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Abstract
Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more

Gaussian components cannot be separated using standard independent components anal-

ysis methods that are based on higher order statistics and independent observations. The

mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/

PCA) model described here accommodates one or more Gaussian components in the inde-

pendent components analysis model and uses principal components analysis to character-

ize contributions from this inseparable Gaussian subspace. Information theory can then be

used to select from among potential model categories with differing numbers of Gaussian

components. Based on simulation studies, the assumptions and approximations underlying

the Akaike Information Criterion do not hold in this setting, even with a very large number of

observations. Cross-validation is a suitable, though computationally intensive alternative for

model selection. Application of the algorithm is illustrated using Fisher's iris data set and

Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific

investigation where the authenticity of blindly separated non-Gaussian sources might other-

wise be questionable. Failure of the Akaike Information Criterion in model selection also

has relevance in traditional independent components analysis where all sources are as-

sumed non-Gaussian.

Introduction
Independent components analysis (ICA) has recently emerged as a valuable tool for the analy-
sis of multivariate data sets and is increasingly used in a broad array of scientific contexts [1],
[2], [3]. ICA techniques utilizing higher order statistics can separate mixtures of sub-Gaussian
and/or super-Gaussian signals into their source components, thereby achieving blind source
separation. When each individual multivariate observation represents an independent sample,
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an important limitation of ICA techniques is that Gaussian components, lacking the requisite
higher order statistical properties, cannot be separated from one another, as illustrated in
Fig. 1. Although it has been argued that true Gaussian sources are uncommon [4], finite distri-
butions that are subtly non-Gaussian may nonetheless behave as if they were Gaussian from
the standpoint of blind source separation, particularly for sample sizes typically available for
high-dimensional data sets encountered in neuroimaging or gene expression microarrays. If
multiple Gaussian components are present in the data but not included in the ICA model, the
resulting ICA decomposition of the Gaussian subspace into “sources” will be dictated by ran-
dom statistical fluctuations. As a result, sources identified by these methods are potentially
tainted by concerns that their identification as a non-Gaussian source is not statistically justifi-
able. The work described here incorporates a potential Gaussian subspace into the ICA model
and addresses the problem of model selection in this mixed ICA/PCA framework. Application
of this technique to two publicly available multivariate data sets is illustrated. Software imple-
menting these novel features is freely available.

Methods

Maximum likelihood ICA formulation
The maximum likelihood formulation of ICA is formally equivalent to ICA based on informa-
tion maximization, mutual information or negentropy [4]. In this approach, the Kullback-
Leibler (K-L) divergence [5] between the model and the observed data is minimized, where
K-L divergence is a measure of the dissimilarity between statistical populations [6]. The maxi-
mum likelihood framework allows multiple Gaussian components to be formalized as part of
the ICA procedure. It will be assumed here that n independent multivariate samples (e.g., as
might derive from n subjects drawn randomly from a population), each consisting ofm obser-
vations is stored in anm by n observation matrix X that is to be subjected to ICA. Subtracting

the mean of each row from the elements of that row will yield the matrix eX such that the co-

variance of the original observation matrix is proportional to eXT eX. Additionally, it will be as-

sumed that the rows of eX are linearly independent (i.e., that no row of eX can be expressed as a

linear combination of other rows of eX), a condition that can be assured through preprocessing
with singular value decomposition since matrices related to one another through left multipli-
cation by an orthonormal matrix have identical ICA sources. Such preprocessing also assures

thatm�n. ICA can be described as the decomposition of eX into the matrix product A�S,
where A is anm bymmixing matrix and S is anm by n source matrix with rows that are maxi-
mally independent, but not necessarily orthogonal. The preprocessing already described as-
sures that A can be inverted to generate an unmixing matrixW. The ICA problem can
therefore be restated as the problem of findingW such that the sources computed as the matrix
productW�X are maximally independent.

The logarithm of the likelihood ofW’s contribution from the jth column of eX is [7], [8]:

logPð eX :jÞ ¼ logjdetWj þ
Xm
i¼1

logpiðSijÞ ð1Þ

where the use of ‘:’ as an index signifies the entire row or column, |detW| signifies the absolute
value of the determinant ofW, and pi(Sij) is the probability of the element of S in the ith row
and jth column based on the assumption that the rows of S are independent and sampled from
a pre-specified non-Gaussian distribution. For a series of n such observations, the log
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Fig 1. Mixtures of non-Gaussian and of Gaussian sources. Points with x- and y- coordinates drawn from
two unmixed source distributions are plotted in the left panel. At the top, both sources were randomly drawn
from a sub-Gaussian distribution; in the middle, both from a super-Gaussian distribution; and at the bottom,
both from a Gaussian distribution. Corresponding images on the right show the distributions after the sources
on the left were remixed with an orthonormal matrix representing a thirty degree rotation. For the non-
Gaussian sources, the lack of statistical independence resulting from the rotation can be identified visually
even without seeing the unrotated images as a result of the higher order distributional statistics. Statistical
independence in the unmixed images is evident from the fact that the two-dimension distribution can be
predicted as the product of the illustrated marginal distributions along each individual axis. When both
sources are Gaussian, the two-dimensional distribution can be predicted from the marginal distributions of
any arbitrary orthogonal pair of coordinate axes, so statistical independence cannot be used as a criterion for
identifying the original Gaussian sources.

doi:10.1371/journal.pone.0118877.g001
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likelihood of the entire observed series can therefore be computed as:

logPð eXÞ ¼ nlogjdetWj þ
Xn

j¼1

Xm
i¼1

logpiðSijÞ ð2Þ

To maximize the log likelihood by adjusting the elements ofW, partial derivatives with re-
spect to these elements are needed. The partial derivative of the log likelihood of the jth column

of eX with respect toWik can be computed [8] as:

@

@Wik

logPð eX :jÞ ¼ Aki þ
dlogpiðSijÞ

dSij

eXkj ð3Þ

It follows that the partial derivative of the log likelihood of the entire observation matrix eX
with respect toWik is given by

@

@Wik

logPð eXÞ ¼ nAki þ
Xn

j¼1

dlogpiðSijÞ
dSij

eXkj ¼ nAT
ik þ

Xn

j¼1

dlogpiðSijÞ
dSij

eXT

jk ð4Þ

If them bymmatrix dW is defined as a matrix that has
@

@Wik

logPð eXÞ in the ith row and

kth column and if them by nmatrix dS is defined as a matrix that has
dlogpiðSijÞ

dSij

in the ith row

and jth column, then

dW ¼ nAT þ dS � eXT ¼ nðWTÞ�1 þ dS � eXT ð5Þ

When the log likelihood is maximized, dW becomes a matrix of zeros. Operationally, this
means that ICA decomposition can be implemented using a gradient descent algorithm to

minimize the negative log likelihood of the observed values of eX by modifying the elements of
the matrixW using the derivatives of the negative log likelihood with respect to those elements.
When the log likelihood is maximized, the sources will satisfy:

n � I ¼ �dS � eXT �WT ¼ �dS � ST ð6Þ

where I is anm bym identity matrix. Moreover, for a given row of dW to consist entirely of
zeros, it is sufficient that −dSi: � ST = n�Ii: since

dW ¼ nAT þ dS � eXT ¼ nAT þ dS � ST �AT ð7Þ

A practical consideration that is of particular concern when modeling more than one type
of source distribution is that a gradient descent algorithm may converge to a local optimum
that is not the global optimum. This is a known problem with ICA even without the inclusion
of Gaussian components [9]. The primary approach to this problem that will be utilized here is
to initialize the optimization for a given number of sub-Gaussian, super-Gaussian and Gauss-
ian sources multiple times, selecting the final result for that combination of sources from the
optimization producing the largest log likelihood. Conceptually, the various initializations are

selected by reordering the rows of eX such that the matrixW (specified as an identity matrix at
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the start of each individual initialization) maps the rows of eX to every possible combination of
source labels. In practice, this is achieved with greater computational efficiency by maintaining

the original order of the rows of eX and instead exchanging the columns of the identity matrix
used to initializeW. In some instances, this primary approach is insufficient, and a secondary
approach is required. For the secondary approach, a randomm bym orthonormal matrix

OR is generated, and the ICA sources of the matrix productOR � eX are computed as

ðW �OR
0Þ � ðOR � eXÞ. When using this secondary approach, which can be repeated for any

desired number of random matricesOR, the primary approach described above can still be
used when computationally feasible to initialize the gradient descent optimization of the ele-
ments ofW � OR'.

