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Abstract: Nonlocal optical response is one of the emerging effects
on the nanoscale for particles made of metals or doped semiconductors.
Here we classify and compare both scalar and tensorial nonlocal response
models. In the latter case the nonlocality can stem from either the longi-
tudinal response, the transverse response, or both. In phenomenological
scalar models the nonlocal response is described as a smearing out of
the commonly assumed infinitely localized response, as characterized by
a distribution with a finite width. Here we calculate explicitly whether
and how tensorial models, such as the hydrodynamic Drude model and
generalized nonlocal optical response theory, follow this phenomenological
description. We find considerable differences, for example that nonlocal
response functions, in contrast to simple distributions, assume negative and
complex values. Moreover, nonlocal response regularizes some but not all
diverging optical near fields. We identify the scalar model that comes closest
to the hydrodynamic model. Interestingly, for the hydrodynamic Drude
model we find that actually only one third (1/3) of the free-electron response
is smeared out nonlocally. In that sense, nonlocal response is stronger for
transverse and scalar nonlocal response models, where the smeared-out
fractions are 2/3 and 3/3, respectively. The latter two models seem to predict
novel plasmonic resonances also below the plasma frequency, in contrast to
the hydrodynamic model that predicts standing pressure waves only above
the plasma frequency.

© 2015 Optical Society of America

OCIS codes: (260.3910) Metal optics; (260.2030) Dispersion; (120.6710) Susceptibility;
(240.6680) Surface plasmons; (000.6800) Theoretical physics.
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1. Introduction

In plasmonics research, conducting materials are described on many levels, from classically all
the way to atomistically [1, 2]. Here we focus on effects of nonlocal response (also known as
‘spatial dispersion’) that for metals emerge on the few-nanometer scale, which is the intermedi-
ate regime where deviations from classical electrodynamics occur while atomistic descriptions
are not needed yet. Nonlocal response means that the polarization field at a certain point de-
pends not just on the electric field in that point, but rather on the electric field in its neighbor-
hood. In Fourier space it is characterized by a wavevector-dependent dielectric response.

In microscopic descriptions of light-matter interactions, nonlocal optical response may ulti-
mately occur due to the quantum mechanical position uncertainty of the particles or material
excitations that the light interacts with. The optical properties of conductors is typically dom-
inated by the free-carrier response, which is a collective effect (except for semiconductors at
very low doping [3]) that allows semi-classical descriptions of nonlocal response, both for met-
als [4–6], for doped semiconductors [3, 7–9], and recently also for graphene [10, 11]. Indeed
various nonlocal-response models for conductors have been proposed, predicting different phe-
nomena. This article is not an attempt to review all of these models but rather to classify some
of them, after introducing a few developments in this active subfield of plasmonics.

Probably the best known semiclassical model to describe nonlocal collective response is the
hydrodynamic Drude model (HDM) that goes back to Bloch [4,12] who included the dynamics
of the electron gas in the Thomas-Fermi approximation. Although the HDM has been around
for a while, it is relevant for current research both because new experiments become possible
and because new effects are predicted with the HDM. Three nonclassical phenomena that are
well known to be explained by the HDM are (i) size-dependent blueshifts of the dipolar reso-
nance of noble metal nanoparticles as their sizes get smaller than typically 10 nanometers, see
for example Ref. [13], (ii) standing bulk-plasmon wave resonances above the plasma frequency,
first observed as anomalous absorption in Ag thin films [14], and (iii) somewhat reduced plas-
monic field enhancements [15,16].

A natural extension of the HDM to include nonlocality due to surface diffusion is the Gen-
eralized Nonlocal Optical Response (GNOR) model [6, 17]. Recently it was recognized that
the HDM predicts that surface-plasmon resonances of higher multipolar order are blueshifted
more [18, 19], and in the GNOR model also broadened more [6]. The latter nonlocal broad-
ening was used very recently to explain experimental electron-loss spectra of embedded silver
spheres, in particular the disappearance of higher-order plasmon resonances for spheres of radii
smaller than 4 nanometers [20].

Very actively studied nowadays are the optical properties of plasmonic dimer systems with
(sub-)nanometer-size gaps. Again an important role is played by semi-classical models. Even
though they cannot explain all phenomena, to get insight it is important to find out which phe-
nomena can and which cannot be explained by these relatively simple models. In Ref. [16] the
HDM was used to show that large dimers with small gaps respond non-classically even though
classical electrodynamics suffices to describe the response of the individual monomers. An in-
termediate nonlocal regime of gap sizes was anticipated to be well described by semiclassical
models, with gaps too small for classical electrodynamics to be accurate, yet too large to allow
short-circuiting due to electronic spill-out at both interfaces [16]. In some experiments this in-
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termediate nonlocal regime was not identified [21], while in others it was [22]. The observed
broadening of optical spectra for smaller-gap dimers [21] is typically interpreted as due to quan-
tum tunneling [23], so it is rather interesting that the semiclassical GNOR theory systematically
neglects tunneling but still predicts an analogous spectral broadening of smaller-gap dimers as
due to diffusive nonlocal response [6, 17, 24]. What is more, without further ingredients the
GNOR theory also explains the observed spectral broadening for smaller monomers, which of
course cannot be explained as due to quantum tunneling. Here we have the interesting situa-
tion that a semiclassical nonlocal-response theory suggests to reinterpret microscopic quantum
calculations, because besides quantum tunneling there must be at least one other broadening
mechanism at work in small-gap dimers. This is confirmed in Ref. [25] where it is shown that
besides damping due to electron-hole pair creation in forward-scattering processes across the
gap (i.e. tunneling) also backward scattering processes at metal-air interfaces are important, the
latter processes both for monomers and dimers.

Another very recent generalization of the standard hydrodynamic Drude model is the self-
consistent hydrodynamic model (with electron gas dynamics beyond the Thomas-Fermi ap-
proximation) that can describe electronic spill-out semiclassically [26]. It predicts nonlocal
blueshifts for noble metals while for simple metals redshifts are predicted for smaller nanoparti-
cles [26], both in agreement with experiments. By contrast, the usual (hard-wall) hydrodynamic
model systematically excludes spill-out at the interfaces and consequently always predicts non-
local blueshifts. Furthermore, the self-consistent hydrodynamic model is the first semiclassical
theory to describe so-called multipole surface plasmons, also known as Bennett resonances,
and which have been experimentally observed, as reviewed in [4].

As a final research trend, it deserves mentioning that effects of nonlocal response are being
investigated for metamaterials [27–29], metasurfaces [11] and other periodic structures [30,31].

