to model the dishonest agents behavior. One important feature
here is that our generated code verifies EAC for unbounded number of session
and agents. Listing 5.9 shows part of PCD.

1 process

2 new ca:bitstring;

3

4 !new x:bitstring;

5 out(ch , x)|

6 !in(ch ,(picc:bitstring));

7 processPCD(picc , x, sign(inv(pk(ca)), certform(x, pk(x

))), pk(x), pk(ca), inv(pk(x)), g) |

8 out(ch ,(picc , i, sign(inv(pk(ca)), certform(i, pk(i)))

, pk(i), pk(ca), inv(pk(i)), g))|

9 !in(ch ,(pcd:bitstring));
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10 processPICC(pcd , x, sign(inv(pk(ca)), certform(x, exp(

g, sk(x)))), pk(ca), sk(x), g) |

11 out(ch ,(pcd , i, sign(inv(pk(ca)), certform(i, exp(g,

sk(i)))), pk(ca), sk(i), g))

Listing 5.10: The “Global” process of EAC in Applied π

The summary of Proverif analysis of EAC is shown in Table 5.1

Table 5.1: Proverif Analysis Summary for EAC

Goal of EAC Proverif result
Secrecy Goal
DHKey secret of PICC, PCD Proof found

Authentication Goals
PCD authenticates PICC on DHKey Proof found
PICC authenticates PCD on DHKey Proof found

OFMC

SPS compiler also generates AVISPA IF specifications that can be checked with
the OFMC. The summary of the OFMC results for EAC are shown in Table 5.2.

Table 5.2: OFMC Analysis Summary for EAC

Goal of EAC OFMC result
Secrecy Goal
DHKey secret of PICC, PCD No attack found

Authentication Goals
PCD authenticates PICC on DHKey No attack found
PICC authenticates PCD on DHKey No attack found

As shown in the Tables 5.1 and 5.2, both of the back-end tools agreed that EAC
has no attack.
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5.3 PACE

The Password Authenticated Connection Establishment (PACE) [Fed12] proto-
col establishes a strong session key for secure communication based on a shared,
weak secret. PACE is used by the German identity card (i.e. PICC) to (1) pro-
tect the communication over the contact-less interface between the card and
the terminal (i.e. PCD) and (2) authenticate the legitimate card holder using a
PIN. It was invented by the German Federal Office for Information Security as
a replacement for the insecure Basic Access Control (BAC).

In brief, PACE works as follows: (1) The card user User enters the PIN into the
card reader PCD. (2) PCD requests the card PICC to send him a freshly generated
random number encrypted with the PIN. (3) PICC creates a random number,
encrypts it with the shared secret (i.e. PIN), and sends it to the PCD. (4) PCD

decrypts the received message to get the random number, creates an ephemeral
key pair, and sends the public key to the PICC. (5) PICC also generates an
ephemeral key pair and responses with the public key. (6) Both perform an el-
liptic curve Diffie-Hellman key agreement and compute a common shared secret.
(7) Both compute a new Diffie-Hellman generator based on the common shared
secret and the random number, and then perform an additional Diffie-Hellman
key agreement using the new generator. Finally, (8) both derive session keys
for encryption and establish a secure channel between them. The channel be-
tween User and PCD is a pseudonymous secure channel, i.e., they can exchange
messages securely without knowing each other (relying on a pseudonym instead
of their real names). We model this channel by: first, User generates a pub-
lic/private key pair (we only model the generation of the public part and the
private part is implicit, i.e., if an agent creates a public key, then the private
key is added to his knowledge implicitly), then he sends his key and the PIN to
PCD encrypted with the public key of PCD. We also add a step in the end of the
protocol to enable the check authentication between PICC and User.

Please note that the PICC and PCD exchange information about key sizes, encryp-
tion and hash algorithms, Diffie-Hellman generators, and so forth beforehand;
and therefore we include this information in their initial knowledges as shown
shortly.

5.3.1 PACE in SPS

In this section we present the PACE protocol in SPS (cf. Listing 5.11) and
describe it in detail.

1 Protocol: PACE
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2 Types:

3 Agent PCD , PICC , User;

4 Number g, three , oid , secretid , null;

5

6 Formats:

7 mseSetATRequest(Msg , Msg);

8 mseSetATResponse(Msg);

9 encryptedNonceRequest(Number);

10 encryptedNonceResponse(Number);

11 mapNonceRequest(PublicKey);

12 mapNonceResponse(PublicKey);

13 performKeyAgreementRequest(PublicKey);

14 performKeyAgreementResponse(PublicKey);

15 mutualAuthenticationRequest(Number);

16 mutualAuthenticationResponse(Number);

17

18 Knowledge:

19 PICC: PICC , User , g, three , shk(User ,PICC), oid , secretid , null;

20 PCD: PCD , g, three , oid , secretid , pk(PCD), inv(pk(PCD)), null;

21 User: User , PICC , PCD , shk(User ,PICC), pk(PCD), null;

22 where PCD ! = i;

23

24 Actions:

25 User: PublicKey PkA

26 User −> PCD: crypt(pk(PCD), (shk(User , PICC), PkA))

27

28 PCD −> PICC: mseSetATRequest(oid , secretid)

29

30 PICC −> PCD: mseSetATResponse(null)

31

32 PCD −> PICC: encryptedNonceRequest(null)

33

34 PICC: Number R

35 PICC −> PCD: encryptedNonceResponse(scrypt(shk(User ,PICC), R))

36

37 PCD: Number X1

38 PCD −> PICC: mapNonceRequest(mult(X1 ,g))

39

40 PICC: Number Y1

41 PICC −> PCD: mapNonceResponse(mult(Y1,g))

42

43 PCD: Number X2

44

45 let PCD_K1 = mult(mult(Y1 ,g), X1)

46 let PCD_g2 = add(mult(R,g), PCD_K1)

47 PCD −> PICC: performKeyAgreementRequest(mult(X2, PCD_g2))

48

49 PICC: Number Y2

50

51 let PICC_K1 = mult(mult(X1,g), Y1)

52 let PICC_g2 = add(mult(R,g), PICC_K1)

53 PICC −> PCD: performKeyAgreementResponse(mult(Y2 , PICC_g2))

54

55 let PCD_K2 = mult(X2 , mult(Y2, PICC_g2))

56 PCD −> PICC: mutualAuthenticationRequest(mac(hash(PCD_K2 , three), mult(Y2 ,

PICC_g2)))

57

58 let PICC_K2 = mult(mult(X2, PCD_g2), Y2)
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59 let Key = mult(X2, PCD_g2)

60 PICC: Number NPICC

61 PICC−> PCD: mutualAuthenticationResponse(mac(hash(PICC_K2 ,three),mult(X2,

PCD_g2))), scrypt(Key ,NPICC)

62

63 PCD−> User: crypt(PkA , (shk(User , PICC), NPICC))

64

65 Goals:

66 Key secret of PCD , PICC

67 NPICC secret of PICC , User

68 User authenticates PICC on NPICC

Listing 5.11: PACE in SPS

Protocol: This section specifies the name of the protocol, PACE.

Types: This section specifies the three agents that are involved in the PACE
protocol: (1) the PCD representing the terminal, (2) the PICC representing
the eID card, and (3) the user User. Furthermore, this section specifies
the numbers g, three, oid, secretid, and null. g represents a generator
for the Diffie-Hellman key exchange. three represents simply the number
three that is used as a constant in the key derivation. oid is the object
identifier that specifies the algorithms that should be used in the protocol.
secretid tells what secret should be used, i.e., PIN in our case, but it
could be PUK or CAN as well. Finally, null represents the empty value
for optional parameters.

Formats: In this section we defines various formats for the PACE proto-
col. The PACE formats come in request/response pairs, e.g., we have
mseSetATRequest and mseSetATResonce formats; we refer to this pair
of format by the mseSetAT, that in fact abbreviates Manage Security
Environment Set Authentication Template. mseSetAT formats are used
to initialize the PACE protocol. The encryptedNonce formats repre-
sent the exchange of the encrypted random number. The mapNonce mes-
sage formats are used for the first Diffie-Hellman key exchange, and the
performKeyAgreement formats for the second key exchange. The formats
of mutualAuthentication are used to convey the authentication token.

Knowledge: The initial knowledge of the participants is as follows:

PICC knows his name, the user name User, and the constants g, three, oid,
and secretid. He also knows shk(User, PICC) a shared key between
him and the user User; this shared key models the PIN.

PCD knows his name, and the constants g, three, oid, and secretid.
He also has a public/private key pair represented by pk(PCD) and
inv(pk(PCD)).
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User knows his name, the names of PCD and PICC. He also knows the
public key of PCD and the PIN, i.e., shk(User, PICC). The reason
behind the user knowing the public key of PCD is to model the secure
pseudonym channel between both of them as mentioned earlier.

Actions: We explain this section step-by-step.

1. The user User sends the PIN (shk(User, PICC)) to PCD. For lack of
tool support and to model that User and PCD are not known to each
other, but the user can send the PIN securely to PCD; we model the
channel between them by: first, the user generates a public/private
key pair (we only model the generating of the public part and the
private part is implicit), then he sends his key and the PIN to the
terminal PCD encrypted with the public key of PCD.

2. PCD derives the PIN (shk(User, PICC)) from the received message,
then sends the mseSetAT message to the PICC. The oid is an ob-
ject identifier that specifies the PACE version and cryptographic al-
gorithms that should be used in the protocol run. The secretid

specifies the type of the secret (PIN, PUK, or CAN), in our case, we
assume it is always the PIN.

3. Subsequently, the PCD requests an encrypted random number from
the PICC.

4. The PICC generates the random number R, encrypts it using the
shared key shk(User, PICC), and sends it to the PCD.

5. The PCD decrypts the message and retrieves R. It generates a secret
X1, computes mult(X1, g), and sends it to PICC. Please note that is
step is the first part of the Diffie-Hellman key agreement and that
mult represents the modular multiplication.

6. In response, PICC generates the secret Y1 and sends mult(Y1, g) back.

7. The PCD finishes the first key agreement by computing the first Diffie-
Hellman shared secret PCD K1. Now, PCD starts the second key agree-
ment. He computes the new generator PCD g2, generates X2, com-
putes mult(X2, g2), and sends it to PICC.

8. The PICC acts similar. It computes PICC K1, generates Y2, computes
mult(Y2, g2), and sends it to PCD.

9. Now both participants can calculate a shared authentication token.
First we show how PCD does that (in the next step we show it for
PICC):

(a) PCD calculates a common shared key mult(mult(g, X2), Y2).

(b) Then he derives a MAC key using the hash function and the
constant three
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hash(mult(X2, mult(Y2, add(mult(R, g), mult(mult(X1, g), Y1)))), three)

10. Finally, PICC calculates the shared authentication token in a similar
way to what PCD did in the last step, i.e.:

(a) PICC calculates a common shared key mult(mult(g, X2), Y2).

(b) Then he derives a MAC key using the hash function and the
constant three

hash(mult(Y2, mult(X2, add(mult(R, g), mult(mult(Y1, g), X1)))), three)

Goals: The goal of PACE is to establish a secure channel between the PICC

and the PCD. More about PACE goals is found in Section 5.3.3.

5.3.2 PACE Formats

The formats that PACE uses to structure its messages are basically Application
Protocol Data Units (APDU). Listing 5.12 specifies the APDUs in PACE using
the following notation; which is based on the notation of [MK14]) and extended
with tlv(·, ·) to represent tag-length-value as we explain shortly.

• byte(n) denotes one-byte constant n, e.g., byte(128) means the constant
128 represented in a byte.

• · denotes the concatenation operator, e.g., byte(3) ·oid means the concate-
nation of the constant 3 with the string oid .

• offn(data) means an offset (with a fixed length of n bytes) that tells how
many bytes the following data is supposed to be, e.g., off3(secretID) means
that the number presented in the first 3 bytes tells what is the length of
the following secretID .

• tlv(tag, value) represents a tag-length-value encoding, e.g., tlv(byte(124),X1)
says that X1 is of variable length and prefixed with the constant 124.

5.3.3 Analysis Results for PACE

Proverif

We use the SPS compiler to generate Applied π code from PACE specification.
Unfortunately, we cannot use Proverif to verify PACE because the algebraic
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mseSetATRequest(oid, secretID)

= byte(0) · byte(32) · byte(193) · byte(164) · tlv(byte(128), oid) · tlv(byte(131), secretID)

mseSetATResponse() = byte(140) · byte(0)

encryptedNonceRequest()

= byte(16) · byte(134) · byte(0) · byte(0) · byte(2) · byte(124) · byte(0) · byte(0)

encryptedNonceResponse(random) = random · byte(140) · byte(0)

mapNonceRequest(X1)

= byte(16) · byte(134) · byte(0) · byte(0) · tlv(byte(129), tlv(byte(124),X1)) · byte(0)

mapNonceResponse(Y1)

= tlv(byte(130), tlv(byte(124),Y1)) · byte(140) · byte(0)

performKeyAgreementRequest(X2)

= byte(16) · byte(134) · byte(0) · byte(0) · tlv(byte(131), tlv(byte(124),X1)) · byte(0)

performKeyAgreementResponse(Y2)

= byte(16) · byte(134) · byte(0) · byte(0) · tlv(byte(132), tlv(byte(124),Y1)) · byte(0)

mutualAuthenticationRequest(token)

= byte(16) · byte(134) · byte(0) · byte(0) · tlv(byte(133), tlv(byte(134), token))

mutualAuthenticationResponse(token)

= byte(16) · byte(134) · byte(0) · byte(0) · tlv(byte(134), tlv(byte(134), token))

Listing 5.12: PACE Formats

properties of mult cannot be handled by Proverif. More precisely, as mult

properties that we need here are an AC theory, this implies the generating of an
infinite number of rewrite rules in Proverif and thus causing non-termination. In
a nutshell, Proverif cannot handle associative operators in general [BS11]. This
is an example of the limitations that we may face that are “inherited” from the
tools and invites for further research for improving existing tools especially in
the handling of algebraic properties.

OFMC

The results of checking PACE with OFMC is summarized in Table 5.3.
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Table 5.3: OFMC Analysis Summary for PACE

Goal of PACE OFMC result
Secrecy
Key secret of PCD, PICC No attack found for 2 sessions
NPICC secret of PICC, User No attack found for 2 sessions

Authentication
User authenticates PICC on NPICC No attack found for 2 sessions

5.4 TLS

The Transport Layer Security (TLS) protocol [DR08, Eas11] is a widely known
protocol that establishes a secure channel between a client and a server. TLS
is widely used in many applications including eID systems; several European
eID systems use it for authentication, e.g., the Italian and Swiss eID sys-
tems [Fut13a].

5.4.1 TLS in SPS

Here we present TLS specification in SPS based on [MK14]

1 Protocol: TLS

2 Types:

3 Agent A,B,ca;

4 Number eps ,cipher ,compr ,t20 ,t22 ,t23;

5 Formats:

6 clientHello(Msg , Msg , Msg , Msg , Msg);

7 serverHello(Msg , Msg , Msg , Msg , Msg);

8 serverCert(Msg);

9 serverHelloDone(Msg);

10 clientKeyExchage(Msg);

11 finished(Msg);

12 pmsForm(Msg);

13 masterForm(Msg ,Msg);

14 clientFinished(Msg ,Msg ,Msg);

15 serverFinished(Msg ,Msg ,Msg);

16 keyBlock(Msg , Msg);

17 changeCipher(Msg);

18 ####

19 record(Number , Msg);

20 x509(Agent , PublicKey);

21

22 Knowledge:

23 A: A,B,pk(ca),eps ,cipher ,compr , shk(A,B), t20 ,t22 ,t23;

24 B: B, pk(B),pk(ca),inv(pk(B)), sign(inv(pk(ca)),x509(B,pk(B))),eps ,cipher ,

compr , shk(A,B), t20 ,t22 ,t23;

25 Actions:
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26 # A generates Ra and T1

27 A: Number Ra, T1

28 let AM1= record(t22 , clientHello(T1,Ra ,eps ,cipher ,compr))

29 A−>B: AM1

30 #B generates Rb, Id T2 and

31 B: Number Rb, T2, Id

32 let BM1=record(t22 , serverHello(T2,Rb,Id ,cipher ,compr)),

33 record(t22 , serverCert(sign(inv(pk(ca)),x509(B,pk(B))))),

34 record(t22 , serverHelloDone(eps))

35 B−>A: BM1

36 #A checks the certificate for a TTP ca

37 #A extracts the public key of B

38 #A generates the Pre -Mster Secret PMS.