Source distributions
Central to ICA methods based on higher order statistics is the observation that the particular
probability distribution used to model non-Gaussian sources has little impact on the resulting
decomposition, making one heavy tailed super-Gaussian distribution and one light tailed sub-
Gaussian distribution sufficient to separate mixtures of super-Gaussian and sub-Gaussian
sources [10], [11]. Here a Gaussian source distribution is also included, with all three distribu-
tions adjusted to have identical variance. Specifically, the super-Gaussian distribution

pðxÞ ¼ 1
2coshðpx2 Þ

, the sub-Gaussian distribution pðxÞ ¼ 1ffiffiffi
pe

p e�x2coshðx ffiffiffi
2

p Þ, and the Gaussian dis-

tribution pðxÞ ¼ 1ffiffiffiffi
2p

p e
�x2
2 are modeled. For these three distributions, elements of the matrix dS

can be computed as dSij ¼ � p
2
tanhðSij

p
2
Þ, dSij ¼ �2Sij þ

ffiffiffi
2

p
tanhðSij

ffiffiffi
2

p Þ, and dSij = -Sij, re-

spectively. The problem of identifyingm1 super-Gaussian sources,m2 sub-Gaussian sources
andm3 Gaussian components therefore requires finding the unmixing matrixW that
maximizes:

logPð eXÞ ¼ nlogjdetWj

�nm1logð2Þ �
Xn

j¼1

Xm1

i¼1

logðcoshðSij

p
2
ÞÞ

� nm2

2
ðlogðpÞ þ 1Þ þ

Xn

j¼1

Xm2

i¼m1þ1

ð�S2
ij þ logðcoshðSij

ffiffiffi
2

p
ÞÞÞ

� nm3

2
ðlogð2pÞÞ � 1

2

Xn

j¼1

Xm
i¼m1þm2þ1

S2
ij

ð8Þ

Properties of the Gaussian Subspace
As noted above, dSij = -Sij for the Gaussian sources. Combined with the requirement that-
dS � ST = n � I when the log likelihood is maximized, this leads to the conclusion that maximi-
zation of the log likelihood requires every Gaussian component to be orthogonal to all other
sources (including all non-Gaussian sources). It also requires that the norm of each Gaussian

component be equal to
ffiffiffi
n

p
. From this, it follows that

Xn

j¼1

Xm
i¼m1þm2þ1

S2
ij ¼ nm3, so the ICA

Mixed ICA/PCA

PLOSONE | DOI:10.1371/journal.pone.0118877 March 26, 2015 5 / 39



optimization problem is reduced to findingW that maximizes:

logPð eXÞ ¼ nlogjdetWj

�nm1logð2Þ �
Xn

j¼1

Xm1

i¼1

logðcoshðSij

p
2
ÞÞ

� nm2

2
ðlogðpÞ þ 1Þ þ

Xn

j¼1

Xm2

i¼m1þ1

ð�S2
ij þ logðcoshðSij

ffiffiffi
2

p
ÞÞÞ

� nm3

2
ðlogð2pÞ þ 1Þ

ð9Þ

When two or more Gaussian sources are modeled, the unmixing matrixW is not unique;
linear recombination of the Gaussian components using any orthonormal rotation matrix R

that does not alter the non-Gaussian sources will produce the same value for logPð eXÞ since theXn

j¼1

Xm
i¼m1þm2þ1

S2
ij term in Equation 8 will be unchanged if S is replaced by R�S and the detW

term will likewise be unchanged ifW is replaced byW�RT. The rotational invariance ofXn

j¼1

Xm
i¼m1þm2þ1

S2
ij is the reason that higher order statistics cannot separate multiple Gaussian

components from one another using ICA.
This rotational invariance of the Gaussian contributions also allows the Gaussian compo-

nents to be linearly recombined using PCA criteria. If the lastm3 sources in S correspond to a
Gaussian distribution, the lastm3 columns of A account for the contribution of these sources

to eX. These columns of A can be decomposed using singular value decomposition into the
product U�D�VT where V is an orthonormalm3 bym3 matrix. If R is defined by replacing the
lastm3 rows of the lastm3 columns of anm bym identity matrix with VT, the mixed ICA/PCA
decomposition X = AICA/PCA

�SICA/PCA can be computed by setting AICA/PCA = A�RT and
SICA/PCA = R�S. The lastm3 rows of SICA/PCA will account for progressively smaller amounts of

variance in eX, and will be eigenvectors of eXT eX. In what follows, the ICA/PCA subscript will
be omitted from A and S and the term “Gaussian component” should be understood to refer to

an eigenvector of eXT eX and not to imply that Gaussian sources have been separated when mul-
tiple Gaussian components are modeled.

When Gaussian components are included in the model, it is not necessary to rely on the opti-
mization algorithm to iteratively converge on a solution such that the Gaussian components are
orthogonal to all other sources. Instead, the optimization algorithm can be used to modify only
the elements ofW that generate the non-Gaussian sources and QR decomposition can be used
to solve for the remaining rows subject to the orthogonality constraints and the requirement

that S ¼ W � eX. The orthogonality constraints will assure that -dSi: �S
T = Si: �S

T = n�Ii: for the
Gaussian rows of S, and it follows that the corresponding rows of dW will consist entirely of

zeros. Since the derivatives of logPð eXÞ with respect to the rows ofW that generate the Gaussian
components are always zero, these elements ofW do not need to be included among the param-
eters that are iteratively optimized by gradient descent. Once the log likelihood has been fully
maximized, PCA can be used to find an orthonormal linear recombination of the Gaussian rows
of S such that each row explains the maximal amount of residual variance associated with the
Gaussian subspace.

Mixed ICA/PCA

PLOSONE | DOI:10.1371/journal.pone.0118877 March 26, 2015 6 / 39



Model selection
For any given number of sub-Gaussian, super-Gaussian and Gaussian sources, adjusting the
model parameters to maximize the log-likelihood will minimize the K-L divergence between
the observed data and the model. However, in choosing among models with differing numbers
of each type of source, it is not appropriate to simply select the model with the largest maxi-
mized log-likelihood. As estimators of the relative K-L divergence of each model from the truth
(i.e., from the best possible model, which is not necessarily among the models being evaluated),
the maximized log likelihoods are biased, underestimating the true K-L divergences. The mag-
nitude of this bias varies across models, and models with larger numbers of parameters general-
ly have larger biases. A common approach to this problem is to base model selection on a
penalized adjustment to the maximized log-likelihoods, where the penalty term is a function of
the number of model parameters. A variety of penalty adjustments have been proposed and
differ in terms of their underlying goals, assumptions and approximations.

Before discussing specific model selection strategies, it is important to emphasize several
pertinent aspects of the mixed ICA/PCA model selection problem. First of all, it should be
noted that the models involving different numbers of sub-Gaussian, super-Gaussian and
Gaussian sources are not nested models in the sense that one model is a specialized case of an-
other model. Moreover, as noted in the previous section, when the true model includes two or
more Gaussian sources, they occupy a Gaussian subspace that is orthogonal to all other
sources, and they cannot be separated using ICA. When incorrectly modeling one or more of
the components of this subspace as if they were non-Gaussian, the ICA sources associated with
this subspace are the result of random noise, and thus, from a purely theoretical standpoint, are
not reproducible. Finally, it should be noted that all of the models under consideration will typ-
ically be misspecified, with truth not among the models under consideration since it is unlikely
that the specific sub-Gaussian and super-Gaussian distributions implemented in the ICA
model will coincide with the actual source distributions. The utility of ICA as a data analysis
technique rests on the well-known robustness of the identified sources to misspecification of
the source distributions.

One commonly used penalized log-likelihood model selection strategy is the Bayes Informa-

tion Criterion (BIC) of Schwarz [12], which subtracts the penalty term K logðnÞ
2

from the maxi-

mized log likelihoods, where K is the number of parameters in the model. Derived from
Bayesian considerations, the BIC is one of a class of log-likelihood penalty terms designed to
achieve consistency in model selection, where a consistent criterion is defined as one that as-
sures that the probability of selecting the model closest to truth increases to one as n increases
to infinity. Defined only as an asymptotic limit, consistency per se does not provide any assur-
ances regarding the probability of selecting the best model for any finite sample size. For mixed
ICA/PCA, the asymptotic limit for suitably chosen non-Gaussian source distributions is argu-
ably already known, since virtually all real-world sources are thought to be non-Gaussian given
a sufficiently large sample size [4]. The goal of model selection in mixed ICA/PCA is not to
identify those rare instances in which real-world sources are Gaussian, but rather to assure that
all observed data dimensions subjected to ICA are sufficiently non-Gaussian to be unlikely to
have been generated by Gaussian sources. Even if sources are known for a fact to be non-
Gaussian, if they cannot be distinguished from mixtures of Gaussian sources empirically using
the observed data, any ICA decomposition of the observed data should be regarded as highly
suspect given that any ICA decomposition of a mixture of Gaussian sources is necessarily ran-
dom and therefore not reproducible.

The goals of model selection in mixed ICA/PCA are better aligned with an alternative set of
penalized log-likelihood methods designed to minimize the K-L divergence between the

Mixed ICA/PCA
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observed data and truth. The Akaike Information Criterion (AIC), which subtracts the number
of modeled parameters as a penalty term to adjust the maximized log-likelihoods, is one such
model selection method [13]. Unlike the BIC, the AIC is not asymptotically consistent, so it is
not well-suited for evaluating whether real-world sources are truly non-Gaussian. Instead, for
large but finite sample sizes, the AIC is well-suited for determining whether observed data is
more consistent with having originated from mixtures of Gaussian or non-Gaussian sources.
Derivation of the AIC involves certain assumptions and approximations, including, but not
limited to a large observed sample size and a correctly specified model. Some of these limita-
tions have been addressed through problem domain-specific refinements. For example, as will
be discussed later, small sample sizes and misspecified models have been very well addressed
by modifications to AIC in the context of multivariate regression. Before considering whether
AIC can be similarly modified to address model selection in mixed ICA/PCA, it is relevant to
summarize the underlying motivation for the AIC approach.