In this article we will classify several types of nonlocal-response models, both scalar and
dyadic, as summarized in Table 1. We will derive their nonlocal response functions in real space,

Table 1.Overview of Response Models, and Where in the Text they are Discussed.
Name Defined by Where?
Scalar local response εL(ω) = εT(ω) Sec. 3.1
Nonlocal with local trace εL(ω) 6= εT(ω) Sec. 3.2
Longitudinal nonlocal response εL(k,ω) andεT(ω) Sec. 4
Transverse nonlocal response εL(ω) andεT(k,ω) Sec. 5
Scalar nonlocal response εL(k,ω) = εT(k,ω) Sec. 6.1
Non-scalar L- and T-nonlocal responseεL(k,ω) 6= εT(k,ω) Sec. 6.2

and compare the results with phenomenological scalar models for nonlocal response [32, 33].
Aim is to obtain a sharper intuition about the models considered and the phenomena that they
describe, especially the analogies and differences between scalar and dyadic models.

2. Preliminaries: nonlocal response in real space and in wavevector space

2.1. From real space to wavevector space: Fourier relations

In general, nonlocal response means that the response of a medium at a certain pointr depends
on the exciting field in a neighborhood of that point, rather than on the exciting field atr only.
Here for simplicity we only consider dielectric (nonmagnetic) response of a medium to light,
and assume the response to be linear. Then the dielectric function (or rather: the 3×3 dielectric
tensorεεε) depends on two positions rather than one, so that the displacement field at a certain
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point depends on the electric field in a neighborhood of that point:

D(r1,ω) = ε0

∫

dr2εεε(r1, r2,ω) ·E(r2,ω), (1)

where the dielectric function has become a nonlocal response functionεεε(r1, r2,ω) that depends
on two positions. One can also study its Fourier representationεεε(k1,k2,ω) but for arbitrarily
shaped media this does not necessarily simplify the analysis. Although nonlocal response in
finite geometries will be discussed in this article, we only calculate response functions for
translationally invariant systems, where the nonlocal response can only depend on the spatial
difference between the two position arguments,εεε(r1, r2,ω) = εεε(r1− r2,ω) = εεε(r ,ω), where
we defined the position difference vectorr ≡ r1− r2. Due to this translational invariance, the
response assumes a simple form ink-space,εεε(k1,k2,ω) = (2π)3δ 3(k1− k2)εεε(k1,ω), where
the tensor functionεεε(k1,ω) is the Fourier transform ofεεε(r ,ω). For translationally invariant
systems, it is usually simpler to first find the dielectric function ink-space rather than in real
space. By subsequent inverse Fourier transformation (see below in Sec. 2.3) one then finds the
sought real-space form of the nonlocal response that features in the constitutive relation (1).
The nonlocal response function of infinite systems so obtained is also useful for the analysis
of finite systems, as an approximation for example [32], or as input for a phenomenological
specular reflection model for conduction electrons at the metal surface [4].

2.2. Transverse and longitudinal response

The dielectric function is written as a tensor, and indeed in a few important models that we
consider below, the response function is tensorial (or dyadic, meaning 3× 3 tensorial) rather
than scalar. For isotropic bulk media there are only two fundamentally different directions in
wavevector space, namely the longitudinal direction parallel to a given wavevector, and the
transverse directions orthogonal to it. More specifically, given a wavevectork of lengthk = |k|
in Fourier space,̂k ≡ k/k is the corresponding longitudinal unit vector, where ‘longitudinal’
means that it points in the direction ofk. In addition, we can find two mutually orthogonal
transverse unit vectorse1,2(k) that by definition are also orthogonal tok. These three unit vec-
tors together thus form an orthonormal basis fork-space. An arbitrary vectorv has a projection
of lengthv · k̂ in the longitudinal direction̂k. The longitudinal projection of the vector is thus
given by(v · k̂)k̂, which is the same as the inner product ofv with the dyadic product̂k ⊗ k̂.
Sometimes the symbol⊗ that signifies dyadic product is omitted, but here we keep it. The 3×3
unit tensorI in k-space can then be expanded as

I = k̂ ⊗ k̂+(I− k̂⊗ k̂) = k̂ ⊗ k̂+e1⊗e1+e2⊗e2 =





1 0 0
0 1 0
0 0 1



 , (2)

where on the right-hand side we wrote the matrix representation ofI in the
{

k̂,e1(k),e2(k)
}

basis. For convenience we also introduce the longitudinal and transverse projectors

Lk ≡ k̂⊗ k̂ and Tk ≡ I− k̂⊗ k̂. (3)

They are indeed projectors and together they project on the entire Fourier space because of their
properties

Lk ·Lk = Lk , Tk ·Tk = Tk , Lk ·Tk = Tk ·Lk = 0, Lk +Tk = I. (4)

In general the dyadic dielectric response ink-space will be different in the longitudinal and in
the transverse directions. Even in isotropic media the dielectric response function need not be
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a scalar. The most general response of an isotropic bulk mediumis rather of the form

εεε(k,ω)= εεεL(k,ω)+εεεT(k,ω)= εL(k,ω)Lk+εT(k,ω)Tk =





εL(k,ω) 0 0
0 εT(k,ω) 0
0 0 εT(k,ω)



 ,

(5)
where the scalar functionsεL(k,ω) andεT(k,ω) describe the response in the longitudinal and
transverse directions, respectively. Because of the assumed isotropy of the medium, the scalar
functionsεL,T(k,ω) depend only on the magnitude but not on the direction of the wavevector.

2.3. Real-space nonlocal response: from k-space back to real space

For a given dielectric tensor ink-space, we can find the corresponding dielectric function in
real space by inverse Fourier transformation:

εεε(r ,ω) =
1

(2π)3

∫

d3k1 eik1·r εεε(k1,ω). (6)

We can do this inverse transformation for the longitudinal and transverse response separately.
Let us first transform the longitudinal responseεεεL = εεεL(k,ω) back to real space, making use of
its property that the scalar functionεL(k,ω) depends only on the magnitude of the wavevector:

εεεL(r ,ω) =
1

(2π)3

∫

d3k1 eik1·r εL(k1,ω)Lk =
1

(2π)3

∫ ∞

0
dk1 k2

1εL(k1,ω)

∫

d2k̂1 eik1·r k̂1⊗ k̂1.