39 #A computes MS=PRF(mster -form(PMS;RA + RB))

40 let MS = prf(masterForm(PMS ,add(Ra ,Rb)))

41 A: Number PMS

42 let AM2= record(t22 , clientKeyExchage(crypt(pk(B), pmsForm(PMS)))),

43 record(t20 , changeCipher(eps)),

44 record(t22 , finished(prf(clientFinished(MS,add(Ra,Rb),hash(AM1 , BM1))

)))

45 A−>B: AM2

46 B−>A: record(t20 , changeCipher(eps)), record(t22 , finished(prf(

serverFinished(MS ,add(Ra,Rb),hash(AM1 , BM1 , AM2)))))

47 #A computes the key clntK=extractCK(key block(MS;RA + RB))

48 #A and B exchange payload messages as follows:

49 A: Number PAYLOADA

50 A−>B: record(t23 , scrypt(extCK(keyBlock(MS, add(Ra,Rb))), shk(A,B)))

51 #B computes srvrK=extractSK(key block(MS;RA + RB))

52 B: Number PAYLOADB

53 B−>A: record(t23 , scrypt(extSK(keyBlock(MS, add(Ra,Rb))), PAYLOADB))

54

55 Goals:

56 MS secret of A,B

57 B authenticates A on MS

Listing 5.13: TLS in SPS

Now we explain the TLS specification given above by section.

Protocol: In this section we give the name of the protocol, TLS.

Types: In TLS, we have three agents: (1) A represents a client, (2) B represents
a server, and (3) ca represents a trusted certificate authority that issued
a certificate for the server B. We also declare the cipher suite cipher, the
compression algorithm compr, the empty string eps, and the tags t20,

t22 and t23. We later explain how agents use them.

Formats: TLS has several formats that structure its messages. For instance,
the format helloClient has five fields of type Msg: a time-stamp, a freshly
generated number, a session-id, cipher suites and compression methods.
Later we provide more details about TLS formats.
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Knowledge: The initial knowledge for each of the participants of TLS is as
follows:

A knows initially his name, the name of B, and the public key of the
trusted third party ca. She also knows the cipher suite cipher, the
compression algorithm compr and the empty string eps. Finally she
knows the tags t20, t22 and t23.

B knows initially his name, the name of A, his private and public keys
and the public key of the trusted third party ca (certificate author-
ity). He also has a certificate issued for him by ca and he knows the
cipher suite cipher, the compression algorithm compr and the empty
string eps. Finally he knows the tags t20, t22 and t23.

Actions: In this section, we specify the exchange messages between protocol
participants as well as the freshly generated data during a TLS execution.

1. The client A initiates the protocol; she generates a fresh random num-
ber Ra and a time-stamp T1 and sends them to the server B along with
the empty-string eps, her preferences for encryption cipher, and her
preferences for compression algorithms compr. She formats this data
with the format clientHello, and envelopes this message with the
format record. The tag t22 denotes that this message belongs to
the handshake sub-protocol. We refer to the whole message by AM1

for later reference.

2. The server B, in response, generates the fresh random number Rb, the
time-stamp T2, and the session-id Id. Then with the received cipher,
and compr he formats them using the serverHello format. He also
sends his certificate that has the x509 format and enveloped with
serverCert format. (This certificate is issued by the trusted third
party ca.) Each of these messages (the serverHello, serverCert,
and the serverHelloDone) is enveloped with the format record then
sent to the client A. The tag t22 denotes that this message belongs
to the TLS-handshake sub-protocol. We refer to this whole message
by BM1 for later reference as well.

3. Now, A checks the certificate issued by ca and extracts the pub-
lic key of B. Then he generates the Pre-Master Secret PMS and
computes MS = prf(masterForm(PMS, add(Ra, Rb))) using the pseudo-
random function prf. He encrypts MS with the public key of B and
formats it with clientKeyExchange.

Then each of: (1) the previous message, (2) the change-cipher mes-
sage: changeCipher(eps), and (3) the client-finished message that is:
finished(prf(clientFinished(MS, add(Ra, Rb), hash(AM1, BM1))))); is
enveloped with record and sent to B. Note that A included the hashes
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of the previous messages AM1 and BM1. Also note that the finished for-
mat is nesting another format, namely clientFininshed, and that
the tag of the second message (2) is t20 denoting that it belongs to
the TLS sub-protocol: change-cipher specification.

4. B computes the pseudo-random function of the server-finished that is:
serverFinished(MS, add(Ra, Rb)) and the hash of all previous mes-
sages, i.e., AM1, BM1 and AM2. He wraps the computed value with the
format finished and sends it to A as his finished message.

5. A computes the key extCK(keyBlock(MS, add(Ra, Rb))) using the client
extract-key function extCK and uses it to encrypt the payload mes-
sage PAYLOADA, then sends the encrypted message to B. Here (and in
the next) the record message is tagged with t23 to denote that it
belongs to the TLS sub-protocol: application data.

6. B also computes the key extSK(keyBlock(MS, add(Ra, Rb))) using the
server extract-key function extCK and uses it to encrypt the payload
message PAYLOADB, then sends the encrypted message to A. Note
that both extCK and extSK are publicly known functions, so both the
client and the server can compute the keys of the encrypted messages
sent to them.

Goals: TLS aims at establishing a secure channel between A and B so they can
securely exchange payloads. The goals are explained later in the analysis
results of TLS (Section 5.4.4).

5.4.2 TLS Formats

The formats used in the TLS protocol as specified in [MK14] are shown in
Table 5.4. In this table we use the same notation that we used in PACE.

For example, consider the very first format of Table 5.4, clientHello that
has five fields: a time-stamp, a freshly generated random number, a session-id,
cipher suites and compression methods. This format is structured as follows:

• Three bytes with the values 1, 3 and 3, where the latter two bytes indicate
the TLS version number, namely 1.2.

• A fixed-length field for the time-stamp.

• A fixed-length field for the random number.

• One-byte offset that tells the length of the following field reserved for the
session-id.
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• Two-byte offset that tells the length of the following field reserved for the
cipher suites.

• One-byte offset that tells the length of the following field reserved for the
compression methods.

Table 5.4: TLS formats

clientHello(time, random, session id , cipher suites, comp methods)
= handshake(byte(1 ), byte(3 ) · byte(3 ) · time · random · off1 (session id)·
off2 (cipher suites) · off1 (comp methods))

serverHello(time, random, session id , chosen cipher , chosen comp)
= handshake(byte(2 ), byte(3 ) · byte(3 ) · time · random · off1 (session id)·
chosen cipher · chosen comp)

serverCert(certificate tls vec)
= handshake(byte(11), off3(certificate tls vec))

serverHelloDone() = handshake(byte(14), ε)

clientKeyExchange(EncrPreMasterSecret)
= handshake(byte(16 ),EncrPreMasterSecret)

finished(encr finished) = handshake(byte(20), encr finished)

pmsForm(secret) = byte(3) · byte(3) · secret

masterForm(PMS ,R) = PMS · "master secret" · R
clientFinished(MS ,R,H ) = MS · "client finished" · R ·H
serverFinished(MS ,R,H ) = MS · "server finished" · R ·H
keyBlock(MS ,R) = MS · "key expansion" · R
changeCipher() = byte(1)

certRequest(cert type, supp alg, cert auths)
= handshake(byte(13), off1(cert type)·

clientCert(certificate tls vec)
= handshake(byte(11), off3(certificate tls vec))

certVerify(signed handshake) = handshake(byte(15), signed handshake)

record(sub, data) = sub · byte(3) · byte(3) · off2(data) · data
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5.4.3 TLS with client authentication

We also consider another version of TLS with client authentication. For brevity,
we only point out the main differences with the previously detailed version of
TLS. In this version, the client A has a certificate issued by the trusted third
party ca that he sends to the server B in the third step of the protocol in
response to a certificate request from the server in the step before. One further
difference between the two versions of TLS is that the latter one (TLS with
client authentication) achieves an extra goal, namely that the client A can be
authenticated to the server B. It is well known that this goal cannot be achieved
in TLS without client certificate.

1 Protocol: TLS -CA #with client certificate

2 Types:

3 Agent A,B,ca;

4 Number eps ,cipher ,compr ,t20 ,t22 ,t23;

5 Formats:

6 clientHello(Msg , Msg , Msg , Msg , Msg);

7 serverHello(Msg , Msg , Msg , Msg , Msg);

8 serverCert(Msg);

9 serverHelloDone(Msg);

10 clientKeyExchage(Msg);

11 finished(Msg);

12 pmsForm(Msg);

13 masterForm(Msg ,Msg);

14 clientFinished(Msg ,Msg ,Msg);

15 serverFinished(Msg ,Msg ,Msg);

16 keyBlock(Msg , Msg);

17 changeCipher(Msg);

18 certRequest(Msg , Msg , Msg);

19 clientCert(Msg);

20 certVerify(Msg)

21 ###

22 record(Number , Msg);

23 x509(Agent , PublicKey);

24

25 Knowledge:

26 A: A,B,pk(A),pk(ca),inv(pk(A)), sign(inv(pk(ca)),x509(A,pk(A))),eps ,cipher ,

compr , t20 ,t22 ,t23;

27 B: B, pk(B),pk(ca),inv(pk(B)), sign(inv(pk(ca)),x509(B,pk(B))),eps ,cipher ,

compr ,t20 ,t22 ,t23 , certType , suppAlg , certAuth;

28

29 Actions:

30 # A generates Ra and T1

31 A: Number Ra, T1

32 let AM1= record(t22 , clientHello(T1,Ra ,eps ,cipher ,compr))

33 A−>B: AM1

34 #B generates RB T2 and Id

35 B: Number Rb, Id, T2

36 let BM1= record(t22 , serverHello(T2,Rb ,Id,cipher ,compr)),

37 record(t22 , serverCert(sign(inv(pk(ca)),x509(B,pk(B))))),

38 record(t22 , certRequest(certType ,suppAlg ,certAuth)),

39 record(serverHelloDone(eps))

40 B−>A: BM1
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41 #A checks the certificate for a TTP ca

42 #A extracts the public key of B

43 #A generates the Pre -Mster Secret PMS.

44 #A computes MS=PRF(mster -form(PMS;RA + RB))

45 # Here in certVerify(eps), eps replaces signed_hanshake

46 let MS = prf(masterForm(PMS ,add(Ra ,Rb)))

47 A: Number PMS

48 let AM2= record(t22 , clientCert(sign(inv(pk(ca)),x509(A,pk(A))))),

49 record(t22 , clientKeyExchage(crypt(pk(B), pmsForm(PMS)))),

50 record(t22 , certVerify(eps)),

51 record(t20 , changeCipher(eps)),

52 record(t22 , finished(prf(clientFinished(MS,add(Ra,Rb),hash(AM1 , BM1))

)))

53 A−>B: AM2

54

55 B−>A: record(t20 , changeCipher(eps)), record(t22 , finished(prf(

serverFinished(MS ,add(Ra,Rb),hash(AM1 , BM1 , AM2)))))

56 #A computes the key clntK=extractCK(key block(MS;RA + RB))

57 #A and B exchange payload messages as follows:

58 A: Number PAYLOADA

59 A−>B: record(t23 , scrypt(extCK(keyBlock(MS, add(Ra,Rb))), PAYLOADA))

60 #B computes srvrK=extractSK(key block(MS;RA + RB))

61 B: Number PAYLOADB

62 B−>A: record(t23 , scrypt(extSK(keyBlock(MS, add(Ra,Rb))), PAYLOADB))

63 Goals:

64 MS secret of A,B

65 A authenticates B on MS

66 B authenticates A on MS

Listing 5.14: TLS with Client authentication in SPS

5.4.4 Analysis Results for TLS

As mentioned before, we provide in this section the formal verification results
that we obtained from running the back-end verification tools on our auto-
generated code from the SPS compiler.

Proverif

The results obtained from Proverif are summarized in Table 5.5.
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Table 5.5: Proverif Analysis Summary for TLS

Goal of TLS Proverif result Proverif result
no client auth. with client auth.

Secrecy
MS secret of A, B Proof found Proof found

Authentication
A authenticates B on MS — Proof found
B authenticates A on MS Proof found Proof found

OFMC

The results of checking the two versions of TLS using OFMC is summarized in
Table 5.3.

Table 5.6: OFMC Analysis Summary for TLS

OFMC result OFMC result
Goal of TLS no client auth. with client auth.

(for 2 sessions)
Secrecy
MS secret of A, B No attack found No attack found

Authentication
A authenticates B on MS — No attack found
B authenticates A on MS No attack found No attack found

5.5 ISO/IEC 9798-4

The ISO/IEC 9798 Standard specifies a family of entity authentication proto-
cols. It comprises six main documents. The first document (Part 1 [Int10a]) is
general and describes the main notions which are common for the other parts.
The protocols are grouped into five parts. Part 2 [Int08] describes six protocols
using symmetric encryption, Part 3 [Int10b] describes seven protocols using dig-
ital signatures, Part 4 [Int99] describes four protocols using cryptographic check
functions such as MACs, Part 5 [Int09] considers protocols using zero knowledge
and Part 6 [Int10c] describes eight entity authentication mechanisms based on
manual data transfer between authenticating devices techniques.
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5.5.1 ISO/IEC 9798-4 in SPS

Part 4 [Int99] describes two mechanisms that are concerned with the authen-
tication of a single entity (unilateral authentication), while the remaining are
mechanisms for mutual authentication of two entities. The mechanisms specified
in this part of ISO/IEC 9798 use time variant parameters such as time stamps,
sequence numbers, or random numbers, to prevent valid authentication infor-
mation from being accepted at a later time or more than once. If a time stamp
or sequence number is used, one pass is needed for unilateral authentication,
while two passes are needed to achieve mutual authentication. If a challenge
and response method employing random numbers is used, two passes are needed
for unilateral authentication, while three passes are required to achieve mutual
authentication.

In this section we consider only the two unilateral mechanism (the first and
the second protocols described in the document1) denoted ISO9798-4.1 and
ISO9798-4.2. In these authentication mechanisms the entities A and B shall
share a common secret authentication key or two unidirectional secret keys prior
to the commencement of any particular run of the authentication mechanisms.

The use of the text fields specified in the following mechanisms is outside the
scope of this part of ISO/IEC 9798 (they may be even empty), and will depend
upon the specific application. A text field may only be included in the input to
the cryptographic check function if the verifier can determine it independently,
e.g., if it is known in advance, sent in clear or can be derived from one or both
of those sources.

Here we present the first protocol of the ISO 9797-4 specification in SPS based
on [Int99]

1 Protocol: ISO979841

2

3 Types:

4 Agent A,B;

5 Function hash;

6 Formats:

7 tokenAB979841 (Number ,Number ,Msg);

8 # Agent is optional in the standard

9 fkab(Number ,Agent ,Number);

10 farg(SymmetricKey ,Msg);

11 fm1(Msg ,Agent ,Number);

12

13 Knowledge:

14 A: A,B,shk(A,B);

15 B: B,A,shk(A,B);

1Since the protocols do not have a name, we identify them by the order of appearance in
the document
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16 Actions:

17 A: Number NA, Text1 , Text2

18 A−>B: fm1(tokenAB979841(NA,Text2 ,hash(farg(shk(A,B),fkab(NA ,B,Text1)))),B

,Text1)

19

20 Goals:

21 B authenticates A on Text1

22

23 Private:

24 shk(A,B)

Listing 5.15: 9798-4.1 in SPS

Now we explain the protocol specification given above by section.

Protocol: In this section we give the name of the protocol, ISOCCFOnePas-
sUnilateralAuth.

Types: Here we declare the protocol identifiers and annotate them with types.
Those identifiers include the agents of the protocol: a claimant A and a
verifier B. We also declare a function hash which is used as a cryptographic
check function. As defined in ISO/IEC 9798-1, hash(K, X) denotes the
cryptographic check value computed by applying the cryptographic check
function hash to the data X using the key K.

Formats: Formats are detailed in 5.5.2.

