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Introduction 

Life cycle assessment for supporting the transition towards  

eco-efficient agriculture and food systems  

The Universal Exposition EXPO 2015 in Italy had as central theme “Feeding the Planet, Energy for Life”, 

one of the major sustainability challenge for the future. Ensuring sustainable human development means 

being able to feed a planet with increasing population, decoupling the development from environmental 

impact and answering the evolving energy demand. Nowadays, Food and Energy supply chains are 

associated with complex and intertwined environmental and socio-economic impacts. 

The identification of solutions towards sustainability in the food and energy sectors need to rely on 

integrated appraisal methodologies for comparing possible alternatives, avoiding burden shifting 

geographically, temporally and along supply chains. 

Therefore, Life cycle assessment (LCA) represents a reference methodology that helps analyzing supply 

chains toward achieving sustainability objectives, including improved agriculture, food production and 

consumption as well as more efficient energy conversion and use.  

The Italian LCA network and the Joint Research Centre of the European Commission jointly organize a 

conference during EXPO 2015, discussing the role of LCA on the EXPO 2015 topics and presenting latest 

research in the field. 

The studies presented in the conference, reported in these proceedings, demonstrate the relevance of Life 

cycle thinking and assessment as key elements towards sustainable solutions and ecoinnovation for global 

food challenges. An increasing global population, an evolution in consumers’ needs and the changes in 

consumption models pose serious challenges to the overall sustainability of food production and 

consumption. In defining solutions to major global challenges, life cycle thinking and life cycle assessment 

are applied for : i) the identification of hotspots of impacts along food supply chain with a focus on major 

global challenges; ii) the comparison of options related to food supply chain optimizations (increase of 

productivity, reduction of food losses, etc) towards sustainable solutions; iii) assessment of future scenarios 

both related to technological improvement, behavioral changes and under different environmental conditions 

(e.g. climate change); iv) assessment of social impacts associated to consumption patterns.  

Analyzing these challenges from a global/ continental perspectives, major improvements are needed both in 

life cycle inventories - related to data availability, quality and representativeness-, and in life cycle impact 

assessment– where the enhancement of impact modeling for water, land use, resource and toxicity are 

fundamental for robust assessment of alternatives. 

Due to the variety of challenges and perspectives, several methodologies are needed to answer different 

sustainability questions. For example, exploring concepts such as “water food energy nexus”, in light of 

promoting circular economy, means to optimize production of food and energy on one hand and to reduce 

(food)waste on the other hand. This requires a transition towards systemic thinking, where impacts of global 

production and consumption patterns remain within the carrying capacity of the planet, namely the 

sustainability thresholds identified as planetary boundaries. 
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This systemic thinking entails the identification of complementarity amongst methodologies and the critical 

analysis of their pros and cons for supporting decision making.  

We hope that the concepts and the case studies presented at the conference and in these proceedings could 

further support cross fertilization among different science domains (such as technological, environmental, 

social and economic ones) towards a sustainable “today and tomorrow” in feeding the planet. 

Serenella Sala and Paolo Masoni 
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1. Abstract  

Health promotion and disease prevention are increasingly recognised as crucial efforts to address Europe's 

Health challenges. Unhealthy diets are a major risk factor for many non-communicable disease, hence 

disease prevention through healthier eating habits could alleviate the high individual and societal costs of 

illness. Ensuring a healthier future requires renewed commitments and research. The JRC has conducted a 

foresight study using an exploratory, scenario-building approach with the year 2050 as a time horizon. Four 

different future scenarios were developed and provided the basis for the identification of future challenges 

and opportunities in food and health and the research needed to address them. The study identifies ten 

research priority areas and emphasises the need for a systems approach in addressing healthy and 

sustainable diets. 

2. Introduction  

Health promotion and disease prevention are crucial, both socially and economically, in the face of strained 

healthcare systems, an ageing population, and the high individual and public costs of disease. This applies in 

particular for non-communicable diseases (NCDs), such as diabetes, cardiovascular diseases or cancer [1]. 

One of the four major risk factors for NCDs is an unhealthy diet, making better nutrition and eating habits a 

potentially effective and cost-efficient prevention strategy. The provision and consumption of healthy diets 

relies on the whole food chain and the consumer itself, and is interlinked with many other areas such as 

healthcare, the economy, environment, lifestyles, etc. Research plays an essential role in that it increases our 

understanding of; i) nutrition needs; ii) impact of diets on health; iii) disease mechanisms; or iv) 

determinants of consumer choice. It also paves the ground for: the development of improved or novel food 

products and production technologies; ensuring environmental sustainability of diets; or financial 

sustainability of agriculture and trade. These are just a few of the areas relevant in this context. The Foresight 

study ‘Tomorrow’s healthy society – research priorities for foods and diets’, carried out by the European 

Commission’s Joint Research Centre, was initiated at the request of the Directorate-General for Research 

and Innovation to inform the prioritisation of research areas to be funded by the Horizon 2020 programme 

[2]. The exploratory scenarios focused on the European consumer with 2050 as a time horizon.  

The participatory approach involved around 40 experts and stakeholders with a broad range of backgrounds 

in three workshops held in 2012 and 2013.  
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Four different future scenarios were developed using the extremes of two main drivers – agricultural 

commodity prices (low or high) and societal values (community spirit or individualistic society). The 

challenges and opportunities arising from the different scenarios helped identify and prioritise corresponding 

research needs. The resulting ten research priorities fall into four thematic areas which are presented below. 

Life cycle analysis and its community can contribute to such research in particular in the development of 

pertinent methodologies and a solid food system framework. 

2.Towards healthier eating: integrated policy-making 

2.1. Improve the evidence base for adoption of healthier dietary behavior. 

Strong evidence base for the development of authoritative, EU-wide (and internationally) agreed dietary 

reference values, and the definition of healthy dietary patterns is needed to increase the consensus on policy 

targets for healthy eating. Science-based tools and methods are needed to translate the scientific evidence 

base into food-based dietary guidelines that are easy to understand, take up and adapt. 

2.2 Develop a scientific framework for a systems approach to food and nutrition policies 

This should include science-based, user-friendly tools to describe the food system and its key interactions as 

a whole; a framework to enable systems thinking in terms of research and policy design and decision-

making; effective systems solutions to nutrition and health issues, and effective ways to network policies and 

promote coherence across policies and relevant actors, reflecting a dynamic society and industry landscape. 

2.3 Provide a framework to design, monitor and evaluate policies 

This should be accomplished through a science-based methodological framework for the systematic ex-ante 

and ex-post impact assessment of policies; the identification of effective policy measures enabling healthy 

and nutritionally balanced diets, including population-specific measures; and the development of tools for 

monitoring and the timely identification and assessment of relevant food-chain developments. 

3. Food, nutrients and health: cross-interactions and emerging risks 

3.1. Deepening the understanding of human nutrition: facing the complexities 

This includes the development of improved and nutrition-tailored study designs for better research 

approaches, better integration of knowledge from different, relevant disciplines, and elucidation of the 

complex interaction between genes, diets, behaviour, the environment and other determinants of individual 

health status. 

3.2 Anticipation of emerging risks 

This is achieved through the development of an integrated anticipatory approach that entails indicators for 

the early identification of potentially acute food safety risks; a systems understanding of the long-term 

physiological effects of novel dietary components and changed consumption patterns; and a resilient strategy 

to ensure food safety in a globalised complex food chain. 

4. Making individualised diets a reality 

4.1 Data needs: creation and management of necessary data for enabling individualised diets 
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This includes identification of the types of data needed and the specific technical requirements and 

appropriate methodologies for their collection, processing and translation into individualised dietary advice. 

In addition, effective approaches are needed to make this advice easily accessible and understandable for 

consumers, supporting adherence to such dietary advice. The development of guidelines and quality 

standards to ensure high-quality, reliable and evidence-based services; measures and procedures to deal with 

ethical and legal issues are also needed. 

4.2 Analysing the feasibility and impacts of individualised, healthy diets 

This is done through: risk/benefit assessment and cost-effectiveness analysis of the implementation of 

individualised dietary advice regarding individual health status and the healthcare system; identification of 

the required level of consumer health and nutrition literacy and of drivers affecting consumer acceptance and 

adherence to individualised dietary advice, paying particular attention to specific population sub-groups. The 

development of suitable and attractive products to support individualised, healthy diets and identification of 

the potential impacts on the food industry are additional important elements. 

5. Shaping and coping with the 2050 food system 

5.1. Understanding the social role of food 

This is done by investigating the role of food beyond nutrition, and the social effects of eating at individual 

and community level; through identifying the possibilities for and the implications of a change in the 

perception of the importance of food and nutrition for health, for example, due to a focus on effective cures 

and treatments for chronic diseases. 

5.2 Towards a sustainable food system producing safe, affordable and healthy dietary components 

This includes the development of effective integrated approaches to establish, promote and support a 

sustainable food chain. Example means are effective policy measures, new approaches and technologies to 

improve efficiency, effective integrated approaches to reduce food waste, as well as the identification of 

potential risks of (highly complex) food chains and measures to ensure integrity in terms of food safety and 

food quality. 

5.3. Supporting technologies to meet societal needs 

This may be accomplished by developing novel or alternative sustainable primary production or 

manufacturing processes for better nutritional profiles of foods and food components; methodologies for 

impact assessments of technological developments in the food system and beyond, and effective approaches 

to communicate and gain acceptance of new food sources and technologies with potential health benefits in 

sustainable food production.  
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6. Conclusion 

Most of the research priorities identified should be approached in the coming years to deliver results in the 

short- to mid-term (before 2030), thereby reflecting their urgency. A recurring element in this study is the 

need for a holistic, interdisciplinary approach that takes into account the complexity of the whole food 

system. The food system needs to become sustainable, i.e. economically viable, socially responsible as well 

as environmentally benign. The latter calls for a dietary shift, especially when bringing into play the foreseen 

climate change and natural resource depletion impacts in agriculture and food production. The scenarios 

developed in this study are intended to contribute to a societal dialogue on how to shape the future food 

system, while research will provide the evidence necessary for informed decision-making.  
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1. Abstract  

The work described encompasses an evaluation, in terms of environmental impact, of food consumption in 

the EU. A quantitative and qualitative analysis of the structure of the EU food consumption was carried out 

to select a basket of products representative for the structure of 2010 EU-27 food consumption. An LCA of 

the basket was performed to evaluate the environmental impact of such consumption.  The results indicate 

that in the majority of the environmental impact categories the most burdening foods are meat and dairy. 

Fruit contributes the least to the overall result because its relatively low impact is coupled with light 

packaging and lack of home processing or cooking. The agricultural phase is the most burdensome for most 

impact categories. The end-of- life phase and the losses occuring in all lifecycle phases need to be carefully 

considered since they can significantly contribute to the overall burden of food consumption. 

2. Introduction  

Moving towards more sustainable production and consumption pattern is considered a key element of any 

policy support aiming at decoupling environmental impacts from economic growth. Life Cycle-based 

Indicators has been developed by the Sustainability Assessment Unit of the Institute for Environment and 

Sustainability (European Commission – Joint Research Centre) in order to assess the environmental impact 

final consumption of goods of an average European citizen. Including mobility, housing and food. The 

development of such indicators responds to the needs of analysing and monitoring European consumption 

patterns and their global environmental impact in order to shift to more resource efficient consumption. What 

follows is a description of the evaluation, in terms of environmental impact, of food consumption, with 

particular reference to a 2010 EU-27 nutrition basket of products. 

3. Method 

The work firstly involved a quantitative and qualitative analysis of the structure of the EU-27 food 

consumption – during the years 2000-2010 – including international trade. This enabled the selection of 

products representative for the structure of apparent food consumption for the year 2010. Specific data on 

apparent consumption (Consumption = Production - Exports + Imports) was sourced the Eurostat and FAO 

databases and form specific nutrition and food consumption literature concerning current emerging 

consumption trends (e.g. [1], [2], [3], [4]).  
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The final choice of products for the basket was based on criteria regarding apparent food and drink 

consumption, prior knowledge concerning foods with a particularly high environmental burden and EU 

consumption trends of food and drink during the last ten years.  

Next an LCA of the products in the basket was carried out, using a common methodology for all the 

representative products. The functional unit was defined as the average food consumption per person in EU. 

The inventories constructed for each product regard not only the production phase of single food products 

but all stages of the food chain including losses and end of life of products and waste. The LCI datasets were 

constructed based on foreground data obtained from literature, direct industry sources and background data 

mainly taken from the Agrifootprint and Ecoinvent v.3 databases. The impact assessment method and 

characterization factors for the assessment of inventories is the ILCD which refers to midpoint impact 

categories  [5]. 

As depicted by the methodology by Sala et al [6], the assessment of hotpspots for basket of products may be 

followed by the analysis of potential improvement options and subsequent target setting for improvements. 

Specific targets for the eco-innovation in the food supply chain were identified through a review of 

documents about eco-innovation in the food sector, such as scientific literature, technical reports (e.g. by 

DGENV/JRC/etc.), IMPRO studies, Best Available Technologies Reference Document (BREF).  

4. Results 

Table 1 illustrates the selected EU-27 basket products and respective data on their apparent consumption. 

The main results of the LCIA per life cycle phase and for each impact category are illustrated in Figure 1. 

The targets identified for the basket of product food may be clustered as referring to three main strategies for 

reducing the impacts generated by food supply chains: 

i) an environmentally sustainable increase in agricultural productivity coupled with measures 

aimed at reducing emissions to air, to water and to soil, 

ii) dietary changes on the consumption side (e.g. reducing the consumption of meat and dairy 

products) 

iii) better efficiency in reducing food losses and managing food waste (e.g. through improved 

rate of food waste recovery). 
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Table 1: Basket products and apparent consumption (year 2010, EU-27) 
 

Basket product 
Total consumption of 

basket product (kg/year) 

Per-capita 

apparent 

consumption 

(kg/inhabitant.y

ear) 

% of total per-

capita 

apparent 

basket 

consumption  

Economic value of 

the consumption 

for each basket 

product (€/year) 

Pig meat      20,577,780,453  41.0 7.6% 33,662,075,184 

Beef     6,908,857,637  13.7 2.5% 26,364,299,736 

Poultry  11,493,631,410  22.9 4.2% 23,205,612,920 

Bread 19,753,915,765  39.3 7.3% 26,903,954,621 

Milk and Cream 40,246,421,375  80.1 14.8% 22,898,901,633 

Cheese 7,519,349,214  15.0 2.8% 28,952,575,241 

Butter 1,825,989,144  3.6 0.7% 5,929,095,967 

Sugar 14,965,056,818  29.8 5.5% 8,036,450,518 

Sunflower oil 2,725,842,346  5.4 1.0% 2,372,460,990 

Olive oil 2,680,017,479  5.3 1.0% 4,703,361,683 

Potatoes 35,241,000,000  70.1 13.0% 10,166,193,000 

Oranges 8,723,122,900  17.4 3.2% 5,096,920,710* 

Apples 8,065,996,300  16.1 3.0% 4,730,706,830* 

Mineral water       52,741,838,200 (litres) 105.0 (litres) 19.4% 8,920,405,677 

Roasted Coffee  1,748,478,908  3.5 0.6% 9,277,724,061 

Beer 
        35,056,541,024  

(litres) 
69.8 (litres) 12.9% 28,682,876,500 

Prepared meat 

dishes 
1,438,891,580  2.9 0.5% 13,737,753,774 

TOTAL 271,712,730,553 540.7 100.0% 263,641,369,045 

* Estimated economic value of production 

 

 

Figure 1: Life cycle impact assessment for an average citizen of EU-27 in the nutrition basket-of-products  

(in percentage units) based on representative products 
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5. Discussion and conclusions 

The LCA results indicate that in the majority of the environmental impact categories the most burdening 

foods are meat and dairy. Fruit contributes the least to the overall result because its relatively low impact is 

coupled with light packaging, consumption of fresh products and the lack of home processing or cooking. 

The agricultural phase is the most burdensome for most impact categories.  

In conclusion, it was found out that the end-of-life phase has to be taken into consideration, especially 

human excretion and wastewater treatments, because their burden is sometimes higher than others, e.g. that 

of the transport operations. Furthermore, the losses which occur during the whole life cycle, during 

agricultural/industrial phases and at home, in terms of food scraps and wastage food, have also be taken into 

consideration, since they can contribute up to 60% of the initial weight of the food. 

The application of the methodology for target setting to the basket of products food has highlighted the need 

of a complementary approach, where literature review on hotspots is coupled with LCA. In literature, the 

majority of the studies focus on energy and climate related impacts of food supply chains, whereas the LCA 

applied to the food BoP supports a more holistic hotspot analysis. Indeed, LCA offers a broader and multi-

criteria based assessment of food supply. However, in the future variability and ranges in the underlying 

datasets may give further relevant input in target setting. For example, consumer choices and behaviour and 

hence associated datasets may vary considerably, leading to different impacts attributable to the use phase 

and the overall basket. In general, an uncertainty analysis of the result should be conducted in order to 

highlight what is the relevance of the hotspots under different assumptions. Any improvement and target 

should be anyway subject to further evaluation at system level and multi-criteria level to ensure that a benefit 

in one impact category or life cycle stage is not leading to higher impacts elsewhere. 

 

6. Reference 

[1] Consumption and the environment — 2012 update. The European environment state and outlook 2010. 

European Environment Agency, Copenhagen. 

[2] Family Food (2012). Report published by the Department for Environment, Food and Rural Affairs. Available 

on the Defra website: https://www.gov.uk/government/collections/family-food-statistics. 

[3] FAO (2011). Global food losses and food waste – Extent, causes and prevention. Rome 

[4] European Commission, Agriculture and Rural Development, Product reports. Available from 

http://ec.europa.eu/agriculture/fruit-and-vegetables/product-reports/ 

[5] Joint Research Centre - Institute for Environment and Sustainability: International Reference Life Cycle Data 

System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. First edition March 2010. 

EUR 24708 EN. Luxembourg. Publications Office of the European Union. 

[6] Sala S, Dewulf J, Benini L, 2014. Indicators and targets for the reduction of the environmental impact of EU 

consumption: Methodology for 2020 targets based on environmental impact indicators. Deliverable 4 of the AA with 

DG ENV: № 070307/2012/ENV.C.1/635340. 

 

  



 

 

25 

Environmental Implications of Dynamic Policies on Food Consumption and  

Waste Handling in the European Union 

Michael Martin, Lina Danielsson and Tomas Ekvall 

IVL-Swedish Environmental Research Institute, Valhallavägen 81, 100 31 Stockholm, Sweden 

E-mail contact: michael.martin@ivl.se 

 

1. Abstract  

This study will review the environmental implications of dynamic policy objectives outlined in the EU-FP7 

Project DYNAMIX - Decoupling growth from resource use and its environmental impacts to address 

changes in food consumption, reductions in food waste and a change in waste handling systems. Data from 

FAOSTAT for the European Union with a base year of 2010 are used and scenarios are created for the years 

2030 and 2050 assuming policy instruments are fully effective. Results indicate that reductions in animal-

based protein consumption significantly reduce environmental impacts, followed thereafter by reductions in 

waste which may also lead to reduced food consumption. Despite the positive implications the policy mixes 

may have for targets for decoupling, they are not enough to meet greenhouse gas (GHG) emissions targets 

for the EU outlined in the DYNAMIX project.   

 

2. Introduction  

Consumers are becoming more aware of the impact that their behavioral choices may have on the 

environment. In the developed world, behavioral choices, such as dietary choices, have a large influence on 

the environmental impact of consumers, and changes to dietary choices may be one of the most 

economically effective abatement options for climate change. Furthermore, this is coupled with an overall 

abundance of food production and thus large food wastes. This study will review the environmental 

implications of possible changes in dietary choices and food waste handling in the European Union based on 

dynamic policy objectives outlined in the EU-FP7 Project DYNAMIX - Decoupling growth from resource 

use and its environmental impacts [1]. Policies and their environmental impact implications are tested using 

life cycle assessment (LCA) methodlogy to address different scenarios including 1) changes in protein 

consumption, 2) shifting from consumption from bovine- and pork-based protein sources towards more 

poultry based protein, 3) providing more vegetable-based protein and 4) reducing landfilling of food wastes 

through changes in food waste handling.  

 

3. Methodology 

Data from Food Balance Sheets by the Food and Agriculture Organization (FAO) are used to identify food 

consumption for the European Union (EU) with a base year of 2010 [2]. Food consumed in this study 

included only food for consumption and manufacturing, excluding that used for fodder and seed. Each food 

category comprises a large number of separate food products, and therefore representative food products 

(RFPs) were chosen from each category to represent at least 80% of the mass of that product category. A 

scaling factor was thereafter employed in order to compensate for the food products excluded by choosing 
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the RFPs. Figure 1 provides a representation of this process for e.g. the Meat category, where only bovine, 

poultry and pork products represent this category. More information on the modelling can be found in [3].  

 

Figure 1: Method used to identify Representative Food Products and link to Environmental Impacts 

 

 
 

Environmental impact and land use data for the life cycle inventory (LCI) was collected through a meta-

study of previous LCAs and data was input for the different RFPs for each food category. Water use figures 

were provided from [4] for blue water use. When data was not available, comparable data was obtained from 

databases such as PE International (which recently changed name to Thinkstep) and EcoInvent 2.2. Impact 

categories in the study are limited to carbon footprint, blue water use and land use due to limited datasets for 

foods to produce results for further impact categories. For each modelled scenario and year, the 

environmental impacts are computed by compiling the environmental impacts of the aggregated result of all 

RFPs. The figures for each food product may differ depending on the scenarios reviewed; see Scenarios 

section below.  

3.1  Scenarios 

In order to understand the effects of the different policies, scenarios are created for the years 2030 and 2050 

assuming policy instruments are fully effective and compared to a reference year of 2010. Scenarios review 

changes in protein consumption and waste handling and taking into account population increases for future 

years in the EU, with 518 Million and 526 Million inhabitants in 2030 and 2050, respectively [5]. More 

information on the scenarios can be found in [3]. 

3.2 Consumption scenarios 

Scenario C0 is used to understand the environmental impacts with no policies aimed at decoupling 

environmental impacts. Scenario C1 takes into account a reduction of the proportion of protein consumption 

from animal-based sources from 51% in 2010 to 35% in 2030 and 25% in 2050 by reducing meat, dairy and 

poultry consumption. In scenario C2, policies are used to limit the proportion of animal-based protein 

sources with large land requirements and resource consumption (including pork and bovine products). A 

shift to more poultry products and a decrease in bovine products and pork meat is included in this scenario. 

This includes shifting from protein consumption of 6.2, 11.2 and 8.6 g/capita-day in 2010 to 1.3, 5.2 and 

19.5 g/capita-day for bovine products, pork and poultry in 2050, respectively.  
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3.3 Waste scenarios 

Scenario W1 will review the implications of reductions in waste (total and avoidable) at the retail and 

consumer sectors; including reductions of 60% and 85% in 2030 and 2050, respectively.  

Scenario W2 will test the same reductions in waste as W1, but will also reduce the food input due to less 

waste (and less required food inputs). Scenario W3 will review the implications that food donations (20% of 

otherwise wasted food) from the retail sector may have on the environmental impacts. Scenario W4 will 

review the implications of changes in waste handling and include the potential benefits from avoided 

products and energy from an increase in e.g. biogas production and less waste incineration. 

 

4. Results 

The introduction of policies for the reduction of protein from animal sources may have relatively large 

environmental impact reductions for European food consumption (Table 1).  

 

Table 1: Environmental impacts and resource consumption for Consumption (C) and Waste (W) scenarios  

in the years 2010, 2030 and 2050 

Scenario 

GHG Emissions 

(M Tonnes CO2-eq/year) 

Land Use 

(Million ha) 

Water Use 

(Million m
3
) 

2010 2030 2050 2010 2030 2050 2010 2030 2050 

CO 1 357 1 391 1 410 312 320 324 98 698 101 175 102 546 

C1 1 357 1 032 792 312 281 216 98 698 97 289 78 896 

C2 1 357 1 270 1 228 312 306 300 98 698 101 587 105 537 

W1 1 264 1 297 1 315 312 320 324 96 873 99 355 100 733 

W2 1 264 1 211 1 195 312 293 291 96 873 89 389 86 956 

W3 1 264 1 300 1 318 312 320 324 96 873 99 391 100 735 

W4 1 264 1 188 1 218 312 319 323 96 873 96 574 97 081 

 

Overall, the reduction of animal-based protein sources has the largest environmental impact reductions for 

the scenarios tested. Shifting protein sources from bovine and pork meats to poultry may not have as large 

environmental impact reductions although reductions may be seen. Environmental impacts may also be 

reduced in the waste handling scenarios by reducing the amount of landfill and producing more biogas from 

food waste, due primarily to reduced methane emissions and benefits provided from biogas by-products. 

However, scenario W2 shows the largest reduction of the waste scenarios, due to accounting for reductions 

in food consumption. Food donation programs have not shown a significant reduction compared to the other 

policy objectives, due to the small share of food which can be donated from the retail sector.  

 

The results show a relative decoupling of land and water use in comparison to 2010 levels based on targets 

outlined in [1]. The large reductions in GHG emissions seen in some scenarios however, may not be enough 

to significantly contribute to the total per capita emissions target of 2 tonnes CO2-eq [1].  
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Many of the scenarios overshoot the targets from the food production alone, compared to 2010 levels where 

it accounted for roughly 29% of EU emissions [3]. 

 

5. Conclusions 

Reductions in animal-based protein consumption and reduced food waste landfilling are shown to provide a 

large decrease in environmental impacts. This offers evidence that, if fully effective, the policy mixes may 

lead to great reductions in environmental impacts. However, when reviewing a possible decoupling of 

growth from resource use and environmental impacts to meet European targets, the policy mixes alone may 

not be enough to reduce impacts from food production and waste handling. This study provides information 

that can be used by policy makers in addition to the food, feed, retail and waste sectors to reduce 

environmental impacts associated with food consumption in Europe. Nonetheless, the study only reviews a 

limited set of impact categories. It is also important to review additional impact categories e.g. nutrient use, 

land use changes, acidification and eutrophication, which may have significant implications from agricultural 

practices. However, the importance of consumers to reduce their animal based protein consumption, reduce 

their creation of food waste and make environmentally concious dietary choices is stressed in addition to the 

need for improved sustainable agricultural practices. 
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1. Abstract  

Sustainability of Swedish meat consumption is assessed from the perspectives of nutrition, health, climate 

and land use. Our results suggest that more sustainable food systems can be achieved via changes in 

Swedish meat consumption and that our multidimensional approach can be useful in identifying such 

changes.  

2. Introduction  

Production and consumption of food have important impacts on the environment and human nutrition. Meat 

production, in particular, is identified as a major cause of environmental burden that puts high pressure on 

global natural resources (1). However, grazing on land non-suitable for cropping, and livestock production 

systems, such as those based on feed from food waste and/or other by-products, have been put forward as 

resource-efficient ways of producing food of high nutritional value. In some areas, grazing animals can also 

contribute to increased biodiversity by keeping landscapes open (2). Meat consumption also affects human 

health; it contributes with essential nutrients, but it is also associated with certain risk of disease (3). Meat 

production can be performed in different ways and nutritional needs can be met by different diets varying in 

quantity and quality of meat. Hence, multidimensional and interdisciplinary assessments of optimal meat 

production and consumption levels are necessary to achieve healthier and more resilient food systems.  

The objective of this paper is two-fold: 1) to estimate what intake levels of meat are compatible with targets 

for public health and environmental sustainability in Sweden; and 2) to test a methodology that can be 

further developed into a framework for assessing sustainability of food systems from a multi- and 

interdisciplinary perspective.  

3. Methodology 

The approach used can be described by the following three steps: 1) key variables influencing the nutritional 

status, chance/risk of health/disease, greenhouse gas (GHG) emissions and land use demand of meat 

production and consumption, are identified; 2) a preliminary list of indicators and their (political) targets 

linked to the variables are identified in the literature and/or developed; 3) levels of sustainable meat 

consumption in Sweden are calculated, based on a joint assessment of nutritional, health, climate and land 

use perspectives. For the assessment, data from life cycle assessments and nutritional databases are used (4, 

5). To estimate the intake levels from a nutrition and health perspective, consumption of purely red, white 

and processed meats are assessed, as well as mixed meat which refers to total meat consumption based on a 

mix of the different meat types.  
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To assess sustainability from the perspective of GHG emissions and land use, a distinction is made between 

consumption of beef and chicken from different production systems in Sweden and from other countries and 

regions which export meat to Sweden.  

A public health perspective is applied to assess the nutritional quality and health effects of meat 

consumption. Thus, the nutrition and health assessment is based on recommendations and guidelines that 

promote public health, i.e. health for the majority of the people within the studied population, rather than in 

specific individuals. Also, the focus is on health promotion and disease prevention, in contrast to clinical 

health assessments focusing on reducing or curing symptoms of disease. Effects of meat consumption are 

analyzed from a high-income country perspective. The majority of the population is assumed to eat an 

unrestricted diet, and sustainability indicators and targets are limited to those applicable to high income 

countries. A near-time perspective is applied, i.e. production systems correspond to today´s performance 

without any assumptions on technological development. A more detailed description of the methodology is 

provided in the complementary materials. 

4. Results 

 Table 1 provides an overview of key indicators, metrics and targets identified to be of importance for 

assessing sustainability of meat production and consumption in Sweden, from the perspectives of nutrition 

and health, GHG emissions, climate change, and land use. Identified indicators, metrics and targets are 

limited to those available for current usage. Table 2 provides an overview of estimated levels of sustainable 

meat consumption. These levels are compatible with sustainability targets in Table 1, and could thereby be 

interpreted as sustainable from these perspectives.  

 

Table 1: Impact categories, indicators, metrics, benchmarks and targets identified
1
 

IMPACT  INDICATOR / METRIC BENCHMARK/TARGET 

Nutrition & Health  

Nutritional 

quality, Health 

Nutrient content of  food consumption  

(e.g. nutrient intake capita
-1 

day
-1

) 

Nutritional recommendations 

 

Nutritional 

quality, Health 

Quantity and quality of meat consumption (e.g. 

meat intake capita
-1 

day
-1

) 

Food-based dietary guidelines 

Nutritional 

quality, Health 

Quantity and quality of meat consumption  

(e.g. meat intake capita
-1 

day
-1

) 

Health recommendations and 

guidelines 

GHG emissions & Climate change 

GHG  

emissions 

Quantity and carbon footprint for different meats 

(e.g. CO2 eq. for meat intake capita
-1 

year
-1

). 

International climate targets 

Land use 

Land use Quantity of land occupied by meat (livestock) 

production (e.g. ha of total land capita
-1 

year
-1

) 

Global availability of land 

potentially suitable for 

agriculture 

Land use  

quality 

Quantity and quality of land occupied by meat 

(livestock) production (e.g. ha of  specific land 

capita
-1 

year
-1

) 

Global availability of land 

potentially suitable for cropping  

1More details in Table A1 in complementary materials. 
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Table 2: Estimated levels of sustainable meat consumption from different perspectives
1
 

TYPE OF MEAT MEAT CONSUMPTION (g/d) 

 Raw, bone-free  Cooked, bone free  

NUTRITION & HEALTH
 

Mixed meat
2 

   Protein  

 

 40-90  

 

 30-65 

Red unprocessed meat 

   Iron 

   Saturated fat 

   Health recommendation 

 

40-255 

˂ 370 

˂ 60 

 

30-180 

˂ 260 

˂ 40 

Processed meat 

   Saturated fat 

   Dietary health recommendations 

 

˂ 130 

0
3
 

 

˂ 90 

0
3
 

White meat 

   Iron 

 

150-275 

 

105-195 

GHG EMISSIONS & CLIMATE CHANGE 

Beef ˂ 70 ˂ 50 

Chicken ˂ 525 ˂ 370 

LAND USE 

Beef 

   Global agriculture land 

   Global cropland 

 

˂ 370 

˂ 110 

 

˂ 260 

˂ 80 

Chicken 

   Global cropland 

 

˂ 205 

 

˂ 145 
 

1 The calculation method is further described in Table A1 and Table A2 in complementary materials. 2Mixed meat from pork, beef, 

lamb, game, processed meat products, and chicken. 3None or as little as possible. 

 

5. Discussion 

From a nutritional perspective, no general recommendations exist for how much meat is considered optimal 

for health. Nutritional recommendations are based on intake levels that ensure sufficient intake of critical 

nutrients (e.g. iron) without exceeding upper intake limits of nutrients associated with negative health effects 

(e.g. saturated fat). Meeting iron requirements in fertile women may require intake levels of 105- 195 g of 

cooked meat per day (under the assumption that white meat is the only meat consumed and that 22% total 

dietary iron is supplied by meat). However, to supply adequate protein, intake levels of 30-60 g of cooked 

meat per day are sufficient (under the assumption that maximum 25% of total protein is supplied by protein). 

Lower intake levels would be possible if a larger proportion of the nutrients were supplied by other food 

groups. Recommended intake levels of red and processed meat are more restricted compared to white meat, 

due to the association between red and processed meat and increased risk of colorectal cancer. Adequate 

nutrition could also be supplied by vegetarian diets, i.e. without meat.  

From an environmental and land use perspective, no policy guidance or recommendations exist for 

sustainable levels of meat production. Our results suggest that beef consumption needs to stay below 50 g of 

cooked meat per day to be deemed sustainable from a climate and land use perspective (under the 

assumption that beef is the only meat consumed), while for chicken intake levels below 145 g per day can be 

considered sustainable based on the included indicators (Table 1, A1). 
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It should be observed that the amounts in Table 1 are maximum intake levels, estimated based on GHG- and 

land use efficient meat production systems, and therefore may have to be further reduced to be compatible 

with the selected sustainability targets.    

From a nutrition and health perspective, sustainable levels of meat intake are largely dependent on the 

overall composition of the diet and the amount of nutrients supplied by different food groups. From a climate 

and land use perspective, sustainable levels of meat intake depend on, e.g. how much of total GHG 

emissions space and agriculture land is attributed to food or meat. Hence, to estimate intake levels of meat 

compatible with sustainability targets, several indicators, metrics, targets and assumptions need to be used 

and evaluated. As our methodology and its underlying calculations are hampered by many uncertainties, a 

thorough assessment and presentation of uncertainties in methods and results is essential. For a more 

complete assessment, additional perspectives and sustainability indicators, e.g. equity, animal welfare, 

economy, and other environmental and societal concerns, should be included. Hence, the set of parameters 

identified here can be interpreted as a proxy of sustainable meat consumption in Sweden, valid only for some 

perspectives. By including more indicators and perspectives, our methodological approach can be developed 

into a framework to map and model potential interlinkages and relationships between key variables. Such a 

methodological framework should ideally be applicable to different food groups and diets as well as to 

different regions and populations. 

 

5. Conclusion 

Our results suggest that sustainability within the food system can be increased via changes in current 

Swedish meat consumption patterns, and that our approach can be useful in identifying alternative and more 

sustainable food consumption patterns.  
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7. Complementary Materials 

7.1 Methodology  

Table A1: Assumptions and references used as basis for calculations  

 INDICATOR  ASSUMPTIONS 

N
U

T
R

IT
IO

N
 &

 H
E

A
L

T
H

 

All essential 

nutrients 

Recommended intake of all essential nutrients are adequately met (1). 

Protein Protein requirement of 0.8 g of protein per kg body weight and day for adults (2), body 

weight ranging from 50-90 kg (1). Maximum 25% of total protein supplied by meat  

(i.e. current Swedish intake) (3). Average protein content of 20% in raw meat
1
 (4). 

 

Recommended intake of protein of 10-20 E% (1). Energy requirement for adults 

ranging of 2300-3300 kcal per day
2 
(1), of which maximum 25% is supplied by meat 

(i.e. current Swedish intake) (3). Protein content of 8-24 g per 100g in raw meat
1
 (4). 

Iron Recommended intake of iron  in adult ranging from 9 mg (men and unfertile women) 

to 15 mg (fertile women) per day (1), of which maximum 22% is supplied from meat 

(i.e. current Swedish intake) (3). Iron content in raw meat of 1.3-2.6, 0.8-1.9 and 1.2-

1.3 mg per 100g of red unprocessed meat
3
, processed meat and white meat

4
, 

respectively (4).  

Saturated fat Recommended maximium intake of saturated fat of 10 E% (1), of which 

maximum19% is supplied by meat (i.e. current Swedish intake) (3). Energy 

requirement for adults of 2300-3300 kcal per day
2
 (1). Saturated fat content ranging in 

raw meat from 1.9-4.0, 5.5-9.2 and 3.5-3.8 g per 100g of red unprocessed meat
3
, 

processed meat and white meat
4
, respectively (4). 

Red meat Public health recommendation of limiting intake of cooked red meat to maximum 300g 

per week (5).  

Processed meat  Public health recommendation of avoiding, or limiting processed meat intake as much 

as possible (5). 

C
L

IM
A

T
E

 GHG emissions, 

Climate change 

Total GHG emissions limited to 1-2 tonnes of CO2 eq. per capita per year, of which 

maximum 0.5 tonnes come from meat production and consumption (6). GHG 

emissions of 20-41 kg and 2.6 kg CO2 eq. per kg of bone free meat for beef and 

chicken, respectively (7). 

L
A

N
D

 U
S

E
 

Global availability 

of land potentially 

suited for cropping. 

No expansion of current global agriculture land for livestock production to 2050. 

Maximum (current) use of agriculture land for livestock production of 4000 Mha (8, 

9). Global population of 9.5 billion in 2050 (10). Land use demand of 31-250 and 7 m
2 

per kg of bone free beef and chicken, respectively
 
(7).  

Global availability 

of land potentially 

suited for cropping. 

No expansion of current global cropland for livestock production to 2050. Maximum 

(current) use of cropland for livestock production of 500 Mha (8, 9). Global population 

of 9.5 billion in 2050 (10). Land use demand of 13-25 and 7 m
2
 per kg of bone free 

beef and chicken, respectively
 
(7).  

 

1 Meat refers here to pork, beef, lamb, chicken, a variety of meat from game and processed meat products.  

22300 kcal per day refers to adult women with PAL of 1.6, 3300 kcal per day refers to adult men with PAL of 1.8. PAL=Physical 

Activity Level. 

3Red unprocessed meat assumed to be unprocessed pork, beef and lamb. 

4White meat assumed to be chicken 
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7.2 Results 

Table A2: Estimated levels of sustainable meat consumption from different perspectives 

BENCHMARK/ 

TARGET 

INDICATOR/ 

METRIC/DATA  

TYPE  

OF MEAT 

MEAT CONSUMPTION
1 

(g/d) 

   Raw,  

bone- free 

weight
2 

Cooked,  

bone- free  

weight
2 

NUTRITION & HEALTH 

Nutritional rec.  Nutrient intake  Mixed meat - - 

Nutritional rec. Protein intake
3 

Mixed meat 

Mixed meat 

˂ 90
 

˂ 40
 

˂ 65
 

˂ 30
 

Nutritional rec. Iron intake Red unprocessed 

meat 

White meat 

40-255 

 

150-275 

30-180 

 

105-195 

Nutritional rec. Saturated fat 

intake 

Red unprocessed 

meat 

Processed meat 

˂ 370 

 

˂ 130 

˂ 260 

 

˂ 90 

Food-based dietary  

and health rec.  

Meat intake 

 

Red unprocessed 

meat 

Processed meat 

White meat 

˂ 60  

 

0 

- 

˂ 40 

 

0 

- 

GHG EMISSIONS & CLIMATE CHANGE 

International climate 

goals 

GHG emissions Beef 

Chicken 

˂ 70 

˂ 525 

˂ 50 

˂ 370 

LAND USE 

Global availability of 

land potentially 

suitable for 

agriculture 

Land use Beef 

 

Chicken 

˂ 370 

 

˂ 205 

˂ 260 

 

˂ 145 

Global availability of 

land potentially 

suitable for cropping 

Land use, 

Land use quality 

Beef 

 

Chicken 

˂ 110 

 

˂ 205 

˂ 80 

 

˂ 145 

1No waste between production and consumption assumed. 230% weight reduction is assumed for cooked meat (11).  

3Based on two different calculation methods, see table A1. 

  



 

 

35 

Table A3: Nutrient content
1
 of different types of meat 

NUTRIENT  

CONTENT  

per 100 g 

uncooked 

meat 

E 

nergy 

(kcal) 

Protei

n (g) Fat (g) 

Sat fat 

(g) 

Fiber 

(g/d) 

Vit D 

(μg) 

Folate 

(μg) 

Iron 

(mg) 

Zinc 

(mg) 

Selenium 

(μg) 

Sodium 

(g) 

RED UNPROCESSED MEAT (n=x) 

MIN-MAX  

106-

166 19-26 3.1-10 0.5-4.0 0 0-0.6 1.0-6.0 1.3-4.7 1.0-5.5 2.2-24 0.1-3.0 

AVERAGE  173 18 11 4.1 0 0.5 8.7 1,9 2.5 8 0.7 

RED (INCL. PROCESSED) MEAT (n=x) 

MIN-MAX  

106-

253 8.1-26 3.1-23 0.5-9.2 0 0-0.6 1.0-7.0 0.8-4.7 1.0-5.5 2.0-24 0.1-3.0 

AVERAGE  162 19 9.1 3.5 0 0.4 7.3 2,1 2.6 8.4 0.7 

PROCESSED RED MEAT 

MIN-MAX  

188-

253 8.1-19 12-23 5.5-9.2 0 0.2-0.3 2.4-7.0 0.8-1.9 1.2-4.9 2.0-5.6 0.2-1.8 

AVERAGE  210 16 16 6.7 0 0.2 4.3 1.4 3.3 4.3 0.8 

ALL MEAT incl. white meat (n=x) 

MIN-MAX  

106-

253 8.1-26 3.1-23 0.5-9.2 0 0-1.5 1.0-21 0.8-4.7 1.0-5.5 2.0-24 0.1-3.0 

AVERAGE  175 18 11 4.3 0 0.5 7.5 1,9 2.5 7.7 0.8 

1Data from reference 4. 
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1. Abstract  

The production and consumption of food is responsible for a large portion of anthropogenic greenhouse gas 

(GHG) emissions. The carbon footprint of the Italian food system was estimated with a “cradle to grave” 

approach, including post-production food waste. In order to evaluate the mitigation potential of consumers’ 

behavioural changes, a database was compiled with approximately 1,250 values of carbon footprint of food 

and beverage products, obtained by a systematic review of scientific literature. Then, four diet scenarios, 

comparable in terms of both energy and protein content, were considered: the current Italian diet, the same 

diet with a shift from beef to poultry meat, the typical Mediterranean diet, and a vegetarian diet. Results 

show that per-capita food-related GHG emissions could be reduced by up to 36%, combining dietary 

changes and food waste reduction. 

2. Introduction  

To stabilize greenhouse gas (GHG) concentration in the atmosphere and thereby limit the global warming, 

the reduction of GHG emissions in the coming decades will have to be very consistent and should cover all 

sectors; not only the energy system that holds the main responsibility for direct global emissions [1]. Based 

on actual and expected increases in food consumption, the available projections indicate that, without 

actions, the GHG emissions from the agricultural sector will rise [2]. This aspect has been considered for the 

first time in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report – Working 

Group III [1]; direct GHG emissions from agricultural activities related to food production are reported to be 

10-12% of total GHG emissions worldwide, 2-4% less than the total d irect emissions from transport. It is 

therefore of great interest to compare the contribution to GHG emissions of different food products, in order 

to assess the benefits that could result from a global transition to food products associated with low 

emissions.  

3.  Carbon footprint of Italian eating habits 

In order to carry out the analysis, a database of approximately 1,250 carbon footprint of products (CFPs) was 

set up. The database is organised in 320 food and drink items, and aggregated into 48 product categories. 

The CFP values (from cradle to retail, excluding related food waste) were gathered from scientific literature 

data. For the construction of the database the following sources were used: a database published by the 

Barilla Center for Food & Nutrition (BCFN) [3], two recent scientific articles (Saxe et al 2012 and Hoolohan 

et al 2013) [4] [5], a publication of the Product Sustainability Forum (PSF) [6], and various Environmental 

Product Declarations (EPDs) published in the International EPD
®
 System [7]. 

mailto:jacopo.famiglietti@polimi.it
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Figure 1 shows the resulting CFPs of the most significant food and beverage categories, together with the 

main statistics for each product group: minimum and maximum values, median, mean, and interquartile 

range (25% and 75%). 

Figure 1: Representative carbon footprint of product (CFP) values for 26 different food groups (in brackets the number 

of CFP data collected for each category). For beef meat the maximum value is out of range and is equal to 83.5 

[kgCO2e/kg] 

 

3.1  Carbon footprint of different types of diets 

Globally, one third of edible food produced for human consumption is lost every year [8]. Therefore, it is 

important to consider in the CFP assessment the food made available to consumers, not only the amount they 

actually eat. The annual food balance prepared by the Food and Agriculture Organization (FAO) Statistics 

Division (FAOSTAT) for each country provides an essential starting point for the study. The most recent 

food balance sheet for Italy (2011) [9] contains information on food available to consumers in terms of 

quantity (considering domestic production, imports, and exports) as well as energy (kcal), protein, and fats. 
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In the FAOSTAT balance sheets, food and drinks are broken down into 69 product groups, and the total 

availability of food amounted to 1,020 kg inhabitant
-1

 year
-1

 (edible and non-edible fraction). For each of 

these 69 product groups, a corresponding item was identified in the database (Figure 1) and the average 

“cradle to retail” CFP value calculated. Some food items require to be cooked before consumption (e.g. rice, 

meat); to take into account heat used in the preparation stage of these products, specific emissions for 

cooking were added using the representative data reported in [3]. By multiplying each of the 69 product 

groups in the FAOSTAT balance sheet by these specific life cycle emission factors, the impact of the Italian 

diet was estimated taking into account both food actually consumed and food wasted at point of sale and by 

the final consumer. The result is 7.6 kgCO2e inhabitant
-1

 day
-1

. Considering the entire Italian population 

(59.5 million people) [10], food-related emissions amount to 165 MtCO2e year
-1

, 55% more than the total 

direct emissions from the transport sector in Italy [11]. 

The amount of edible products that are wasted in Italy (105 kg inhabitant
-1

 year
-1

) and the relative GHG 

emissions (238 kgCO2e inhabitant
-1

 year
-1

) were calculated assuming plausible values for the edible portion 

of each type of food and applying the average FAO percentages of European edible food that is wasted at the 

distribution and consumption stages [8]. Thus the maximum mitigation potential of cutting out all avoidable 

post production food waste in the current Italian food system is 12% of current GHG emissions from food 

production and consumption. 

In order to estimate potential reductions of GHG emissions by dietary changes, four diet scenarios, 

comparable in terms of both energy (about 2,500 kcal inhabitant
-1

 year
-1

) and protein content, were 

considered: the current Italian diet, the same diet with a shift from beef to poultry meat, the typical 

Mediterranean diet (as indicated by the Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione 

(INRAN)) [12], and a vegetarian diet (as indicated by the Associazione Italiana per la Ricerca sul Cancro 

(AIRC)) [13]. The largest reduction in GHG emissions is achieved with the vegetarian diet (24% reduction), 

while following the Mediterranean diet and changing beef with poultry meat in the current Italian diet could 

lead to a 19% and 13% reduction, respectively. Obviously, more pronounced emission reductions could be 

achieved combining dietary changes and tackling waste generation in the post-production food supply chain 

(up to 36% in case of the vegetarian diet). 

4. Conclusion 

The results presented here indicate that substantial reductions of carbon footprint of eating behaviour can be 

obtained by reducing food waste, via a lower consumption of meat and a higher intake of vegetable protein, 

or by just preferring chicken or pork over beef. These measures can also have important added benefits for 

human health, e.g. reducing the risk of developing cardiovascular disease and certain types of cancer [2]. 

Moreover, dietary changes can play an important role in future climate change mitigation policies. The 

transition to a diet with a lower meat consumption could have a huge effect on global agricultural land use, 

as it would free up a grazing area of 2.7 billion hectares and 0.1 billion hectares of farmland, with a 

consequent absorption of carbon for revegetation of the same extensions [14], and also could have positive 
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effects on biodiversity [2]; furthermore, it would significantly reduce emissions of CH4 and N2O and would 

decrease the mitigation costs of achieving a 450 ppm CO2e target by 2050.  

In relation to the dietary transition there are also socio-economic implications and agro-economic 

consequences not discussed in this document, whose might offset some of the gains analysed here [14]. 

Finally, it should be remembered that per capita meat consumption is very unequal, for example in sub-

Saharan Africa it is one eighth relative to industrialized countries. In poorest countries where nutrition is 

insufficient and unbalanced meat represents the most concentrated source of vitamins and minerals [15]. 

Therefore, the lowering of meat consumption levels could start in countries where they are already excessive 

(e.g. from a nutritional point of view) [15], i.e. countries that are expected to lead the way in reducing GHG 

emissions.  
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1. Abstract  

In the context of the Communication “Building the Single Market for Green Products”, the European 

Commission (EC) recommends a method to measure the environmental performance of products, named the 

Product Environmental Footprint (PEF). The PEF is a multi-criteria measure of the environmental 

performance of goods and services from a life cycle perspective. Currently, 25 pilot projects test the 

development of Product Environmental Footprint Category Rules (PEFCRs) for various products. This 

paper gives an overview of the process of developing the PEFCR for olive oil. An overview of the methods 

and initial results of the PEF screening study that aims at identifying the most relevant environmental 

impacts, processes and elementary flows are presented. The screening study assesses the impacts of the 

average olive oil consumed in the European markets.  

2. Introduction  

In the context of the Communication “Building the Single Market for Green Products” [1], the European 

Commission (EC) recommends a method to measure the environmental performance of products, named the 

Product Environmental Footprint [2]. The PEF is a multi-criteria measure of the environmental performance 

of goods and services from a life cycle perspective. PEF studies are produced for the overarching purpose of 

seeking to reduce the environmental impacts associated with goods and services, taking into account supply 

chain activities (from extraction of raw materials, through production and use, to final waste management). 

As the PEF guidelines are overall guidelines that have to be applicable to all products, additional product 

specific guidelines are needed. To address this issue, the EC launched in 2013 a three-year pilot project to 

develop Product Environmental Footprint Category Rules (PEFCRs) that provide category-specific guidance 

for calculating and reporting life cycle environmental impacts of products in a harmonised way. The ongoing 

25 PEF pilots, consisting of various stakeholders, have the tasks to develop PEFCRs in a process that 

includes public consultations, reviews and approvals by the Environmental Footprint pilot Steering 

Committee that includes representatives from each pilot, EU Member States and NGOs. The pilots for 11 

food, feed and drink related product categories started in June 2014, including pilots for beer, coffee, dairy, 

feed, seafood, meat, pasta, packed water, olive oil and wine. This paper focuses on the PEFCR development 

for olive oil.  
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3. Methods 

In the PEF olive oil pilot, the unit of analysis is defined as one litre of packed olive oil that is consumed as 

food (e.g. for cooking or as salad dressing). The system boundaries cover the processes from cradle to grave. 

It is considered that during the use phase environmental impacts will occur only from transportation and end 

of life of the packaging, while the impacts related to cooking and washing dishes are not included. The EF 

impact categories and assessment methods are presented in the PEF guide [2] and the normalisation factors 

in Benini et al. [3]. For weighting, equal weighting for all impact categories is used. 

A screening study to identify the most contributing life cycle stages, processes, environmental impact 

categories and elementary flows is carried out for a representative product that describes the average olive oil 

sold in the European markets. Intermediate representative products are developed for the following olive oil 

types: virgin olive oil (including lampant, virgin and extra virgin olive oils), refined olive oil and refined 

pomace oil. The packaging for the virtual olive oil is constructed from the average European mix of three 

types of packaging: glass, polyethylene terephthalate (PET) and metal cans (composed by aluminium, tin and 

steel). 

As over 70% of the olive oil in the world is produced in Spain, Italy and Greece [4], the production systems 

in those three countries are used as basis for the modelling. The data for the screening study was mainly 

taken from past olive oil LCA studies and Environmental Product Declarations (e.g. [5-7]) and some data 

was collected directly from the industry. For the Greek olive oil production, data from the LIFE+ project 

oLIVE CLIMA [8] was used.  

An economic allocation is used to divide the upstream burden of olive production between the co-products of 

industrial stages  (i.e. different olive oil types and dry pomace used for energy generation).  

4. Results  

Some preliminary results of the contribution analysis for virgin olive oil packed in a litre glass bottle are 

presented in Figure 1. The results are presented here only for impact categories that have robustness rating I 

or II [9]. Therefore, the results for the following EF impact categories were not included in this paper (but 

will be included in the screening report): ecotoxicity, human toxicity, water depletion and land use. The 

global warming impact category shown in Figure 1 does not include biogenic greenhouse gas emissions. 

According to the PEF guidelines, biogenic carbon flows must be reported separately. The results show that 

the most contributing life cycle stage in all impact categories is olive production with contribution around 

45-95 % of the total impact depending on the impact category (Figure 1). The second and third most 

contributing life cycle stages are virgin olive oil extraction and packaging. 

 

  



 

 

43 

Figure 1: Contribution of the different life cycle stages on the environmental footprint of virgin olive oil production for 

selected Environmental Footprint impact categories 

 

 

In the olive production phase, the most contributing processes are the production and use of fertilisers and 

plant protection products. In addition, soil management, pruning and harvesting practices have a relative 

high contribution in particulate matter/respiratory inorganics, photochemical ozone formation and resource 

depletion (fossil and mineral) impact categories.  

4.1 PEFCR development 

The results of the full screening study will be used as a basis for the draft PEFCR for olive oil. Once the draft 

PEFCR has gone through a public stakeholder consultation [10] and has been approved by the EF steering 

committee, it will be tested in supporting studies, which will apply the PEFCR for real products. During the 

supporting studies, also various ways of communicating the environmental footprint results to consumers 

and businesses will be tested. The PEFCR will be revised based on the lessons learned from the supporting 

studies, after which the stakeholders have another opportunity to provide comments on the PEFCR. Before 

final approval of the PEFCR by the EF steering committee, the PEFCR will be reviewed by external 

reviewers. The final PEFCRs are scheduled to be released by end of 2016.  
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1. Abstract  

The choice of models to estimate emissions from pesticide use represents a key methological aspect but to 

date a common agreement in the scientific community has not been achieved yet. This paper discusses the 

application of the PestLCI2.0 model to the case study of refined sugar from sugar beets, evaluating its 

feasibility and robustness, and considering the main criticalities at the level of both inventory and impact 

assessment. The study points out that, despite the non-homogeneous coverage of the pesticide emissions and 

of their effects, their inclusion in the study is of paramount important. We suggest favouring completeness 

over precision in the study, as key aspect for operationalizing the materiality principle fostered by PEF.   

2. Introduction  

The harmonisation of methods and models to account for the potential environmental impact of products and 

organisation is at the core of many European and international initiatives. The European Commission’s 

initiative “A single market for green products” [1] promotes the Product and Organisation Environmental 

Footprint (PEF and OEF, respectively) methods, whose development is presently undergoing in several 

pilots. The harmonisation process is built upon previous initiatives such as the ENVIFOOD Protocol [2] and 

the Environmental Product Declaration (EPD) systems. A common aspect of all the initiatives is the product 

category rule (PCR) concept, i.e. the definition of technical criteria and data for a specific product-goup, 

which can increase consistency in LCA applications and support comparability.  

A key methodological aspect, not implemented yet in any of the above-mentioned initiatives, is the choice of 

models to estimate emissions from pesticide use. In fact, different approaches have been developed, but a 

common agreement in the scientific community has not been achieved yet.  

We have addressed the issue of pesticide emissions in the evaluation of the environmental footprint of 

refined sugar from sugar beet. Given that product environmental footprint category rules for sugar are not 

under development in the pilots and the PCR of the International EPD system does not account for emissions 

from pesticide use, we have adopted the PestLCI2.0 model to assess the pesticide emissions to the ecosphere. 

This paper discusses the application of the PestLCI2.0 model in terms of feasibility and robustness, 

considering the main criticalities at the level of both inventory and impact assessment.  
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3. Methods 

The PestLCI 2.0 model [3] estimates the fraction of pesticide applied in the technosphere, which migrates to 

the environment (air, surface water and groundwater) by crossing the technosphere-environment borders. In 

PestLCI the technosphere boundaries are defined to be horizontaly the arable field borders, and vertically 

from 1 m soil depth up to 100 m up into the air column. The model does not take into account the emissions 

to soil outside the technosphere because they are assumed to occurr only indirectly after the emission of 

pesticide in the other compartments. Considering that the distribution of pesticide emissions between 

environmental compartments strongly depends on local climate and soil characteristics [3], the model has 

been adapted to allow the user to select different European climate scenarios and soil profiles as well as to 

adjust additional parameters such as field characteristics and pedo-climate values. 