Following the AIC notational conventions of Burnham & Anderson [6], given a set of n
multivariate observations y, the parameters of a candidate model can be adjusted to find the

values ŷ y
� �

that maximize the log likelihood of y under the model. As already noted, the log

likelihood associated with these parameters is biased. To eliminate this bias, a new set of n2 in-
dependent observations (typically, but not necessarily with n2 = n), x can be drawn from the
same distribution as y, and the parameters that were originally optimized using y can then be

used to calculate the probability g of the new observations g xjŷ y
� �� �

. Taking the logarithm of

the result produces an unbiased estimate of the log likelihood of the model, log g xjŷ y
� �� �h i

.

This estimate is unbiased in the sense that repeating the process with new sets of independent

observations x1, x2, . . . will tend to produce the same log likelihood for a given ŷð yÞ. Thus
there is an expected value for the unbiased log likelihood for the parameters derived from

y, Ex log g xjŷ y
� �� �h ih i

for which log g xjŷ y
� �� �h i

obtained from any particular x is an unbi-

ased estimator. This quantity, though unbiased, is still only a sample estimate in the sense that
it is predicated on the initial selection of y. Repeating the entire process with independent sets
of n observations y1, y2, . . . will tend to produce similar results centered around some expected

value Tn � EyEx log g xjŷ y
� �� �h ih i

. The model with largest estimated value of Tn is the model

that minimizes K-L divergence from truth, and T̂n ¼ log g xjŷ y
� �� �h i

is an unbiased estimate

of Tn. The assertion that this estimate is unbiased ignores any bias associated with the model
selection process itself, a problem intrinsic to any data driven model selection procedure [14].
Burnham & Anderson [6] have discussed this issue in the context of the AIC and argue that
such bias is small.

The subscript n is used in Tn to emphasize that T is a function of the sample size n. From a
practical standpoint, this means that if 2n observations are collected and half are treated as y
and half as x, the resulting unbiased estimate Tn will only be relevant for n observations, not for
the full 2n observations that were collected. Since larger numbers of observations will generally
tend to produce better support for more complex models, such a strategy effectively wastes half
of the data collected and is biased towards simpler models than could be supported by all 2n
observations. Under certain circumstances (specifically, those assumed in deriving the AIC or
domain-specific refinements to the AIC), it is possible to directly estimate the bias of

log g y jŷ y
� �� �h i

as an estimator of Tn without requiring a second independent set of observa-

tions. When the bias can be estimated with reasonable accuracy, the optimized log likelihood

Mixed ICA/PCA
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of all observations can be corrected to generate an approximately unbiased estimate of Tn suit-
able for model selection. To evaluate the accuracy with which the bias of Tn might be estimated
from a single set of observations in the context of ICA/PCA, it is informative at this point to
consider simulated data in which the true source distributions are known.

Fig. 2A shows results of simulated data form = 2 and various values of n using an ICA/
PCA model that consists exclusively of Gaussian components (i.e., effectively just PCA). For
each of them = 2 rows, three different source distributions were used in independent simula-
tions, one Gaussian, one sub-Gaussian and one super-Gaussian. Gaussian random deviates
were generated using the Mersenne twister pseudorandom number generator of Matsumoto
and Nishimura [15]. This pseudorandom generator generates uniformly distributed random
numbers on the closed interval [1] and these were used in turn to generate normally distribut-
ed random numbers with a mean of zero and unit variance using the polar form of the Box-
Muller transformation [16]. Pseudo-random deviates from the sub-Gaussian distribution

pðxÞ ¼ 1ffiffiffi
pe

p e�x2coshðx ffiffiffi
2

p Þ were generated by randomly adding or subtracting 1ffiffi
2

p to Gaussian

random deviates with a mean of zero and variance of 1
2
. Pseudo-random deviates from the

super-Gaussian distribution pðxÞ ¼ 1
2coshðpx2 Þ

, were generated by converting uniform random de-

viates u in the open interval (0,1) generated using the Mersenne twister pseudorandom gener-

ator to super-Gaussian deviates v using the transformation v ¼ 4
p � tanh�1 tan p

2
u� 1

2

� �� �� �
.

Note that the sub-Gaussian and super-Gaussian deviates were deliberately generated from the
same distributions that are used in the ICA/PCA model, an unrealistic best-case scenario
from the standpoint of model misspecification. For each value of n and each type of source
distribution, five independent sets of simulations were performed to estimate the bias in Tn,
each based on one million independent estimates. For each estimate, two sets ofm by n simu-
lated observations were prepared. For simplicity, an identity matrix was used as A to mix the
simulated sources in each case. The first set of simulated observations was used to estimate
the parameters of the model (specifically, the mean value of each row and the elements of the
unmixing matrixW) and the biased log likelihood. The second set of observations was used to
estimate the unbiased log likelihood. Subtracting the biased and unbiased estimates produced
an unbiased estimate of the bias. Form = 2 and a pure Gaussian ICA/PCA model, the total
number of freely adjustable parameters is five, two associated with centering each row of ob-
servations and three associated with the four elements ofW (orthogonality constraints for
Gaussian components makes one element ofW fully dependent on the other three when all
sources are modeled as Gaussian).

The results in Fig. 2A provide a basis for initiating discussion of methods for estimating the

bias of log g y jŷ y
� �� �h i

as an estimator of Tn. First, when the true distribution is Gaussian

(therefore matching the modeled distribution), as n grows large, the bias asymptotically ap-
proaches a value of five. This conforms exactly to work by Akaike [13] indicating that the bias
should asymptotically approach the number of modeled parameters. This prediction is the
basis for use of the Akaike Information Criterion (AIC), which adjusts the log-likelihood
downward by subtracting the number of modeled parameters in model selection. However, as
n decreases, the bias grows larger than the number of modeled parameters, a well-recognized
shortcoming of the AIC. This shortcoming has been addressed in the specific context of multi-
variate regression with normal residuals by Fujikoshi and Satoh [17] who derived an exact ex-
pression for the bias as a function of n. Conveniently, when all sources in the ICA/PCA model
are Gaussian (i.e., when no non-Gaussian sources are present), the expression for the log likeli-
hood reduces to a formula that is formally equivalent to the maximum log likelihood solution
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Fig 2. Estimation of T^ n bias in simulated data. Each plotted data point represents one million simulations and five such points are plotted for each model. In
each simulation,mwas two and the value of n is shown on the x-axis. Sampling along the x-axis is logarithmic but the scaling is proportional to

ffiffiffi
n

p
. The

biases were calculated by first solving forW using a set of n random deviates from the designated true source distribution and comparing the resulting log
likelihood with the log likelihood estimated from a new independent set of n random deviates from the same distribution using the value ofW derived from the
first set.A. Results with both sources modeled as Gaussian. The solid line shows predicted results based on Fujikoshi and Satoh (1997). B. Results with both
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C of the multivariate least squares regression problem:

X ¼ C � ½ 1 . . . 1 � ð10Þ

where the matrix on the right is a 1 by nmatrix of ones and X is the same matrix X subjected
to ICA/PCA prior to centering. The solution C is anm x 1 matrix such that the value in each
row of C is the mean of the corresponding row of X. In this case, the bias can be computed ex-
actly using the result from Fujikoshi and Satoh as:

n mþ mðmþ1Þ
2

� �
n�m� 2

:

As n increases to infinity, this value converges asymptotically tomþ mðmþ1Þ
2

. For any value of

m, the first asymptotic term,m corresponds to the number of centering parameters, and the

second term, mðmþ1Þ
2

corresponds to the number of freely adjustable parameters inW after ac-

counting for orthogonality constraints. Consequently, asymptotic convergence is always to the
total number of freely adjustable parameters. The solid line in Fig. 2A shows the exact bias cal-
culated using this equation.

Fig. 2A also illustrates that when the true distribution is not Gaussian, Akaike’s asymptotic
result is only approximate. From the formal equivalence with multivariate regression, it is
known that the asymptotic bias in this case differs from the number of freely adjustable model
parameters by k4

2
, where κ4 is the multivariate kurtosis of the true distribution [18]. Form = 2,

the multivariate kurtosis of the sub-Gaussian distribution is -1, leading to an asymptotic bias of
4.5 and the multivariate kurtosis of the super-Gaussian distribution is 4, leading to an asymp-
totic bias of 7. The multivariate kurtosis of a multivariate Gaussian distribution is always zero.