Knowledge: In this section we give the initial knowledge for each of the
protocol participants; a participant is an agent involved in the message
exchanging in a protocol. The participants use the terms/messages in
their initial knowledge to compose the message they send or to decompose
the messages they receive. Now we give the initial for each participants:

A A knows initially her name, the name of B, and shk(A, B), a secret
symmetric key pre-shared between the two agents.

B B knows initially his name, the name of A, and shk(A, B), a secret
symmetric key pre-shared between the two agents.

Actions: This section specifies what messages are exchanged among protocol
participants as well as what data is created freshly during a protocol run.

1. A generates a nonce NA and optionally two text fields Text1 and
Text22. Then A computes and sends TokenAB979841 to B. On receipt
of the message containing TokenAB979841, B verifies TokenAB979841
by checking the sequence number, comparing it with the crypto-
graphic check value of the token, thereby verifying the correctness
of the distinguishing identifier B, if present.

2The standard also considers the possibility of using time stamps
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Goals: here we specify the goals of the protocol. ISO 9797-4.1 aims at achiev-
ing unilateral authentication between the two participants, the claimant
A and the verifier B.

Here we present the second protocol of the ISO 9797-4 specification in SPS based
on [Int99].

1 Protocol: ISO989742

2

3 Types:

4 Agent A,B;

5 Function hash;

6 Formats:

7 tokenAB979842 (Number ,Msg);

8 # Agent is optional in the standard

9 fkab(Number ,Agent ,Number);

10 farg(SymmetricKey ,Msg);

11 fab(Number ,Number);

12 fm2(Msg ,Number);

13

14 Knowledge:

15 A: A,B,shk(A,B);

16 B: B,A,shk(A,B);

17

18 Actions:

19 B: Number NB,Text1

20 B−>A: fab(NB,Text1)

21 A: Number Text3 ,Text2

22 A−>B: fm2(tokenAB979842(Text3 ,hash(farg(shk(A,B),fkab(NB,B,Text2)))),

Text2)

23

24 Goals:

25 B authenticates A on Text2

26

27 Private:

28 shk(A,B)

Listing 5.16: 9798-4.2 in SPS

The main difference of the two-step protocol, with respect to the one-step ver-
sion, is the use of a random number instead of a sequence number (or a time
stamp). Hence, there is the need of an extra step in the protocol run, to imple-
ment the challenge-response mechanism.

5.5.2 ISO/IEC 9798-4 Formats

As defined in ISO/IEC 9798-1, when the result of concatenating two or more
data items is an input to a cryptographic check function as part of one of
the mechanisms specified in this part of ISO/IEC 9798, this result shall be
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composed so that it can be uniquely resolved into its constituent data strings,
i.e. so that there is no possibility of ambiguity in interpretation. Since the
actual implementation of the formats is application specific, here we do not
give a precise description of the formats as in the previous examples but we
simply assume that the following formats, and the associated constructor and
destructor, satisfy the aforementioned property. The formats for ISO9798-4.1
are:

• tokenAB979841: this format models the authentication token. It is a
concatenation of three fields; namely a nonce, a text, and a hashed-value.
According to the standard, the parsing of these fields of this format(and
all other formats) must unambiguous. Therefore, a possible way to achieve
that is using fixed-length fields. Following is tokenAB979841 represented
in the notation for formats that we used earlier in PACE and TLS:

tokenAB979841(nonce, text, hashed) = nonce · text · hashed

• fkab: this format models a concatenation of three fields. Based on the
standards requirement on formats (must be unambiguous), we can present
this format as follows:

fkab(nonce, agent, text) = nonce · agent · text

• farg: this format models the argument of the hash function. It structures
two fields: a symmetric key, and a message formatted with fkab. Following
is its structure:

farg(key, msg) = key · msg

• fm1: this format models the data packet sent over the network, it has
three fields: a message formatted with tokenAB979841, an agent name,
and a text, as follows:

fm1(msg, agent, text) = msg · agent · text

The formats for ISO9798-4.2 may be implemented using the same style of en-
coding.

5.5.3 Analysis Results for ISO/IEC 9798-4

Here we present the formal verification results of these protocols.
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Proverif

Using the SPS compiler, we translated the ISO9798-4.1 and ISO9798-4.2 spec-
ification into an Applied π code. The summary of Proverif analysis of these
protocols is shown in Table 5.7.

Table 5.7: Proverif Analysis Summary for ISO9798-4

Goal of ISO9798-4.1 Proverif result
Authentication Goals
B authenticates A on Text1 Proof found

Goal of ISO9798-4.2 Proverif result
Authentication Goals
B authenticates A on Text2 Proof found

OFMC

SPS compiler also generates AVISPA IF specifications that can be checked with
the OFMC. The summary of the OFMC results for ISO9798-4 (1,2) are shown
in Table 5.8.

Table 5.8: Proverif Analysis Summary for ISO9798-4

Goal of ISO9798-4.1 OFMC result
Authentication Goals
B authenticates A on Text1 No attack found

Goal of ISO9798-4.2 OFMC result
Authentication Goals
B authenticates A on Text2 No attack found

5.6 Summary

In this chapter we presented the SPS specifications for some selected protocols
that are highly relevant to the electronic identity systems (eID) in general and
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FutureID project in particular. The selected protocols were EAC, PACE, TLS,
and a selection of ISO/IEC 9798-4 authentication protocols. By means of these
examples, we have shown the effectiveness of our approach. In fact, we were
able to encode in SPS a significant class of real-world protocols relevant to eID
systems. We precisely defined the message formats used in these protocols. We
also presented the results of the formal verification that we performed by means
of two state of the art verification tools, Proverif and OFMC.

In addition to the four case studies, our test suite that we used to test SPS
compiler consists of over 30 protocols. It includes many protocols from the
Clark/Jacob library [CJ95, CJ97], and many other widely used protocols like
Kerberos, EPMO [GTC+04], Diffie-Hellman, variants of Needham-Schroeder-
Lowe, Denning-Sacco,and h530. SPS compiler runs the entire test suite in less
than half a minute on a 2.67 GHz machine. As a result for the test, the tools
were able to find all known attacks in the suite. Now we summarize the
results of running the formal verification tools (Proverif and OFMC) on the
auto-generated code from our SPS complier in Table 5.9. A protocol with a star
indicates that it is one of our case studies.
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Table 5.9: Formal Verification Summary for Protocols Specified in SPS

Protocol Proverif OFMC
Basic-Kerberos No Attack No Attack
EPMO Attack found Attack found
? EAC No Attack No Attack
? PACE Non-termination No Attack
IKEv2-DS-PayloadSecrecy No Attack No Attack
IKEv2-DS-PayloadAuthB No Attack No Attack
IKEv2-DS-KeySecrecy No Attack No Attack
IKEv2-DS-KeyAuthB No Attack No Attack
AndrewSecureRPCSecrecy No Attack No Attack
ISOsymKeyOnePassUnilateralAuthProt No Attack No Attack
ISOsymKeyThreePassMutual No Attack No Attack
ISOsymKeyTwoPassMutualAuthProt-Corr No Attack No Attack
ISOsymKeyTwoPassUnilateralAuthProt No Attack No Attack
NonReversible No Attack No Attack
?ISO9798-4.2 No Attack No Attack
ISOCCFThreePassMutual No Attack No Attack
?ISO9798-4.2 No Attack No Attack
h530 Attack found Attack found
h530-fix No Attack No Attack
SSO Attack found Attack found
? tls-noClientAuth No Attack No Attack
? tls No Attack No Attack
AndrewSecureRPC Attack found Attack found
Needham-Schroeder Attack found Attack found
Needham-Schroeder-Lowe No Attack No Attack
Amended-NSCK No Attack No Attack
Denning-Sacco-TimeStamp No Attack No Attack
Denning-Sacco-Corr No Attack No Attack
NSCK No Attack No Attack
ISOpubKeyOnePassUnilateralAuthProt No Attack No Attack
ISOpubKeyTwoPassMutualAuthProt-CORR No Attack No Attack
ISOpubKeyTwoPassUnilateralAuthProt No Attack No Attack
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Chapter 6

Related Work

The formal definition of languages based on the Alice-and-Bob notation requires
one to identify the concrete set of actions that honest agents have to perform,
which is relevant both for a formal model for verification and for generating
implementations. Previous works have proposed fairly involved deduction sys-
tems for this purpose and there is no (even informal) justification why these
systems would be suitable definitions. Our high-level semantics [[·]]H , inspired
by [Möd09, CR10], gives a mathematically succinct and uniform definition of
Alice-and-Bob notation following a few general principles, and at the same time
it supports an arbitrary set of operators and algebraic properties. We think
that the succinctness and generality are a strong argument for this semantics
as a standard. As [[·]]H entails problems that are not recursively computable
in general, we defined the low-level semantics [[·]]L for a particular theory and
proved its correctness with respect to [[·]]H . While [[·]]L is similar (and similarly
involved) to previous definitions of a semantics for the Alice-and-Bob nota-
tion [Low97a, Mil97, CVB06, BN07, JRV00, BKRS15], we are the first to give
a complete formal treatment of the key algebraic properties for destructors,
verifies, exponentiation and multiplication.

A very recent treatment of Alice and Bob notation [BKRS15] is very similar
to our low-level semantics [[·]]L. They translate protocol specifications in Alice
and Bob notation to an intermediate format for each role. This intermediate
format is detailed with message derivation and checking, making it very similar
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to our operational strands. They further translate this intermediate formats to
Tamarin [MSCB13], while we translate to implementations in JavaScript and
formal models in the input language of ProVerif and OFMC. We believe that
both of their works and ours are linkable to other similar tools. However as their
work is limited to subterm convergent theories, it cannot handle exponentiation
and multiplication as we do here.

With respect to other implementation generators like [Car94, MM01, TH05,
Mod12b, Qua13, Mod14], our key improvements are as follows. First, we give a
uniform way to generate both formal models and implementation from the op-
erational strands, ensuring a one-to-one correspondence between them. Second,
replacing the abstract concatenation operator from formal models with formats
allows us to generate code for any real-world structuring mechanism like XML
formats or TLS-style messages. The only work that provides similar features
is [BBH12], which however starts at the π calculus level, comparable to the
output of our low-level semantics. In reference to works that consider the veri-
fication of the actual implementation source code like [BFCZ12], we agree with
[BFGT06] that the converse problem, i.e., turning formal models into code like
in this thesis, is harder. However, in the case of SPS this extra effort removes
a large part of the burden from the user, i.e., SPS carries the task of formally
verifiable implementations to a higher level of abstraction without suffering from
flaws that are abstracted away in the formal model.

Finally, we point out a strong similarity between our notion of knowledge and the
notion of frames in Applied π calculus [AF01]. We allow ourselves minor devia-
tions from the frame concept, in particular not using name restrictions; instead,
constants are by default not public in our setting. This makes our treatment
easier but does not fundamentally change the concept (or its expressive power).
For what concerns existing decidability results for frames, the deduction rela-
tion ` has been studied, e.g., in [AC06]. It is known that deduction is decidable
for convergent subterm theories (like our equations (1)–(8)) and that disjoint
associative-commutative operators as in (9)-(11) can easily be combined with
it. Note that with equation (9) that links exponentiation and multiplication
we have another property that is crucial for any use of Diffie-Hellman protocols
and that is not covered by existing results. Further, many results consider the
static equivalence of frames which is interesting for privacy properties, namely
whether the intruder is able to distinguish two frames (“knowledges”). In the
SPS semantics, we have a substantially different problem to solve: we have only
one knowledge M (and it is the knowledge of an honest agent) and we need
to finitely characterize ccs(M), i.e., what checks the agent can make on M to
ensure that all received messages have the required shape. This indeed has some
similar traits to static equivalence: also here one has to check pairs of recipes
(albeit with respect to two frames). Despite this similarity, the problems are
so different that it seems not directly possible to re-use decision procedures
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for static equivalence for computing ccs(M). Moreover, our exp/mult theory
is not yet supported in static equivalence results. A further investigation and
generalization, namely with inverses for mult, is part of our ongoing research.
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Part II

Protocol Typing and
Composition





Chapter 7

Introduction

Relative soundness results have proved helpful in the automated verification of
security protocols. Such results allow for the reduction of a complex verifica-
tion problem into a simpler one, if the protocol in question satisfies sufficient
conditions. We are in particular interested in conditions that are of a syntactic
nature, i.e., can be established without an exploration of the state space of the
protocol.

A first kind of such results are typing results [HLS03, BP05, Möd12a, AD14].
Here we consider a typed model, a restriction of the standard protocol model
in which honest agents do not accept any ill-typed messages. This may seem
unreasonable at first sight, since in the real-world agents have no way to tell
the type of a random bitstring, let alone distinguish it from the result of a
cryptographic operation; yet in our model, they accept only well-typed messages.
The relative soundness of such a typed model means that if the protocol has an
attack, then it also has a well-typed attack. This does not mean that the intruder
cannot send ill-typed messages, but rather that this does not give him any
advantage as he could perform a “similar” attack with only well-typed messages.
Thus, if we are able to verify that a protocol is secure in the typed model, then
it is secure also in an untyped model. Typically, the conditions sufficient to
achieve such a result are that all composed message patterns of the protocol
have a different (intended) type that can somehow be distinguished, e.g., by a
tag. The restriction to a typed model in some cases yields a decidable verification
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problem [Low99, MSDL99, CKR+03, RS03], and allows for the application of
more tools and often significantly reduces verification time in practice [AC04,
BP05].

A similar kind of relative soundness results appears in compositional reasoning.
We consider in this thesis the parallel composition of protocols, i.e., running
two protocols over the same communication medium, and these protocols may
use, e.g., the same long-term public keys. (In the case of disjoint cryptographic
material, compositional reasoning is relatively straightforward.) The compo-
sitionality result is to show that if two protocols satisfy their security goals in
isolation, then their parallel composition is secure, given that the protocols meet
certain sufficient conditions. Thus, it suffices to verify the protocols in isolation.
The sufficient conditions in this case are similar to the one in the typing result:
every composed message can be uniquely attributed to one of the two protocols,
which again may be achieved, e.g., by tags.

Organization

In this part of the thesis, we move to a slightly different model, i.e., instead
of working with a set of operators with algebraic properties (as we do in the
first part), from now on we work in the free algebra: the initial term algebra
without any algebraic properties. However, we are still able to handle many
desired features in security protocols like combined keys, freshly created pub-
lic/private key pairs, different message formats and thus generalize over similar
work like [AD07]. This enables us to reason not only about Clark and Jacob li-
brary [CJ97], but also many other well-known protocols like TLS, and Kerberos.
In the rest of this chapter, we introduce the message and intruder models in the
free algebra. In Chapter 8, we introduce a symbolic protocol model based on
strands and properties in the geometric fragment. We also show how to reduce
the verification of the security properties to solving constraints, for which we
give a sound, complete and terminating reduction calculus. In Chapter 9, we
give our typing and parallel compositionality results, and we introduce a tool
that automatically checks if protocols are parallel-composable and report about
our experimental results.
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7.1 Message Model

Let Σ̂ be a finite set of operators (also referred to as function symbols) that are
available to all agents, including the intruder. Table 7.1 shows a concrete exam-
ple of Σ̂ that is representative for a wide range of security protocols. Further, let
C be a countable set of constants and V a countable set of variables, such that
Σ̂, V and C are pairwise disjoint. We write TΣ̂∪C(V) for the set of terms built
with these constants, variables and operators, and TΣ̂∪C for the set of ground
terms. We call a term t atomic (and write atomic(t)) if t ∈ V ∪ C or for some
term s, t = pub(s), and composed otherwise. We use also other standard notions
such as subterm, denoted by v, and substitution, denoted by σ, as we did in the
first part of this thesis.

The set of constants C is partitioned into three countable and pairwise disjoint
subsets: (i) the set CPi

of short-term constants for each protocol Pi, denoting
the constants that honest agents freshly generate in Pi; (ii) the set Cpriv of
long-term secret constants; and (iii) the set Cpub of long-term public constants.
This partitioning will be useful for compositional reasoning: roughly speaking,
we will allow the intruder to obtain all public constants, and define that it is an
attack if the intruder finds out any of the secret constants.