We have applied PestLCI 2.0 - which includes one climate scenario for the agricultural zone investigated in 

our study (considering the monthly fluctuation of temperature, precipitation, solar irradiation and the 

potential water balance) - in the framework of a PEF study of refined sugar from sugar beets, which is 

cultivated and processed in Italy. The unit of analysis is 1 kg of refined sugar from sugar beet packed into 1 

kg carton box for sale by retailers (NACE code: C10.8.1). The system boundaries are from cradle to grave 

and the reference year is 2013. The study has been developed with the support of GaBi 6 software and 

Ecoinvent 2.2 database. All the impact categories required by the PEF methodology were considered, but 

this article will analyse only those related to toxicity. 

The following input data have been collected and estimated: i) the pesticide active ingredient; ii) the crop on 

which they are applied, iii) the soil profile and the climate zone, iv) the period on which the pesticide is 

applied (month), v) the application rate; vi) the tillage type and the field dimensions (width, length and 

slope).  

The other parameters (called “adjustable model parameters”) set by the model (ex. solid material density, 

fraction macropores) are assumed to be unchanged, even though, according to expert judgment, their default 

values cannot be considered representative of the agricultural land area under study [4]. As far as the 

completeness is concerned, the PestLCI 2.0 database does not have all the active ingredients of the pesticides 

used in the sugar beet cultivation (70% completeness as number of available pesticides). Therefore, proxies 

with the same pesticide’s function have been selected in those cases.  

Regarding the impact assessment phase, the USEtox recommended method has been applied. Currently 

USEtox cannot handle groundwater emissions [5], therefore those emissions have been neglected in the 

impact assessment with an average mass loss from 2 to 6% of the relative pesticide emissions. Moreover, 

there is not a full coverage of the characterization factors (CFs) at environmental impact categories levels. In 

this case study, all the analysed pesticides’ CFs for Ecotoxicity freshwater are included, a few CFs are 

available for the Human toxicity non cancer effects (45% as number of CFs available), while none for 

Human toxicity cancer effects.  
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4. Results  

The study points out that the cultivation of the sugar beet represents the most relevant phase in refined 

sugar’s life cycle for the majority of the analysed impact categories. Regarding the impact categories related 

to toxicity, the contribution of pesticides both to the whole life cycle and to the cultivation phase are 

illustrated in figure 1. 

 

The contribution of pesticides to the total result of cultivation phase is equal to 37% for the Ecotoxicity for 

aquatic fresh water and 6% for the Human toxicity cancer and non-cancer effects. Other important 

contributions to these categories are related to the production and the use of NPK fertilisers (28% for the 

Ecotoxicity for aquatic fresh water, 42% for Human toxicity non cancer effects and 52% for the Human 

toxicity cancer effects) and the agricultural work processes (43% for the Ecotoxicity for aquatic fresh water, 

68% for Human toxicity non cancer effects and 59% for the Human toxicity cancer effects), in particular 

ploughing and irrigation. 

Among the pesticides, herbicides are those that affect most the Ecotoxicity freshwater results. Nevertheless, 

it should be noted that these results are underestimated, due to the non complete coverage of CFs discussed 

in section 2. Furthermore, in the LCA software there is not a full coverage of the CFs for all the 

environmental compartments due to the different level of robustness of the USEtox characterization flows 

(interim and recommended), therefore only the recommended factors have been implemented in the 

software.  

5. Conclusion 

The case study pointed out that a proper evaluation of the toxicity impact category within a PEF study is 

challenging due to the calculation of pesticide emissions at LCI level and to the LCIA modelling. Regarding 

the inventory, information about field characteristics in the sugar beets cultivation has been collected as well 

as that related to the pesticide application period, in order to have an estimation of the influence of spatial 

and temporal aspects on pesticide dynamics. However, the following limitations can be identified in the 

study and in PestLCI 2.0: i) the default values of the adjustable parameters - in particular for soil that are 

non-representative of the Italian agricultural area; ii) the limited number of pesticides included in the 

Figure 1: Contribution of the pesticides to the total results (on the right) and to the farming phase (on the left) of the impact 

categories related to toxicity 
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PestLCI model; iii) no possibility to manage the background parameters (such as buffer zone width in 

pesticide database) that can be lead to inconsistencies in the model’s outputs. In particular, buffer zones are 

not considered in our study, but a deeper analysis on the Italian regulation related to the sugar beet 

cultivation areas should be done because their presence can affect the off-field emissions, in particular the 

emissions to air due to wind drift; iv) the assumption to consider only the distribution of the pesticide’s 

active ingredient, omitting the contribution of by-products used in pesticide formulations, such as adjuvants 

and solvents [6]. 

As far as the LCIA modelling is concerned, there is not a full match between PestLCI 2.0 model and 

USEtox: the former does not take into account the emissions to soil, while the latter has not developed yet 

CFs for groundwater emissions. Moreover, in USEtox there is a low availability of the pesticides’ CF for the 

impact categories of Human toxicity and the consideration of different levels of robustness for the same 

compound leads to an uncompleate implemention in LCA softwares. 

However, despite the non-homogeneous coverage of the pesticide emissions and of their effects, their 

inclusion in the study is of paramount important and they need to be traced at least at inventory level. In fact, 

according to the materiality approach fostered by PEF, their contribution to the overall performance of the 

product is relevant and the company has a certain level of influence on them. Thus, the incomplete inventory 

and LCIA should not prevent the opportunity to intervene on the process: while working on making the 

models more accurate, we suggest favouring completeness over precision in the study, following the 

materiality principle.   
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1. Abstract  

In 2014, the European Commission selected the packed water sector for the Product Environmental 

Footprint Category Rules (PEFCR) pilot testing. The Technical Secretariat which is responsible for 

developing the PEFCR for packed water by end of 2016, is composed of four federations: the European 

Federation of Bottled Waters (EFBW), the European Container Glass Federation (FEVE), Petcore Europe, 

the European PET industry association, and the Union Européenne des Transporteurs Routiers (UETR); 

four natural mineral water producers: Danone Waters, Ferrarelle, Nestlé Waters and Spadel; and one Life 

Cycle Assessment (LCA) consultant: Quantis. The first outputs of the on-going project will be presented 

mainly based on official deliverables, e.g., definition of PEF product category and scope of the PEFCR; 

definition of the product “model” based on representative products; PEF screening and draft PEFCR. 

Note: San Benedetto officially joined the Technical Secretariat since July 2015 

2. Introduction  

On April 9
th
 2013, the European Commission published a “Communication from the Commission to the 

European Parliament and the Council: Building the Single Market for Green Products, facilitating better 

information on the environmental performance of products and organisations” [1].  

An open call for volunteers was announced by the European Commission for the Product Environmental 

Footprint (PEF) and the Organisation Environmental Footprint (OEF), inviting companies, industrial and 

stakeholder organisations without geographical restriction to participate in the development of product-group 

specific and sector-specific rules. 120 applications were submitted by food and non-food sectors. Twenty-

five PEF projects were selected amongst which the pilot project for Packed Water. The Technical Secretariat 

[2] which is responsible for developing the Product Environmental Footprint Category Rules (PEFCR) for 

Packed Water by the end of 2016 (officially launched in July 2014), is composed of four federations: the 

European Federation of Bottled Waters (EFBW), the European Container Glass Federation (FEVE), Petcore 

Europe, and the Union Européenne des Transporteurs Routiers (UETR); four natural mineral water 

mailto:simone.pedrazzini@quantis-intl.com
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producers: Danone Waters, Ferrarelle, Nestlé Waters and Spadel; and one Life Cycle Assessment (LCA) 

consultant: Quantis. 

3. Materials and methods 

According to the European Commission, the objectives of the pilot phase are: i) to set up and validate the 

process of the development of product group-specific rules; ii) to test different compliance and verification 

systems, in order to set up and validate proportionate, effective and efficient compliance and verification 

systems; and iii) to test different business-to-business and business-to-consumer communication vehicles for 

Environmental Footprint information in collaboration with stakeholders. 

The following steps shall be followed when preparing a PEFCR: i) definition of PEF product category and 

scope of the PEFCR; ii) definition of the product “model” based on representative product(s); iii) PEF 

screening; iv) draft PEFCR; v) PEFCR supporting studies by Nestlé Waters, Danone and Ferrarelle in order 

to test the draft PEFCR with concrete case studies; vi) confirmation of benchmark(s) and determination of 

performance classes; vii) final PEFCR.  

4. Results 

As first concrete deliverable, the Technical Secretariat of the pilot defined the scope of the PEFCR. The 

main function of the product is to provide water from sealed containers ready to be drunk (“at the mouth”). 

Some alternative applications are present on the market which correspond to the main three sub-categories 

listed here: the “at horeca” application considers formats mainly used at a hotel, restaurant or café; the “at 

the office” application considers formats mainly used within a professional context; and “other channels” 

applications which include the “on the go” application (characterised by an easily transportable and useable 

format, easy opening and with a rather small format adapted to one single drinker) and the “at home” 

application (characterised by formats mainly used within a domestic context). The product category for this 

PEFCR is packed water which includes the full life cycle (cradle to grave) of a packed water serving sold in 

any market and intended for end-consumers for the three sub-categories of application mentioned above. 

Thus, one screening study has been conducted for each of these sub-categories using a specific product for 

each sub-category. The data used for each representative product were determined partly based on primary 

data from packed water manufacturers, existing sector guidance and European market statistics. The results 

of the screening studies will be publicly available by the date of the conference (the launch of the public 

consultation on the screening studies is foreseen by end of June 2015). 

The screening results will be presented according to the default Environmental Footprint (EF) impact 

category indicators from the PEF/OEF recommended method. This multi-indicator approach allows covering 

a wide range of potential impact categories. They correspond to the ILCD method [3] version 1.04 (ILCD 

2011 Midpoint+ (for use in PEF/OEF pilots) as available in the SimaPro software):  
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- Climate change 

- Ozone depletion 

- Human toxicity, cancer effects 

- Human toxicity, non-cancer effects 

- Particulate matter 

- Ionizing radiation HH 

- Ionizing radiation E (interim) 

- Photochemical ozone formation 

- Acidification 

- Terrestrial eutrophication 

- Freshwater eutrophication 

- Marine eutrophication 

- Freshwater ecotoxicity 

- Land use 

- Water resource depletion 

- Mineral, fossil & renewable resource depletion 

5. Conclusion 

The first outputs of the on-going project will be presented mainly based on official deliverables, e.g., 

definition of PEF product category and scope of the PEFCR; definition of the product “model” based on 

representative products; PEF screening and draft PEFCR.  
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1. Abstract  

Food processing industries, especially those processing seafood products, often face difficulties when 

performing the Life Cycle Assessment (LCA) of their products due to a lack of sector-specific Life Cycle 

Inventories (LCI) in the reference LCI databases. In order to overcome this issue, Cycleco has developed an 

LCI database specific to agri-food and seafood products processing, in compliance with the International 

Reference Life Cycle Data System (ILCD) requirements. The LCI database was developed using skills 

acquired during ecodesign and product environmental labelling projects1 involving agri-food and seafood 

sectors players. In the future it will be enriched with LCI datasets of seafood from catch and aquaculture, in 

a way that is consistent with the Product Environmental Footprint (PEF) pilot relating to Fish for human 

consumption [1]. 

2. Introduction  

Life Cycle Assessment (LCA) is the reference method for ecolabelling and product environmental 

footprinting. It is also a relevant decision support tool for ecodesign. However, as noticed during the 

FishAvniR
2
 prospective study, seafood processing industries often face difficulties when performing the 

environmental assessment of their products due to a lack of sector-specific LCIs, both in the reference LCI 

databases (ecoinvent v3, European reference Life Cycle Database (ELCD), IMPACTS® database) and in the 

sectorial ones (LCA Food DK and Agri-footprint database). The lack of high quality LCI data on seafood 

production systems is also highlighted in the frame of the Product Environmental Footprint launched by the 

European Commission [1]. In order to overcome this issue, seafood processing industries need a sectorial 

LCI database.  

3. Development of LCIs for seafood products  

The Life Cycle Inventory (LCI) of a system (i.e. product, processes or service) quantifies the elementary 

flows (or subtances) directly removed from the environment or directly released into the environment by the 

system. It is required to perform the life cycle impact assessment of the system. An LCI database is 

composed of LCI datasets of generic products and processes. The developed datasets are intended to form a 

generic LCI database on seafood products and are compliant with the “ILCD Entry Level” requirements, in 

                                                      
1
 Among these projects: FishavniR and Aquaconception, supported by Nord Pas de Calais’s (NPdC) Regional Council 

and ADEME (French Environment and Energy Management Agency), piloted by the French LCA platform [avniR], the 

French competitiveness cluster Aquimer and the Nouvelles vagues innovation platform. 
2 A strategic study aims to evaluate the seafood sector maturity and to improve the LCA practices and ecodesign 

applied to this sector. 
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terms of data collection, nomenclature of elementary flows, documentation, assessment and review of 

datasets. 

4. ILCD “Entry Level” requirements 

4.1 Method 

Compliance of data with the ISO 14040 and 14044 methodology is required. Compliance with the 

methodological requirements of the ILCD is not mandatory, but any deviation from the method (e.g. 

allocation or substitution) has to be specified and documented. 

4.2 Nomenclature of elementary flows 

The elementary flows nomenclature has to be compliant with the ILCD reference elementary flows [2]. 

Consequently, LCI must be converted from its original format into ILCD format. This conversion is based on 

matching elementary flows in their original format with those in ILCD format.  

4.3 Documentation of LCI 

The documentation must be written in the ILCD format [3]. The most convenient way to do that is to use the 

ILCD editor. This documentation is divided in four main sections (as detailed below) and is linked to several 

sub-documentations, for example the sources, the system's diagram or the contact names.  

- Process information, containing the Universally Unique IDentifier (UUID), the name, the classifications, 

the different representativeness descriptions and a flows diagram. 

- Modeling and validation, containing among others the LCI method and allocations, the data selection and 

combination process, the data sources, the sampling procedure and all information about the validation. 

- Administrative information, containing mainly the names of the data commissioner, data modeler and the 

origin of the data before conversion. 

- Inputs and outputs, containing all the flows entering and leaving the system. 

4.4 Review 

A critical review report must be performed by an independent reviewer who knows the relevant sector as 

well as the process or product described in the dataset and who is an expert in LCA method. The reviewer 

can be either external or internal. In both cases, the review has to be documented in the ILCD dataset but 

additionally in the second case a critical review report must be attached as a source.  

5. Case study of salmon 

Cycleco has developed ILCD “Entry Level” datasets specific to agri-food and seafood products processing. 

Their development is based on the following steps.  

5.1 Functional unit 

The functional unit of each LCI is defined through the four following aspects: 1) provided function (what?), 

2) size of the function (how much?), 3) quality of the function (how?), 4) duration of the function (how 

long?). As an example the functional unit of a freezing process can be described as: “Freeze 1kg of filleted 

fish at -20 °C during 5 years” (equipment life span).  
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5.2 Data collection 

Data collection applies to quantitative data of all relevant inputs and outputs that are associated to the 

dataset. Data collection mainly concerns foreground data like product flows, energy, water and waste flows. 

For each LCI these data are respectively collected from: specific measurements and/or bibliographic reliable 

sources and/or calculation and/or expert contributions.  

5.3 Life Cycle Inventory Modeling 

Life Cycle Inventory is obtained using a LCA software, a generic LCI database and the collected data. LCI 

quantifies the elementary flows and their receiving/providing environmental compartments. The LCI 

obtained are converted into the ILCD format. The result depends on the choices made for the mapping and 

relies on Cycleco's expertise. 

5.4 Documentation and review  

The documentation is written in the ILCD format using the ILCD editor, and the critical review report is 

performed by an internal reviewer. Data quality is assessed in the frame of this internal review. 

5.5 Examples of LCIs 

Table 1: Examples of LCI 

Datasets of products Datasets of processes 

Farmed salmon Slaughter 

Eviscerated salmon    Filleting 

Salmon fillet Quick-freezing 

Deep frozen salmon filet Storage (-20 °C) 

Ground salmon Storage (+4 °C) 

s 

6. Upcoming datasets 

The current database will be shortly completed with LCI datasets of seafood from several fishing and 

aquaculture techniques by a consortium mainly based in the Nord-Pas-de Calais area. A primary range of 

datasets has been defined. It is composed of seafood products and processes which are economically and 

technologically representative of the Nord-Pas de Calais area. The geographical representiveness of these 

primary datasets will be extended based on bibliographical data.  

6.1 Primary list of coming LCIs 

Table 2: Primary list of upcoming LCIs 

Datasets of products Datasets of processes 

Sea bass, Dicentrarchus labrax, from aquaculture and fishery Filleting 

Gilthead seabream, Sparus aurata, from aquaculture Salting 

Common sole, Solea solea, from fishery Smocking 

Saithe, Pollachius virens, from fishery Seafood packing 

Whiting, Merlangius merlangus, from fishery  

Atlantic mackerel, Scomber scombrus, from fishery  
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6.2 LCIs building calendar 

The project duration will be three years. The planning of the project includes the tasks listed below:  

 Transfer of LCI building skills from Cycleco to other partners; 

 Bibliographical state of the art ; 

 Field-based data collection from seafood production actors (fishery, aquaculture and processing 

industry); 

 LCIs modelling; 

 LCIs documentation and review. 

7. Conclusion 

This database constitutes the first step of a complete database on seafood production systems. It will be 

enriched with LCI datasets of seafood from catch and aquaculture in the near future, by a consortium 

composed of the Université du Littoral Côte d'Opale, the French aquaculture and seafood cluster AQUIMER, 

and the independent consulting office specialized in ecodesign and LCA studies Cycleco. Besides, the 

ADEME AGRIBALYSE II committee informed in 2014 that it could be interesting to increase the fishing 

sector knowledge. Consequently, some French fishing organizations showed their interest in working on the 

durability of seafood products through the LCA approach and presented a scientific and technical program to 

ADEME. Finally, France proposed to the “fisheries and aquaculture” ISO technical committee a new item 

which aim is to facilitate the identification of products from sustainable marine fisheries having little 

requirements to comply with. 
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1. Abstract  

The World Food LCA Database (WFLDB) provides over 350 unit processes and complete inventories for 50 

different products and 40 countries, as well as global averages based on the relative shares of main 

exporting markets. It relies on peer reviewed methodological guidelines that are, to the extent possible, 

compatible with existing standards and ongoing global initiatives. A unique approach combining statistical 

data from FAO and agronomic extrapolations was developed to generate consistent LCI data at national 

level for all types of crops. The outcome is a fully documented LCI database compatible with all usual LCA 

software and data formats. The WFLDB aims to create a strong basis to assist companies and authorities 

within environmental assessments, product eco-design, supply chain management, Products Environmental 

Footprint or Environmental Product Declarations (EPD). 

2. Introduction  

Agricultural production and food processing contribute significantly to environmental impacts on global 

warming, eutrophication and acidification ([1], [2], [3]). The use of LCA for the assessment of these impacts 

is steadily increasing in the last decade ([4]). However, major limitations to such assessments are the lack of 

reliable and consistent inventory data.  

Existing libraries of LCA data on food products are most often: i) not transparent enough; ii) incomplete: 

only few inventory flows are accounted for, which leads to an incomplete overview of the impacts of food 

products and misleading interpretations and conclusions; iii) inconsistent among each other, due to different 

approaches and assumptions; iv) outdated and consequently unreliable; v) not regionalized: country-specific 

data are rarely available. 

Therefore, it is critical to develop detailed, transparent, well-documented and reliable data to allow for more 

accurate and comparable LCA in the food sector.  

In this context, Quantis and Agroscope launched early 2012 the World Food LCA Database (WFLDB) 

project which will be completed at the end of 2015, in collaboration with ADEME, Bayer CropScience, the 

Swiss Federal Office for the Environment, General Mills, Kraft Foods, Mars, Mondelēz International, 

Monsanto, Nestlé, PepsiCo, Syngenta and Yara. The main aim of the WFLDB is to create a basis to assist 

companies and environmental authorities to assess and reduce (“eco-design”) the impacts of food and 
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beverage products, in initiatives like Environmental Product Declarations (EPD) or product labelling, as well 

as serving academic research. 

3. The methodology 

A new set of food inventory data is being developed from existing LCA studies on food products (previous 

assessments from project partners, existing databases from Agroscope and Quantis), literature reviews, 

statistical databases of governmental and international organizations (such as the Food and Agriculture 

Organization of the United Nations), environmental reports from private companies, technical reports on 

food and agriculture, information on production processes provided by the project partners as well as 

primary data. The developed datasets include regional specificities and impact from land use change, notably 

deforestation.  

For full transparency, the underlying methodology is made public, the database is wholly documented, all 

sources are referenced and all datasets are provided as unit processes. The end-user is therefore able to 

differentiate among different stages of the product system (e.g. agricultural production vs. food product 

manufacturing) and to identify the main impact contributors (e.g. pesticides, fertilizer use, etc.). 

Datasets created within the project are initially solely available to the project partners but all will 

progressively become public starting from 2016.  

WFLDB relies on peer reviewed methodological guidelines that are, to the extent possible, compatible with 

existing standards and ongoing global initiatives, such as: i) the ecoinvent data quality guidelines ([5]); ii) 

ISO 14040 and 14044 ([6], [7]); iii) the ILCD entry level requirements ([8]); iv) the PEF initiative ([9]); v) 

the LEAP partnership ([10] [11] [12]). 

A first version of the WFLDB methodological guidelines was made public in August 2014 ([13]) and an 

updated version will be published in August 2015 ([14]). These guidelines provide modeling rules for all life 

cycle stages, from farming activities to food preparation. All key environmental flows are assessed in the 

inventory, such as greenhouse gas emissions, other emissions to air, soil and water, land use change 

(including deforestation and peat drainage), water use and heavy metal uptake and release. Furthermore, 

continuous effort is made to follow the developments within other international initiatives and organizations 

such as The Sustainability Consortium (TSC), the Food and Agriculture Organization of the United Nations 

(FAO), the Sustainable Agriculture Initiative Platform (SAI), the EU Food SCP Roundtable, the EU Product 

Environmental Footprint (PEF) and the International Dairy Federation ([15]). Scientific guidelines used in 

other database initiatives such as AGRIBALYSE ([16]) and ACYVIA ([17]) are also considered for the 

definition of the WFLDB modelling principles (developments are considered as they occur).  

The advisory board of the WFLDB, consituted of non-govenmental organizations and research institutes, 

provides the necessary external insight on the project governance and its integration in broader 

environmental and political initiatives. Its role is however purely consultative and its members do not 

formally endorse decisions made by the projet leaders. 
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3.1 WFLDB coverage of food commodities 

The WFLDB includes close to 400 datasets for fertilisers, arable crops, vegetables, fruits, berries, nuts, dairy 

products, animal products at the farm and co-products from slaughter, oils, processed food, food storage and 

home cooking. Over 500 additional sub-datasets are also developed for irrigation systems, animal feed, seeds 

and seedlings, infrastructure, machinery and appliances. Datasets represent typical, conventional, production 

systems in over 40 countries from all continents. Specific agricultural systems such as organic or integrated 

production are not yet available but could be part of a future evolution of the WFLDB. Global averages are 

calculated based on the respective export shares of the different countries covered for each product, with 

minimum 50% of the world export being systematically covered. 

The WFLDB datasets are delivered in the most widely used data exchange formats for LCA software (i.e. 

ecospold v1, ecospold v2, SimaPro-CSV, Quantis SUITE 2.0-excel). This will enable using the datasets in 

most common LCA software: SimaPro, GaBi, OpenLCA and Quantis SUITE 2.0. A first series of datasets 

will be submitted to the ecoinvent Centre for their integration in the ecoinvent v3.3 database, in 2016. The 

entire database will be made public through the same channel by 2018. 

4. Conclusion 

The WFLDB is a comprehensive LCA food database providing detailed LCI data of high scientific quality, 

reliability and transparency, while being in line with other database developments such as ecoinvent v3.  

The database provides a large number of new food-related inventory datasets with a focus on different 

regional specificities. By providing unit process that can easily be customized and combined, WFLDB gives 

high flexibility to final users in performing LCA. 

Key learnings from the last 3 years of data development, as well as recommendations to practitioners and 

companies interested in the LCA of food products will be presented. 
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1. Abstract  

Existing guidelines and standards for creating LCI databases provide partly contradictory requirements, 

which lead to initiatives that aim on harmonization. As the harmonization is still ongoing, this challenges 

current database projects to find a scientifically sound and applicable way to establish coherent datasets. 

We present a four-step approach to deal with this challenge. Based on our experiences in the two ongoing 

projects ACYVIA and WFLDB we draw the following conclusions: it has been shown that by following the 

proposed approach, most con-tradictory advices from different guidelines do not appear because the number 

of relevant guidelines can be reduced. Creating a database that allows different methodological decisions 

can be achieved by clearly defining and reporting all methodological decisions that are followed. For 

remaining contradictory requirements, decision criteria are presented that can be taken into consideration 

to decide for one specific requirement.  

Keywords: LCI database, agri-food sector, methodological guidelines, harmonization 

2. Introduction  

Agricultural production systems and the processing of agricultural raw materials to food products contribute 

significantly to several environmental impacts like global warming, eutrophication and acidification [1, 2, 3]. 

Emissions from agricultural production systems show a high temporal and spatial variability which is a 

reason for a high variability of environmental impacts of these systems [4, 5, 6, 7]. These facts together with 

an increasing public interest enforce the demand for LCI data in the agri-food sector in companies, science 

and governments in the last years. Various guidelines exist (Table 1) with partly contradictory requirements 

which causes confusion [8]. A recent review of such reference methods conclude that flexibility with respect 

to methodological standards is more common than prescriptive requirements are [9]. In this context, several 

initiatives and projects deal with the creation of LCI databases that are either focused on the agri-food sector 

or cross-sectorial including agri-food related content, e.g. ACYVIA [10], AGRIBALYSE® [11], Asian Agri-

Food database [12], Australian LCI Database initiative [13], Base IMPACTS® [14], Chilean Food and 

Agriculture LCA database [15], ecoinvent [16], ELCD [17], World Food LCA database [18]. 

This paper wants to start a discussion on the question how one can deal with the situation of existing 

guidelines and standards with contradictory requirements when creating an LCI database. The focus is on 

LCI modelling and the ideas presented are not final solutions but rather a starting point for further 

discussions. Basically, three steps are presented:  
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1) Categorizing the database to select the appropriate standard, guideline or tool for the purpose of the 

database to avoid contradictions 

2) Showing an example for dealing with the requirement that a database should be applicable for 

different purposes 

3) Developing basic principles on how to deal with remaining contradictions 

 
Table 1: Non exhaustive list of existing guidelines and standards for LCI database development. 

Short Title  Full title of the guideline or standard Reference 

BPX 30-323-0 Environmental communication on mass market products — Part 0: General 

principles and methodological framework 

[19] 

PAS 2050:2011 The Guide to PAS 2050:2011: How to carbon footprint your products, identify 

hotspots and reduce emissions in your supply chain 

[20] 

PEF Guide Product Environmental Footprint (PEF) Guide, Annex II to the Recommendations 

of the Commission of 9 April 2013 on the use of common methods to measure and 

communicate the life cycle environmental performance of products and 

organizations 

[21] 

Envifood protocol Environmental Assessment of Food and Drink Protocol [22] 

MTT Guidelines  Guidelines for the assessment of the life cycle greenhouse gas emissions of food [23] 

IDF Guide A common carbon footprint approach for dairy – The IDF guide to standard 

lifecycle assessment methodology for the dairy sector 

[24] 

IPCC Guidelines Guidelines fo National Greenhouse Gas Inventories -Agriculture, Forestry and 

other Land Use. 

[25] 

ISO 14025:2006 Environmental labels and declarations - Type III environmental declarations - 

Principles and procedures 

[26] 

ISO 14040:2006 Environmental management - Life cycle assessment - Principles and framework [27] 

ISO 14044:2006 Environmental management - Life cycle assessment – Requirements and guidelines [28] 

ISO 14067:2013 Carbon footprint of products—requirements and guidelines for quantification and 

communication. 

[29] 

ILCD Handbook International Reference Life Cycle Data System (ILCD) Handbook - General guide 

for Life Cycle Assessment - Detailed guidance 

[30] 

Shonan Guidance Principles Global Guidance Principles for Life Cycle Assessment Databases , A basis for 

greener processes and products 

[31] 

Ecoinvent data quality guidelines  Overview and methodology. Data quality guideline for the ecoinvent database 

version 3 

[16] 
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3. Methods  

The following methodological procedure is a proposition on how a coherent database could be created given 

the various guidelines and methodological recommendations as illustrated in Table 1 above. We suggest a 

procedure with the following main steps: 

- Step 1: Categorizing the database as “general database” or “specific database”. For categorizing a 

database we propose to use specifications for the geography, application, and sector that are addressed 

given in Table 2. 

- Step 2: Identify the most relevant guidelines (from Table1) related to the database. 

- Step 3: Identify the methodological options that are crucial for the database. Options for LCI occur 

e.g. for system boundary choice, direct emission modeling, allocation methods, end-of-life modeling, 

data source choices and the kind of dataset documentation. 

Step 4: Decide which options to use in order to meet the criteria according to Table 2 

This four-step procedure is applied to two ongoing database projects that are: 

- WFLDB (World Food LCA Database): This project is developing datasets for selected agricultural 

primary products as well as food and beverage products produced in the most relevant countries that 

supply the global market. 

- ACYVIA (Analyse de CYcle de Vie dans les Industries Agro-alimentaires): This project addresses 

environmental product declaration of food transformation processes at national-level in France.  

Table 2: Categorizing food LCI databases 

 

4. Results 

4.1 Categorizing databases 

The two database projects WFLDB and ACYVIA can be clearly categorized with as “General database” and 

“Specific database”, respectively (Table 3). Table 2 shows also that the two projects differ very much in the 

order of guidelines that are most relevant for each project. For ACYVIA the BPX guidelines are of the 

highest importance defining methods for LCI modelling, system boundaries, allocation and end-of-life 

modelling, whereas the ILCD entry-level is of importance regarding the method for data quality assessment 

and the selection of external reviewers. As a consequence, in case of the ACYVIA database practically no 

choices regarding methodological options remain, since BPX defines them all for EPD in France. In contrast, 

for WFLDB due to the wide range of geographical, sectorial applications a number of methodological 

decisions according to ISO 14044/44 have to be made. In practice this means that for each methodological 

issue one option has to be chosen. Such choices need to be described in the documentation of the database. 

Criteria General database  Specific database 

Geographical specification Global, multi-national National, regional 

Application addressed 

 

Ecodesign and Environmental 

product declaration (EPD) 

Ecodesign or Environmental 

product declaration (EPD)  

Sectorial specification Agriculture and food industry Agriculture or food industry 
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But whatever option is chosen, it might be that for a certain database user and for certain applications this 

methodological option is not the one that suits well. Therefore we model a methodological option in a 

reversible way, i.e. the user will have the opportunity to apply another methodological option that fits to the 

desired application. This is e.g. the case when economic allocation is applied but mass allocation would be 

preferred by a user. In the following we will illustrate for the case of modelling “heavy metal uptake by 

crops” what is meant by giving the option to the user to exclude heavy metal uptake.   

 

Table 3: Categorizing WFLDB and ACYVIA database and associated relevant guidelines 

 WFLDB 

General database  

ACYVIA 

Specific database 

Geographical specification Global National 

Application addressed Ecodesign and EPD EPD 

Sectorial specification Agriculture and food industry Food industry 

Guidelines  

(order of importance) 

1. ISO 14040/ 44  

2. ILCD handbook 

3. ENVIFOOD 

4. Others 

1. BPX 30-323-0 

2. ILCD entry-level 

3. ISO 14040/ 44  

4. Others 

 

4.2 Option of including or excluding “heavy metal uptake by crops” 

In crop production heavy metals (e.g. Cadmium) will be imported to the field by inputs such as mineral 

fertilizers. On the field the plant takes up nutrients but also heavy metals that will be exported from the field 

with the harvested crop. In case the whole life cycle (i.e. from cradle to grave) is assessed, the amount of 

heavy metal exported by the crop is of interest since this might cause toxicological problems at another place 

(e.g. waste water treatment after consumption and digestion). But if the LCA addresses only the crop 

production on the field (i.e. cradle to gate) the uptake of heavy metal could lead to unrealistic “credits” and 

therefore should be excluded from the assessment. We suggest to model heavy metal uptake in such a way 

that the uptake by the plant can be set to zero, if needed. 

5. Discussion 

We proposed a first approach how one can deal with the situation of guidelines and standards with 

contradictory requirements when creating an LCI database. The three criteria (geography, application, 

economic sector) for categorizing databases have been sufficient for the two projects WFLDB and ACYVIA 

but its sufficiency and applicability need to be proved in practice with other databases.   

If contradictions remain, we propose to develop a hierarchy of basic principles that support to make 

appropriate methodological decisions in respect to LCI modelling. Such criteria can be: 

- scientific nature of the requirement 

- internal consistency of the database 

- acceptance by stakeholders   

The ideas presented have to be further developed and tested more comprehensively in practice.  
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6. Conclusion 

By categorizing databases, relevant guidelines can be selected. This helps to identify the relevant 

methodological options. By following this approach, most contradictory advices from different guidelines do 

not appear because the number of relevant guidelines can be reduced for each individual database.  
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1. Abstract  

Secondary data can play an important influence on the LCA results when assessing the environmental 

performance of a product. This work aimed at analysing datasets currently available in some commonly used 

LCA databases (DBs) (Ecoinvent v3, Agrifootprint and Agribalyse) in order to define how different 

modelling approaches can condition the environmental performance of an agro-food product. Furthermore, 

some considerations on the sources of data and the modelling choices performed within databases were 

derived.  

Wheat primary production in France was chosen as representative process for the study.  

The analysis highlighted significant differences among the environmental performance of the same product 

in different DBs related to both the choice of data and the modelling approach. 

2. Introduction  

Performing a LCA of a product is a resources-intensive process and data collection can be identified as a 

critical point. The use of secondary data is consequently a common practice in order to streamline the 

assessment of the environmental performance of a product [1]. DBs are a major source of secondary data and 

the choice of the DB for background data can substantially influence the results of the study. Indeed the 

environmental performance of equivalent products (same production process and geographical location) can 

significantly vary due to differences in both the sources of the inventory data and the modelling approach 

adopted in different DBs.  

This work aims at analysing datasets currently available in some LCA DBs commonly used in the agro-food 

sector (Ecoinvent v3, Agribalyse and Agrifootprint).  

Wheat was selected as representative cereal, since it is contained in a large share of food products, for which 

the increase of both quality and robustness of agricultural inventories is of upmost importance. Wheat 

production in France was chosen as a representative process, since France is one of the main European wheat 

producers.  

Starting from the analysis of the LCA results, comparisons among the sources of data and the modelling 

approaches were done in order to identify points of convergence and divergence among datasets and to 

derive some considerations on the appropriateness of the choices. Moreover, the consistency of the inventory 

data with FAO statistics, European regulations and other agricultural statistics and the compatibility between 

the inventory flows and the characterisation methods recommended by the International Reference Life 

Cycle Data System [2] and the Product Environmental Footprint (PEF) [3] were investigated.  
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The results of the analysis can be used by LCA practitioners to choose the most appropriate DB according to 

the specific aim of their studies.  

2.1 Wheat inventories analysis  

Three datasets were considered (Table 1). The effect of allocation of the impacts to straw was removed, 

allocating the entire environmental burden of the field activities to the wheat grains. 

 

Table 1: Datasets considered in the analysis 

Database  Process denomination 

Agribalyse  Soft wheat grain, conventional, national average, at farm gate/FR U 

Agrifootprint  Wheat grain, at farm/FR  

Ecoinvent v3  Wheat grain {FR}| wheat production | Alloc Def, U 

 

The analysis was performed with the software Simapro v. 8.0.4.30, using the ILCD Midpoint impact 

assessment method as implemented in the software with updated characterisation factors for land use (ILCD 

v.1.0.6) [4] .   

The analysis was focused on the foreground system of wheat cultivation. Only the elementary flows with the 

largest contributions (cut-off 1%) to each impact category were subject to the analysis. Significant 

differences were observed in the LCA results of the datasets considered. In the next paragraphs the analysis 

of human toxicity and land use impact categories is reported.  

2.2 Human toxicity 

 
Figure 1: Impact on human toxicity impact categories (CTUh/kgwheat) 

 

                 

 

Impact on human toxicity includes both carcinogenic and non-carcinogenic effects (Figure 1). For both, the 

main foreground contributions are from heavy metals emissions in soil and water.  

The heavy metals balance is modelled with the same approach in the three DBs [5]: emissions of heavy 

metals into the soil are obtained from the balance of inputs and outputs. However the type and the amount of 

inputs and the outputs considered in different DBs vary singificantly (Table 2). 
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Table 2: Inputs and outputs considered for the heavy metals modelling 
 

  

Agribalyse Agrifootprint  Ecoinvent v3  

Inputs 

Seeds Yes No Yes 

Pesticide Yes No Yes 

Fertilisers Yes Yes Yes 

Manure Yes Yes Not applied 

Deposition Yes Yes Yes 

Outputs 

Leaching  Yes Yes Yes 

Runoff Yes No Yes 

Biomass removal Yes Yes Yes 

 

It has to be considered that heavy metals leaching and runoff due to soil erosion are taken into account in the 

Agribalyse and Ecoinvent v3 datasets, but no specific characterisation factors are reported in order to take 

into account the different haevy metals fates (respectively groundwater and surface water) related with these 

two removal mechanisms.  

2.3 Land use 

The impact on land use is associated with both land occupation and land transformation. The main 

contribution is from the foreground system (Figure 2)mainly due to land occupation, except for Agribalyse in 

which transformation processes play an important role.  

 

Figure 2: Impact on land use (kgCdeficit/kgwheat) 

 

 

In Agribalyse and Ecoinvent v3 the same modelling approach is adopted but they refer to different data 

sources (Table 3)Agribalyse dataset refers to national average land use change data reporting a negative 

impact associated to the flow “transformation from urban, discontinuously built”. It represents the 2,26% of 

the transformed area but the flow has a highly negative characterisation factor, resulting in a negative 

contribution on the potential impact on land use. In Ecoinvent v3 datasets, instead, the net transformation 

contributions resulted null due to the fact the wheat cultivation was part of a crop rotation and did not cause a 

specific land transformation. Agrifootprint reports a net positive transformation from permanent crop 

cultivation to arable land (Table 4). 
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Table 3: Models and sources of primary data for land transformation 

  Land transformation 

Model  Sources of data  

Agribalyse  Frischknecht et al, 2007 [6] Teruti-Lucas, 2006 [7]  

Agrifootprint Direct land use change assessment tool  FAOstat 

Ecoinvent v3 Frischknecht et al, 2007 [6] Field data 

 

Table 4: Inventory data for land transformation (flows belonging to the same category and with the same 

characterisation factor have been summed) 

  Agribalyse  Agrifootprint  Ecoinvent v3 

Transformation to arable  10000,0 47,3 1,5 

Transformation from arable  9629,2 41,7 1,5 

Transformation from permanent crop 9,6 5,6 0 

Transformation from forest  67,9 0 0 

Transformation from pasture and meadow 67,1 0 0 

Transformation from urban, discontinuously built  226,1 0 0 

 

4. Conclusion 

The analyses of wheat inventories highlighted that the differences among the data sources and modelling 

approaches in the three DBs affected significantly the results. LCA practitioners are recommended to 

consider this aspect and to perform an accurate choice of secondary datasets in compliance with the goal and 

scope of the study.  
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1. Abstract  

This paper describes the food PEFCR developments so far and the technical consequences for Agri-

footprint®. This is illustrated by an LCA case study on animal production, which shows the differences 

between the PEF compliant Cattle Model Working Group recommendations and the former allocation and 

emission modelling in Agri-footprint®. The future development of Agri-footprint® is to follow this same 

route of supporting other major sector guidelines or PCR developments, such as the development of datasets 

that support studies compliant to the LEAP guidelines of FAO. 

2. Introduction 

In April 2013 the European Commission published the Product Environmental Footprint (PEF) method. This 

method is a framework of general requirements and principles for LCA. The European Commission aims to 

develop more specific technical guidance for product groups (‘category rules’) and tests the development of 

PEFCR with several European industrial sectors.  

In 2014, the second wave of 11 PEF food pilots started, which involves food product groups such as red 

meat, dairy, beer, wine, pasta. Blonk Consultants supports the development of three pilots (feed, beer and red 

meat). Since it is the goal of PEFCRs is to support the communication of the environmental performance of 

products, data consistency and compliance with PEFCR requirements is key.  

Agri-footprint® is an LCA database that is developed with the intent to support the development of 

agricultural and food product (agri-food) LCAs, for a wide range of applications. This is the reason that it 

supports multiple allocation and emission modelling methods. The PEF pilot initiatives generate new data 

requirements on for example allocation. These will be implemented in future updates of Agri-footprint® to 

support PEF-compliant calculations. A first step of alignment of Agri-footprint® to the PEF data quality 

requirements is integration of the calculation approach of the Cattle Model Working Group (CMWG) in 

Agri-footprint® 2.0, which is scheduled to be released in Q3/Q4 of 2015. The CMWG provided specific 

guidance on how to allocate between co-products on the farm and slaughterhouse level, and on how to 

calculate specific emissions from animal husbandry (such as ammonia and nitrous oxide emissions). To 

show some of the implications of the implementation of CMWG calculation rules, a case study on Dutch 

dairy and Irish beef will be presented in this paper, where the original life cycle inventories of Agri-footprint 

are compared to the inventories aligned to the CMWG calculation rules. 
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3. Methodology 

3.1 Calculation framework of Cattle model working group 

The objective of the cattle model working group was to harmonize LCA PEF methodology at farm and 

slaughterhouse level by reaching a consensual agreement regarding: 

 Allocation of upstream burdens among the outputs at farm and among outputs at 

slaughterhouse level, 

 Models for methane emission from enteric fermentation, 

 Models for emissions from manure management and 

 A model for carbon sequestration/release in grassland systems. 

 

The results of the CMWG and the methodologies are to be used as baseline approach in feed, dairy, meat, 

leather and pet food pilots throughout the pilot process and are described in a report [1]. Agri-footprint 2.0 

contains life cycle inventories which take into account the CMWG baseline approaches (PEF compliant 

processes) for, Dairy farm systems in the Netherlands, Irish beef, and associated slaughterhouse processes. 

The main differences between the default Agri-footprint and the CMWG baseline approaches are (1) the 

allocation between co-products and (2) the calculation of certain types of emissions  8see table 1) 

When the Agri-footprint approach complies with the CMWG baseline approach or uses a higher Tier level, 

the Agri-footprint approach has been used in the PEF compliant processes.  

 

Table 1 : Main differences between Agri-footprint approach and CMWG baseline approach (CMWG = Cattle model 

working group, CH4 = Methane, EMEP/EEA = European Monitoring and Evaluation Programme / European 

EnvironmentAgency , FAO = Food and Agriculture Organisation of the United Nations, IDF = International Dairy 

Federation, IPCC = Intergovernmental Panel on Climate Change, N2O = Nitrous Oxide, NH3= Ammonia, NMVOC = 

Non-methane volatile organic compounds) 
 

Topic Agri-footprint CMWG baseline approach 

Allocation on the dairy farm Economic/ Mass/ Gross 

energy content 

IDF allocation 

Allocation in the slaughterhouse Economic/ Mass/ Gross 

energy content 

Economic allocation with predefined 

allocation fractions 

CH4 emissions due to enteric fermentation IPCC guidelines Tier 3 IPCC guidelines minimum Tier 2 

CH4 emissions due to manure 

management 

IPCC guidelines Tier 2 IPCC guidelines minimum Tier 2 

Direct and Indirect N2O emissions from 

livestock manure 

IPCC guidelines Tier 2 IPCC guidelines minimum Tier 1 

NH3 emissions from livestock manure IPCC guidelines Tier 2 EMEP/EEA guidelines minimum Tier 2 

NO emissions from livestock manure - EMEP/EEA guidelines minimum Tier 2 

NMVOC emissions from livestock 

manure 

- EMEP/EEA guidelines minimum Tier 2 

Particulate matter emissions from 

livestock manure 

EMEP/EEA guidelines 

minimum Tier 3 

EMEP/EEA guidelines minimum Tier 2 

Soil C stocks in grassland Based on FAO statistics 

and IPCC calculation 

rules, following the PAS 

2050-1 methodology 

Not taken into account unless land use 

change happened less than 20 years 

before assessment year.  
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3.2 Systems to be compared 

Currently, two bovine farming systems are included in Agri-footprint: a Dutch dairy system (producing raw 

milk, calves and cowes for slaughter), and an Irish suckler-beef system (which only produces beef for 

slaughter). Also the associated slaughterhouse processes are included in Agri-footprint. Of these two bovine 

systems, two variants are modelled; the ‘default’ Agri-footprint inventories and modified ‘PEF-compliant’ 

inventories that comply to the rules of the CMWG document. To assess the effect of the CMWG allocation 

approach and emissions modelling, the ‘PEF-compliant’ Irish beef and Dutch dairy models are compared to 

the ‘default’ Agri-footprint inventories. A description of the underlying data and sources can be found in the 

metholodogy and data reports [2][3] accessible through www.agri-footprint.com. The unit of analysis was “1 

kg of beef meat, fresh at slaughterhouse”. The Irish beef LCI was based on a study by Casey and Holden [4], 

whereas the Dutch dairy system was based on previous work by Blonk Consultants [5]. 

4. Results 

Figure 1 presents the characterized results for Irish beef while Figure 2 presents the results for meat from 

Dutch dairy. As can be seen in Figure1 the PEF compliant model is similar to the default Economic 

allocation approach of Agri-footprint. This makes sense as the CMWG recommends economic allocation at 

the slaughterhouse (and no allocation takes place on the farm). The only differences can be explained by 

different modelling approaches for calculating emissions from enteric fermentation and manure 

management. 

Figure 1 :Impacts from beef meat, fresh, at slaughterhouse from Irish beef cattle. Results for the allocation as agreed in 

CMWG, and the three default Agri-footprint allocation options respectively 

 

 

However the results for beef meat from Dutch dairy cows, shown in  Figure 2 are substantially higher than 

the default Agri-footprint model. This is mainly explained by a shift in allocation on the dairy farm. Whereas 

Agri-footprint uses economic, mass or energy allocation, the PEF compliant model applies IDF allocation.  

In the PEF compliant study 12.35% of farm impacts are allocated to the cows for slaughter, whereas in the 

default Agri-footprint model (with economic allocation) 5.2% is attributed to the cows (and even lower in 

the other two allocations). This explains the big discrepancy between the results.  

http://www.agri-footprint.com/
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Figure 2:  Impacts from dairy cow meat, fresh, at slaughterhouse from Dutch dairy cattle. Results for the allocation as 

agreed in CMWG, and the three default Agri-footprint allocation options (Economic/Energy/Mass), respectively 
 

 

5. Conclusion 

For Irish beef, the PEF compliant model provides similar results as the default Economic allocation approach 

of Agri-footprint. The only differences can be explained by different modelling approaches for calculating 

emissions from enteric fermentation and manure management. However the results for beef meat from Dutch 

dairy cows, are substantially higher than the default Agri-footprint model, which can be explained by the 

differences in allocation. 

Whereas the more detailed emissions modelling calculations proposed by the CMWG can be seen as a 

refinement of the method, the decision to use IDF allocation on the dairy farm level has a major influence on 

the outcomes of future PEF studies of meat from dairy systems. This emphasizes that in order to make a fair 

(environmental footprint) comparison between products, clear calculation guidelines for cross-cutting issues 

between the PEF pilots need to be established, which should also be reflected in any seconday databases that 

are used. 

 

5. References 

[1] JRC, “Baseline Approaches for the Cross-Cutting Issues of the Cattle Related Product Environmental Footprint 

Pilots in the Context of the Pilot Phase,” 2015. 

[2] Blonk Agri-footprint BV, “Agri-footprint 2.0 - Part 1 - Methodology and basic principles,” Gouda, the 

Netherlands, 2015. 

[3] Blonk Agri-footprint BV, “Agri-footprint 2.0 - Part 2 - Description of data,” Gouda, the Netherlands, 2015. 

[4] J. W. Casey and N. M. Holden, “Quantification of GHG emissions from sucker-beef production in Ireland,” 

Agric. Syst., vol. 90, no. 1–3, pp. 79–98, Oct. 2006. 

[5] R. Broekema and G. Kramer, “LCA of Dutch semi-skimmed milk and semi-mature cheese,” 2014.  

  

 

  



 

 

 

LCA and footprints to asses food product 

chains 

 

  



 

 

76 

Energy Use in the EU Food Sector:  State of Play and Opportunities for Improvement 

Fabio Monforti-Ferrario
1
, Jean-Francois Dallemand

1
, Hrvoje Medarac

1
, V Motola

1+
, Irene Pinedo

1
, Luca Castellazzi

1
, 

Paolo Bertoldi
1
, Nicola Labanca

1
, Manjola Banja

1
, Nicolae Scarlat

1
 

Erwin M. Schau
2
, Malgorzata Goralczyk

2
, Serenella Sala

2
, Erwan Saouter

2
, David Pennington

2  

Bruno Notarnicola
3
, Giuseppe Tassielli

3
, Pietro Renzulli

3
 

1
European Commission, Joint Research Centre, Renewable Energy Unit, Via E. Fermi 2749, 21027 Ispra, Italy 

2 
European Commission, Joint Research Centre, Sustainability Assessment Unit,  

Via Enrico Fermi 2749, 21027 Ispra, Italy 
3 
Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, Bari, Italy 

E-mail contact: fabio.monforti-ferrario@ec.europa.eu   

 

1. Abstract 

In the frame of its activities in supporting the EXPO 2015 and on the behalf of DG ENER, JRC has recently 

published a report [1] aimed at discussing the current state of play for food-related energy consumption and 

opportunities for improvement in the European Union. Detailed estimates for energy consumed in each 

production step for a basket of most representative food products were computed based on a LCA approach. 

These estimates have served as bases for discussing challenges and opportunities for making the EU food 

consumption "energy-smarter", both in terms of decreasing the overall energy consumed and increasing the 

share of renewable energy employed in the whole food chain 

2. Introduction  

The food sector is a major consumer of energy and the amount of energy necessary to cultivate, process, 

pack and deliver the food to European citizens’ accounts for a relevant share of overall energy consumption. 

This study presents the methodology and the main findings of a recent study aimed at identifying the current 

European situation for food-related energy consumption and opportunities for its improvement, where 

improvement could be pursued either through decreasing energy consumption and increasing the Renewable 

Energy (RE hereafter) share.  

3. Methodology and data  

Basket definition  

European food consumption is complex and the definition of a 'reference' EU food basket is a challenging 

task. Indeed, the basket cannot be too detailed so the analysis can be performed within a reasonable amount 

of time and resources, and should contain products for which robust data accepted and validated through 

peer reviewing is available. 

JRC has recently developed a battery of ‘basket of products’ indicators [2], aimed at analysing and 

monitoring the consumption patterns in the EU and their related environmental impacts. The JRC basket-of-

product study has been recently revised and updated, providing a picture of the nutrition basket updated to 

2013 (see Table 1). 
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Table 1: JRC food basket – 2013 update 

 

 

This food basket does not cover all food consumption but represents the very noticeable mass share of 61% 

of the consumed food in 2013 in the EU-27. A detailed analysis of the overall environmental impacts of the 

JRC food basket has been developed through the LCA of each product, following a harmonised 

methodological framework. A detailed description of the methodology and data sources applied is available 

in [3]. The impact categories chosen are Cumulative Energy Demand v 1.08 and Global Warming. The 

cumulative energy demand is based on the method published by ecoinvent version 2.0 [4] and adopted to be 

used in the LCA software and databases. For Global warming, the characterisation factors are taken from the 

model developed by the Intergovernmental Panel on Climate Change (IPCC). 

4. Key results 

Figure 1 – left panel shows the amount of energy embedded in the JRC food basket in units of MJ per EU 

citizen, broken down for the 17 products represented and their production steps. Figure 1 – right panel - 

shows the same data per kilogram (or litre) of product. 

 

Figure 1: Energy embedded in the JRC food consumption basket for the average citizen, broken down for products and 

production steps. Units: left panel: MJ/capita – right panel: MJ/kg or MJ/l 
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As JRC food basket does not cover the whole food consumption, results need to be upscaled to estimate the 

energy flows across the whole EU food supply chain. Products selected for the basket were expected to 

represent well the product groups to which they belong. Under this assumption, the energy embodied per 

mass unit in the 17 sample products was supposed to be equal to the energy embodied per mass unit in all the 

products belonging to the same group, including production steps and energy source. However, food actually 

consumed does not equal the total food produced to satisfy European consumption, as wasted food in the EU 

has been estimated to be about 100 million tonnes per year [5]. Energy embedded in the wasted food was 

estimated as the weighted average of food products contained in the whole JRC food basket. 

Figure 2 shows the results of such an energy flow analysis in terms of the average energy embedded in the 

food consumed by each EU citizen, including the amount of energy lost in food wastage, detailed per 

production step. In total, an energy amount of about 23.6 GJ is embedded in the food consumed in 2013 by 

each European citizen, equivalent to the gross energy provided by 655 litres of Diesel fuel. Considering a 

population of 502.5 million people, the overall amount of energy embedded in the food consumed in EU-27 

in 2013 is estimated to 11 836 PJ (283 Mtoe), equivalent to 17 % of the EU-27’s gross energy consumption 

and 25.7 % of its final energy consumption in 2013.  

 

 

Figure 2: Energy embedded in the food consumed by the average EU-27 citizen, broken down by food production step 

 

Such an estimate is equal to the figure of 17% of energy consumption in the UK related to food production 

reported [6] and it is also consistent with FAO evaluations [7] when applied to strongly industrialised areas.  

Agriculture, including crop cultivation and animal rearing, is the most energy intense phase of the food 

system—accounting for nearly one third of the total energy consumed in the food production chain. The 

second most important phase of the food life cycle is industrial processing, which accounts for 28% of total 

energy use. Together with logistics and packaging, these three phases of the food life cycle "beyond the farm 

gate" are responsible for nearly half of the total energy use in the food system. In total, about 60 % of the 

energy embodied in European food derives from agriculture and logistics, two sectors largely dominated by 

fossil fuels in which the penetration of renewable energies is still relatively small. 
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Figure 3: Energy embedded in the food consumed by the average EUcitizen in 2013, detailed per energy source (left) 

compared to the overall EU energy consumption mix in 2013 (right) 

 

 

Consistently, about 80 % of the total energy associated with the entire food life cycle originates from fossil 

fuels (Figure 3 - left  side), while all renewable energy sources account for 7.1 %. The overall EU-27 energy 

consumption mix in 2013 (Figure 3 — right-hand side) shows a RE share around 15 % and a 72 % 

contribution from fossil fuels. Thus, while the EU has made important progress in incorporating renewable 

energy across the economy, the share of renewables in the food system remains relatively small. Possible 

solutions and pathways for improvement are extensively discussed in the report.  

5. Conclusions and way ahead  

Energy efficiency in agriculture production is steadily improving (direct energy consumption per hectare has 

declined by about 1% every year in the last two decades) but additional array of responses across the food 

system are still needed. Energy remains a crucial input for cultivation success but huge improvements are 

possible. European farmers are already leading the way in this transition, for example, through efforts to 

increase the use self-produced renewable energy in agriculture.  Thanks to investments in farm-based 

technologies like biogas, farmers have the potential to not only become energy self-sufficient, but also to 

make a major contribution to EU energy production while reducing GHG emissions.  The EU food industry 

is also giving important contributions to make their activities more sustainable, through both increased 

investment in renewable energy and energy efficiency improvements.  The food industry's energy 

consumption from 2005-13 has declined, both in absolute terms as well as in terms of energy intensity, 

producing more while using less energy. Policies should continue to lead this process.  

  



 

 

80 

6. References 

[1] JRC (2015) Energy use in the EU food sector: State of play and opportunities for improvement, Report EUR 27247 

EN 

[2]EC-JRC (2014) Indicators and targets for the reduction of the environmental impact of EU consumption: Basket-of-

products indicators and prototype targets for the reduction of environmental impact of EU consumption. Deliverable 5 

from EC.JRC to DG ENV , JRC Contract No. 33431 

[3]Notarnicola, Tassielli G., Renzulli P.A., 2015. Update of the structural analysis of EU food consumption: Selection 

of representative products Notarnicola, Tassielli G., Renzulli P.A., 2015. Update of the structural analysis of EU food 

consumption: Selection of representative products for the basket and analysis of tHE embedded energy and its related 

GHG emissions. Technical report commissioned by the Institute for Energy and Transport (European Commission – 

Joint Research Centre). 