Unfortunately, when non-Gaussian sources are included in the ICA/PCA model, the bias of

T̂n is more problematic. Fig. 2B and Fig. 2C show results comparable to those in Fig. 2A except
that the sources were both modeled as sub-Gaussian (Fig. 2B) or as super-Gaussian (Fig. 2C).
In these cases, a total of six freely adjustable parameters are modeled (two associated with cen-
tering the two rows of X and four associated with the elements ofW). When the modeled dis-
tribution matches the true distribution, Akaike’s asymptotic result holds, with biases
converging to a value of six. Biases are larger for small values of n. When super-Gaussian
sources are modeled as sub-Gaussian or vice versa, the asymptotic bias differs from the number
of freely adjustable parameters; theoretical results are not currently available to compute the
exact asymptotic bias. Most strikingly, when Gaussian components are modeled as sub-
Gaussian or super-Gaussian, the bias of Tn does not appear to asymptotically converge to a fi-
nite value at all, but instead empirically involves an additional term that increases in proportion
to

ffiffiffi
n

p
over a broad range of n’s for both types of non-Gaussian models. Simulations withm = 4

andm = 8 (not shown) similarly demonstrate bias increases proportional to
ffiffiffi
n

p
when Gaussian

components were modeled as sub-Gaussian or super-Gaussian. Since the presence or absence
of this

ffiffiffi
n

p
term depends on the same unknown that the unbiased log likelihood is being used

to address (namely whether or not the true sources are Gaussian), even an exact analytical ex-
pression for the slope of this term would not suffice to unambiguously estimate Tn. Conse-
quently, an AIC-like bias correction in which the log-likelihood is corrected by some additive
factor is not suitable for model selection in mixed ICA/PCA.

sources modeled as sub-Gaussian. C. Results with both sources modeled as super-Gaussian. The solid lines in B and C reflect the asymptotic Akaike
prediction of a bias of 6.

doi:10.1371/journal.pone.0118877.g002
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An alternative approach to estimating Tn is the cross-validation approach first proposed by
Stone [19]. The essential feature of this approach is recognition of the fact although it is not al-

ways possible to compute an unbiased estimate that is applicable to n samples, T̂n, it is always

possible to compute an unbiased estimate applicable to n-1 samples,T̂n�1. By holding back one
sample when optimizing the model parameters, this held back sample can subsequently be

used to generate an unbiased estimate of Tn�1

n�1
. Since n different observations can be left out, this

procedure can be repeated for a total of n estimates. Adding these n estimates gives n
n�1

T̂n�1,

which cross-validation uses as an estimate of Tn. Although this estimate is not unbiased, the
magnitude of the bias is generally small. Using the subscript [-j] to denote a parameter estimat-
ed by omitting the jth observation and [+j] to denote values derived from the held back jth ob-
servation X:j using parameters estimated without it (centering parameters andW), the estimate
is given by:

Tn �
n

n� 1
T̂n�1 ¼

Xn

j¼1

logjdetW½�j�j

�nm1logð2Þ �
Xn

j¼1

Xm1

i¼1

logðcoshðSi½þj�
p
2
ÞÞ

� nm2

2
logðpÞ þ 1ð Þ þ

Xn

j¼1

Xm2

i¼m1þ1

�S2
i½þj� þ logðcoshðSi½þj�

ffiffiffi
2

p
ÞÞ

� �

� nm3

2
ðlogð2pÞÞ � 1

2

Xn

j¼1

Xm
i¼m1þm2þ1

S2
i½þj�

ð11Þ

The advantage of the cross-validation approach is that it does not require knowledge or as-
sumptions about the true nature of the source distributions making it robust in the presence of
misspecification; this advantage comes at the expense of an approximately n-fold increase in
computations. When multiple initializations of the algorithm are being used to avoid local opti-
ma, this n-fold increase can be partially offset by assuming that local optima sufficiently close
together are identical and only estimating the bias once for a collection of virtually identical
local optima; pragmatically, this can be accomplished with little additional computational ex-
pense by identifying solutions that have the same uncorrected log likelihood and the same de-
terminant of the unmixing matrixW to some arbitrary number of decimal places. Since cross
validation utilizes an unbiased estimate of Tn-1, the empirically observed bias term proportional
to

ffiffiffi
n

p
when Gaussian sources are modeled as non-Gaussian in ICA/PCA does not enter into

the analysis, having already been taken into account by the estimation procedure.
Since cross-validation provides an AIC-like correction factor, the tradition in the model se-

lection literature would favor doubling the bias adjusted log-likelihood of each model and de-
fining this as an information criterion. This is in conflict with the tradition in the ICA
literature, where bias is typically ignored (which would be valid if bias did not vary among the
models being compared) and the focus is on minimizing K-L divergence, which does not in-
volve doubling the log-likelihood. The approach taken here is to remain consistent with the
ICA literature by not doubling the bias-corrected log-likelihoods. As a result, differences in
log-likelihoods should be interpreted keeping in mind that they correspond to information cri-
terion differences that are twice as large. Burnham and Anderson [6] suggest that AIC differ-
ences of 0–2 provide substantial empirical support for the alternative model, that AIC
differences of 4–7 provide considerably less empirical support and that AIC differences greater
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than 10 provide essentially no empirical support. Eliminating the gaps between categories, the
approach here for the examples will be to consider alternative models with log-likelihood dif-
ferences less than 2 compared to the best fitting model to be reasonable alternatives that should
be seriously considered, those with log-likelihood differences from 2–5 to be plausible alterna-
tives and those with log-likelihood differences greater than 5 to be unlikely alternatives.

High Dimensional Data
The mixed ICA/PCA approach outlined above is computationally demanding at several levels.
While most of the demands, including those associated with computation of bias using cross-
validation, increase linearly with the number of subjects, n, demands increase far more rapidly
with the number of observations per subject,m. The number of model categories to consider
grows asm�(m+1)/2, and within a model category, the maximum number of parameters in the
unmixing matrix to be optimized increased asm2. Most restrictive is the fact that the number
of initializations associated with the primary strategy for avoiding local minima grows as
(m1+m2+m3)!/ (m1!�m2!�m3!), which practically limitsm to values of fifteen or fewer to keep
the number of initializations below one million. It is important to emphasize that the validity
of the log likelihood and bias estimation procedures are in no way dependent on use of this pri-
mary strategy—random orthonormal rotations (the secondary strategy) with any desired num-
ber of rotations can be substituted with the caveat that the chances of failing to find the
globally best solution decrease as the number of initializations decreases. No matter how few
random orthonormal rotations are tried, the best fitting bias corrected model will represent the
best known model, and the difference in bias corrected log likelihoods relative to the best
known model will provide an appropriate estimate of its relative plausibility.

A variety of other strategies can be used to reduce computational demands. Whenm is
large, singular value decomposition can be used to reducem to a more tractable value by elimi-
nating a multidimensional orthogonal subspace containing the smallest possible amount of
variance before performing mixed ICA/PCA, a strategy also commonly employed in standard
ICA. This approach effectively ignores any non-Gaussian signals within the excluded subspace.
Since the mixed ICA/PCA algorithm alone is already able to identify a Gaussian subspace
when justified by model selection criteria, dimension reduction prior to mixed ICA/PCA is un-
desirable and should be avoided when possible if the goal is to maximize the chances of identi-
fying all non-Gaussian sources in the original data. Nonetheless, multidimensional data that
has been reduced in dimensionality using singular value decomposition is valid data, and any
non-Gaussian sources in the best fitting bias corrected model identified after dimensionality re-
duction can be considered an approximation of sources in the original data. Since dimensional-
ity reduction simply imposes an added constraint, any model derived from the reduced data
has an exact corresponding model for the complete original data set, so once the excluded
Gaussian subspace is taken into account, the original data set will always have an equally good
model and will typically have a better model than any model obtained from the reduced data.

Avoiding the need to estimate bias using cross-validation is another potential strategy for re-
ducing computation. The optimal bias corrected log likelihoods for very similar model catego-
ries (i.e., categories that differ by shifting just one source or component between Gaussian, sub-
Gaussian or super-Gaussian designatinos) are likely to be similar to one another, so the range
of possible categories can be sparsely sampled initially and refined through denser sampling in
the vicinity of the best sparse results. Also, given that the AIC generally underestimates the ac-
tual bias, initializations for which the AIC corrected log likelihood already suggests an implau-
sible result relative to the best known cross-validation corrected result can be discarded
without performing the cross-validation step.
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Once a good model is identified, some or all of the non-Gaussian sources from that model
can be used to initialize the search for better nearby models by initializing the appropriate ele-
ments of the unmixing matrix with the values needed to generate those sources while the remain-
ing elements are initialized with an orthonormal basis that spans the remaining dimensions.
Since all elements of the unmixing matrix remain subject to optimization, the non-Gaussian
sources used for initialization can be updated by the optimization procedure. Initialization of the
orthonormal basis for other sources can be varied using the same strategies already described for
unconstrained initializations. This strategy is particularly well-suited for looking to improved
local minima by searching for nearby models in the same or similar distributional categories.

Another potential strategy in the cross-validation phase is rather than to perform the leave-
one-out strategy by leaving out all n samples in turn, to instead only choose some random sub-
set of n for the leave-one-out cross-validation procedure and to then rescale the results accord-
ingly on the assumption that the subset is representative of the whole sample. Unlike k-fold
cross-validation, where multiple samples are left out simultaneously, this strategy assures that
the sample size used for the bias estimation still differs only be one from the full sample size,
thereby conforming as closely as possible to ICA’s stated goal of optimizing K-L divergence.
However, the random subset may need to be quite large in order to accurately represent the full
sample in the ICA context.

Implementation
The mathematical concepts described here for mixed ICA/PCA have been implemented in C
and made accessible in R as an extension package ‘icapca’ available through the Comprehensive
R Archive Network (http://www.r-project.org/). A quasi-Newton unconstrained linear optimi-
zation algorithm [20] is used to maximize the likelihood function. While the default is to im-
plement the entire mixed ICA/PCA procedure to run serially on a single processor, the
package includes options that can be used to break the problem down into smaller components
that can be run in parallel. This can be done either at the granularity of a single model category
(i.e., a specified number of sub-Gaussian, super-Gaussian and Gaussian components) or at the
smaller granularity of a single initialization within a single model category.