Formats: Revisited

We continue using the notion of formats that we introduced earlier. This notion
is crucial to make our typing and compositionality results applicable to real-
world protocols like TLS. By using formats as we explained earlier, we break with
the formal-methods tradition of representing clear-text structures of data by a
pair operator (·, ·). For instance, a typical specification may contain expressions
like (A,NA) and (NB , (KB ,A)). This representation neglects the details of
a protocol implementation that may employ various mechanisms to enable a
receiver to decompose a message in a unique way (e.g., field-lengths or XML-
tags). The abstraction has the disadvantage that it may easily lead to false
positives and false negatives. For example, the two messages above have a
unifier A 7→ NB and NA 7→ (KB ,NA), meaning that a message meant as
(A,NA) may accidentally be parsed as (NB , (KB ,A)), which could lead to a
“type-flaw” attack. This attack may, however, be completely unrealistic.

To handle this, previous typing results have used particular tagging schemes,
e.g., requiring that each message field starts with a tag identifying the type
of that field. Similarly, compositionality results have often required that each
encrypted message of a protocol starts with a tag identifying the protocol that
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Description Operator Analysis rule

Symmetric encryption scrypt(·, ·) Ana(scrypt(k,m)) = ({k}, {m})
Asymmetric encryption crypt(·, ·) Ana(crypt(pub(t),m)) = ({t}, {m})
Signature sign(·, ·) Ana(sign(t,m)) = (∅, {m})
Formats, e.g., f1 f1(t1, · · · , tn) Ana(f1(t1, · · · , tn)) = (∅, {t1, · · · , tn})
One-way functions, e.g., hash hash(·) Ana(hash(t)) = (∅, ∅)
Public key of a given private key pub(·) Ana(pub(t)) = (∅, ∅)
All other terms Ana(t) = (∅, ∅)

Table 7.1: Example Operators Σ̂

this message was meant for. Besides the fact that this does not really solve the
problem of false positives and false negatives due to the abstraction, practically
no existing protocol uses exactly this schema. Moreover, it is completely un-
realistic to think that a widely used protocol like TLS would be changed just
to make it compatible with the assumptions of an academic work — the only
chance to have it changed is to point out a vulnerability that can be fixed by
the change.

Formats are a means to have a faithful yet abstract model. We define formats
as functions from data-packets to concrete strings. In Chapter 5, we already
explained various formats for TLS and other protocols. For example, a format
from TLS is client hello(time, random, session id, cipher suites, comp meth-

ods) = byte(1) · off3(byte(3) · byte(3) · time · random · off1(session id) · off2(cipher suites) ·
off1(comp methods)), where byte(n) means one concrete byte of value n, offk(m)
means that m is a message of variable length followed by a field of k bytes, and
· represents string concatenation.

In the abstract model, we are going to use only abstract terms like the part in
bold in the above example. It is shown in [MK14] that under certain conditions
on formats this abstraction introduces neither false positives nor false negatives.
The conditions are essentially that formats must be parsed in an unambiguous
way and must be pairwise disjoint; then every attack on the concrete bytestring
model can be simulated in the model based on abstract format symbols (in the
free algebra). Both in typing and compositionality, these conditions allow us to
apply our results to real world protocols no matter what formatting scheme they
actually use (e.g., a TLS message cannot be accidentally be parsed as an EAC
message). In fact, these reasonable conditions are satisfied by many protocols
in practice, and whenever they are violated, typically we have a good chance to
find actual vulnerabilities. As we explained in Part I, formats are transparent
in the sense that if the intruder learns f(t1, . . . , tn), then he also obtains the ti.
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7.2 Intruder Model

We specify how the intruder can compose and decompose messages in the style
of the Dolev-Yao intruder model as we have in Definition 3.3.

Definition 7.1 An intruder knowledge M is a finite set of ground terms t ∈
TΣ̂∪C . Let Ana(t) = (K,T ) be a function that returns for every term t a pair
(K,T ) of finite sets of subterms of t. We define � to be the least relation between
a knowledgeM and a term t that satisfies the following intruder deduction rules:

M � t
(Axiom),
t ∈M

M � c
(Public),
c ∈ Cpub

M � t1 · · · M � tn
M � f (t1, · · · , tn)

(Compose),

f ∈ Σ̂n

M � t M � k1 · · · M � kn
M � ti

(Decompose), Ana(t) = (K,T ),
K = {k1, · · · , kn}, ti ∈ T

The rules (Axiom) and (Public) formalize that the intruder can derive any term
t ∈ M that is in his knowledge and every long-term public constant c ∈ Cpub,
respectively. The (Compose) rule formalizes that he can compose known terms
with any operator in Σ̂ (where n denotes the arity of f). Table 7.1 provides an
example Σ̂ for standard cryptographic operators.

Table 7.1 also defines the function Ana for each of Σ̂ operators. We rely on this
function to define message decomposition; as it encodes the analysis rules for
terms in the form of Ana(t) = (K,T ), which intuitively says that if the intruder
knows the keys in set K, then he can analyze the term t and obtain the set
of messages T . We require that all elements of K and T are subterms of t
(without any restriction, the relation � would be undecidable). Based on Ana,
the generic (Decompose) deduction rule formalizes how the intruder decomposes
his messages: that for any term with an Ana rule, if the intruder can derive the
keys in K, he can also derive all the subterms of t in T .

Consider, e.g., the analysis rule for symmetric encryption given in Table 7.1:
Ana(scrypt(k,m)) = ({k}, {m}) says that given a term scrypt(k,m) one needs
the key k to derive m. By default, atomic terms cannot be analyzed, i.e.,
Ana(t) = (∅, ∅).
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7.3 Summary

In this chapter, we considered a slightly different model that works in the free
algebra. Therefore, we defined a message model in which we specified the set
of operators Σ̂ to build messages. We also explained the rationale behind the
partitioning of constants and how formats relate to our model. Then, we in-
troduced the intruder model that explains how he derives his messages. In the
next chapter, we define a symbolic model for protocols based on the previous
definitions.



Chapter 8

Symbolic Protocol Model

We define a protocol by a set of operational strands and a set of goal predicates
that the protocol is supposed to achieve. The semantics of a protocol is an
infinite-state transition system over symbolic states and security means that
all reachable states satisfy the goal predicates. A symbolic state (S;M;E;φ)
consists of a set S of operational strands (representing the honest agents), the
intruder knowledge M, a set E of events that have occurred, and a symbolic
constraint φ on the free variables occurring in the state. We first define the
symbolic constraints in Section 8.1. Then, we revisit the operational strands
in Section 8.2 in order to define the transition relation on symbolic states. In
Section 8.3 we define protocol goals in the geometric fragment and how we
translate them to symbolic constraints. Finally, we explain how to solve these
constraints in Section 8.4.

8.1 Symbolic Constraints

The syntax of symbolic constraints is

φ := M � t | φσ | ¬∃x̄. φσ | φ ∧ φ | φ ∨ φ | ∃x̄. φ︸ ︷︷ ︸
?

with φσ := s
.
= t | φσ ∧ φσ
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where s, t range over terms in TΣ̂∪C(V),M is a finite set of terms (not necessarily
ground) and x̄ is a list of variables. The sub-language φσ defines equations on
messages, and we can existentially quantify variables in them, e.g., consider a φ
of the form ∃x. y .

= f(x). We refer to equations also as substitutions since the
application of the standard most general unifier on a conjunction of equations re-
sults in a set of substitutions. The constraints can contain such substitutions in
positive and negative form (excluding all instances of a particular substitution).

M � t is an intruder constraint : the intruder must be able to derive term
t from knowledge M. Note that we have no negation at this level, i.e., we
cannot write negated intruder constraints. A base constraint is a constraint
built according to this grammar without the two cases marked ?, i.e., disjunction
φ∨φ and existential quantification ∃x̄. φ. The latter may only occur in negative
substitutions.

For ease of writing, we define the semantics of the constraint language as stan-
dard for each construct (rather than following strictly the grammar of φ).

Definition 8.1 Given an interpretation I, which maps each variable in V to a
ground term in TΣ̂, and a symbolic constraint φ, the model relation I |= φ is:

I |=M � t iff I(M) � I(t)
I |= s

.
= t iff I(s) = I(t)

I |= ¬φ iff not I |= φ
I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2

I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2

I |= ∃x.φ iff there is a term t ∈ TΣ̂ such that I[x 7→ t] |= φ

We say that I is a model of φ iff I |= φ, and that φ is satisfiable iff it has a
model. Two constraints are equivalent, denoted by ≡, iff they have the same
models. We define as standard the variables (denoted by var(·)) and the free
variables (denoted by fv(·)) of terms, sets of terms, equations, and constraints.
A constraint φ is closed, in symbols closed(φ), iff fv(φ) = ∅.

Every constraint φ can be quite straightforwardly transformed into an equivalent
constraint of the form

φ ≡ ∃x̄. φ1 ∨ . . . ∨ φn ,
where the φi are base constraints. Unless noted otherwise, in the following we
will assume that constraints are in this form.

Definition 8.2 A constraint is well-formed if each of its base constraints φi
satisfies the following condition: we can order the conjuncts of φi such that
φi =M1 � t1 ∧ . . .∧Mn � tn ∧φ′i, where φ′i contains no further � constraints
and such thatMj ⊆Mj+1 (for 1 ≤ j < n) and fv(Mj) ⊆ fv(t1)∪ . . .∪ fv(tj−1).
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Intuitively, this condition expresses that the intruder knowledge grows mono-
tonically and all variables that appear in an intruder knowledge constraint occur
in a term that the intruder sent earlier in the protocol execution. We will ensure
that all constraints that we deal with are well-formed.

8.2 Operational Strands: Revisited

In Chapter 2, we introduced the operational strands as the target language of
a translation that defined the semantics of SPS. Here, we use it again to define
the protocol semantics, but we exclude the initial knowledge from operational
strands and include positive and negative quantified equations on messages.
More precisely, we consider the syntax of operational strands as follows:

S := send(t).S | receive(t).S | event(t).S | (∃x̄. φσ).S | (¬∃x̄.φσ).S | 0
where φσ is as defined above; we will omit the parentheses when there is no
risk of confusing the dots. fv and closed extend to operational strands as ex-
pected, with the exception of the receiving step, which can bind variables: we
set fv(receive(t).S ) = fv(S ) \ fv(t). According to the semantics that we de-
fine below, in receive(x).receive(f (x)).send(x).0 the variable x is bound actually
in the first receive, i.e., the strand is equivalent to receive(x).receive(y).(y

.
=

f (x)).send(x).0 .

A symbolic state (S;M;E;φ) consists of a (finite or countable) set1 S of closed
operational strands, a finite setM of terms representing the intruder knowledge,
a finite set E of events, and a formula φ. fv and closed extend to symbolic states
again as expected. We ensure that fv(S)∪fv(M)∪fv(E) ⊆ fv(φ) for all reachable
states (S;M;E;φ) and that φ is well-formed. This is so since in the transition
system defined below, the operational strands of the initial state are closed and
the transition relation only adds new variables in the case of receive(t), but in
this case φ is updated with M � t.

A protocol specification (S0, G) (or simply protocol) consists of a set S0 of closed
operational strands and a set G of goal predicates (defined below). For simplic-
ity, we assume that the bound variables of any two different strands in S0 are
disjoint (which can be achieved by α-renaming). The strands in S0 induce an
infinite-state transition system with initial state (S0; ∅; ∅;>) and a transition
relation ⇒ defined as the least relation closed under six transition rules:

T1 ({send(t).S} ∪ S;M;E;φ)⇒ ({S} ∪ S;M∪ {t};E;φ)

1Some approaches instead use multi-sets as we may have several identical strands, but since
one can always make a strand unique, using sets is without loss of generality.
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T2 ({receive(t).S} ∪ S;M;E;φ)⇒ ({S} ∪ S;M;E;φ ∧M � t)

T3 ({event(t).S} ∪ S;M;E;φ)⇒ ({S} ∪ S;M;E ∪ event(t);φ)

T4 ({φ′.S} ∪ S;M;E;φ)⇒ ({S} ∪ S;M;E;φ ∧ φ′)

T5 ({0} ∪ S;M;E;φ)⇒ (S;M;E;φ)

T6 (S;M;E;φ)⇒ (S;M;E ∪ {lts(c)};φ) for every c ∈ Cpriv

The rule T1 formalizes that sent messages are added to the intruder knowledge
M. T2 formalizes that an honest agent receives a message of the form t, and that
the intruder must be able to create that message from his current knowledge,
expressed by the new constraintM � t; this indirectly binds the free variables of
the rest of the strand in the sense that they are now governed by the constraints
of the state. In a non-symbolic model, one would at this point instead need to
consider all ground instances of t that the intruder can generate. T3 formalizes
that we add events to the set E. T4 simply adds the constraint φ′ to the
constraint φ. T5 says that if a strand reaches it end 0, then we remove it.
Finally, for every secret constant c in Cpriv, T6 adds the event lts(c) to the set
E; to indicate that c is a long term secret. (We define later as a goal that the
intruder never obtains any c for which lts(c) ∈ E.) We cannot have this in the
initial set E as we need it to be finite; this construction is later crucial in the
parallel composition proof as we can at any time blame a protocol (in isolation)
that leaks a secret constant. We discuss below that in practice this semantical
rule does not cause trouble to the verification of the individual protocols.

8.3 Goal Predicates in the Geometric Fragment

We express goals by state formulas in the geometric fragment [Gut14]. These
formulas can refer to the intruder knowledge, but in a restricted manner so that
we obtain constraints of the form φ. Security then means: every reachable state
in the transition system induced by S0 satisfies each state formula, and thus an
attack is a reachable state where at least one goal does not hold.

The constraints φ we have defined above are interpreted only with respect to
an interpretation of the free variables, whereas the state formulas are evaluated
with respect to a symbolic state, including the current intruder knowledge and
events that have occurred (as before, we define the semantics for each construct).
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Definition 8.3 State formulas Ψ in the geometric fragment are defined as:

Ψ := ∀x̄. (ψ =⇒ ψ0) with

{
ψ := ik(t) | event(t) | t .= t′ | ψ ∧ ψ′ | ψ ∨ ψ′ | ∃x̄.ψ
ψ0 := event(t) | t .= t′ | ψ0 ∧ ψ′0 | ψ0 ∨ ψ′0 | ∃x̄.ψ0

where ik(t) denotes that the intruder knows the term t. fv(·) and closed extend
to state formulas as expected. Given a state formula Ψ, an interpretation I,
and a state S = (S;M;E;φ), we define I,M, E |=S Ψ as:

I,M, E |=S event(t) iff I(event(t)) ∈ I(E)
I,M, E |=S ik(t) iff I(M) � I(t)
I,M, E |=S s

.
= t iff I(s) = I(t)

I,M, E |=S Ψ ∧Ψ′ iff I,M, E |=S Ψ and I,M, E |=S Ψ′

I,M, E |=S Ψ ∨Ψ′ iff I,M, E |=S Ψ or I,M, E |=S Ψ′

I,M, E |=S ¬Ψ iff not I,M, E |=S Ψ
I,M, E |=S ∃x.Ψ iff there exists t ∈ TΣ̂ and I[x 7→ t] |=S Ψ

Definition 8.4 A protocol P = (S0, {Ψ0, · · · ,Ψn}), where the Ψi are closed
state formulas, has an attack against goal Ψi iff there exist a reachable state
S = (S;M;E;φ) in the transition system induced by S0 and an interpretation
I such that I,M, E |=S ¬Ψi and I |= φ. We also call S an attack state in this
case.

Note that in this definition the interpretation I does not matter in I,M, E |=S

¬Ψi because Ψi is closed.