[4] Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Doka, G.; Dones, R.; Hischier, R.; Hellweg, S.; Humbert, S.; Margni, 

M.; Nemecek, T.; Spielmann, M. 2007. Implementation of Life Cycle Impact Assessment Methods: Data v2.0. 

ecoinvent report No. 3, Swiss centre for Life Cycle Inventories, Dübendorf, Switzerland.  
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1. Abstract  

The project described encompasses a life cycle evaluation, in terms of energy flows and greenhouse gas 

emissions related to 21 types of EU bread. The work involved building a common framework with respect to 

the assumptions and models to be used for the single product assessments in order to achieve consistent 

LCAs and to obtain comparable results. The system was divided into seven parts: agriculture/breeding, 

storage, wheat/rye milling, ingredients production, logistics, packaging, bread production. The results show 

that in both the indicators the breads which have simple recipes, characterised by the presence of flour, 

water and yeast have the best energy and global warming results. On the contrary, the breads which have 

more complex recipes, characterised by the presence of animal-based products have the worst results. In all 

the cases, the energy consumption due to the baking process represents a hot spot. 

2. Introduction  

This project is part of the scientific support of the EU Joint Research Centre (JRC) for the EXPO 2015 in the 

field of energy use and sustainable energy solutions in the food sector. Among other things, such support 

includes the production of content and data to be inserted in the interactive and visual material aimed at 

completing the experience of the visitors of the EU pavilion ( http://europa.eu/expo2015/ ) and to be used to 

illustrate the diversity of nutrition habits across the European Union.    

The aim of this work is to provide estimates about the energy flows and the greenhouse gases (GHG) 

emissions associated with the production of 21 types breads, consumed in the EU, following an LCA 

approach. In order to calculate the energy flows and GHG emissions related to the bread types, process-

based life cycle inventory models were developed, following an LCA "from-cradle-to gate" approach.  

The methodological starting point for this project have been the reports of the preceding "basket of product" 

LCA studies developed by the Institute for Environment and Sustainability (IES) of the JRC [1] therefore for 

this project, the methodology already developed in the previous JRC studies was followed as closely as 

possible. 

3. Method 

The first step of the work involved building a common framework with respect to the assumptions and 

models to be used for the single product assessments in order to achieve consistent LCAs and to obtain 

comparable results. The next step was the development of the process-based life cycle inventory models for 

the products and of the corresponding process-based life cycle inventories. The functional unit is defined as 

1 kg of bread ready to be sold in an artisanal bakery. 

http://europa.eu/expo2015/
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The system was divided into seven parts: agriculture/breeding, storage, wheat/rye milling, ingredients 

production, logistics, packaging, bread production. The LCI datasets were constructed based on foreground 

data obtained from literature, direct industry sources and background data mainly was taken from the 

Agrifootprint [2] and Ecoinvent v.3 [3] databases. As regards to wheat production, the environmental 

datasets for each (producing and exporting) country was built using different data sources such as the IFA 

database [4], which provides data on the fertiliser consumption per country, the FERTISTAT database [5] 

which provides data on the specific consumption of fertilisers in the cultivation of wheat for different 

countries and the FAOSTAT database [6] which was used to obtain the yields of grain per hectare in the 

various countries. 

In the last step of the work two indicators were developed: Energy Consumption derived from the calculation 

of the energy flows and the Global Warming Potential which are derived from the calculation of the 

Greenhouse Gas Emissions of the twenty one EU breads.  

4. Results, discussion and conclusions 

Table 1 illustrates the ingredients of the 21 breads object of the study. The main results concerning the 

Energy Consumption and GWP for each of the 21 types of bread are illustrated in Figure 1. The results show 

that in both the indicators the breads which have simple recipes, characterised by the presence of flour, water 

and yeast have the best energy and global warming results. On the contrary, the breads which have more 

complex recipes, characterised by the presence of animal-based products as cheese, butter, milk, cream and 

eggs have the worst results. In all the cases, energy consumption in bread production (baking process) 

represents a hot spots. Differences in energy consumption among breads reach up a factor of three for both 

the indicators with embedded energy ranging from 9 MJ/kg to 37 MJ/kg. In comparison the ‘average’ 

European bread included in the JRC food basket studied in [7] has an embedded energy of 16.1 MJ/kg. In 

both the indicators French Baguette (9.05 MJ and 0.46 kg CO2 eq.) Greek Pita and the Italian Focaccia, 

result as the most energy and carbon friendly, mostly due to the simplicity of their recipes, made up by wheat 

flour, water and yeast, without any animal-derived ingredient. Moreover in the case of France, the lowest 

GHGs is also due to its electricity mix, which is largely based on nuclear power. 

Hungaria Pogácsa and Romania Pascã (37.1 MJ and 6.59 kg CO2eq.) breads have very high burdens in both 

the indicators due to the animal-derived ingredients, especially cheese, but also butter and cream and to the 

high energy consumption in the manufacturing and the relative greenhouse emissions in addition to those of 

CH4 and N2O respectively occurring during the animal breeding and manure management. 
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Table 1: The ingredients of the 21 breads 

Ingredients Unit Countries 

  AT BE BG CZ 

EE 

bre

ad 

EE 

ing

r. FR DE GR HU IE IT LV LT MT NL PL RO SK SI 

ES 

bread 

ES 

ingr. UK 

wheat flour g 800 430 350 1,000     650 1,000 400 250 450 800     450 500   1,000 1,000 1,000 33   370 

rye flour g   

   

210 

       

1,2

80 2,225 

  

1,050 

     

  

bread g           300                               60   

butter g   85 60     28   80   120           40   250   100     85 

cheddar cheese g   

        

90 

            

  

cream g   

    

309 

   

113 

       

250 

    

10 

cream cheese g   

                

500 

    

  

egg yolk g   

        

15 

            

  

eggs g 62 62 123 123 

      

123 

    

123 

 

369 185 

   

62 

fat g   

                 

350 

   

  

honey g   

         

8 

  

64 

   

50 

    

  

jam g   

    

262 

                

20 

mashed boiled 

potato g   

        

100 

            

  

milk g   214 120 500 

   

260 

  

350 

    

275 

 

300 

 

400 

  

175 

milk powder g   

                 

40 

   

  

olive oil g   

       

14 

  

140 

        

6 2   

raisins g   250 

             

350 

 

100 25 

   

  

salt g 20 5 5 10 3 

 

10 34 11 3 5 45 20 20 10 10 7 1 10 18 2 1 1 

sugar g 15 45 50 

 

10 71 

 

15 

   

20 60 75 

 

60 

 

125 450 40 1 

 

42 

tomatoes g   

                    

30   

vegetable oil g 20 

  

250 

             

9 

    

  

water g 430 

 

120 

 

108 

 

400 260 250 

  

700 660 1,130 290 

 

700 

 

370 

 

29 

 

  

yeast g 30 25 9 25 10 

 

20 42 10 1 

 

4 60 

 

11 15 

 

25 50 40 

  

14 

total weight of 

ingredients g 1,38 1,11 837 1,91 341 970 1,08 1,69 685 693 936 1,71 

2,0

8 3,51 761 1,37 1,76 2,98 2,48 1,60 70 93 779 
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Figure 1: Energy Consumption (left – MJ/kg) and Global Warming Potential (right – kg CO2e /kg) for  

the 21 types of EU breads 
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1. Abstract  

The study assesses the environmental sustainability of sugarcane biorefinery systems expressed in terms of 

potential environmental impacts. The biorefinery system includes sugarcane cultivation and harvesting, 

sugarcane milling and by-product utilization i.e. bagasse for steam and electricity, molasses for ethanol, and 

vinasse for soil conditioner. The results revealed that the improvement of sugarcane cultivation and 

harvesting practice e.g. green cane production along with integrated utilization of biomass residues through 

the entire chain as a biorefinery would help reduce the environmental impacts of the main products derived 

from sugarcane e.g. sugar and ethanol. The potential impacts on climate change, acidification, photo-

oxidant formation and particulate matter formation could be reduced by around 43%, 66%, 93% and 68%, 

respectively. GHG implications of low productivity paddy field conversion to sugarcane and environmental 

hotspots have been identified for encouraging sustainable sugarcane industry in the future.  

2. Introduction 

The Thai Government has launched the 10-Year Alternative Energy Development Plan (AEDP) by setting a 

target that renewables will contribute 25% of the country’s energy mix by 2021. Under the AEDP, different 

types of renewable energy sources are promoted including bioenergy such as electricity from biomass and 

biofuels like bioethanol. The sugarcane and sugar industry is expected to play an important role as a 

bioenergy supplier for Thailand in the future because sugarcane has a high proportion of biomass especially 

in the form of readily fermentable sugars that can be used for biofuels. The sugarcane industry is complex 

and consists of various forms of biomass e.g. sugar, bagasse, cane trash, molasses, and filter cake that need 

to be suitably managed. To enhance the benefits of sugarcane biomass utilization, the production system that 

integrates biomass conversion processes to produce fuels, heat, electricity and value-added products from 

biomass, or so called “biorefienery”, is therefore gaining attraction for the sugarcane industry nowadays e.g. 

the sugar-ethanol-electricity mills and the integrated 1
st
 and 2

nd
 generation ethanol production [1-3].  

3. Methodology 

The study aims to assess the environmental performance of two sugarcane biorefineries (sugar-power-

ethanol production) in Thailand using Life Cycle Assessment (LCA). The “ReCiPe” impact asessment 

methodology has been referred [4]. 

3.1 System boundary 

The scope of assessment including land use and management for sugarcane cultivation and harvesting, 

transport of sugarcane, sugar milling, steam and power generation from bagasse, molasses ethanol 

mailto:thapat.sil@kmutt.ac.th
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production, raw material production and vinasse and filter cake for soil conditioner (Figure1). Two 

biorefinery systems i.e. (1) base case and (2) improvement scenario are evaluated. The base case represents 

the conventional farming practices with cane trash burning, sugar milling, molasses ethanol production and 

steam and power generation from bagasse. Per tonne of cane processed, the final products obtained from the 

base case biorefinery system are 53 kg of raw sugar, 56 kg of refined sugar, 10.2 litres of molasses ethanol 

and 3.5 kWh surplus electricity sold to the grid. The improvement scenario shows the case where biomass 

utilization is improved by the mechanized sugarcane farming and 50% of cane trash is recovered for 

electricity generation in the power plant. In addition, vinasse from the ethanol conversion process is used to 

produce fertilizers. This improvement biorefinery scenario brings about the additional benefits i.e. 14.7 kWh 

of surplus electricity from cane trash recovery and 112 litres of vinasses used as organic fertilizers as 

compared to base case. 

 

Figure 1 : System boundary of the studied sugarcane biorefinery 
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3.2 Data sources 

Life cycle inventories (LCIs) of sugarcane farming with both conventional and mechanized farming 

practices were collected from sugarcane growers in the Northeastern region of Thailand. Production data of 

sugarcane milling, steam and power generation plant and molasses ethanol production plant were also 

collected from the plants located in the Northeastern region of Thailand complemented with literature [5]. 

LCIs for the materials, chemicals, and fuels used were referred from the Thai national LCI database [6] and 

Ecoinvent database [7]. 

4. Results 

Table 1 shows the potential environmental impacts for the final products of biorefinery i.e. raw sugar, 

refined sugar, bioelectricity and molasses ethanol for the base case and the improvement scenario. The 

results revealed that the improvement of sugarcane cultivation and harvesting practices (e.g. green cane 

production along with integrated utlization of biomass residues throughout the entire chain as a biorefinery) 

would help to reduce the environmental impacts of the main products derived from sugarcane e.g. sugar, 

electricity and ethanol.  
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The potential impacts on climate change, acidification, photo-oxidant formation and particulate matter 

formation of all products reduce by around 43%, 66-70%, 93% and 68-71%, respectively. The current 

practice of cane trash burning before harvesting is the major source of several impacts such as climate 

change, acidification, photochemical oxidant formation, and particulate matter formation. Promotion of 

mechanized farming can mitigate those impacts by avoiding cane trash burning although the environmental 

impacts from diesel consumption would increase. Utilization of chemical fertilizers has the highest 

contribution to the eutrophication impact potential as anticipated. Meanwhile, the agrochemicals and 

chemicals used in the biorefinery are the main contributor to the human toxicity impact potential. 

 

Table 1: Potential environmental impacts of final products obtained from different biorefinery scenarios 

Impact category Unit 

Raw sugar 
(1 tonne) 

Refined sugar  
(1 tonne) 

Bio-electricity  
(1 MWh) 

Molasses ethanol  
(1000 litres) 

Base case Scenario Base case Scenario Base case Scenario Base case Scenario 

Climate change kg CO2 eq 272 155 337 193 32 18 391 225 

Terrestrial acidification kg SO2 eq 2.2 0.7 2.7 0.8 0.3 0.1 3.3 1.1 

Freshwater eutrophication kg P eq 0.05 0.04 0.06 0.05 0.01 0.01 0.07 0.07 

Human toxicity kg 1,4-DB eq 63 60 78 74 8 7 99 94 

Photochemical oxidant 

formation kg NMVOC 5.5 0.4 6.9 0.5 0.7 0.05 8.0 0.6 

Particulate matter formation kg PM10 eq 0.8 0.2 1.0 0.3 0.1 0.03 1.2 0.4 

Terrestrial ecotoxicity kg 1,4-DB eq 0.03 0.03 0.04 0.04 0.004 0.004 0.05 0.05 

Freshwater ecotoxicity kg 1,4-DB eq 1.6 1.5 2.0 1.9 0.2 0.2 2.5 2.3 

 

For the new government policy on conversion of low productivity paddy fields to sugarcane, the conversion 

would induce the soil organic carbon stock changes because the land management activities (e.g. fertilizer 

input factors, tillage practice and management practice of farmers) will be changed. Based on the IPCC 

(2006) methodology [8], direct land use change from paddy field to sugarcane in the Northeastern region of 

Thailand led to soil carbon loss of about 0.8 tC/ha-yr; however, sugarcane will be planted as ratoons for the 

next three years which possibly increases carbon stock to about 0.15 tC/ha-yr. The net GHG emissions from 

land-use change of paddy rice to sugarcane would be about 2.6 tCO2eq/ha-yr.  Nevertheless, the green 

manure application and utilization of vinasse as organic fertilizer potentially reduced the GHG emissions 

from soil carbon stock change by around 5%. Thus, good agricultural practices for land preparation and 

sugarcane plantation should also be encouraged to farmers. 

5. Conclusion 

The results revealed that the improvement of sugarcane cultivation and harvesting practices (e.g. green cane 

production along with integrated utilization of biomass residues throughout the entire chain as a biorefinery) 

would help to reduce the environmental impacts of products derived from sugarcane e.g. sugar and ethanol. 

The potential impacts on climate change, acidification, photo-oxidant formation and particulate matter 

formation reduce by around 43%, 66%, 93% and 68%, respectively. Hotspots identified provide important 

information for policy makers towards enhancing sustainable sugarcane production in the future.  
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1. Abstract  

Macroalgae is a very hopeful biomass and is likely to play an imperative role in securing energy supply in 

the following decade. The aim of this paper is to evaluate the biogas production by the substitution of energy 

crops with macroalgae as feedstock at an industrial scale biogas plant in North Germany. Our results 

determine the affirmative impact of algae on the greenhouse gas emission reductions. It can be concluded 

that the biogas production processes depend not only on the biogas yields of the selected feedstock, but also 

on their climate protection abilities.  

2. Introduction  

Biomass resources are considered as one of the main renewable energy sources and expected to provide 

more than half of the energy demand in the near future [1]. Nevertheless, some studies suggest that intensive 

exploitation of arable lands for the cultivation of energy crops may yield a negative impact on the global 

stock and prices of foods and lead to increasing quantities of greenhouse gases (GHG) being emitted to the 

atmosphere [2-4]. For that reason, alternative sources of biomass for energy purposes that would be both 

economic and environment-friendly are needed. Considering a high photosynthetic effectiveness, a fast 

biomass growth, resistance to contaminations, algae appears as a competition to typical energy crops [5-7]. 

In this respect, the use of macroalgae to produce energy appears to be a promising practice to complement 

and secure energy supply. As concerns, this paper presents an assessment of the environmental consequences 

of biogas production when the energy crops are replaced with macroalgae (brown and red algae) as feedstock 

at an industrial scale biogas plant in Northern Germany. As we know there is no study that evaluated the 

environmental impacts of harvesting the algae from coasts in Germany for biogas production. This approach 

would reduce eutrophication in marine environment by producing bioenergy from macroalgal biomass. 

3. Methods 

Life cycle assessment (LCA) is a method that quantitatively assesses the environmental damages of all 

elementary process steps. The standard ISO 14040:2006, which gives the basis for LCA procedures, was 

pursued in this study [8]. The scope of the scenarios is site-specific for Northeast Germany. 

Fig 1 presents the current production system with energy crops B) and an alternative production way with 

macroalgae A). The system involves the collection/production and storage of feedstock, digestion, 

storage/handling of digestate, electricity and heat generation from biogas, and lastly the transport. Animal 

production was not considered. 
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3.1 System boundary  

Figure 1:  System boundary: Energy production with  

a) Macroalgae and b) Energy crops. Adapted from KTBL [9] 

 

3.2 Life cycle inventory analysis  

3.2.1 Determination of feedstock amounts and compositions 

 

Table 1: Characteristics of the feedstock 

The quantity of macroalgae to substitute the energy crops was determined based on the biogas yields. The 

collation depended on functional unit (FU) (1 kWh energy production), which provides a reference, to which 

the input and output can be related, was performed. Characterization of the feedstock, the total solid (TS), 

organic total solid (oTS) and the biogas yields were determined based on literature data  [9-11] (Table 1). 

3.2.2 Feedstock 

Yearly, 2190 tons maize, 657 tons rye and 4380 tons grass were cultivated on 360 ha agricultural areas. 

Table 2 provides an overview of the required input for the cultivation. Following the harvest period, crops 

were ensiled for 6 months and then transported to the biogas plant. The transport (12 km) was done by a 

truck consuming 40 L h
-1

 Diesel. In order to replace energy crops, 1400 tons of macroalgae was collected 

from Northern coastal (Baltic Sea) of Germany. The collection was done by a tractor with fork, collection 

capacity of 45 m
3
h

-1
 and consuming 12 L Diesel h

-1
 [12]. The collected algae were then transported (150 km) 

by 40 ton capacity truck. 2.5 tons of daily produced manure at poultry housing is transported by tractor to the 

storage. The loading capacity was 250 kg and the Diesel consumption was 40 L h
-1

.  

  

Feedstock Macroalgae Maize Rye Grass Poultry manure 

Total Solid - TS (% FM) 24.8 33 25 35 40 

Organic Total Solid - oTS (% TS) 80 95 89 90 75 

Gas yield (m³t -1 FM) 993 270 245 255 225 

Methane content (%) 60 52 53 53 55 
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3.2.3 Pretreatment of algae 

Table 2: Basic data for the cultivation of the crops 

 Maize Rye Grass 

Sowing 1-10 May 1-10 October 1-20 April 

Harvest 20-30 September 20-30 June Cut 1: 1 April; cut 2: 1 July; cut 3: 1 October 

Input (kg ha
-1

) 

Seed amount 28 110 40 

Herbicide 3 3 1 

N fertilizer 166 130 38 

P2O5 fertilizer 72.7 75 70 

K2O fertilizer 180 170 220 

 

Mechanical pretreatment was assumed to be applied as described in [7], which consumes 38 kWh per tons of 

macroalgae. Moreover, the electrolytic recovery method for heavy metal removing was assumed to be 

utilized as described i n [13], which consumes 61 MW yearly energy.  

3.2.4 Anaerobic digestion  

The biogas plant consists of 3 fermenters with a total volume of 4500m³ and operates under 42 °C at a total 

170 day retention time. Electricity was supplied from the grid. The biogas was used in a 500 kW combined 

heat and power for the production of electricity and heat. 35% of heat was used for the fermenters and 65% 

for poultry housing.  The digestate was transported to the agricultural area by 40 ton capacity truck and then 

it was used in the agricultural production. When macroalgae were used, digestate application was excluded 

from the system, since there is no more agricultural production. 

3.3 Life cycle impact assessment  

All resources were included in the assessment and categorized under four environmental indicator potentials: 

global warming (GWP) in kg CO2-eq, acidification (AP) in kg SO2-eq, eutrophication (EP) in kg P-eq, and 

land transformation (LTP) in m
2
. The operation was modeled with SimaPro 7.3.2 [14] by using the 

Ecoinvent 2.2 database. Impact assessments were computed by using the ReCiPe midpoint v.1.06 

methodology. To enable the comparison of feedstock, environmental impacts were calculated based on the 

chosen FU.  

4. Results 

Fig 2 illustrates the comparison of LCA characterization results. The outcomes showed that macroalgae 

provided highly promising results by means of GHG emissions savings. For the operation with energy crops, 

the digestate spreading creates the highest AP and EP due to high nitrate and phosphor emissions. 

Agriculture related activities have the highest LTP because of arable land use and transport. Fuel burning 

emissions from the transport cause the highest GWP. The substitution of energy crops with macro algae 

would result in 48%, 82%, 41% and 37% respectively lower GWP, AP, EP and LTP due to the avoidance of 

digestate spreading. When macroalgae were used, the greatest emission contributor was fermenters (44% of 

GWP, 32% of AP and 40% of the EP).  
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Figure 2: The comparison of LCA results for energy production with macroalgae and energy crops based on a) global 

warming, b) acidification, c) eutrophication and d) land transformation. The results are given per FU 

 

 

5. Conclusions 

The outcomes indicate that macroalgae would result in lower environmental impacts. The biogas production 

systems, their efficiency and environmental impacts depend on the feedstock. Use of algal biomass for 

bioenergy could recreate favorable conditions on coasts; remove nutrients and heavy metals; and decrease 

bad smell smell [15].  Nevertheless, there are still challenges to overcome regarding their collection due to 

sand amount in the collected material and pretreatments to make them usable in agriculture after digestion. 

6. References 

[1] European Renewable Energy Council E., Renewable Energy Technology Roadmap 20% by 2020, (2008). 

[2] Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P., Land clearing and the biofuel carbon debt. Science    

(2008);319:1235. 

[3] Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Use of US croplands for biofuels 

increases greenhouse gases through emissions from land-use change. Science (2008);319:1238. 

[4] Johansson DJ, Azar C., A scenario based analysis of land competition between food and bioenergy production in the 

US. Climatic Change (2007);82:267. 

[5] Aitken D, Bulboa C, Godoy-Faundez A, Turrion-Gomez JL, Antizar-Ladislao B., Life cycle assessment of 

macroalgae cultivation and processing for biofuel production. Journal of Cleaner Production (2014);75:45. 

[6] Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O. Life-cycle assessment of biodiesel production from 

microalgae. Environmental science & technology (2009);43:6475. 

[7] Alvarado-Morales M, Boldrin A, Karakashev DB, Holdt SL, Angelidaki I, Astrup T., Life cycle assessment of 

biofuel production from brown seaweed in Nordic conditions. Bioresource Technology 2013;129:92. 

[8] International Standardization Organization, ISO 14044: environmental management—life cycle assessment—

requirements and guidelines, (2006). 

[9] Kuratorium für Technick und Bauwesen in der Landwirtschaft K. Wirtschaftlichkeitsrechner Biogas (2014). 

[10] Fachagentur für Nachwachsende Rohstoffe. Leitfaden Biogas: von der Gewinnung zur Nutzung;[diese Arbeit 

wurde im Rahmen des Projekts" Handreichung Biogasgewinnung und-nutzung" angefertigt], (2010). 

[11] Ertem FC., Improving Biogas Production By Anaerobic Digestion Of Different Substrates: Calculation of Potential 

Energy Outcomes, (2011). 

[12] Municipality T., Evaluation of machines for the collection of algae. Wetlands, Algae Biogas–A southern Baltic Sea 

Eutrophication Counteract Project, South Baltic Program. (2011). 

[13] Stopić S, Friedrich B, Widigdo A., Electrolytic recovery of copper from highly contaminated wastewaters. 

Metalurgija (2007);13:27. 

[14] Consultants Pre., Introduction to LCA with SimaPro 7. Report Version (2008);4. 

[15] Jöborn A, Oscarsson G, Sköld M, Sterner H., Algae in excess—harvesting for life, Final report to the Eu-Life Alga 

project County council of Västra Götaland (2001).  

 

  



 

 

93 

Environmental assessment of wheat and maize production  

in an Italian farmers cooperative 

Valentina Fantin
1
, Irene Rondini

2
, Serena Righi

2
, Andrea Pasteris

2
, Francesco Coatti

3
, Fabio Passerini

3
, Paolo Masoni

 1
 

1
ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development,  

Via Martiri di Monte Sole 4, 40129 Bologna, Italy 
2
University of Bologna, CIRSA (Centro Interdipartimentale di Ricerca per le Scienze Ambientali),  

Via dell’Agricoltura 5, 48123 Ravenna 

3E&ngi SRL, Via S. Quasimodo 44, 40013 Castel Maggiore (BO) 

E-mail contact: valentina.fantin@enea.it 

1. Abstract  

ISO Life Cycle Assessment method was applied to the production of wheat and maize in an Italian farmers’ 

cooperative, with the aim to assess the potential environmental impacts throughout the life cycle of these 

crops as well as to identify the hotspots in the production chains. The functional units were 1 tonne of wheat 

and maize and system boundaries were from cradle to cooperative’s gate and included the agricultural 

production, the transport to the cooperative, and the cleaning as well as storage phases. Specific primary 

data were used in the study. The results according to the CML and UseTox impact assessment methods show 

that the major hotspot for both crops in almost all impact categories is the agricultural phase, due to 

fertilisers and pesticides use. Finally, a sensitivity analysis was performed, using different methods for the 

calculation of on-field nitrogen and pesticides emissions, in order to assess their effects on LCA results. 

2. Introduction  

Cereals are still by far the world's most important sources of food [1]. Their cultivation depends on several 

economic, social and environmental factors. In particular, climate change, water management and land use 

are critical environmental issues which affect the productivity of cereal production systems [2]. On the other 

hand, cereal cultivation can have several potential environmental impacts. Because of these reasons, a 

transition towards sustainable cereal supply and consumption chains is required, which would increase 

system productivity while decrease its environmental impacts [3].  

In this study, ISO LCA method [4, 5] was applied to the production of wheat and maize in an Italian farmers’ 

co-operative with the aim to evaluate their environmental performance throughout their life cycle. Moreover, 

since the estimation of on-field nitrogen and pesticides emissions due to the use of chemical fertilisers and 

pesticide products is often a critical issues in LCA studies of agricultural products, a sensitivity analysis was 

performed, using different methods for their calculation, in order to assess their effects on LCA results.  

3. Goal and scope of the study 

The goal of this study was to evaluate the potential environmental impacts of the life cycle of wheat and 

maize production at a farmers’co-operative gate as well as to identify the hotspots in the production chain. 

The functional units were 1 tonne of wheat and maize at the cooperative’s gate, respectively. An attributional 

approach was applied. System boundaries were from cradle to cooperative’s gate and included the 

agricultural production of both crops, their transport to the cooperative, and the cleaning as well as storage 

phases at the cooperative premises.  
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An economic allocation was applied to the production of wheat and straw as well as to the production of 

maize by-product, which is currently sold on the market. 

Specific primary data, referred to 2013, were collected for the following items: consumption of seeds, 

chemical fertilisers and pesticides, crops yield, consumption of diesel and lubricants, quantity of crops 

transported to the cooperative and the respective average distances, consumption of energy and water for 

drying and storage phases, waste production. Airborne emissions due to the agricultural machinery were 

calculated according to “Non-road mobile sources and machinery” emission factors of the 

EMEP/CORINAIR Emission Inventory Guidebook [6]. N2O and NH3 airborne emissions as well as NO3
-
 

waterborne emissions due to the use of fertilisers were calculated according to the nitrogen balance by 

Brentrup (2000) [7]. Phosphorus waterborne emissions were estimated according to Nemecek and Kagi 

(2007) [8]. Emissions due to the use of pesticides were calculated according to Margni et al. (2002) [9], 

considering different percentage emissions into air and soil (10% and 85% of the active ingredient, 

respectively). PE and Ecoinvent v.2.0 databases were used for background data. 

CML 2001 and USEtox impact assessment methods were used in the study, focusing on the following 

impact categories: Global Warming (GW), Acidification (AC), Eutrophication (EU), Abiotic Depletion 

(AD), Ozone depletion (OD), Photochemical Oxidation (PO), Freshwater Ecotoxicity (FE), Human Toxicity 

(HT). 

4. Impact assessment results 

Results show that cultivation phase is the main hotspots for both cereals and for all selected impact 

categories (Table 1). In fact, its contribution to total results is higher than 97% and 91% for wheat and maize, 

respectively. Tranports and processing phase at co-operative’s plant show minor contributions (together 

lower than 10%). As regards agricultural phase, the major hotspot for both crops in almost all impact 

categories is the fertilizing phase, due to both the production of chemical fertilisers and the on-field nitrogen 

and phosphorus emissions.  

Table 1: Impact assessment results for the production of 1 tonne of wheat and maize 

Impact Category Unit Total Cultivation Transport Processing 

WHEAT 

Abiotic Depletion kg Sb eq. 8.8E-04 99% <1% <1% 

Acidification kg SO2 eq. 6.1E+00 99% <1% <1% 

Eutrophication kg PO4 eq. 2.0E+00 99% <1% <1% 

Global Warming kg CO2 eq. 4.5E+02 98% 1% 2% 

Ozone Depletion kg CFC-11 eq. 1.6E-05 99% <1% <1% 

Photochem. Oxidation  kg C2H4 eq. 1.4E-01 97% 1% 2% 

Freshwater Ecotoxicity CTUe 3.3E+02 99% <1% <1% 

Human Toxicity CTUh 8.6E-05 99% <1% <1% 

MAIZE 

Abiotic Depletion kg Sb eq. 7.7E-04 99% <1% <1% 

Acidification kg SO2 eq. 1.0E+01 99% <1% <1% 

Eutrophication kg PO4 eq. 4.8E+00 99% <1% <1% 

Global Warming kg CO2 eq. 4.5E+02 91% 1% 8% 

Ozone Depletion kg CFC-11 eq. 1.8E-05 99% <1% <1% 

Photochem. Oxidation  kg C2H4 eq. 1.8E-01 97% 1% 2% 

Freshwater Ecotoxicity CTUe 3.4E+03 99% <1% <1% 

Human Toxicity CTUh 6.8E-05 98% 1% 1% 
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The only exceptions are FE and HT, in which the production and use of pesticides show remarkable 

contributions. As far as processing phase is concerned, the refrigerated storage and drying treatment are the 

major contributions for wheat and maize, respectively.  

5. Sensitivity analysis 

The sensitivity analysis on agricultural phase was performed using different methods for the calculation of 

chemical fertilisers and pesticides emissions, with the aim to investigate their effects on LCA results. More 

in detail, nitrogen emissions were calculated with IPCC (2006) [10] and the requirements contained in 

Product Category Rules (PCRs) for Arable Crops of the International EPD System (2014) [11] (Table 2). As 

regards pesticides emissions, they were calculated according to Nemecek and Kagi (2007) [8] (100% of the 

active ingredient is considered to be emitted to soil). 

Table 2: On-field nitrogen emissions calculated according to Brentrup, IPCC and PCRs methods 

Emission Unit 
WHEAT MAIZE 

Brentrup IPCC PCRs Brentrup IPCC PCRs 

NH₃ kg/ha 1.9E+01 2.1E+01 1.9+01 4.2E+01 2.8E+01 4.2E+01 

N₂O kg/ha 3.0E+00 3.3E+00 3.39E+00 3.8E+00 4.5E+00 4.5E+00 

NO₃ kg/ha 1.6E+01 2.3E+02 2.3E+02 1.9E+02 3.1E+02 3.1E+02 

 

The outcome of the sensitivity analysis for nitrogen emissions shows that the more complex and accurate 

method by Brentrup (2000) [7], which was adopted for the base case and requires detailed agricultural, 

climatic and soil information, leads to lower results in GW, AC and EU of the agricultural phase (Table 3). 

As regards GW, the adoption of IPCC and PCRs models in both cereals lead to 5-14% and 5% higher results, 

respectively, if compared to the base case, due to higher N2O emissions. The adoption of IPCC for wheat 

results in a 16% higher value in AC, compared to to the base case, due to higher NH3 emissions, whereas the 

AC results of maize are 28% lower. On the contrary, the PCR models lead to very similar results in AC for 

both crops, if compared to the base case. Finally, the results of EU by using the IPCC and PCR methods are 

17-115% and 30-170% higher than the base case, respectively, due to higher NO3 emissions. Our results 

confirm the findings of Fusi and Bacenetti (2014) [12] which highlight that ‘Brentrup method’ provides 

more accurate (i.e less conservative) results. 

 
Table 3: Impact assessment results of the agricultural phase according to Brentrup, IPCC and PCRs methods. 

Impact Category Unit 
WHEAT MAIZE 

Brentrup IPCC PCRs Brentrup IPCC PCRs 

Acidification kg SO2 eq. 6.0E+00 7.0E+00 6.4E+00 1.0E+01 7.2E+00 1.0E+01 

Eutrophication kg PO4 eq. 2.0E+00 4.4E+00 5.5E+00 4.8E+00 5.6E+00 6.2E+00 

Global Warming kg CO2 eq. 4.4E+02 5.0E+02 4.6E+02 4.1E+02 4.4E+02 4.4E+02 

 

The results of sensitivity analyisis for pesticides emissions show that Margni (2002) and Nemecek and Kagi 

(2007) models lead to similar results in both FE and HT, with the exception of HT for wheat (-30%). This 

can be explained considering that: 1) both models assume that most of pesticide applied is deposited on soil 

(100% and 85%, respectively); 2) the USEtox characterization factors for air emissions and soil emissions 
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are similar for the most of active ingredients. Moreover, it is worth noting that the USEtox model does not 

provide characterization factors of several active ingredients in both FE and HT impact categories (about 

40% and 75% of mass of pesticides used in this case-study were not available, respectively).  

Table 4: Ecotoxicity and Human Toxicity results for the agricultural phase according to  

Margni and Nemecek and Kagi models 

Impact Category Unit 

WHEAT MAIZE 

Margni 
Nemecek 

and Kagi 
Margni 

Nemecek 

and Kagi 

Ecotoxicity  CTUe 3.3E+02 3.3E+02 3.4E+03 3.7E+03 

Human toxicity CTUh 8.5E-05 5.9E-05 6.7E-05 6.7E-05 

6. Conclusion 

The results according to the CML and USEtox impact assessment methods showed that the major hotspot for 

both crops in almost all impact categories is the agricultural phase, due to fertilisers and pesticides use. The 

results of the sensitivity analysis on nitrogen emissions showed that the application of different methods lead 

to different values of nitrate and ammonia, which affect AP and EP results. In fact, ammonia emissions 

according to Brentrup are 33% higher if compared to IPCC method, due to a higher emission factor for urea. 

Moreover, nitrate emissions according to Brentrup, whose calculation require more detailed information, are 

14 times lower than IPCC and PCRs values. As regards pesticides emissions, the use of different methods 

leads to similar results in Toxicity impact categories. 
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1. Abstract  

The functional unit (FU) of foods has always been a topic of discussion within life cycle analysis (LCA) of 

foods. The main issue is the complexity of foods, both their multiple environmental impacts and their 

multiple nutritional values. As a result, no FU covering the actual functions have been developed. Nutritition 

is complex in itself with the large number of nutrients involved. The value of a certain nutrient in a single 

product is not static; it depends on the dietary context. We focus on nutritional value, and choose protein 

content and quality as basis. Protein supply is a critical aspect of food security, and protein can be produced 

by different means, with different environmental impacts and different quality in terms of amino acid profile 

and digestibility. We have developed a methodology that considers the content and quality of protein, the 

digestibility and the dietary context. The result is “g quality weighted protein index/kg product (PQI)”, 

specific for the diet of which the product is part. 

2. Introduction  

It has become evident that diets are important for sustainable lifestyles in the sense that adapting diets can be 

an efficient way of reducing the environmental impact and resource use linked to our food consumption [e.g. 

1, 2, 3]. Many studies report that replacing meat with vegetable proteins is the most efficient way to improve 

the environmental sustainability of food consumption. There are a few studies presenting methods to 

quantify the more complex nutritional value of foods. Drewnowski et al. [4] developed a method of 

quantifying the nutritional density of food products based on dietary requirements for a large number of 

nutrients, hence creating a functional unit (FU) covering nutritional content and nutritional demands. 

However, the nutritional value must be assessed in the context of the actual consumption, i.e. the diet. 

Nutrients cannot be said to have an absolute nutritional value, it depends on the overall diet. Dietary shifts 

are certainly important to make food systems more sustainable, but many stakeholders need tools to work 

with single products.The life cycle analysis (LCA) methodology also needs such tools to manage the 

nutritional value for a single product. We have developed a methodology to include the nutritional value for 

a single product in a given dietary context. The method is developed based on needs and supply of single 

essential amino acids (EAA), but the approach is relevant for combinations of nutrients. 
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3. Methods 

The method covers the digestible intake of EAA from the product under study and relates it to the total 

digestible intake of EAA as well as the dietary need for EAA. The method is a step-wise procedure: 1) The 

content of nine EAA [5] in a product is quantified and multiplied with the EAA specific true ileal human 

digestibility for that product [6]; 2) the total intake of these EAA in a specific two-week-diet is quantified; 3) 

the product specific EAA digestible intake is divided by the total dietary intake for that EAA, giving the 

product's contribution to total intake for each EAA; 4) the total dietary intake of an EAA is divided by the 

nutritional requirement for that EAA, which gives a ratio describing over/under-consumption for the diet, 5) 

For each EAA from each product, the proportion of total intake is divided by the over/under-consumption 

ratio. The values for each EAA for the product are finally added together and the sum is the weighted protein 

quality index/kg product (PQI) for the product in that dietary context. The PQI illustrates the importance of 

the studied product as an EAA provider in the specific dietary context. If a product contributes EAA which 

are lacking in the diet, the PQI of that specific product will be higher, and vice versa. The dietary context is 

hence central for the PQI. Figure 1 depicts the algorithm described above. 

 

Figure 1: Principal description of the method for quantifying the Protein Quality Index (PQI).  

Numbers refer to the description in the text above 

 

 

The PQI for a range of products in one dietary context (average Swedish consumption in 2011) was 

quantified. To exemplify the value of introducing the PQI we applied it on some available LCA studies from 

previous projects. The products' PQI is used as a complementary FU to capture the nutritional value in the 

LCA. 

4. Results 

In Figure 2, carbon footprints for six products using the three FU, “kg product”, “g protein” and “PQI” are 

presented as relative values with bread as the reference.  
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Figure 2: LCA results for selected products using three functional units, “kg product”, “g protein” and “PQI” for the 

average Swedish diet. Relative values, Bread=1 

 

 

Products with high protein content per kg, such as pork and eggs, have lower impact per kg protein than per 

kg product, whereas low protein products such as potato and pea soup have higher impact. Milk is a high 

protein product in one sense, but the water content is also high, hence the increased impact when the FU is g 

protein. When the protein quality is included (PQI as FU), products with more nutritionally valuable proteins 

such as pork, eggs and milk, display lower impacts per FU, whereas the reverse is true for vegetable 

products. 

5. Discussion 

The methodology developed improves the understanding of nutritional aspects in an LCA context. By 

introducing PQI as an additional FU the Global Warming Potential (GWP) comparison between food 

products is affected in that the products with “poor” amino acid profiles performs worse when PQI is the FU 

compared to g protein. The results presented indicate that vegetable protein sources are overrated compared 

to animal products if g protein is used as FU. It can be noted that pea soup has higher GWP/PQI than all 

animal products studied.  

A general observation is that the complexity in capturing the nutritional function of a single food product is 

high. The high number of nutrients and the fact that the dietary context needs to be considerd are the main 

complexities, but it can be managed by the proposed method.   

We have tested the approach for one dietary context. Obviously, asessments of the method for other dietary 

contexts are necesarry. This will be done later in the project. 

Protein deficiency is rarely an issue in western affluent diets so it can be argued that this is not an important 

issue. Despite that, we still consider it relevant since in the discussions on reducing the intake of animal 

products, the risk of deficiency for single amino acids increases. If the dietary context is protein-poor, the 

approach is probably more relevant. 
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The data needed to apply the method are mostly available. Protein content and amino acid profiles are 

available for most foods in the literature and in databases. However, data on EAA specific true ileal human 

digestibility are lacking for many foods, especially for those of animal origin. Getting data for different diets 

might also be problematic, but national statistics of food consumption from the Food and Agriculture 

Organization may serve as a useful source. 

The method developed uses protein content and -digestibility of EAA as a measure of nutritional value. 

However, a single nutrient approach is insufficient when discussing sustainable diets, and more research is 

needed to capture the full complexity of how to eat more sustainably both from a nutritional and 

environmental perspective. 

6. Conclusions 

The method developed is useful for adding one important aspect of nutrition (protein supply) to LCA results 

of single products, and the dietary context is critical when the nutritional function of foods is quantified. The 

results bring new insights for the discussion on sustainable food consumption. The approach can also be used 

for combinations of nutrients. 

Further research: 

 Apply and evaluate the methodology in other dietary contexts, e.g. how sensitive the results are for 

varying dietary contexts, and analyse possibilities for simplification, 

 Assess the possibilities for developing a “nutrient density index” including dietary context. 
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1. Abstract  

Life Cycle Assessment (LCA) can support policy makers in the choice of the most effective measures to adapt 

to climate change in crop production. A case study involving spring barley cultivation in Denmark under 

changed climate conditions has been performed using primary data from future climate scenarios. We 

developed and applied a 3-step procedure based on combined contribution, scenario and uncertainty 

analyses. This approach can be useful to deal with uncertainty in scenario analysis for LCA of crop 

production in a changed climate, when the goal of the study is to suggest strategies for adaptation of crop 

cultivation practices towards low environmental impacts.  

2. Introduction  

Climate change (CC) affects agricultural systems both in terms of crop productivity and environmental 

sustainability. Environmental sustainability can holistically be evaluated through Life Cycle Assessment 

(LCA). The use of LCA to assess and compare current crop production and management alternatives is 

growing, and some guidance on how to tailor LCA for cereal systems has recently been published [1]. The 

main implications of CC on crop production, and the associated parameters to include when modelling the 

CC effects on crop production through LCA are: crop yield, crop quality, crop diseases, weeds and pests, 

incidence of extreme events, N leaching, pesticide leaching, and soil contents of organic carbon [2]. 

Considering that the lack of primary data is one of the most important drawbacks affecting the reliability of 

LCA studies, there is a need to use measured data from the system studied for future predictions. This is 

rarely possible when addressing the impacts of future climate changes, but this study shows how LCA can 

also effectively predict changes in a broad range of environmental impacts of production systems as a result 

of the changed climate.  

In the context of the NordForsk project “Sustainable primary production in a changing climate”, one 

objective was to perform a LCA modelling of the environmental impact of spring barley production in 

Denmark in the second half of this century in the climate forecasted by IPCC 2007 for an unchanged 

emission of greenhouse gasses. Furthermore, alternative future scenarios were compared, both excluding and 

including adaptation measures, to provide policy makers with suggestions for where to focus when 

controlling the potential environmental impacts of future spring barley cultivation. 
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3. Methodology  

The main input data for the LCA originate from experiments where spring barley cultivars were cultivated in 

a climate phytotron under controlled and manipulated treatments mimicking a worst case climate change, i.e. 

double CO2 concentration (700 ppm) and a global mean temperature increase of 5 °C in the atmosphere [3]. 

We followed the 3 step procedure illustrated in Figure 1: (1) definition of a baseline scenario at the Life 

Cycle Inventory (LCI) level for the current spring barley cultivation in Denmark and performance of Life 

Cycle Impact Assessment (LCIA) including normalization and contribution analysis, to identify the focus 

points in terms of impact categories, unit processes and substances; (2) identification of the main deviations 

from the baseline scenario for these key parameters in alternative future scenarios; (3) comparison of these 

scenarios with quantification of the resulting uncertainties at LCI level. 

 

Figure 1: Representation of the 3-step procedure for developing LCI of future crop production considering climate 

change effects, as reported in [2].  

 

 

 

The details of the baseline scenario describing the current cultivation of 1 kg of DM (dry matter) spring 

barley grain for malting in Denmark are reported in [4]. We also included the effects of CC on crop quality, 

by performing the analysis on 1 kg CP (Crude Protein) content as functional unit, and the implications of an 

extreme event (long heat-wave for 10 days with increased day/night temperature). The expected main 

deviations from the current cultivation were identified in terms of differences in pesticide treatment index 

(+25%) and modifications in nitrate leaching (+24%), meanwhile the measured change in crop yield ranged 

from -33.5% to -2.1%, according to different set of cultivars and experimental conditions [4]. This led to the 

definition of a set of 7 alternative scenarios under future climate conditions [4]: 

- no adaptation streategies with full set of cultivars (S1) and best 5 cultivars (S2); 

- adaptation strategies as early sowing (S3) or development of improved cultivars with better nutrient 

efficiency/uptake, and same crop yield as today (S4) or even better (S5); 

- extreme event (heat wave) scenarios, with full set of cultivars (S6) and best 5 cultivars (S7).  
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4. Results and discussion 

The LCA results showed an increase of the potential environmental impacts for all future scenarios (S1, S2, 

S3, S4, S6, S7) of spring barley cultivation in Denmark, when compared to the baseline scenario, except one 

ideal scenario where yield is not limited by environment or management, i.e. S5 [4]. This trend is confirmed 

also by the sensitivity analysis which assumes 1 kg CP as functional unit [4], even though the variation 

among the different scenarios is slightly reduced. Figure 2 shows the LCIA results per 1 kg DM grain 

obtained applying the abovementioned procedure to the ILCD recommended method [5]. 

  

Figure 2: LCA results for the baseline and 7 alternative future scenarios, extracted by [4]  

by applying the procedure described in [2] 

 

 

The main driver of the impact is the expected change in crop yield, therefore potential adaptation strategies 

should mainly focus on influencing this parameter. The selection of resilient and stable cultivars is the most 

effective way of reducing future environmental impacts of spring barley cultivation in Denmark. These 

results were confirmed by the uncertainty analysis performed including the variability of input data [2].  

The 3-step procedure for managing uncertainty in the definition of future LCA scenarios addressing the 

effect of climate change in crop production was successfully implemented in the case of spring barley 

production. It is based on a combination of: contribution analysis to identify the focus points in terms of 

impact categories, unit processes and substances; scenario analysis to determine a range of alternative future 

scenarios, as well as the most influencing parameters, and finally uncertainty analysis, to account for 

different levels of confidence in the output data [2]. Since in the context of CC, decisions are strictly 

dependent on the response of natural systems to climatic changes, the suggested approach overcomes some 

of the limitations of the consequential approach, which has mainly been used so far to address LCAs of 

future scenarios, such as the dependency on economical or technological models [2].  
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Furthermore, the 3-step procedure is flexible, since it can be applied using different LCIA methodologies 

[2,4], as well as different approaches to normalization, e.g. the traditional normalization approach based on 

society´s background intervantions, or new normalization reference based on the carrying capacity of 

ecosystems, as recently proposed by Bjørn and Hauschild [5]. 

5. Conclusion 

LCA can guide policy makers in the choice of the most effective measures to adapt to climate change in crop 

production. However, when LCA is used to provide insights on how to pursue future food demand, it has to 

deal with the uncertainty of future scenarios definition. Our recommendation to reduce that uncertainty is to 

rely on primary data coming from experiments mimicking the future climate for central system parameters 

and follow a 3-step procedure based on a combined contribution, sensitivity and uncertainty analysis [2].  
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1. Abstract  

Securing food for growing populations is becoming a key topic in the current sustainability debate. The aim 

of this paper is to examine food supply and food sourcing profiles for 15 Mediterranean countries for which 

data is available, through Ecological-Footprint-Extended Multi-Regional Input-Output (EF-MRIO) analysis.  

2. Introduction  

Food provision is one of the vital services that nature provides to humanity, from both a biological (i.e. 

feeding individuals) and cultural (e.g. social relations) viewpoint [1,2]. However, food’s role in the social 

and cultural life of Mediterranean people is shifting due to globalisation and behavioural changes [3]. The 

food we choose, its production and distribution chains, and the way in which we eat have multifaceted 

effects on our environment, society and economy. This places food at the heart of the sustainability debate 

and issues such as food availability and supply, accessibility and sourcing, stability of supply and 

affordability are particularly salient in the Mediterranean region. Moreover, food demand noticeably 

contributes to the wider regional demand for the biosphere’s ecological assets [4]. 

The aim of this paper is: i) to investigate human pressure on ecosystems due to current food production, 

trade and final consumption patterns of fifteen Mediterranean countries through the use the Ecological 

Footprint approach; and ii) to examine implications for food security – the capacity to guarantee access to 

food resources through both domestic production and trade – and food self-sufficiency – the capacity to 

guarantee access to food resources from domestic production.  

3. Methodology 

Here we extend the Multi-Regional Input-Output (MRIO) model provided by the Global Trade Analysis 

Project with Ecological Footprint Accounting – in what we define as Ecological-Footprint-Extended Multi-

Regional Input-Output analysis (EF-MRIO) – to estimate countries’ availability of, and demand for, food 

resources. This model provides a macro-level, top-down Life Cycle Analysis (LCA) of the requirements for 

renewable natural resource production and carbon sequestration capacity along the entire food supply chain 

of the selected countries.  

Ecological Footprint Accounting [5] tracks demand for biologically productive land and marine areas to 

produce the natural resources and ecological services that humans consume (aggregated into a metric called 

Ecological Footprint) and compares it with the biosphere’s supply of such resources and services 

(aggregated into a metric called biocapacity).  
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Full details on the calculation of the two metrics as well as their limitations can be found in Borucke et al. 

[6]. Both metrics are expressed in global hectares (gha), which represent productivity-weighted hectares [6]. 

For the purpose of this paper the entire biocapacity provided by cropland, grazing land and fishing grounds is 

considered to be put to food production and thus added together to derive countries’ food-related biocapacity 

(fBC). Conversely, the total Ecological Footprint embedded in countries’ final demand for food products 

(namely food Ecological Footprint - fEF) is calculated via EF-MRIO: the traditional National Footprint 

Accounts methodology (as described in [5]) is used to calculate the Ecological Footprint of production 

activities while the fEF for country N is derived according to equation 1 (see also [7,8]): 

 

fEFN = F (I-A)
-1 

yN         (1) 

 

where F is the environmental extension matrix derived from the Ecological Footprint of production, for each 

commodity yN; I is the identity matrix (a 57x57 square matrix of zeros with diagonal consisting of ones) and 

A is the technical coefficients matrix, which reflects the monetary exchange between each sector in order to 

produce one currency unit worth of output from a specific sector of the economy. Thus equation 1 accounts 

for all indirect/upstream resource requirements from final consumption [8].  

The EF-MRIO model calculates the resource requirements of each sector in the economy; household food 

resource requirements are then calculated by analyzing the composition of household final demand for goods 

and services by consumption category (e.g., cereals, dairy or meat). Food consumption Footprints are 

compared with food biocapacities to get a macro-level insight on each country’s food supply, consumption 

and food sourcing profiles.  

4. Results 

The fEF of consumption varies among Mediterranean countries, mainly due to different dietary habits. 

Protein-intensive diets are found in the countries with the higher fEF [9]. fBC varies as well, with France 

having by far the highest per capita fBC among Mediteranean countries with 1.85 gha per capita per annum 

(Figure 1).  

 

 

Figure 1: Per capita fEF and fBC for 15 selected Mediterranean countries and the region average (Med15), in 2010. 

Results are expressed in global hectares (gha) 
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France has the biggest share of the region’s fBC trade flows (27% or ≈80 million gha), followed by Spain 

(21%, ≈82 million gha), Italy (19%, ≈56 million gha), Egypt (8% or ≈24 million gha) and Turkey (7% or 

≈21 million gha). Moreover, all countries in the Mediteranean region – except France – are net importers of 

food biomass to satisfy the food consumption needs of their residents (Figure 2).  

Cereals represent the largest share of net fBC trade in all 15 countries (Figure 2), and all countries, except 

France, are net importers. Italy is the largest net importer of fBC for the consumption of all food types, 

primarily importing from France (wheat and livestock – such as cattle, sheep and goats, horses), China 

(livestock and vegetables, fruit, nuts) and Brazil (livestock and cereals). Conversely, France exports mainly 

cereal-related fBC (i.e., wheat, other cereal grains and oil seeds) to Italy, Germany and Spain and imports 

fBC embodied in fish (from Norway, USA and China), livestock (from China, Brazil and New Zealand) and 

vegetables, fruit and nuts (from Spain, China and Madagascar).  

 

Figure 2: fEF embedded in net trade, by type of food, for for 15 selected Mediterranean countries and the region 

average (Med15), in 2010. Results are expressed in global hectares (gha). 

 

 

 

5. Conclusion 

Our analysis showed that, with a few exceptions, Mediterranean countries currently rely on fBC imports 

(mostly of biomass for cereal consumption) to meet the food consumption demand of their residents.  

France was found to have the highest per capita fBC in the region, and to represent the main trade partner for 

most of the other countries, although the bigger share of the Mediteranean fBC trade takes place with 

partners outside the region, especially with USA, Germany and China. A growing world population and 

climate change are likely to lead to decreasing per capita food availability across the planet, potentially 

affecting countries’ food security and food system sustainability. Sourcing food products through imports 

does not represent an economic risk per se and we shall not assume that self-sufficiency is always a safer 

means of sourcing food; “food security-related” risks may exist irrespective of food being sourced locally or 

abroad. Food self-sufficiency might expose countries to domestic food supply disruption; countries with 

extreme self-sufficiency policies (e.g., import barriers, export bans, and a complete reliance on domestic 

production), could be hit by supply disruption harder than countries with diversified food sourcing profiles.  
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Conversely, dependence on imports can stress a country’s macro-economy due to higher prices and 

increased agricultural market volatility. This, in turn, can arise from market disruptions such as export bans 

from major wheat producers (e.g., Russia, Ukraine) following supply shocks caused by bad harvests.  

This comparative analysis of Mediterranean countries’ food supply and food sourcing profiles could help in 

identifying behavioral and policy interventions that can limit the impact of scarcities and support sustainable 

consumption patterns and diets.  
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1. Abstract  

Human nutrition strongly contributes to several environmental impacts, resulting in more and more LCA 

studies on foods and diets. As a result of lack of data, simplifications are often made regarding the foods 

considered, the system boundaries and the impact categories. This study compared three simplified LCA 

methods to a full cradle to retailer LCA and a full cradle to mouth LCA, to identify ways to simplify impact 

assessment of food and diets. These methods were applied to three diets (Average French, Healthy and 

Vegetarian), comprising 105 foods. The proposed simplified methods can offer better approximation of 

impacts of diets than a full cradle to retailer LCA. When comparing impacts of the Average, Healthy and 

Vegetarian diets, all simplified methods were biased. Results obtained by the most comprehensive simplified 

method were, for most of the impacts studied, closest to those of a full cradle to mouth LCA. These methods 

should be tested on more diet types and for more impacts for validation. 

2. Introduction  

The food sector has been identified to be a significant contributor to several environmental impacts, such as 

climate change [1] and land occupation [2]. Due to a lack of data on food products, life cycle assessment 

(LCA) studies on diets often make simplifications. Common simplifications are the reducion of the number 

of foods considered using a proxy to model a group of foods [3], modelling only up to farm gate [4, 5] or to 

retailer [6] instead of the full life cycle, or considering only greenhouse gases [1, 4]. These simplifications 

can strongly affect the results. This study proposes three methods to simplify LCA of food products, 

considering time available and required robustness of results. 

3. Methods  

The simplified methods analysed are listed hereafter; they were compared to a) a full cradle to retailer LCA 

(Fc-r) and b) a full cradle to mouth LCA (Fc-m).  

- Scaled farm (S): Calculates impacts from cradle to farm multiplied by the kg of product at the farm gate 

necessary to obtain one kg of ingested product (based on waste at industry, retailer and home, and the 

cooking weight-change due to rehydration or dehydration during cooking), plus impacts of waste 

treatment. Data up to farm gate are often available or can be estimated relatively easily. The use of this 

method can be justified by the assumption that for a food product, most of the impact is often due to the 

farm stage. 

- Scaled farm and cooking (Sc): this method improves the S method by adding cooking impacts which 

consider the type of technology as well as cooking time. 