Results

Example 1: Iris Sepal and Petal Measurements
Fig. 3 and Fig. 4 showmixed ICA/PCA results obtained from iris data originally analyzed by
R.A. Fisher [21]. Noting that the iris species I. setosa is diploid, that the species I. virginica is tet-
raploid and that the species I. versicolor is hexaploid, Fisher was interested to test the hypothesis
that I. versicolormight be a hybrid of the other two species, effectively two parts I. virginica and
one part I. setosa. Using a linear discriminant function derived from sepal and petal widths and
lengths derived from I. setosa and I. versicolor samples, he demonstrated that I. versicolor speci-
mens had mean linear discriminant function scores that were indeed intermediate between those
of the other two species. While species membership of each sample was required for derivation
of Fisher’s linear discriminant function, here species membership was ignored when applying
ICA/PCA, thus for this dataset,m = 4 and n = 150 (50 samples from each of three species). Fig. 3

illustrates the estimated values T̂n ¼ n
n�1

T̂n�1 based on cross-validation and the associated esti-

mated bias of log g y jŷ y
� �� �h i

as an estimator of Tn for the fifteen possible categories of models

for mixtures of four Gaussian, sub-Gaussian or super-Gaussian sources. Each model category
was initialized 5000 times by applying random orthonormal rotation matrices to the data (the
primary strategy of exchanging the columns of the identity matrix used to initializeW was also
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applied to each of the 5000 initializations). Sub-optimal local optima substantially worse that the
best local optimum for the category were identified for as many as 80% of the initializations for
some model categories, while other model categories invariably converged to the global opti-
mum. Only results for the best initialization for each category are shown. The standard AIC esti-
mate of the bias is also shown for each model. The model with the best support had one sub-

Gaussian and three super-Gaussian sources, but four other model categories had values of T̂n
that were within 1.0 unit of this best model. All five of these model categories would therefore be
classified as having similarly strong empiric support. Common to all five model categories was
the inclusion of at least one sub-Gaussian source, and all model categories without at least one

sub-Gaussian source had values of T̂n substantially more than 5.0 units lower than the best
model, indicating very poor empiric support. Thus the presence of a sub-Gaussian source is
strongly supported. Four of the five best model categories also included at least one super-
Gaussian source; the fifth had no super-Gaussian source and had a three dimensional Gaussian
subspace. Fig. 4 shows the source distributions for each of the five model categories. The models
are arranged in columns, and the sources for each model have been placed in rows such that the
separable sources in each row are maximally correlated across categories. For categories having a
Gaussian subspace with more than one dimension, PCA criteria were used to generate compo-
nents, which were ordered by the amount of total variance explained. Although the ICA/PCA al-
gorithm was blinded to species identities, these are illustrated in Fig. 4.

Fig. 4 shows that for all five of the best-fitting model categories, a sub-Gaussian source is
generated (first row). The scores for this sub-Gaussian source were strongly correlated across
all five categories, with all pairwise Pearson and Spearman correlations coefficients greater

Fig 3. Cross-validation results for the iris dataset. For each of the fifteen model categories, the best fitting model within the category is shown. The solid
bar shown in color on the right represents the increase in n

n�1
T̂n�1 relative to the poorest fitting category, and the solid white bar above it represents the

estimated bias in the optimized log-likelihood of the model as an estimate of Tn. The bar on the left shows the AIC bias estimate based on the number of freely
adjustable parameters in the model. The four best categories are marked with asterisks.

doi:10.1371/journal.pone.0118877.g003
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Fig 4. Distributional results for the five best model categories for the iris dataset. Histograms of sources for the best fitting model in each of the five best
model categories are shown in columns in order of n

n�1
T̂n�1 with the corresponding model source distribution superimposed. Each species is shown in a

different color, I setosa in red, I versicolor in green and I virginica in blue. Histograms have been displaced vertically when necessary to prevent members of
one species from obscuring those of another species. The non-Gaussian sources from each model have been sorted such that the most strongly correlated
sources from the different models appear in the same row. The percentage values reflect the contribution of each source to the total variance.

doi:10.1371/journal.pone.0118877.g004
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than 0.99. Thus support for a genuine, separable underlying source is very strong, as confirmed
by the fact that the source scores allow almost complete separation of the three species.

The super-Gaussian sources generated by three models in the second row of Fig. 4 had Pear-
son correlation coefficients ranging from 0.85 to 0.93 and Spearman correlation coefficients
ranging from 0.81 to 0.92. A Gaussian source in that row (separable as a source rather than a
component since the corresponding model had a one dimensional Gaussian subspace) was also
correlated with the three super-Gaussian sources; Pearson correlation coefficients with this
Gaussian source ranged from 0.81 to 0.99, and Spearman correlation coefficients ranged from
0.76 to 0.99. Although the failure to identify this as a separable source in one of the five model
categories (specifically, the model in the fifth column) raises some concern, and although the
source is somewhat variable across the other four models, the data suggest that it would be
worthwhile to try to understand the biological basis underlying this source even though it ac-
counts for only a small part of the total variance (less that 1.5% across all five models).

The third row of Fig. 4 includes three more super-Gaussian sources, all with pairwise Pear-
son and Spearman correlation coefficients greater that 0.99. Thus despite concern as to whether
they are truly separable due to lack of separation in two of the five models, the source repre-
sented in row three of Fig. 4 is highly consistent across those model categories that do attempt
to separate them, indicating robustness to model misspecification.

The lowest reproducibility across models was seen for the sources in the fourth row of
Fig. 4. Both Pearson and Spearman correlation coefficients ranged from. 79 to. 99 across the
three models generating non-Gaussian sources. The poorest correlations were between the
model that included a super-Gaussian source in this row and the two models that included a
sub-Gaussian source. Given that this source was also not separated in two of the five models, it
is the most suspect of the sources generated by ICA.

For the sub-Gaussian source on the first row of Fig. 4, additive genetic variance, as originally
proposed by Fisher is a reasonable explanation since the hexaploid hybrid (mean score 0.31,
standard deviation 0.22) has scores that are intermediate between the diploid (mean score
-1.38, standard deviation 0.12) and tetraploid (mean 1.06, standard deviation 0.22) species but
closer to those of the tetraploid. The super-Gaussian source on the second row of Fig. 4 appears
to be driven by a bimodal distribution within the I. virginica specimens. The super-Gaussian
source on the third row of Fig. 4 reflects differences between species where the hexaploid I. ver-
sicolor (mean -0.54, standard deviation 0.88) is not intermediate between I. setosa (mean 0.24,
standard deviation 0.96) and I. virginica (mean 0.30, standard deviation 0.89). The hybridiza-
tion event that created I. versicolor is now thought to have involved an I. setosa specimen more
closely related to the variety indigenous to the Alaskan interior than to the Canadian variety
used for Fisher’s analysis [22], so genetic factors within the data set beyond simple hybridiza-
tion are plausible. Environmental factors may also contribute to either or both of the super-
Gaussian sources since Fisher noted that the I. setosa and I. versicolor specimens were found
growing together in the same colony while the I. virginica specimens were acquired from a dif-
ferent location. Species membership does not give strong support to any of the alternative clas-
sifications of the sources or components illustrated in the fourth row of Fig. 4, suggesting either
a genuine source influencing all three species similarly or the absence of a fourth identifiable
non-Gaussian source.

Example 2: Human Craniometric Measures
Figs. 5 to 10 show craniometric data derived from 2524 human crania from thirty different
human populations collected by Howells [23], [24], [25], [26]. Howells grouped twenty-three
of the populations into six major categories: Far Eastern (North Japan, South Japan, Hainan
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Fig 5. Cross-validation results for the craniometric dataset. For each of the 66 model categories, the best fitting model within the category is shown. The
solid bar in color on the right represents the increase in n

n�1
T̂n�1 relative to the poorest fitting category, and the solid white bar above it represents the

estimated bias in the optimized log-likelihood of the model as an estimate of Tn. The bar on the left shows the AIC bias estimate based on the number of freely
adjustable parameters in the model. The best fitting model is enclosed by a solid box. The dashed box encloses the model category that included the second
and third best fitting models.

doi:10.1371/journal.pone.0118877.g005
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and Anyang); Polynesian (Mokapu, Easter Island, Moriori, Southern Maori and Northern
Maori); European (Norse, Zalavar, Berg and Egypt); American (Arikara, Santa Cruz and Peru);
Australo-Melanesian (Australia, Tasmania and Tolai) and African (Teita, Dogon, Zulu and
Bushman). These assignments are largely in accord with more recent groupings based on DNA
analyses [27], [28], [29] except that Polynesian populations are now thought to primarily

Fig 6. Super-Gaussian source separating the Buriat population from other populations. Source scores are derived from the best fitting model. This
source accounts for 7.4% of the variance of the original data set. All members of each of the thirty populations are plotted on the same subpanel with males at
the top of the subpanel and females at the bottom. The rectangular boxes enclose individuals with source scores within two standard deviations of the
population mean. The vertical light gray lines are based on the observed mean and standard deviation for the entire population of 2524 subjects and
positioned such that just one subject would be expected to fall outside those lines if the distribution were Gaussian. Populations are grouped according to
Howells’ six main groups (Far Eastern, Polynesian, European, American, Austro-Melanesian and African), with Howells’ seven ungrouped populations
together at the bottom.

doi:10.1371/journal.pone.0118877.g006
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derive from aboriginal Taiwanese who likely originated in Southern China, which would make
them a subset of the Far Eastern group, but also have varying degrees of Australo-Melanesian
admixture [30], [31]. Howells did not classify seven additional populations (Philippine, Atayal,
Guam, Ainu, Andaman Islands, Eskimo, and Buriat) as belonging to a particular group. The
data were originally made publicly available in electronic format by Howells in 1996 [26] and
were accessed for the work described here at http://web.utk.edu/~auerbach/HOWL.htm.