Example 8.1 If a protocol generates the event secret(xA, xB , xm)2 to denote
that the message xm is supposed to be a secret between agents xA and xB,
and—optionally—the event release(xm) to denote that xm is no longer a secret,
then we can formalize secrecy via the state formula

∀xAxBxm.(secret(xA, xB , xm) ∧ ik(xm) =⇒ xA = i ∨ xB = i ∨ release(xm))

where i denotes the intruder. The release event can be used to model declas-
sification of secrets as needed to verify perfect forward secrecy (when other
data should remain secret even under the release of temporary secrets). We
note that previous compositionality approaches do not support such goals. A
typical formulation of non-injective agreement [Low97b] uses the two events
commit(xA, xB , xm), which represents that xA intends to send message xm to

2Recall that we should write this as event(secret(xA, xB , xm)), but, for readability, here
and below we will omit the outer event(·) when it is clear from context.
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xB), and running(xA, xB , xm, xC), which represents that xB believes to have re-
ceived xm from xA, with xC a unique identifier:

∀xAxBxmxC . (running(xA, xB , xm, xC) =⇒ commit(xA, xB , xm)∨xA = i∨xB = i)

and injective agreement would additionally require:

∀xAxBxmxCx′C . running(xA,xB ,xm,xC) ∧ running(xA, xB ,xm,x
′
C) =⇒

xA = i ∨ xB = i ∨ xC = x′C
2

8.4 Constraint Solving

We first show how to translate every state formula Ψ in the geometric fragment
for a given symbolic state S = (S;M;E;φ) into a constraint φ′ (in the fragment
defined in Section 8.1) so that the models of φ∧φ′ represent exactly all concrete
instances of S that violate Ψ. Then, we extend a rule-based procedure to
solve φ-style constraints (getting them into an equivalent simple form). This
procedure provides the basis for our typing and parallel composition results.

From geometric fragment to symbolic constraints

Consider a reachable symbolic state (S;M;E;φ) and a goal formula Ψ. As
mentioned earlier, we require that Ψ is closed. Let us further assume that the
bound variables of Ψ are disjoint from the variables (bound or free) of S,M, E,
and φ. We now define a translation function trM,E(Ψ) = φ′ where φ′ represents
the negation of Ψ with respect to intruder knowledge M and events E. The
negation is actually manifested in the first line of the definition:

trM,E(∀x̄. ψ ⇒ ψ0) = ∃x̄. tr ′M,E(ψ) ∧ tr ′M,E(¬ψ0)
tr ′M,E(ik(t)) = M � t
tr ′M,E(event(t)) =

∨
event(s)∈E s

.
= t

tr ′M,E(s
.
= t) = s

.
= t

tr ′M,E(ψ1 ∨ ψ2) = tr ′M,E(ψ1) ∨ tr ′M,E(ψ2)
tr ′M,E(ψ1 ∧ ψ2) = tr ′M,E(ψ1) ∧ tr ′M,E(ψ2)
tr ′M,E(∃x̄.ψ) = ∃x̄.tr ′M,E(ψ)
tr ′M,E(¬event(t)) =

∧
event(s)∈E ¬s

.
= t

tr ′M,E(¬s .
= t) = ¬s .

= t
tr ′M,E(¬(∃x̄.ψ1 ∨ ψ2)) = tr ′M,E(¬∃x̄.ψ1) ∧ tr ′M,E(¬∃x̄.ψ2)
tr ′M,E(¬¬φ) = tr ′M,E(φ)
tr ′M,E(¬∃x̄.event(t1) ∧ · · · ∧ event(tn) ∧ u1

.
= v1 ∧ · · ·um .

= vm) =∧
event(s1)∈E...event(sn)∈E ¬∃x̄. (s1

.
= t1 ∧ · · · ∧ tn .

= sn ∧ u1
.
= v1 ∧ · · ·um .

= vm)
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Theorem 6 Let S = (S;M;E;φ) be a symbolic state and Ψ a formula in the
geometric fragment such that fv(Ψ) = ∅ and var(Ψ)∩var(φ) = ∅. For all I |= φ,
we have I,M, E|=S¬Ψ iff I |= trM,E(Ψ). Moreover, if φ is well-formed, then
so is φ ∧ trM,E(Ψ).

Proof. We first prove, by induction, a corresponding property for the function
tr ′ that is called by the tr function. For that assume we have I, M, E, φ, and
ψ such that I |= φ, var(φ)∩ var(ψ) = ∅, fv(φ) ⊆ fv(tr ′M,E(ψ)) ⊆ fv(φ)∪ fv(ψ),
fv(φ) = var(M) ∪ var(E). Also we have that E = {event(s1), · · · , event(sn)}
since E is a finite set. We prove I,M, E |=S ψ iff I |= tr ′M,E(ψ) by induction
on the structure of tr ′M,E(·):

• I,M, E |=S ik(t) iff I(M) � I(t) iff I |=M � t = tr ′M,E(ik(t)).

• I,M, E |=S event(t) iff I(event(t)) ∈ I(E) iff I(t) ∈ {I(s1), · · · , I(sn))}
iff I(t) = I(s1) ∨ · · · ∨ I(t) = I(sn) iff I |= t

.
= s1 ∨ · · · ∨ t .

= sn iff
I |= ∨

event(s)∈E s
.
= t = tr ′M,E(event(t)).

• I,M, E |=S ψ1 ∨ ψ2 iff I,M, E |=S ψ1 or I,M, E |=S ψ2 iff I |=
tr ′M,E(ψ1) or I |= tr ′M,Eψ2) by induction iff I |= tr ′M,E(ψ1)∨tr ′M,E(ψ2) =
tr ′M,E(ψ1 ∨ ψ2).

• I,M, E |=S s
.
= t iff I(s) = I(t) iff I |= s

.
= t = tr′M,E(s

.
= t).

• The other cases follow similarly.

Based on this, we prove I,M, E|=¬Ψ iff I |= trM,E(Ψ). Let Ψ = ∀x̄.ψ =⇒ ψ0.
Then, I |= trM,E(Ψ) = ∃x̄. tr ′M,E(ψ) ∧ tr ′M,E(¬ψ0) iff

• exist t̄ such that I[x̄ 7→ t̄] |= tr ′M,E(ψ) and I[x̄ 7→ t̄] |= tr ′M,E(¬ψ0) iff

• exist t̄ such that I[x̄ 7→ t̄],M, E |=S ψ and I[x̄ 7→ t̄],M, E |=S ¬ψ0 iff

• exist t̄ such that I[x̄ 7→ t̄],M, E |=S ψ ∧ ¬ψ0 iff

• I,M, E |=S ∃x̄.ψ ∧ ¬ψ0 iff

• I,M, E|=S¬∀x̄.ψ =⇒ ψ0 = ¬Ψ.

The well-formedness follows from the fact that in each state, the knowledge M
is a superset of every M′ that occur in a deduction constraint M′ � t in φ.
Further, M can only contain variables that occur in some t for which M′ � t
occurs in φ. Thus, trM,E(Ψ) ∧ φ is well-formed, if φ is. 2



120 Symbolic Protocol Model

Constraint Reduction

As mentioned before, we can transform any well-formed constraint into the form
φ ≡ ∃x̄.φ0∨ . . .∨φn, where φi are base constraints, i.e., without disjunction and
existential quantification (except in negative substitutions). We now discuss
how to find the solutions of such well-formed base constraints. Solving intruder
constraints has been studied quite extensively, e.g., in [MS01, RT03, CDM11,
Möd12a], where the main application of constraints was for efficient protocol
verification for a bounded number of sessions of honest agents. Here, we use
constraints rather as a proof argument for the shape of attacks. Our result is
of course not restricted to a bounded number of sessions as we do not rely on
an exploration of reachable symbolic states (that are indeed infinite) but rather
make an argument about the constraints in each of these states.

We consider constraint reduction rules of the form

φ′

φ
(name), cond

expressing that φ′ entails φ (if the side condition cond holds). However, we will
usually read the rule backwards, i.e., as: one way to solve φ is to solve φ′.

Definition 8.5 The satisfiability calculus for the symbolic intruder comprises
the following constraint reduction rules:

eq(σ) ∧ σ(φ)

M � t ∧ φ
(Unify), s, t /∈ V, s ∈M,

σ ∈ mgu(s
.
= t)

eq(σ) ∧ σ(φ)

s
.
= t ∧ φ

(Equation), σ ∈ mgu(s
.
= t),

s /∈ V or s ∈ fv(t) ∪ fv(φ)

φ

M � c ∧ φ (PubConsts), c ∈ Cpub

M � t1, · · · ,M � tn
M � f (t1, · · · , tn)

(Compose), f ∈ Σ̂n

∧
k∈KM � k ∧ (M � t ∧ φ)T�M

M � t ∧ φ
(Decompose), s ∈M, Ana(s) = (K,T ), T 6⊆ M,

and (Decompose) has not been applied with
the same M and s before

where (M′ � t)T�M is M′ ∪ T � t if M ⊆ M′ and M′ � t otherwise,
(·)T�M extends as expected, eq(σ) = x1

.
= t1 ∧ . . . ∧ xn .

= tn is the constraint
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corresponding to a substitution σ = [x1 7→ t1, . . . , xn 7→ tn], and mgu(s
.
= t) is

the standard most general unifier for the pair of terms t and s (in the free-algebra
as defined in [MM82]).

Recall that the mgu, if it exists, is unique modulo renaming (mgu extends as
expected). Let us now explain the rules. (Unify) expresses that one way to
generate a term t from knowledge M is to use any term s ∈ M that can be
unified with t, but one commits in this case to the unifier σ; this is done by
applying σ to the rest of the constraint and recording its equations. (Unify)
cannot be applied when s or t are variables; intuitively: when t is a variable, the
solution is an arbitrary term, so we consider this a solved state (until elsewhere
a substitution is required that substitutes t); when s is variable, then it is a
subterm of a message that the intruder created earlier. If the earlier constraint
is already solved (i.e., a variable) then s is something the intruder could generate
from an earlier knowledge and thus redundant.

(Equation), which similarly allows us to solve an equation, can be applied if s
or t are variables, provided the conditions are satisfied, but later we will have to
prevent vacuous application of this rule to its previous result, i.e., the equations
eq(σ). (PubConsts) says that the intruder can generate all public constants.

(Compose) expresses that one way to generate a composed term f(t1, . . . , tn)
is to generate the subterms t1, . . . , tn (because then f can be applied to them).
(Decompose) expresses that we can attempt decryption of any term in the in-
truder knowledge according to the Ana function. Recall that Table 7.1 provides
examples of Ana, and note that for variables or constants Table 7.1 will yield
(∅, ∅), i.e., there is nothing to analyze. However, if there is a set T of messages
that can potentially be obtained if we can derive the keys K, and T is not yet a
subset of the knowledge M anyway, then one way to proceed is to add M � k
for each k ∈ K to the constraint store, i.e., committing to finding the keys, and
under this assumption we may add T to M and in fact to any knowledge M′
that is a superset of M. Also for this rule we must prevent vacuous repeated
application, such as applying analysis directly to the newly generated M � k
constraints.

The reduction of constraints deals with conjuncts of the formM � t and s
.
= t.

However, we also have to handle negative substitutions, i.e., conjuncts of the
form ¬∃x̄.φσ. We show that we can easily check them for satisfiability.

Definition 8.6 A constraint φ is simple, written simple(φ), iff φ = φ1∧ . . .∧φn
such that for each φi (1 ≤ i ≤ n):

• if φi =M � t, then t ∈ V;
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• if φi = s
.
= t, then s ∈ V and s does not appear elsewhere in φ;

• if φi = ¬∃x̄.φσ, then mgu(θ(φσ)) = ∅ for θ = [ȳ 7→ c̄] where ȳ are the free
variables of φi and c̄ fresh constants that do not appear in φ.

Theorem 7 If simple(φ), then φ is satisfiable.

Proof. From simple(φ), by the definition of simple (Definition 8.6), it follows
that φ is a conjunction of intruder deduction constraints of the formM � x with
x ∈ V, equations x

.
= t where x ∈ V and where x does not occur elsewhere in φ,

and inequalities. Let ȳ be all variables that occur freely in intruder deduction
constraints and inequalities, and let θ = [ȳ 7→ c̄] for new constants c̄ ∈ Cpub (that
do not occur in φ and are pairwise different). We show that θ(φ) is satisfiable.

All intruder deduction constraints are satisfiable since the constants are in Cpub
and the intruder can access those constants by the rule (Public) as in Defini-
tion 3.2.

The equations are obviously satisfiable: all equations in φ have the form vi
.
= ui,

with variables v̄ that do not occur elsewhere in φ, which implies that dom(θ) ∩
v̄ = ∅, and thus that θ(vi

.
= ui) = vi

.
= θ(ui). All these equations are therefore

satisfiable by instantiating every vi ∈ v̄ with the term ui.

It remains to show that the inequalities are satisfiable under θ. Let φ0 = ¬∃x̄. φσ
with φσ =

∧
si

.
= ti be any inequality. θ(φ0) is closed, i.e., fv(θ(φ0)) = ∅. This

implies that fv(φσ) = {x̄}, and since φ is simple, we have mgu(θ(φσ)) = ∅.
Then, φσ is not satisfiable, i.e., there do not exist x̄ such that φσ holds. Thus,
φ0 holds. 2

The completeness of the symbolic intruder constraint reduction is similar to
existing results on symbolic intruder constraints; what is particular is our gen-
eralization to constraints with quantified inequalities. To that end, we first
show:

Lemma 1 Let φ = ¬∃x̄.φσ where φσ =
∧
si

.
= ti, and let θ = [ȳ 7→ c̄] where

ȳ = fv(φ) and c̄ are fresh public constants that do not occur in φ. Then φ is
satisfiable iff θ(φ) is satisfiable. Moreover, φ is satisfiable iff mgu(θ(φσ)) = ∅.

Proof. If φ is unsatisfiable, then also θ(φ) is unsatisfiable. For the other
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direction, we show that the following two formulas are in contradiction:

∃ȳ.∀x̄.
n∨
i=1

si 6= ti (8.1)

∃x̄.
n∧
i=1

θ(si) = θ(ti) (8.2)

By (8.2), we can find a substitution ξ = [x̄ 7→ ū] where ū are ground terms
such that

∧n
i=1 ξ(θ(si)) = ξ(θ(ti)). Since θ and ξ are substitutions with disjoint

domain and grounding, we have θ(ξ(·)) = ξ(θ(·)), and thus we obtain

n∧
i=1

θ(ξ(si)) = θ(ξ(ti)) (8.3)

By (8.1), choosing a particular value for the x̄, we obtain:

∃ȳ.
n∨
i=1

ξ(si) 6= ξ(ti) (8.4)

Then we can find an i ∈ {1, ..., n} such that ∃ȳ. ξ(si) 6= ξ(ti). Thus, taking
s := ξ(si) and t := ξ(ti), we have:

∃ȳ. s 6= t (8.5)

θ(s) = θ(t) (8.6)

To show that (8.5) and (8.6) yield a contradiction, we consider all possible cases
of s and t:

• If s and t are atomic, then, since θ replaces all of variables ȳ with fresh
constants, θ(s) = θ(t) implies s = t, contradicting (8.5).

• If s is atomic and t is not, then, since θ(s) is a constant, θ(s) 6= θ(t),
contradicting (8.6).

• If both s and t are not atomic, then s = f(s1, . . . , sn) and t = f(t1, . . . , tn)
(otherwise θ(s) = θ(t) cannot hold). Thus, we can reduce this case to one
pair si and ti of corresponding subterms.

Now, since θ(φ) is closed, i.e., fv(φσ) = x̄, we can decide the satisfiability of φ
with the mgu-algorithm. 2

Now we prove the soundness, completeness and termination of the satisfiabil-
ity calculus of the symbolic intruder, but let us first define what we mean by
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soundness and completeness. For that let us write φ → φ′ if
φ′

φ
is an instance

of a reduction rule, i.e., representing one solution step. By sound we mean that
for a model I, I |= φ′ and φ → φ′ imply I |= φ. Moreover, by complete we
mean that for a model I and a non-simple φ, if I |= φ then exists a φ′ such that
φ→ φ′ and I |= φ′.

Theorem 8 (Adaption of [RT03, Möd12a]) The satisfiability calculus for
the symbolic intruder is sound, complete, and terminating on well-formed con-
straints.

Proof.

Soundness is straightforward since for each rule
φ′

φ
, from a satisfying interpre-

tation of an instance σ(φ′) of φ′, we can derive an interpretation that satisfies
σ(φ).

Completeness is more complicated, i.e., when I |= φ, then either φ is already
simple or we can apply some rule, obtaining φ → φ′ for some φ′ with I |= φ′.
Thus, we show that every model I of a constraint is preserved by at least one
applicable reduction rule until we obtain a simple constraint (that we already
know is satisfiable by Theorem 7). Consider a satisfiable non-simple constraint
φ, and a satisfying interpretation I. Since I satisfies φ, for every intruder
deduction M � t in φ, there exists a proof I(M) � I(t) using the intruder
deduction rules of Definition 7.1. This proof has a tree shape with I(M) � I(t)
at the root and axioms as leaves for members of I(M). We label each M � t
with such a proof for I(M) � I(t).