- Scaled farm, cooking and transport (Sc-t): this method improves the Sc method by adding transport 

impacts. The transport included are: from farm to industry, from industry to retailer and from retailer to 

consumer home. 
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The environmental impacts are calculated for a 15-day meal plan. The menus which excluded alcoholic 

beverages, were developed by nutritionists based on the 105 most consumed food items in a French survey 

[7]. Three diets were created: “Average”, “Healthy” and “Vegetarian”. The Average diet was adapted from 

survey data to approximate the actual food consumption of an adult French male. Compared to the survey 

data, the Average diet supplied the same energy and macronutrients, but included only the foods most 

consumed, for simplification. The Healthy diet resulted from modifying the Average diet to adhere to French 

nutritional recommendations [8]. For the Healthy diet the quantity of fruits, vegetables, starchy foods and 

dairy products increased, and the quantity of meat and pastries decreased. The Healthy diet was modified to 

obtain a “healthy vegetarian diet” (hereafter called “Vegetarian diet”): fish and meat were replaced by eggs, 

pulses, vegetables, tofu and mung bean sprouts. 

Results  

The three simplified methods were applied to assess the three diets. The impacts investigated were: climate 

change, cumulative energy demand (CED), acidification, eutrophication and land occupation. Compared to 

the detailed cradle to mouth LCA (Fc-m), the underestimations (in %) for the average diet with the S and Sc-

t methods were respectively (23, 60, 10, 8, 5) and (11, 30, 4, 5, 5) for climate change, cumulative energy 

demand, acidification, eutrophication and land occupation (Figure 1) 

Selected results for the comparison of the five methods and the three diets for Climate Change are presented 

in figure 2. When comparing diets for this impact category, Fc-r and Sc-t performed best; their estimate of 

the difference between the Average and Vegetarian diets was within 5 percentage points of the estimate 

by Fc-m, the reference method. For absolute numbers Sc-t was closest to Fc-m for all diets. 

 

Figure 1: Relative values of the impacts climate change (CC), cumulative energy demand (CED), acidification (AC), 

eutrophication (EU) and land occupation (LO) for the Average diet according to five calculation methods. (Fc-m. full 

cradle-to-mouth method; S. scaled farm-impact method; Sc. scaled farm-impact and cooking method; Sc-t. scaled farm-

impact, cooking and transport method; Fc-r. full cradle-to-retailer method). 
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Figure 2: Climate change impact of Average, Healthy and Vegetarian diets according to five calculation methods. 

Percentages indicate relative impacts of Healthy and Vegetarian diets compared to the Average diet. (Fc-m. full cradle-

to-mouth method; S. scaled farm-impact method; Sc. scaled farm-impact and cooking method; Sc-t. scaled farm-impact, 

cooking and transport method; Fc-r. full cradle-to-retailer method) 

 

 

Time required for implementation was least for method S, followed by Sc, Sc-t, Fc-r, and Fc-m which was 

most time-demanding. However is important to note that not all methods are suitable for assessing all 

products. Method S is suitable for products with a high cradle to farm impact such as dairy and meat 

products (Table 1). Method Sc-t is suitable for fruit, vegetables, pulses, dairy and meat products, but is too 

imprecise for products with high-impact packaging (can and glass), or for products with a high energy 

demand during industrial transformation such as coffee, semolina, ultra-high temperature milk. 

 

Table 1: Simplified methods considered suitable for impact assessment according to food category and impact category 

for climate change (CC), cumulative energy demand (CED), acidification (AC), eutrophication (EU) and land 

occupation (LO). (Fc-m. full cradle-to-mouth method; S. scaled farm-impact method; Sc. scaled farm-impact and cooking 

method; Sc-t. scaled farm-impact, cooking and transport method; Fc-r. full cradle-to-retailer method) 

 

  

Sc-t Sc S Fc-r Sc-t Sc S Fc-r Sc-t Sc S Fc-r Sc-t Sc S Fc-r Sc-t Sc S Fc-r

Meat x x x x x x x x x x x x

Homemade meat-based dish x x x x x x x x x x x x

Dairy and egg x x x x x x x x x x x x x x x x

Cooked vegetable and potato x x x x x

Raw vegetable x x x x x x

Fruit x x x x

Fish x x x x x x x

Wheat-based and rice product x x x x x x x x x x

Sugar-based product x x x x x x

Homemade vegetarian dish x x x x x x x x

Homemade dessert x x x x x x x x x x x

Oil x x x x x x x x x x x x x

Pulse x x x x x x x x

LO
Food Category

CC CED AC EU
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Conclusion 

The proposed methods can offer better approximation of impacts of diets than simplified methods 

considering only impacts from cradle to retailer door. When comparing the three diets, all methods showed 

highest impacts for the Average diet and lowest impacts for the Vegetarian. Absolute values obtained by 

method Sc-t were closest to those of a full cradle to mouth LCA. These methods should be tested on more 

diet types and for more impacts for validation. 
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1. Abstract  

LCA of Hom Mali organic rice production was performed in Surin, Thailand. The results revealed that the 

impact on climate change was 3.69 kgCO2e per kg of paddy rice, however using the emission factor from 

primary data could yield 26% higher that using the default emission factor defined in the Product Category 

Rules due to higher emissions and lower yield.  But, this could not be generalized for other farming sites due 

to geographical variations in rice production.  The calculation of impact on water use with consideration of 

the water stress index of Mun watershed was 0.15 m
3
H2Oe.  However, this figure does not reflect the 

consumptive water volume as it was required for higher productivity and pest control but was not removed 

from the watershed.  The biodiversity impact assessment based on the SALCA-Biodiversity was found to be 

practical but largely dependent on the expertise and experience of the assessors. 

2. Introduction  

Organic rice farming is seen as an alternative system for more sustainable rice production due to lower risks 

from chemical use, increasing biodiversity, lower production costs, and higher price.  At present, the 

proportion of organic rice is only 0.18% (19,994 ha) of the total area of rice production in Thailand.  

However, it is targeted to be increased to 10% in 2016 as stated in the national strategic plan of organic 

agricultural production to become the regional hub for organic agricultural products [1].  Also, the 

environmental product declaration of agri-food products is likely to be in demand in the near future for 

international trading [2].   

3. Methodology  

3.1 Goal and scope 

The LCA study of organic rice production in Surin in the Northeast, which is the main production site of 

Thailand, was performed to evaluate the potential environmental impacts. The scope of study was the farm’s 

gate and the functional unit was set as 1 kg of organic paddy rice. The results of LCA could be used to 

anticipate the environmental product declaration to support the market requirements. 

3.2 Inventory analysis 

The study site was a paddy field of “Hom Mali” organic rice. The rice farming system was in-season rice 

based on broadcasting and rain-fed.  Based on the production cycle in 2013, the inputs and outputs of rice 

farming system were collected from the primary data, including the direct measurement of water levels 
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inside the rice field over the production cycle (190 days). The amounts of methane and nitrous oxide emitted 

from the organic rice field were directly measured. Background data, such as production of electricity and 

agrochemical, were mainly sourced from the Thai national life cycle inventory databases and supplemented 

with international databases when necessary. 

3.3 Impact assessment 

The impact categories of interest are: Climate change, Water use, Eutrophication, Terrestrial and Freshwater 

eco-toxicity, including Biodiversity. The impact assessment methodology is ReciPe Version 1.08 (2008) for 

Climate change, Water use, Eutrophication, Terrestrial and Freshwater eco-toxicity. The Swiss Agricultural 

Life Cycle Assessment Biodiversity or SALCA-Biodiversity [3] was used to assess the Biodiversity impact 

to explore its potential application in the local context. Especially for the biodiversity impact assessment, it 

was compared with a non-organic rice field to see the differences.  

3.4 Interpretation 

The LCA results were used to identify the practical issues associated with the environmental product 

declaration to anticipate the market trend of agri-food products on climate change, water use and biodiversity 

impacts. 

4. Results 

The inventory data analysis results showed that the organic rice farming required 0.01 L of diesel, 3.59 kg of 

organic fertilizer, 4.94 m
3
 of rain water; the direct emissions of methane was 0.16 kg per kg of paddy rice 

and that of nitrous oxide from organic rice farming was 0.0001 g per kg of paddy rice.  The LCA results are 

shown in Table 1.  

 

Table 1: LCA results of the Hom Mali organic rice farming in Surin, the Northeast of Thailand 

Impact categories (Unit) Value 

Climate change (kgCO2e) 3.69 

Water use (m
3
H2Oe) 0.15 

Eutrophication (kgPO4
3-

e) 0.01 

Terrestrial eco-txocity (kg 1,4-DBe) 4.54E-07 

Freshwater eco-toxicity  (kg 1,4-DBe) 1.04E-05 

 

Referring to the Product Category Rules (PCRs) of rice products, the default emission factor of methane 

from rain-fed organic rice fields in the Northest was 304 kg/ha/production cycle, which is equivalent to 0.14 

kg per kg of paddy organic rice; this was based on the assumption that the organic fertilizer was used at 625 

kg per ha and the yield was 2,188 kg per ha [4].  In this study, the methane from direct measurement was 422 

kg/ha/production cycle, whereas that from the organic rice field in Khon Kaen was 363 kg/ha/production 

cycle [5]. In terms of nitrous oxide, the result of direct measurement was 0.21 kg/ha/production cycle 

whereas the default emission factor was based on the theoretical calculation from the component N of 

fertilizer according to the IPCC method and yielded at 0.48 kgN2O/ha/production.   
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The sensitivity analysis showed that the climate change impact value by using the emission factor from 

primary data could yield 26% higher values than that by using the ones from secondary data in the PCRs due 

to higher emissions and lower yield.  However, this could not be generalized for other farming sites due to 

variations in seed quality, soil type, fertilizer kind and rate of application, as well as farming management 

practices especially water management and land preparation for the next crop.  Therefore, the default 

emission factors applied in the PCRs of rice product based on the IPCC method, Tier 1 methodology are 

reasonable in terms of conservative approach as the value is higher.      

In terms of water use impact, if it was assumed that the rice field was within the irrigated zone then the 

calculation of LCA-based water footprint with consideration of the water stress index of Mun watershed as 

0.927 [6] would yield 0.15 m3
H2Oe.  However, this figure does not reflect the consumptive water volume; a 

flooded system for rice farming is required for higher productivity and pest control only but it is not actually 

lost.  The water will eventually return back to the same watershed.  The impact indicator of water use could 

be useful for irrigation management rather than displaying on the products for consumers.  

The field survey of biotic resources in organic and non-organic rice fields showed that the numbers of 

species are similar but the density of zooplankton, phytoplankton and benthos are 8, 4 and 3 times higher, 

respectively, in organic rice. The number of fish and invertebrates with plants in organic rice are almost 2 

times higher and almost 10 times higher in terms of density.  Thus, the biodiversity impact of organic rice 

was higher than that of non-organic rice for all indicator species groups (Table 2). However, the biodiversity 

assessment based on the SALCA-Biodiversity especially the scoring method was largely dependent on the 

expertise and experience of the assessors. 

 

Table 2: Biodiversity score of organic and non-organic rice farming systems 

Organism Biodiversity score 

Organic rice Non-organic rice 

Phytoplankton 22.54 18.50 

Zooplankton 13.00 11.68 

Benthos 12.86 11.81 

Invertebrates with plants 12.31 11.45 

Fish 13.81 13.27 

 

4. Conclusion 

The climate change impact of Hom Mali organic rice was 3.69 kgCO2e per kg paddy.  The calculation of 

water use impact with consideration of the water stress index of Mun watershed was 0.15 m
3
H2Oe. The 

biodiversity impact based on the SALCA-Biodiversity were 12.31-22.54, and higher than that of non-organic 

rice. Environmental label is being encouraged in Thailand to anticipate the market trend, but it must not 

cause a barrier to trade. The method of displaying on environmental label is a major concern that must be 

easy to understand by consumers. 
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1. Abstract  

Policies for reducing fossil fuel depletion and GHG emissions have improved the development of low carbon 

sustainable energy. Besides the first generation biofuels that made arise many environmental burdens and 

the competition between food and no food, algae-to-energy systems show several advantages for bioenergy 

application compared with conventional crops. On the other side their cultivation requires energy-intensive 

inputs. Comparative LCA may provide the eco-profiles of microalgal and terrestrial crops oil production 

chains. Different scenarios were considered: microalgae production using alternative energy sources as 

biogas obtained from de-oiled cake and renewable technologies (i.e. photovoltaic) and the byproduct (meal) 

as cattle feed (case of rapeseed and sunflower).   

2. Introduction  

 Numerous studies have been conducted on various biomass feedstocks such as rapeseed, soybean, canola, 

corn and lignocellulosic crops for their application as bioenergy source. With regard to first generation 

biofuels, the use of resources from agricultural sector induces a lower climate change potential, but on the 

other hand can create other environmental burdens and increase the competition with food. Major drawbacks 

to these, first and second generation biofuels have prompted research in alternative forms of biomass.  

Microalgae shows several advantages for bioenergy application compared with conventional crops, such as: 

high productivity, ability to be cultivated on marginal lands and therefore may not incur land-use change, 

semi-continuous to continuous harvesting, high lipid content, potential to utilize carbon dioxide (CO2) from 

industrial flue gas and nutrients from wastewater [1]. The recent microalgae based life cycle assessments 

(LCA) studies show that different algae harvesting options, reactor configurations, culture conditions, and 

cultivation assumptions yield give divergent results concerning algae’s environmental and energy 

performance[2,3]. Anyway algae show higher environmental impacts than terrestrial crops in almost all the 

categories considered [4].  Mainly responsible of these results are the high power consumption and nutrients 

demand. The purpose of this study is to compare through an LCA study the environmental performance of 

oil from rapeseed and sunflower cultivated in Campania and from microalgae (Scenedesmus obliquus) with 

the use of conventional and alternative energy sources.  

3.  Material and methods 

3.1 Vegetable oil system boundary 

The LCA was performed using the ReCiPe method [5] and the software SimaPro 7.3. Data for agricultural 

production of the energetic crops are primary and provided by experimental plots located in Campania. 

Rapeseed and sunflower were grown using traditional farm practices. The same amount of N and K fertilizer 
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was provided to both crops. The cultivation of sunflower has required 100% more phosphorous and 52% 

more fossil fuel than rapeseed and a rescue irrigation of 280 m
3
ha

-1
. The N2O emissions were calculated by 

applying an experimental emission factor (EF) of 0,8 [6]. The data for industrial oil extraction and refining 

were found in the literature [7-8]. The Functional Unit (F.U.) is 1 kg of refined oil.  

In Figure 1 the scheme of the process and system boundaries are reported. 

 

Figure 1:  System boundaries overview for oilseed crops 

 

 

3.2 Microalgae biorefinery system boundary 

The algal strain Scenedesmus Obliquus cultivated in ponds with the use of livestock wastewater as nutrient 

source has been selected as “best case” on the basis of previous LCA studies [9-10]. 

In Figure 2 the scheme of the process and system boundaries are reported. Data from literature were used to 

determine the microalgal oil recovery system by solvent extraction and the recovery system by a stripper 

column for separation of microalgal oil/hexane stream [11]. Electricity production is based on the European 

energetic mix, in which heat is produced with natural gas burned in industrial gas boilers.  

For the different scenarios data from literature have been used: 1) microalgal cake for biogas production  

[12], 2) green energy from microalgae: usage of algae biomass for anaerobic digestion [13]. Moreover: 

biogas content has been estimated 65% [13], biogas purification is achieved by bubbling it into pressurized 

water. Use of renewable energy as photovoltaic technology has been also investigated using data from 

SimaPro 7.3.3 Ecoinvent 2.2 database.  

 

Figure 2:  System boundaries overview for microalgal oil production 
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4. Results and discussion  

4.1 Comparison of oil from terrestrial crops and oil from algae 

The feedstock cultivation represents the heaviest environmental burdens in the oil production chain. From 

the comparison between rapeseed and sunflower, rapeseed results as the oil crops with the low 

environmental impact in all categories considered when an economic allocation is applied.  

As reported in Figure 3, microalgal oil production process has much higher environmental impacts compared 

with sunflower oil and rapeseed oil. The large impacts are due to the heavy energy demand (electricity and 

heat) and material consumption for the algae biomass production. The cultivation stage has the largest 

electricity requirement for air and nutrient pumping into raceway pond, water pumping due to evaporation 

lost and pumping algae slurry for harvesting stage. The total process contributions to environmental impact 

categories are the following: microalgae cultivation (56.4%), biomass harvest (4.5%) and oil extraction 

(39.1%). Regarding the energy demand of whole process for microalgal oil production, two scenarios have 

been evaluated: (A) use of microalgal cake for biogas production and (B) use of photovoltaic technology. 

Each scenario shows reduced environmental impact respect to the base case. Scenario A shows higher 

impacts respect to Scenario B because of electricity and heat demand for microalgal cake anaerobic digestion 

and biogas purification step. A decrease of about 35% in Climate change and 15% in Fossil depletion occur 

when photovoltaic energy is used in spite of electricity European mix.  

 

Figure 3: Comparison between sunflower oil, rapeseed oil and microalgal oil production processes.  

Method: ReCiPe Midpoint (H) V1.04 / Europe ReCiPe H / Caracterization 

 

 

A comparison between sunflower, rapeseed and microalgae as feedstock for oil production is reported in 

Figure 3. Use of renewable technologies as photovoltaic could increase the competitivity of microalgal oil 

production chain reducing its demand of non-renewable energy sources (Figure 4). Another aspect is the 

possibility to increase the lipid content of microalgal specie using different nutrients composition (i.e. 

wastewaters with low nitrogen content). 
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Figure 4: Comparison between sunflower, rapeseed and microalgal oil production  with biogas and photov. tech. 

Method: ReCiPe Midpoint (H) V1.04 / Europe ReCiPe H / Caracterization 

  

5. Conclusions 

Despite their high potential as sustainable energy feedstock, microalgae are not yet competitive with the 

traditional oil crops in both economic and environmental impact. The main obstacle to their convenience on 

industrial scale still consists in the high energy demand in terms of electricity, heat and nutrients. The 

introduction of renewable energy in the production chain has proved that there are wide possibility to reduce 

the impact but this is still not enough to match the performance of crop land. On the other hand the expected 

increase in world population resulting in growing need of arable land, will lead to privilege second and third 

generation biofuels that do not compete with food production. In this perspective algae could play an 

important role but further research is necessary aimed at optimized the production chain and to value all 

useful co-products.  
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1. Abstract 

The world production of cheese whey, which is the main contaminant generated by the cheese industry, is 

estimated to be over 10
8
 tons/y. In Italy, the cheese production in 2013 was 1.16

6
 ton. Thanks to its 

nutritional value, liquid whey can be successfully recycled in animal nutrition. Following the LCA 

methodology, this study aims to assess the environmental impact of milk production within the traditional 

dairy chain. In three farms, different cow’s diets were assessed and compared: farm A, with hay and no 

liquid whey; farm B, including silages but no liquid whey; farm C, including both silages and liquid whey. 

Finally, sensitivity analysis was conducted on allocation methods (mass vs. cereal unit) between milk and 

meat. Results have shown that farm C had the best environmental performance due to both silages/liquid 

whey use and milk yield per cow (29 L vs 28 L in farm B and 25.1 L in farm A). The same results were 

achieved in the cereal unit allocation, even if the mass allocation results were higher than those with cereal 

unit allocation. The identification of critical impacts along the production cycle and the comparison among 

the three cow’s diets suggest those best practices that could improve the milk production sustainability in 

marginal areas typical in South Central Italy. 

Keywords: Life Cycle Assessment (LCA), milk production, cheese whey recycling, cow’s diet. 

2. Objectives, materials and method 

The dairy industry is associated with the production of wastewaters and effluents that could have a 

significant environmental impact because of their pollutant characteristics [1]. The dairy waste that is 

receiving considerable attention is cheese whey [2], since approximately 1 kg cheese produces 10 L cheese 

whey [3]. In Italy, the cheese production in 2013 was 1.16
6
 ton [4] while the world production of cheese 

whey is estimated to be over 10
8
 tons per year [3]. Thanks to its high nutritional value, liquid whey can be 

recycled within the dairy chain for feeding animals. Aiming to contribute to an improved environmental 

sustainability of milk production in the traditional dairy chain while enhancing the animal well being, the 

study assesses the environmental impact of milk production by the means of different feeding strategies. 

Following the LCA methodology, animal diets including or not liquid whey were assessed and compared . 

We referred the environmental analysis to a sample of dairy farms located in inner areas of Molise region, 

Centre Italy. Despite the small size of the region, the local cheese production contributes approximately to 

1.8% of the national cheese production [4] and has a strong traditional character [5]. The focus on few case 

studies is consistent with previous studies on milk production [6, 7, 8].  
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The environmental impact assessment  has been carried out by comparing three farms where Italian Friesian 

dairy cows are raised following feeding strategies
3
 summarised as: farm A, traditional feeding, i.e. hay and 

no liquid whey; farm B, including silages but no liquid whey [9]; farm C including both silages and liquid 

whey
4
. The considered system was defined by whole life cycle of cows (from birth and growth, to milk 

production) including the agricultural processes of feedstuffs. The liquid cheese whey, produced by “L. 

Barone snc”, was used in animal feeding as partial substitute of drinking water. All the system was 

consistent with the perspective “from a cradle-to-gate”. The functional unit (FU) was “1 kg of energy 

corrected milk (ECM) at the farm gate” in order to consider the fat and protein contents of the milk [6-7,10-

12]. The mass allocation was previously used to share the environmental burden between milk and meat, 

then compared with an cereal unit allocation
5
. The method ReCipe

 
Endpoint (H)/ Europe 1.09 was used. 

Weighing and characterization  among farm units have been carried out to identify the farm with the highest 

impact and the main categories of impact at the “endpoint” and “midpoint” levels.  

3. Results and discussion 

The analysis of the environmental impact of milk production at “endpoint” level (Fig. 1) showed that farm 

A, was more impacting than farms B and C, mainly due to management of diets. The same results were 

achieved in the cereal unit allocation
6
, even if the mass allocation results were higher than those with cereal 

unit allocation. The use of commercial mixed feeds had the largest impact on all farms mainly as a 

consequence of soybean cultivation (an ingredient of mixed feeds )
7
. Moreover, in all the farms the main 

damaged category was the ecosystem. 

 

                                                      
3 Cow’s diets (kg/head x d): farm A - 12 kg meadow hay, 3 kg mixed feed, 3 kg maize, 2.5 kg sugar beet pulp, 1.5 kg 

soy meal 44%, 1.5 kg barley and 90 liters of water; farm B - 13 kg triticale silage, 6 kg meadow hay, 3 kg mixed feed, 3 

kg maize, 2.50 kg sugar beet pulp, 1.5 kg soy meal 44%, 1.5 kg barley and 80 liters of water; farm C - 13 kg triticale 

silage, 6 kg meadow hay, 3 kg mixed feed, 3 kg maize, 2.50 kg sugar beet pulp, 1.5 kg soy meal 44%, 1.5 kg barley and 

50 liters of water plus 26 liters liquid whey. 

4 The potential diet D (hay and liquid whey) was not tested, 

5 The percentages of mass allocation were 88% and 12% for milk and meat, respectively [13]; while the cereal unit 

allocation was 86.6% to milk, 6.8% live-weight dairy cow and 6.6% to live-weight fattening calf [14]. All 

manure/slurry were used as a fertilizer in the crop production of the farms, therefore it was not necessary their 

allocation. 

6 For space reasons, results of the sensitivity analysis with the cereal allocation method were not reported. 

7 According to literature [15] mixed feed can be assimilated to the three major products  -cereals, oilseeds, sugarbeet-, 

included in equal parts in the mix. Moreover, to evaluate environmental impact of mixed feed it was necessary to 

consider both the cereal cultivation and the industrial processes for each component including byproduct such as 

soybean meal and sugar beet pulp. For the cultivation phase we must consider the ratio between the quantity of 

agricultural raw material (i.e cereal) necessary to produce 1 kg of processed feed (i.e. grain). According to local 

evaluations, 3.50 kg of cereal were necessary to produce 1 kg of processed grain, 5.88 kg of sugar beet were necessary 

per 1 kg of sugar beet pulp and 2.50 kg of soybean were necessary to produce 1 kg of soybean meal.  
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Figure 1: Environmental impacts of milk production at endpoint level (pt) 

 

 

 

 

 

 

 

 

 

The characterization phase allocate the environmental impacts to the “midpoint” categories
8
.  

The farm C showed a global best environmental performances, because its impacts account on average for 

about 86% of the impacts attributable to farm A. This means that switching from a case with hay and no 

liquid whey (farm A) to a diet including both feedstuffs (farm C) would result in a decreasing environmental 

impact. Comparing the farms for each impact category, farm A has a higher impact than farms B and C on 

all categories (figs. 2.a, 2.b) except on PMF and TA categories. The impact on PMF category was mainly 

caused by ammonia from forage cultivation for hay (farm A) and from grass cultivation for silage (farms B 

and C). The impacts of farms A and B on PMF category were similar in size (98 % vs 100%): that is because 

farm A included hay in rations and had the lowest daily milk yield, while farm B used silage in rations and 

had a higher daily milk yield
9
. The differences between the PMF impact of farms B and C were due to the 

daily yield (respectively 28 L and 29 L). The highest impact on TA category was observed in farm B, where 

it was due to the ammonia from grass cultivation for silage, followed by farm C.  

Considering the impacts in absolute terms, among “midpoint level” categories belonging to human health 

(fig. 2.a), the highest impact is on CCHH category and it is due to the carbon dioxide caused by tractor fuel 

combustion in soybean cultivation (an ingredient of mixed feeds). This component of mixed feed was 

present in the diets of all farms, but the differences among their CCHH impact were mainly due to the 

different daily milk yield. As far as the PMF category, as above, absolute impacts derived mainly from 

ammonia. The impacts on HT category were caused by manganese coming from cereals cultivation. Among 

“midpoint level” categories belonging to ecosystems (fig. 2.b), the highest impact was on ALO, followed by 

                                                      
8 The “midpoint level” categories are grouped at “endpoint level” into the categories of damage for human health, 

ecosystems and resources, as follows. Impact on human health by: climatic change on human health (CCHH), ozone 

layer depletion (OD), human toxicity (HT), formation of photochemical oxidants (POF), formation of particulates 

(PMF), and ionizing radiations (IR). Impacts on ecosystems: climatic change on ecosystems (CCE), land acidification 

(TA), freshwater eutrophication (FEu), terrestrial freshwater and marine eco-toxicity (TE, FEc, ME), urban and 

agricultural land occupation (ULO, ALO), the transformation of natural soil (NLT). Impact on natural resources: 

exhaustion of metals (MD) and fossil resources (FD). 

9 The farm A used 12 kg of hay in the cow’s diet with 25.1 L of daily milk yield per cow; farms B used 13 kg of silage 

with 28 L of daily milk yield per cow. 
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CCE categories. The soybean cultivation causes, for all farms, the above mentioned impact on ALO 

category. The impacts on CCE category were caused by carbon dioxide coming from tractor fuel combustion 

for soybean cultivation. Finally, between the two “midpoint level” categories belonging to resources (figure 

not shown) the highest impact is on FD category due to crude oil from fuel consumption, used for soybean 

cultivation (all diets). 

In conclusion, farm C showed the least environmental impact due to cow’s diet (including both silages and 

liquid whey) and milk yield per cow (29 L vs 28 L of farm B and 25.1 L of farm A), confirming that impacts 

decrease at increasing milk yields [16]. 

 

Figure 2: Characterization: Human Health (2.a) and Ecosystems (2.b) impact categories
10 

(legend: see note 6).  

The values expressed in DALY (2.a) and in species yr. units
11

 (2.b) indicate the impact in absolute terms identified  

for each impact category on farms) 

 

 

(2.a) 

 

(2.b) 

3. Conclusions 

Using the LCA methodology, we assessed the environmental impact of milk production when liquid 

whey is introduced in balanced dairy cow rations partially substituting drinking water. Our results, 

although on a limited number of dairy farms, show that farm C, with both silages and liquid whey use, 

is the least impacting. This finding is mainly due to the different diet that increase the milk yield when 

the silages and the liquid whey are included. The best environmental performance of farm C compared 

to other farms suggests that the best feeding strategy consists in using silages and liquid whey in dairy 

rations. The study assesses the environmental impacts at farm level according to literature; while it 

lucks to consider the alternative liquid whey disposal from cheese production.  

                                                      
10

 Impacts less than 2.90E-9 were excluded due to graphical reasons. 
11

 Daly (Disability Adjusted Life Years) was an index of disease weight, i.e. years in ill or lost to premature death. Species yr. 

unit was the number of living species lost per years due to the impact on ecosystems (Fiore et al., 2009).  
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Finally, intensifying the recycle of liquid whey and strengthening the relation at local level between 

cheese industries and dairy farms, the cost of whey transport could be reduced and the disposal costs of 

liquid whey would be eliminated, with positive environmental effects. The aforementioned benefits 

could contribute to innovate the dairy chain in South Centre Italy. 
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1. Abstract  

The purpose of this work is to verify the possibility to adopt planning tools, well known among technicians, 

to improve the building energy efficiency in a life cycle perspective and to verify if these tools can lead to 

embodied energy results comparable with a specific case study. The aim is to use these results to quantify 

ALCE, Annualized Life Cycle Energy, value. Starting from a published LCA study about an existing ZEB 

(Zero Energy-Emission Building) building, its planning was simulated and the embodied energy values were 

deduced converting the inventory data. Results were comparable for the specific case study for most of the 

manufacturing phases, with a difference lower than 15%, and they were used in to calculate ALCE. Final 

values shows that ALCE is an indicator able to represent the task to minimize building energy use and so 

improving energy efficiency in the constructions sector.  

2. Introduction  

Energy efficiency of a building can be seen as the ability to guarantee delivery of services using lower 

amount of primary energy as possible, thus, a high system efficiency concurs with low energy consumption 

in ensuring building energy needs. Therefore, goal of energy efficiency is the reduction of energy 

wastefulness. However, besides the building use phase, it is suitable to reduce the energy linked to the 

overall system life cycle, defined as embodied energy, or virtual, or hidden energy [1]. LCA (Life Cycle 

Assessment), which assesses potential impacts associated with the overall life cycle of processes and 

products, allows enhancing the building efficiency. This methodology permits to highlight, among all energy 

forms, the embodied energy, particularly significant in the constructions sector, used as a discriminating 

factor for planning choises since the preliminary project phases.  This is especially important for buildings 

such as Nearly ZEBs, which are characterized by low energy requirements (between 0 and 15 kWh/mq year), 

with almost no direct emissions [2] and where the energy delivered by the system is balanced with the 

energy produced [3,4]. The addition of embodied energy within the energy balance can distance the building 

from the ZEB target [5] because it extends the analysis above the operational phase. Therefore, a new energy 

efficiency target in the constructions sector was defined: the LC-ZEB, Life Cycle-Zero Emission Building, 

which considers the building energy balance between delivered and produced energy, taking into account the 

overall system embodied energy through ALCE value. In previous LCA studies, life cycle embodied energy 

is quantified through CED (Cumulative Energy Demand) evaluation method expressed in terms of MJ [6]. 

Embodied energy dissertation is turning to overtake the importance of direct emissions [7, 8]. 

The goals of this study are: 
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- Verifying the existance of well-known planning tools to enhance building energy efficiency calculations 

in a life cycle perspective; 

- Assessing if they can lead to results that are comparable with the outcomes of a specific case study in 

order to calculate ALCE value. 

3. Materials and methods 

According to the goals of this work, a published LCA study on existing ZEB building was considered. We 

simulated the overall planning starting from the architectural modeling using AutoCAD tool. Furthermore, 

the metric estimate was elaborated to define the “Bills of Materials”. This amount of materials were 

converted in embodied energy through ICE (Inventory of Carbon and Energy), a free database created by 

Bath University including more than 400 constructions materials embodied energy unitary values [9]. 

Moreover, a time line chart (Gantt diagram) was developed to quantify the manufacturing duration and the 

on-site engines and transports time use to convert them in embodied energy values through literature factors. 

The obtatined embodied energy results were compared with the outcomes of the reference case study, and 

they were used to calculate ALCE expression terms. The case study was specifically selected because it 

analysed the same building of our work. ALCE value was important to define the building energy use needs 

in a life cycle perspective and was obtained by the sum of AEU (Annualized Energy Use) and AEE 

(Annualized Embodied Energy) for every component and every manufacturing phase. A building can be 

considered a LC-ZEB if it respects the equation  [E1]. Thus AEU value must be lower than zero. 

ALCE=AEU+AEE=0     [E1] 

According to the equation [E1], it is necessary that the building system plant produces more energy (E out) 

than building needs, installing high efficiency plants using renewable resources [10]. We have to consider 

these active energy producing systems like any other building component, especially for their contribution in 

the total embodied energy amount that will be included in the AEE computation  [11].  

4. Results and discussion 

Table 1 shows results of this work and the reference case study. The comparison was carried out for every 

building manufacturing phase. 
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Table 1: Comparison between the results obtained in this study and results of reference case study 

Results of this study Unit Reference case study Unit Difference (%) 

Support structure 2,61 MWh/y Support structure 2,32 MWh/y 12 

Foundations structure 1,60 MWh/y Foundations 1,55 MWh/y 3 

Ground air garret 1,44 MWh/y 

Garret 13,27 MWh/y 

5 

Intermediate garret 5,20 MWh/y 

Outdoor  0,22 MWh/y 

Frame 12,78 MWh/y Frame 3,24 MWh/y 

External walls 7,59 MWh/y 

External walls 8,9 MWh/y 13 

External doors and windows 0,15 MWh/y 

Internal walls 1,22 MWh/y 

Internal walls 1,3 MWh/y 6 

Internal doors 0,10 MWh/y 

Transports 1,05 MWh/y Transports 1,14 MWh/y 7 

Construction site 5,17 MWh/y Construction site 0,08 MWh/y - 

 

 

The embodied energy materials differs for a percentage lower than 15%, which is our threshold limit, when 

compared to the case study for most of the manufacturing phases: support structures 12%, foundations 3%, 

external walls 13%, internal walls 6%, frame and garret 5%, transports 7%.  

However, the difference between results regarding the construction site is significant, because of on-site 

engines, transport and employers embodied energy. ALCE value was calculated summing the AEE term, 

equal to 53,58 MWh/y, to the building annualized energy use AEU previously found, equal to 34 MWh/y. 

The final value of ALCE, thus, is 87,508 MWh/y. Furthermore, the building energy produced by the system 

(E out) was quantified resulting equal to 172 MWh/y. This value is higher than the AEU one, despite the 

embodied energy in the overall building energy balance. However, the difference between the two values 

decreases when the life cycle perspective is considered. Finally, AEE were higher than AEU, demonstrating 

that embodied energy was not a negligible building analysis element. 
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5. Conclusions 

The aim of this study is to propose an applicable method to increase the constructions sector sustainabilty 

and efficiency considering LCA perspective. The proposed approach allows gaining a complete building 

embodied energy picture linked to the overall system life cycle using well-known tools normally utilized by 

technicians. Sinergy between architectural planning and LCA leads to a more realistic impacts awareness in 

all manufacturing phases because the variation of embodied energy is directly linked to the project amount. 

LCA methodology and CED evaluation method, which coincides with embodied energy, allow quantifing 

ALCE, that represents the task to minimize building energy use and so improving energy efficiency in the 

costructions environment [12]. 
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1. Abstract  

This study answers the question how resource efficient the production of Vietnamese Pangasius frozen fillets, 

an important alternative within the low-priced fish class, is. Resource usage was assessed as the Cumulative 

Exergy Extraction from the Natural Environment (CEENE), using the CEENE method, over a cradle-to-

retailer life cycle: aquaculture, processing in Vietnam and transport to the Belgian retailers (EU). One 

tonne of dry matter (DM) of frozen fillets (excluding the water and chemical absorption) extracted 627 GJex, 

mainly through land occupation (48%, primarily for cultivating crop-based feed ingredients), water usage 

(33%, primarily for pond water renewal) and fossil fuel use (15%, primarily for energy use in processing 

and transport). Improvements in aquaculture (81% of the CEENE) were addressed by Huysveld et al. [1] 

Processing (14%) should use less electricity and packaging materials.   

2. Introduction  

Pangasius is a relatively recent arrival on the international market; however, it is nowadays an important 

alternative within the low-priced fish class. Vietnam dominates its production while the main importers are 

the United States of America (USA) and the European Union (EU) [2]. As these are developed countries, 

more concern is therefore paid to the environmental performance of Pangasius production, particularly its 

resource footprint. This study aims to quantify the natural resource demand of Pangasius frozen fillets from 

cradle to the Belgian retailers (EU) by applying the Exergetic Life cycle assessment, in which resource 

consumption on a life cycle level is quantified as the Cumulative Exergy Extraction from the Natural 

Environment (CEENE) [3]. A bove that, we suggest improvements to this sector based on identified 

environmental hotspots in terms of resource footprint within the aquaculture, processing, and transport 

stages.  

3. Materials and Methods 

3.1 Goal and scope 

The system boundary was a full cradle-to-retailer life cycle of Pangasius frozen fillets, including aquaculture 

(i.e., feed production, hatchery and fish cultivation), processing in Vietnam and transportation to the 

Belgium retailer (Figure 1). The functional unit (FU) was one tonne of dry matter (DM) of frozen fillets 

(excluding the water and chemical absorption during processing). Labour, machinery and infrastructure were 

excluded in this analysis. 
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Figure 1: System boundaries of the Vietnamese Pangasius frozen fillet production and transportation 

 to Belgian retailer [4] 
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3.2 Life cycle inventory 

Description and inventory of Pangasius aquaculture were deprived of Huysveld et al. [1] Foreground data of 

the processing and transportation were collected onsite between July and September of 2010 at a 

representative Vietnamese seafood producer under the condition of anonymity. The processing in Vietnam 

consisted of fillet processing (i.e., filleting, soaking, freezing, glazing, packaging, and storing) and its 

supporting system (i.e., groundwater treatment for a supply to the core system, wastewater treatment, and 

valorisation of fish trimmings to by-products: fishmeal, fish oil and extra parts (i.e., stomach, bladder, 

skeleton)). Several scenarios were possible in the fillet processing, depending on the import market 

requirements. This study focused on the scenario meeting the specifications of EU retailers, i.e., frozen fillets 

with a weight gain of 14% during soaking, 10% during glazing and individual quick packaging of 350 kg per 

package (IQF350). Background system processes were derived from the Ecoinvent v.2.2 database [5]. 

Electricity used for Vietnamese production and for cold ironing in a Malaysian habour was modelled by 

using the Czech electricity production datasets available in Ecoinvent to model the 10-year (2003-2012) 

electricity production mix in Vietnam and Malaysia, reported by the International Energy Agency [6]. 

According to the ISO guidelines, when system expansion is not practically feasible, allocation based on 

physical properties (i.e., exergy content) should be preferred above economic allocation. The exergy content 

grasps both quantity and quality of a flow, hence this physical metric was used for allocation. 

3.3 Life cycle impact assessment 

Resource footprint was addressed in terms of exergy, or more specially, the Cumulative Exergy Extraction 

from the Natural Environment (CEENE) method [3]. This study applied the CEENE v.2013 method [7] 

which introduced the potential net primary production as a better proxy for land occupation compared to the 

photosynthetic solar exergy applied in the CEENE v.2007 [3]. A more comprehensive explanation about the 

rationale of the CEENE v.2013 can be found in the work of Alvarenga et al. [7] and Nhu et al. [4]. Pangasius 

aquaculture reported by Huysveld et al. [1] was applied this new approach by using site-specific land 

occupation characterisation factors (CF) along with adapting land occupation (ha*yr kg
-1

) of feed ingredient 

(e.g., wheat, soymeal, etc.) production based on their origins (Table 1 in Huysveld et al. [1]) using a 10-year 

(2003-2012) average productivity.  
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For the background system, the European-average land occupation CF was applied to calculate the CEENE 

of industrial products (e.g., electricity, chemicals, etc.) for simplification.  

4. Results and Discussions 

For the chosen scenario, the total CEENE, i.e. the natural resource consumption over the cradle-to-retailer 

life cycle, amounted to 627 GJex per tonne of DM frozen fillets corresponding to 6.2 tonnes of frozen fillets 

in 0.5 tonnes packaging. With respect to the types of resources, the largest contributors were land occupation 

(48%, primarily for cultivating crop-based feed ingredients), water usage (33%, primarily for pond water 

renewal), and fossil fuel consumption (15%, primarily for energy use in processing and transport). 

Aquaculture (81%), particularly on-farm activities: feed usage (50%) and water renewal (22%), took the 

largest share in the total CEENE and was followed by other inputs of the fillet processing (14%) and oversea 

transport (5%). The end-of-life disposal of packaging around frozen fillets was noted for its dependence on 

the waste disposal policy of imported markets. This packaging was recycled (i.e., plastic and cardboard) and 

reused (i.e., wooden pallets) in Belgium, which subtracted 40 GJex FU
-1

 from the total CEENE via 

replacement of virgin materials. Along with one tonne of DM frozen fillets (FU), the Vietnamese producer 

delivered 2.2 tonnes of fishmeal, 2.3 tonnes of fish oil and 0.26 tonnes of extra parts, corresponding to 

CEENE values of 932 GJex, 1950 GJex and 38 GJex, respectively. The CEENE of other inputs of the 

processing in Vietnam, except aquaculture contribution, amounted to 155 GJex FU
-1

, of which land (40%), 

fossil fuels (32%) and water (23%) contributed primarily. Improvements in aquaculture were addressed in 

Huysveld et al. [1] Improvements in the processing should focus on identified hotspots, i.e., the consumption 

of electricity (26%), packaging (27%), and rice husks as an energy source for the boiler in by-product 

valorisation (30%). One may install capacitor banks to improve the power factor in addition to monitoring 

electricity usage for individual operations. Processing wastewater could be utilized as a feedstock of 

anaerobic digestion, which allows a positive energy balance [8] corresponding to an estimated saving of 6.8 

GJex FU
-1

. Other effective options could be: reducing the fillet weight gain in glazing and/or soaking and 

changing the packaging scenario, which were discussed in Nhu et al. [4]. 

 

Figure 2: Overall cradle-to-retailer resource footprint of Pangasius frozen fillets (IQF350) 
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5. Conclusion 

Aquaculture, specifically grow-out farming, was identified as the hotspot of Pangasius frozen fillets with 

respect to resource footprint. Improvements in this stage was addressed by Huysveld et al. [1] Regarding 

processing, in addition to lowering the consumption of electricity and packaging materials, life cycle 

thinking should be introduced to Pangasius importers because their choices in the characteristics of imported 

frozen fillets and the disposal of packaging around the fillets directly influence the resource footprint of this 

product. For more information on this work, please read our related work [4]. 
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1. Abstract  

This paper presents the preliminary results of a comparative Life Cycle Assessment of conventional bread 

baking ovens and novel bread baking ovens based on infra-red (IR) technology. This LCA is being executed 

for the EU FP7 research project “Enabling small-to-medium sized oven technology producers and bakeries 

to exploit innovative Low Energy Ovens” (LEO). The overall goal of the LEO project is to develop and test 

three types of low energy ovens based on infra-red baking technology: a deck oven, a convection oven and a 

conveyor oven. The measurements taken during the energy tests form the input for the LCA. Additional 

environmental data was gathered for oven materials and manufacture, and the production bread ingredients. 

As testing is currently still in progress, only preliminary outcomes are presented in this abstract. 

2. Introduction  

Bread is an essential food product in European diets, with an average annual consumption of 58 kg per 

person and a production of about 35 million tonnes in 2012 in Europe [1][2]. During the process of bread 

production, environmental impacts result, for instance, from the use of natural resources (e.g. land for wheat 

cultivation), energy (e.g. energy for baking) and fuel (e.g. transport of grain, flour and bread).   

Within the context of the European FP7 Research Project -”Enabling small-to-medium sized oven 

technology producers and bakeries to exploit innovative Low Energy Ovens” (LEO) (http://leo-fp7.eu/), we 

present preliminary results on the comparative Life Cycle Assessment (LCA) of three types of conventional 

bread baking ovens - a deck, a convection and a conveyor ovens (Figure 1) - and a novel bread baking oven 

based on infra-red (IR) technology. 

3. Methodology 

The IR conveyor oven was developed by consortium partner IRCON and Ramalhos manufactured the deck 

and convection ovens. The energy use/efficiency of the ovens (conventional and IR technology) was tested 

in the laboratory by ONIRIS and SP Food and Bioscience. Successively, the new IR prototype ovens will 

also be tested by two medium-size bakeries: (1) BPA-Nantes in France, and (2) Die Havenbäcker in 

Germany. At this stage, two types of bread recipes and sizes were selected to be tested in the three new IR 

ovens and the two reference ovens.  
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Figure 1: Type of bread baking ovens used in this study: a) Deck, b) Convection and c) Conveyor ovens 

 

4. Scope of the study 

The functional unit of this study is the consumption of 1 kilogram of ready baked bread by the consumer. 

The recipes and the weight of the bread are a basis for the reference flows, which are based on the functional 

unit. Losses of ingredients during in the retail are assumed to be 20%
12

, and bread waste is based on national 

statistics. 

The life cycle of the bread production systems is shown in Figure 2. The system boundaries are cradle-to-

grave, and an attributional approach is used to model the process system. Some processes are excluded in 

this study such as human labour, land-use change (due to low change in wheat production in France and 

Germany), and capital equipment is included as much as practically feasible. 

 

Figure 2: Simplified diagram of the system boundaries 

 

 

 

                                                      
12 http://www.deutsche-handwerks-zeitung.de/zu-viel-brot-landet-im-muell/150/3094/283177  

http://www.deutsche-handwerks-zeitung.de/zu-viel-brot-landet-im-muell/150/3094/283177
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Besides the ovens, some capital equipment is present in the background datasets from Ecoinvent 2.2 [3], for 

example in energy production processes. The chosen LCIA method is ILCD 2011 Midpoint v1.05 [4], and 

all midpoint indicators are taken into account to determine “the environmental impact” as broadly as 

possible. The optional LCIA element normalization is not part of this study and neither is weighting applied. 

For the Life Cycle Inventory (LCI), primary data was used for the bread baking process, while secondary 

data was used for the cultivation and retail-consumer and water management phases. Data quality 

requirements, which are applicable on the life cycle inventories, follow the requirements (e.g. precision, 

representativeness, uncertainty) stated in section 4.2.3.6.2 of the ISO 14044 [5]. 

5. Preliminary Results 

Figure 3 shows preliminary results of the environmental impacts of producing 1kg of bread with three 

different types of ovens. For all impacts, bread baking with a conventional deck oven had the highest impact 

due to its higher energy use during bread baking, especially for the pre-heating of the oven and the steaming. 

Data on energy use of new deck and convection ovens with IR technology are being gathered, and final 

results will be shown during the conference. 

 

Figure 3: Impact contribution of different phases of producing 1 kg of bread: (1) Wheat flour, (2) Bread dough – 

mixing and (3) Baking Bread. Type of impacts: a) Climate change impact; b) Fossil fuel depletion, c) Terrestrial 

acidification, d) Freshwater eutrophication. REF: Reference (conventional); IR: Infrared technology 
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6. Conclusion 

The final LCA will compare the life cycle impacts for a large array of scenarios; analyses will be made for 

the three infrared ovens, two conventional ovens, two different bread recipes, three different bread sizes and 

in two different European countries (Germany and France). By looking at such a wide range of scenarios, it 

will be possible to derive robust conclusions on the environmental potential of the new infrared oven types. 

In addition, the assessment provides a opportunity to identify environmental hotspots and potential areas for 

improvement.  
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1. Abstract  

This study aims to apply the Life Cycle Assessment analysis to coffee following the product through its 

production steps: tillage, harvest, processing and importation. Social issues were also taken into account. 

The analysis was focused on the Arabica green coffee variety produced in the state of Minas Gerais in Brazil 

and imported to Italy by Illycaffè S.p.A.. The LCA analysis shows that coffee beans cultivation has the major 

impact compared with the import phase mainly due to land use.  

2. Introduction  

The global coffee market worth approximately 100.000 billion dollar and it is characterized by the presence 

of 60 coffee producing countries. Brazil and Colombia together command approximately half of the world 

market, while the remaining countries have small market shares. Following the ICO (International Coffee 

Organization) statistics these countries together represent more than half of the world coffee beans turnover 

and have about 60% ÷ 70% of the market share. In particular Brazil is the world's biggest producer of coffee 

beans with approx. a 35% market share [1]. 

Depending on climate conditions, Brazil annualy produces about 35 ÷ 40 million of coffee beans bags of 

which 30 million are exported, while 10 million are intended to domestic consumption making Brazil the 

world's third largest coffee-consuming country. Five states produce coffee in Brazil (Minas Gerais – 56.3%, 

Espírito Santo – 23.8%, São Paulo – 8.1%, Paraná-Bahia – 7.1% and Rondônia-Demais – 4.6% with several 

differences in all the production aspects. The Brazilian cultivations and consequently the coffee quality are 

influenced by different factors among which local topography conditions, size of the coffee production areas, 

adopted spacer and coffee production and processing technology. These conditions combined with coffee 

cultivation management (intensive, extensive, mechanical or manual) determine the coffee beans varieties 

harvested.  

There are two coffee preparation methods: the dry method and wet method. Both methods have the 

following common stages: cleaning, separation, drying, storage, processing and classification. Additionally, 

the wet method includes the separation of red coffee berries, pulp remotion, mucilage removal and product 

washing [2]. 

The goal of this paper is to analyse the environmental sustainability  of a complete green coffee beans 

cultivation. In particular, this study aims to apply the Life Cycle Assessment analysis to coffee following the 

product through its production steps: tillage, harvest, processing and importation. The analysis was focused 

on the Arabica green coffee variety produced by the wet processing in the state of Minas Gerais and 

imported to Italy by Illycaffè S.p.A.  

mailto:annamaria.ferrari@unimore.it


 

 

139 

3. Materials and Methods 

The scope of the present study is to assess the environmental impacts of the Brazilian production and import 

to Italy of green coffee for the reference crops 2012/2013. In order to highlight the positive impacts over the 

population, the local community and the large Brazilian community the HDI (Human Development index) 

[3] indicator was also introduced in order to take into account social issues.  

The studied system is the production by the wet method of the green coffee variety Arabica produced in the 

state of Minas Gerais – Brazil and imported to Italy by Illycaffè S.p.A. The functional unit selected for this 

study is part (40%) of the whole seasonal production (72.000 kg) of the farm bought by Illycaffè S.p.A, that 

is 28.800 kg. This part corresponds to the high quality beans of the whole production as Illycaffè usually 

buys only the beans with major quality.  

The system boundaries for the analysis takes into account the green coffee beans cultivation and their import 

to Italy by Illycaffè S.p.A. thus obtaining “a cradle to the gate” overview. In the study all products (like 

fertilizers, pesticides etc.), materials, technologies (like machineries ) and process (like nursery, tillage, 

harvest etc.) involved in the production of coffee beans in the “Serra do Sao Bento” farm were considered.   

To assess the environmental impact the analysis was conducted using the SimaPro 7.3.3 software and 

IMPACT 2002+ [4] evaluation methods. In order to give more representativeness of the studied system 

IMPACT 2002+ was modified as in previous studies [5-6] and a new indicator, HDI (Human Development 

index) was also introduced in order to take into account social issues[7]. The HDI is the geometric mean of 

three normalized indices Life expectancy index (LEI), Education index (EI) and Income index (II) reported 

in the following equation: HDI= ∛(LEI×EI×II). HDI was also allocated taking into account the coffee gain in 

20 years and the Gross Domestic Product (GDP) in Brazil.  

Primary data about the inputs (i.e. materials, water and energy resources) and ouput (i.e. airborne and 

waterborn emissions and solid waste) used in this study were directly collected in Brazil, from April to 

September 2013, visiting the “Serra do São Bento”, a farm located in a mountain area close to Araponga, a 

small city in Minas Gerais. Data related to some background processes (land use, materials production, 

transport and machinery operations) were derived from Ecoinvent database.  

4. Impact Assessment and concluding remarks 

A) The analysis of the results shows that the green coffee beans cultivation and import to Italy produces a 

single score damage of 3.89 mPt where the coffee production phase contributes for 96.3%. With regard to 

the cultivation and wet processing of the coffee, the results of the study highlight that cultivation causes an 

environmental load of 77.51% of the total damage followed by the environmental burdens due to washing 

(7.82%), thermal drying (7.45%) and benefit (7.79%) phases respectively. LCIA shows that the damage to 

Human Health is due to the effects of inorganic emissions (62.73%) caused by Arsenic emission to soil 

(33.6%) due to the shedding of coffee peel in ground (Digested matter, application in agriculture), 

Particulates, >2.5m, and < 10m in air (26.29%) and Ammonia emissions in air (15.17%).  

B) 
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Figure 1: Impact assessment evaluation of the green coffee beans process at the mid-point level 

 

 

C)  The damage to Climate Change is generated by the emissions of 2.6935 kg CO2 (eq) due to N2O in air 

(53.27%) and  CO2 emissions in air (42.22%). The effects of land use control overall Ecosystem Quality 

(163.82%). In this category, the damage is mainly due to land occupation impact category (96.12%) and in 

particular for 57.17% to land transformation and for 38.11% to land occupation. The consumption of natural 

gas, oil and coal in energy supply processes affects most Non-renewable energy impact category (99.57%) 

that control overall the damage category Resources. The social benefits were evaluated with HDI damage 

category [8] and the results obtained were -0.015163 mPt thus representing an advantage of the considered 

system. 

5. Conclusions 

The impact assessment results reveal that the highest environmental burden is due to the land use associated 

to cultivation as a direct transformation  from primary conditions was considered. 

The new indicator, HDI (Human Development index) was introduced as Coffee production is not intended as 

mere exploitation of land and local producers, but as a source of wealth, culture and research development. 

The wet process which requires large amounts of water in washing and pulping steps (8000 l/d) should be 

avoided by the installation of filters that allow water recycling or less impact disposal. In addition aspiration 

plants to reduce particulates emissions should be considered as well as the use of biomass both as fertilizer 

and for power generation. 
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1. Abstract  

In the light of a 360 degree approach to sustainable development Lavazza is engaging its efforts to ensure an 

integrated approach, linking Social Responsibility (CSR), Environmental Management System (EMS) and 

Life Cycle Assessment (LCA). Lavazza’s efforts in ecodesign and LCA activities began in 2009 as part of the 

company’s wider CSR programme, going gradually toward an integrated approach between LCA, EMS and 

CSR. Whilst LCA adopts a product perspective (bottom-up), providing ecodesign feedback to R&D and 

pointing out possible improvement options, at the same time it contributes to the other two concepts 

operating in a corporate perspective (top-down): the CSR strategy and the EMS strategy. The coordinated 

work between departments and his relative different technical corporate aspects, promotes an integrated 

approach to CSR, where LCA is one of the specific tools for the continuously improved of a EMS. 

2. Introduction  

Sustainable development and minimization of environmental impacts within the coffee supply chain are of 

growing interest, visible by the increased application of current environmental management standards for the 

LCA which focus on product and corporate perspectives, or on one or plus impact categories. Lavazza’s 

innovative approach consists in ensuring that LCA is not only used as a technical tool but is part of the 

overall CSR and that both are used complementarily for EMS, aligned with main standards and protocols 

(Table 1). 

Table 1: Main standards and protocols for LCA, EMS and CSR 

LCA EMS CSR 

ISO 14040:2006 ISO 14046:2013 GRI (2005) 
ISO 14044:2006 ISO 14001:2004 - ISO/ FDIS 14001: 2015 ISO14064:2012 

ISO 14067:2013 EMAS  
 

 

Lavazza developed its strategies on environmental management and sustainable development, both at policy 

and at product level, by using LCA and CSR as two complementary approaches with different perspectives. 

The corporate perspective initially concentrated within the company’s boundaries (gate to gate), is extended 

to external stakeholders (simplified cradle to grave for all products). The product perspective looks at a 

particular section of the company’s supply chain, analyzing the life cycle stages of a single product (detailed 

cradle to grave). These two approaches, combined with those of the EMS, allow to structure an appropriate 

tool and data system for examining the environmental aspects and relative impacts of the corporate structure. 

Although some studies have identified weaknesses of the LCA technique, its overall evaluation is 

nevertheless positive [5-6]. In detail, LCA has the advantage of providing an holistic perspective, to analyze 

policies and practices into the boundaries of the organization (gate to gate), and beyond these (cradle to gate 

and gate to grave).  
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Although the involvement of all stakeholders might initially be more unmanageable, a holistic approach will 

transform barriers into mutual opportunities and thus strengthen market of all stakeholders on environmental 

management [1]. 

LCA and CSR both contribute to the continuous improvement process aimed at the minimization of 

environmental, social and economic impact of the company’s operations, requested by an EMS. At the 

product level, LCA is used for ecodesign, hot spot analysis and environmental communication; whilst at the 

corporate level, LCA is used both strategically, to align CSR with product sustainability, and operationally, 

to provide a scientific basis for environmental data collection in a life cycle perspective, through tools such 

as the PackageExpert and the CSR tool.The link between LCA and CSR will be illustrated with coffee as an 

example, showing results from the tools applied.  