(7)
So, because of the isotropic response, we can evaluate the three-dimensional integral in two
steps: first do the 4π-angular integral over wave vector directionsk̂1, and then the integral
over the wave vector magnitudek1. (Doing the magnitude integral first may also work in some
cases.) The angular integral can be evaluated as follows (see the Appendix of Ref. [34]):

∫

d2k̂1 eik1·r k̂1⊗ k̂1 =−
1

k2
1

∇⊗∇
∫

d2k̂1 eik1·r =−
4π
k2

1

∇⊗∇
sin(k1r)

k1r
. (8)

By working out the spatial derivatives, one can show that this angular integral can be written in
terms of spherical Bessel functions, see Appendix A and Ref. [34], but here we prefer instead
to take the derivatives also out of thek1-integral and withεL(−k1,ω) = εL(k1,ω) obtain

εεεL(r ,ω) =−
1

4π2∇⊗∇
∫ ∞

−∞
dk1 εL(k1,ω)

sin(k1r)
k1r

. (9a)

Following analogous steps, the transverse response function in real space becomes

εεεT(r ,ω) = εT(r ,ω)I+
1

4π2∇⊗∇
∫ ∞

−∞
dk1 εT(k1,ω)

sin(k1r)
k1r

, (9b)

whereεT(r ,ω) is the Fourier transform of the scalar functionεT(k,ω).
We are interested in fully explicit forms of the real-space response functionsεεεL,T(r ,ω). The

procedure to arrive at that in subsequent sections will be to assume specific model functions for
εL,T(k1,ω), to perform thek1-integrals in Eqs. (9a) and (9b), and then to evaluate the double
spatial derivatives. Here we make the general point that the result of doing thek1-integral will
be a radial function, i.e. depending on the lengthr rather than on the full position difference
vectorr . That makes doing the spatial derivatives easier, since they follow immediately from
the dyadic identity

∇⊗∇ f (r) =
f ′(r)

r
(I− r̂ ⊗ r̂)+ f ′′(r)r̂ ⊗ r̂ (for r 6= 0), (10)
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which is derived and related to spherical harmonics in Appendix A. There is a sum rule for the
real-space response functions that we will derive, namely that their integrals over all of space
should give

∫

dr εεεL,T(r ,ω) =
∫

d3k1

[

1
(2π)3

∫

dr eik1·r
]

εεεL,T(k1,ω) = εεεL,T(k = 0,ω), (11)

where in the first equality we used Eq. (6) and in the second one we identifiedδ (k1) in between
the square brackets. The sum rule (11) will be a convenient consistency test of our results.
On the right-hand side we see thek-space response in the limitk → 0. This limit typically
coincides with the local-response limit, and then the sum rule describes that the integral over
the nonlocal response function equals that of the corresponding local-response model. In this
sense, nonlocal-response models ‘smear out’ the response of the corresponding local model.
There are infinitely many different functions that have the samek → 0 limit, and equally many
ways to smear out the delta-function response of local models. Below we focus on specific
response functions that in most cases are physically motivated.

2.4. Relation between dyadic nonlocal response function and dyadic Green function

The dyadic Green function can conveniently be determined using the longitudinal and trans-
verse projectors of Eq. (3). The retarded (dyadic) Green function for an infinite medium with
nonlocal response is defined by the equation

−∇×∇×G(r ,ω)+ (ω/c)2
∫

dr1εεε(r − r1,ω) ·G(r1,ω) = Iδ (r), (12)

plus the boundary condition thatG(r ,ω)→ 0 for r → ∞. The translation invariance means that
it is best solved ink-space. Using the vector identityk̂× k̂×A = (k̂ ·A)k̂− (k̂ · k̂)A =−Tk ·A,
the defining equation becomes

−k2Tk ·G(k,ω)+ (ω/c)2εεε(k,ω) ·G(k,ω) = I. (13)

Now analogous to Eq. (5) forεεε , the Green functionG(k,ω) for isotropic translationally in-
variant media can be written as the sum of a transverse and a longitudinal part, whereGL(k,ω)
equalsGL(k,ω)Lk andGT(k,ω) equalsGL,T(k,ω)Tk , and where theGL,T(k,ω) are scalar func-
tions depending only on the magnitude of the wave vector. Inserting this expansion into Eq. (13)
and using the properties of the projectorsLk andTk of Eq. (4), we obtain two scalar identities
for the transverse and the longitudinal parts of the resulting equation separately, whereby the
scalar Green functions can be expressed in terms of the dielectric response functions as

GL(k,ω) =
1

(ω/c)2εL(k,ω)
, GT(k,ω) =

−1
k2− (ω/c)2εT(k,ω)

. (14)

The poles of these Green functions give the dispersion relations for the excitations in the
medium. Thus the longitudinal modes correspond toεL(k,ω) = 0 and the transverse modes
to k2 = (ω/c)2εT(k,ω).

The corresponding real-space representations of the Green functions (14) are found by in-
verse Fourier transformation, where we can use the isotropy of the medium, analogous to
Eqs. (9a) and (9b) for the longitudinal and transverse response functions. The result is therefore

GL(r ,ω) = −
1

4π2∇⊗∇
∫ ∞

−∞
dk1 GL(k1,ω)

sin(k1r)
k1r

, (15a)

GT(r ,ω) = GT(r ,ω)I+
1

4π2 ∇⊗∇
∫ ∞

−∞
dk1 GT(k1,ω)

sin(k1r)
k1r

, (15b)
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where GT(r ,ω) is the three-dimensional inverse Fourier transform of the scalar function
GT(k,ω). The total Green function in real spaceG(r ,ω) is given by the sum ofGL(r ,ω) and
GT(r ,ω). This shows how the total Green function can be computed once the scalar functions
εL,T(k,ω) are given.

3. k-independent response [εL(ω) and εT(ω) ]

3.1. Local response [ εL(ω) = εT(ω) ]

When the scalar functionsεL,T(k,ω) actually have nok-dependence, it may be expected that the
corresponding response in real space will be local. In general this is incorrect, as shown below,
but let us first consider the simplest case for which it is true: if the longitudinal and transverse
responses are equal and independent ofk, εL(k,ω) = εT(k,ω) = ε(ω), thenεεε(k1,ω) = ε(ω)I.
In this simple situation we do not need to consider longitudinal and transverse response sepa-
rately since from Eqs. (2) and (6) it follows immediately that

εεε(k,ω) = ε(ω)I ⇔ εεε(r ,ω) = ε(ω)δ 3(r)I, (16)

where the firstI denotes the 3×3 unit matrix in three-dimensionalk-space, while the secondI is
the 3×3 unit matrix in real space. Because of the delta functionδ 3(r), we see that the response
in this simple case is indeed local.