We now proceed from the first (in the order induced by the well-formedness
of φ) intruder constraint M � t where t /∈ V (i.e., not yet simple) and show:
depending on the form of the derivation tree, we can pick a rule so that we
can label all new deduction constraints in the resulting constraint φ′ again with
matching proof trees, i.e., so that they support still the solution. In particular,
we will apply the (Unify) rule only with substitutions of which I is an instance.

If φ contains a non-simple equation, then we can apply the (Equation) rule to
simplify it, because φ is satisfiable under I. Thus, I(s) = I(t) and so there is
a σ ∈ mgu(s

.
= t), with I(x) = I(σ(x)) for all x ∈ V. Therefore, the resulting

constraint (replacing s
.
= t by eq(σ) and applying σ to the rest of the constraint)

still has I as a model.

If all equations are simple, then for φ to be non-simple, there must be at least
one conjunct Mi � ti where ti /∈ V. Consider the smallest such i (in the order
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of the well-formedness of φ, thus fv(Mi) ⊆ {t1, . . . , ti−1} ⊆ V). Moreover,
consider the ground derivation of I(Mi) � I(ti), which exists because φ is
satisfiable. We distinguish the different cases at the root of this proof tree:

• If it is a leaf, then I(ti) ∈ I(Mi), thus ti has a unifier with some term
s ∈ Mi. Now, ti cannot be a variable because otherwise this conjunct
would be already simple). If s is a variable, then s = tj for some j < i,
and we can thus proceed by following the proof tree of tj instead. If neither
ti nor s are variables, then the (Unify) rule is applicable, and again the
unifier σ supports I, and so does the resulting constraint.

• If it is an application of the (Public) rule, then ti ∈ Cpub and so the public
constant rule of the constraint reduction is applicable.

• If it is an application of the (Compose) rule, then so is the corresponding
rule of the constraint reduction, producing a new conjunction M � t′1 ∧
. . . ∧M � t′l of deduction constraints for the immediate subterm t′j of ti;
we can label these tj with the respective subtrees of the derivation tree of
ti, so the resulting constraint still supports the interpretation I.

• If the node is an application of the (Decompose) rule, then consider the
ground term t that is being decomposed in the derivation proof for I(ti).
We first consider different cases depending on how t is derived:

– If it is a composition step, then the intruder composed the term and
then decomposed it subsequently. Since decomposition can only yield
subterms of the composed term, one of the subtrees proves that the
intruder can already derive I(ti) and we can thus simplify the proof
tree. We thus assume in the following that the proof tree contains
no composition followed by a decomposition.

– It cannot be an application of the (Public) rule, since that cannot
have an analyzable subterm.

– If t is obtained by a decomposition step itself, then we regress to the
respective term being decomposed, and we do so until we hit a term
that is not obtained by decomposition. By the previous cases, this
cannot be a composition step or public-constant step either, so all
remains is following case:

– The derivation of t is a leaf, i.e., there is a t′ ∈M such that I(t′) = t.
We now show that in this case we can perform the decomposition
step.

Since decomposition is performed on t in the derivation of I(ti), we have
that Ana(t) = (K,T ) for some sets of ground terms K and T , where
I(M) � k for every k ∈ K and I(ti) ∈ T .
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We have two further cases, namely whether t′ (the term in M whose
instance is t) is a variable or not. If t′ is a variable, then again t′ = tj for
some j < i and we can just replace the subtree for the derivation of I(t′)
with the derivation of I(tj).

Finally, if t′ is not a variable, then Ana(t′) = (K ′, T ′) for some sets K ′

and T ′ with I(K ′) = K and I(P ′) = T . Unless T ′ ⊆ M (which is
for instance the case if the decomposition step has already been applied
previously, so we can simply replace the decomposition step with a leaf
node), we can apply the decomposition rule of the constraint reduction
and label the newly added conjuncts Mi � k′ for every k′ ∈ K ′ with
the respective derivation of I(k′) of the previous proof tree. Thus, the
resulting constraint (also extending allMj that are supersets ofMi with
the terms from P ′) supports the interpretation I.

For termination, it is standard to define a weight (n,m, l) for a constraint φ,
where

• n is the number of free variables in φ;

• m is the number of unanalyzed subterms in the intruder knowledges of
constraints, i.e., let M∗i be the set of all terms in Mi and their subterms
to which analysis has not yet been applied, and let m = Σi|M∗i |, where
|M∗i | is the number of unanalyzed terms in the setM∗i and Σi|M∗i | is the
sum for all Mi in a constraint;

• l = size(φ), where

size(φ ∧ φ′) = size(φ) + size(φ′)
size(M � t) = size(t)
size(s

.
= t) = size(s) + size(t)

size(c) = size(x) = 1
size(¬∃.φσ) = 0
size(f(t1, . . . , tn)) = size(t1) + . . .+ size(tn) + 1

We order the components of this weight lexicographically, i.e., (n,m, l) > (n′,m′, l′)
iff n > n′ or (n = n′ and (m > m′ or (m = m′ and l > l′))). Obviously, > has
no infinite descending chain. Now, for every derivation step φ→ φ′

• either φ′ has a smaller number of variables than φ ((Unify) or (Equation)
with a substitution σ 6= identity), thus the n component is smaller,

• or we apply (Decompose), marking the analyzed term (also in supersets of
the respective knowledge) and thus decrease the m component, note that
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the side condition T 6⊆ M of this rule prevents us from getting infinite
cycles when applying the rule,

• or we apply Unify or Equation with a substitution σ = identity , or we
apply any of the other rules, therefore in all these cases the l component
decreases.

So, every→ step reduces the weight and termination then follows quite straight-
forwardly. 2

8.5 Summary

In this chapter, we defined a protocol as a set of operational strands and a set
of goals expressed in the geometric fragment. Accordingly, we defined the se-
mantics of a protocol as an infinite-state transition system over symbolic states.
Then we showed how to translate any goal in the geometric fragment for a given
symbolic state (S;M;E;φ) into a constraint φ′, so that the models of φ ∧ φ′
represent exactly all concrete instances of the state (S;M;E;φ) that violate
the goal. To solve such constraints, we defined the satisfiability calculus for
the symbolic intruder as a rule-based procedure, and proved its correctness in
light of [RT03, Möd12a]. This procedure provides the basis for our typing and
parallel composition results presented in the next chapter.



128 Symbolic Protocol Model



Chapter 9

Typing and Compositionality
Results

In this chapter present our relative soundness results. First, we define our typed
model and give the typing result in Section 9.1. Then, in Section 9.2, we define
the parallel composition of protocols and give the compositionality result. In
Section 9.3 we present the Automatic Protocol Composition Checker (APCC).

9.1 Typed Model

In our typed model, the set of all possible types for terms is denoted by TΣ̂∪Ta
,

where Ta is a finite set of atomic types, e.g., Ta = {Number, Agent, PublicKey,
PrivateKey, SymmetricKey}. We call all other types composed types. Each
atomic term (each element of V ∪ C) is given a type; constants are given an
atomic type and variables are given either an atomic or a composed type (any
element of TΣ̂∪Ta

). We write t : τ to denote that a term t has the type τ . Based
on the type information of atomic terms, we define the typing function Γ as
follows:

Definition 9.1 Given Γ(·) : V → TΣ̂∪Ta
for variables and Γ(·) : C → Ta for

constants, we extend Γ to map all terms to a type, i.e., Γ(·) : TΣ̂∪C(V)→ TΣ̂∪Ta
,
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as follows: Γ(t) = f (Γ(t1), · · · ,Γ(tn)) if t = f (t1, · · · , tn) and f ∈ Σ̂n. We say
that a substitution σ is well-typed iff Γ(x) = Γ(σ(x)) for all x ∈ dom(σ).

For example, if Γ(k) = PrivateKey and Γ(x) = Number then Γ(crypt(pub(k),
x)) = crypt(pub(PrivateKey), Number).

As we require that all constants be typed, we further partition C into disjoint
countable subsets according to different types in Ta. This models the intruder’s
ability to access infinite reservoirs of public fresh constants. For example, for
protocols P1, P2 and Ta = {β1, . . . , βn}, we have the disjoint subsets Cβi

pub, C
βi

priv,

Cβi

P1
and Cβi

P2
, where i ∈ {1, . . . , n} and, e.g., Cβi

pub contains all Cpub elements

of type βi. Cβi

P1
and Cβi

P2
are short-term constants, whereas Cβi

pub and Cβi

priv are

long-term, and we consider it an attack if the intruder learns any of Cβi

priv.

By an easy induction on the structure of terms, we have:

Lemma 2 If a substitution σ is well-typed, then Γ(t) = Γ(σ(t)) for all terms
t ∈ TΣ̂∪C(V).

Proof. By induction on the structure of the term t.
Base case: t ∈ V . Since Γ(t) is defined then for a well-typed σ; if t ∈ dom(σ)
then Γ(t) = Γ(σ(t)) (by definition of well-typed substitution). Otherwise the
lemma holds trivially as t = σ(t) and thus Γ(t) = Γ(σ(t)).
Induction Step: Given a well-typed σ and the terms t1, . . . , tn such that
for each ti it holds that Γ(ti) = Γ(σ(ti)). For t = f (t1, . . . , tn), by definition
of Γ follows that Γ(σ(t)) = f (Γ(σ(t1)), · · · ,Γ(σ(tn))) = f (Γ(t1), · · · ,Γ(tn)) =
Γ(σ(t)) = Γ(t). �

According to this typed model, I is a well-typed interpretation iff Γ(x) = Γ(I(x))
for all x ∈ V. Moreover, we require for the typed model that Γ(s) = Γ(t) for
each s

.
= t. This is a restriction only on the strands of the honest agents (as

they are supposed to act honestly), not on the intruder: he can send ill-typed
messages freely. We later show that sending ill-typed messages does not help the
intruder in introducing new attacks in protocols that satisfy certain conditions.

Message Patterns

In order to prevent the intruder from using messages of a protocol to attack a
second protocol, we need to guarantee the disjointness of the messages between
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both protocols. Thus, we use formats to wrap raw data, as discussed in Chap-
ter 7.1. In particular, all submessages of all operators (except formats and public
key operator) must be “wrapped” with a format, e.g., scrypt(k, fa(Na)) and
scrypt(k, fb(Nb)) should be used instead of scrypt(k,Na) and scrypt(k1,Nb).

We define the set of protocol message patterns, where we need to ensure that
each pair of terms has disjoint variables: we thus define a well-typed α-renaming
α(t) that replaces the variables in t with completely new variable names.

Definition 9.2 The message pattern of a message t is MPt(t) = {α(t)}. More-
over, the set MPS (S ) of message patterns of a strand S is as follows:

MPS (send(t).S ) = MPt(t) ∪MPS (S )
MPS (event(t).S ) = MPt(t) ∪MPS (S )
MPS (receive(t).S ) = MPt(t) ∪MPS (S )
MPS (s

.
= t.S ) = MPt(s) ∪MPt(t) ∪MPS (S )

MPS ((∃x̄.φσ).S ) = MPS (φσ) ∪MPS (S )
MPS ((¬∃x̄.φσ).S ) = MPS (φσ) ∪MPS (S )
MPS (0) = ∅

Finally, the set MPΨ (Ψ) of message patterns of a goal Ψ is defined as follows:

MPΨ (∀x.ψ ⇒ ψ0) = MPΨ (ψ) ∪MPΨ (ψ0)
MPΨ (ik(t)) = MPt(t)
MPΨ (event(t)) = MPt(t)
MPΨ (ψ1 ∨ ψ2) = MPΨ (ψ1) ∪MPΨ (ψ2)
MPΨ (ψ1 ∧ ψ2) = MPΨ (ψ1) ∪MPΨ (ψ2)
MPΨ (s

.
= t) = MPt(s) ∪MPt(t)

MPΨ (¬φ) = MPt(φ)

The set of message patterns of a protocol P = ({S1, · · · ,Sm}; {Ψ1, · · · ,Ψn}) is
MP(P ) =

⋃
m
i=1MPS (Si) ∪

⋃
n
i=1MPΨ (Ψi), and the set of sub-message patterns

of a protocol P is SMP(P ) = {α(s) | t ∈ MP(P )∧s v t∧¬atomic(s)}\{u | u =
pub(v) for some term v}. SMP applies to messages, strands, goals as expected.

Example 9.1 If S = receive(scrypt(k, (f1(x, y)))).send(scrypt(k, y)), then
SMP(S ) = {scrypt(k, f1(x1, y1)), scrypt(k, y2), f1(x3, y3)}. 2

Definition 9.3 A protocol P = (S0, G) is type-flaw-resistant iff the following
conditions hold:



132 Typing and Compositionality Results

• MP(P ) and V are disjoint, i.e., MP(P )∩V = ∅ (which ensures that none of
the messages of P is sent as raw data). Note that this condition is without
loss of generality; i.e., wrapping data with formats does not change the
security of a protocol; because the intruder (and all other agents) can
compose and decompose these wrapped messages (formats are transparent
public functions).

• If two non-atomic sub-terms are unifiable, then they have the same type,
i.e., for all t1, t2 ∈ SMP(P ), if σ(t1) = σ(t2) for some σ, then Γ(t1) = Γ(t2).

• For any equation s
.
= t that occurs in strands or goals of P (also under a

negation), Γ(s) = Γ(t).

• For any variable x that occurs in equations or events of G, Γ(x) ∈ Ta.

• For any variable x that occurs in inequalities or events of strands, Γ(x) ∈
Ta.

These conditions (of Definition 9.3) are a sort of sanity check on the specification
of protocols and, although they provide a slight restriction on the expressiveness,
they enable us to prove (in Theorem 9) that even if the intruder sends ill-
typed messages, he will not cause a new attack on a type-flaw-resistant protocol.
Moreover, even with these conditions, we can still express many goals with the
geometric fragment that go beyond secrecy and authentication, and consider a
wide class of protocols (see Chapter 9.3). The first condition ensures that the
protocol messages are wrapped using formats and not sent as raw data. Note
that this a realistic modeling and not a restriction on the intruder ability, i.e.,
formats are a sound abstraction that does not eliminate attacks. The second
condition means that we cannot unify two terms unless their types match. Note
that this match is a restriction on honest agents only, and the intruder is still
able to send ill-typed messages.

Example 9.2 Example 9.1 had a potential type-flaw vulnerability as scrypt(k,
f1(x1, y1)) and scrypt(k, y2) have the unifier [y2 7→ f1(x1, y1)]. Here y1 and y2

must have the same type since they have been obtained by a well-typed variable
renaming in the construction of SMP. Thus, the two messages have different
types. The problem is that the second message encrypts raw data without any
information on who it is meant for and it may thus be mistaken for the first
message. Let us thus change the second message to scrypt(k, f2(y2)). Then
SMP also includes f2(y4) for a further variable y4, and now no two different
elements of SMP have a unifier. f2 is not necessarily inserting a tag: if the
type of y in the implementation is a fixed-length type, this is already sufficient
for distinction. 2
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Lemma 3 Let φ be a simple constraint where Γ(s) = Γ(t) holds for all equations
s
.
= t, and whether the equation is under a negation (i.e., part of an inequality)

then neither s nor t contain variables of composed types. Then, φ has a well-
typed model, i.e., a well-typed interpretation IT with IT |= φ.

Proof. For this proof, we first show that we can find a well-typed model for
all inequalities (with values in Cpub that the intruder can generate). Consider
an inequality φ = ¬∃x̄.φσ. Consider also a substitution θ of all free variables of
φ (which are of atomic types) with constants of Cpub with corresponding types.
Since φ is simple, the equations of θ(φσ) cannot have a unifier. We have thus
found a well-typed model for all the free variables of φσ. It is straightforward
to extend this to a well-typed model of the entire constraint; since all positive
equations must be well-typed, and the intruder has an access to infinite reservoirs
of fresh constants of all atomic types. 2

Theorem 9 If a type-flaw-resistant protocol P has an attack, then P has a
well-typed attack.