3. Methods 

3.1 LCA of a cup of coffee  

The following results are related to LCA for a coffee (an espresso coffee prepared with a Espresso machine 

and a capsule, and a moka coffee brewed with moka pot and roast&ground coffee in a pack), considering a 

functional unit of one cup of coffee with a volume of 30 ml along its entire life cycle (from cradle to grave). 

GHG emissions and other impact categories are quantified using IPCC (IPCC, 2007) and ReCiPe [2]. 

3.2 PackageExpert and CSR Tool 

PackageExpert is a simplified ecodesign tool, which allows corporate packaging designers to develop 

simplified screening LCAs of different packaging solutions, enabling comparative analysis. By inserting 

packaging input data, such as components’ materials and weights, typology of transport, manufacturing 

processes and end of life options [4], PackageExpert calculates the Carbon Footprint (CFP) and the 

Cumulative Energy Demand (CED) of the selected packaging solution. The link between PackageExpert and 

the product level consists in its use by packaging designers working on ecodesign. On the other hand, the 

tool is regularly updated and based on scientific LCA knowledge. The link with the corporate level is the 

possibility to apply PackageExpert to all packaging solutions performed in a company’s production plant, 

providing aggregated data to the CSR tool. 

The CSR tool is a simplified tool with a corporate approach, which allows the collection of LCA data related 

to the entire supply chain of all products manufactured in a certain production plant. By inputting aggregated 

input data, the CSR tool calculates the CFP and the CED of the entire supply chain of all products 

manufactured, in order to obtain relevant key environmental performance indicators. The link between CSR 

and the product level consists in including ecodesign activities in a corporate strategy: in this way, LCA is 

embedded in a context and becomes a core tool for environmental management. Operationally, LCA 

provides useful information that needs to be collected for the implementation of a CSR strategy.  

3.3 EMS  

Currently new systems of corporate environmental management promote the life cycle thinking. This 

approach is based on the circular economy and the principle of responsibility.  



 

 

144 

Characterized by a long-term perspective on environment management, impacts not directly related to the 

production process and the effect of company choices are evaluated. In fact the company can help reduce 

them, even in absence of direct managerial responsibility. The management company is expanding its focus 

from local to the product system with the involvement of all stakeholders. Under the pressure of this new 

perspective introduced by ISO/FDIS 14001:2015, the application of LCA as a tool for identification and 

assessment of environmental aspects in EMS is a logical result. The extent of operational control to the entire 

value chain and the LCA application allow to identifying and capturing the ecological burden, related to both 

indirect, as well as direct aspect [5]. 

4. Results 

4.1 LCA of a cup of coffee (espresso coffee and moka coffee)  

The absolute results of two studies not are comparable for the difference in coffee beverages and in the 

systems to brewing, but it is possible to observe a common trend in both studies.The results in fact show that 

the most significant impacts are generated during the upstream processes (55%-82%), while a significant 

remaining part is generated during the downstream processes (16%-42%). The environmental hot spots are 

the green coffee cultivation (32%-70%), coffee consumption (17%-28%) and packaging (3%-19%). Overall, 

the LCA results appear to be consistent with other studies published on coffee [7- 8]. 

4.2 PackageExpert and CSR tool 

The CSR tool enables aggregation of LCA data into environmental performance indicators at the corporate 

level. Figure 1 shows the results of the CSR tool applied to the entire supply chain of Lavazza Corporate, 

expressed in CO2 eq (CFP) per life cycle stage. In a simplified way, based on aggregated LCA data, material 

flows and production volumes, the CSR tool evaluates the life cycle stages (excluding the use phase) of all 

main products manufactured at the production plants. In other words, it represents an aggregation of many 

product levels into the corporate level. The emission index is calculated on the total annual coffee packed 

from the corporate plants, while the single contributions of emission are the cultivation of green coffee, the 

consumptions of the plants for his manufacturing and of the offices not for direct production, the total of 

packaging used (calculated with Package Expert), the distribution of final products and the coffee waste 

treatment after use. 

Figure 1. Results of the CSR tool for the entire supply chain  
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5. Discussion 

Environmental hot spots identified with coffee LCA (e.g. over upstream processes) emphasizes the need to 

view the environmental performance of coffee in a life cycle perspective, as required by current standard 

about the EMS. LCA is used strategically to align CSR with product sustainability, and, operationally, to 

provide a scientific basis for environmental data collection in a life cycle perspective. 

Moreover, the continuous updating and use of the corporate tools, Package Expert and therefore the CSR 

Tool, allows to have readily useful results for any strategic and operational decisions. 

6. Conclusion 

In conclusion, whilst an integrated LCA and CSR approach can seem more time consuming and complex to 

manage in terms of costs as well as unification of data, at the same time it provides a distinct advantage in 

terms of holistic approach, data collection, optimization and verification as well as methodology. Further, it 

provides an unique opportunity to achieve maximum alignment of product and corporate strategies as well as 

an effective stakeholder engagement. 

Future work on the integrated LCA and CSR approach will focus on the improvement of the interaction 

between the two concepts, both at the strategic and the operational level, enhancing the information 

exchange between tools and systems. The obtained experience will be used to further implement this 

integrated approach to the entire organization of Lavazza, both at all production facilities and along the 

entire coffee supply chain. 

The planned changes to ISO/FDIS 14001:2015 with regard to the use of LCT and eco-design should be seen 

as a a real opportunity to increase interest in eco-design tools amongst the environmental managers 

responsible for the environmental management systems within their organisations [9]. 
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1. Abstract   

The goal of the research is the assessment of the impacts associated with the production of lightweight 

concretes containing recycled EPS, resulting from pre-consumer waste grinding activities. For this purpose, 

the performance mix design of ten different types of recycled mixtures has been developed, for which several 

performance attributes (workability, mechanical resistance, thermal insulation) have been tested. The work 

deepens, through LCA evaluations, the analysis of the critical issues related to the production stage of 

recycled EPS concretes, highlighting the potential benefits associated with the adoption of open-loop 

recycling strategies. 

2. Introduction  

Within the research of construction products fully compliant with the European sustainability requirements 

provided for the construction industry [1], the use of waste coming from the manufacturing sector allows the 

minimization of the impacts associated with materials production and treatment at the end of life. Referring, 

in particular, to the optimization of the environmental profile of lightweight concretes, several research have 

analyzed the potential benefits associated with the addiction of polystyrene by-products to the mixture, 

especially from a thermal insulation point of view [2,3]. The study is part of the research project entitled 

HPWalls, High Performance Wall System, which have tested an innovative bearing wall composed of a 

double reinforced concrete layer, interior concrete casting and external insulation in EPS panels; in this 

context, the main goal of this research is the LCA evaluation of the environmental impact of cement 

mixtures (to be used in the innovative wall’s inner core) containing recycled scraps coming from the 

production of expanded polystyrene (EPS) panels. All the wall components belong to the existing 

manufacturing lines of a local firm (partner of the HPWalls project), located in Fasano (Br) and specialized 

in the production of materials and envelope solutions for the building sector. 

3. Materials and Methods 

3.1 Goal and scope definition, Functional unit 

The assessment of the impacts of the mixtures production was developed in accordance with technical 

standards in the field (ISO 14040, ISO 14044:2006). The perspective of the study is "from cradle to gate” 

and the calculations were performed using the software SimaPro 8.0.4, IMPACT 2002+ method. The study 

aims to develop the analysis of the impacts of different lightweight concrete with the addition of EPS grains 

resulting from the grinding of scraps of the polystyrene slabs production. As regards the mix design phase, 

eleven mixtures have been conceived (Tab. 1) in which, without changing the w/c ratio, a replacement of the 

fine aggregate (sand) granulometry with an equal volume of recycled EPS has been implemented.  
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The sampling was carried out in order to test which mixture results suitable for the production of lightweight 

concrete in accordance with national regulation and technical standards [4]. 

  

Table 1: Mix design specification for the functional unit, 1m
3
 of lightweight concrete 
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3.2 System boundaries, data quality and allocation specifications 

For the LCA analysis of lightweight concrete, the flow chart shown in Fig. 1 was used. LCI flows have been 

developed on primary data regarding EPS products, by-products and co-products manufacturing activities; 

these data have been collected by means of questionnaires and interviews with the technical staff of the 

company. For the other materials secondary data were employed. For energy consumption during the various 

manufacturing processes, the mix coming from the grid and from two photovoltaic systems, installed in the 

firm, was taken into account. 

Figure 1: Inventory flow scheme 
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Analyzing in detail the Ferramati case it was found that the industrial process generates in output two 

products, EPS panels and blocks, and three co-products, resulting from grinding of scraps, that are: “M-A” - 

usable as a lightening material -, “Md10” and “Md16” - reused in the production of regenerated EPS sheets 

(respectively having density equal to 10 and 16 kg/m
3
)

.
 

All products and co-products are sold from the company; therefore, in order to allocate impacts related to the 

production stage and to the subsequent use of by-products, a cascade approach [5] was used for the the 

impact evaluation of the milled EPS (M-A one, to be used for the production of cement mixtures) allocating 

it on the basis of the production cost driver.  

4. Life Cycle Assessment results 

The Figure 2 shows the results of the LCA comparative evaluation of the 11 mixtures, in terms of midpoint 

category indicators, evaluated in accordarnce with IMPACT 2002+ (version 2.12) methodology. The 

analysis confirm that in all mix design cases, the concrete with recycled EPS generates an overall lower 

impact. In particular, the mixture that contributes most to this reduction is the CE_100 in which it is provided 

the complete replacement of the fine aggregate with EPS grains. In general, this advantage is most evident 

for that mixtures in which the entire sand granulometric distribution was replaced; in the second sampling 

the partially replacement of the granulometric distribution generates reductions ranging from a maximum of 

-29.37% (CEp_1-8), and a minimum of -9.49% (CEp_1-2). These results are justified, on the one hand, by 

the different impact achievable for the use of recycled EPS grains (84.4% less than the virgin pearls impact) 

and, secondly, by the savings of sand achieved in the various mixtures. 

Figure 2 : Life Cycle Assessment results  

 

 

Figure 3: Impacts in relation to the percentages by volume of sand and recycled EPS 
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5. Conclusion 

The LCA has estimated the environmental impacts of ten lightweight concrete mixtures, composed of sand, 

gravel, water, cement and recycled pre-consumer EPS grains, produced by a local firm. The results confirm 

that the adoption of open-loop recycling strategies can ensure a considerable reduction of the production 

impacts, optimizing the management of manufacturing waste. Additional studies carried on such mixtures 

have confirmed, for some of them, the achievement of mechanical strength characteristics suitable to seismic 

action, good workability and sound insulation properties. These outcomes will allow the investigation of 

other attributes that could improve the use of those mix, in various life cycles and context of application. 
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1. Abstract  

The aim of the research is the identification of a tool, defined “Index of Sustainable Transformability”, that 

expresses, through Life Cycle Assessment evaluations, the adaptability level of buildings towards future 

transformations and the reusability potential of its components. The work tested this tool in a case study, 

developing a comparative analysis of the impacts of a residential building made with two different 

manufacturing technologies (a dry layered and a traditional one) for which a reconfiguration has been 

considered 30 years after its construction. 

2. Introduction  

The social-demographic change, in progress for some years, has caused, together with other factors typical of 

regulatory and technology developments, the inadequacy of the housing stock; moreover, with respect to the 

heterogeneity and variability of the users’ needs in the time, this has generated an acceleration of 

reconfiguration/transformation timeframes of buildings. These issues have pushed the research of new 

design solutions, methodological approaches and intervention strategies that could improve the adaptability 

of buildings and limit the environmental impact due to the early disposal of materials and components (with 

respect to its durability) and to the increase of waste production. In such sense, the use of a modular, 

prefabricated and disassemblable design strategies, can contribute to maximize the reuse of materials and 

components reconfigured during the time, improving the environmental profile of the whole building [1, 2].  

3. LCA and Index of Sustainable Transformability 

LCA of the reusability potential of building components coming from reconfiguration activities may allow to 

introduce a different impacts allocation methodology: this is related to the performance capability of the 

residual product, to the duration of its life cycle and of all the potential future application [3]. This consents 

to specify further the results based on attributional approaches, that assign all impacts to the first useful life, 

or on cut-off methods that disconnect impacts attributable to multiple life cycles [4]. The study aims to show 

the contribution of a new approach that could represent the capability of a building to respond, in a 

sustainable way, to reconfiguration activities over the time and, in particular, to enhance the remaining 

performance capability of the removed/replaced components through their reuse in further lifecycles. This 

method is based on the quantification of the building transformation impacts which are considered as the 

sum of all the impacts due to the intervention (i.e. energy for disassembling, new resources, transport, 

scraps), less the environmental burdens for the production, construction and disposal of the reusable 

elements, allocated both from the physical point of view (quantity, by weight, of reusable materials with 

respect to the built amount) and temporal one (comparing the remaining performance capacity of the 

reusable product to its overall durability).  
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The hypothesis, that is further under study by the authors, defines the influence of transformation activity on 

the whole life cycle impact and explain the building adaptability, due, therefore, to lower percentages of such 

actions on the total impacts. 

4.  The case study 

The case study analyzes a single-storey residential building made with different manufacturing technologies. 

The first one (T01) has a laminated wood structure and dry assembled external walls composed of modular 

OSB panels, wood fiber and fiber boards. The second (T02), similar in size and transmittance of the external 

envelope, has a reinforced concrete structure and external walls made of hollow bricks and insulation 

polyurethane foam. The evaluation is referred to a total lifecycle of 100 years. Within this timeframe it was 

assumed that, after 30 years since the building construction, an intervention of reconfiguration takes place, in 

order to obtain a contraction of a third of the useful area. 

 

Figure 1: The building T01 before and after the reconfiguration  

      

 

This hypothesis aims to investigate the adaptability of the building to the reduction of the envelope areas and 

of the interior partitions; likewise the study, seen in comparative perspective between the two classes of 

building technologies, wants to explicit the relationship between the reuse potential of the different systems, 

the times of use, the assembly/disassembly method as well as the durability of the various components. The 

goal is the comparison of the environmental impacts of the two buildings in their entire life cycle in a "from 

cradle to grave" perspective, using the software SimaPro 8.0.4, IMPACT2002+ method. The attributional 

approach was adopted for the construction of the inventory flows and the impacts evaluation. 

5. Life Cycle Assessment results and calculation of the Index of Sustainable Transformability 

The following figure shows the results of the LCA evaluations, developed assuming the whole building as 

functional unit, in the case T01 (left column) and T02 (right column). 
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Figure 2: Comparison of the impacts of the two cases in the 100 years lifecyle  

 

 

 

In the first scenario, the overall environmental impact of the building is 38.39 Ecopoints for the T01 case 

(wooden one) and 48.33 for T02 (brick one). In particular, the comparison of the two constructive typologies 

shows the different incidence of the various life stages on the overall impact: for the first the impact of the 

construction phase is equal to more than half of the total (51.4 %), followed by the maintenance (43.8%) and 

the reconfiguration (5.8%). For the second the impacts for the construction and maintenance activities are 

comparable (respectively 42.4% and 48.5% of the total), followed by the environmental burdens due to 

reconfiguration activities, 35% higher than those of the wood case. With reference to the end of life, the 

environmental behavior of the two building technologies is very different, according to the adopted system 

model: in the case of the dry structure, in fact, the complete disassembly of the parts generates higher 

recyclability opportunity at its end of life; on the other hand, in the T02 case this scenario is less applicable, 

due to the difficulties in implementing a selective disassembly of the components. 

In order to make explicit the different reusability potential of the involved components, from an 

environmental point of view, it was carried out the calculation the Index of Sustainable Transformability, 

obtained from the ratio between the transformation impacts, as defined in par. 2, and the impact of the 

building in its entire life cycle. This study shows that Its = 0.50% for the case T01 and Its = 9.10% for the 

case T02, confirming that the first construction technology is more flexible, from the environmental and 

constructive point of view, towards a transformation of its original layout over time. It's evident that the 

incidence of reconfiguration activities in buildings designed without flexibility attributes (such as T02) does 

not allow to estimate a reuse of components that are removed or demolished, causing an increased incidence 

of these actions, the loss of the residual performance capability of such products and the increase of final 

waste flows. 
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Figure 3: The different impact of reconfiguration activities in in the adopted approach  

 

 

 

6. Conclusion 

The research has tested the adoption of an indicator for the quantification of the sustainability level of 

buildings and the reusability potential of the components in relation to its durability, the assembly techniques 

and the use. It represents a helpful orientation tool to harmonize environmental investment with the times of 

use of building elements, in order to extend the useful life of the components in multiple cycles and, so, 

mitigate its impact over the time.  
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1. Abstract  

Up to one third of the environmental impact of private consumption is related to the provision of food. In an 

ongoing Swiss-South African research project, the potential of clean technologies to mitigate these impacts 

is analysed within the context of South African food value chains. First results indicate that technologies 

reducing the use of non-renewable electricity are particularly effective. 

2. Introduction  

Food and beverage production cause 20%-30% of the various environmental impacts of private consumption 

in Europe [1]. Along the entire food value chain, clean technologies have the poten¬tial to reduce the 

demand for natural resources, the use of energy and the pollution of water, air and soil. In order to make 

science-based decisions concerning the implementation of clean technologies in the life cycle of agri-food 

products, it is essential to identify environmen¬tal hotspots where mitigation via cleantech is particularly 

relevant. Various studies have analysed the environmental impacts of food products by applying a Life Cycle 

Assessment (LCA) [2]. However, most of these studies focus on food production in Europe or other 

industrialized countries, whereas emerging economies play an increasingly important role for global food 

production [3]. The potential of clean technologies to mitigate the environmental impacts of South African 

fruits, dairy products, pork and maize was analysed in a joint research project of the Zurich University of 

Applied Sciences and the University of Cape Town. This publication shows initial outcomes for pome fruit, 

stone fruit, citrus fruit and table grape production in South Africa and discusses to what degree the results 

can be transferred to other emerging economies. 

3. Methodology 

In order to quantify the potential of clean technologies to mitigate environmental impacts in the South 

African food value chain, the existing situation was analysed with a Life Cycle Assess¬ment according to 

the ISO standard 14040 [4]. Subsequently, clean technologies were definied for each value chain and their 

potential to reduce the life cycle environmental impact of food products was quantified. In this paper we 

show selected results for the impact categories climate change [5], human toxicity, freshwater eutrophication 

and acidification [6].The Life Cycle Inventories of fruits are primarily based on the data base of the South 

African Fruit and Wine Industry Initiative called Confronting Climate Change (CCC). CCC provided data 

from 40-70 producers, which cover approximately 13% of stone fruit and table grape production, 30% of 

pome fruit production and <1% of citrus production in South Africa. The LCA includes fruit production, 

packaging and cold storage. The reference flow is 1 kg of a defined fruit commodity ready for export at the 

cold storage. For the fruit value chain the following mitigation scenarios have been analysed: (1) partial 

switch from conventional electricity mix to solar power (30% substitution at farm and packhouse, 15% 
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substitution at cold storage); (2) reduced electricity demand of irrigation pumps (-34%) through the 

implementation of variable speed drives (VSD); (3) use of reusable plastic transport boxes instead of carton 

packaging materials; (4) 50% substitution of N-fertilizers by compost; (5) reduction of pesticide use by the 

use of electrostatic spray technology [7].  

4. Results 

The electricity consumption throughout the food production and processing significantly contributes to the 

environmental impact of fruit value chains. The electricity demand is relevant for both on-farm and post-

farm processes. At the farm-level, the electricity and infrastructure demand for irrigation is associated with 

the highest impact in terms of greenhouse gas emissions. Downstream processes at the packhouse and the 

cold storage as well as domestic transport account for 34%-56% of the GWP of fruits (Figure 1).  

 
 

Figure 1: Contribution of processes (left) and production stages (right) to the Global Warming Potential of South 

African fruits. PH: Packhouse; CS: Cold storage 

 

The electricity consumption throughout the food production and processing is also a major contributor to the 

acidification potential, the freshwater eutrophication and the human toxicity. Accordingly, irrigation and 

electricity consuming processes at the packhouse and the coldstorage dominate the result (figure 2) [7]. 

 

Figure 2: Acidification potential, freshwater eutrophication and human toxicity of South African pome fruits 
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Since the consumption of national grid electricity plays a major role in the life cycle of South African fruit 

value chains, the highest environmental impact mitigation potential can be obtained from technologies which 

reduce the non-renewable electricity demand. Accordingly, the mitigation scenario 1 (use of solar power) 

resulted in the highest improvement potential for most indicators (-11% to -18% for pome fruits). The 

implementation of VSD (mitigation scenario 2) leads to a reduced electricity demand for pumping. Thereby 

the global warming potential and the cumulative energy demand of pome fruits can be reduced by 8%. The 

mitigation potential of scenario 3 (reusable packaging) and scenario 5 (electrostatic pesticide spraying) is 

relatively small. The use of compost in the pome fruit production (mitigation scenario 4) leads on the one 

hand to savings of -6% to -11% for the global warming potential, the acidification potential and the 

carcinogenic human health effects. On the other hand, an increased risk of freshwater eutrophication and 

non-carcinogenic human toxicity impacts might be expected due to nutrient and heavy metal leaching [7]. 

5. Discussion and conclusion 

The substantial contribution of electricity to the environmental impact of South African fruits can mainly be 

attributed to two issues: First, coal-generated electricity accounts for approximately 90% of the South 

African electricity mix [8]. Electricity production is therefore asso¬ci¬ated with a broad range of 

environmental issues. Second, approximately 30% of South Africa’s crops are produced under irrigation [9] 

and nearly two-thirds of South Africa’s surface water is used by irrigated agriculture [10]. Although 

irrigation has a positive effect on the yield, it may contribute to local water scarcity and is related with a high 

electricity demand for water pumping.  

Due to the high importance of coal power in South African food value chains, clean technologies which 

reduce the non-renewable electricity demand have the highest potential to mitigate environmental impacts. 

Like South Africa, also other emerging economies such as China and India rely heavily on coal and other 

fossil fuels [11]. Moreover, the percentage of irrigated area is typically high in emerging economies 

(especially in Asia) due to climate conditions and extensive areas of land used for agriculture [12]. Hence, 

reducing the fossil electricity demand by implementing clean technologies in the food value chain of 

emerging economies generally has a substantial environmental impact mitigation potential. 
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1. Abstract  

This Life Cycle Assessment (LCA) of three food smoking scenarios was aimed to estimate the 

environmental impact of traditional and innovative food smoking technologies to indicate their comparative 

advantages and possibilities for improvement. With the functional unit of 1 tonne raw sausages cold smoking 

and system boundaries from cradle-to-grave, the worst case scenario (friction smoking) required a lot of 

energy for smoke generation, which resulted in high impacts (247.83 – 284.21 kg CO2 eq.; 1.1 – 2.47 m
2
 of 

land; 4522 – 5418 MJ). “CleanSmoke” demonstrated the best performance (126.15 – 141.05 kg CO2 eq.; 0.7 

– 1.52 m
2
 of land; 2110 – 2523 MJ) due to the decreased use of energy for smoke generation. Despite 

extended life cycle chain and transportation distances, “CleanSmoke” was more environmentally beneficial 

provided innovative smoke production equipment was used.    

2. Introduction  

Smoking of food products has been practiced for ages for its preservation qualities. Today, color and flavor 

development are the major reasons for food smoking. Traditional smoking is performed by exposing foods to 

smoke from wood burning or smoldering. The thermal decomposition of wood results in anhydroglucose, 

carbonyl-containing compounds, acetic acid and phenolic compounds, which also act as outputs to the 

environment [1-4]. More innovative, purified primary smoke products (“CleanSmoke”) are produced by 

controlled pyrolysis of wood under limited oxygen and condensation of the smoke by cooling with the aid of 

water or oil. The solution contains a complex mixture of compounds which is further processed and 

conditioned by purification, concentration or drying.  

Innovative smoking methods allow elimination of waste impacts at the food smoking site, however they 

require higher energy application (friction smoking) or extended transportation of the application substance 

(CleanSmoke). Therefore, environmental benefits of one smoking technology over another are not obvious if 

the complete supply chains of smoking agents are considered. Previous studies have indicated the potential 

beneficial impact of innovative food smoking technologies [5-6]. Moreover, as most studies note that 

processing is responsible for a minor impact in supply chain [7-9], the complete environmental analysis of 

purified primary smoke product life cycle was not previously performed and published.  
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Table 1: main LCI inputs of smoking technologies application (per 1 tonne of raw sausages); minor inputs are excluded 

Input Unit 
Scenario 

Friction (1) Smoldering (2) CleanSmoke (3) 

Trees growing and transportation 

Land use m
2
 65.1625 375.9375 62.556 

Fuel for harvesting  MJ 0.044 0.255 0.141 

Wood transportation  tkm 0.1625 0.9375 0.156 

Smoking media preparation 

Electricity  
kWh 

0.1721 0.6621 Saw dust 0.1652; 

CleanSmoke 0.001038 

Natural gas  kWh - - 1.9674 

Water  m
3 

- - 0.000327489 

Electricity (heat) drying kWh 0.134 (1.203) 0.7734 (6.94) 0.1287 (1.1548) 

Transportation 

- CleanSmoke 
tkm 

Poles 0.4875 Chips 4.6875 Saw dust 0.936;  

Truck 3.36; Ship 13.46 

Packaging kg - 0.0167 (LLDPE) 

0.00245 (HDPE); 

0.0062 (steel);  

0.0023 (wood) 

Wastes and by-products kg - - 0.832 (ash); 0.416 (tar) 

Washing detergent l - - 0.37 

Smoke generation and smoke chambers operation 

Electricity from the grid kWh 29.43 18.82 14.79 

Electricity from natural 

gas burning 
kWh 294.27 188.18 147.86 

Water for cleaning m
3 

0.05977 0.3013 0.03665 

Detergent for cleaning l 0.37 1.79 0.34 

Wastes generated kg 0.83 (ash); 0.42 (tar) 4.8 (ash); 2.4 (tar) - 

 

3. Goal and scope of the study  

The goal of this study was to perform the comparative LCA utilizing the most current research and literature 

data on production practices, processing, and disposal of food smoking technology wastes. The comparison 

of three food smoking technologies was set as the background for the assessment: (1) Friction – smoke 

generation via wood pole friction against rotating cogwheel; (2) Smoldering – pyrolysis of wood chips; (3) 

CleanSmoke – atomization of purified natural smoke condensate.  

The functional unit (FU) was defined as “cold smoking of 1 tonne of raw sausages”. FU determined that the 

quality of sausages enrichment with smoked flavor substances had to be at the same level for all three 

scenarios (1-3). It was achieved by holding the sausages for the same duration in similar smoking conditions 

(which does not exclude the differences in the smoke generation time for different technologies). System 

boundaries for the technologies include smoking media production (trees growing, cutting, chopping and 

sawing), smoking media transportation, smoke generation, sausage smoking, cleaning and waste treatment. 

Meat production was not included in this LCA (similar for all scenarios). 
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The smoking house was based in Verl, Germany; wood material was transported for 150-250 km from 

growing ares (1-2); CleanSmoke (3) was manufactured in Manitowoc and Rhinelander, Wisconsin, USA 

(saw dust was transported for 300 km). An attributional LCA was modelled in SimaPro 8.0.2 and the results 

were analysed using “IMPACT 2002+” and “ReCiPe” methodologies. 

4. Life Cycle Inventory  

LCI data (Table 1) were gathered from various sources: smoking media production and application from 

industries (August Strothlücke GmbH & Co. KG; Gustav Ehlert GmbH & Co. KG; Red Arrow USA); wood 

growing and sawing from literature sources; environmental impacts were modelled with Ecoinvent 3 

databases. 

5. Impact assessment results  

Midpoint impact characterization indicated the highest impacts in all scenarios associated with categories of 

non-renewable energy use, global warming and respiratory inorganics impacts (Table 2). Complete life cycle 

assessment of smoking technologies indicated that scenario (1) had the worst results, scenario (2) had 

intermediate impacts and scenario (3) had the lowest impacts  (Figure 1).  

 

Table 2: impact results (per 1 tonne of raw sausages) of smoking media life cycle (main midpoint impact categories by 

IMPACT 2002+ and ReCiPe impact methodologies) 

Impact category Unit 
Friction 

Scenario (1) 

Smoldering 

Scenario (2) 

CleanSmoke 

Scenario (3) 

Climate change  kg CO2 eq. 247.83 – 284.21 165.9 – 175.71 126.15 – 141.05 

Land use m
2
 1.1 – 2.47 1.6 – 5.63 0.7 – 1.52 

Non-renewable energy MJ 4522 – 5418 3207 – 3835 2110 – 2523 

 

 

Figure 1: smoking technologies (per 1 tonne of raw sausages) (complete life cycle of smoking media production and 

application: from cradle to grave) 
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6. Conclusion 

The worst environmental impact case scenario was highlighted for friction smoking (1), which is connected 

with the increased need for energy consumption for smoke generation. At the same time scenario (1) was the 

least environmentally impacting at the stage of smoking media production. However, the impact of smoking 

media productin is negligible in all scenarios as it was responsible for only 1-2%. CleanSmoke application 

was the best cold food smoking technology applied to raw sasauges among compared options. The key 

driver of environmental impact is the energy use for smoke generation and smoke chamber operations. 

Lowering the consumption of non-renewable energy could significantly decrease the environmental impacts 

of food smoking (change from natural gas burning to energy from the grid can decrease the impact by 25%).  
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1. Abstract  

Animal raising and livestock production are major players in global environmental issues. Different players 

along the value chain must cooperate to lever existing knowledge and move towards more sustainability- 

based on science and LCA as the tool to measure overall progress. The supplementation of feed with amino 

acids reduces feed consumption and the nitrogen content in feed, waste treatment in a biogas plant brings 

methane emissions to energy production, purification of methane offers new alternatives for improved 

energy provision and finally, specific treatment of digested residues provides new fertilizer applications. The 

combination of the different aspects of nutrient management, waste management, emissions management and 

finally fertilizer treatment enables new ecological and economical improvement potentials evaluated through 

LCA methodologies. 

2. Introduction  

Livestock is the major player in global environmental issues. The huge demand for feed crop production 

shapes entire landscapes and can reduce natural habitats, causing degradation in some areas, technological 

improvement, but it is also a key driver of global livestock production. Growing productivity has been 

achieved through advanced breeding and feeding technology, and through irrigation and fertilizer technology 

in crop production, leading to higher yields per hectare. Intensification, the vertical integration and up-

scaling of production also lead to larger units and larger livestock operations. There are also geographic 

shifts, with production moving away from local natural resources. Animal production is very often separated 

from crop production and is seen responsible for up to 18% of human induced Greenhouse Gas Emissions 

GHG [1],[2],[3].  

To further reduce livestock production related emissions, it is important to set up advanced technologies such 

like feed strategies, manure management practices and energy use efficiency [2].  

Modern livestock production is characterized by efficient nutrient management to reduce feed consumption, 

waste management to reduce waste volumes and finally emission management to reduce environmental 

impacts. All three are followed by efficient energy use and recycling. 

3. Life Cycle Assessments (LCA) 

Life Cycle Assessments (LCA) can be used to display and monitor the specific mitigation option of these 

measures, but can also help to identify hotspots and further options for improvement. In Science LCA is 

accepted as methodology to assess the environmental impact of products and processes. Following the 

definition ISO 14040:2006, LCA represents the “compilation and evaluation of the inputs, outputs and the 

mailto:michael.binder@evonik.com


 

 

163 

potential environmental impacts of a product system throughout its life cycle” [4]. A couple of studies are 

already in place to show the different scenarios to manage feed, waste or energy, but never before concepts 

have been developed to bring all the different options together to one holistic solution of a low emission 

livestock production. In general, life cycle assessments describe the complete fate of a product by compiling 

and evaluating all ecological input and the consequences for the environment during each phase in the life 

cycle of the product based on international standards [4],[5],[6]. The present document intends to assess and 

display the improvement potential of the integrated livestock production on farm level following the concept 

of the Low Emission Farming applying the LCA methodology.  

4. The Low Emission Farming Concept (LEF) 

The concept of the “Low Emission Farming” (LEF) as a solution from the chemical industry for the feed to 

food value chain offers the best practice to reduce livestock related emissions to the lowest possible level on 

the farm as illustrated in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The 3 elements of the Low Emission Farming Concept 

 

The supplementation of feed with amino acids reduces feed consumption and the nitrogen content in feed 

[7], waste treatment in a biogas plant brings methane emissions to energy production, and the purification of 

methane offers new alternatives for improved and independent renewable energy provision. Further specific 

treatment of biogas fermentation residues provides new fertilizer applications. LEF combines the different 

options for nutrient management, waste management, emissions management and finally fertilizer treatment 

to show the ecological and economical improvement potentials individually and in combination. These 

different options are actually in the evaluation process through LCA methodologies to monitor the 

environmental impacts per stage and to identify further mitigation potentials.  
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The assessment focusses on the most relevant impact categories in agriculture such like the Global Warming 

Potential (GWP) excluding biogenic carbon, the Eutrophication Potential (EP) and the Acidification 

Potential (AP). Due to the ongoing assessment the further presented figures show exemplarily the 

preliminary results for the GWP. As shown in figure 1, organic waste such like waste from food production 

can also be used as another option for the feedstock of the biogas plant. Actually, this alternative is not 

included in the current assessment. Also the direct use of the raw biogas to produce heat and energy is only 

considered in the assessment of the emission management. 

4.1 Nutrient management 

A first step towards a more sustainable livestock production is the increase of productivity through modern 

feeding technologies. Improving feed efficiency and reducing the nutrient excretion enables mitigation of the 

overall impact of livestock production. As one example, a life cycle assessment (LCA) for a typical pig and 

broiler production scenario can demonstrate the very positive environmental benefit of supplementing the 

first limiting amino acids such like methionine, lysine, Threonine, Tryptophan or Valine to pig and broiler 

feed [8], [9]. By supplementing deficient diets with these amino acids, soybean meal and corn were replaced 

and thus, the environmental impacts were significantly improved. 

But such an LCA reflects only one exemplary feeding scenario. To demonstrate the sustainability 

improvement potential of each feed formulation, a new web-based ready to use software AMINOFootprint
®
 

has been developed and launched to assess the specific environmental impact of each individual pig or 

poultry diet of any applicant. The tool focuses on calculating ecological profiles of compound feed and 

enables the identification of diets and logistic scenarios with the least environmental impact. This is a change 

within the feed industry. Optimizing the nutritional and economic dimensions of compound feed has always 

been core to the added value that feed additive companies promise to deliver. Now diet evaluation can be 

also based on the third dimension “ecological balance” as a broad approach to sustainable diets. 

4.2 Emission Management 

Another technology following the efficient nutrient management is the emission or waste management, 

realized in the approach of the “Low Emission Farming” (LEF) concept as shown in figure 1. This concept, 

as a solution from the chemical industry for the food production, offers the best practice to reduce livestock 

related emissions to the lowest possible level. The supplementation of feed with amino acids as already 

mentioned reduces feed consumption and thus, the nitrogen content in feed. This is a first measure to reduce 

livestock production emissions. With this first measure the reduced amount of manure has also less volumes 

of nitrogen based emissions, which will in consequence result in less impacts on water, soil or air [7],[8],[9]. 

As another effect the managing of manure in a biogas plant brings methane emissions to energy production, 

and thus, additional improvement of emissions normally related to manure storage and disposal. Additional 

purification of methane offers new alternatives for improved energy provision (own on farm use or external 

applications). General investigations on the reduction of environmental impacts of livestock production 

demonstrate the close relationship between feed composition, feed digestion and manure composition at farm 
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level. These investigations further recommend to use anaerobic digesters to eliminate emissions during 

manure storage and further applications on the field [3]. 

4.3  Waste Management 

Finally, specific further physical and chemical treatment of biogas fermentation residues provides new 

fertilizer opportunities allowing more nutrient specific applications in crop production. Due to nutrient 

management and emissions management, the volume of manure or waste can be reduced, the specific 

treatment of remaining volumes further support the reduction of the environmental impact and to comply 

with the more and more strict limitations for nitrogen and phosphorus fertilization of grass- and cropland. 

As already highlighted by other investigations [3] in individual assessments for the different elements, this 

concept combines the different options for nutrient management, waste management, emission management 

and finally fertilizer treatment for the first time to show the ecological and economical improvement 

potentials individually and in combination. The LEF concept will completely change in the future from 

energy production as a core target to effectively manage organic waste and related emissions with energy 

production as a side effect (figure 2). The economic and ecological feasibility of this concept is currently 

being evaluated in an Evonik project analyzing the return of investment and calculating the LCA for 

different scenarios combining the individual modules. 

 

 

Figure 2: Future trends in livestock production away from single energy production towards advanced emissions and 

waste management 

5. Results 

To show the general mitigation potential of environmental impacts to air, water and soil, figure 3 displays 

the contribution to the GWP (excluding biogenic carbon) of the European pig production as a first example. 

As already mentioned, the assessment is still in progress and the other results for AP and EP will follow, also 

broken down to other important regions around the globe. 
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Figure 3: Preliminary results for the GWP mitigation potential of the LEF concept for the European pig production 

(calculated for 1,000 kg live weight of pigs ) 

 

The current assessment starts with the reference scenario where no further measures have been taken to 

improve feed efficiency or to reduce environmental impacts beyond the regulations or other 

recommendations. The feed formulation was done without any supplemented feed amino acids, which is in 

some cases not todays standard all over the world, but in some developing regions it is still practice.  

Manure management grounds on good agricultural practice. The further columns in figure 3 show the 

stepwise implementation of the LEF concept with the impacts on the environmental performance. Thus, the 

overall contribution to GWP can be reduced from 100% down to 72.5% (figure 3). Increasing feed efficiency 

and digestibility through advanced nutrient management reduces significantly the emissions from manure 

storage and manure field application, but shows no overall reduction potential due to higher GWP burdens for 

the production of amino acids used in the feed compositions. If emissions from land use change are taken into 

account, there will be a significantly positive effect on GWP by supplementation of pig feed with amino 

acids. About 25-27 % reduction is the result of implementing emission management and biogas production 

(figure 3).  

Comparable results are expected for the other impact categories AP and EP, for which the assessment is still 

in progress. Furthermore, the treatment of biogas residues to new fertilizer opportunities is also still under 

examination. 
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Figure 4: Preliminary results for the GWP mitigation potential of the LEF concept for the European pig production 

(calculated for 1,000 kg live weight of pigs)including emissions from landuse change 

 

If land use change is considered (figure 4), the saving potential for the GWP resulting from the feed mix 

contribution is significant from 100% down to 60.1%, since imported oilseeds such like soybeans are 

replaced through locally produced cereals. The overall mitigation potential is about 51.9 % down to 48.1 % 

implementing all mitigation steps of the concept. 

5. Conclusion 

Low protein diets contribute to reduce the impact of livestock production especially on climate change, 

acidification and eutrophication in livestock production as explained above exemplarily for pigs and broilers. 

As for current feeding practices, there is still a major potential to mitigate this impact. There is still a 

considerable gap between the average content of crude protein in standard diets compared to scientifically 

proven low protein diets [7],[8],[9]. 

As shown with the first results in figure 1, additionally to an improved nutrient management further 

measures within the LEF concept on a farm level lead to a significantly improved ecological performance of 

livestock production. As the different scenarios in figure 3 are based on one typical feed formulation, further 

improvement potential can be expected by changing the feed compositions towards reduced crude protein 

contents [7],[8],[9]. This again yields in further improvements of the subsequent measures. The different 

applications within the LEF concept not only reduce the environmental impact, but also open new business 

opportunities for renewable energy production, energy self-provision or advanced organic fertilizer use 

adapted to specific recommendations as best practice with regard to sustainable agriculture (see Figure 1). 
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1. Abstract  

The exploitation of recent technologies in the production of new generation textiles should be applied in 

order to achieve energy and raw material savings. Nanotechnology has high technological potential for the 

textile industry. The new textile realized by a finishing process, is able to reduce the maintenance costs of 

textile products, including a reduction in the consumption of water and chemicals/detergents, and to 

significantly reduce the temperature required for the removal of persistent stains. In this study Life Cycle 

Assessment (LCA) was applied to a self-cleaning textile in order to quantify its environmental advantages. In 

particular, the ecological earnings were evaluated by the comparison of the production and the use phase of 

the innovative  and conventional materials in several application scenarios. 

2. Introduction 

In the life cycle of garments, water is not the only primary depleted resource: in fact, approximately one-

third of the energy consumed globally is used by the industrial sector [1]. Within this scenario, it was 

estimated that energy used in the textile industry varies from 3 to 3.5 kWh of electricity per kilogram of 

yarn. Since wet processes represent the higher consuming step in the textile industry, it is clear that laundry 

services represent a critical step for energy demand. Nanotechnology can provide high durability for fabrics, 

because nano-particles have a large surface area-to-volume ratio and high surface energy, thus presenting a 

better affinity for textiles and leading to an increase in durability of the function [2]. The finishing process 

consists in the deposition of a layer of nanocrystalline titanium oxide, which is able to destroy organic 

material by solar irradiation. 

3. LCA Assumptions and Life Cycle Inventory Analysis  

The strategy for the LCA analysis must consider how many times a certain amount of textile has to be 

washed during its life cycle. As far as the system boundaries are concerned, the original intention was to 

perform a cradle-to-gate analysis, including the production of the raw materials in the boundaries. In this 

way, the gathering of data would include the production and the manufacturing of textile. Simply the 

supplying of feedstock implies the collection of an environmental burden due to ecological choices of the 

producer both in the case of natural [3] and synthetic fibers [4]. For these reasons, in this work, it was 

decided not to consider the production phase of the textile, opting for a gate-to-gate LCA. This choice is also 

supported by the goal and scope of this work. In fact, the comparison between the considered finishing 

processes is independent from the choice of textile type.  
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Figure 1: Flow diagram representing the life cycle of innovative textile. 

 

Life cycle system boundaries of innovative textile are reported in Fig 1. In order to simulate a reliable 

materials and energy requirement during the laundry operations, the  consumption data of a commercial 

washing machine were used [5-7]. Furthermore, the energy and raw materials that are required for the 

construction of a washing machine are part of the analyzed system. 

4. Sensitivity scenarios 

To check the influence of methodological choices on the final results, sensitivity analyses were carried out. 

The assumption of a longer lifespan of the use phase of the garments was tested by varying their durability 

from 1 to 5 years, to spread the higher impacts of the innovative finishing process. In order to simulate the 

advantage of photocatalytic degradation of stains that innovative textile should achieve, many different 

scenarios of reducing electrical consumption, number of washing cycles and reduced amount of detergent 

were assessed. In Table 1 the values of the number of cycles per year used in the scenarios are reported. Two 

other parameters were also changed in the sensitivity scenarios: the washing temperature and the use/amount 

of detergents. 

 

 Innovative washing Conventional washing 

Number of cycles per year 220 130 87 220 

m
3
 of tap water per year 1,37 0,91 0,54 1,37 

Washing temperature (°C) 60 40 RT 60 

Amount of detergents (kg) None 0,06 0,12 

Table 1: Parameters of the washing scenarios (RT = room temperature). 
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5. Results and Discussion 

Considering only the finishing process, is quite obvious that the innovative finishing process is not 

environmentally advantageous at this stage if compared with conventional textile. Furthermore, the aim of 

the LCA analysis is to estimate the reduction of the consumptions during the washing operations, which will 

compensate the additional environmental impact due to the material and energy inputs of the finishing phase. 

The combination of the parameters shown in Table 1 provides several scenarios, whose results calculated by 

CED method [8]. 

 

 

Figure 3: Diagram of CED indicator vs washing temperatures for all the considered scenarios 

 

It is apparent that the innovative washing procedure is energetically much more efficient both reducing the 

number of cycles per year and the washing temperature. In fact, the first value of the innovative finishing 

(green line) has the same parameters as the traditional washing process (red line) with the exception of the 

detergents. Eliminating or merely reducing soaps and auxiliaries, a remarkable energy savings is obtained. 

Moreover a reduction of the water consumption (about 60%) in the best scenario is achieved as well. 

The most relevant impact assessment categories of ReCiPe show the same trend. From an environmental 

point of view, the innovative textile is more sustainable than the conventional. The large impact is due to the 

use of detergents during the washing operation being the key process that influences all the scenarios. The 

environmental burden of detergents affect the final results decisively, even if present in a reduced amount. 
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Figure 4: Comparison of the washing scenarios at 40 °C calculated with ReCiPe Midpoint method  

for the selected impact categories 

6. Conclusion 

During the washing process, the innovative finished textile shows remarkable advantages by simply reducing 

the use of traditional detergents. The environmental profile is strongly influenced by the presence of 

detergents. For this reason, the reported results point out a key point in these LCA assessments: the 

innovative photo-catalytic textile is more eco-sustainable than the conventional one by reducing the chemical 

compound used for laundry operations. The assessment of the innovative finishing process suggests an 

industrial development of this technology.  
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1. Abstract  

Energy efficiency plays a key role in European sustainable development and climate change Policy. In order 

to analyse the environmental effectiveness of energy efficiency measures and policy, an appropriate tool is 

the LCA methodology, taking into account the direct and indirect effects of energy saving, along the entire 

energy supply chain. In this context, particular attention should be paid to the identification of the energy 

carriers to be considered in energy savings LCA studies. In this paper we demonstrate that the choice of an 

appropriate fuel mix has a relevant influence on final LCIA results, that vary between 11% (e.g. for 

greenhouse gases emissions), and more than 100% (e.g. for air acidification), when applied both to average 

saved energy (heat or electricity) and to a specific energy saving measure (in our case, lighting in the 

residential sector). 

2. Introduction  

Energy efficiency plays a key role in European sustainable development and Climate Change Policy [1]. In 

order to analyse the environmental effectiveness of energy efficiency measures and policy, an appropriate 

tool is the LCA methodology [2], taking into account the direct and indirect effects of energy saving, along 

the entire energy supply chain. Despite several studies have been made on the topic ([3][4][5][6]), especially 

on buildings, underlining the relevance of the energy consumption [7], none of them analysed the role of 

different mix and how it can affect results. If dealing with heat or electric energy saving, from an 

environmental point of view, it is important to define how heat or electricity are produced, i.e. which energy 

sources and which conversion technologies are used, as demonstrated in studies dealing with LCA of electric 

vehicle [8][9]. For example when evaluating the LCIA of using high efficient lamp instead of traditional 

incandescent light bulb, whether the electric energy saved is produced by hydro or coal power plant does 

affect the results. For this reason we propose a method for selecting an appropriate fuel mix in LCA of 

energy savings according to available data at national level. Then we investigate the impact on LCIA results, 

comparing the use of selected mix with the use of other possible average national energy mixes, both for the 

evaluation of national energy efficiency action plan (NEAP) measures and for the evaluation of a specific 

energy saving technology: LED lamp in residential sector. 

3. Selecting an appropriate fuel mix for heat and electric energy savings  

The most common approach to LCA of electricity energy saving is using the national average energy mix 

taken from available databases (like Ecoinvent [10][11] or ELCD [12]). Of course each database refers to a 

specific year: Ecoinvent for the Italian electric mix refers to 2004 (v2.2) or 2008 (v.3.1) while ELCD refers 

to year 2002. This could be a problem since the contribution of the different energy sources to the overall 

yearly Italian electricity production varies considerably from year to year [13].  
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Moreover specific comparisons between TERNA (the national transmission system operator) official 

statistical data and ELCD mix (referred to year 2002) or Ecoinvent (both for v 2.2 and 3.1) showed that 

ELCD underestimates electricity production from biomass and other fuels in favor of electricity production 

from oil derived fuels while Ecoinvent doesn’t consider electricity production from biomass and from other 

gaseous and liquid fuels in both versions [14]. When performing an LCIA these differences could 

significantly affect the results. For all this reasons we suggest to use ad hoc energy mix considering only 

fossil energy sources. There are many reasons for this assumption: energy efficiency and renewable are 

promoted in the same European union strategy; renewables have priority access to the market; renewables 

have often lower operation and maintenance costs then fossil fuels technologies. Moreover, instead of 

average national mix, we suggest a marginal fossil fuel mix built on the basis of the index of marginality [9] 

(available on line at www.gme.it for Italy). As regards thermal energy saving in end using sectors, we still 

consider only fossil fuels but given that there is not a specific stock market (and so any marginal mix) we 

suggest to build the saved energy mix considering, for each end-use energy sector (residential, 

industry…[14]) the corresponding actual fossil fuel mix consumption and, for evaluation at national scale, 

aggregate then data as weighted sum, using the amount of energy saved in each sector as weights.  

4. The effect of selecting an appropriate fuel mix in LCIA of energy savings  

The effect of selecting an appropriate fuel mix on LCIA results has been tested using as reference the year 

2009. We compared the LCIA of one unit of energy saved, both for electric energy and thermal energy of the 

selected fuel mix with other possible fuel mixes. 

For electric energy savings, we compared the marginal fossil mix (Mix 5) with different fuel mixes as 

described in Table 1. 

name Mix 1 Mix 2 Mix 3 Mix4 Mix5 

energy 

mix 

Italian production 

2004 

Italian production 

2008 

Italian 

production 

2009 

thermal fossil 

production 2009 

fossil marginal 

production 2009 

% Solid Fuels 

15.7%; 

Natural Gas 

47.5%; 

Derived Gas 

2.0%; 

Oil based fuel 

16.7%; 

Hydro 16.8%; 

Wind 0.7%; 

Bioenergy 0.6%. 

Solid Fuels 13.6%; 

Natural Gas 

54.4%; 

Derived Gas 1.7%; 

Oil based fuel 

9.9%; 

Other solid and 

gaseous fuel 0.5%; 

Hydro 14.3%; 

Wind 1.7%; 

PV 0.1%; 

Geothermal 1.8%; 

Bioenergy 1.9%. 

Solid Fuels 

13.5%; 

Natural Gas 

49.9%; 

Derived Gas 

1.3%; 

Oil based fuel 

5.4%; 

Other solid and 

gaseous fuel 

6.6%; 

Hydro 16.6%; 

Wind 2.2%; 

PV 0.2%; 

Geothermal 

1.8%; 

Bioenergy 

2.6%. 

Solid Fuels 17.6%; 

Natural Gas 

65.2%; 

Derived Gas 1.6%; 

Oil based fuel 

7.0%; 

Other solid and 

gaseous fuel 8.6%. 

Natural Gas 

Combined-Cycles 

73.0%; 

Coal power plants 

12.0%; 

Oil power plants 

11.0%; 

Natural Gas power 

plants 2.0%; 

Gas Turbine Power 

plants <1%. 

data 

source 

Ecoinvent 2.2 Ecoinvent 3.1 Brambilla et al, 

2014 

Girardi P, 2012 Brambilla et al, 2014 

Table 1: Different fuel mixes used for comparison of LCIA of saved electric energy 
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Results (Figure 1) show that the proposed mix (Mix 5) has lower impacts (and energy saving results in lower 

avoided impacts) and differences vary from about of 11% for Climate change impact category to 100% in 

the case of Air Acidification. The choice of an appropriate energy mix affects not only the LCIA of the 

average energy saved but also the LCIA of a single measure. Figure 2 shows for example the effect of using 

Mix 1 or Mix 5 when comparing high efficient lamps (LED) with traditional lamps, for Climate Change and 

Air Acidification impact categories. Even if the technologies ranking doesn’t change, the differences on 

impacts in absolute terms are relevant. 
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Figure 1: LCIA for 

different energy mixes 

for 1 kWh of saved 

thermal energy 

 

Figure 2: LCIA for 1 

lmn*hour of LED lamp 

vs CFL, halogen (HAL) 

and incandescent bulb 

(INC). 

 

Figure 3: LCIA for 

different mixes for 1 MJ 

of saved thermal energy 
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In the case of thermal energy (Figure 3) the differences are of the same order of magnitude but in this case 

the selected mix (Mix 3, actual fossil fuel mix consumption) has higher impacts (and then energy saving 

results in higher avoided impacts) than Mix 1 (only natural gas burned in an industrial furnace) and Mix 2 

(the fossil fuel mix of industry sector)[14]. 

5. Conclusions 

In this paper we propose a method for selecting an appropriate fuel mix in LCA of energy saving both for 

energy policy (like national efficiency action plans) and for single technologies (like high efficient lamps for 

residential lighting). Results shows that use of the proposed fuel mixes, based on fossil fuels and marginal 

technologies, has a relevant effect on improving LCIA results as far as the influence varies between 11% 

(e.g. for Greenhouse gases emissions), and more than 100%, (e.g. for Air Acidification) both when applied to 

average saved energy (heat or electricity) and to a specific energy saving measure (in our case, lighting in the 

residential sector). 
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1. Abstract  

Using temporally and spatially explicit information to quantify environmental impacts of renewable energy 

technologies is gaining importance. To address limitation of traditional Life Cycle Assessment (LCA) 

studies, a dynamical LCA method, that uses spatio-temporal mathematical models to identify environmental 

impacts varying over time and space, is introduced and exemplified through onshore wind turbines. The 

methodology incorporates spatial and temporal variability concerning the different life stages of a wind 

turbine and is applied at the Life Cycle Inventory (LCI) stage. Calculations evolve environmental impacts 

associated to a renewable energy system in time and space and allow to build impact scenarios depending 

on, for example, the choice of locations for deployment/installation and the surrounding areas. This novel 

methodology represents a major step forward in the calculation of comprehensive LCA.  

2. Introduction  

Wind is a pervasive and infinite power resource that plays a consequential role not only to meet increasing 

energy demand, but also to achieve CO2 emission reduction targets. The endeavour for a cleaner 

environment and more sustainable production processes leads to a rapid and global growth of the on- and 

offshore wind energy sector. Thus, wind energy is one of the first renewable energy source (RES) that 

became economically attractive. Wind turbines and wind energy have been the subject of many studies [1]. 

Life Cycle Assessment (LCA) is applied to assess environmental impacts [2]. LCA is “primarily a steady-

state-tool” that does not consider temporal or spatial information [3]. These limitations impact on results of 

conventional LCA and many, in particular, environmental issues cannot be determined explicitly [4], [5]. In 

recent years more studies include either temporally or spatially explicit information, and new methodologies 

for time-dependent LCA [4], [6], [7] and spatial LCA [8], [9] have been developed. To the best knowledge 

of the authors however, no studies have been performed that include time- as well as space-dependent 

information, and hence form the aim of the present study: the integration of both, temporal and spatial 

information and modelling to a more comprehensive results from LCA.  

3. Method 

The spatio-temporal methodology to calculate dynamic LCA, exemplified for potential environmental 

impacts from onshore wind turbines, is incorporated in the LCI stage. The traditional input/output format for 

Life Cycle Inventory (LCI) calculation equation, 

�⃗� = 𝐸 ∙ (𝐼 − 𝑇)−1 ∙ 𝑟, 
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is expanded to include time- and space-dependent information. This extends the above vectors and matrices, 

inventory vector �⃗�, environment matrix 𝐸, technology matrix 𝑇 and scenario vector 𝑟, to four and five 

dimensional arrays (representing two space- and one time-dimension), respectively. 

3.1  Time-dependent LCA Model 

First, the inputs and outputs of all process flows within a life cycle of a wind turbine are defined in a 

technology matrix 𝑇. The matrix entries represent the interrelation of all sub-processes within the overall life 

cycle. All inputs and outputs of the environmental flows are determined in the environment matrix 𝐸, which 

maps the technological processes to environmental impacts. Each entry of the matrices are considered as 

temporal distributions of the process related information flows, see Figure 1a) for a schematic 

representation. 

Figure 1: a) Example of matrix entries with distributions, b) Convolution of matrices 

         b)  

 

Given a scenario vector 𝑟 (again, a potentially time-dependent and time-varying variable), the first part of the 

calculation concentrates on the temporal aspect and does not consider the spatial component. The LCI 

equation needs to be modified to acknowledge the time-varying information: instead of matrix-matrix and 

matrix-vector multiplication, individual matrix entries of 𝐸, 𝑇 and 𝑟 are instead convoluted with each other. 

That is, new time-distributions are obtained as convolutions of original time-distributions (not as products); 

see Figure 1b) for a schematic of convolution. The temporal calculations do not consider any spatial 

variation, in that impacts are implicated only locally, for example, at the site of the wind turbine installation. 

3.2  Spatial Propagation Model 

The result from the time-dependent LCI equation serves as input to the spatial propagation models. The 

time-dependent localised impact inventory vector is propagated based on geographical information (e.g., 

regional land use and landscape features) or dynamical propagation models (e.g., regional atmospheric and 

water flows) to obtain time- and space-varying impact inventories. Based on parameter maps for ratios of 

propagated impact, see Figure 2a), and propagation models quantifying the impact of per-time-step 

dispersed, see Figure 2b), the spatially sampled impacts are calculated. First, deployment is assumed at 

given coordinates (origin), then environmental impacts disperse according to ratios to the closest and 

diagonally surrounding areas, and are subject to scaling via impact parameter maps. Finally and over time, 

accumulated long-term impacts decline. 
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The above model may lead to a better understanding of impacts from construction, maintenance and 

operation stages of the life cycle. With decommissioning, direct impacts diminish, however may have 

longer-term and slower decreasing repercussions on the surrounding areas. 

a)      b)  

Figure 2: a) Example impact parameter map (bright = high impact, dark = low impact), 

b) Conceptual propagation model for spatial dispersion of impacts. 