Fig 7. Super-Gaussian source separating the Eskimo population from other populations. Source scores are derived from the best fitting model. This
source accounts for 6.4% of the variance of the original data set. See Fig. 6 legend for additional details.

doi:10.1371/journal.pone.0118877.g007
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The original data set included 82 different cranial measurements. Only seventy-one of these
measurements were available for all 2524 specimens; the other eleven measurements were
therefore discarded for the current analysis. Two separate sets of analyses were performed. For
the first set of analyses, PCA was used to reduce the original 71 by 2524 centered observation

matrix eX to a smaller 10 by 2524 matrix (m = 10, n = 2524), which was then subjected to the
complete mixed ICA/PCA procedure described above. The 10 retained components accounted
for 83.6% of the variance in the full data set. The choice to retain ten dimensions was based on

Fig 8. Super-Gaussian source separating the Bushman and Teita populations from other populations. Source scores are derived from the best fitting
model. This source accounts for 18.0% of the variance of the original data set. See Fig. 6 legend for additional details.

doi:10.1371/journal.pone.0118877.g008
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Fig 9. Sub-Gaussian source separating the Far Eastern group and the European group from one another. Source scores are derived from the best
fitting model. This source accounts for 10.0% of the variance of the original data set. See Fig. 6 legend for additional details.

doi:10.1371/journal.pone.0118877.g009
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Fig 10. First principal component of the craniometric data six dimensional Gaussian subspace. Component scores are derived from the best fitting
model. This component accounts for 20.0% of the variance of the original data set. See Fig. 6 legend for additional details.

doi:10.1371/journal.pone.0118877.g010
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a desire to keep computation times manageable for illustrating use of the mixed ICA/PCA algo-
rithm and was not a data driven decision. Since the raw measurements included a mixture of
both distances and angles, which are therefore represented in different units, reducing the
number of dimensions based on raw measurement variances would not normally be the rec-
ommended approach (for example, one might instead prefer to rescale the angular measure-
ments such that their average variance matches that of the distance measures), but is sufficient
for purposes of illustration. In the second set of analyses, all seventy-one measurements were
used without any dimensionality reduction, and various strategies described above for high di-
mensional data were used to identify a best known model, with the caveat that substantially
better models may exist but remain unknown. In all instances, the ICA/PCA algorithm was
blinded to the population from which specimens were derived and to the sex of the specimens.
To the extent that operator dependent decisions factored into the analysis of the non-reduced
data, the operator made these decisions without knowledge of subject population or sex.

For the ten sources in the PCA reduced dataset, each of which can be sub-Gaussian, Gauss-
ian or super-Gaussian, a total of 66 model categories involving differing numbers of each type
of source can be considered. To evaluate the effectiveness of the primary strategy for avoiding
local minima by permuting the initial assignment of each type of source to each of the ten rows
of the centered and PCA reduced observation matrix, all 66 model categories were rerun twen-
ty additional times, each with a different and unique random orthonormal rotation matrixOR

applied as a secondary strategy for avoiding local minima as described above. In several in-
stances where eight, nine or all ten of the sources were modeled as being the same type, some
disagreement was observed among the twenty-one different initializations, but with one excep-
tion, disagreement was not observed when no more than seven of the sources were of the same
type. It should be noted that the primary strategy for avoiding local minima provides far fewer
initializations when most or all sources are of the same type (e.g., only one initialization when
all are identical) than when types are mixed. With the one noted exception, disagreements
among initializations only occurred when the primary strategy employed 45 or fewer initializa-
tions. Mixed ICA/PCA models that had nine or more sources of the same type were therefore
all run 100 additional times with new unique random orthonormal rotation matrices; in all in-
stances, the best optimum identified from the initial twenty-one initializations remained the
best optimum over the full complement of 121 optimizations. The one exception mentioned
above was for a model category with three sub-Gaussian, five super-Gaussian and two Gauss-
ian sources; in this instance 19 of the 21 initializations produced final bias corrected loglikeli-
hoods that were 1.33 to 7.49 units smaller than the best initialization.

For each of the 66 model categories, Fig. 5 shows the cross-validation estimate of the bias
when the optimized log likelihood is used as an estimate of Tn. Model categories shown on the
same row have the same number of Gaussian sources and therefore share the same AIC bias esti-
mate, which is also shown in the figure. As anticipated from the simulation studies, the cross val-
idation estimate of the bias is considerably larger than the AIC estimate when non-Gaussian
sources are modeled. When no Gaussian sources were included (corresponding to traditional
ICA), the bias varied by more than 30 units depending on the specific numbers of sub-Gaussian
and super-Gaussian sources even though the number of free parameters in these non-Gaussian
models were all identical.

After using cross-validation to correct the bias of the optimized log likelihood, the best fit-
ting model included one sub-Gaussian source, three super-Gaussian sources and a six-
dimensional Gaussian subspace (solid box in Fig. 5). To arrive at this particular model, cross
validation was used to estimate and correct for bias of over 200 distinct local optima across the
21 random initializations for this category. The magnitude of bias varied substantially (more
than 120 units) across different optima for this single model category. The four non-Gaussian

Mixed ICA/PCA

PLOSONE | DOI:10.1371/journal.pone.0118877 March 26, 2015 24 / 39



sources were nearly, but not precisely orthogonal to one another, deviating from orthogonality
by 0.2 to 0.9 degrees; the Gaussian components were precisely orthogonal to each other and to
the non-Gaussian sources. The second best fitting model included two sub-Gaussian sources,
three super-Gaussian sources and a five dimensional Gaussian subspace (dashed box in Fig. 5)
and differed from the best fitting model by 4.86 units indicating very weak empirical support
for preferring this model over the best fitting one. The third best fitting model also had two
sub-Gaussian sources, three super-Gaussian sources and a five dimensional Gaussian subspace
and is not shown in Fig. 5 because it was a distinct local minimum rather than the global mini-
mum for this source combination category. It differed from the best fitting model by 10.84
units; the reason for mentioning this unlikely model will be clarified below. All other models
differed from the best fitting model by more than 13 units, indicating, in the absence of any
prior knowledge, virtually no empirical support for preferring these models over any of the
best three.

Fig. 6 and Fig. 7 show the source scores for two of the super-Gaussian components from the
best fitting model for all 2524 individuals, grouped by population and sub-grouped by sex.
Both of these sources were driven outlier populations, in one instance (Fig. 6) the Siberian Bur-
iats (and to a lesser extent the Austrian Berg) and in the other case (Fig. 7), the Greenland Eski-
mos. These two sources were particularly robust and stable across the 66 different source
categories considered. For every category that included at least one super-Gaussian source, a
super-Gaussian source highly correlated with the Buriat source shown in Fig. 6 was identified
in the best fitting model for that category (Pearson and Spearman correlations greater than
0.95). Similarly, for every category that included at least two super-Gaussian sources, a super-
Gaussian source highly correlated with the Eskimo source shown in Fig. 7 was found (Pearson
and Spearman correlations greater than 0.96). Thus these two sources are both very robust to
model misspecification. Models with less than two super-Gaussian sources invariably fit poorly
as compared to other models, so the empirical evidence in support of these two sources is
very strong.

Also from the best fitting model, Fig. 8 shows an additional super-Gaussian source that is
driven by African populations, particularly Bushman and Teita as outliers. Fig. 9 shows a sub-
Gaussian source that almost completely separates the European group from the Far Eastern
group. The Gaussian component accounting for the most variance in the six dimensional
Gaussian subspace is shown in Fig. 10. The second and third best fitting models both included
all four of the non-Gaussian sources found in the best fitting model (Pearson and Spearman
correlation coefficients 0.98 or greater). The additional sub-Gaussian source added by the sec-
ond best fitting model incompletely separated the European and Australo-Melanesian groups,
with other populations lying intermediate (not shown). While plausible, this source will not be
discussed further given the very weak empirical support for this model. The additional sub-
Gaussian source added by the third best fitting model was clearly driven by differences between
males and females (not shown). Sex did not emerge as a non-Gaussian source in either of the
two best fitting models. However, as seen in Fig. 10 for the best fitting model, sexual dimor-
phism was clearly evident in the first principal component of the Gaussian sub-space. Pearson
and Spearman correlation coefficients between the sex-associated non-Gaussian source from
the third best fitting model and the sex-associated Gaussian component from the best fitting
model were 0.82 and 0.81 respectively.