Proof. The key idea is to consider a satisfiable constraint Φ = φ ∧ trM,E(Ψ)
that represents an attack against P , i.e., where φ is the constraint of a reachable
state of P and trM,E(Ψ) is the translation of the violated goal Ψ in that state.
We have to show that the constraint has also a well-typed solution. By The-
orem 8 and since Φ is satisfiable, we can use the symbolic intruder reduction
rules to obtain a simple constraint Φ′, i.e., Φ →∗ Φ′. The point is now that
for a type-flaw-resistant protocol, all substitutions in this reduction are well-
typed. To prove this we have to show that if P = (S0, {Ψ0, · · · ,Ψn}) is a type-
flaw-resistant protocol and there exist an attack state (S;M;E;φ) such that
(S0; ∅; ∅,>) ⇒∗ (S;M;E, φ) and an interpretation I such that I,M, E |=S

¬Ψi and I |= φ, then there exists a well-typed interpretation IT such that
IT ,M, E |=S ¬Ψi and IT |= φ. Recall that, by Theorem 6, I,M, E|=S¬Ψi iff
I |= trM,E(Ψi), and thus IT ,M, E |=S ¬Ψi iff IT |= trM,E(Ψi).

Note that φ is initially >, which is well-typed by default (Definition 9.3), and
since P is a type-flaw-resistant protocol, we have that: (1) all equations and
events in the initial set of strands S0 are well-typed, (2) the type of each vari-
able in the inequalities of the strands is atomic, and (3) ⇒ does not introduce
any negations (so no equality becomes an inequality or vice versa). Hence, all
equations in φ are well-typed, and variables in inequalities have atomic types.

Recall that Ψi = ∀x̄.ψ =⇒ ψ0. We show now that trM,E does not change these
properties that originally hold in Ψi, i.e., tr(Ψi) has the same properties that
Ψi has by the definition of type-flaw-resistant protocol. This means that trM,E

does not preserves the well-typedness.



134 Typing and Compositionality Results

We show this by cases on tr′M,E , since tr(·) passes Ψi to tr′M,E(·) with a negation
on the ψ0; that is fine since all equations (positive and negative) in Ψi must
be well-typed, and all variables that occur in such equations must have atomic
types. Now we prove by induction that tr′M,E preserves the above properties:

• tr′M,E(event(t)) =
∨

event(s)∈E s
.
= t: all events in E originate from the

initial set of strands S0, and since P is a type-flaw-resistant protocol, then
all equation s

.
= t that we derive from these events (when applying trM,E

on Ψi) are well-typed.

• tr′M,E(¬event(t)) =
∧

event(s)∈E ¬s
.
= t: we can conclude reasoning sim-

ilarly to the previous cases where we already discussed the negation in
trM,E .

• tr′M,E(s
.
= t) = s

.
= t: immediate.

• tr′M,E(∃x̄.ψ) = ∃x̄.tr′M,E(ψ): immediate.

• tr′M,E(¬s .
= t) = ¬s .

= t: immediate.

• tr′M,E(¬∃x̄. event(t1) ∧ · · · ∧ event(tn) ∧ u1
.
= v1 ∧ · · · ∧ um

.
= vm) =∧

event(s1)∈E...event(sn)∈E ¬∃x̄.(s1
.
= t1 ∧· · ·∧ tn .

= sn ∧ u1
.
= v1 ∧· · ·∧ um .

=

vm): follows by reduction to previous cases.

• tr′M,E(ψ1∨ψ2) = tr′M,E(ψ1)∨ tr ′M,E(ψ2) and the rest of the cases: follow
by reduction to previous cases.

We need to prove that for a type-flaw-resistant protocol, if there is an interpre-
tation I |= Φ, then there is a well-typed IT |= Φ. By Theorem 8 and since Φ is
satisfiable, we can use the symbolic intruder reduction rules to obtain a simple
constraint Φ′, i.e., Φ→∗ Φ′ that supports I.

Next we prove that all substitutions made in the reduction steps from Φ to Φ′

are well-typed substitutions. We prove this as follows.

Let us define SMP0 to be the closure of SMP under (1) subterm relation, (2)
well-typed α-renaming, and (3) unification, i.e., if two terms of SMP0 are unifi-
able then the corresponding instances are also in SMP0. Note that by definition
of type-flaw-resistant protocols (Definition 9.3), all equations s

.
= t (including

inequalities) of Φ have Γ(s) = Γ(t), and for inequalities, we have that all vari-
ables of s and t are of atomic type. Further, all terms that occur are well-typed
instances of terms in SMP0. Moreover, for a type-flaw resistant protocol, all
substitutions in this reduction must be well-typed.
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To prove this, we first consider the two cases that involve substitutions in the
constraint reduction rules, namely (Unify) and (Equation). For the (Unify) rule,
we proceed by cases of s and t:

• If both s and t are atomic, then s and t cannot be variables, so the above
property is preserved trivially, simply because they must be the same
constant.

• If both are composed, then σ(s) = σ(t) and there exist s, t ∈ SMP0. Then,
σ(s) = σ(t) and thus Γ(s) = Γ(t) as the protocol is type-flaw-resistant,
and so σ is well-typed.

For the (Equation) rule, we conclude immediately from the fact that P is type-
flaw-resistant; since all equations are well-typed, all unifications must be well-
typed.

In case of the other rules (that generate subterms) the properties are preserved
immediately; since first these rules do not incorporate any substitution, and the
generated subterms of these rules are in SMP0.

So far we have arrived at a simple(Φ′) where Γ(s) = Γ(t) holds for all equations
s
.
= t, and if the equation is under a negation (i.e., part of an inequality), then

neither s nor t contain variables of composed types. By Lemma 3, we conclude
the existence of well-typed solution for such Φ′. 2

Note that this theorem does not exclude that type-flaw attacks are possible, but
rather says that for every type-flaw attack there is also a (similar) well-typed
attack, so it is safe to verify the protocol only in the typed model.

9.2 Parallel Composition

In this section, we consider the parallel composition of protocols, in the following
we will often speak of just “composition”. We define the set of operational
strands for the composition of a pair of protocols as the union of the sets of the
operational strands of the two protocols; this allows all possible transitions in
the composition. The goals for the composition are also the union of the goals of
the pair, since any attack on any of them is an attack on the whole composition
(i.e., the composition must achieve the goals of the pair).

Definition 9.4 The parallel composition P1 ‖ P2 of P1 = (SP1
0 ; ΨP1

0 ) and P2 =
(SP2

0 ; ΨP2
0 ) is P1 ‖ P2 = (SP1

0 ∪ SP2
0 ; ΨP1

0 ∪ΨP2
0 ).
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Our parallel composition result relies on the following key idea. Similar to the
typing result, we look at the constraints produced by an attack trace against
P1 ‖ P2, violating a goal of P1, and show that we can obtain an attack against
P1 alone, or a leaking of a long-term secret by P2 alone. Again, the core of
this proof is the observation that the unification steps of the symbolic intruder
never produce an “ill-typed” substitution in the sense that a P1-variable is
never instantiated with a P2 message and vice versa. For that to work, we have
a similar condition as before, namely that the non-atomic subterms of the two
protocols (the SMPs) are disjoint, i.e., each non-atomic message uniquely says to
which protocol it belongs. This is more liberal than the requirements in previous
parallel compositionality results in that we do not require a particular tagging
scheme: any way to make the protocol messages distinguishable is allowed.
Further, we carefully set up the use of constants in the protocol as explained in
Section 9.1, namely that all constants used in the protocol are either: long-term
public values that the intruder initially knows; long-term secret values that, if
the intruder obtains them, count as a secrecy violation in both protocols; or
short-term values of P1 or of P2.

A major technical difficulty for this construction is the relationship between
public and private keys. For instance, note that in this thesis, public keys
are not an atomic type, but rather we use terms of the form pub(t) where t
is a private key. There are of course other ways to model this, e.g., using a
(private) function from public to private keys, but it is impossible to avoid
that either public or private keys are non-atomic terms1. This in turn leads to
the problem that in a constraint reduction we could run for instance into the
following situation: the intruder has learned a public key pub(x) from protocol
P1 and should use it to produce a public key pub(y) in protocol P2 (using the
unify rule). Such an ill-typed unification would destroy the compositionality
argument. There are several ways to avoid this:

• Forbid that the two protocols share asymmetric keys, i.e., only one pro-
tocol may use the pub operator. This would render the approach quite
unusable as there are few modern protocols that use only symmetric key
cryptography.

• Require that the argument of pub can only be a constant, meaning that
in all asymmetric encryptions and signatures, the key has to be fixed.
This however prevents us from modeling protocols where an agent learns

1There are several papers that consider an “extra-logical” function ·−1 that maps from
constants of type public key to constants of type private key; extra-logical means that this
function is not part of Σ̂ and could thus not be used in terms directly, because it would be
unclear how to define x−1 for a variable x, and thus this solution does not work with symbolic
approaches.
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a public key pub(x) from a message (e.g., a certificate) and then uses it.
In fact this is what some previous parallel composition results do [cCC10].

Our setup of constants allows however for a third way that is far less restrictive
to protocols: we require that all constants of type private key are either part of
the long-term secrets or long-term public constants. (The latter is all private
keys that belong to the intruder.) Moreover, the intruder can obtain all public
keys, i.e., pub(c) for every c of type private key. This does not prevent the honest
agents from creating fresh key-pairs (the private key shall be chosen from the
long-term constants as well) but it dictates that each private key is either a
perpetual secret (it will be an attack if the intruder obtains it) or it is public
right from the start (as all public keys are). This only excludes protocols where
a private key is a secret at first and later revealed to the intruder, or where some
public keys are initially kept secret.

In a nutshell, the only limitation of our model is that long-term secrets cannot
be “declassified”: we require that all constants of type private key are either
part of the long-term secrets or long-term public constants.

Definition 9.5 Two protocols P1 and P2 are parallel-composable iff the follow-
ing conditions hold:

(1) P1 and P2 are SMP-disjoint, i.e., for every s ∈ SMP(P1) and t ∈ SMP(P2),
either s and t have no unifier (mgu(s

.
= t) = ∅) or s = pub(s0) and

t = pub(t0) for some s0, t0 of type private key.

(2) All constants of type private key that occur in MP(P1)∪MP(P2) are part
of the long-term constants in Cpub ∪ Cpriv.

(3) All constants that occur in MP(Pi) are in Cpub∪Cpriv ∪CPi
, i.e., are either

long term or belong to the short-term constants of the respective protocol.

(4) For every c ∈ CPrivateKeyPi
, Pi also contains the strand send(pub(c)).0.

(5) For each secret constant c ∈ Cβi

priv, for each type βi, each Pi contains the
strands event(ltsβi,Pi

(c)).0 and the goal ∀x : βi. ik(x) =⇒ ¬ltsβi,Pi
(x).

(6) Both P1 and P2 are type-flaw resistant.

Some remarks on the conditions:

• Condition (1) is the core of the compositionality result, as it helps to avoid
confusion between messages of the two protocols;
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• Condition (2) ensures that every private key is either initially known to
the intruder or is part of the long-term secrets (and thus prevents “declas-
sification” of private keys as we discussed above).

• Condition (3) means that the two protocols will draw from disjoint sets of
constants for their short-term values.

• Condition (4) ensures that public keys are known to the intruder. Note
that typically the goals on long-term secrets, like private keys and shared
symmetric keys, are very easy to prove as they are normally not trans-
mitted. The fact that we do not put all public keys into the knowledge of
the intruder in the initial state is because the intruder knowledge must be
a finite set of terms for the constraint reduction to work. Putting it into
strands means they are available at any time, but the intruder knowledge
in every reachable state (and thus constraint) is finite. Similarly, for the
goals on long-term secrets: the set of events in every reachable state is
still finite, but for every leaked secret, we can in one transition reach the
corresponding predicate that triggers a violation of the secrecy goal.

• Condition (5) ensures that when either protocol Pi leaks any constant of

Cβi

priv, it is a violation of its secrecy goals.

• Condition (6) ensures that for both protocols, we cannot unify terms unless
their types match.

Theorem 10 If two protocols P1 and P2 are parallel-composable and both P1

and P2 are secure in isolation in the typed model, then P1 ‖ P2 is secure (also
in the untyped model).

Proof. Consider an attack against P1 ‖ P2 violating a goal Ψ of P1. We show
that the given attack works also on P1 in isolation, or one of the Pi in isolation
leaks one of the long-term secret constants. We use a similar argument as in
Theorem 9: let φ be a constraint that represents the attack against P1 ‖ P2;
we show how to extract a satisfiable constraint that represents either an attack
against P1 or P2 in isolation, and that this attack works in the typed model.

First observe that composability of P1 and P2 implies that they are both type-
flaw resistant. Thus, there is no unifier between two messages of SMP(P1)
unless they have the same type, and the same holds for SMP(P2). Since also
there are no unifiers between a message from SMP(P1) and a message from
SMP(P2), we can derive that also P1 ‖ P2 is type-flaw resistant. By Theorem 9,
if there is an attack against P1 ‖ P2, then there must be also a well-typed attack
against P1 ‖ P2. We can thus without loss of generality assume that the given
constraints that represent an attack against P1 ‖ P2 have a well-typed solution.
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This allows us first to get rid of all variables of composed types: we substitute
each variable of a composed type f (τ1, . . . , τn) by the expression f (x1, . . . , xn)
where the xi are new variables of types τi, and repeat this process until we
have only variables of atomic types. Since the given constraint has a well-typed
solution, so has the transformed one. Let I be such a well-typed solution.

As a second step, we substitute every variable x of type private key with I(x).2

Thus we have no variables of type private key anymore, and for every pub(t), t
is a public or secret long-term constant of type private key.

The next step in the proof is to introduce a label for each term and subterm
that occurs in aM � t constraint in φ, namely whether the corresponding term
“belongs” to P1 or to P2. Recall that in M � t, t represents a message that
the intruder sent to an honest agent (or was required to construct for violating
a goal), and M represents messages he has received from honest agents. By
construction, all these terms are thus instances of either an MPS (P1) or an
MPS (P2) term and can be labeled as such, with the exception of pub(t) terms
in an intruder knowledgeM which would be available in both. Let us thus label
all occurrences of pub(t) with label ?. For each term, we give the same label
to all its subterms. Note that throughout the constraint, all occurrences of a
variable thus receives the same labeling and we can thus speak of P1-variables
and P2-variables. Similarly, all fresh constants CP1 will be labeled P1 and all
fresh constants of CP2

will be labeled P2. However the public and private long-
term constants may occur both with a P1 and with a P2 label; let us thus label
them with ? instead. In this way, all terms and their subterms have a consistent
labeling in the sense that all occurrences of the term will bear the same label.
Also by construction, in all equations s

.
= t, both s and t are labeled P1 or both

P2.

As shown already in the proof of Theorem 9, during constraint reduction we
obtain only terms that are instances of SMP(P1) or SMP(P2) or that are atomic.
What we now show is that for one of the Pi all those constraints M � t where
t is labeled Pi can be solved using only messages in M that are also labeled Pi
or ? (and are not a long-term secret constant). This means that the constraint
M � t can still be solved when removing from M all messages labeled for the
other protocol, so that we have an attack that works in the respective Pi alone.

To that end, as in the proof of Theorem 9, we proceed along the well-formedness
order of the constraint, solving the first non-simple one in a way that supports
the given solution I, and show that during this constraint reduction we never

2The reader may wonder why we would not do this actually for all variables. In fact, we
cannot, because in general the solution I may be exploiting that messages from P1 can be
used for P2. Only for private keys, we know that they are either long-term secrets or long-term
public values, either (supposedly) secret in both protocols or available in both.
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need to use a P2 message to solve a P1 constraint or vice versa. In particular, we
will never perform a unification between a P1-labeled and a P2-labeled message.

Whenever applying the (Equation) rule on an equation s
.
= t, it is impossible

that s is labeled P1 and t is labeled P2 (or vice versa) by construction, so also
the resulting unifier produces equations with this property.

More critical is the (Unify) rule, solving M � t by unifying t with some term
s ∈ M. Suppose t is labeled P1 or ?; s may be labeled P1, P2 or ?. We show
that there is a solution without using a P2 message. Since (Unify) requires that
s, t /∈ V, they either are both the same constant or they are both composed. We
distinguish the following cases:

• If both are the same constant c, then we have any of the following sub-
cases:

– c ∈ Cpub: then the constraint can rather be solved using the (PubConsts)
rule instead (and thus there is no need to use any message from P2).