 

The spatial propagation model may help to identify impacts on, for example, land and seascape, water 

cycles, emissions and impact on climate, weather conditions, and surface interactions. 

4.  Example Simulation 

a)       b)  

Figure 3: Simulation results; a) Spatio-temporal relative impacts at time steps n=1,11,16,21,26,31 41,71, 

b) Summative impacts of simulation region (15x15 grid) over time 

The origin coordinates are identified for the wind turbine deployment and time-varying impacts are 

calculated. Then impacts propagate from the location of deployment to the surrounding areas. At a certain 

point the impacts start to decrease, first at the deployment coordinates then at surrounding areas, see Figure 

3b). Smith et al. [10] (2014) studied the impact of wind turbine deployment on peatlands and concluded that 

potentially more CO2 is released from peatlands then is saved because of clean energy from wind during the 

life of a wind turbine. The proposed model can help to identify these effects in more detail over time and 

space.  

5. Conclusion 

The introduced method combines a temporal and spatial LCA approach. Although the method is still in an 

early development stage, potentially highly beneficial outcomes can already be identified. The method can 

be used to plan energy scenarios, to minimise the environmental impact of renewable energy technologies 

during their life cycle, or to identify the impact of wind turbine locations with regard of the soil 

characteristics. Next steps include multi objective optimisation strategies for multi-impact wind farms and 

other renewable energy technologies.  
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Further analysis will also focus on different models for spatio-temporal propagation methods and include 

more detailed dispersion and dissipation models. It will also be tested if reversing temporal and spatial 

calculation steps has a significant impact on the results. 
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1. Abstract  

This study assessed environmental consequences of additional palm-oil biodiesel demand in Thailand in 

comparison with conventional diesel. It was found that improvement technologies enhanced the benefits on 

climate changes. Inclusion of direct and indirect land use changes and different modelling choices highly 

affected the environmental benefits and degradation. 

2. Introduction  

Palm oil has been promoted as a major feedstock for biodiesel production in South–East Asian countries 

including Thailand during the past decade. A number of environmental benefits (e.g. reduction in global 

warming and acidification potentials) and drawbacks (e.g. increase in eutrophication potential) from palm 

biodiesel as well as impacts from alternative technologies in Thailand have been previously addressed [1-3]. 

Nevertheless, the existing life cycle assessment (LCA) studies considered limited land use change impacts 

and usually applied attributional LCA (ALCA) modelling approach by using various allocation factors and 

incorporating average suppliers/technologies. In the meanwhile, recent developments in agricultural 

production and palm oil industry in Thailand have shown that the fresh fruit bunch yields have increased 

more than 25% from 2009 to 2013 and most of the Thai palm oil mills have installed a biogas system for 

wastewater treatment. This study aims to assess life cycle environmental impacts from additional palm-based 

biodiesel demand in Thailand in comparison with conventional diesel using consequential LCA (CLCA) 

modelling (avoiding co-product allocation by system expansion and including marginal/actual affected 

suppliers) and ALCA as well as considering recent development and land use changes.  

3. Material and methods 

CLCA aiming at modelling consequence from a change in demand of palm-biodiesel is applied by including 

marginal/actual affected suppliers for electricity and fertilizer according to Ref. [4] and avoiding co-product 

allocation by system expansion. The functional unit of this assessment is 1,000 L of additional palm 

biodiesel production. The data were mainly obtained from existing studies where field data were gathered 

from small- and large-scale farms, six palm oil mills and one commercial biodiesel production plant in 

Thailand [1, 2, 5, 6]. Life cycle stages of palm-oil biodiesel systems are oil palm plantation, palm oil milling, 

transport and biodiesel conversion. Under consequential modelling, the co-products from the palm-oil 

biodiesel system including palm kernel, palm shell, palm kernel oil, palm kernel meal and glycerol will 

substitute marginal electricity production (palm kernel and shell), refined oil (palm kernel oil), feed energy 

mailto:trakarn.pra@mahidol.ac.th
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(palm kernel meal and glycerol) and feed protein (palm kernel meal) in the global market [7]. Direct and 

indirect land use change impacts are estimated by considering carbon stock changes from direct land 

transformation [3] and applying a biophysical indirect land use change model [8] with the use of specific 

data from Ref. [4]. The ReCipe2008 method [9] is selected to assess the life cycle impacts of palm biodiesel 

under the categories of climate change, photochemical oxidant formation, terrestrial acidification, human 

toxicity and freshwater and marine eutrophication potentials. In this assessment, seven scenarios are 

developed as follows. Scenario 0 (S0) considers palm-biodiesel under average condition with approximately 

70% biogas capture in palm oil mill effluent treatment [2]. Scenario 1 (S1) and scenario 2 (S2) include palm 

biodiesel without and with biogas capture during the milling stage, respectively.  Scenario 3 to scenario 6 

(S3-S6) apply improvement technologies (only for palm oil mill effluent treatment with the traditional biogas 

system consisting of an open pond, a biogas plant, a stabilization pond and a retention pond) while 

maintaining other conditions as S2. The technologies are a wastewater-dispersed unit for cooling instead of 

an open pond (S3), replacement of an open pond before a biogas plant with a covered pond (S4), 

performance enhancement in the existing biogas recovery system (S5) and displacement of a stabilisation 

pond after a biogas plant by an aerated lagoon (S6). Finally, scenario 7 (S7) applies an attributional LCA by 

using economic allocation and average electricity data in Thailand. 

4. Results and Discussion 

Potential environmental impacts of the palm biodiesel systems and the diesel system shown in Table 1 

indicate that all palm biodiesel scenarios yield lower climate change impacts than the diesel baseline. The 

improved wastewater treatment systems (S3-S6) can strengthen the reduction in climate change impact. With 

respect to human toxicity, palm biodiesel systems under consequential modelling (S0-S6) also have lower 

impacts whereas the one under attributional impacts (S7) have almost double the value of diesel production 

and use because the economic-allocated impacts of S7 are still high. Moreover, S7 does not gain the 

environmental benefits from the avoided impacts from co-product substitution. 
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Environmental impacts Life cycle scope Diesel Palm biodiesel 

S0 S1 S2 S3 S4 S5 S6 S7 

Climate Change  

(kg CO2 eq.) 

Production 

Production + Use 

254 

2760 

84 - 425 

141 - 482 

732 – 1073 

790 – 1131 

(-57) – 284 

1 – 342 

(-227) – 114 

(-170) - 171    

(-225) – 116 

(-168) - 173 

(-160) – 181 

(-102) - 239    

(-119) – 222 

(-62) - 279 

615 – 956 

672 - 1013 

Human toxicity  

(kg 1,4-DB eq.) 

Production 

Production + Use 

83.19 

93.54 

(-7.56) 

2.78 

(-30.00) 

(-19.66) 

(-30.00) 

(-19.66) 

(-29.90) 

(-19.56) 

(-36.68) 

(-26.33) 

(-76.97) 

(-66.63) 

(-19.91) 

(-9.56) 

161.79 

172.14 

Photochemical oxidant 

formation (kg NMVOC) 

Production 

Production + Use 

3.67 

25.45 

5.30 

27.08 

5.21 

26.99 

5.21 

26.99 

5.21 

26.99 

5.17 

26.95 

4.97 

26.75 

5.26 

27.04 

6.69 

28.47 

Terrestrial acidification 

(kg SO2 eq.) 

Production 

Production + Use 

3.38 

15.37 

8.08 

20.07 

7.77 

19.77 

7.78 

19.77 

7.78 

19.77 

7.71 

19.70 

7.29 

19.28 

7.88 

19.87 

6.74 

18.73 

Freshwater eutrophication  

(kg P eq.) 

Production 

Production + Use 

0.07 

0.07 

(-0.15) 

(-0.15) 

(-0.21) 

(-0.21) 

(-0.21) 

(-0.21) 

(-0.21) 

(-0.21) 

(-0.22) 

(-0.22) 

(-0.28) 

(-0.28) 

(-0.20) 

(-0.20) 

0.42 

0.42 

Marine eutrophication 

(kg N eq.) 

Production 

Production + Use 

0.71 

8.95 

7.67 

15.91 

7.66 

15.90 

7.66 

15.90 

7.66 

15.90 

7.65 

15.89 

7.56 

15.80 

7.69 

15.93 

2.51 

10.75 

Table 1: Potential environmental impacts of palm biodiesel in 7 scenarios considering various technologies and modelling choices in comparison with diesel  

(per 1000 L of biodiesel equivalent). “Production” and “production + use” are considered from cradle-to-gate and all life cycle stages, respectively. 

 

S0 (CLCA: Baseline scenario) Total Oil palm plantation Palm oil milling Transport Biodiesel 

conversion Environmental impacts Plantation iLUC dLUC Milling Co-products POME 

treatment 

Climate Change (kg CO2 eq.) 84 - 425 587 503 (-430) - (-771) 68 (-846) 348 216 (-22) 

Human toxicity (kg 1,4-DB eq.) (-7.56) 113.50 17.73  8.25 (-185.97) 0.00 11.89 27.04 

Photochemical oxidant formation  

(kg NMVOC) 

5.30 3.23 0.28  0.18 (-1.29) 0.00 2.99 (-0.09) 

Terrestrial acidification (kg SO2 eq.) 8.08 4.30 7.15  0.15 (-3.78) 0.00 1.75 (-1.49) 

Freshwater eutrophication (kg P eq.) (-0.15) 0.37 0.01  0.01 (-0.54) 0.00 0.01 (-0.01) 

Marine eutrophication (kg N eq.) 7.67 1.18 7.69  0.07 (-1.08) 0.00 1.00 (-1.18) 

Table 2: Potential environmental impacts of 1,000 L palm production which are assessed by consequential modelling under the baseline condition (S0). 

(iLUC = Indirect land use change; dLUC = Direct land use change; POME = Palm oil mill effluent)
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The substitution of palm kernel, palm shell, palm kernel oil, palm kernel meal and glycerol highly 

contributes to the obtained environmental benefits of S1 to S6. For other impacts, the biodiesel system has 

lower values. If the impacts from each life cycle stage are considered (see an example of S0 in Table 2), for 

palm biodiesel systems the important fraction of environmental benefits is obtained from the avoided 

impacts from the co-product substitution whereas the environmental hotspots are in plantation (excl. iLUC) 

and iLUC. S0 to S6 yield lower human toxicity potential because of the avoided impacts from the co-product 

substitution. However, the emissions with high human toxicity potential derived from chemical production 

and consumption may occur during the plantation stage in Thailand (i.e. 113.50 kg 1,4-DB eq. for plantation; 

see Table 2). For iLUC, land intensification by nitrogen fertiliser utilisation is the main cause for 

acidification and eutrophication. For dLUC, the land transitions from set-aside, cassava, and rubber to oil 

palm plantation result in avoided climate change impacts.    

5. Conclusion 

Different modelling choices (CLCA and ALCA) and inclusion of direct and indirect land use changes highly 

influences the environmental benefits and degradation when comparing with the reference biodiesel system. 

With respect to environmental benefits, there is reduction in climate change and human toxicity due to 

biogenic combustion and the avoided impacts from the co-product substitution. The improvement 

technologies enhance the benefits on climate change. Furthermore, the control of chemical usage in oil palm 

plantation is highly recommended so as to limit the adverse impacts on human health. Finally, although 

direct land use change results in environmental benefits, there are more drawbacks from indirect land use 

change in most of impact categories. Future studies should consider other land use change models as well as 

additional impact reduction alternatives for palm biodiesel production. 
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1. Abstract  

According to the common strategies regarding waste management and energy supply in EU countries, more 

efficient utilization of organic waste resources (including garden waste) with both nutrient and energy 

recovery is desired. Each of the most common treatments applied today – composting, direct use on land and 

incineration – only provides one of the two services. A technology ensuring both nutrient and energy 

utilization is anaerobic digestion (AD) that has become applicable for treatment of garden waste recently. In 

this study, life cycle assessment aimed to compare four garden waste treatment alternatives (AD, 

composting, direct use on land and incineration) was conducted. The results showed that none of the 

scenarios assessed was best in all impact categories simultaneously, i.e. an overall ranking of the 

technologies was not possible. Moreover, many trade-offs between nutrient and energy recovery were 

observed. 

2. Introduction 

According to the common strategies regarding waste management and energy supply in EU countries, more 

efficient utilization of organic waste resources with both nutrient and energy recovery is desired. For garden 

waste, the most common treatment applied today is windrow composting or direct use on land. These 

treatments aim for nutrient recovery only and do not provide energy recovery from the waste. A promising 

solution to this is the anaerobic digestion (AD) process where both nutrients and energy can be utilized. 

Another technology suitable for energy recovery is incineration. In that case, however, the nutrients are lost.  

Full-scale AD does require the waste being pumpable and to some extent homogenized and has, therefore, 

been considered as less applicable for garden waste treatment. A solution to this was, however, recently 

demonstrated: a Danish technology designed for food waste pre-treatment prior to biogas production was 

applied and successful treatment trials on garden waste and food waste mixtures with garden waste content 

up to 50% were performed. 

The objective of this study was to evaluate the environmental performance of garden waste AD and compare 

it to the treatment alternatives mentioned above, i.e. composting, direct use on land and incineration. To 

conduct the study, four corresponding scenarios were constructed and the potential environmental impacts 

including a number of impact categories were assessed using a life cycle assessment (LCA) approach. 

3. Methodology 

3.1 Scope 

Consequential LCA was applied meaning the changes in impact potentials induced by changes in the system 

were assessed. The functional unit was 1 tonne of garden waste (wet weigh) being treated, and all the input 

and output flows were related to it. For the life cycle impact assessment (LCIA), the ILCD2011 
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recommended method [1] was applied and normalized results expressed in (mili) person equivalent 

evaluated. The impact potential in the “general” impact categories, e.g. global warming, stratospheric ozone 

depletion, etc. (see Figure 1), in the toxic categories as well as abiotic resource consumption were 

investigated. Due to a large uncertainty associated with the LCIA method used the results regarding toxicity 

were excluded. The modelling was performed using the waste management software EASETECH [2] and 

included use of both default processes available in the model database and some developed specifically to 

this study. All the inventories are supposed to cover technology level and practices in Scandinavia and be 

valid for the present situation in 2015 and some years ahead as long as no major changes of the background 

systems take place. 

3.2 Main assumptions 

In the AD scenario and incineration scenarios, system expansion to credit substitution of energy production 

was used and the marginal technologies modelled. For the electricity, coal-based  power production which is 

generally accepted as the short-term electricity marginal in Scandinavian countries [3; 4] was considered. To 

assess uncertainty accompanied with the choice, two sensitivity analysis with electricity marginal based on 

natural gas and wind power were performed. For the heat, a Danish district heating system was used. In 

modelling, the corresponding inventories available in the software database were used. Following the current 

Danish legislation [5], use of the digestate from AD, compost and untreated garden waste on land was not 

considered to substitute inorganic fertilizers. 

For the garden waste pre-treatment prior to AD, the technology was associated with an electricity 

consumption of 41 kWh per 1 tonne waste treated.  8% of the input material (wet weight) was lost in the 

process reject which in turn was assumed to be incinerated. For other garden waste treatment alternatives, 

consumption of 0.68 l diesel per 1 tonne waste was included corresponding to a garden waste shredding 

process (adapted from [6]). 

For the main treatment technologies such as composting and waste incineration as well as for compost and 

digestate use on land and biomass transport (in the scenarios with land application), the default inventories 

available in EASETECH were used. For composting, a windrow composting plant in Aarhus (Denmark) 

with average values regarding volatile solid (VS) degradation and material loss due to compost screening 

was reflected. For incineration, a generic waste incinerator in Denmark with net electricity production of 

22% and heat recovery of 73% was used. For compost and digestate use on land, air emissions of N2O and 

NH3, NO3 runoff to surface water and leaching to ground water as well as heavy metal loading to the soil 

were covered. For the biomass transport, a convential truck available in the database was used and a distance 

of 25 km was set.  

For garden waste treatment in AD and direct use on land, own inventories were constructed. For AD, a 

mesophilic plant with methane yield of 76% of the biogas potential, gas leaking from the digester of 3% and 

a biogas engine with 40% electricity and 50% heat efficiencies was reflected; corresponds to the case shown 

by [6] and [7]. To model garden waste direct use on land, emission factors from [8] were considered.  
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The composition of the input garden waste included 55% total solids (TS), VS of 34% of TS, lower heating 

value of 8 MJ/kg TS and a methane potential of 35 m
3
 CH4 per tonne (wet weight) which corresponds to the 

waste that was used for the pre-treatment technology investigation. 

4. Results 

Based on the results derived in this study (Figure 1), one specific scenario could not be identified as the best. 

For Global Warming, the two scenarios designed for energy recovery (AD and incineration) had impact 

savings while the treatments focused on nutrient recovery (composting and direct use on land) only resulted 

in impact loads. The savings for incineration were larger than for AD due to a relatively high calorific value 

of garden waste exceeding the energy content of the biogas produced, i.e. more energy was substituted in the 

incineration case. With the alternative electricity marginals, the magnitude of the difference between the two 

scenarios was, however, less pronounced. For the impact category reflecting use of fossil resources, the same 

trend as for Global Warming was observed. For photochemical ozone formation, the ranking was opposite 

and the biggest impact load was in the scenario with incineration. Contribution to marine eutrophication was 

important for all the scenarios with biomass use on land and was insignificant for the incineration where no 

land application was intended. For acidification and terrestrial eutrophication, a pronounced impact load in 

the composting scenario was observed which was due to volatilization of ammonia from the facility. 

 

Figure 1: LCA results for “general” impact categories and abiotic resource consumption;  

net values are shown. To improve resolution of the figure some of the columns were truncated 

5. Conclusion 

The study showed that there is no one garden waste treatment option best for the all the impact categories 

simultaneously. In this light, to make a choice between the treatment methods weighting of each category in 

a specific context needs to be implemented. 
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1. Abstract  

Water use is generally considered a relevant issue to be necessarily included in the sustainability analysis. 

Water footprint indicators, whose aim is to identify water hotspots, represent the attempt to assess potential 

environmental impacts of water use (either consumptive or degradative) in a life cycle perspective. 

We hereby present results and reflections stemmed from the water footprint analysis of bioenergy produced 

by energy crop. The aim of this study was to test and compare the available methodologies for water scarcity 

footprinting, evaluating their behaviour and capability to identify hotspots in terms of water scarcity. 

Outcomes from this work can give an interesting overview useful for selection of Water Footprint impact 

methods for further case studies. 

2. Introduction 

Sustainable water management and the characterization of all the involved processes are directly connected 

with the definition of sustainability.  

Recently the definition of Nexus [1] has introduced an innovative framework that can promote a deeper 

understanding of the interactions between water, energy and food.  

Several approaches have been developed in the last years to assess water use, starting from the definition of 

virtual water made by Allan [2] as the water needed to produce and process a commodity or service.  

Hoekstra and Hung of the UNESCO-IHE Institute for Water Education were the first to transform Allan’s 

idea into quantifiable models [3] and Water Footprint (WF) indicators 

The method defined by Hoekstra [4] in the WF assessment manual, is composed by a four-step approach, 

including setting goals and scope, water footprint accounting, sustainability assessment and response 

formulation. The accounting phase includes the quantification and mapping of freshwater use with three 

distinct types of water use: i) blue water, defined as the fresh surface or groundwater use; ii) grey water, 

related to water pollution; iii) green water, defined as the rainwater that does not become runoff. 

In addition, the guideline standard ISO 14046 [5] recently determined the entrance of water footprinting in 

the Life Cycle Assessment (LCA) framework. 

The WF-LCA methodology allows getting a better understanding of the full life cycle of a product in terms 

water use. The result of a water footprint assessment is a single value or a profile of impact indicators, 

assessing water quantity and quality issues [5]. 

3. Case study  

The biogas production from anaerobic digestion of energy crops in central Italy represents an interesting 

application. In fact, the increasing diffusion of biogas production from energy crops generates concerns 

about potential negative effects on the environment, on competition in the food market as well as about the 
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progressive changes in land use. The main goal of the study is to analyze the nexus between bioenergy 

production and water, which plays a key role because water resources are often the limiting factor in energy 

production from crops.The use of the last developed water footprinting methods represent an innovative 

assessment of the impact of biogas production on water. 

Three kinds of crops - maize, sorghum and wheat - were selected, being the most widespread in the Italian 

territory for bioenergy production. 

The functional unit chosen is 1 GJ of energy content in the biogas from the anaerobic digestion; the system 

boundaries includes crop cultivation, digestion and energy conversion steps, along with energy and materials 

needed for these phases and direct emissions. More details about the case study are reported in [6] 

4. Methodology description 

Among other LCA indicators, WF indicators for water scarcity are particularly time/space sensitive and the 

analysis must focus on local scale. Currently there are several methods available to assess water scarcity, 

which differ in terms of granularity and characterization factors.  

Three different methods have been utilized in the study: Boulay [7], Hoekstra [8] and Pfister [9]. 

They use midpoints indicators based on different expressions of regional water scarcity: Boulay and 

Hoekstra are based on consumption to availability approach (CTA=annual water consumption/annual 

availability), while Pfister uses the withdrawal to availability ratio (WTA=annual water withdrawal/annual 

availability) in the characterization phase. Moreover, the three methods differ in the way the Water Scarcity 

Index-WSI (i.e. characterization factor in WF) is estimated, as reported in tab.1 

 

Table 1: Water scarcity footprinting methods 

5. Results 

The results of water scarcity assessment (fig.1) show that all methods recognize the wheat as the less 

sustainable in term of water use. One of the most affecting element is the yield value which was found lower 

for the wheat than for maize and sorghum (e.g. for the production of the same amount of biogas, a larger 

cultivated surface is required). However, the WF absolute value of each cultivation differs considerably, 

depending on the method adopted: Hoekstra method gives values almost double of the other two. This is due 

to the different calculation assumptions and the different WSI databases. 
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Figure 1: Water scarcity footprint results 

 

Four aspects have been taken into account for the sensitivity analysis: crops productivity (reduced by 28%), 

biogas yield of crops (reduced by 12%), CHP efficiency (heat recovery equal to zero). Results (tab.2) show 

that although Boulay method is slightly more sensitive to parameters variation, the performances of the 

methods in terms of sensitivity are equal. 

 

Biogas production 

sensitivity 

 

Impact category Unit Sensitivity result standard Absolute variation Relative variation 

Boulay_WSI m3 13.18 11.58 1.60 13.87% 

Hoekstra_WSI m3 27.89 24.49 3.39 13.86% 

Pfister_WSI m3 12.13 10.65 1.47 13.86% 

Yield sensitivity 

Impact category Unit Sensitivity result standard Absolute variation Relative variation 

Boulay_WSI m3 16.29 11.58 4.71 40.69% 

Hoekstra_WSI m3 34.46 24.49 9.96 40.68% 

Pfister_WSI m3 14.99 10.65 4.33 40.68% 

CHP efficiency sensitivity 

Impact category Unit Sensitivity result standard Absolute variation Relative variation 

Boulay_WSI m3 11.62 11.58 0.038 0.34% 

Hoekstra_WSI m3 24.57 24.49 0.078 0.32% 

Pfister_WSI m3 10.69 10.65 0.033 0.32% 

Table 2: Sensitivity anlysis 

6. Conclusion 

The performances of three Water Footprint impact methods were analysed through a specific case study on 

biogas production from the anaerobic digestion of energy crops.  

These methods share the same qualitative results but they differ in quantitative terms due to different 

assumptions and WSI databases. Even though all the methods show the capability to identify water scarcity 

hotspots, their variability in results suggest the importance of selecting the most appropriate one and even 

presenting a comparison of them in order to get comprehensive results for water scarcity assessment in 

agrifood sector. 
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1. Abstract  

Concerns over energy security and environmental impacts related to greenhouse gases emissions stimulate 

developments towards renewable energy. Over the last few years, there has been an intense debate about the 

major factors that determine the impacts of biofuels both in production and end use phase. The objective of 

this study is to review existing life cycle assessment (LCA) and water footprint (WF) studies on liquid 

biofuels used in transport sector to point out if: (i) LCA studies are adequate to evaluate the environmental 

impacts of biofuels; (ii) biofuels are environmentally sustainable when the WF is considered; (iii) it is 

possible to use both LCA and WF studies results to better assess the environmental sustainability of biofuels. 

Furthermore, different aspects of crops production are considered to assess the efficiency of the biofuels in 

the greenhouse gas emission reduction. The analysed LCA papers present quite different and at times 

contradictory results on biofuel environmental impacts. Variability in results is affected by crops used and 

geographical areas of cultivation and, consequently, the impact assessment of biofuels is consistent only at 

the local level. In conclusion, it can be stated that territory characteristics, weather conditions and farming 

methods should be considered to evaluate biofuels production. 

2. Introduction  

Many countries have established regulatory policies to promote the production or consumption of biofuels 

for transport. For example, in the European Union transport sector is expected to switch from fossil fuel use 

to a fuel mixture with 10% fraction of biofuels by 2020. As a result, global biofuel production grew from 16 

billion litres in 2000 to more than 117 billion litres (volumetric) in 2013 [1]. At the same time, biofuels have 

to be produced in a sustainable way to reduce greenhouse gas (GHG) emissions without adversely affecting 

the environment or social sustainability. Over the last few years, there has been an intense debate about the 

major factors that determine the impacts of biofuels both in production and end use phase. Growing crops for 

biofuels may have serious environmental impacts such as direct or indirect land-use changes, soil 

degradation, nutrient depletion, loss of biodiversity, water depletion and pollution [2]. To determine and 

evaluate the environmental impacts of biofuels many studies have been carried out applying the life cycle 

analysis (LCA) methodology [3, 4, 5, 6] but only few take into account water use/consumption [7, 8]. In 

recent years a number of studies investigated the issue of water consumption for crops used for the biofuels 

production pointing out that they have relatively high water requirements at commercial yield levels. 

Considering that fresh water for agriculture is becoming increasingly scarce in many countries as a result of 

the competition with domestic or industrial uses, the paper focuses on the impact of a larger consumption of 

biofuels on this vital resource. 
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2. Materials and methods 

In this paper a literature survey on LCA and WF studies of liquid biofuels used in the transport sector, 

namely bio-ethanol and biodiesel, has been carried out covering a time period of ten years. Because of the 

large number of publications only review papers on LCA have been considered whereas both reviews and 

original research papers on WF have been examined. 

3. Results 

Nine review papers have been analysed to obtain a comprehensive knowledge of the LCA studies on the 

environmental impacts of biofuels in transport sector. The reviews agree in pointing out two major issues: (i) 

most of the analysed papers calculate or estimate the GHG emissions and the energy balance whereas only 

few consider other impact categories [9][10]; (ii) the wide range and uncertainty in LCA results [4][5][11] 

and also some contradictory results [12]. Parameters that influence the variability in results are related to the 

study’s specificity (type of crop, agricultural practices, country of cultivation and fuel processed plants) as 

well as to the different assumptions and methodological choices used to model the life-cycle assessment. 

According to Larson [4] there are four main parameters responsible of the greatest variations and 

uncertainties into GHG-related LCA results: “the climate-active species included in calculation of equivalent 

GHG emissions, assumptions around N2O emissions, the allocation method used for co-product credits, and 

soil carbon dynamics”. Other authors draw the same conclusion, e.g. Malça and Freire [13] state that in more 

recent LCA biodiesel studies, soil emissions (namely N2O and carbon emissions) “as well as different 

options for dealing with co-products (scenario uncertainty), have strong influence in the results” of GHG 

emissions. 

The results of the examined reviews can be summarized as follows. As regards biodiesel, to achieve 

moderate GHG savings and a favourable energy balance with respect to fossil diesel, there are at least three 

parameters to be met. These are: high biomass yields, low fertilizers and pesticides inputs in agricultural 

practices, no land use change. Overall considered palm oil is recognized as the most efficient crop to produce 

biodiesel [14][15] if deforestation environmental impacts are not taken into account whereas biodiesel from 

rapeseed cultivated in East Europe accounts for the higher GHG emissions, even higher than fossil fuel 

diesel emissions [10]. 

As regards bio-ethanol, better results for GHG savings and energy balance net gain are estimated in relation 

to fossil fuel and biodiesel as well [16]. Bio-ethanol produced from sugarcane in tropical countries appears 

by far the most efficient biofuel both for climate protection and fossil fuel conservation perspective if the 

residues are used to run the processing plants. 

Last but not least all the reviews point out the highly site-dependent results in GHG and energy balance and 

the great variation in methodological choices and parameter settings that lead to a wide range of results and 

recommend to identify guidelines or a standard methodology to carry out LCAs on biofuels. 

To exceed the LCA study limits and better evaluate the environmental impacts of biofuels a further 

parameter has been evaluated: the water footprint (WF) that allows to calculate water requirements for crops 

cultivation and accounts for both direct and indirect water consumption [17]. The WF papers analysed come 

to very similar results, Gerbens-Leenes and co-authors [7][8] calculated the WF of different biofuels and 
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show that “is 70 to 400 times larger than the WF of a mix of energy from non renewable sources” and in a 

transition to biofuels scenario it is expected that the global annual biofuel WF will increase more than 

tenfold, from about 90 km
3
/year in 2005 to 970 km

3
/year in 2030 [17]. Furthermore, in a recent study on bio-

ethanol WF Gerbens-Leenes and Hoekstra [18] state that producing bio-ethanol from maize is more 

favourable than using sugarcane, contrary to the results of LCA studies above mentioned. In a study 

comparing the WF of three biofuel crops (cassava, sugarcane, and oil palm) with other food crops in 

Thailand, Piyanon and Gheewala [19] show that a hectare of biofuel crop lands requires more water than a 

hectare of other food crops. Moreover is very important to assess the water consumption in relation to the 

hydrogeological conditions of the different regions [20].  

4. Conclusion 

Combining results from LCA and WF studies on first generation biofuels, namely biodiesel and bio-ethanol, 

no conclusive results can be achieved on environmental advantages in their utilization. Major uncertainties in 

LCA studies derive from biomass feedstocks, energy inputs, location of crop cultivation and related yields, 

soil emissions and allocation procedure for co-products while in WFs papers two variables, crop water 

requirements and crop yields, explain the large variability of the results. Overall, this brief review shows that 

future studies on biofuels LCA have to take into account the WF because water scarcity may become the 

limiting factor for biofuel feedstock production in many regions [2]. 
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1. Abstract  

Life Cycle Assessment (LCA) has been increasingly used for the improvement of the environmental 

performance of goods and services, amongst which products belonging to the agri-food sector. 

Simplification of LCA was found to be important, especially for Small- and Medium-sized Enterprises 

(SMEs) that generally lack in resources. As a consequence, a number of simplification approaches and tools 

have been developed and proposed in the last decades, some of which for the agri-food sector. This paper 

builds on previous research performed in the wine sector where a set of simplified LCA approaches were 

identified and tested in the framework of an SME. Here, in order to advance and broaden the previous 

research and to evaluate the robustness of the results in the framework of the agri-food industry, two 

additional products were considered: roasted coffee and olive oil. 

2. Introduction  

Life Cycle Assessment (LCA) has been increasingly used for the improvement of the environmental 

performance of goods and services, amongst which products belonging to the agri-food sector [1, pp. 151–

173]. Furthermore, simplification of LCA was found to be an important issue, especially for Small- and 

Medium-sized Enterprises (SMEs), where the necessary resources and knowledge needed for a full LCA are 

generally scarce. Consequently, a number of simplification approaches and tools have been proposed, some 

of which specifically for (or that can be used in) the agri-food sector. 

This paper builds on previous research performed by the Authors in the wine sector, where a set of simplified 

LCA approaches were identified [1, pp. 123–150] and then tested and rated initially by expert users and then 

by non-expert ones [2-3]. The selection of the simplified approaches to be tested was performed by applying 

decision-making techniques (of the family of the Multi-Attribute Utility Theory) to the scores attributed to 

them by the users [1, pp. 123–150]. Subsequently, the selected simplified approaches were implemented in a 

case study in the framework of a small family-managed winery in Italy and the results were analysed in 

parallel to those of a full LCA [1 (pp. 151–173)-2].  

By doing so, the strengths and weaknesses of the examined approaches were identified, not only in terms of 

the results obtained but also of the modelling that had to be used for each one of them. Here, in order to 

advance and broaden the previous research and to evaluate the robustness of the results in the framework of 

the agri-food industry, two additional products were considered (roasted coffee and olive oil) testing two 
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simplified LCA approaches: Bilan Produit (designed by ADEME France) and CCaLC (designed by the 

University of Manchester)
13

. 

3. Roasted coffee 

This case study was performed in the framework of the firm Barbera 1870 (Messina, Italy). A cradle-to-

grave analysis of this product using eVerdEE had already been published [1, pp. 303-330]. The functional 

unit (F.U.) was set as 1 kg of packaged roasted coffee. For this case study, no full LCA has been 

implemented until now. 

3.1 BilanProduit 

The simplification of the tool BilanProduit [4] is at the level of Life Cycle Inventory (LCI) [2]. BilanProduit 

has recently developed a new version, which is directly available online [5], but still does not include a 

complete database (e.g., food production processes). For this reason, the old version [4], which was on a 

Microsoft Excel file, available only in French, was used. The same version of this tool was used as it 

happened for the case study of wine [1, pp. 151–173]. The sheets of the Excel file include the phases of 

production, transport, use, end of life, and, for every entry selected in the production sheet, the user needs to 

specify which phase in the life cycle it is connected to [2]. 

For the agricultural phase, the tool seemed to be lacking in entries related to fertilisers, limestone, pesticides, 

and land use. The emissions for the agriculture and packaging phases could not be inserted either. Regarding 

transport, the tool provided the possibility to insert separately: transport between plants, transport of 

packaging materials, and distribution. This kind of modelling, indeed, could separately provide the results 

per type of transport. 

For this study, the phase of agriculture (mainly due to electricity consumption) appeared to be the most 

impacting one regarding most of the environmental impacts taken into consideration, such as climate change 

(0.389 kg CO2 eq/F.U.), acidification (0.0041 kg SO2 eq/F.U.) and eutrophication (1.17e-3 kg phosphate 

eq/F.U.). 

3.2 CCaLC 

The simplification of the tool CCaLC [6] is at the level of Life Cycle Impact Assessment (LCIA) [2]. With 

respect to the previous work, a new version of the tool was available and thus was used (namely CCaLC2). 

In general, the incorporated database of the tool, which is integrated with a part of Ecoinvent 2 and 3, was 

found to be satisfactory for this study. However, it was lacking in some emissions and in land use entries (it 

did not include any data for the country where the agricultural phase takes place, i.e., Brazil). 

The tool gives graphic results mainly for Carbon Footprint, but it also includes a set of other environmental 

impacts. Regarding climate change, the phase of agriculture (mainly due to the use of fertilisers) appeared to 

be the most impacting one (3.97 kg CO2 eq/F.U.).  

                                                      
13 The simplified tools taken into account in [2] were eVerdEE, Carbonostics, BilanProduit and CCaLC and the idea of 

the authors was to include all of them in this study, as well. Nevertheless, at the time when the present study was being 

prepared, Carbonostics was not available anymore and eVerdEE (available online) was under construction with its 

database not complete; they were thus excluded from the analysis here presented. 
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On the other hand, the use phase seemed to be the most contributing one for acidification (0.011 kg SO2 

eq/F.U.), eutrophication (7.37e-4 kg phosphate eq/F.U.), ozone layer depletion (4.7e-7 kg R11 eq/F.U.) and 

photochemical smog (7.05e-4 kg ethene eq/F.U.). 

4. Olive oil 

The case study on olive oil was performed in a local association of oil producers (APOM, Messina, Italy). A 

full LCA implementation to 9 different scenarios was published in [7]; for this paper, the scenario 6C was 

chosen (one of the most common in Italy). The F.U. was defined as 1000 kg of olives (which corresponds to 

200 kg of olive oil). The system boundary included the phases of agriculture, olive oil production and olive 

oil mill waste treatment (composting). 

4.1 BilanProduit 

The database of the tool was lacking in entries, such as compost and straw. Moreover, as in the case of 

roasted coffee, emissions could not be inserted here. Since the system boundary did not include phases such 

as transport and end-of-life, only the “production” sheet was filled in. The results regarding climate change 

showed that the electricity consumption during the agricultural phase was the most impacting one (24490 kg 

CO2 eq/F.U.), followed by the diesel consumption in the composting facility (4237 kg CO2 eq/F.U.). 

4.2 CCaLC 

The tool provided with a built-in option to deal with the multifunctionality issue for the by-products (olive 

stones and compost), by using system expansion (in the same way as it was dealt with in the full LCA 

implementation [7]).  

The results regarding climate change showed that the phase of composting was the most impacting one, due 

to diesel consumption by the machinery (3288 kg CO2 eq/F.U.). The overall carbon footprint had a negative 

value (-1942 kg CO2 eq/F.U.), due to the avoided production of fertilisers replaced by compost as a by-

product. As far as the other environmental impacts are concerned, the sum of the raw materials used for all 

phases was the one that contributed the most. 

5. Conclusion 

The results confirmed the hypotheses made in the previous publications claiming that the use of different 

modelling (for meeting the needs of each tool), different databases and different environmental impact 

categories can lead to contrasting results. The characteristics of the product under study are also of essential 

importance for the selection of the most suitable simplified LCA tool. It was also found that the lack in 

agriculture-related processes within the incorporated databases can be of critical importance for agri-food 

products case studies, even though this could be the case also for conventional LCA analyses. As a general 

consideration, the tools examined demonstrated to be quite suitable, as regards modelling and reporting, for 

these agri-food products. 

Future analysis will include the latest versions of eVerdEE and BilanProduit along with the implementation 

of the simplified tools in the framework of other agri-food products in order for more robust results to be 

obtained. In addition, full LCAs will be implemented for all the products under study. 
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1. Abstract  

The “Vernaccia di San Gimignano” is a white wine, the first to achieve the DOC label in Italy, in 1966. 

After about 50 years from that achievement, the Consortium “Denominazione San Gimignano” launched a 

project for promoting environmentally responsible wine-farming among its members. The first phase of the 

project involved four wine-farms to assess the average Carbon Footprint of one bottle of Vernaccia di San 

Gimignano (FU, 0.75 L) in order to highlight supply chain hotspots and best practices to put into effects. A 

minimum value of 0.60 kg CO2-eq and a maximum of 1.34 kg CO2-eq per FU were calculated, mainly due to 

the use of packaging materials. Main differences depend on the organization of farms, rather than their 

management (i.e. organic vs conventional). The application of best practices by farms would potentially 

allow for decreasing impacts of about 33%, in terms of Carbon Footprint.  

2. Introduction  

The “Vernaccia di San Gimignano” (hereafter VSG) achieved its DOC label (Denomination of Controlled 

Origin) in 1966, the first case in Italy. In 2014, after about 50 years from that achievement, the Consortium 

“Denominazione San Gimignano” [1], including (74) VSG wine producers (see fig.1), launched a project for 

promoting environmentally responsible wine-farming among its members. The project aims at assessing the 

Carbon Footprint (hereafter CF) of an average bottle of VSG, taking into account all supply chain processes 

and then identifying solutions and best practices to reduce impacts. The innovative aspect here is the 

participation of VSG winemakers in the Consortium (most of which have a family run winery) aimed at 

widely sharing objective and solutions towards a more sustainable production of VSG and potentially 

achieving a lower level of emission to be fully compensated by CO2 absorption by farm ecosystems. The 

pilot phase of the project has been completed in December 2014. 

3. Materials and method 

VSG is a fresh white wine made of grapes produced within the municipal territory of San Gimignano (near 

Siena, Tuscany) fig.1, according to Production Regulation [2]. Vineyards are composed of 85% VSG variety 

at least. The first four representative VSG wine farms (fig.1 in red) were selected according to the following 

criteria: management (2 organic and 2 conventional), estate dimensions (1 small, 2 medium, 1 big), supply 

chain completeness (i.e. all phases from vineyard to bottling were carried out within the farm boundaries) 

and location in the designed area for VSG production (in order to include the territorial variety). 
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Figure 1: Geographical localization of four selected wine farms (in red) 

 

All farms were VSG Production Regulation compliant, therefore their annual yield did not exceed 9000 kg 

per hectare and grapes were vinified (and wine aged) within the production area. The most part of 

vinification takes place in cooled tanks and wine is sold in bottles of 0.75 L (minimally as cask wine) . 

Farm#a and farm#b are two medium organic, while farm#c and farm#d are conventional wineries (small and 

big respectively).   

All inventory data are gathered by direct interview with farmers, verifying all stages in farms. Allocation, 

where necessary, is conducted per mass. The Funtional Unit (FU) is one bottle of VSG wine (0.75 L) 

produced in 2013 and the system boundaries are from cradle to the farm gate. The VSG supply chain is 

divided into three phases: vineyard maintenance (#1), wine production and ageing in cellar (#2) and bottling-

packaging (#3). The analysis was performed with the SimaPro 7.3.3 software [3], selecting the method IPCC 

2007 (100 yrs). Once assessed CO2-eq emissions for each farm per FU, a weighted average has been 

calculated on the basis of VSG bottles yearly produced by each farm, obtaining a VSG average bottle. 

4. Results and discussion  

Results highlighted a minimum value of 0.60 kg CO2-eq for the medium organic farm#b and a maximum 

value of 1.34 kg CO2-eq for the big conventional farm#d, per FU (1 bottle=0.75 L) (fig.2).  

 

 

 

Figure 2: Carbon Footprint (kg CO2-eq) of four VSG wine bottles (0.75 L). Red line= VSG average bottle  
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Outcomes show that the phase#3 is the most relevant in terms of CF for farms#a, #b and #c (rage between 

0.43-0.49 kg CO2-eq per FU), mainly due to the use of packaging glass and boxes, followed by impacts for 

phase#1 (range from 0.11 to 0.27 kg CO2-eq per FU, farm#b and #c respectively), because of the use of 

chemicals (mainly copper based fungicides) and diesel consumption. Finally, emissions from phase#2 (range 

from 5.24E-4 to 0.13 kg CO2-eq per FU, farm#b and #c respectively) are linked to electricity consumption. 

Results for farm#d, the biggest (let’s say semi-industrial production), highlight different percentages for the 

three phases. The most burdening is phase#2 (0.59 kg CO2-eq per FU) because of the huge quantity of 

electricity used for tank cooling, followed by phase#3 (0.49 kg CO2-eq per FU) and phase#1 (0.25 kg CO2-

eq per FU). It is evident that the medium organic farm#b presents the best environmental performances, but 

also the farm#d performs virtuous processes.  

Differences among the assessed wine-farms are based on the organization of the farm, rather than its 

management (i.e. organic vs conventional). This is demonstrated by the accomplishment of good-practices 

already in use, such as the installation of photovoltaic panels (farm#b) or the implementation of more 

efficient processes (e.g. collection of chemicals in surplus during the vineyard treatments, farm#d), with 

evident effects in terms of avoided impacts.  

Results obtained in this study (e.g. the total CF value and the contribution of each phase to total inpacts) are 

in line with those gathered in literature, referred to white wine supply chain (literature range:  0.6-1.64 kg 

CO2-eq per FU [4, 5, 6, 7, 8, 9, 10]). 

Afterwards, the weighted mean value of 0.90 kg CO2-eq per FU was calculated based on results from the 

four sampled farms, thus tracing the environmental profile of an average VSG bottle. Moreover, the 

accomplishment of best practices detected in the four analysis (e.g. the use of photovoltaic panels, the 

collection of chemical surplus during treatments, lighter glass bottles), would potentially reduce impacts of 

about -33% of the total CF. The use of other container types for wine packaging (e.g. bag in box) may further 

reduce impacts. 

5. Conclusion 

The environmental profile of VSG has been investigated based on LCA (even limited to the CF impact 

category [11]). The average CF of VSG is 0.90 kg CO2-eq per FU as resulted from the LCA of four 

representative winefarms. Outcomes show lower average impacts relative to other white wine productions in 

Italy. Considering the whole VSG supply chain, results demonstrated that impacts can be potentially 

decreased based on a few good practices such as saving of chemicals and fuels for vineyard maintenance, 

using renewable electricity in cellars, reducing materials for bottling and packaging. These would contribute 

to achieve a goal of -33% emission in terms of CF.  

Next step of the VSG project will be the CF evaluation of a number of VSG winefarms by the end of 2016, 

in order to consolidate preliminary results and provide a robust assessment of VSG wine-farming. Sharing 

objectives and best practices among winemakers in San Gimignano would represent a concrete sustainable 

solution towards a low-emission production and an opportunity to promote sustainability as an added value 

in market oriented initiatives. 
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1. Abstract  

European Union is the second largest beer producer in the world and environmental sustainability has 

become one of the pillars of its policies. This work aims to analyze the environmental performance of two 

different beer types: a representative beer of the European industry and an Italian craft beer. The 

environmental burdens are assessed through the LCA methodology, and the characterization methods used 

are CML-IA-baseline and ReCiPe Midpoint (H) V1.11 method. 

The preliminary results show that the industrial beer is characterized by higher environmental performance. 

This general outcome is mainly evident in the GWP category: indeed, the hectoliter of industrial beer is 

responsible for the emission of 31.9 kgCO2eq, while 64.4 kgCO2eq are due to craft beer production. The higher 

efficiency of industrial processes represents the main contribution to the obtained results. It is mainly due to 

the lower energetic consumptions (both heat and electricity) and the use of sugar and additives in 

substitution of malted cereals.   

2. Introduction  

In the last years, the European brewing industry has increasingly been paying attention on the environmental 

aspects of its products, so that beer is one of the pilot projects involved in the Product Environmental 

Footprint Category Rules (PEFCR) definition. LCA is the methodology on which this process is based. 

Given this context, this work attempts to preliminarily assess the environmental impacts of two different 

types of beer, using the Life Cycle Assessment methodology. 

A first LCA is carried out to assess the environmental impacts of an European industrial beer: a 

representative beer has been modeled basing on the list of ingredients provided by the European Commission 

in the context of the PEFCRs. A second LCA is carried out to assess the environmental impacts of an Italian 

craft beer, brewed in a new Italian craft brewery. Locally produced barley and other local cereals (Carnaroli 

rice) are used in the recipe. In order to guaranteeing a consistent comparison, also the production site of the 

industrial beer is assumed to be located in northern Italy. 

Finally, the two brewing approaches are compared in order to highlight which process aspects are relevant 

for the environmental sustainability. 

3. Case studies 

In both case studies the functional unit is one hectoliter (100 L) of beer produced in each brewery and ready 

to be bottled. A “cradle to the gate” approach has been chosen (i.e., the downstream module is excluded). 

The system boundaries of both case studies include the following unit processes: ‘Cereals cultivation’, 

‘Malting process’, ‘Hops cultivation’, ‘Cleaners production’, ‘Sugar/Additives production’, ‘Brewing 

process’, ‘Transports’. 
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Straw, other products from the cereals cultivation (only grains are necessary for brewing operations) and 

brewers’ spent grains (exhausted part of the malts and cereals from the filtration of the wort) are considered 

as co-products in both case studies. This multi-functionality problem has been solved using mass allocation 

criterion. 

The existing PCR of the International EPD System (Carlsberg Italia S.p.a., 2013)
1 
has been used as reference 

document to choose the potential environmental impact categories of the analysis. 

Life Cycle Assessments are carried out through the software SimaPro 8.0.4.30. The impacts assessment 

methods selected are CML-IA baseline V3.01 and ReCiPe Midpoint (H) V1.11 (only water depletion 

category). 

3.1 Representative European industrial beer 

Industrial beer Life Cycle Inventory has been completed using only secondary and tertiary data: 

Agrifootprint database (mass allocation), Ecoinvent 3.1. database (allocation recycled content), data derived 

from PEF Pilot Beer list of ingredients (European Commission, 2014)
2
, data derived from American beer 

LCA study (The Climate CO2NSERVANCY, 2006)
3
, data derived from Italian rice LCA study (Blengini & 

Busto, 2008)
4
, average data from 2013 annual report by Assobirra (Assobirra, 2013)

5
. 

3.2 Italian craft beer 

Craft beer Life Cycle Inventory has been carried out mainly using primary data. In particular, data have been 

gathered for the cultivation of self-produced barley, barley malting in an Austrian malthouse, cultivation of 

Carnaroli rice, composition of the cleaning products and brewing process. On the other hand, secondary data 

have been used to complete the LCI requirements: Agrifootprint database (mass allocation units), Ecoinvent 

3.1. database (allocation recycled content units), data derived from Italian rice LCA study (Blengini & Busto, 

2008)
4
. 

3.3 Results comparison 

Results obtained from the Impact Assessment phase of the two case studies are shown in Table 1. Only the 

most relevant impact categories for this analysis are reported. Figure 1 and Figure 2 show the contribution to 

the total impacts of each unit process considered in the system boundaries. 

 

Impact category Unit Industrial Italian craft 

Abiotic depletion (fossil fuels) MJ 389.90 824.27 

Global warming (GWP100a) kg CO2 eq 31.89 64.36 

Human toxicity kg 1,4-DB eq 6.66 10.38 

Fresh water aquatic ecotox. kg 1,4-DB eq 5.36 5.71 

Marine aquatic ecotoxicity kg 1,4-DB eq 12920.79 15247.57 

Terrestrial ecotoxicity kg 1,4-DB eq 0.16 0.13 

Acidification kg SO2 eq 0.21 0.45 

Eutrophication kg PO4
3-

 eq 0.09 0.20 

Water depletion m
3
 1.51 6.86 

    

 

Table 1: LCIAs numerical outcomes resulting from the two case studies analyzed 
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Figure 1: LCIA results of the representative industrial beer 

 

 
 

Figure 2: LCIA results of the Italian craft beer 

 

Considering the comparison of the two case studies, the hectoliter of representative industrial beer is 

characterized by higher performances in all the impact categories considered, except for the ‘Terrestrial 

ecotoxicity’. Results concerning the ‘Abiotic depletion (fossil fuels)’, ‘GWP’ and ‘Water depletion’ 

categories show the most relevant discrepancies between the two case studies.  

Concerning the GWP, Figure 1 and Figure 2 let emerge the relevant contributions of brewing process and 

cereals cultivation in both case studies (49% and 63% of the total emitted CO2eq. respectively). The 

production of sugar, additives and cleaners causes important fractions of impacts related to the industrial 

beer life cycle (more than 20% of the total GHGs emitted).  

Impacts due to transportations have important contributions on the results of both case studies. Concerning 

the craft beer, the Austrian malting process is the main cause of emissions from transports (9.5% of the total 

emitted CO2eq.). The craft brewery has adopted this strategy to seek quality purposes, because the 

performance of the malting process guaranteed by the Austrian plant cannot today be guaranteed by any 

Italian malthouse. The presence of a similar malting plant nearby the brewery, would make the emissions 

significantly decrease (e.g., 5 kg CO2eq. avoided, considering a malthouse located 100 km from the 

brewery).  
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4. Conclusion 

The two case studies analyzed in this work represent two different approaches in beer production and results 

obtained from the LCA analysis reflect the different strategies adopted in the production process.  

In particular, the energetic consumption of the brewing plants play a relevant role in the environmental 

performances: 32 Mcal of thermal energy and 9 kWh of electric energy are required to produce one hectoliter 

of industrial beer, while 89 Mcal of thermal energy and almost 21 kWh of electricity  are required to produce 

the craft beer. Consequently, the craft beer causes a GWP two times higher than the one caused by the 

industrial ones. Moreover, the different recipes used in the two processes further contribute to the 

discrepancies in the results: the  hectoliter of representative industrial beer is produced using 14.25 kg of 

cereals (i.e., 9 kg of German barley, about 3 kg of German wheat and about 2 kg of other cereals) and 3.31 

kg of sugar and additives (i.e. caramel, glucose syrup), while the hectoliter of craft beer is produced using 

25.2 kg of cereals (i.e. 22.5 kg self-produced barley, 0.9 kg of German barley and 1.8 kg of Carnaroli rice) 

and only 0.1 kg of sugar. Within the industrial production, barley is substituted with other cereals (e.g. maize 

and rice), sugars and additives: using these ingredients, the fraction of malted cereals is reduced together 

with costs, time and energy required for wort production. Finally, LCA does not allow investigating and 

highlighting positive aspects of craft beer production and the high quality of its ingredients. 
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1. Abstract  

Research is needed for the progress of systematic approaches aimed to integrate the potential trade-offs into 

decision-making processes, including environmental and economic impacts. The set-up of a simple tool 

dealing with optimization of economic and environmental performance that can be used for setting targets 

and strategies in energy management is here proposed, with focus on a food processing plant as a case 

study. Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) methodologies are combined for the 

formulation of a simplified tool that is able to identify the optimal set of electricity generation technologies 

from two alternative perspectives, i.e. minimization of Global Warming Potential (GWP) with total cost 

constraint, and minimization of total cost with GWP constraint. 

2. Introduction  

Life Cycle thinking (LCt) is a core concept in Sustainable Consumption and Production (SCP) for business 

strategies in the field of food supply chains [1]. Increasing investigation is registered from production to 

consumer use until end-of-life phase, to develop and implement strategies that help societies to ensure a 

sustainable agri-food industry. For instance, in the analysis of crop-derived products, large emphasis is posed 

on minimization of environmental burdens during cultivation stage [2]; nevertheless, so-called green supply 

chains should not overlook environmental responsibility of food processing managers. Research is needed 

for the progress of systematic approaches aimed to integrate the potential trade-offs into decision-making 

processes, including environmental and economic impacts.  

In response to this stimulation for agri-food sector, the set-up of a simple tool dealing with optimization of 

economic and environmental performance that can be used for setting targets and strategies in energy 

management of food processing plants is here proposed. The comparable structure of Life Cycle Assessment 

(LCA) and Life Cycle Costing (LCC) offers the possibility to combine their results in terms of eco-efficiency 

measures in different ways [3], among which the use of a toolbox has been recently investigated for 

application to energy generation systems [4]. 

In this paper LCA and LCC methodologies are integrated into a multicriteria optimization procedure for the 

formulation of a simplified tool that is able to identify the optimal set of electricity generation technologies 

from two alternative perspectives, i.e. minimization of Global Warming Potential (GWP) with total cost 

constraint, and minimization of total cost with GWP constraint. An Italian food processing plant is 

investigated in order to test the application of the tool for a real case study. 

3. Methodology 

In this work the principles of LCA [5] and LCC [6] are applied for the creation of a procedure to assess the 

GHG emissions and costs due to the whole life cycle of the selected set of energy generation technologies. 

Here the proposed optimization tool is tested, as a case study, for the feasible installation within a food 
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processing plant. The installation, operation and maintenance stage are evaluated for the following 

alternatives: 

- photovoltaic (PV) panels (mono/polycrystalline slanted roof, flat roof, facade) 

- small wind turbines (1 kW, 6 kW)  

- natural gas micro-turbine (for cogeneration, 65 kWe, 100 kWe, 200 kWe)  

- supply from the grid (Italian mix with imports, year 2013). 

It must be specified that the decommissioning phase, i.e. the end-of-life of the respective technologies, is 

excluded from the system boundaries. As regards the impact assessment phase, in terms of GWP, a so-called 

carbon footprint is accounted in kg CO2 equivalents (CO2eq) by using the characterization factors according 

to the fifth IPCC report [7], implemented within OpenLCA 1.4 software [8]. 

Both linear and non-linear optimization procedures are implemented with two alternative objective functions, 

i.e. minimization of GHG emissions and costs. For this purpose, a multicriteria optimization procedure is 

operated by means of LINGO 9.0 software [9]. The mathematical formulation of the proposed optimization 

problem is based on: 

- parameters: e.g. the module surface of every single PV technology, the nominal power of the 

technologies, or the GWP value; 

- decision variables: e.g. the number and kind of technologies to be purchased to produce a certain yearly 

electrical request; 

- objective functions: i.e. the minimization of the costs/GHG emissions of the whole system for a fixed 

time frame;  

- constraints: e.g. the maximum number of items/modules that can be purchased due to the surface limit of 

installation, for PV and wind turbines.  

A real case study for the application of the developed tool is here selected. For this purpose, a wine 

production company, in the Italian territory, has been selected, whose information about environmental 

performance is available from its environmental statement that meets the requirements of the EMAS 

Regulation. For this plant, the yearly electrical energy request is accounted as 538 MWh. The time horizon is 

fixed at 20 years. 