Local response models are employed in most of plasmonics research, and different metals
are described by different permittivitiesε(ω). No need to elaborate much on this here. For later
reference we mention the widely used Drude-like models, with scalar local response functions
of the form

εD(ω) = εcore(ω)+ χD(ω), with χD(ω) =−
ω2

p

ω(ω + iγD)
. (17)

Here the free-carrier susceptibilityχD(ω) features the plasma frequencyωp and Drude damping
γD, while εcore(ω) (not further specified here) models the response from the bound ions and
electrons, and includes effects of interband transitions.

3.2. Nonlocal response model with local trace [ εL(ω) and εT(ω) ]

A slightly more complex situation occurs if the scalar transverse and longitudinal response
functions are different, but still are independent of the wavevector, that is if we assume

εεε(k1,ω) = εL(ω)Lk + εT(ω)Tk , (18)

which hask-independent matrix elements in the basis of Eq. (2). The real-space response for
this model will nevertheless be nonlocal, because the basis of Eq. (2) itself does depend on the
wavevector, on its direction to be precise. We now calculate the spatial dispersion explicitly,
starting withεεεL(r ,ω):

εεεL(r ,ω) =
εL(ω)

(2π)3

∫

d3k1 eik1·r Lk = εL(ω)δδδ ‖(r) = εL(ω)

[

1
3

δ 3(r)I+
1

4πr3 (I−3r̂ ⊗ r̂)
]

,

(19)
in terms of the so-called longitudinal delta functionδδδ ‖(r) ≡ −∇ ⊗∇(1/(4πr)), which is a
dyadic, see the derivation in the Appendix and in Refs. [35,36]. Hence the longitudinal response
does not solely give rise to a delta-function, but also to a “dipolar” nonlocal term scaling as 1/r3.
Similarly, for the transverse part we find

εεεT(r ,ω) =
εT(ω)

(2π)3

∫

d3k1 eik1·r Tk = εT(ω)δδδ⊥(r) = εT(ω)

[

2
3

δ 3(r)I−
1

4πr3 (I−3r̂ ⊗ r̂)
]

,

(20)
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in terms of the dyadic transverse delta functionδδδ⊥(r) [35,36]. Again, besides the delta-function
term that describes the local part of the response, there is a dipolar nonlocal term scaling with
distance as 1/r3. From the above two expressions it is clear that the adjectives “longitudinal”
and “transverse” refer to being parallel or perpendicular to the wavevectork in Fourier space,
rather than parallel or perpendicular to the position vectorr in real space. The total response of
this model is the sum of its longitudinal and transverse parts, and is given by

εεε(r ,ω) =
2εT(ω)+ εL(ω)

3
δ 3(r)I+

εL(ω)− εT(ω)

4πr3 (I−3r̂ ⊗ r̂). (21)

Notice that in the special case of scalar response, i.e. ifεT(ω) = εL(ω), the nonlocal 1/r3 terms
of the transverse and longitudinal responses cancel exactly. Then Eq. (21) reduces as it should
to the scalar local response found earlier in Eq. (16). On the other hand, whenεT(ω) andεL(ω)
differ, then the dyadic tensorεεε(r ,ω) is a non-scalar dyadic tensor. What does this mean in a
bulk system? It means that the response in the direction defined byr differs from the response in
directions perpendicular tor . In particular, alongr and perpendicular to it we find the diagonal
tensor components

r̂ · εεε(r ,ω) · r̂ =
2εT(ω)+ εL(ω)

3
δ 3(r)−

εL(ω)− εT(ω)

2πr3 , (22a)

e1,2(r) · εεε(r ,ω) ·e1,2(r) =
2εT(ω)+ εL(ω)

3
δ 3(r)+

εL(ω)− εT(ω)

4πr3 , (22b)

so the three-dimensional space is subdivided into a one-dimensional subspace parallel tor
and a two-dimensional subspace perpendicular to it. All off-diagonal tensor components are
identically zero. We can partly characterize this dyadic response by a scalar, namely its average
over all directions, in other words by taking one third of the trace of Eq. (21). The result is
[2εT(ω) + εL(ω)]δ 3(r)/3, which is a local quantity. In other words, the nonlocality of the
dyadic response of this model does not show up in its trace. Related to this vanishing angle
average, the nonlocal term also disappears when taking the volume average

∫

dr of the dielectric
response in Eq. (21), because the 4π solid-angle integral over(I−3r̂ ⊗ r̂) vanishes. In general
one could hope that dyadic nonlocal response functions allow an approximately correct scalar
description by taking the angle-averaged response, but the present model shows a qualitative
change where taking the average turns a nonlocal model into a local one.

To summarize, in a model in which neither thek-longitudinal nor thek-transverse dielectric
functions depend on the wavevector, we find that in real space there is nevertheless a concomi-
tant spatial dispersion that scales as 1/r3, unless the two dielectric functionsεL(ω) andεT(ω)
are identical. This result also puts the commonly employed local response models in another
perspective: in local-response models, neither the longitudinal nor the transverse responses are
local; rather, the overall local response is the result of an exact cancellation between the longi-
tudinal and the transverse nonlocal response functions.

3.3. Examples of nonlocal response models with local trace?

We have not come across situations in which differentεL(ω) andεT(ω) are employed, so in
that sense the nonlocal response model with local trace can be considered a toy model that at
least gave some insight. It is a rather special model in the sense that the nonlocality does not
involve a new length scale. Below we will see instead examples where eitherεL or εT has an
explicit k-dependence, and where in the small-k limit the two become equal. It is actually an
interesting open question whether nonlocal response models with local trace may describe a
physical state of affairs in some limit of other dyadic nonlocal response models. Toy models or
not, below we will make use of the results obtained for this model in order to understand other
nonlocal-response models that do have a clear physical motivation.
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4. Longitudinal nonlocal response [εL(k,ω) and εT(ω) ]

Although we have just seen that even without explicitk-dependence in the longitudinal and
transverse scalar functions the real-space response is typically still nonlocal, we now look at
models where thereis a k-dependence in the scalar longitudinal response response function.
Let’s call such models longitudinal nonlocal response models.