– c ∈ Cpriv: thenM contains a long-term secret constant. Let Pi be the
protocol from which c was learned. Since all previous constraints (in
the well-formedness order) are already simple, those that are labeled
Pi form a valid trace of Pi alone that leaks c and thus can be extended
to an attack against Pi (disregarding all further constraints).

– c ∈ CP1
or c ∈ CP2

, then by construction they are both labeled P1 or
both labeled P2, so (Unify) does not destroy our invariant.

• If both are composed, then we further distinguish two cases:

– s = t = pub(c): we have that pub(c) is available in both protocols by
parallel-composability, i.e., in order to solve this in a P1 constraint
without using P2, we can augment the attack trace with an initial
step where the intruder learns pub(c) from the respective strand of
P1.

– In all other cases, we can use again that all non-atomic messages are
instances of terms in SMP(P1) or SMP(P2) and that the protocols
are SMP-disjoint, so if s and t have a unifier, they must belong to
the same SMP(Pi).

Finally, consider analysis step: in this case, when analyzing a message m ∈M,
we obtain constraints of the form M � k for some subterm k of m. Moreover,
we add then some subterm p of m to M in the analyzed constraint. Here, k
and p must have the same label as m or be labeled ?. It follows that to analyze
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a P1-labeled message, we will never need to construct a P2-labeled key (or vice
versa).

In conclusion, we thus never need P1 messages to solve a P2 constraint or vice
versa, with the exception of leaked long-term secret constants. In this case,
however, we have already found an attack in an initial part of the constraint
(in which all P1 constraints can be solved without P2 and vice versa). Thus,
we obtain in all cases a sequence of constraints for the individual protocols, and
one of them is an attack. 2

We can then apply this theorem successively to any number of protocols that
satisfy the conditions, in order to prove that they are all parallel composable.

This compositionality result entails an interesting observation about parallel
composition with insecure protocols: unless one of the protocols leaks a long-
term secret, the intruder never needs to use one protocol to attack another
protocol. This means actually: even if a protocol is flawed, it does not endanger
the security of the other protocols as long as it at least manages not to leak the
long-term secrets. For instance, the Needham-Schroeder Public Key protocol
has a well-known attack, but the intruder can never obtain the private keys
of any honest agent. Thus, another protocol relying on the same public-key
infrastructure is completely unaffected. This is a crucial point because it permits
us to even allow for security statements in presence of flawed protocols:

Corollary 9.6 Consider two protocols P1 and P2 that are parallel-composable
(and thus satisfy all the conditions in Definition 9.5). If P1 is secure in isolation
and P2, even though it may have an attack in isolation, does not leak a long-term
secret, then all goals of P1 hold also in P1 ‖ P2.

9.3 Automated Protocol Composition Checker

The Automated Protocol Composition Checker APCC 3, was developed as a part
of the SPS compiler. APCC implements the check for the two main syntactic
conditions of our results: it checks both whether a given protocol is type-flaw-
resistant and whether the protocols in a given set are pairwise parallel compos-
able. Figure 9.1 shows the architecture of APCC including its input and output.

3Available at http://www2.compute.dtu.dk/~samo/SPS.zip.
The main implementation effort was carried out by Dr. Paolo Modesti, our partner in the
FutureID project

http://www2.compute.dtu.dk/~samo/SPS.zip
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Figure 9.1: The APCC tool

In our preliminary experiments, we considered a suite that includes widely used
protocols like TLS, Kerberos (PKINIT and Basic) and protocols defined by the
ISO/IEC 9798 standard, along with well-known academic protocols (variants
of Needham-Schroeder-Lowe, Denning-Sacco, etc.). Although we worked with
abstract and simplified models, we were able to verify that TLS and Kerberos
are parallel composable. In contrast, since some protocols of the ISO/IEC 9798
standard share common formats, they are not SMP -disjoint.

For many academic protocols, our tool give the result that they are not pairwise
parallel composable. This result was expected because these protocols do not
have a standardized implementation, and thus the format of messages at the
wire level is not part of the specification. In fact, in these protocols there are
several terms that may be confused with terms of other protocols, whereas a
concrete implementation may avoid this by choosing carefully disjoint messages
formats that can prevent the unification. Hence, our tool APCC can also support
developers in the integration of new protocols (or new implementations of them)
in an existing system.

Finally, for the entire test suite, the type-flaw resistance test took less than half
a second, while the parallel-composability test took less than 0.2 of a second on
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a 2.67 GHz machine.

9.4 Summary

We presented our relative soundness results for typing and compositional rea-
soning. We proved that a type-flaw-resistant protocol admits an attack if it
admits an attack in the typed model. We also proved that — for a pair of
parallel-composable protocols — their parallel composition will not introduce
new attacks, i.e., if a parallel composition of protocol admits an attack, then one
of the protocols in isolation admits an attack. This result is of course applicable
to a set of protocols by applying it successively to any number of protocols that
satisfy the conditions. Based on our results, the APCC tool was developed to
check if a protocol or a set of protocols satisfies our conditions.
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Chapter 10

Related Work

This work unifies research on the soundness of typed models (e.g., [HLS03, BP05,
Möd12a, AD14]) and on parallel protocol composition (e.g., [GT00, Gut09,
CD09, cCC10, ACG+08]) by using a proof technique that has been employed
in both areas: attack reduction based on a symbolic constraint systems. For
typing, the idea is that the constraint solving never needs to apply ill-typed
substitutions if the protocol satisfies some sufficient conditions; hence, for every
attack there exists a well-typed variant and it is thus without loss of generality
to restrict the model to well-typed execution. For the parallel composition of
P1 and P2 that again satisfy some sufficient conditions, the constraint solving
never needs to use a message that the intruder learned from P1 to construct a
message of P2; thus, the attack will work in P1 alone or in P2 alone, and from
verifying them in isolation, we can conclude that their composition is secure.

We also make several generalizations over previous results. First, the result
of [AD07] is limited to encryptions, signing and pairing; while we allow a vari-
ety of operators like the predefined hash and mac functions, and the user defined
functions, this widens the class of protocols for which our results are applicable.
User defined functions also include formats that allow for a more realistic typing
and subsumes pairing and tagging that they use. Note that they have a finer
grained typing system compared to ours; as they have a distinct data type for
each nonce, fresh key and constant, e.g., in Needham-Schroeder protocol, each
of the two nonces has its own data type. However, our results are applicable
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to finer grained typing systems with no cost. Second, our work is not limited
to atomic keys, this limitation excluded many interesting protocols like TLS
that use composed keys. Instead, we allow such composed keys by means of
not only the pre-defined hash function, but also by the use of any other user
defined function. Third, we are not limited to a fixed PKI, instead we allow the
creation of public/private key pairs. (This limitation is also present in the works
of [AD14, CD09].) This leads us to our next generalization point that we make
over [AD07], that is we start from a completely untyped model. However, they
start from what we may call a “partially” typed model, i.e., the types of keys
and agents (that they refer as principals) must be maintained from the starting
model and all principals must keep these types. We also allow the occurrence
of blind copies unlike the aforementioned result. (A blind copy occurs when an
agent sends a part of a message that he received without knowing what this part
contains). Last, we are not limited to a fixed set of properties like secrecy. In-
stead, we consider the entire geometric fragment proposed by Guttman [Gut14].
In fact this is a generalization over other works like [BP05]. One could charac-
terize this fragment as allowing a “controlled” amount of negation in the goal
specifications. We believe is the most expressive language that can work with
the given constraint-solving argument that is at the core of handling typing and
compositionality results uniformly.

Other expressive property languages have been considered, e.g., PS -LTL for
typing results [AD14]; an in-depth comparison of the various existing prop-
erty languages and their relative expressiveness is yet outstanding. Although
equalities are not supported in PS -LTL, the temporal operators and arbitrary
negation in it allows the specification of some properties like fairness that we
cannot support in our fragment.

Moreover, early works on typing and parallel composition used a fixed tagging
scheme, whereas we use the more general notion of non-unifiable subterms for
messages that have different meaning. Using the notion of formats, our re-
sults are applicable to existing real-world protocols like TLS with their actual
formats. Moreover, our definitions of type-flaw resistant protocols and parallel-
composable protocols can act as a set of design principles (such as disjointness
of the message format when messages have a different meaning) avoid many
problems by construction already as in [AN96, Sha08].

Our work considered so far protocols only in the initial term algebra without
any algebraic properties. There are some promising results for such properties
(e.g., [KT09, cCC10, Möd11]) that we would like to combine with our approach
in the future. The same holds for other types of protocol composition, e.g., the
sequential composition considered in [cCC10], where one protocol establishes a
key that is used by another protocol as input.
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Chapter 11

Contributions and Future
Work

In this thesis, we explore some aspects of the specification, implementation,
verification and composition of security protocols. We defined the (SPS) Se-
curity Protocol Specification language that not only offers several modeling
features suitable for real-world protocols like TLS and EAC, but also enjoys
a formal semantics that is mathematically simpler than any previous attempt.
For a fixed set of operators — that enables the modeling of a wide range of
real-world protocols — we implemented a compiler that translates SPS spec-
ifications to operational strands upon which we defined the semantics of SPS
language. From operational strands and within the SPS compiler, we developed
automatic translators to robust real-world implementations and corresponding
formal models. We have demonstrated practical feasibility with a number of
major and minor case studies, including TLS and the EAC/PACE protocols
used in the German eID card. Another component of SPS compiler is the Au-
tomatic Protocol Composition Checker, that implements our relative soundness
results for protocol typing and compositionality. The typing result shows that
if a type-flaw-resistant protocol has an attack, then it has a well-typed attack.
For protocol compositionality, we consider the parallel composition of protocols,
and we show that if running two protocols in parallel admits an attack, then
at least one of them has an attack in isolation; given that those protocols are
parallel composable.
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Now we summarize the contributions of this thesis.

11.1 Contributions

The main contributions of this thesis are as follows:

Specification, Implementation and Verification of Security Protocols

• We give a precise and concise semantics for Alice-and-Bob style languages
in the light of [Möd09, CR10], which we further simplify considerably. Our
semantics depends on few definitions and parameterized over arbitrary al-
gebraic theories of the cryptographic operators, and precisely define how
message derivation and checking are performed by a translation to oper-
ational strands. This translation enables further connections to formal
models and implementations, and achieves independence of the approach
of the verification tools or the implementation language. While many un-
derlying questions of the translation are undecidable in this generality, we
prove that our translator correctly implements the semantics for a fixed
theory. This set of operators is representative for what is commonly used,
and for which it is known how to soundly encode the algebraic reasoning
into tools like ProVerif.

• In addition to the fixed set of operators that enables the modeling of a
wide range of real-world protocols, SPS gives the users the ability to add
more operators to model different aspects of protocols. Users can define
operators in the form of: formats, free functions, and mappings.

– A format is a one-to-one connection between various mechanisms of
structuring messages in implementations and abstract constructors in
formal models. Formats replace the abstract concatenation operator
from formal models allowing us to generate code for any real-world
structuring mechanism like XML formats or TLS-style messages. We
systematically use the non-crypto API that offers a Java class for each
format that basically implements a parser and pretty-printer for that
format (i.e., serializer and de-serializer in protocol implementation
slang). We shift thus all problems of type-flaw attacks, insertion
attacks, and buffer-overflows that actual implementations can have
to the implementation of the respective Java class. In fact, it is then
easy to devise translators from format specification languages (like
XML schema) to an implementation of these Java classes.
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– Free-functions represent standard one way functions that all agents
can use to compose messages.

– Mappings associate different protocol objects to each other and rep-
resent bonds that exist in reality but not in the form of functions,
e.g., a shared key between two agents A and B is simply modeled
using the mapping shk(A,B) that does not exist in reality. Based on
mappings, we handle a “classical” problem of formal protocol models
that is the instantiation of the roles with honest and dishonest agents
in an unbounded number of sessions, as well as the relation between
honest agents and their long term keys. We generate the instanti-
ation in a systematic way that follows a simple principle: for any
number of sessions, every role can be played by any agent, including
the intruder.

• Together with allowing users to define their own operators, SPS allows
users to customize data types and cryptographic primitives. Since actual
protocols require parameterization like key-lengths, group parameters, and
the concrete crypto algorithms/variants; We allow here either that an
SPS specification uses one fixed configuration, or that one annotates the
operators in the specification. This means that users can annotate types
and cryptographic operators with attributes in the form of name/value
pairs, e.g., A → B : crypt[alg = RSA, keysize = 2048 ](k ,m) that says A

sends to B the message m encrypted with the public key k and that the
algorithm is RSA with keysize of 2048 bits. The annotated details are
transparent to the generated implementation. The parameters can also
be transmitted in the messages of the protocol (and may be subject of
authentication goals for instance).

Typing and Compositionality of Security Protocols

• We develop a set of design principles, for example, messages of different
meanings should have disjoint formats. Following such engineering prac-
tices will avoid many problems by construction already.

• Based on the definition of the design principles, we unify and simplify
existing typing and compositionality results: we recast them as an instance
of the same basic principle and of the same proof technique. In a nutshell,
this technique is to reduce the search for attacks to constraint solving
in a symbolic model. For protocols that satisfy the respective sufficient
conditions, constraint reduction will never make an ill-typed substitution,
while for compositionality “ill-typed” means to unify messages from two
different protocols.
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• This systematic approach also allows us to significantly generalize existing
results to a larger set of protocols and security properties. For what con-
cerns protocols, our soundness results do not require a particular fixed tag-
ging scheme like most previous works, but use more liberal requirements
that are satisfied by many existing real-world protocols like TLS. While
many existing results are limited to simple secrecy goals, we prove our
results for the entire geometric fragment suggested by Guttman [Gut14].
We even augment this fragment with the ability to directly refer to the
intruder knowledge in the antecedent of goals; while this does not increase
expressiveness, it is very convenient in specifications. In fact, handling
the geometric fragment also constitutes a slight generalization of existing
constraint-reduction approaches.

• For practical applicability, the APCC tool was developed to check if pro-
tocols meet the design principles, i.e., satisfy the sufficient conditions of
type-flaw resistance and parallel-composability.

11.2 Future Work

The future directions that seem to be promising and deserve further investiga-
tion include:

• Widening the class of protocols that SPS can specify; i.e., improving the
expressiveness of SPS. This involves:

– Expressing goals in the geometric fragment instead of using the built-
in secrecy and authentication goals.

– Embedding control structures such as deterministic selection, non-
deterministic selection, and sub-protocol calls.

– Including database definition and operators like add, delete and query
a database.

– Extending our protocol suite that involves a deeper study for the ac-
tual formats and theory of new protocols and encoding new protocols
like JPAKE [HR10].

• The improvement of SPS expressiveness facilitates the connecting of SPS
to other state of the art tools like Tamarin [MSCB13], Set-π [BMNN15],
SAPIC [KK14], or AIF [Möd10]. Those tools enable the handling of proto-
cols with loops, non-monotonic global states, and databases, and therefore
such connections would definitely widen the spectrum of protocols that
SPS can handle.
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• The improvements may also go beyond the symbolic model like linking
SPS to tools in the computational model like CryptoVerif [Bla07].

• An interesting future work inspired by the work of [BM09] is the verifica-
tion of our results using Isabelle [NPW02].

• Another promising venue for future work would be specifying privacy no-
tation in SPS based on αβ notion of privacy as defined in [MGV13], and
define privacy goals on this formalization. That is translating what we
may call αβ-SPS to an αβ transition system and check that all β leak
nothing more than α. This can form a basis for a front-end to translate
static equivalence questions to a tool like Yapa [BCD13].

• As our work in typing and compositional reasoning currently considered
protocols only in the free-algebra: the initial term algebra without any
algebraic properties, there are some promising results for such properties
(e.g., [KT09, cCC10, Möd11]) that we plan to investigate and thus inte-
grate into our approach.

• Another promising direction involves the consideration for other types
of protocol composition, e.g., (1) the sequential composition considered
in [cCC10], where one protocol establishes a key that is used by another
protocol as input, (2) the vertical composition of protocols as in [GM11,
MV14] where an application protocol runs over a channel established by
another protocol.
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and Bob: Reconciling Formal Models and Implementation, 2015.
Programming languages with applications to biology and security
- Colloquium in honour of Pierpaolo Degano for his 65th birthday,
Revised Selected and Invited Papers.

[AMV15b] Omar Almousa, Sebastian Mödersheim, and Luca Viganò. Alice
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