4. Results and discussion 

The application of the tool shows different solutions when the objective function varies (Table 1). On one 

side, the minimization of cost entails a total expense (within the time frame) of 786 k€ and a carbon footprint 

equal to 1,316 t CO2eq. On the other side, the minimization of GHG emissions corresponds to an amount of 

1,254 t CO2eq in 20 years, with a total outflow of 897 k€.  
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Figure 1 : Analysis of cost/GHG minimization with economical constraint 

 

In order to reach these levels, different technologies are demanded, especially in terms of type of PV panels. 

Besides, a higher quota of energy from grid is asked to be purchased when the economic driver is set as a 

priority, with respect to the environmental issue; nevertheless, this amount is slightly significant within the 

entire time frame. It must be specified that these results are originated by considering an equal exchange 

between the grid and the owner/user, for auto-production. Moreover, the variation of the optimal solutions is 

investigated in relation to a constraint in terms of initial expenditure (Figure 1). It can be noted that the 

behavior of the two different objective functions is coincident until a cap of 600 k€. Successively, some 

differences arise but they are found to slightly diverge. It can therefore highlighted that, with relatively low 

initial expenditure, the same solution is identified as optimum both from cost and GHG emissions 

perspective. 

 Grid 

supply 

[kWh] 

PV flat roof -

poly  

[m
2
] 

PV flat roof - 

mono  

[m
2
] 

PV slanted 

roof – poly 

 [m
2
] 

PV slanted 

roof - mono 

[m
2
] 

Wind turbine 

6 kW  

[items] 

MIN COST 529 1,620 0 747 2 3 

MIN GHG 29 0 2,000 147 77 3 

 

Table 1: Results of cost/GHG minimization 

5. Conclusions 

The methods of multi-criteria analysis are shown to be useful to support the decision maker in the process of 

organization and synthesis of complex information through a life cycle approach. The developed tool, here 

tested for the case of a food processing plant, allows to analyze and evaluate different alternatives for 

satisfaction of electrical energy demand, from both economic and environmental point of view. 



 

 

212 

6. References 

[1] European Commission, ‘Sustainable Consumption and Production and Sustainable Industrial Policy Action Plan’, 

COM/2008/397 (Bruxelles, 2008). 

[2] Del Borghi, A., Gallo, M., Strazza, C. and Del Borghi, M., ‘An evaluation of environmental sustainability in the 

food industry through Life Cycle Assessment: the case study of tomato products supply chain’, J. Clean. Prod. 78 

(2014) 121-130. 

[3] de Haes, H.A.U., Heijungs, R., Suh, S. and Huppes, G., ‘Three strategies to overcome the limitations of life-cycle 

assessment’, J. Ind. Ecol. 8 (3) (2004) 19–32. 

[4] Strazza, C., Del Borghi, A., Costamagna, P., Gallo, M., Brignole, E. and Girdinio, P., ‘Life Cycle Assessment and 

Life Cycle Costing of a SOFC system for distributed power generation’, Energy Convers. Manag. 100 (2015) 64-77. 

[5] International Organization for Standardization (ISO), ‘ISO14040, Environmental management, life cycle 

assessment’, (Geneva, 2006). 

[6] Barringer, H.P. and Weber, D.P., ‘Life cycle cost tutorial’, in ‘Fifth international conference on process plant 

reliability’, (Marriott Houston Westside, Houston, Texas, 1996). 

[7] Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., 

Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T. and Zhang, H., ‘Anthropogenic and Natural 

Radiative Forcing’, in: ‘Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change’ [Stocker, T.F., Qin, D., Plattner, G. K., 

Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley P.M. (eds.)], (Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA, 2013). 

[8] Ciroth, A., ‘ICT for environment in life cycle applications openLCA—A new open source software for life cycle 

assessment’, Int. J. Life Cycle Assess. 12 (4) (2007) 209-210.  

[9] LINDO Systems Inc., ‘LINGO Optimization Modeling Language’, (Chicago, 1993). 

 

  



 

 

213 

Life Cycle Assessment of Oilseed Canola Production in Iranian Agriculture 

Seyed Hashem Mousavi Avval
1,2

, Shahin Rafiee
1
, Mohammad Sharifi

1
, Soleiman Hoseinpour

1
, Bruno Notarnicola

2
, 

Pietro A. Renzulli
2
, Giuseppe Tassielli

2
 

1
Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology,  

University of Tehran, Karaj, Iran 

2
Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro,  

Via Lago Maggiore angolo via Ancona, 74121 Taranto, Italy 

E-mail contact: seyed.mousavi@uniba.it 

1. Abstract  

The objectives of this study are to assess the environmental impacts of oilseed canola production using 

cradle-to-farm-gate life cycle assessment (LCA) and to find some solutions to reduce environmental impacts 

of crop production. Data were taken from 150 canola farms from Mazandaran province, the main center of 

canola production in Iran. The functional unit was considered as one ton of canola grain. The LCA results 

indicated that global warming potential was 1181.6 kg CO2eq per ton of produced canola. Also, acidification 

and eutrophication per ton of canola grain were found to be 23.3 kg SO2 eq and 18.0 kg PO4
3-

 eq, 

respectively. Emissions due to production and application of chemical fertilizers especially urea had a 

pivotal effect on environmental burdens. It is concluded that, reducing the consumption of chemical 

fertilizers, especially N fertilizer, is important for decreasing the environmental footprints in the area. 

2. Introduction 

Environmental management has become increasingly important for productive and innovative businesses and 

often involves suppliers upstream and the companies downstream. Comprehensive assessment tools are 

needed that reliably describe environmental impacts of different agricultural systems. LCA is therefore a 

vital and powerful decision support tool to quantify the integral environmental impacts in the life cycle of a 

product, and to provide insight into ways to mitigate these impacts and to effectively support sustainable 

production and consumption [1]. Canola is known as the second dominant oilseed crop in the world. During 

the 2012/2013 production year, Iran harvested 175,000 tons of canola grain from 93,600 ha of farming land 

[2]. The objectives of this study are to assess the environmental impacts in oilseed canola production using 

LCA and to find some solutions to reduce environmental impacts of crop production. 

3. Methodology  

The agro-ecosystem used for this case study is located in Mazandaran province in Iran which is the country’s 

major canola producer [2]. This research focuses on Sari, Neka and Behshahr regions of this province. 

Canola production in this region mainly relies on natural rainfall with yearly amounts of 1200-1300 

millimeters of rain-water. In this region, canola growing occurs mainly in rotation with rice; it is cultivated in 

winter and harvested in the end of spring. Data were taken from 150 canola production farms using the 

simple random sampling method and by visiting the farms and interviewing the farmers. Canola farming in 

the region does not use irrigation, so, environmental impacts from electricity and water for irrigation are not 

accounted for. The LCA methodology adopted in this study follows the procedure as presented in 

ISO14040:2006 [3] and ISO 14044:2006 [4] norms.  
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Soil carbon change for this study was considered outside the system boundary. The functional unit (FU) for 

this study is one ton of canola grain produced during a single season and the system boundary was cradle-to-

farm-gate.  

4. Results and discussion 

In this study different inputs applied during the production period were investigated; they include 

agricultural machinery, diesel fuel, lubricants, human labour, chemical fertilizers, manure, chemicals and 

transportation facilities. The inventory results refer to average data and are presented in Table 1. Also, the 

direct field emissions of ammonia (NH3), nitrous oxide (N2O), NOx and CO2 emitted to air due to fertilizers 

application, emissions of nitrate (NO3
-
) and phosphorus emitted into water and indirect N2O from 

atmospheric deposition of chemical fertilizers and farmyard manure have been calculated using emission 

models [5] and the results are presented in Table 1. 

The results from the characterization of canola production, derived by application of the CML2 baseline 

methodology, are shown in Table 2. The functional unit is 1 ton canola grain. The global warming potential 

(GWP) index is a universal and very commonly used index for the comparison of environmental 

performance of products [6]. Based on the obtained results, GWP was estimated at 1181.6 kg CO2eq per ton 

of produced canola. On-farm emissions due to application of chemical fertilizers and diesel fuel burning in 

farm operations of canola production and also emissions from the production of chemical fertilizers 

especially urea had the largest effect this category. The characterization index of acidification, relative to the 

functional unit, amounted to 23.3 kg SO2eq. In a previous study which was conducted on wheat production, 

this index was 4 kg SO2eq [7]; also, the characterization index of the acidification impact category for 

production of rapeseed and sunflower in Chile was 16 and 23 kgSO2eq, respectively [8]. 

In this study, the characterization index of terrestrial eutrophication impact category for one ton of canola 

was 18 kg PO4
3-

 eq. The eutrophication index for production of rapeseed and sunflower in Chile was reported 

as 7.2 and 9 kgPO4eq, respectively [8]. Such high index values for the present study highlight the need to 

optimise chemical fertiliser application that could lead to a reduction in above-mentioned environmental 

categories and simultaneously improve the sustainability of canola production in this Iranian province. 

Marine aquatic ecotoxicity was found to be 420,504.2 kg 1,4-DB eq. In a previous study by Abeliotis et al. 

[9] LCA of bean production in Greece was investigated; they reported that, marine aquatic ecotoxicity was as 

40,000 to 48,400 kg t
-1

 for different varieties of bean. 
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A. Outputs Unit Average  SD CV Allocation  Price  Income 

Canola yield kg 2076.8 629.7 0.30 99.7 1608.8 1114 

Residue kg 99.2 455.0 4.59 0.3 100 3 

B. Inputs from technosphere Unit  Average SD C. On-farm emissions Unit Quantity  SD 

1. Machinery kg 13.3 3.2 

9. 1. Emissions to 

air kg   

2. Diesel fuel kg 91.3 22.2 NH3 from N  24.2 30.7 

3. Lubricant kg 1.45 0.36 N2O from N  3.0 2.6 

4. Transportation tkm 119.3 42.3 CO2 from urea  154.9 66.7 

5. Rape Seed kg 9.26 2.09 Indirect N2O from N fertilizer 0.17 0.07 

6. Fertilizers kg   
 

Indirect N2O from 

manure 
 0.14 0.38 

Urea (46-0-0) 
 

97.1 41.8 CO2 from labor kg CO2eq 51.0 33.2 

Super phosphate triple (0-48-0)  40.5 19.3 N2O from residue mix  0.18 0.16 

Ammunium phosphate (18-48-0)  2.2 8.8 NOx from residue mix  0.74 0.64 

potassium sulfate (0-0-52-18)  26.9 20.3 CH4 from residue burn 1.43 2.26 

Ammunium sulphate (35-0-0-35)  9.6 11.9 CO from residue burn  29.95 47.51 

NPKS fertilizer (20-20-20-15)  0.5 2.8 N2O from residue burn 0.05 0.07 

Farmyard manure  992.8 2652.4 NOx from residue burn 1.67 2.64 

7. Chemical group (Pesticides) 

    (in terms of active ingredient) 
kg  

 

10. 2. Emissions to 

water kg   

dinitroanilines (Treflan)  0.26 0.45 NO3 from N  204.24 178.92 

Phenoxy-C. (Gallant super)  0.04 0.07 Phosphorus  1.66 2.01 

pyridines (Leontral)  0.83 0.60 3. Emissions to soil kg   

organo-phosphorous compounds (Diazinon)   0.94 1.18 Trifluralin (Treflan)  0.26 0.45 

cyclic-N-compounds (Tilt)  0.11 0.20 Haloxyfop-R-methyl (Gallant super) 0.04 0.07 

8. Combustion of diesel fuel MJ 5135.2 1250.2 Clopyralid (Leontral)  0.83 0.60 

    Diazinon (diazinon)  0.94 1.18 

    Propiconazole (Tilt)  0.11 0.20 

 

Table 1: Life cycle inventory of canola production (referred to 1 ha) 

 

Impact category Unit Total  

1. Abiotic depletion kg Sb eq 3.1E-3 

2. Abiotic depletion (fossil fuels) MJ 7023.0 

3. Global warming (GWP100a) kg CO2 eq 1181.6 

4. Ozone layer depletion (ODP) kg CFC-11 eq 2.7E-5 

5. Human toxicity kg 1,4-DB eq 224.5 

6. Fresh water aquatic ecotoxicity kg 1,4-DB eq 680.5 

7. Marine aquatic ecotoxicity kg 1,4-DB eq 420504.2 

8. Terrestrial ecotoxicity kg 1,4-DB eq 13.6 

9. Photochemical oxidation kg C2H4 eq 0.55 

10. Acidification kg SO2 eq 23.3 

11. Eutrophication kg PO4
3-

 eq 18.0 

 

Table 2: Characterization of the canola production referred to the FU (1 t) 
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5. Conclusion 

The aim of this study was to carry out a cradle-to-farm-gate LCA of canola production in Iran. LCA has 

proved to be an effective tool for understanding the eco-profile of Iranian canola farming and should be used 

for transparent and credible communication between suppliers and their customers. Our research further 

indicated that global warming potential was estimated at 1,181.6 kg CO2eq per ton of produced canola by 

using average data; data variability from farm to farm is high. Also, acidification and eutrophication were 

found to be 23.3 kg SO2 eq and 18.0 kg PO4
3-

 eq per ton of canola grain. On-farm emissions due to 

application of chemical fertilizers and diesel fuel burning and also emissions from the production of 

chemical fertilizers especially urea had the most effect on environmental burdens. The usage of atmospheric 

nitrogen through integrating a legume into the crop rotation can compensates a part of chemical nitrogen 

required for growing the crops in some intercropping systems. Bean cultivated in summer season is a 

common option for crop rotation with canola and can help nitrogen fixation. In the Mazandaran province 

some farmers grow bean with canola in Mazandaran province of Iran. So, reducing the nitrogen input 

through suitable rotation can be an ecological strategy for lowering environmental burdens if extended to a 

large number of farmers. 
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1. Abstract  

The ecological footprints (EFs) of fresh fruit bunch (FFB) from oil palm and fresh latex, and hevea wood 

and branches from rubber plantations in Thailand were determined using a life cycle approach for the 

calculations. The study area covered approximately 72 and 68% of the total area of oil palm and rubber 

plantations, respectively, in 2013. One hectare each of oil palm and rubber plantations was considered 

taking into account the use of energy, water, materials, fertilizers, and chemicals for the plantations over one 

ha-year. The ranges of EF varied from 134 to 569 gha/ha-year and 35.3 to 189 gha/ha-year for oil palm and 

rubber plantaitons, respectively. The EF for a ton of FFB was 8.53 gha on average. The average values of 

EF of a ton of fresh latex, hevea wood, and heavea brances calculated by mass and economic allocations 

were 2.15 and 17.6, 7.14 and 1.82, and 7.14 and 0.31gha, respectively. Chemicals and fertilizers were the 

main  sources accounting for more than 85% of the total EF.  

2. Introduction  

The oil palm and rubber industries are two of the most important economic sectors in Thailand. To support 

the expansion of these industries, the policy of increasing area under oil palm and rubber cultivation has been 

promoted resulting in the requirement of more amounts of land to provide resources and to absorb emissions. 

Thus, the ecological footprint (EF), representing land requirements for providing resources and absorbing 

emissions in terms of global hectare (gha), can be a useful tool for assessing the impacts of this expansion. 

The stress on resource use can be evaluated by comparing EF with the carrying capacity of the planet. This 

work is aimed at determining EFs of the products of oil palm and rubber plantations and evaluating the main 

contributing sources. 

3.  Materials and methods 

A life cycle approach was applied for EF calculations using a cradle to farm gate system boundary. An oil 

palm plantation consists of seedling and cultivation, fresh fruit bunch (FFB) being the product. A rubber 

plantation includes seedling, cultivation, and felling of rubber trees. Fresh latex with 30% of dry rubber 

content (DRC) is the main product.  Hevea wood and branches are co-products. The economic life time of 

both oil palm and rubber plantations is 25 years. The life cycle inventory (LCI) data of oil palm plantations 

in Chumphon, Krabi, and Suratthani provinces in the south of Thailand and Chonburi in the east were 

obtained from a Prince of Songkla University (PSU) study.
[1]

  The study area accounted for approximately 

72% of the total oil palm plantation area in 2013. The LCI data of rubber plantation in 14 provinces were 

obtained from studies at PSU.
[1,2]

 Eight provinces including Chumphon, Narathiwat, Nakhonsithammarat, 

Pattalung, Pattani,  Songkhla, Suratthani, and Yala are located in southeastern Thailand while the remaining 

six including Krabi, Phangnga, Phuket, Ranong, Satun, and Trang in the southwestern region.  

mailto:mcharongpun@eng.psu.ac.th
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The study area accounted for approximately 68% of the total rubber plantation area in 2013. The EF 

calculations were conducted using the methodology developed by Rees and Wackernagel. 
[3, 4, 5]

 The use of 

energy, water, materials, fertilizers, and chemicals for the plantation of one ha-year was converted to EF of 

forest land (gha/ha-year). One ha of oil palm and rubber plantations were converted to cropland. The EF was 

shared between fresh latex, hevea wood and branches by mass and economic values. 

4.  Results and discussion  

The EF of oil palm plantation in Chonburi province was 569 gha/ha-year (Table 1). For southeastern 

Thailand, the average value of EF was determined as 180 gha/ha-year. The EF of oil palm plantation in 

Krabi in the southwestern Thailand was 154 gha/ha-year. The average value of EF for oil palm plantation 

was 185 gha/ha-year. Cultivators in Chonburi used higher amount of herbicides than other provinces leading 

to a very high EF. Thus, the highest value of EF for the oil palm plantation was found in the east of Thailand 

followed by that of in southeastern and southwestern Thailand, respectively. For producing FFB of 20.9 

ton/ha-year, average values of applied nitrogen (N), phosphorus (P), and potassium (K) fertilizers were 168, 

110, and 521 kg, respectively. The chemical use of 50.1 kg was determined, on average. 
[1]

 The fertilizers 

were the major source of EF in the south of Thailand and chemicals for the east of Thailand. The fertilizers 

and chemicals were the main EF sources accounting for 47.9 and 45.8% of average EF, respectively. The 

range of EF for the rubber plantations in southeastern Thailand was from 35.3 to 126 gha/ha-year whereas 

that of in the southwestern Thailand was from 99.4 to 189 gha/ha-year. The large range was mainly due to 

the differences in fertilizer use. The EF of rubber plantation in the southwestern Thailand was on average 

about 50% higher than that of the southeastern Thailand.  This is because the rubber plantations in 

southwestern Thailand applied a large amount of fertilizers in comparison with that of the southeast. The 

average value EF for the rubber plantation was 95.9 gha/ha-year.  For producing fresh latex (dry rubber) at 

1.7 ton/ha-year, N, P, and K fertilizers were applied at 117, 57.1, and 92.6 kg, respectively.
[1, 2]

  After 25 

years , hevea wood and branches of 228 and 75 tons/ha were obtained, respectively. The fertilizer (74.3% of 

total EF) was the main EF source followed by green water (14.5%) and chemicals (9.61%), respectively. 

Table 2 shows the EF values of the products of oil palm and rubber. The average value of EF for a ton of 

FFB was 8.53 gha whereas for a ton of fresh latex (DRC 30%), hevea wood, and heavea brances calculated 

by mass and economic allocations were 2.15 and 17.6, 7.14 and 1.82, and 7.14 and 0.31gha, respectively. 
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Remark: EF of electricity was less than 0.01% of total EF. *Weighted average 

Table 1: EF of oil palm and rubber plantations (gha/ha-year) 

 

Remark:*Weighted average 

Table 2: EF of products of oil palm and rubber plantations (gha/ton products) 

 

 

Provinces Ecological  footprint (gha/ha-year) 

Energy Forest Cropland Total 

Fuel Water Material Fertilizer Chemical 

Green Blue 

The oil palm plantation 

East 

(Chonburi) 

0.65 10.6 7.56 0.03 79.9 470 0.40 569 

Southeast         

 Chumphon 0.11 13.2 2.44 0.08 215 8.23 0.40 240 

 Suratthani 0.06 13.6 2.60 0.11 93.7 24.3 0.40 134 

 *Average 0.08 13.4 2.53 0.10 146 17.3 0.40 180 

Southwest  

  (Krabi) 

0.29 15.6 1.14 0.02 136 0.01 0.40 154 

*Total 

average 

0.17 

(0.09%) 

14.1 

(7.60%) 

2.24 

(1.21%) 

0.07 

(0.04%) 

142 

(76.3%) 

27.0 

(14.6%) 

0.40 

(0.22%) 

185 

 The rubber plantation 

Southeast 0.02-0.04 11.8-15.1  0.001-2.22 0.10 18.0-89.3 0.002-21.4 0.40 35.3-126 

   * Average 0.03 13.6 1.13 0.10 60.0 8.81 0.40 84.1 

Southwest 0.03-0.04 12.6-16.9 <0.001-0.88 0.10 73.3-173 3.39-12.8 0.40 99.4-189 

    *Average 0.03 14.7 0.51 0.10 100.3 10.3 0.40 126 

*Total 

average 

0.03 

(0.03%) 

13.9 

(14.5%) 

0.95 

(0.99%) 

0.10 

(0.10%) 

71.3 

(74.3%) 

9.22 

(9.61%) 

0.40 

(0.42%) 

95.9 

  Provinces Ecological  footprint (gha/ton product) 

FFB 

Mass allocation Price allocation 

Fresh latex 

  (DRC 30%) 

Hevea 

wood and 

branches 

Fresh latex 

(DRC 30%) 

Hevea 

wood 

branches 

  Chonburi (east) 31.1 - - - - - 

  Chumphon (southeast) 11.7 0.78 2.60 6.56 0.70 0.12 

  Suratthani (southeast) 6.10 1.82 6.05 14.4 1.50 0.26 

  Krabi (southwest) 6.80 3.35 11.2 27.3 2.81 0.48 

  Southeast (*average value) 8.47 0.78-2.78 

(1.92) 

 2.60-9.27 

(6.34) 

6.56-22.2 

(15.6) 

0.70-2.29 

(1.61) 

0.12-0.40 

(0.28) 

  Southwest (*average value) N.A. 2.22- 4.21 

(2.84) 

7.38-14.0 

(9.43) 

18.8-35.1 

23.6 

1.95-3.61 

2.42 

0.34-0.62 

0.42 

*Total Average 8.53 2.15 7.14 17.6 1.82 0.31 



 

 

220 

4. Conclusion 

A large amount of chemicals and fertilizers are used for oil palm plantations as compared to rubber 

plantations in Thailand. Oil palm plantations require moderately higher land for providing resources and 

absorbing emissions than that of the rubber plantations. This study reveals the need for implementing good 

management practices for reducing the over use of chemicals and fertilizers which could help reduce cost 

and impacts on carrying capacity. 
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1. Abstract  

The aim of this article is to assess and compare the life-cycle (LC) environmental impacts of three vegetable 

oils (sunflower, rapeseed and soybean) addressing alternative cultivation locations and land-use change 

(LUC) scenarios. LUC can contribute significantly to climate change (about 15-83% for sunflower, 38-85% 

for soybean and 5-66% for rapeseed oil). Cultivation is the life-cycle stage with the highest impacts for the 

remaining categories, except for soybean oil terrestrial acidification and photochemical oxidant formation 

mainly due to transportation emissions. The allocation method adopted significantly affected the results. The 

environmental impacts can be reduced by avoiding LUC, increasing crop yields and optimizing 

transportation. 

2. Introduction  

Sunflower, rapeseed and soybean oils represented more than 80% of the vegetable oils produced in Europe in 

2011 (24.5 million tonnes) [1]. These oils are used for food and bioenergy purposes, being produced from 

both endogenous and imported feedstock (oilseeds). Few studies performed a comparative assessment of the 

environmental impacts of vegetable oils (e.g. [2, 3]). Although a large number of life-cycle studies exist for 

vegetable oils and biodiesel, they have mainly focused on climate change. The aim of this article is to assess 

and compare the life-cycle environmental impacts of three vegetable oils (sunflower, rapeseed and soybean) 

produced in Southern Europe, addressing alternative cultivation locations and land-use change (LUC) 

scenarios. A sensitivity analysis was also conducted using alternative allocation approaches for the treatment 

of co-products (energy, mass and market prices). 

3. Life-cycle model and inventory  

Figure 1 presents the production chain of sunflower, rapeseed and soybean oils, showing locations, yields 

and LUC scenarios assessed. A “cradle-to-gate” approach was followed, which includes LUC, crop 

cultivation, transport, oil extraction and neutralization. Different scenarios for cropland area expansion were 

assessed (including no LUC): for sunflower and rapeseed, improved and severely degraded grassland 

conversion (LUC1 and LUC2); for soybean, perennial cropland and severely degraded grassland (LUC1 and 

LUC2).  
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Figure 1: Life-cycle chain (cradle-to-gate) of sunflower, rapeseed and soybean oil. 

 

The inventory was implemented based on cultivation data and typical agricultural practices for potential 

producing regions for each crop: rainfed sunflower cultivation in Portugal [4]; full-tillage with medium 

inputs to soil for rapeseed grown in France and Germany [5]; and reduced-tillage with medium inputs for 

soybean cultivated in the south of Brazil [6]. Extraction and neutralization data for the three oils was 

gathered from industrial units in Portugal [7]. It is assumed that sunflower seed was transported by road on 

average 200 km in Portugal [4], whereas rapeseed came from France (1620 km) and Germany (2860 km) by 

truck [5]. Soybean grain was transported by road from farms to the port in Brazil (1456 km) and by ship to 

Portugal (8371 km) [6]. 

4. LC environmental impacts 

The following environmental impacts (ReCiPe method [8]) were assessed: climate change (CC); terrestrial 

acidification (TA); freshwater and marine eutrophication (FE & ME) and photochemical oxidant formation 

(POF). Figure 2 presents the impacts per L of oil calculated with energy allocation. Climate change results 

include the various LUC scenarios. Results for mass and economic (price-based) allocation are presented in 

the chart as range (error) bars. The lowest impacts were calculated for mass allocation and the highest for 

economic allocation.  

The lowest environmental impacts were calculated for sunflower oil, except for ME and CC-no LUC (similar 

to soybean oil) and for scenario LUC1, for which rapeseed oil presented the lowest CC impact. LUC can 

have a significant impact, namely scenario LUC1, which increases the CC impact of sunflower and soybean 

by about 6-7 times and for rapeseed by about 2-3 times. The climate change is the lowest for oil crops 

cultivated with no LUC or with low carbon emissions due to LUC (e.g. LUC2: severely degraded grassland). 

Cultivation is the life-cycle stage with the highest impacts for the remaining categories, except for soybean 

oil TA and POF impacts mainly due to transportation emissions (NOx).  
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(Yield: 3760 kg ha-1) 

Brazil
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Figure 2: Environmental impacts per liter of sunflower, rapeseed and soybean oils: sensitivity analysis to allocation 

 

5. Conclusions 

A comparative life-cycle assessment of three vegetable oils (sunflower, rapeseed and soybean) was 

conducted. The LC environmental impacts of the three oils depended significantly on the crop cultivation 

location, due to the differences in crop productivity and LUC in each country, as well as transportation 

distances between farms and oil extraction plants. The results showed a significant influence of the allocation 

method adopted (lowest impacts for mass, highest for price). The environmental impacts of vegetable oils 

can be reduced by avoiding LUC (or planting crops on severely degraded grassland), increasing yields and 

optimizing transportation. 
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1. Abstract  

The goal of the study is the assessment of the energy and environmental impacts of 1 ton of organic apples 

cultivated in the North of Italy, by applying the Life Cycle Assessment methodology. The authors examined 

the supply chain of apples, by including the supply of raw materials and energy sources, and the farming 

step. In addition, an assessment of apple distribution to the final users was made.  

The results show that a relevant share of the total impacts is caused by the transport to the final users, 

assuming that the product is distributed on local, national and international markets. A detailed analysis of 

the farming step shows that a significant share in the overall energy and environmental impacts is due to the 

use of insecticides and to the consumption of diesel for agricultural machines. 

2. Introduction  

Agriculture is one of the main sectors affecting the environment through its direct impacts on land use and 

ecosystems, and on global and regional cycles of carbon, nutrients and water. At global level, agriculture 

contributes to climate change through emission of greenhouse gases and reduction of carbon storage in 

vegetation and soil. Locally, agriculture reduces biodiversity and affects natural habitats through land 

conversion, eutrophication, chemical product inputs, irrigation, etc [1]. 

The environmental pressure from agriculture can be reduced with organic farming, which represents a key 

factor in the agricultural sector, due to the added value of its products, to the socio-economic benefits for the 

producers and to the positive effects on the environment and on the human health. 

To calculate the burdens of the whole supply chain of organic products and to compare them with the 

impacts of conventional products becomes significant for assessing the effective energy and environmental 

advantages due to the cultivation of these products instead of non-organic ones. 

3. Case study: LCA of organic apples in the North of Italy 

The present study was developed within the project “BIOQUALIA – Nutritional and organoleptic quality 

and environmental impact of organic productions”, funded by the Italian Ministry of Agriculture, Food and 

Forestry Policies. 

3.1 Goal and scope definition 

The goal of the study is the assessment of the energy use and environmental impacts of 1 ton of organic 

apples (selected as functional unit) cultivated in the North of Italy. The study was carried out applying the 

mailto:mcellura@dream.unipa.it
http://www.eea.europa.eu/soer/synthesis/synthesis
http://www.eea.europa.eu/publications/eea_report_2006_2
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Life Cycle Assessment (LCA) methodology as regulated by the international standards of series ISO 14040 

[2, 3]. 

The authors examined the supply chain of apples, which includes the supply of raw materials and energy 

sources, and the cultivation step. Particular attention was paid on key issues, such as energy consumption, 

water use and insecticide use in the farming activities. In detail, the following steps of the cultivation process 

of apples were examined: machine use, pruning, land management, fertilization, irrigation, thinning, 

antiparasitic treatment, replanting, harvest and transfer to cooperatives, and post-harvest defense. Further 

details on each step of the cultivation process can be found in [4]. In addition, an assessment of raw material 

transport and distribution of apples to the final users was made, assuming that the product is distributed on 

local (10%), national (40%) and international markets (50%). 

3.2 Life Cycle Inventory and Life Cycle Impact Assessment 

The inventory analysis was carried out to quantify the environmentally significant inputs and outputs of the 

examined system, by means of a mass and energy balance of the selected functional unit.  

The main energy and material inputs and outputs of the apple supply chain were collected from local 

investigations. Eco-profiles of energy sources, materials and transports were from international 

environmental databases [5, 6].  

The inventory data, in terms of resource consumption, air, water and soil emissions, and waste production, 

were elaborated and synthesized by using the following impact categories: global energy requirement (GER), 

global warming potential (GWP), ozone depletion potential (ODP), acidification potential (AP), 

eutrophication potential (EP), photochemical ozone creation potential (POCP). 

The characterization factors for GER were from the Cumulative Energy Demand [6] method, that enables the 

estimation of the consumption of renewable (biomass, wind, solar, geothermal, water) and non-renewable 

(fossil, nuclear) energy sources. The other environmental characterization factors were from the EPD 2013 

impact assessment method [7].  

The obtained results are detailed in the following. GER was 6.9 GJ/ton, of which 98.5% is represented by 

non-renewble energy sources. The transport of apples to the final users is responsible of about 70.9% of the 

total energy impact, and the remaining 29.1% is due to the cultivation (28.9%) and the transport of raw 

materials (0.2%).  

A detailed analysis of the cultivation step (Fig. 1) showed that the main impacts are caused during replanting 

(23.7%), harvest and transfer to cooperatives (20.2%), irrigation (19.4%), and antiparasitic treatment 

(18.2%). The other steps give a contribution variable from 1.1% to 6.7%. 

The environmental impacts, referred to the functional unit, are the following: GWP 425.45 kg CO2eq, ODP 

7.38E-05 kg CFC-11eq, AP 2.30 kg SO2eq, EP 0.76 kg PO4
3-

eq, POCP 0.57 kg C2H4eq.  

The percentage incidence of each examined step on the total impact, mainly caused by the transport of apples 

to the final users, is showed in Table 1.  

Referring to the cultivation, GWP, POCP and AP are mainly caused by replanting step, which contributes to 

the above impacts for about 24.1%, 22.5% and 21.0%, respectively. The machine management is the main 
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responsible of the impact on ODP (52.6% of the total), while the fertilization step causes about 43.6% of the 

impact on AP. 
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Figure 1: GER of the cultivation step 

 

 

  Cultivation  
Transport of raw 

materials 

Transport of apples to final 

users 
Total 

GWP (kg CO2eq) 133,42 0,81 291,22 425,45 

ODP (kg CFC-11eq) 3,20E-05 1,03E-07 4,17E-05 7,38E-05 

POCP (kg C2H4eq) 0,18 0,001 0,39 0,57 

AP (kg SO2eq) 0,87 0,003 1,43 2,30 

EP (kg PO4
3-

eq) 0,38 0,00 0,38 0,76 

Table 1: Environmental impacts: incidence of each examined step 

 

A preliminary comparison between the obtained results and the impacts of conventional apples  [8, 9, 10] 

was carried out, even if a reliable comparison should be made by using data coming from the same 

geographic area, considering that different climate and cultivation techniques can significantly influence the 

final results. The comparison showed that, generally, there are not significant differences between organic 

and conventional apples in terms of energy and environmental impacts. However, as demonstrated by the 

project BIOQUALIA of which this research is part, organic apples have superior nutritional and organoleptic 

characteristics than conventional ones. 

4. Conclusion 

The LCA methodology can support the development of studies that aim at reducing energy and 

environmental impacts throughout the supply chain of products and can contribute to the application of 

sustainable production and consumption strategies [11, 12]. 
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The study focused on the analysis of impacts of organic apples. The application of LCA allowed assessing 

the incidence of each life cycle step of apples supply chain on the overall impacts and selecting the “hot 

spots” of the examined system, by the identification of steps and processes responsible of the largest impacts. 

The results showed that a relevant share of the total impacts (variable from about 51% to about 71%) was 

caused by the transport of apples to the final users, and in particular to the distribution to international 

markets. A detailed analysis of the farming step was carried out, showing that a significant share in the 

overall energy and environmental impacts is due to the use of insecticides and to the consumption of diesel 

for agricultural machines. 
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1. Abstract 

In this study, the environmental profile of rice cultivation in a farm located in Pavia district (Lombardy) 

fertilised with urban sewage was evaluated using the Life Cycle Assessment methodology from a cradle-to-

field gate perspective. Inventory data were collected in a rice farm (102 ha) over a 3-years period. A number 

of environmental hotspots were identified: a) methane emissions contributing to climate change, b) 

emissions associated to fertiliser application contributing to acidification and particulate matter formation 

c) diesel requirements in field operations accounting for mineral fossil resourse depletion and d) grain 

drying contributing to ozone depletion. A sensitivity analysis regarding both rice yields and methane 

emission factors was performed in order to predict their influence on the overall environmental profile. 

2. Introduction  

According to the Rice Outlook 2014, there are around 159.6 million hectares of rice all over the world with 

an annual global production of 474.6 million tons. In Europe, Italy is the most important country in terms of 

rice production [2], especially the North Italian districts that present the most advanced rice cultivation sites 

accounting for ≈ 55% of European rice area [2]. In 2014, 219,532 ha were dedicated to rice cultivation in 

Italy with 4,093 farms mainly located in the disctricts of Pavia, Vercelli and Novara [2]. Rice cultivation 

involves different agricultural activities that produce different impacts on the environment. Such impacts are 

mainly associated to the use of fossil fuels and agrochemicals and to methane emissions arising from the 

fermentation of organic material in the flooded rice fields [3-4].  

In terms of rice cultivation practice, different solutions could be performed regarding the environmental key 

factors (flooding, fertilisation and straw management). Since rice cultivation takes place mainly in area with 

low livestock activities, fertilisation is usually performed using mineral fertilisers although (when available) 

organic fertilisers such as animal slurry or urban sewage could be used. Regarding the use of organic 

fertilisers (manure, digestate, urban sewage, etc.,) involves higher methane emission rates than mineral 

fertilisers due to the highest decomposition rates of the organic matter in anoxic environment [4]. 

In this study, the environmental performance of rice cultivation in Pavia district (Lombardy) fertilised with 

urban sewage was evaluated from a cradle-to-field gate perspective. Besides the environmental evaluation 

and the environmental hotspots identification, this study aimed to highlight the environmental impact coming 

from the application of urban sewage. 
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3. Goal and scope definition, functional unit and system boundaries 

The goal of this study is the evaluation of the environmental performance of rice cultivation fertilised with 

urban sewage. The most critical agricultural processes for the rice cultivation system were identified. 1 ton of 

paddy rice (14% of moisture content) was selected as functional unit. A cradle-to-farm gate perspective was 

adopted.  The rice coltivation flow-chart is shown in Figure 1. 
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Figure 1 :Flow-chart of  rice cultivation (O = Urban sewage ; S = seed; H = herbicide ; W = water) 

The following activities were included in the analysis: raw materials extraction (e.g., fossil fuels and 

minerals), manufacture of the agricultural inputs (e.g., seeds, fertilisers, herbicides and agricultural 

machines), use of the raw materials and of the other inputs  (fertilisers emissions, diesel fuel emissionstire 

abrasion emissions), maintenance and final disposal of machines 

4. LCI and LCIA 

Data concerning field operations and drying were obtained via questionnaires and surveys to the farmers. 

More specifically, information regarding fertilisers and herbicides was collected by consulting the “Quaderni 

di campagna”, a mandatory document in which their use is reported. Average yields of rice grain and straw 

were 8.02 t/ha (27% moisture content - corresponding to 6.81 t/ha at the commercial moisture) and 6.6 t/ha 

(dry matter), respectively.  

Nitrate, ammonia, and nitrous oxide emissions were computed following the methodology described by 

Brentrup et al. [5]. Default methane emission rate proposed by the IPCC [6] (1.3 kg of CH4/ha·day) for 

anaerobic decomposition was considered. 

The characterisation factors reported by the ILCD method were used [7] and  the following impact categories 

were considered for the assessment: climate change (CC), ozone depletion (OD), particulate matter (PM), 

photochemical oxidant formation (POF), terrestrial acidification (TA), freshwater eutrophication (FE), 

terrestrial eutrophication (TE), marine eutrophication (ME), and mineral fossil and renewable resource 

depletion (MFRD). Due to the uncertainties about the definition of characterization factors for many active 

ingredients, the toxicity-related impact categories were excluded [8]. Nevertheless, considering that the 

extensive application of plant protection products (mainly herbicide and pesticides) in combination with 

wrong agricultural practices could result in environmental issues such as contamination of natural resources 

and risks for human health [9], a further development of the study should assess also these aspects. 
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5. Results 

The environmental hotspots of rice cultivation using sewage sludge as organic fertiliser are shown in Figure 

2. Field emissions, mainly related to fertiliser application (ammonia volatilization, dinitrogen monoxide and 

nitrate leaching) and organic matter decomposition (methane), account for 70 upo to 98% of  CC, PM, TA, 

TE, FE and ME. The mechanisation of field operations involves large amounts of diesel and has a 

remarkable contributions to OD (54%), POF (61%) and MFRD (83%). The drying process is also relevant in 

terms of OD (41%) and MFRD (14%) due to fuel and electricity consumption. Production of seeds and 

herbicides plays a minor role (less than 4% for all the environmental impacts evaluated). The application of 

urban sewage as organic fertiliser involves higher methane emission rates (85 kg/ha·year, about 50% of the 

total) respect to mineral fertilisation [4]. 
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Figure 2: Environmental hotspots 

 

A sensitivity analysis has been carried out considering: (i) minimum and maximum methane emission factors 

(0.8 and 2.2 kg of CH4/ha·day); (ii) minimum (6.33 t/ha, 14% of moisture) and maximum (7.01 t/ha 14% of 

moisture) grain yields recorded over 3 years. The sensitivity results per functional unit are reported in Table 

1. 
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Impact 

category 

Baseline 
Grain yield 

Methane emission 

factor 

Min Max Min Max 

CC 825.7 kg CO2 eq. +5.96 -2.24% -26.64% +47.9% 

OD 3.49E-05 kg CFC-11 eq. +4.39% -1.64% 0% 0% 

PM 0.499 kg PM2.5 eq. +7.26% -2.73% 0% 0% 

POF 2.630 kg NMVOC eq. +6.91% -2.60% -3.79% +6.83% 

TA 19.389 molc H+ eq. +7.46% -2.81% 0% 0% 

TE 86.510 molc N eq. +7.53% -2.83% 0% 0% 

FE 0.294 kg P eq. +7.58% -2.85% 0% 0% 

ME 8.439 kg N eq. +7.54% -2.83% 0% 0% 

MFRD 0.0039 kg Sb eq. +6.44% -2.42% 0% 0% 

Table 1: Sensitivity analysis results 

6. Conclusion 

In this study, the rice cultivation with urban sewage as organic fertiliser was analysed using the LCA 

methodology. The environmeal hotspots were methane emissions for CC, nitrogen-based emissions derived 

from fertilising for FE, TE and ME, the degree of mechanisation (due to diesel use) and grain drying for OD, 

MFRD and CC. Solutions focused on saving fossil fuel use, reduction of nitrogen-based emissions from 

fertiliser use and methane emission from biomass fermentation should be implemented in order to improve 

the environmental performance of rice cultivation. 

7. References 

[1] USDA, Economic Research Service, Rice Outlook/RCS-14i/September 15, 2014,  

[2] Enterisi, 2014. Riso – Evoluzione di mercato e sue prospettive. Ente Nazionale Risi, Dicembre 2014. 

[3] Blengini, G.A. and Busto, M. The life cycle of rice: LCA of alternative agri-food chain management systems in 

Vercelli (Italy). J. Environ. Manage. 90, (2009) 1512–1522. 

[4] Fusi, A., Bacenetti, J., González-García, S., Vercesi A., Bocchi S., Fiala, M. Environmental profile of paddy rice 

cultivation with different straw management. Sci. Total Environ. 494-495, (2014) 119-128. 

[5] Brentrup, F., Küsters, J, Lammel, J, Kuhlmann, H. Methods to estimate on-field nitrogen emissions from crop 

production as an Input to LCA studies in the Agricultural Sector. Int. J. Life Cycle Ass. 5, (2000) 349-57. 

[6] IPCC, Agriculture, Forestry and Other Land Use. In: Eggleston et al., IPCC Guidelines for National Greenhouse 

Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, 2006. 

[7] Wolf, M.A., Pant, R., Chomkhamsri, K., Sala, S., Pennington, D. ILCD handbook- Towards more sustainable 

production and consumption for a resource efficient Europe. JRC Reference Report, 2012. 

[8] Sleeswijk, A.W., van Oers, L., Guinée, G., Struijs, J., Huijbregts, M. Normalisation in product life cycle assessment: 

An LCA of the global and European economic systems in the year 2000. Sci. Total. Environ. (2008) 390: 227 – 240. 

[9] Capri, E., Karpouzas, D. (2007). Pesticide Risk Assessment in Rice Paddies: Theory and Practice. Elsevier, pp. 266. 

  



 

 

233 

Life Cycle Assessment of Greenhouse-Grown Tomatoes in Thailand 

Davaasuren Dashzegve
1
, Vilas.M.Salokhe

2 
, Erik Bohez

2
 and Peeyush Soni

2 

1
HSE Management System Coordinator at Mongolian Mining Corporation, 

Ukhaa Khudag Branch, Tsogttsetsii soum, Umnugobi province, Mongolia 

2 
Professor, Vice Chancellor at Kaziranga University, Koraikhowa, NH-37, Jorhat, Assam 785006, India 

2
 Professor at Asian Institute of Technology, 58 Moo 9, Km. 42, Paholyothin Highway 

2
 Associate Professor at Asian Institute of Technology,  

58 Moo 9, Km. 42, Paholyothin Highway,  Klong Luang, Pathumthani 12120,  Thailand 

E-mail contact: davaasuren.d@mmc.mn; salokhe.vilas@gmail.com; bohez@ait.asia; soni@ait.asia; 

1. Abstract 

LCA Study was carried out to assess greenhouse-grown tomatoes in Thailand. The functional unit of this 

study was 1 kg of tomato and the system boundary was cradle to packaging plant gate of greenhouse tomato 

fruits (seedling process to packaging process), which includes seedling, growing harvesting and packaging 

process.  Limitations of this study are transportation processes of products to the market and food storage of 

tomato products; neither of which was included in this study. Moreover, no waste scenario analysis of 

product system was studied. 

Keywords: Life cycle assessment, functional unit, greenhouse, tomato.  

1. Introduction 

LCA can assist to identify opportunities to improve the environmental performance of products at various 

points in their life cycle and to inform decision-makers in industry, government or non-government 

organizations. Often the most important goal of a life cycle study is to improve and optimize the system. 

2. Literature Review 

The LCA of organic, recirculation and standard greenhouse tomato production were conducted by LCA Food 

DK in 2005. There have included and analyzed energy inputs such as water, nitrogen and phosphorus of 

fertilizers, electricity, substrate and covering (nylon) of greenhouse out of infrastructure material inputs. In 

those researches, second order of LCA has been applied to the greenhouse tomato production and functional 

unit of their study was 1 kg of tomato same as other researches (SimaPro 7.1) 

3. Life Cycle Impact Assessment Method and Software 

The third order LCA was applied in this study by using SimaPro 7.1 software. The eco-Indicator 99H/H life 

cycle impact assessment (LCIA) method was selected to evaluate the environmental impacts of greenhouse 

grown tomatoes. LCIA was based on both the characterization and single score elements. The selected 

impact categories of Eco-Indicator 99 method were carcinogens, respiratory organic and inorganics, climate 

change, radiation, ozone layer, acidication and ecotoxicity, land use, mineral, fossil fuels. 

4. Unit Process and Inputs 

In this study, there are two main inventory inputs which are from experimental site and from LCI databases. 

The following figure shows the system boundary of this study and relevant inputs and outputs of greenhouse 

tomato products throughout its life cycle in the experimental site. 
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Figure 1: System boundary of Greenhouse tomato production in LCA 

 

LCI results modeled in SimaPro within system being studied by each unit process such as seedling process, 

growing process and packaging process as a whole system process of greenhouse grown tomatoes as well. 

 

Calculation of inventory input quantities per FU 

Energy and some ancillary material inputs were calculated by the following method. It included seed, 

substrate, water, fertilizer, pesticide and electricity. In addition, seed trays, disposable gloves, isolation gown, 

cotton string, plastic bag and paper box were also included.  

Quantity per FU=quantity of input/TMY 

(TMY – Total marketable yield)  

Infrastructure and ancillary material inputs of each unit process and system process were calculated by two 

different categories. Infrastructure and ancillary material inputs of each unit process and system process 

excluding nursery infrastructure inputs and drip irrigation equipments were calculated following equation.  

 

Quantity per FU=quantity of input/ ELT/related TMY/ 

(ELT – Expected life time) 

5. Life Cycle Impact Assessment and Results 

LCIA in the overall process, analyzing 1 kg of tomato as a single score of LCIA elements is shown in Figure 

2. 

 

Figure 2: Single score results for analyzing 1 kg of tomato in the overall process 

 

 

In the overall process, according to the impact analysis of 1 kg of tomato the highest impact on the 

environment is due to calcium nitrate (35.4%) as the fertilizer needs to be applied throughout the growing 

process which constitutes more than 70% of the total life cycle. 
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According to the characterization results of overall process in each impact categories are expressed as 

percentages for analyzing 1 kg of tomato. It is shown in Figure 3. 

 

Figure 3: The characterization results for analyzing the impact of 1 kg of tomato 

 

As can be seen from Figure 4.2, most environmental impact is caused by calcium nitrate which affects all 

impact categories. It’s highest impact was on the minerals which contributed 78.8% of total inventory results 

of this study. Calcium nitrate also was shown to have 66.2% of impact on the ecotoxicity and radiation 

(59.4%), ozone layer (47.3%), carcinogens (43.6%), climate change (39.2%), respiratory inorganics (37.4%) 

and fossil fuels (36.6%).  

The second highest environmental impact comes from LDPE, for which the highest impact was on the ozone 

layer, which was 41.5% of total inventory results. And the next impact of LDPE was on the respiratory 

inorganics (34.4%).The direct emissions of product system to air, water and soil is shown in below figure.  

 

Figure 4:The direct emissions under the carcinogens category 

 

The comparison of product system (greenhouse tomato) within the same functional unit by using single score 

with three other projects (standard tomato, recirculation tomato and organic tomato in that SimaPro software) 

was done. The purpose of the comparison is to determine whether this project has the higher or lower impact 

on the environment compared to the three other projects. The comparison of product system with other 

project is shown in below figure. 
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Figure 5: The comparison of product system with other project 

As can be seen from the Figure 4.4, it is evident that this project has lowest impacts on the environment 

compared to three other projects. All the four projects have highest impact on the fossil fuels followed by 

respiratory inorganics and climate change.  

6. Conclusions 

In agreement with analysis of characterization, the greatest impact of greenhouse grown tomatoes on the 

environment taking into consideration human health, ecosystem and resources the study found that calcium 

nitrate has the highest impact, the next LDPE and then by cardboard packaging box. Moreover, 

Polypropylene (PP) and yarn cotton are considerable impacts on the environment. 

  

According to the analysis of single score, most significant environmental impact of greenhouse grown 

tomatoes is caused by calcium nitrate. The follewed highest impacts on the environment are PP and LPDE 

which are non-biodegradable in nature and a major cause of environmental pollution. 

7.  Recommendations 

It is therefore, the impact on environment can be reduced more by avoiding the usage of calcium nitrate or 

other inorganic fertilizers. If efforts are made to substitute the inorganic fertilizers by organic ones which has 

the same amount of nutrition required by the tomato plant the impact on the environment can be reduced to a 

great extent.  

Similarly, using greenhouse covering materials which have high expected life time can also reduce the 

impact on environment.   
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1. Abstract 

The comparison among different LCA studies is challenging. Analyzing 29 original articles selected among 

LCAs related to milk production, we evaluated their level of harmonization and the uniformation to the 

major standards currently available for the milk sector. 

2. Introduction 

In the last fifteen years the Life Cycle Assessment (LCA) became well established also in the dairy sector. 

The main strength of the LCA methodology is its versatility, which makes it potentially applicable to all 

production processes. However, the major weakness of this approach is the comparability among different 

studies, caused by the generic principles of the ISO standards (ISO 2006: 14040 and 14044) and the wide 

range of leeway given to operators. In 2010 the International Dairy Federation (IDF) issued a specific 

guideline for the dairy sector [1]. Despite being limited to the calculation of the carbon footprint, this 

document could be considered a step forward for the harmonization of milk production LCAs, since it 

outlines a common strategy to handle some critical points that are peculiar of this sector. The aim of our 

review is to describe the evolution of recent LCA studies related to milk production (published in the last 5 

years), in order to underline trends and/or arising questions. Furthermore, we also aimed at verifying if the 

implementation of the IDF document actually improved the comparability of the results of different works. 

3. Methods 

Scientific literature was checked using the keywords “dairy LCA” and “Life Cycle Assessment dairy farms” 

on different databases (Scopus and ISI Web of Knowledge). The papers are selected according to the 

following criteria: 

- They must be written in English and published after 2009. 

- They must be related to milk production from cattle systems. Studies related to processed milk were 

retrieved whereas studies related to other dairy products were dismissed. 

- They must consider more than one impact category (considering also technical quantities, i.e. land use 

and non-renewable energy consumption). 

The studies were analyzed tracing the LCA phases identified by the ISO standards. 

4. Results 

The selected papers are 29 [2-31]. In order to check the standardization among studies, we verified if the 

selected papers referred or not to the ISO standards and to the IDF guideline. Unexpectedly only 60% of 

authors reported the ISO standard in their bibliography and the percentage of citation of the IDF guideline 

was even lower (40% of papers, considering only those published after 2010). The relatively recent 

publication of the IDF document could be a cause of the scarce application of this guideline. 
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4.1 Impact coverage 

The global warming potential (GWP) is the most widely studied impact category (100% of selected studies). 

Other commonly considered environmental problems are the acidification potential (76%), eutrophication 

potential (72%), land use (72%) and energy use (59%). Finally, less investigated impact categories are (in 

decreasing order): ecotoxicity, photochemical ozone formation, human toxicity, ozone depletion, abiotic 

depletion. Interesting and emerging topics not sufficiently addressed are: land use change (20% of studies, of 

which only the half provided quantitative results), biodiversity loss (considered just by Guerci, et al. [13]) 

and water consumption (investigated in no one of the selected papers since ad hoc studies are more 

frequent). 

4.2 Functional unit 

The functional unit is the reference to which the inputs and the outputs should be related, and constitutes the 

basis for comparability among different studies. In milk LCA various functional units could be used, 

according to the “milk function” that the authors decide to highlight. Among selected studies, the 21% of 

authors focused on production and used the quantity (mass or volume) of raw or processed milk as functional 

unit. On the contrary, the 79% of authors highlighted the nutritional function of milk and corrected the raw 

production according to its energy content, using the Fat and Protein Corrected Milk formula (FPCM) (32% 

of authors) or the Energy Corrected Milk formula (ECM) (47% of authors). These two equations employ 

slightly different coefficients to express the mass (kg) of milk required to provide the same energy amount 

produced by a standard milk (4% of fat and 3.3% of protein content). Furthermore, a useful way to 

emphasize other aspects related to milk production, mainly the land use, is to express the LCA results 

through different functional units (32% of authors). This practice helps to take into account the local aspects 

related to some impact category (in particular to acidification and eutrophication) and to deepen the 

environmental consequences of intensification. In fact, the selection of a relative metric based only on 

quantity of product, implicitly endorses an economic model predicted on growth [32]. 

4.3 Allocation rules and system boundaries 

A discussed topic in LCA is the allocation of environmental impacts among the co-products of milk 

production (milk, calves, cull cows). In the selected studies, we analyzed the rules applied to allocate 

burdens between milk and live animals. Some papers don’t report this information [9, 16, 25], while some 

authors compare different allocation rules to understand their influence on the results [3, 5, 14, 17, 20], hence 

a total of 39 cases were extracted. Within this group, 38% used an economic allocation, the 18% chose the 

biological allocation recommended by IDF, the 15% attributed the whole environmental impact to milk, 

while a minor proportion of authors chose mass allocation, system expansion, protein content of milk or 

other methods of allocation (respectively 8%, 5%, 5% and 10% of cases). The definition of system 

boundaries is another important issue for the comparison of LCA results. Overlooking the free choice of 

considering the whole system “from cradle to grave” or focusing on a “cradle to gate” study, we would like 

to stress the importance of giving an accurate definition of the system boundaries using a sufficiently 

detailed flow diagram, as suggested by ISO. The scheme helps the reader to catch all the important data 
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about the considered system, while a mere description in the text, although very detailed, makes difficult the 

extrapolation of unambiguous information. A good example of diagram flow is reported in Jan et al. [16]. 

4.4 Life Cycle Inventory (LCI) and Life Cycle Impact Assessment (LCIA) 

Data gathering is considered as the most demanding task in conducting an LCA study, and major attention is 

usually paid to data quality. Among considered studies, the 52% collected foreground data from real farms, 

while a minor proportion of authors used average or literature data (respectively 24% and 24% of studies). 

Regarding the background data, including equations used to estimate the emission factors, information are 

often incomplete. Nevertheless we observed a high degree of convergence in the GHG estimation, for which 

IPCC equations are usually adopted. On the other hand, there is a larger spectrum of equation used for the 

estimation of NH3 emissions while the P losses had generally a low level of detail [28]. Concerning the 

LCIA method employed to implement the analysis, the CML is surely the most adopted method (55% of 

studies). Also in this case we encountered some difficulties in the reconstruction of statistics, since the 

information about the LCIA method is not uniformly reported (some authors declare the method, others refer 

to the model used to characterize the environmental problem). 

5. Conclusions 

We identified suggestions regarding how future LCAs of dairy sector should be developed: 

- A broad range of impact categories limits the shifting of the targeted environmental problems. Global 

warming potential, acidification, eutrophication and energy use are the most frequently evaluated impact 

categories, while hotspots that need an in-depth analysis are land use change, biodiversity, ecotoxicity 

and water use. 

- The choice of a common functional unit (such as FPCM, as recommended by IDF) would allow a direct 

evaluation of the results of different studies, although with different assumptions. 

- A sufficiently detailed description of the system boundaries should be followed by a flow diagram, in 

order to help the reader to promptly find out the main information. 

- Data taken from real farms greatly improve the quality of the study, and should be preferred to literature 

data. 

- With the aim to improve transparency, the methods for the calculation of the derived impacts should be 

explicitated in the text. 

- If possible, selected emission factors should be site-specific and a table resuming the equations used for 

their calculation would be appreciated. 