4.1. Hydrodynamic Drude model

The hydrodynamic Drude model (HDM) in the Thomas-Fermi approximation in general de-
scribes a response of metals to light that is nonlinear [6,12], but here we will only consider the
linear-response limit. The linearized dynamics of the HDM can be described by two coupled
equations of motion, in which the electric field is driven by the free-carrier current density and
vice versa,

−∇×∇×E(r ,ω)+ (ω/c)2εcore(ω)E(r ,ω) = −iµ0ωJ(r ,ω) (23a)

β 2

ω(ω + iγD)
∇⊗∇ ·J(r ,ω)+ J(r ,ω) = −iε0ωχD(ω)E(r ,ω), (23b)

whereβ is proportional to the Fermi velocity of the conductor. Our results will also apply to the
mentioned generalized nonlocal optical response (GNOR) theory, a recent generalization of the
HDM where due to diffusion the parameterβ becomes complex-valued [17]. Mathematically,
by taking the limit|β | → 0 the equation (23b) reduces to Ohm’s lawJ = σE. By inserting
this into the first equation, we would obtain the Maxwell wave equation in a medium with
local response as described byεD(ω) of Eq. (17). From the non-classical term proportional
to β 2∇ ⊗ ∇ · J in Eq. (23b) one can identify the nonlocal response in the HDM as due to
non-classical pressure waves in the electron density; the observation of corresponding standing
pressure waves in finite structures as in [14] is an important example of the predictive power of
the HDM [19].

The above coupled equations indeed also describe finite systems when combined with the
right boundary conditions. For infinite systems on the other hand, we can find the longitudinal
and transverse response functions ink-space, where the above coupled equations turn into

−k2Tk ·E+(ω/c)2εcore(ω)E =−iµ0ωJ and −
β 2k2

ω(ω + iγD)
Lk ·J+J=−iε0ωχDE, (24)

where the variables(k,ω) were dropped for readability. Now both the electric field and the
current density have longitudinal and transverse parts. By Eq. (4) we can decomposeE(k,ω)
uniquely into the sum ofEL = Lk ·E andET = Tk ·E. This is essentially the Helmholtz decom-
position carried out in k-space. Projection properties such asLk ·EL = EL and Tk ·EL = 0
etcetera follow immediately. An analogous decomposition exists forJ(k,ω). By multiply-
ing both equations in (24) from the left withTk , one obtains two coupled equations involv-
ing only the transverse fieldsET andJT, the solution of which gives the dispersion relation
k2 = εT(k,ω)(ω/c)2. Multiplying Eq. (24) from the left instead withLk gives the longitudinal
dispersion relationεL(k,ω) = 0. This way one obtains these response functions in the HDM as

εT(ω) = εcore(ω)+ χD(ω) = εD(ω), (25a)

εL(k,ω) = εcore(ω)−
ω2

p

ω(ω + iγ)−β 2k2 . (25b)

In other words, the transverse response is the familiar Drude-like response well-known from
local response models, while the longitudinal response is modified by a k-dependent term in
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the denominator of the free-electron response. The parameterβ is proportional to the Fermi
velocity of the material. Sinceεcore(ω) shows up both in the longitudinal and in the transverse
response, the total response of the bound electrons is local in this model, whereas the response
due to the free carriers is nonlocal, as we shall see. From Eq. (25) one can appreciate that the
response in the HDM is both a generalization of the Drude-like local response of Eq. (17) and
a special case of the general nonlocal response model (5). We note in passing that the self-
consistent hydrodynamic model [26] that can describe electronic spill-out also belongs to the
class of longitudinal nonlocal response models.

4.2. Transverse response in real space in hydrodynamic model

From Eq. (25) it can be seen that the transverse dielectric function has no dependence onk,
exactly as in the result Eq. (20) for the “nonlocal model with local trace” considered in Sec. 3.2.
In fact, the integral is identical, and so is the result, namely that in the hydrodynamic Drude
model the spatial dependence of the transverse response function is given by

εεεT(r ,ω) = εT(ω)δδδ⊥(r) = εD(ω)

[

δ (r)I+∇⊗∇
(

1
4πr

)]

= εD(ω)

[

2
3

δ 3(r)I−
I−3r̂ ⊗ r̂

4πr3

]

,

(26)
featuring the well-known Drude-like dielectric function of Eq. (17). Thus in the HDM we find
terms in the spatial dependence ofεεε(r ,ω) that fall off as 1/r3, originating from the transverse
hydrodynamic response. Similar rather singular terms appeared in the total response of “non-
local model with local trace”, and in the local-response limit they cancelled exactly against
similar terms originating from the longitudinal response. It is thus interesting to see whether
such cancellation also exists in the HDM, so let us now also consider the real-space version of
the longitudinal response in the HDM.

4.3. Longitudinal response in real space in hydrodynamic model

In order to obtainεεεL(r ,ω) for the HDM, we insert into the integral Eq. (9a) the specific hydro-
dynamic form ofεL(k,ω) as given in Eq. (25b), which has a bound-carrier part and a free-carrier
part. For the first part we need the integral

εcore(ω)

∫ ∞

−∞
dk1

sin(k1r)
k1r

=
πεcore(ω)

r
, (27)

while the integral over the hydrodynamic Drude part becomes

∫ ∞

−∞
dk1

[

−ω2
p

ω(ω + iγ)−β 2k2
1

]

sin(k1r)
k1r

= π

[

−ω2
p

ω(ω + iγ)

]

1− eiqr

r
= πχD(ω)

1− eiqr

r
, (28)

whereq2 ≡ ω(ω + iγ)/β 2. It is interesting to see the familiar local Drude susceptibility emerg-
ing here, but modified by the spatially dependent factor

(

1− eiqr
)

. We can combine these two
results and write the spatially dependent longitudinal response in the HDM as

εεεL(r ,ω) =−εD(ω)∇⊗∇
(

1
4πr

)

+ χD(ω)∇⊗∇
(

eiqr

4πr

)

, (29)

with εD(ω) andχD(ω) as defined in Eq. (17).
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4.4. Total response in real space in hydrodynamic model

By adding up Eqs. (26) and (29), the same two terms cancel that cancel in local-response
models, and we obtain the total real-space response of the HDM in the compact form

εεε(r ,ω) = εD(ω)δ (r)I+ χD(ω)∇⊗∇
(

eiqr

4πr

)

. (30)