For the full craniometric data set analyzed without dimension reduction, the best identified
model included one sub-Gaussian source (shown in S1 Fig), forty super-Gaussian sources
(sorted by descending degrees of associated variance in S2–S41 Figs) and a thirty dimensional
Gaussian subspace (components, sorted by descending degrees of variance in S42–S71 Figs).
No other models had log likelihoods sufficiently close to this model to be considered plausible,
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but it is possible that other plausible or even better models exist but were not identified. In ad-
dition to the Buriat (S4 Fig) and Eskimo (S9 Fig) driven sources already known from the re-
duced dimension modeling, several other super-Gaussian sources were clearly driven by single
populations including the Moriori (perhaps in combination with the N and S Maori) (S8 Fig),
the Easter Islanders (S11 Fig), the Santa Cruz (S12 Fig), the Andaman Islanders (S14 Fig), the
Australi (S16 Fig), the Ainu (S20 Fig), the Bushman (S22 Fig), the Tasmanians (S24 Fig), and
the Dogon (with some outliers in other populations) (S29 Fig). Groups of populations or op-
posing pairs or groups of populations clearly drive several other sources. Many of the super-
Gaussian sources were driven by outliers from several different populations, including sources
that accounted for some of the largest amounts of variance. The combined Bushman and Teita
source from the data reduced to ten dimensions shown in Fig. 8 did not have a strict counter-
part in the full data analysis, instead splitting into the Bushman source shown in S22 Fig and
the source shown in S2 Fig, which is driven in part by the Teita in one direction and by various
European outliers in the opposite direction. The sub-Gaussian source identified in the reduced
data set was distinct from the sub-Gaussian source from the full data set and correlated best
(but not strongly) with the super-Gaussian sources shown in S5 Fig and S6 Fig. The sub-
Gaussian source from the full data set instead showed strong sexual dimorphism (S1 Fig).
While correlated with overall size differences, sexual dimorphism is well documented in the lit-
erature [32].

Fig. 11, derived from the data set reduced to ten dimensions, illustrates how the matrixW
can be used to characterize the raw data measures most prominent in defining individual
sources. Right multiplyingW by the transpose of the left singular vectors obtained from the ini-
tial singular value decomposition used to reduce the rows of the observation matrix from 71 to
10 produces a new 10 by 71 unmixing matrix that can be applied directly to the 71 by 2524 ma-

trix eX to generate the sources. If the rows of eX are then individually rescaled by their standard
deviations to create a matrix of z-scores, the corresponding columns of this new unmixing ma-
trix can be adjusted by the same factors to preserve the multiplicative mathematical relation-
ship to the sources. For the best-fitting model, Fig. 11 shows a heat map reflecting how the z-
scores for each of the original 71 measures are weighted in generating each of the four ICA
sources and six PCA components. A comparable heat map for the full data set without dimen-
sion reduction is shown in S72 Fig.

From Fig. 11, it is evident that several different measures contribute prominently to the
super-Gaussian source separating the Buriat population (Fig. 6) from others. The naso-dacryal
angle (NDA), roughly the angle formed by the sides of the nose at the upper margin of the or-
bits, is narrow, while the simotic angle (SIA), a similar measure made further down on the
nose, is large in the Buriates. Both the height of the skull measured from bregma to basion
(BBH) and the midline length of the parietal bone (PAC) are comparatively smaller, while the
frontal breath of the skull (STB, XCB, and XFB) is comparatively larger. Roseman [33] has sug-
gested that this brachycephalization observed in the Buriat sample is due to the effect of natural
selection operating in the cold Siberian environment, while acknowledging that it is not ob-
served in the Eskimo sample. Given that an increase in brachycephalization has been reported
as a result of recommendations that infants sleep on their backs to reduce the risk of sudden in-
fant death syndrome [34], an environmental contribution related to childrearing practices dur-
ing infancy might also be considered.

For the super-Gaussian source separating the Eskimo from other populations (Fig. 7), a nar-
row naso-dacryal angle is a particularly strong contributor. Frontal breath as quantified by bis-
tephanic breadth (STB) is comparatively smaller in the Eskimo. A large zygomaxillary angle
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Fig 11. Heat map relating z-scores to sources and components for the craniometric data. Heat map
intensities are derived from the best fitting model. Bright green values indicate that a higher (more positive)
z-score contributes to a positive source or component score. Bright red values indicate that a higher (more
positive) z-score contributes to a negative source or component score. The first four columns correspond
sequentially to the sources shown in Figs. 6–9. The fifth column corresponds to the first principal component
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(SSA) and dacryal angle (DKA), both measures of flatness of the face also contribute to
this source.

The super-Gaussian source with the Bushman and Teita populations as outliers (Fig. 8) is
very heavily influenced by a large simotic angle (SIA) in these populations, with the Bushman
population having the largest simotic angles among all populations sampled. A comparatively
larger glabello-occipital length (GOL), reflecting a larger length of the skull and smaller occipi-
tal angle (OCA), reflecting a flatter occipital region, are more minor contributors favoring
membership in the Bushman or Teita populations.

For the sub-Gaussian source that separates the Far Eastern group from Europeans (Fig. 9), a
larger naso-dacryal angle (NDA) and simotic angle (SIA) across the nose, a larger bregma to
basion height (BBH), and a larger occipital angle (OCA) are characteristic of the Far Eastern
group, while those in the European group have a larger glabello-occipital length (GOL). Thus
the nose is sharper and the skull shorter and more elongated in the European group relative to
the Far Eastern group.

Comparison of Fig. 11 to the corresponding columns in S72 Fig indicates that many other
measures contribute to the separation of the Buriat and Eskimo populations than were evident
from the reduced data set, and S72 Fig also provides insights into defining characteristics of the
other populations that can be separated in the full data set. Of particular note are contributors
to the two super-Gaussian souces (S40 and S41) explaining the smallest amounts of variance.
Each of these is driven by a different set of three measures. In each instance, the three measures
were the angles of a triangle defined by three landmarks, and since the angles of a triangle al-
ways sum to 180 degrees, the measures are theoretically not linearly independent. Inspection of
the original data confirmed that due to round-off errors to the closest whole degree, the sum of
the three angles values was always either 179 degrees, 180 degrees or 181 degrees, with the
rounding process being the underlying “source” in both cases. Future analyses of the cranio-
metric data set should obviously omit the third angle in each case.

A complete listing of the coefficients required to compute the four non-Gaussian source
scores and the six Gaussian component scores from the 71 raw measures is included in
S1 Table, along with the standard deviations of the raw measures needed to convert the coeffi-
cients into the heat map shown in Fig. 11. S2 Table contains analogous data for the forty-one
non-Gaussian source scores and thirty Gaussian component scores for the analysis without
dimension reduction.

Discussion
The mixed ICA/PCA model described here can be viewed as a special instance of a class of ICA
techniques that explicitly model more than one source distribution as part of the ICA optimiza-
tion [10], [11], [35], [36]. Although multiple Gaussian sources are not separable from one an-
other using ICA, this does not preclude their inclusion in the ICA model. Indeed, in previous
work, Attias [35] included an isolated Gaussian source in addition to Gaussian mixtures in an
ICA model. However, the incorporation of Gaussian sources into the model introduces a
model selection problem not considered in conventional ICA, which is related to the reduced
number of parameters needed to characterize Gaussian components, an issue not addressed by
Attias’ Gaussian mixture formulation. Unfortunately, assumptions underlying the Akaike

shown in Fig. 10. The last four columns correspond to components accounting for increasingly smaller
amounts of total variance (not shown). Raw data measures marked with asterisks are prominent contributors
to the identified non-Gaussian sources and are discussed in the text.

doi:10.1371/journal.pone.0118877.g011

Mixed ICA/PCA

PLOSONE | DOI:10.1371/journal.pone.0118877 March 26, 2015 28 / 39



Information Criterion for model selection are not valid when inseparable Gaussian compo-
nents are modeled as non-Gaussian sources, rendering this well-known approach to model se-
lection in the setting of differing model complexity unreliable. As a result, the computationally
expensive cross-validation approach of Stone [19] has been adopted here to correct for biases
in the estimation of K-L divergence from truth. From a practical standpoint, the fact that each
Gaussian source must be orthogonal to all other sources when the likelihood is maximized sim-
plifies the ICA optimization problem that must be solved.

PCA is often used as a preprocessing step in traditional ICA analysis, making it relevant to
distinguish such preprocessing from the approach described here. When used for preprocess-
ing, the data are centered, PCA is applied, a certain number of components explaining the
smallest amounts of variance are discarded and ICA is then applied to the remaining compo-
nents. The discarded components are therefore Gaussian and orthogonal to one another and to
all ICA-derived sources, just like Gaussian components derived by mixed ICA/PCA. However,
this preprocessing approach ignores the possibility that the discarded low-variance compo-
nents may nonetheless contain separable non-Gaussian signals. The mixed ICA/PCA algo-
rithm offers a more general approach; the possibility that these low-variance components
might not contain any non-Gaussian signals is included in the mixed ICA/PCA modeling, but
only as one of a large number of alternative solutions. The K-L divergence from truth of a
mixed ICA/PCA derived model without preprocessing should always be less than or equal to
the K-L divergence of a model that uses PCA preprocessing since the number of adjustable pa-
rameters for a given number of Gaussian components is the same and the preprocessing model
is a nested model encompassed by the more general mixed ICA/PCA model. As illustrated by
the craniometric data set, some degree of PCA preprocessing to reduce data dimensionality
can substantially decrease computation time, potentially making it a pragmatic complement to
subsequent mixed ICA/PCA analysis when the number of potential sources is large. When
PCA preprocessing is used in this way, it is advantageous to retain as many dimensions as is
practical for analysis using mixed ICA/PCA so as to minimize the risk of discarding non-
Gaussian signals.