Here the first term on the right-hand side is the usual scalar local Drude-like response of
Eq. (17). All effects of spatial dispersion are therefore described by the other term in Eq. (30).
Sometimes nonlocal response is said to “smear out” the local delta-function response over a
finite volume. We can now determine whether that is indeed what happens for the HDM, the
archetypical model with nonlocal response. “Smearing out” would only occur if the second
term of Eq. (30) besides smooth functions ofr contains a delta-function against which some of
the local free-carrier response of the first term cancels. Shortly we can and will work out the
spatial derivatives of the second term using Eq. (10), but that identity is valid everywhere except
in r = 0, and thus is blind for any delta-function contribution. But if for the moment it is only the
delta-function contribution that we are interested in, then we can zoom in on∇⊗∇[eiqr/(4πr)]
so close to the origin that|q|r ≪ 1 and find that the sought delta-function contribution indeed
exists and equals that of the longitudinal delta function of Eq. (19). Thus we find that the sec-
ond term in Eq. (30) was hiding a delta-function term−χD(ω)δ (r)I/3, which partly cancels
the local response described by the first term of Eq. (30). It is interesting that the HDM thereby
apparently “smears out” only one third of the local free-electron response over a finite spatial
region, while leaving two thirds of the free-carrier local response and (of course) the entire local
core response unaffected. We arrive at one of our main results, the explicit spatial response of
the HDM as

εεε(r ,ω) =

[

εcore(ω)+
2
3

χD(ω)

]

δ (r)I+
χD(ω)eiqr

4πr3

[

(iqr−1)(I−3r̂ ⊗ r̂)− q2r2r̂ ⊗ r̂
]

. (31)

We have not yet shown that the “one third nonlocal smearing out” story indeed holds, because
we have only shown that one third of the local free-carrier response was removed, but we
have not checked whether exactly this part was smeared out elsewhere. This balance can be
tested by taking the volume integral of Eq. (31). Now the solid-angle integral

∫

∂Ω r̂ ⊗ r̂/(4π)
equalsI/3, so that the integral over terms proportional to(I−3r̂ ⊗ r̂) vanishes. The last term
in Eq. (31), the one proportional tôr ⊗ r̂ , does contribute to the volume integral, and it does
so in a neat way since it ensures that indeed

∫

dr εεε(r ,ω) equalsεD(ω)I, the same outcome as
for the local-response Drude-like model. This agrees with the sum rule (11) and it also implies
that the nonlocal term in Eq. (30) had a vanishing volume integral. But most importantly, it
entails that indeed in the HDM one third (no more and no less) of the free-carrier response is
smeared out nonlocally. This interesting result is a direct consequence of the dyadic nature of
the HDM. Ink-space the response is onlyk-dependent in the longitudinal direction, not in the
two other directions, which makes the HDM only one third non-local. This is a rather general
argument to explain the factor 1/3 and we did not use any specifics of the hydrodynamic model
other than that it belongs to the longitudinal nonlocal class. We therefore anticipate that the
argument holds for the entire class, which for example includes models with a fourth-order
polynomial ofk in the denominator ofεL(k,ω) instead of the parabolick-dependence for the
HDM in Eq. (25b).

Intuitively one might have expected that nonlocal response gives rise to a smooth real-space
response function, but for the HDM the expression Eq. (31) shows several diverging near-field
terms. In the near field (i.e. forqr ≪ 1), the nonlocal terms are proportional to the longitudi-
nal delta function, thus scaling asr−3, both in directions parallel and perpendicular tor . By
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contrast, in the far field (qr ≫ 1) the dyadic response alongr scales with distance aseiqr/r,
while perpendicular tor the response falls off faster, namely aseiqr/r2. So in that sense, the
k-dependence of thek-longitudinal responseεL(k,ω) gives rise to a nonlocal response in real
space that is also predominantlyr -longitudinal, stronger alongr than perpendicular to it.

The response functionεεε(r ,ω) in Eq. (31) is an integration kernel in Maxwell’s equations,
in particular in the constitutive relation Eq. (1). Because of the diverging terms in the kernel,
evaluating the integral may be numerically much more costly than in case of a Gaussian kernel,
say. Instead of solving nonlocal-response problems as an integro-differential equation, it is
therefore often simpler to solve coupled differential equations such as in Eq. (23). But one could
try to approximate the kernel to make the integro-differential approach more manageable. A
first approximation could be to neglect the dipole term out of the kernel (31)), since its volume
integral vanishes. A further approximation would be to map the dyadic HDM response onto the
scalar response function that captures it best. We propose to use the angle-averaged response,
obtained by taking one third of the trace of Eq. (31) and multiplying byI. The result is

εεεav.(r ,ω) =
I
3

Tr[εεε(r ,ω)] =

[

εcore(ω)+
2
3

χD(ω)

]

δ (r)I−
I
3

q2χD(ω)eiqr

4πr
. (32)

The first thing to appreciate is that tracing out the HDM response does give a nonlocal response,
unlike for the nonlocal model in Sec. 3.2 that had a local trace. The advantages of this scalar
model in capturing the HDM response would be that by construction its spatial average is the
same as for the HDM, and secondly that here also only one third of the usual local free-electron
response is smeared out, and in the third place ther-dependence is more similar to the HDM
response than a Gaussian function would be. The numerical accuracy of this tailor-made scalar
function in capturing hydrodynamic nonlocal response in phenomenological approaches such
as in Ref. [32] would be interesting for further study. For more scalar models see Sec. 6.1 and
for a warning about using them we refer to the Discussion in Sec. 7.

5. Transverse nonlocal response [εL(ω) and εT(k,ω) ]

While in the previous section we considered models withk-dependent longitudinal andk-
independent transverse scalar response functions, here we consider just the opposite: models
defined by aεL(ω) in combination with a functionεT(k,ω) that has an explicit dependence on
the wavevector. We discuss some physical predictions of such models in Sec. 7 below, but first
let us specify one such a model and study its response in real space. A main question is whether
the real-space response function is qualitatively different from the one of the HDM.

We study the model from the recent work of Ref. [8], which in our notation becomes

εL(ω) = εcore(ω)+ χfree(ω), with χfree(ω) =−
ω2

p

ω(ω + iγb)−∆2 , (33a)

εT(k,ω) = εcore(ω)−
ω2

p

ω(ω + iγb)−∆2−β 2
Tk2

, (33b)

and which was proposed as a physical model of the nonlocal response in semiconductor spheres
with very low doping. The parameter∆ is a resonance frequency and in the limit∆ → 0, the
free-electron susceptibilityχfree(ω) reduces to the Drude responseχD(ω) that we considered
above. The corresponding real-space longitudinal response is simple and follows the longitu-
dinal part of the “toy model”, with a spatial dependence of the longitudinal delta function, see
Eq. (19). The real-space transverse response requires a bit more work, and after adding up the
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longitudinal and transverse contributions one finds the totalresponse function

εεε(r ,ω) = Iδ (r)
[

εcore(ω)+
1
3

χfree(ω)

]

−
χfree(ω)eiQr

4πr3

[

(iQr−1)(I−3r̂ ⊗ r̂)+Q2r2(I− r̂ ⊗ r̂)
]

, (34)

where the parameterQ ≡
√

ω(ω + iγb)−∆2/βT. So for vanishing∆ and by replacingβT by β
this Q coincides withq as introduced earlier. As follows from the first line of this expression,
in the transverse nonlocal model, two-thirds of the free-electron response is smeared out due to
the nonlocality, whereas one third remains a delta-function response. So again we find that the
nonlocal spreading is only partial, but this time twice as much as in the hydrodynamic model.
This is directly related to the dyadic nature of this transverse nonlocal-response model, and
since ink-space the response is nonlocal in two out of three independent directions, namely the
two transverse directions perpendicular tok, it starts to become intuitive that only two-thirds of
the free-electron response becomes nonlocal. It can be shown that the integral over all of space
of Eq. (34) indeed gives the local-response resultI [εcore(ω)+ χfree(ω)], in accordance with the
sum rule of Eq. (11).

6. Both longitudinal and transverse nonlocal response [εL(k,ω) and εT(k,ω) ]

6.1. Scalar models [ εL(k,ω) = εT(k,ω) ]

Scalar models for nonlocal response have also been proposed in the literature [7,37], and most
phenomenological models are also scalar [32,33]. In the light of the previous models, the spe-
cialty about scalar models is that their longitudinal and scalar response functions are identical,

εL(k,ω) = εT(k,ω) = ε(k,ω), so that εεε(k,ω) = ε(k,ω)I. (35)

In the absence of an explicitk-dependence, such scalar models reduce to simple local-response
models. Ref. [7] assumesε(k,ω) to have the functional form ofεT(k,ω) in Eq. (33b). Here we
focus instead on the interesting scalar model of Ref. [37] whereε(k,ω) is assumed to be of the
same hydrodynamic form asεL(k,ω) in Eq. (25b). The crucial difference with the real HDM
is that in the scalar model also an explicitk-dependence of the transverse response is assumed.
The model can be derived from two coupled equations analogous to the two equations for the
HDM, the only difference being that in the second equation, that is in Eq. (23b), the∇⊗∇ is
replaced by a Laplacian∇2I:
[

β 2

ω(ω + iγD)
∇2I+ I

]

·J(r)=−iε0ωχD(ω)E(r) ⇒
[

−
β 2k2I

ω(ω + iγD)
+ I

]

·J(k)=−iε0ωχDE(k),

(36)
The interpretation of nonlocal response as due to pressure waves in the electron density is lost
after this replacement. Doing the same longitudinal and transverse projections as for the HDM
in Sec. 4, we obtain that now indeedεL(k,ω) andεT(k,ω) are equal so thatεεε(k,ω) is scalar and
given by the right-hand side of Eq. (25b). This leads to the scalar real-space nonlocal response
function

ε(r ,ω) = I

[

εcore(ω)δ (r)+
ω2

p

β 2

eiqr

4πr

]

, (37)

whereq =
√

ω(ω + iγD)/β as before. This scalar model does not have the same strongly di-
vergent terms scaling asr−3 for small r as we found for the HDM, but a 1/r divergence still
remains, and on top of thatε(r ,ω) is again complex-valued. Unlike in the HDM, hereall
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free-carrier response is smeared out over a finite volume, because nonlocal response was as-
sumed for all three independent directions ink-space. The volume integral of Eq. (37) indeed
equalsεD(ω)I, in accordance with the general sum rule (11). The scalar model (37) that we
just obtained can be contrasted with the traced-out HDM model of Eq. (32). Only the latter has
the correct amount of smearing out of the local response, whereas Eq. (37) overestimates the
amount of nonlocality by a factor of three, at least when assuming that the HDM is accurate.

6.2. Non-scalar models with L- and T-nonlocal response [ εL(k,ω) 6= εT(k,ω) ]

In the general case that both the transverse and the longitudinal scalar response functions
εL,T(k,ω) are explicitlyk-dependent but different, the total real-space response functions can
be calculated by adding Eqs. (9a) and (9b). In this case all of the local free-space response
will be smeared out, one third as determined by the typical length scales inεL(k,ω), and two
thirds on the length scales ofεT(k,ω). When assuming a hydrodynamic form of the response
functions, this would correspond to differentβ parameters for the longitudinal and for the trans-
verse scalar responses. Then again the total integral ofεεε(r ,ω) will give the local DrudeεD(ω)I,
because the sum rule (11) holds for longitudinal and transverse parts separately.

The microscopic RPA calculations for a free-electron gas by Lindhard [38] also lead to re-
sponse functionsεL,T(k,ω) that are both nonlocal (and different). The main difference with the
hydrodynamic Drude model is obviously that the latter has a local transverse response. But also
the wavevector dependence of the longitudinal response is different, with more pronounced
differences for largerk. In the long-wavelength approximation on the other hand, Lindhard’s
εL,T(k,ω) both tend to the same classical Drude form, so we do not obtain a nonlocal model
with local trace (see Sec. 3.2) by taking thek → 0 limit. For applications of the Lindhard re-
sponse functions also for finite systems, see Ref. [4].

7. Discussion

We have compared scalar, longitudinal, and transverse models for nonlocal response and al-
ready for translationally invariant systems found qualitatively different predictions, for exam-
ple whether all local free-carrier response gets nonlocally distributed or not. If we suppose that
longitudinal nonlocal models describe metal nanospheres accurately and transverse nonlocal
models apply to low-doped semiconductors, can one then still call scalar nonlocal response
models phenomenological? It all depends how well they describe physical phenomena.