Aside from choosing between super-Gaussian and sub-Gaussian sources, the issue of model
selection in ICA has received little attention. The practical impact of the number of compo-
nents discarded through PCA preprocessing in traditional ICA has been recognized [37], [38],
[39] and the use of AIC, BIC and other information criteria has been described in this setting
[40], [41], but this does not address the issue of a potentially inseparable Gaussian sub-space in
the retained data dimensions. Model selection has also been considered in the context of blind-
source separation of time series where columns in X correspond to measurements made at dif-
ferent time points [42], [43], [44], but this is a distinctive problem domain where separation of
mixtures of Gaussian sources is sometimes possible [3], [40], [45], making the model selection
issues described here less critical. It should be noted that the requirement that the nmultivari-
ate observations be independent would be violated if the methods described here were used for
temporal or spatial correlations among the n observations, resulting in an under-correction of
bias in the cross validation step. If one nonetheless wanted to use the framework described here
for temporally or spatially dependent data, this could be approached by subsampling the data
based on the autocorrelation length to produce samples that are effectively independent, an
approach that has been previously described in the context of PCA preprocessing for tradition-
al ICA [41].

Although not formally formulated as a model selection technique, recent work by Yang
et al, [46] includes features that may empirically flag ICA sources that would be more appropri-
ately considered as part of a Gaussian sub-space. Using the full data set, they randomly initial-
ize the ICA algorithm multiple times and then rank the derived sources based on their
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reproducibility across initializations. When a Gaussian sub-space with two or more dimensions
is present, the ICA “sources” spanning this subspace should become oriented randomly within
it as sample size increases to infinity, leading to particularly poor reproducibility across initiali-
zations. However, as illustrated by both the iris data and the craniometric data, the best set of
parameters for a given model does not necessarily correspond to the most frequently identified
optimum across a set of random initializations, indicating the potential for inappropriately re-
jecting the best parameters simply because the global minimum cannot be reached by gradient
descent from most random locations in parameter space. Conversely, for finite sample sizes, it
is possible that a single global minimummight be reachable from any initialization of parame-
ters but that the location of the minimum might be determined by noise that would not be re-
produced by a new independent set of observations. A systematic evaluation of the specificity
and sensitivity of the approach described by Yang et al. relative to the methodology detailed
here would be of pragmatic interest.

Local maxima in the computed log-likelihoods are a significant issue in ICA, even when all
sources are modeled as being from the same distribution using traditional ICA, and the prob-
lem is compounded when multiple types of distributions are modeled, breaking symmetries
that would otherwise make certain initializations redundant. The primary strategy of systemat-

ically permuting the relationship between the rows of eX and the columns of the initial identity
matrixW was not universally sufficient to identify global maxima that were identifiable by the

secondary strategy of left multiplication of eX (mathematically equivalent to right multiplica-
tion of the initial identity matrix estimate ofW) by random orthonormal rotation matrices.
Consequently, confirmatory use of the secondary strategy of random rotations is recom-
mended, particularly when the primary strategy does not lead to a large number of distinct ini-
tializations. It could be argued that even random orthonormal rotations risk missing a global
maximum that might be identified by a completely random initialization ofW, but unlike or-
thonormal matrices, randommatrices or even unitary matrices do not form a compact group,
so pragmatic limits would need to be placed on the range of determinants and the degree of an-
isotropy allowed for the initial value ofW in any case, and the number of required initializa-
tions, already a major limitation, could easily become impractical. It is impossible to assure
that the global maximum has been found, so the decision of how exhaustively to search is ulti-
mately a pragmatic one.

It is important to emphasize that while mixed ICA/PCA may blindly identify group mem-
bership or salient explanatory variables that are already known or suspected in a multivariate
data set thereby providing strong support for the role of these suspected factors, failure to con-
firm a suspected source of variance using this technique should not be construed as a “non-
significant” test. Multivariate hypothesis testing and model selection techniques are available
that are far more powerful, in part because they do not depend on non-Gaussian features and
can therefore operate effectively within a non-separable Gaussian subspace.

The
ffiffiffi
n

p
term empirically observed in the simulation studies when mixtures of Gaussian

sources are modeled as non-Gaussian raises the interesting question of whether this term per-
sists as n goes to infinity. If so, this would imply that the problem is not an issue that might be
addressed through derivation of some form of sample size correction for mixed ICA/PCA, but
rather a more fundamental violation of the asymptotic assumptions used to formulate the AIC.

If the
ffiffiffi
n

p
term does persist to infinity, it would also outpace the K logðnÞ

2
correction associated

with the BIC, so the issue of whether BIC would asymptotically afford consistent model selec-
tion is of concern as well. A key issue that may undermine the asymptotic validity of both AIC
and BIC is the fact that when the underlying sources are mixtures of Gaussian distributions,
the estimated ICA decomposition of those sources will be random and therefore will not
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converge to any fixed set of values as n increases to infinity. The possibility of asymptotically
non-convergent model parameters is not a feature of the derivation of AIC or BIC, so both are
suspect as bases for model selection in ICA/PCA.

The cross-validation work described here unexpectedly demonstrates that bias in the model
selection problem is also relevant to conventional ICA if the end goal is considered to be mini-
mizing K-L divergence from truth. Bias in the optimized log likelihood as a measure of Tn var-
ies for differing numbers of sub-Gaussian and super-Gaussian sources even in the absence of
Gaussian sources, and varies substantially for different local minima within a given model. The
magnitude of this variation exceeds the differences in optimized log likelihood typically consid-
ered to strongly favor one model over another in other model selection contexts, suggesting
that cross-validation would improve ICA interpretation even when no Gaussian sources
are present.

The computational burden is also large as a result of the need to use cross-validation for
model selection. Compared to simply computing the optimized likelihood of a particular
model, an n-fold increase in computation is required. A computationally efficient alternative
method for addressing the

ffiffiffi
n

p
bias term identified in the simulation studies when Gaussian

components are modeled as non-Gaussian would be tremendously beneficial. However, it is
clear that a simple adjustment to the optimized log-likelihood will not suffice since the decision
of when to apply such an adjustment would require already knowing whether the sources were
Gaussian or non-Gaussian. Recent developments in estimating bias in multivariate regression,
which is equivalent to ICA/PCA with all sources being Gaussian, offer some hope that this
problem might nonetheless be tractable. By adjusting the formula for the optimized log-
likelihood itself, Yanagihara, Kamo and Tonda [47] were able to eliminate the bias term involv-
ing the multivariate kurtosis of the underlying distribution even though the underlying
distribution is unknown. Unfortunately, the derivation of this adjusted formula involves equal-
ities that do not generalize to the broader context of ICA, but future work might identify an al-
ternative formula that does.

The specific sub-Gaussian and super-Gaussian distributions modeled by mixed ICA/PCA
presumably may have an effect on whether sources are separable, a topic that warrants further
investigation. For example, use of sources distributions that are extremely close to Gaussian
would presumably require a larger value of n to demonstrate superiority to a Gaussian model.
However, this might come at the advantage of being able to eventually (with sufficiently large
n) identify very subtle non-Gaussian sources that might be not separable at any sample size
when using non-Gaussian sources that are strongly non-Gaussian. Inclusion of parameterized
non-Gaussian source distributions [11], [35] might be advantageous in allowing the modeled
distribution to optimally adapt to the data, though potentially at the cost of increased difficul-
ties with local optima. To the extent that specific distributions of potential non-Gaussian
sources are known in advance, incorporating this information into the ICA/PCA model might
help to optimize the ability to separate sources when sample sizes are small.

Conclusions
In some sense, the model selection problem in ICA/PCA can be seen as analogous to the prob-
lem of deciding how many components to retain in PCA. Indeed, from a modeling perspective
these problems lie on a continuum of increasingly less complex models. The most general
model consists of pure ICA, in which none of the elements ofW are constrained. When sources
are modeled as Gaussian,Wmust produce Gaussians rows of S that are orthogonal to all other
rows, which induces constraints onW. When Gaussian components are discarded in PCA, the
criteria used for deciding the number of components to discard is typically based on finding a
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plateau in the amount of variance explained by successive components. This criterion can be
formalized by modeling the discarded sources as having a single, uniform variance (effectively,
white noise), thereby placing additional constraints on the number of freely adjustable parame-
ters [40], [41], [48]. Recent neuroimaging work suggests that even estimating the correct
Gaussian PCA signal remains a difficult and unresolved analytic problem in the presence of
strong off-diagonal covariance terms found in brain networks [49]. At the extreme end of this
continuum is a model with no non-Gaussian sources and uniform Gaussian variance such that
W is replaced by a single parameter characterizing that variance. In principle, the ICA/PCA
model could be extended to model a specified subset of Gaussian components as having uni-
form variance. Model selection could then be based on cross-validation estimates of Tn, exactly
as for ICA/PCA.
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S71 Fig. Gaussian component from the full craniometric data set. See Fig. 6 for
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S72 Fig. Heat map relating z-scores to sources and components for the full craniometric
data set. See Fig. 11 for formatting details. The first column corresponds to the Sub-Gaussian
source shown in S1 Fig. Columns 2–41 correspond to the Super-Gaussian sources in the same
order as shown in S2–S41 Figs. Columns 42–71 correspond to the Gaussian components in the
same order as shown in S42–S71 Figs.
(TIF)

S1 Table. Coefficients to compute reduced dimension non-Gaussian source scores and
Gaussian component scores from the raw measures.
(XLS)

S2 Table. Coefficients to compute full dimension non-Gaussian source scores and Gaussian
component scores from the raw measures.
(XLS)
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