For finite structures the HDM predicts novel resonances (standing pressure waves of the
electron density) due to nonlocal response only above the plasma frequency, and indeed these
have been observed experimentally [14]. It was found for metals that scalar nonlocal mod-
els with hard-wall boundary conditions exhibit novel nonlocal standing-wave resonances also
below the plasma frequency, for example in Ref. [37] (and follow-up papers) where a scalar
hydrodynamic-like response function was assumed that in real space becomes Eq. (37). Like-
wise in Ref. [32] with assumed Gaussian scalar nonlocal response functions, near the dipole
resonance new standing-wave patterns were predicted on a scale determined by the strength of
the nonlocality. Since experimental observations of such resonances in metallic nanoparticles
to date have not been reported, the longitudinal hydrodynamic model seems to be the better
simple model of nonlocal response in metals. Further discussion and graphical comparisons
of the resonances in scalar models as compared to the HDM are given in Ref. [39]. It should
be mentioned that non-classical plasmonic resonances of another kindhave been observed be-
low the plasma frequency for some metals, namely the so-called multipole surface plasmons
(reviewed in [4]), but they are related to electronic spill-out at interfaces which classical elec-
trodynamics and the standard HDM both neglect; the first semiclassical model to describe these
non-classical resonances is the self-consistent hydrodynamic model [26].
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In Eq. (32) we constructed the scalar nonlocal response function that comes closest to the
standard HDM. It is an interesting question for future studies how well it captures the predic-
tions of the HDM. However, one concern should be that ‘scalarizing’ the HDM response may
again lead to unphysical predictions of novel nonlocal standing-wave resonances in nanostruc-
tures. If so, then one should perhaps give up attempts to model nonlocal response phenomena in
metals by scalar functions. This would still not rule out transverse nonlocal response in metals,
but only the assumption that the transverse response function equals the longitudinal one.

The for metals not-so-physical novel nonlocal resonances below the plasma frequency cal-
culated in Refs. [32, 37] are related to the fact that also the transverse response was assumed
to be nonlocal [39]. Let us assume that Ref. [8] is right in modeling the nonlocal response of
ultra-low doped semiconductor particles with a transverse nonlocal model. (But here the issue
is not settled either, Ref. [8] should be compared with the scalar nonlocal model for doped
semiconductors in Ref. [7] and with the longitudinal nonlocal model in Ref. [9]). Then the very
interesting question arises whether this transverse model gives rise to new resonances below
the plasma frequency, just like in the scalar models of Refs. [32, 37]. If so, then it is to be
expected that new nonlocal resonances will show up below the plasma frequency when minia-
turizing doped semiconductor nanoparticles. That would constitute a qualitative difference in
the nonlocal response of doped semiconductors as compared to metals. Indeed, Ref. [8] features
spectral asymmetries and oscillatory behavior on the high-energy side that could very well be
due to such novel nonlocal resonances below the plasma frequency.

8. Conclusions

We considered different classes of scalar and dyadic nonlocal response models, and in particu-
lar their real-space behavior. We were inspired by the intuitive scalar models of Refs. [32, 33]
that stressed the smearing out of the local response onto a finite region of space. That is what
we also found here, both for scalar and for dyadic models. The simple sum rule Eq. (11) de-
scribes exactly this: the spatial integral of the nonlocal response functions equals that of the
corresponding local-response model. So whatever delta-function response gets ‘missing’ due
to nonlocality is balanced by the sum of the response elsewhere. This equality holds for longi-
tudinal and transverse response functions separately.

What the sum rule does not describe ishow much of the local response is smeared out in
this way. The phenomenological models Refs. [32, 33] assumed implicitly that all free-carrier
response is redistributed. That is indeed what we find for scalar models, but for longitudinal
nonlocal models including the hydrodynamic Drude model we found to our initial surprise that
only one third of the free-electron response is redistributed nonlocally, while for the class of
transverse nonlocal models we find two thirds. In this sense scalar models are more nonlocal
than transverse ones, which in turn are more nonlocal than longitudinal ones. We explained
these properties of real-space response functions back ink-space, where longitudinal nonlocal
response modified only one out of three directions (i.e. only alongk), and transverse nonlocal
response changed only the two other directions (only normal tok). These general arguments
apply to the whole classes of models.

Another clear difference with phenomenological models is that the nonlocal response func-
tions εεε(r1 − r2) that we found for some important dyadic models are interesting and rather
non-Gaussian: no simple non-negative distributions but instead complex-valued functions that
diverge asr−3 for r → 0. Even for the scalar version of the hydrodynamic model a 1/r di-
vergence remains. Although these divergencies are integrable, as guaranteed by the sum rule
Eq. (11), it does explain that solving these nonlocal response problems as integro-differential
equations can be slow, and slower for dyadic models such as the HDM than for scalar ones.

We finally suggested that novel resonances below the plasma frequency may arise in trans-
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verse nonlocal models. If so, and if the transverse nonlocal model of Ref. [8] indeed applies to
doped semiconductors, then effects of novel collective nonlocal resonances may be observed in
semiconductor nanoparticles that have no counterpart in metal nanoparticles.

A. Derivation of Eq. (10) and connection with spherical harmonics

By the chain rule, one obtains the identity for radial functions∇ f (r) = f ′(r)∇r, and by re-
peating this chain rule once more one obtains∇⊗ [∇ f (r)] = ∇⊗ [ f ′(r)∇r] = f ′′(r)∇r⊗∇r+
f ′(r)∇⊗∇r. By writing out in Cartesian coordinates it is easy to show that∇r = r/r = r̂, and
after only a little more work that∇⊗∇r = (I− r̂ ⊗ r̂)/r. From the previous identities it then
follows that

∇⊗∇ f (r) =
f ′(r)

r
(I− r̂ ⊗ r̂)+ f ′′(r)r̂ ⊗ r̂ , (38)

which is the sought Eq. (10) of the main text. Applying this formula tof (r) =−1/(4πr) gives

−∇⊗∇
(

1
4πr

)

=

(

I−3r̂ ⊗ r̂
4πr3

)

+
1
3

δ (r)I = δδδ ‖(r), (39)

which gives the longitudinal delta function. Actually only the dipole terms proportional tor−3

follow from Eq. (38) that was derived forr 6= 0, thereby missing that a delta-function term
must be added, as shown in a few lines in Ref. [35]. To make the connection with spherical
harmonics, notice that Eq. (38) can be rewritten as

∇⊗∇ f (r) =−I

[

(−r)

(

1
r

d
dr

)]

f (r)+ r̂ ⊗ r̂

[

(−r)2
(

1
r

d
dr

)2
]

f (r). (40)

In the special case thatf (r) = sin(k1r)/(k1r) this leads to the identity presented in Ref. [34],

−
1

k2
1

∇⊗∇
sin(k1r)

k1r
=

j1(k1r)
k1r

I− j2(k1r) r̂ ⊗ r̂ , (41)

in terms of the spherical Bessel functionsjn that are defined by

jn(x)≡ (−x)n
(

1
x

d
dx

1
x

d
dx

)n sinx
x

. (42)
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