- The sensitivity analysis should be systematically conducted and the uncertainties associated to the 

selected input data should be quantified, since the methodology choices used for the assessment have a 

large effect on the final result. 
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1. Abstract  

About 30% of global energy is consumed in the agricultural and food sector. This paper focuses on the dairy 

industry with the aim of quantifying energy consumption and associated greenhouse gas (GHG) emissions 

for different dairy products across their life cycle. The hotspots are also discussed to help identify 

improvement opportunities along the supply chain. The results indicate that milk is the least energy-intensive 

product, while cheese and milk powder have on average the highest energy demand. A similar pattern 

applies for the GHG emissions. The production of the raw milk and its processing are the major energy and 

GHG hotspot for all the dairy products. Energy used for consumer transport and related GHG emissions are 

also significant for milk. 

2. Introduction 

About 30% of global energy is consumed in the agricultural and food sector [1], contributing around 20% to 

the total GHG emissions [2]. Energy is used and GHG emitted at every stage of the food value chain, from 

the production of agricultural inputs to consumption of food. Among others, dairy is an important food sub-

sector with milk being one of the most consumed food products globally [3]. However, the data on energy 

use and GHG emissions across the life cycle of different dairy products vary widely depending on the type of 

product, source and assumptions. Furthermore, most sources only focus on a specific product and, as far as 

the authors are aware, there are no publications which consider energy and associated GHG emissions for the 

whole range of dairy products. Therefore, this paper aims to collate that information and estimate life cycle 

energy consumption and related GHG emissions for different dairy products as well as to identify the 

hotspots to guide future improvements. 

3. Methods 

The following dairy products are considered: milk, cheese, butter, yogurt, milk powder, cream and ice cream. 

The whole life cycle of these products has been evaluated, from raw materials production, to post-consumer 

waste management, including packaging and waste product disposal (Figure 1). 

 

 

Figure 1: The life cycle of dairy products considered in this study 
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The energy consumption and the associated GHG emissions for the production of raw milk at the farm 

include cereals cultivation and fodder production for cows. For the processing stage, both thermal and 

electrical energy for the production of the final product and of its primary packaging are considered. Energy 

requirements and related GHG emissions at the retailer include electricity for refrigeration (both in walk-in 

storage cells and display cabinets), electricity for lighting and ventilation and gas for space conditioning 

(refrigerant production and leakage are excluded). Fuel consumption is considered for both ambient and 

refrigerated transport. Data have been sourced from the literature [4-11]. However, for consumer transport as 

well as consumption of products scant data have been available so that they have been estimated as part of 

this study as follows. 

Fuel use for the transport to households has been calculated assuming the UK conditions, based on: 

 The composition of the UK weekly food basket by weight [12]; 

 The average distance covered in the UK per week for food shopping [13]; 

 The share of km travelled by car and by bus for food shopping [13]; and 

 The amount of fuel per km consumed by passenger cars and buses [14]. 

 

The data for the consumption stage have been calculated based on: 

 The average daily energy consumption of domestic refrigerators/freezers [15]; 

 The volume of domestic refrigerators/freezers  [14];  

 The volume occupied by 1 kg of the product; and 

 The average food storage time [16-17]. 

 

For waste management, the amount of waste and its disposal have been assumed based on the UK statistics 

for food waste [18-19]. 

 

To estimate the GHG emissions associated with energy use in the life cycle of different products, the 

following GHG emission factors are assumed: for electricity, 0.14 kg CO2 eq./MJ, for diesel, 2.67 kg CO2 

eq./l and for natural gas, 0.056 kg CO2 eq./MJ [10].  For context, in addition to the GHG related to energy 

use, the total amount of CO2 eq. emitted across the whole life cycle is also indicated, based on [20-21]. 

4. Results 

Table 1 presents the total energy requirements and associated GHG emissions for milk, cheese, butter, 

yogurt, milk powder, cream and ice cream. Total GHG emissions along the life cycle are indicated in 

brackets. As can be seen in the table, milk is the least energy-intensive product, while cheese and milk 

powder have the highest energy demand, followed by butter. A similar pattern is found for the related GHG 

emissions. However, as also evident from the table, the estimates range widely in different sources, with the 

greatest variation noticed for cheese. This is due to the large assortment of cheese types, which have different 

yield from raw milk and require different maturing time: the majority of the variation is in raw milk 

production and processing.  
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Product Energy 

(MJ/kg) 

GHG emissions
a 

(kg CO2 eq./kg) 

Milk 4.86-10.08 0.45-0.789 (1
b
-1.23

c
) 

Cheese 22.40-63.92 2.05-5.65 (4.9
c
-11

b
) 

Butter 9.42-20.79 0.90-1.86 (8.9
b
-10.9

c
) 

Yogurt 6.25-11.81 0.56-1.09 (1.52
c
-2.4

b
) 

Milk powder 24.93-40.93 1.96-3.42 (8.6
c
) 

Cream 6.36-13.89 0.56-1.14 (5.5
c
-5.6

b
) 

Ice cream 11.43-15.41 (4
b
) 

   
 

a Values without brackets represent the emissions related to energy consumption 

in the life cycle of dairy products while those in brackets are the total life cycle 

GHG emissions. 
b Sourced from [20]. 
c Sourced from [21]. 

 
Table 1: Total energy requirements and the associated GHG emissions in the life cycle of dairy products 

 

The stages which contribute most to the energy consumption and the related GHG emissions are the raw 

milk production (on average 52%) and processing (16%). In the case of ice cream, the frozen storage at 

retailer is the most significant (up to 32%). For milk, consumer transport is also a hotspot, contributing up to 

19% of the total. This is because milk represents 13.5% by weight of the UK weekly food basket and 13.6 

km are travelled on average every week for food shopping [12]. On the other hand, when considering the 

total life cycle GHG emissions, not just the energy-related, milk has the lowest CO2 eq. and butter and 

cheese the highest. 

5. Conclusions 

This study has aimed to quantify energy consumption and the related GHG emissions as well as identify the 

hotspots for different dairy products across their life cycle. The results suggest that milk is the least energy 

demanding while cheese and milk powder are the most energy-intensive products, followed by butter. A 

similar trend applies to the GHG emissions. The life cycle stages which contribute most to energy 

consumption and to the related GHG emissions are the production of milk at farm and its subsequent 

processing. Frozen storage of ice cream at retailer is a hotspot for ice cream and consumer transport for milk. 

Therefore, these stages should be targeted for reduction of energy and GHG emissions in the dairy sector. 
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1. Abstract  

The greenhouse gas emissions deriving from two Italian dairy co-products, mozzarella and ricotta cheese, 

were assessed according to ISO/TS 14067:2013. Additionally to the assessment of what are the life cycle 

stages responsible for the most part of the final emissions of each product, the aim of this study was also to 

evaluate the influence of the allocation procedure applied. The assessment shows that raw materials, 

production and use stages mainly affect final value of carbon footprint of both the co-products analysed. 

Moreover, the sensitivity analyses show that a variation of allocation factors at farm level mainly affects only 

the final value of carbon footprint of mozzarella cheese product, while a variation of allocation factors at 

production level produces effects on the final value of carbon footprint of both the co-products. 

2. Introduction 

The increasing food consumer awareness of recent years on how food is produced and what are the related 

environmental impacts generated has led to the development of many studies in the food sector based on the 

whole supply chain analysis [1] [2]. Some studies adopting life cycle approach provide information about the 

effects of allocation procedure on final outcomes when considering food products. However they mainly 

focus on farm level since agricultural systems are particularly sensitive to this kind of approach [3]. This 

gives the opportunity to investigate the effects on final results when allocation procedures are applied also at 

production level, especially considering the dairy sector where co-production starting from the same raw 

material (raw milk) is widely diffused. 

3. Objectives 

In this study a life cycle approach (from cradle to grave) was adopted to evaluate the greenhouse gas 

emissions, in terms of CO2 eq, deriving from the production of two Italian dairy co-products: mozzarella and 

ricotta cheese. The aim of this study was (a) to identify the life cycle stages that mainly affect the value of 

carbon footprint of each product and (b) to evaluate the influence of allocation procedure on final results 

through sensitivity analyses. 

4. Materials & Methods 

Since the study focused on two dairy co-products, the functional units considered were two: 

 1kg of mozzarella cheese comprehensive of packaging and delivered to final consumer; 

 1kg of ricotta cheese comprehensive of packaging and delivered to final consumer. 

System boundaries were fixed according to the scheme of figure 1. 
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Figure 1: System boundaries of the study 

 

Emissions accounting was performed according to ISO/TS 14067:2013 [4], using the IPCC 2013 GWP 100a 

impacts assessment method [5]. A biophysical allocation between milk and meat (live weight) was adopted 

at farm level according to the guidelines of the Bulletin of International Dairy Federation 445/2010 [6], while 

an allocation by mass of fat was applied at production level, between curd (used to produce mozzarella 

cheese) and whey (used to produce ricotta cheese) obtained from milk processing. To investigate the effects 

of the adoption of allocation procedures applied, since they should be avoided in a life cycle based study [7], 

three sensitivity analysis were performed: in the sensitivity 1 the allocation factor (between milk and meat) 

of each farmer was fixed to the highest value of them according to the fact that dairy farm system mainly 

focuses on milk production. Sensitivity 2 and 3 were performed varying the mass of fat content of curd and 

whey to satisfy the mass balance: sensitivity 2 required an increase of 2% in fat content of curd, while 

sensitivity 3 required a doubling of the fat content of whey. 

5. Results and discussion 

Results listed in table 1 show a higher carbon footprint value of mozzarella cheese compared to the ricotta 

cheese one, as well as that raw materials, production and use are the life cycle stages characterized by the 

highest impact on the total carbon footprint value of both the co-products analysed. 

 

Life cycle stage Unit Mozzarella cheese Ricotta cheese 

Raw materials kg CO2 eq / F.U. 6,811 0,611 

Packaging kg CO2 eq / F.U. 0,639 0,433 

Production kg CO2 eq / F.U. 1,472 1,018 

Distribution kg CO2 eq / F.U. 0,324 0,126 

Use kg CO2 eq / F.U. 1,234 0,949 

Disposal kg CO2 eq / F.U. 0,093 0,076 

Total kg CO2 eq / F.U. 10,574 3,213 

 

Table 1: Carbon Footprint results listed according to the different life cycle stage and referred to the 

functional unit of each co-product 
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Focusing on raw materials of mozzarella cheese, impact value (the highest one) is mainly affected by CH4 

and N2O emission at farm level from enteric fermentation and manure management, calculated for this study 

according to the Tier 1 method proposed by the IPCC [8]. 

Results from the sensitivity analysis, performed to understand how the allocation procedures may affect the 

final results, are shown in table 2. 

 

Analysis Unit Mozzarella cheese Ricotta cheese 

Baseline kg CO2 eq / F.U. 10,574 3,213 

Sensitivity 1 kg CO2 eq / F.U. 11,147 3,257 

Sensitivity 2 kg CO2 eq / F.U. 10,688 3,173 

Sensitivity 3 kg CO2 eq / F.U. 9,824 3,476 

 

Table 2: Variation of final carbon footprint value according to the three different sensitivity analysis 

 

Results from sensitivity 1 show a higher variation, compared to the baseline condition, of mozzarella cheese 

carbon footprint (+5,42%) than that of ricotta cheese (+1,38%). Sensitivity 2 leads to a small variation of 

final outcomes (+1,08% for mozzarella cheese, -1,25% for ricotta cheese). Finally, sensitivity 3 shows the 

most significant incidence on final carbon footprint values (-7,09% for mozzarella cheese, +8,18% for ricotta 

cheese). 

6. Conclusion 

This study outlines some key aspects characterizing a carbon footprint assessment focused on co-products 

from dairy sector. Emissions from enteric fermentation and manure management at farm level, because of 

the allocation (based on fat content) applied at production level between curd and whey, lead to a final 

carbon footprint of mozzarella cheese higher than the ricotta cheese one. Sensitivity analyses performed 

show how impacts may change and switch from one co-product to the other, highlighting the importance to 

have accurate primary data particularly in that kind of study where the adoption of allocation procedures is 

necessary to have final outcomes consistent with the co-products analysed. An adequate allocation approach 

is fundamental for the credibility of the study performed, especially in the dairy sector where allocations 

often occur several times along the supply chain. 
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1. Abstract   

The objective of the study was to assess the Global Warming Potential (GWP) of the total cow milk 

production at farm level in Lombardy with an LCA approach starting from survey data. The milk production 

was obtained from the Italian Breeder’s Association and converted as Fat and Protein Corrected Milk 

(FPCM). The GWP values used were between 1.16 to 1.60 g CO2 eq/kg FPCM, obtained from previous 

studies. The total GWP of cow milk production in Lombardy was 5.83 Mt CO2 eq. corresponding to 1.27% of 

the total GWP from anthropic activities in Italy and 17% of emissions from agricultural sector. The highest 

GWP came from Cremona province (26.8% with 27% of production), the lowest from Varese (0.78% with 

0.87% of production). The 90% of the total GWP came from plain farms, 5.8% from mountains and 3.4% 

from hills. Results indicate that in Lombardy the GWP mitigation strategies have to be mainly applied to 

lowland farms. Moreover it is important to consider that the GWP from milk production sector is much 

lower than GWP from other anthropic activities. 

2. Introduction 

In Italy the total greenhouse gas (GHG) emission from anthropic and non-anthropic activities in 2013 was 

460 Mt CO2 equivalents. In particular the agriculture sector contributed to the 7.5% of total national GHG 

[1] and the most important gases were carbon dioxide, methane and nitrous oxide. The largest part of 

methane results from digestive processes in ruminant animals, as dairy cows and beef cattle. The GHG 

emissions produced by the dairy chain comes mainly (about 76%) from the production of milk, while milk 

processing is less important [2]. According to CLAL [3] the contribution of Lombardy to the total Italian raw 

milk production is about 42%. 

The main objective of the study was to assess the Global Warming Potential (GWP) of the total cow milk 

production in the Lombardy region through a Life Cycle Assessment approach. Moreover an assessment of 

greenhouse gas emissions of milk production as a function of the altitude zones was performed.  

3. Material and methods  

The quantity and quality of milk produced by the dairy cattle farms located in Lombardy were obtained from 

the officials bulletins of the Italian Breeder’s Association [4]. The amount of milk produced by the 

associated farms was the 88.5% of the total Lombardy production.  

The milk production per year was converted as Fat and Protein Corrected Milk (FPCM; 4.0% of fat and 

3.3% of protein content), starting from the milk composition obtained from the same database. In order to 

calculate the total GWP of milk production in Lombardy, different values of GWP (kg CO2 eq/kg FPCM) 

from the results of previous studies were used. In these studies GWP of milk production from different type 

of dairy farms located in Lombardy (intensive plain farms, semi-intensive hill farms and semi-extensive 

mountain farms) was assessed through a cradle to farm gate LCA starting from survey data.  
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Detailed information about cropping systems, field operations, fuel consumption, livestock management, 

feeding rations, housing systems, manure management, feed and other purchased materials were collected. 

GHG emissions from animals, manure, feed and materials produced at farm and purchased were obtained 

using the equations suggested by Intergovernmental Panel on Climate Change [5] (Tier 2) and the software 

Simapro 8.0.3. [6]. The detailed methods applied for LCA, which followed the main guidelines suggested by 

LEAP (7), were described in a previous study [8].  

The total GWP of milk production at farm gate in Lombardy was calculate using the value of 1.47 kg CO2 

eq/kg FPCM, obtained in an LCA study [9] conducted on 102 Lombardy dairy farms. In order to calculate 

the environmental load of milk produced in the three different altitude zones, three mean values of GWP 

were used respectively for plain, hill and mountain zones [10; 11; 12]. Scenario analyses were performed, 

assuming for each altitude zone  (mountain, hill, plain) the maximum and the minimum GWP values for milk 

production, from the worst and the best farm, respectively, obtained in the previous studies. 

4. Results  

According to the database of the Italian Breeder’s Association, the total milk production of dairy farms from 

Lombardy in 2014 was 4.10 Mt, with an average content of milk fat and protein of 3.37 and 3.31%, 

respectively. In general dairy farming systems  in Lombardy were characterized by intensive traits. The 

average farm size was 76 lactating cows, while, from the same database, the average farm size in Italy was 

39 lactating cows; in Lombardy 50% of the farms had more than 100 cows while in Italy only 20% of farms 

had more than 100 cows. In Lombardy the average cow milk production per year in 2014 was 9333 kg 

(23.1% CV) higher than the italian average production (8838 kg/cow; CV=29.8%).  

The total GWP of cow milk production at farm level in Lombardy was 5.83 Mt CO2 eq. corresponding to 

1.27% of the total amount of GWP from anthropic activities at national level and 17% of emissions from 

agricultural sector. The contribution of milk production from the different Lombardy provinces was strongly 

different: the most productive was Cremona (27.0% of the total) followed by Brescia (24.6%) and Mantova 

(19.8%). As a consequence Cremona had also the highest value of GWP (26.8%) followed by Brescia 

(24.4%) and Mantova (19.8%). The less productive cows were in Sondrio province (6996 kg of milk per 

lactation) but they had the best milk composition: 4.12% for fat and 3.49% for protein. The principal feeds 

crop production were maize for silage, winter cereal for silage, grass and lucerne hay in all farms. All farms 

purchased the main quota of concentrate as maize and soybean meal.  The feed- self sufficiency showed 

different values with the highest percentage in Milano, Sondrio and Mantova province (62.9%) and the 

lowest percentage in Brescia and Cremona (58.4%).  

According to ISTAT, 47% of Lombardy land area is plain, 12% hills and 41% mountains.  The contribution 

of the different altitude zones to total milk production in 2014 was: 92% from the plain, 3.8% from the hills 

and  4.5% from the mountains  (Table 1). Most of the total GWP for milk production came from plain farms. 

Farms located in the mountains were less efficient than the others and had the higher GWP per kg of FPCM 

but their total environmental impact contributes just for the 5.78% of the total Lombardy GWP from milk 

production.  
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Altitude 

zones Heads 

Milk 

yield 

Milk 

yield 

Milk 

fat 

Milk 

protein 

Fat and 

protein 

correcte

d milk 

(FPCM) GWP Source GWP tot 

GWP  

contribution 

 

% ton % % % ton 

kg 

CO2 

eq/kg 

FPCM   

Mt CO2 

eq/t tot 

FPCM % total GWP  

Mountains 7.32 183575 4.47 4.12 3.49 188040 1.60 

Guerci 

et al., 

2014 0.30 5.78 

Hills 4.93 156260 3.81 3.83 3.29 152929 1.16 

Bava et 

al., 2014 0.18 3.41 

Plain 87.8 3763109 91.7 3.71 3.31 3635013 1.30 

Guerci 

et al., 

2013 4.73 90.8 

Table 1: Global Warming Potential of milk production by altitude zones (3800 dairy farms) 

 

As reported in table 2, farm characteristics in different altitude zones showed some differences. “The best 

farms” in the three zones, that means the farms with the lowest GWP for kg of FPCM, had the highest dairy 

efficiency (kg FPCM/kg DMI), namely the cows produced more milk per kg of feed ingested, thanks to the 

higher ingestion of maize silage and concentrate. Stocking density was lower in “the best farms” located in 

mountain and plain than the others. Feed self-sufficency was higher in the mountains farms due to the 

utilization of pasture during the hot season. 

    Mountain Hill Plain 

Variable 

 

The worst The best The worst The best The worst The best 

  

  

    Feed intake kg of DMI 15.0 19.2 21.2 20.9 20.1 21.0 

Dairy efficiency kg FPCM/kg DMI 0.72 1.20 1.28 1.47 0.92 1.38 

Maize silage intake % DMI 36.3 31.1 33.4 38.1 40.0 43.9 

Hay intake  % DMI 43.3 42.6 33.6 25.0 19.0 21.9 

Concentrate feed intake % DMI 13.3 20.8 33.0 37.5 43.8 27.4 

Feed self-sufficiency % 72.4 95.1 68.8 38.4 21.6 85.0 

Farm land ha 10.3 22.8 41.3 30.0 16.5 86.5 

Lactating cows n 30.0 25.0 60.0 120 76.0 165 

Stocking density LU/ha 4.65 2.00 3.39 7.34 7.67 3.33 

Milk production kg FPCM/cow day 9.25 19.2 27.6 31.8 18.7 30.5 

Global warming 

potential 

kg CO2 eq/kg 

FPCM 2.52 1.24 1.37 0.90 1.96 1.02 

Table 2: Farm characteristics of the best and the worst farms in term of Global Warming Potential of  

milk production by altitude zones 

 

The figure 1 showed the GWP of milk production for altitude zone of the whole Lombardy region calculated 

using the GWP for 1 kg of FPCM produced by the best and the worst farms of each zones. The variability of 

GWP results suggests that it is possible to mitigate the environmental impact of milk production with 

management choices, for example modifying the composition of cows rations in order to increase milk yield. 

The mitigation effect, using the best performing farms as models instead of the worst, is very huge: 51% for 

Mountain, 34% for Hill and 48% for Plain.  
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Figure 1: Global Warming Potential of milk production by altitude zones using the data of the best and the worst farms 

5. Conclusion 

In conclusion data indicates that in Lombardy the possible strategies to mitigate greenhouse gas emissions 

have to be mainly applied to plain farms, because they produced the most amount of milk and they were 

responsible of the most part of GWP for milk production process at farm. Further investigations would be 

made in order to identify the best management practices that could mitigate the environmental impact of 

milk production, as performed by “the best farms” identified in the sample. Moreover it is important to 

consider that milk production sector determines very low GWP contribution in comparison with other 

anthropic activities. 
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1. Abstract 

Iranian sugar is one of the most important commodities of the national agro based industries. However 

Iranian sugar mills are old and technologically outdated and are therefore responsible for a large share of 

the environmental burden of food production. Sugar mills use various inputs during processing which 

include chemicals, limestone, electricity, water, natural gas and are also responsible for a series of the 

burdening emissions. The present study stems from a project whose aim is that of optimising Iranian sugar 

production. Specifically for the work described here, Life Cycle Assessment (LCA) was applied to the 

Hamadan sugar mill. For cultivation phase data from 88 sugar beet farms were collected. This information 

was then used, together with the inventory data from the sugar mill, to calculate the environmental impact of 

sugar production in terms of impact categories. The preliminary LCA results indicate that the role of 

electricity and natural gas are high in impact categories due to agricultural and industrial phases, 

respectively.  

2. Introduction 

Sugar beet is considered a valuable crop, since sugar is an essential product for human life and hence highly 

demanded in the world market.  The food industry, being one of the world’s largest industrial sectors, 

consumes large amounts of materials and energy which result in contributions to a wide range of 

environmental impacts. Iranian sugar mills are old and technologically outdated and therefore heavily 

contribute to such environmental burdens of food production.  

Life cycle assessment (LCA) is an internationally recognised environmental accounting tool which offers a 

standardised framework and methodology for quantifying the environmental impacts of a product or a 

production system throughout its life cycle. In this work, LCA was used to assess the environmental impact 

of sugar production in the Iranian Hamadan province with a special focus on the agricultural phase.  

2. Materials and Methods 

2.1 Data sources, functional unit and system boundaries 

Data for the quantities of inputs and outputs used in sugar production were sourced from face to face 

interviews of 88 sugar beet growers and industry statistics regarding  Hamadan sugar mills, during the 2013 

cropping year. The functional unit (FU) chosen was 1 ton of white sugar. Four stages of the life cycle of 

sugar, i.e. cultivation, production, transportation and processing were considered in this study. The systems 

boundary covers all emissions from raw material used for sugar beet cultivation to the milling process 

(cradle-to-gate). 
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2.2 Estimate of emissions 

In the agricultural phase, emissions (to air, water and soil) were estimated from the production and 

application of fertilizers, herbicides, pesticides, fungicides, human labour, electricity, and fossil fuels used 

during cultivation practices. N2O emissions (direct and indirect) from the amount of N applied were 

estimated. CO2 emissions from urea use were accounted for by using the IPCC emission factor. In terms of 

fossil fuel use, diesel used in agricultural machinery and sugar beet transportation from sugar beet farm to 

sugar mill were considered. The emissions were estimated starting from the amount of fuels used and by 

applying the emission factors given by IPCC [1]. The total amount of active ingredients of chemicals 

(herbicides, pesticides and fungicides) is emitted in the agricultural soil compartment [1]. 

In the industrial phase: emissions from limestone, sulphur, natural gas, electricity, human labor, fossil fuel 

(mazut) utilization  and wastewater treatment plant of sugar mill factories were estimated. The data were 

collected by using questionnaires and recorded documents from the sugar mill. The emissions were estimated 

using an emission factor from IPCC [1]. 

2.3 Impact assessment 

Life cycle impact assessment (LCIA) results were generated using the CML-IA baseline model. 

Classification/characterization was used according to the ISO 14040:2006 [2]. 

3. Results, discussion and conclusions 

Information on farm operations and energy utilization from 88 sugar beet farms shows a wide variability. 

The main inputs of the LCI for sugar beet grown in Iran for one hectare of sugar beet are shown in Table 1.   

 

In this study, emissions from both production and utilization of all inputs were estimated. Emissions from 

chemical fertilizations were calculated separately from the production and utilization phases. Based on the 

amount of N inputs and emission factors from IPCC, the N2O emission from N fertilizers (urea and di-

ammonium phosphate) were estimated on average as 4.54 kg N2O ha
-1

y. In the same way, the N2O emission 

from manure and residue of sugar beet (leaves) were estimated as 2.23 and 2.20 kg N2O ha
-1

y, respectively. 

Application of N fertilizer can result in both direct and indirect emissions of N2O from soil. In this study, 

direct emissions were estimated from N application through synthetic fertilizer, manure application and crop 

residues. Table 1 also shows that the N2O indirect emissions were estimated to be 2.15 kg N2O ha
-1

y. In the 

Table 1 also illustrates other emissions to air, such as ammonia (NH3), CO2 emissions from urea, NOx and 

diesel combustion emissions. The NOx emissions are estimated from the emission of N2O [1]. The results 

show that the average of estimated nitrate leaching per hectare of sugar beet produced in Hamadan was 

238.79, 132.36 and 138.18 kg NO3 from fertilizers, manure and residue, respectively. This means that a total 

of 5.11 kg of NO3 leaches per ton of sugar beet. Soltani et al. (2010) [3] reported 9.72 kg NO3 per ton of 

wheat in Gorgan, Iran, but Bazrgar et al. (2011) [4] reported a very low value for sugar beet production in 

Iran (0.16 kg NO3 per ton of sugar beet).  
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Input/Output (unit) 
Average 

(unit/ha) 
SD Input/Output (unit) 

Average 

(unit/ha) 
SD 

Products:   Output   

Sugar beet (kg) 53466.10 19289.31 Emission to Air (kg)   

Fresh leaves (kg) 26190.64 9448.97     

Inputs:    NH3 from N (fertilizers) 63.63 74.76 

Chemical Fertilizers (kg)       

 Urea as N 179.73 87.12  CO2  711.54 380.54 

 diammonium phosphate as N  38.49 18.92  NOx  1.85 1.48 

 Potassium Sulfate as K2O 69.60 34.63  N2O direct 6.64 5.01 

Transport of fertilizers (tkm) 160.68 85.88  N2O indirect 2.15 2.06 

Farmyard manure (kg) 4408.14 12729.76  Total N2O 8.79 7.06 

Chemicals (kg)       
 Herbicide 2.23 3.00     
 Pesticide  2.15 1.88     

 Fungicide 0.57 1.32 Emission to Water (kg)   

Transport of chemicals (tkm) 0.74 0.60     

Diesel fuel in farm (L) 116.66 70.17  NO3  510.33 420.70 

Lubricant Oil (L) 29.55 50.19  P  2.76 2.13 

Electricity (kWh) 12537.07 8558.83 Emission to Soil (kg)   

Water for irrigation (m
3
) 8859.61 5475.10  Trifluralin 1.05 1.43 

Machinery (kg) 13.27 5.72  Diazinon 1.29 1.13 

Sugar beet seed (kg) 1.96 0.39  Tridemorph 0.43 0.99 

Micro fertilizer (kg) 7.24 7.49     

Transp. micro fertilizer(tkm) 1.09 1.12     

Table 1: Inventory of sugar beet production (referred to 1 ha) 

 

Inpout/Products Unit 
Amount (Unit/t 

sugar) 
Output Unit 

Amount (Unit/t 

sugar) 

Products   Outputs   

White Sugar kg 1000.00 Wastewater  m
3
 12.60 

Molasses kg 264.28 Lime Mud m
3
 0.41 

Pulp kg 441.80 Emission to air   

Inputs   CO2 (from CaCO3) kg 165.18 

Transport of sugar beet tkm 35.72 
Emissions from Mazut 

combustion 
MJ 128.12 

Sugar beet kg 6672.84 
Emissions from Natural Gas 

combustion 
MJ 25193.73 

Limestone kg 375.41 CO2 from human labor kg 13.40 

Electricity kWh 113 Emission to water   

Natural Gas m
3
 719.82 COD (from wastewater) kg 22.32 

Mazut kg 31.25 BOD5 (from wastewater) kg 16.33 

Water m
3
 22.53    

Labor h 19.19    

Sulfur kg 0.67    

Sulfuric acid (H2SO4) kg 0.20    

Table 2: Inventory of the industrial phase (transport and milling stages) referred to the FU (1 t) 

 

The inventory of the industrial phase is shown in Table 2. Emissions from transportation of sugar beet to 

sugar mill are also shown in Table 2.  

Table 3 shows the characterization results of the agricultural and industrial phases in sugar production per 

impact category. This table points out that global warming of agricultural and industrial phases are 

respectively 1.67*10
3
 kgCO2eq and 3.54*10

3
 kgCO2eq per ton of sugar.  



 

 

256 

Results showed that electricity used in irrigation system had the highest impact in all categories (except for 

eutrophication). Water located at fairly deep soil sub levels and use of  ancient methods for irrigation are  

reported as the reasons for a high consumption of electrical energy in the studied region; this leads to higher 

consumption of both water and energy [5]. Soil water monitoring can allow more precise irrigation 

scheduling to improve the efficiency of beet production thus reducing the associated environmental impacts.  

The impact on acidification and eutrophication is mainly due to air emissions of nitrogen oxides and 

ammonia and nitrate leaching respectively.  

In the industrial phase, natural gas has the highest impact. In conclusion, the adoption of new methods for 

beet sugar processing and machinery renewal in the mills are needed to improve energy efficiency and to 

reduce emissions of environmental pollutants. 

 

Impact category Unit Agricultural 

phase 

Industrial phase Total 

Abiotic depletion kg Sb eq 2.04*10
-3

 8.59*10
-5

 2.13*10
-3

 

Abiotic depletion (fossil fuel) MJ 1.93*10
4
 2.47*10

4
 4.40*10

4
 

Global warming (GWP100a) kgCO2 eq 1.67*10
3
 1.54*10

3
 3.21*10

3
 

Ozone layer depletion (ODP) kgCFC-11 eq 4.46*10
-5

 2.47*10
-5

 6.93*10
-5

 

Human toxicity kg 1,4-DB eq 203.64 107.03 3.11*10
2
 

Fresh water aquatic kg 1,4-DB eq 256.11 33.22 2.89*10
2
 

Marine aquatic ecotoxicity kg 1,4-DB eq 2.94*10
5
 1.30*10

5
 4.24*10

5
 

Terrestrial ecotoxicity kg 1,4-DB eq 9.28 0.40 9.68 

Photochemical oxidation kg C2H4 eq 0.29 0.22 5.08*10
-1

 

Acidification kg SO2 eq 17.07 4.29 21.36 

eutrophication kg PO4 eq 9.36 0.43 9.79 

     

Table 3: Characterization results of sugar beet and sugar production (referred to 1 ton sugar) 
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1. Abstract  

The Slow Food Foundation has recently launched the “narrative label” project aimed to inform consumers 

on lifecycle of products. Based on a pilot studies on meat supply chains, labels were provided including both 

qualitative and quantitative information. LCA has been applied to a wild breeding system of Maremmana 

cattle, a Slow Food Presidia in Tuscany (Italy), from feed production to the butcher shop. Enteric 

fermentations, manure management and ecosystem uptake within the farm were also evaluated by specific 

models. Results show that the Carbon Footprint is 16.67 kg CO2-eq per kg (carcass weight), 89% of which is 

due to enteric fermentation and manure management. Possible best practices were identified in order to 

further minimize impacts. Emissions from the livestock were found to be completely “compensated”, thanks 

to the CO2 direct absorption by ecosystems within the farm.  

2. Introduction  

Livestock constitutes the 9% of global greenhouse gases (GHG) emission (3057 Mton CO2-eq per year; [1]), 

54% of which are due to bovine livestock. Information on product supply chains is therefore fundamental to 

raise consumer awareness on the environmental implications of their food choices. This study is the first part 

of a pilot project, promoted by the Slow Food Foundation, aimed at providing quantitative information on 

lifecycle of products in order to support their qualitative description as part of a “narrative label” dedicated to 

Slow Food Presidia. The Maremmana Presidium in Tuscany (Italy) was selected as representative, since 

breeding farms follow “natural principles” for the growth and care of their animals [2].  

The LCA has taken into account the whole production chain, including enteric fermentations (hereafter  e.f.), 

manure management (hereafter m.m.) and farm ecosystem uptakes.  

3. Materials and methods: case study, LCA and Uptake modeling 

LCA has been applied to a representative breeding-farm of Maremmana cattle, an autochthonous race in the 

Maremma area, the southern part of Tuscany (Italy). The Maremmana has large lyre-shape horns and a 

grayish coat. It is frugal, adapts well to difficult environments and cannot be kept indoors, but must roam 

freely. It is an extraordinarily robust native breed and the fact that the cattle range in the wild contributes to 

their well-being and to makes their meat especially flavorful and wholesome [2]. 

The selected farm is 183 ha large (50% forest and 40% arable/grazing land). Livestock includes 32 cows, 1 

bull and about 30 calves per year. Animals freely graze in forest and grazing lands. Calves are fattened in 

cattle-shed only during the last two months before slaughtering, till about 480 kg weight, 18 months old 

(65% half carcass yield). Feed is composed by hay, barley (auto-produced within the farm) and grass. 

Mother cows only eat hay and grass. Beef meat is transformed and sold locally. System boundaries include 

the whole supply chain, from cradle to gate. Packaging and distribution have no relevance (no packaging and 

locally sold).  
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The life cycle is divided into 3 phases: (#1) feed production within the farm, (#2) livestock management 

(from gestation to fattening, including the mother cow contribution and cattleshed consumptions) and (#3) 

slaughtering/meat processing. Mother cow impacts are allocated to calf (each cow calves one calf only) 

including feed, e.f. and m.m. during the gestation (9 months) and nourishing/weaning phase (6 months). 

Allocation, where necessary, is performed per mass. All data are collected by direct interview with the 

farmer. The Functional Unit (FU) is 1 kg carcass weight. LCA was performed with the SimaPro 7.3.3 

software [3], selecting the method IPCC 2007 (100 yrs). E. f. and m.m. emissions are calculated by 

quantifying local specific emission factors, based on animal diet and collection/storage of manure from 

grazing or enclosed confinement facility, depending on the livestock life-time. Tier 2 was applied, according 

to 2006 IPCC Guidelines [4], focusing on a medium level of accuracy for the selection of calculation 

parameters. The uptakes by oak high forest and olive grove, within the farm, are estimated with equations 

proposed by 2006 IPCC Guidelines [4], in order to quantify the annual increase in carbon stocks. The carbon 

uptake due to herbaceous plants are calculated by a dynamic model elaborated with the STELLA 8.1.4 

software [5]. The “farm GHG balance” is quantified subtracting the uptakes to the total Carbon Footprint 

(hereafter CF).  

4. Results and discussion  

Outcomes show that the Carbon Footprint is 16.67 kg CO2-eq per 1 kg of carcass weight. The 89% of total 

impacts is associated to phase#2, 10% to phase#1 and about 1% to phase#3 (fig.1).  In particular, impacts of 

phase#2 are due to e.f. (54% on total CF), m.m. (34% on total CF), materials handling (i.e. diesel 

consumption for haystacks transport within the farm and cattleshed; 1% on total CF) and electricity 

consumption (<1% on total CF). Phase#1impacts derive from diesel consumption by machineries for hay 

(7% on total CF), barley (3.2% on total CF) and straw (0.2% on total CF) production, and phase#3 from 

transports of calves and electricity/water use in slaughtering house/ butcher shop (both <1%). 
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Figure 1: Carbon Footprit per phases of the calf lifecycle (kg CO2-eq  per FU=1 kg half carcass) 
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Impacts for farm (and butcher) management (2.06 kg CO2-eq per UF, mainly due to diesel consumption), 

including phase#1, phase#3, electricity and material handling in phase #2, are very low in respect to e.f. (8.8 

kg CO2-eq per UF) and m.m. (5.8 kg CO2-eq per UF), (respectively 12%, 54% and 34% on total CF).  

Even though it is difficult to compare results with literature values in this sector [6], the CF of Maremmana 

resulted about 20% lower per FU (compared to [7, 8, 9, 10]), mainly because of good practices (such as: feed 

auto-production without chemicals; use of livestock manure as fertilizer; use of lake water for livestock; 

rearing system in a semi-natural way; low electricity use). The mother cow contribution to total impacts is 

about 43% in respect to 57% related to calf contribution. The high relevance of e.f. is in line with other 

studies [11, 12], even though the Maremmana breeding has higher values for e.f. and m.m. per FU, due to the 

long lasting growing time to reach the right weight to be slaughtered (Maremmana: 18-20 months versus 

conventional: max 15 months [7]). Among possible solutions to further decrease impacts, reducing diesel 

consumption with machinery replacement, is the most recommended.  

The CF of total livestock (taking into account impacts for adults and calf live weight in an average year, 

excluding the product transformation) is 179809 kg CO2 -eq per year. The total CO2 uptake by farm 

forestland, grassland and cropland is 748000 kg CO2 per year. Assuming that the CF value was kg CO2 and 

not kg CO2-eq, the Maremmana farm Offset would be  

-568191 kg CO2. Emissions from the total livestock can be considered as completely “compensated” by CO2 

uptake by farm ecosystems. 

5. Conclusion 

Outcomes from LCA of the Maremmana breeding farm showed lower impacts (limited to the CF impact 

category [13]) compared to other “conventional” breeding systems. This allows for the following 

observations: 

- based on LCA, breeding farmers can be informed on the environmental implications of their production. 

Best practices can be implemented to produce beef meat with less impact and in a more sustainable way. 

The Maremmana is an example of good farming as it allows for high quality meat products with lower 

impacts; 

- consumers can be informed on impacts of breeding farms and addressed first to decrease their meat 

consumtion and then to choose high quality meat products with lower environmental impacts. This is the 

aim of the Slow Food “narrative label” project. 
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1. Abstract 

A cradle-to-grave Carbon Footprint of a jam made with tropical Amazon fruit is presented. The analysis is 

grouped into three general processes: upstream, core and downstream. In this preliminary study the global 

warming indicator is considered. Most of the data was gathered on the field by members of ArBio and can be 

classified as primary data. The cultivation and the jam manufacturing are done in Madre de Dios (Perù) and 

the product is imported to Italy by Equo Mercato in its final packaging. The present analysis is limited to the 

Italian market excluding Sicily and Sardinia. 

2. Introduction  

The Amazon rainforest is one of the most endangered ecosystems on Earth; especially during the last 

decades, deforestation due to intensive practices such as cattle ranching and monoculture cultivations, has 

become evident along the Brazilian layout of the Inter-Oceanic highway. After the finalization of the 

Peruvian part of the highway, areas of the Amazon forest crossed by this infrastructure might undergo 

damages similar to those that have taken place on the Brazilian side. 

Agroforestry [1], a relatively new word that refers to growing trees together with agricultural crops and 

animals, is a possible solution for restoring degraded and eroded landscapes. Even though the concept is 

new, humans have practiced agroforestry for thousands of years, providing food, medicine, and materials to 

their communities in a sustainable way. Furthermore, agroforestry also provides highly valuable ecosystem 

services, such as conservation of soil and water and biodiversity, in addition to other human benefits such as 

landscape beauty and wellness. Agroforestry should be considered as an intermediate step towards analog 

forestry [2], a complex and holistic form of agroforestry aiming at maintaining a functioning tree-dominated 

ecosystem while providing marketable products that can sustain rural communities, both socially and 

economically. 

ArBio [3], an association born in 2010 in Puerto Maldonado (the capital city of Madre de Dios, 

the southern Amazon region of Peru), works on a 916 hectares (equivalent to 9,16 km
2
 or 2290 acres) area 

of Amazon forest, obtained through a concession contract granted by the Peruvian government, 

in association with a neighbouring land owner who also received a land grant of 7.24 km
2
 (or 1810 

acres). Both areas are involved in a pilot project, which aims at demonstrating that coexistence is possible 

between the forest ecosystem, local populations and the Inter-Oceanic highway. This idea reflects exactly the 

meaning of ArBio: Association for the Resilience of the Forest to the Inter-Oceanic (Asociación para la 

Resiliencia del Bosque frente a la Inter-Oceánica). Through agroforestry, and subsequently analog forestry, 

ArBio works for the sustainable development of this region , trying to avoid that the Inter-Oceanic highway 

entails the destruction of the forest and the loss of biodiveristy. 
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Among the marketable products already commercialised by ArBio, there is a jam obtained by the Cupuaçu 

fruit (Theobroma grandiflorum) [4], a tropical rainforest tree from the same family as cacao. Cupuaçu is 

quite common throughout the Amazon basin and widely cultivated in the jungles of Colombia, Bolivia and 

Peru and in the north of Brazil. The jam is obtained by the white pulp of Cupuaçu, which has a unique 

fragrance (a mix of chocolate and pineapple), and for this reason has the potential to become well recognized 

among tropical fruit-trees. Moreover, expansion of its cultivation to the Amazon does not present any serious 

limitations, because the climate is suitable and land is available. Also, this species can  grow under the shade 

of the forest canopy. 

In the present work, a Carbon Footprint Analysis (CFA) study is performed of the Cupuaçu jam supply 

chain, from the agroforestry practice realized by ArBio and its local partners in the Madre de Dios (Peru), to 

the commercialization in Italy by ArBio Italia through Equo Mercato [5] in Cantù (Northern Italy).  

3. System Description 

General boundaries of the system are sketched in Figure 1. The perspective adopted is from-cradle-to-gate 

and the division of phases into three macro-processes, i.e. upstream, core and downstream, was done 

following the Product Category Rule published by Environdec [6]. The upstream processes comprise the 

fruit cultivation, transportation from field to plant, ingredients production, and secondary and tertiary 

packaging production. Operators carry out in-field operations without using any machine. Primary packaging 

production, i.e. glass pot and caps, have been included in the core process together with product 

manufacturing, thermal treatment and packaging processes. Cultivation and jam manufacturing are located in 

the Madre de Dios region in Peru. The downstream processes are essentially transportation to Italy (Puerto 

Maldonado – Callao Harbour - Genova harbour – ArBio warehouse in Cantù) and delivery to sale points 

distributed over the Italian peninsula. For the present case, Sicilia and Sardinia sale points were not 

considered. End-of-life scenarios were created in accordance with recycling to landfill ratios published in the 

Ispra report [7] as for glass pots and metal caps. 

The functional unit adopted is 1 kg of product including packaging, but packaging weight is not included in 

the 1 kg. The cupuaçu jam is sold in pots containing 212 g of product, as detailed in Table 1. Cupuaçu jam 

has no additives or preservatives; the only ingredients are fruit pulp and sugar cane. The average pulp-to-fruit 

ratio is 0.25 and the cultivation yield is about 2000 kg of fruit per hectare per year (see Table 2). 

 

http://en.wikipedia.org/wiki/Colombia
http://en.wikipedia.org/wiki/Bolivia
http://en.wikipedia.org/wiki/Peru
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Figure 1 : Flowchart highlighting boundaries of the system 

 

Product Pots Content Functional Unit Pots Number per FU 

Cupuaçu Jam (Theobroma Grandiflorum) 212 g 1 kg 4.72 

Table 1: Functional unit and reference flow data 

 

 

 

 

 

Table 2: Cupuaçu jam composition 

 

 

Upstream Core Downstream Total UM 

0.174 2.120 1.251 3.545 kg CO2 eq 

4.91% 59.80% 35.29% 100.00% % 

Table 3: Carbon Footprint of Cupuaçu jam stages 

  

Cupuaçu Fruit Cupuaçu Pulp Sugar Cane Cupuaçu Jam 

2.28 kg 0.57 kg 0.43 kg 1 kg 
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Core 

Total UM 
Pulp production Jam production Final production 

0.625 0.364 1.131 2,120 kg CO2 eq 

29.48% 17.17% 53.35% 100.00% % 

Table 4:  Carbon Footprint of Cupuaçu jam – Core stage subdivided according to flowchart scheme in Figure 1 

4. Conclusion 

Preliminary results of the carbon footprint of Cupuaçu jam are reported in table 3. Agroforestry practices, 

which constitute the upstream process, have very low impacts with respect to other phases. It is worth noting 

that the high carbon content in the core process is mainly due to the primary packaging production. As 

expected, downstream processes are higly affecting because of the long distance necessary for the 

transportation of the final product to Italy. These conclusions are based on a preliminary analysis that takes 

into account only one impact indicator and neglects other categories, which, instead, could have important 

positive benefits deriving from agroforestry practices, such as biodiversity preservation, water saving and 

social advantages to local populations. These issues will be addressed in future works. 
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1. Abstract  

This article compares the environmental impacts of fresh and frozen chestnut produced in Portugal (for 

exports and national consumption). A life-cycle model and inventory was implemented for chestnut 

cultivation, processing and packaging, distribution, retail and final preparation for consumption. Climate 

change (CC), terrestrial acidification (TA), freshwater eutrophication (FEW) and marine eutrophication 

(ME) were analyzed. The cultivation stage presented the most significant contribution to the environmental 

impacts of both fresh and frozen chestnut (from 43% in CC to 98% in ME). The results showed the 

importance of improving resource management practices at the cultivation stage, namely an efficient use of 

fertilizers and fossil fuels, together with increasing chestnut yields, reducing the environmental impacts of 

both fresh and frozen chestnut. 

2. Introduction  

Portugal was the third largest producer of chestnut in Europe and the seventh worldwide in 2013, with an 

annual production of 24.7 thousand tons, and an orchard area of 35 thousand hectares [1, 2]. The north of the 

country represented 84% of production and 88% of the chestnut orchard area [2]. Roughly 70-75% of 

Portuguese chestnuts are intended for exports, essentially to Italy, Spain and traditional markets of 

Portuguese emigration (France and Brazil) [3]. 

The Life-Cycle Assessment (LCA) methodology has been applied to multiple agricultural products; 

however, as far as the authors are aware, only a few LCA studies have been done for chestnuts [4, 5, 6]. 

3. Life-cycle model and inventory 

The functional unit chosen for this study was 1 kg of chestnut kernel at consumer (including storage and 

final preparation at household). A cradle-to-plate analysis was performed. The system boundaries are 

presented in Figure 1. Two producers from northern Portugal were analysed: P1 (881 kg ha
-1

, 92 ha, year 

2011) and P2 (1048 kg ha
-1

, 7 ha, 2010 to 2012). The main agricultural processes were soil management, 

fertilization, pruning, pesticide treatments and harvesting.  

mailto:diana.rosa@dem.uc.pt
mailto:filipa.figueiredo@dem.uc.pt
mailto:erica@dem.uc.pt
mailto:fausto.freire@dem.uc.pt
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Figure 1: Fresh and frozen chestnut production chain. 

 

Fresh and frozen processing lines were studied. Data was collected from an industrial unit in Portugal. 

Processing starts with reception, calibration and separation of chestnuts by size. Frozen chestnuts were 

peeled, sorted, frozen and packed; while fresh chestnuts were sterilized, sorted and packed. Two kg of 

harvested chestnut were required to produce 1 kg of frozen chestnut (kernel) while 1.4 kg of harvested 

chestnut were required to produce 1.15 kg of fresh chestnut (kernel and peel). Frozen chestnut was packed in 

1 kg LDPE (low density polyethylene) bags and fresh in PP (polypropylene) mesh bags.  

It was assumed that the main national distribution (refrigerated) was to Lisbon (truck) and exports were to 

France, Italy (truck) and Brazil (ship). Transport from the factory to a distribution center (RDC) and to the 

supermarket was included, as well as energy requirements with refrigeration. As for the household stage, 

consumer transport from the supermarket to the household, energy consumption with storage and cooking 

were considered. Secondary data was also collected or calculated, namely emissions from fertilization [7, 8], 

ancillary material and energy production [9, 10], agricultural operations [11], combustion of propane [12], 

production of packaging materials [13, 14] and transportation [15]. 

4. Results and discussion 

Climate change (CC), terrestrial acidification (TA), freshwater eutrophication (FEW) and marine 

eutrophication (ME) were analysed (ReCiPe V1.07/Midpoint-H method) as these are tipical impact 

categories in fruit LCA [16]. The cultivation stage presented the most significant contribution for the 

environmental impacts of both fresh and frozen chestnut (from 43% in CC to 98% in ME). Cultivation 

impacts derived mostly from diesel requirements (41% for P1) and fertilizer use (58% for P2). Frozen 

chestnut presented higher environmental impacts than fresh, in all impact categories (from 24% for TA to 

36% in CC), mainly due to higher losses of frozen chestnut at the processing stage and higher energy 

requirements due to frozen storage (factory, retailer and household). 
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Chestnut distribution to Rome by truck presented the highest life-cycle impacts in three impact categories, 

not only because of the distribution itself (truck had higher impacts than ship), but also because the 

electricity mix in Italy had higher environmental impacts, except for FWE, in which the highest impacts 

were calculated for Lisbon, mainly due to electricity consumption in household stage (the Portuguese mix 

had a higher impact on this category). 

 

 

Figure 2: Life-cycle environmental impacts of frozen chestnut 

 

 

  

Figure 3:  Life-cycle environmental impacts of fresh chestnut 

5. Conclusions 

This paper assessed the life-cycle environmental impacts of fresh and frozen chestnut produced in the north 

of Portugal and distributed for consumption in and outside Portugal. The cultivation stage presented the most 

significant contribution to the environmental impacts of both fresh and frozen chestnut (mostly due to diesel 

requirements and fertilizer use). Frozen chestnut presented higher impacts than fresh, in all impact 

categories, mainly because of higher losses of the processing of frozen chestnut as well as the additional 

energy requirements with refrigeration (factory, retailer and household).  

The results showed the importance of improving resource management practices at the cultivation stage, 

namely an efficient use of fertilizers and fossil fuels. Additionally, increasing chestnut yield is critical to 

reduce the overall impacts, followed by the minimization of chestnut losses in the processing of harvested 

chestnut to fresh and frozen chestnut.  
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1. Abstract 

Various pesticides are authorized for use on agricultural food crops. Despite regulatory risk assessments 

aiming at ensuring consumer and environmental safety, pesticides contribute to human and environmental 

impacts. Guidance is needed to optimize pesticide use practice and minimize human and environmental 

exposure. Comparative pesticide substitution scenarios are presented to address this need. In a case study on 

wheat, different pesticides have been compared with respect to their substitution potential with focus on 

human health. Results demonstrate that health impacts can be reduced up to 99% by defining adequate 

substitution scenarios. Comprehensive scenarios need to also consider worker and environmental burden, 

and information on crop rotation, pest pressure, environmental conditions, application costs and efficacy. 

Such scenarios help to increase food safety and more sustainable use of pesticides. 

2. Introduction  

A large variety of pesticides and plant growth regulators are authorized in Europe and elsewhere for use on 

various agricultural food crops. Chemical risk assessments are being constantly conducted as part of the 

authorization procedure of pesticides, aiming to ensure occupational, consumer and environmental safety. 

However, the use of agricultural pesticides nevertheless contributes to the global human disease burden, 

mainly via occupational and bystander exposure, but also via consumer exposure to crop residues [1, 2]. 

Moreover, pesticides can escape agricultural fields via wind drift, run-off events and leaching through the 

field soil column, thereby also contributing to contamination of groundwater and non-target ecosystems [3, 

4]. Farmers growing food crops can optimize their pesticide use in every-day practice to minimize human 

and environmental impacts, but guidance for such optimization is currently missing. Thereby, comparative 

approaches from life cycle impact assessment (LCIA) are required to look beyond arbitrary safety limits 

toward true risk minimization. In this study, we aim at introducing comparative substitution scenarios 

combining crop-specific pesticide amounts applied with pesticide-specific toxicity potentials for humans, as 

such substitution scenarios can help to characterize and minimize consumer health burden from pesticide use 

and can be extenced to include other aspects, such as occupational and environmental health [5]. 

3. Methods 

First, human health impacts of several hundred pesticides were quantified, and residues in food crops grown 

and harvested for human consumption were identified as main contributor to overall human exposure toward 

agricultural pesticides for the general population for most pesticide-crop combinations [6]. Modeled crop 

residues were compared against measurements in several case studies showing (a) that modeled data are 

generally well in line wiht measured data and (b) that with the assumptions of typical application times and 

amounts (compared to worst-case assumptions as in risk assessment), residues are typically below regulatory 

maximum residue limints (MRL) [5, 7-9].  

mailto:pefan@dtu.dk
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Further analyzing a subset of pesticides that are used in Europe, however, shows that only 10% of all 

considered pesticides applied to grapes/vines, fruit trees, and vegetables account for 90% of total annual 

human health impacts of around 2000 disability-adjusted life years [2]. Main aspect driving crop residue 

dynamics and parameter uncertainty is thereby pesticide dissipation from crops, for which data quality has 

subsequently been significantly improved based on fitting 4500 measured dissipation data points [10]. 

Exposure to crop residues has then been implemented in current LCIA methods as input for developing and 

evaluating comparative substitution scenarios with the aim to simultaneously improve the growing need for 

food safety, meet environmental quality targets and guide farmers to optimize agricultural practice with 

respect to pesticide use. In a case study on wheat, different pesticides have been finally compared with 

respect to their substitution potential with focus on consumer health as one of several performance indicators 

for pesticide substitution. 

 

 scenario pesticide target pests*** mapp ISsubstance ISclass θIS 

   A B C D     

in
se

ct
ic

id
es

 

#1 β-cyfluthrin x x x  13.75 2.3E-09 1.5E-06 100% 

carbaryl  x x x 1.48 1.5E-06 

#2 cyhalothrin x x x x 0.008 2.6E-09 2.6E-09 0.2% 

esfenvalerate  x x x 0.012 2.6E-11 

#3 α-cypermethrin x x x x 0.015 2.3E-12 7.3E-12 <0.1% 

deltamethrin x x x x 0.009 5.0E-12 

   E F G H     

fu
n

g
ic

id
es

 

#1 cyproconazole x x x x 0.08 6.7E-05 6.9E-05 100% 

azoxystrobin x x x x 0.238 2.1E-06 

#2 epoxiconazole x x x x 0.125 1.3E-05 1.3E-05 18.4% 

pyraclostrobin x x x x 0.175 2.0E-08 

fenpropimorph  x x x 0.45 6.6E-12 

#3 tebuconazole  x  x 0.219 9.7E-09 8.7E-07 1.3% 

chlorothalonil x x x  1.5 7.4E-07 

mancozeb x x x  2.35 1.2E-07 

   J K L M     

h
er

b
ic

id
es

 

#1 pendimethalin x x   1.4 8.7E-12 2.0E-11 100% 

fenoxaprop-p x  x  0.069 1.1E-11 

prosulfocarb x x  x 3.5 1.0E-19 

#2 iodosulfuron  x x  0.01 7.5E-16 7.6E-16 <0.1% 

propoxycarbazone-sodium x   x 0.05 3.8E-18 

#3 glyphosate x x x x 1.37 8.8E-22 8.8E-22 <0.1% 

 

Table 1: Overview of tested scenarios with pesticides, target species, mass applied mapp [kg/ha], impact score per 

pesticide ISsubstance [DALY/ha], impact score aggregated over target class ISclass [DALY/ha], and relative impact score 

θIS normalized to scenario #1 for three pesticide substitution scenarios on wheat. 

***A: wheat bulb fly (Delia coarctata), B: cereal leaf beetle (Oulema melanopa), C: aphids (Aphidoidea), D: thrips 

(Thysanoptera), E: septoria leaf blotch (Mycosphaerella graminicola), F: wheat leaf rust (Puccinia triticina), G: wheat 

yellow rust (Puccinia striiformis), H: powdery mildew (Blumeria graminis f. sp. Tritici), J: slender meadow foxtail 

(Alopecurus myosuroides), K: annual meadow grass (Poa annua), L: common wild oat (Avena fatua), M: couch grass 

(Elytrigia repens). 

4. Results and Discussion 

In the substitution case study, it is demonstrated that for a function-based evaluation of pesticides cosumer 

health impacts can be reduced up to 99% by defining adequate substitution scenarios. Table 1 summarizes 

the information for the three scenarios of substituting a mix of (a) insecticides, (b) fungicides and (c) 
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herbicides based on the combination of applied dose and human toxicity potential. Data on the common 

wheat pests are derived from [11, 12]. We recommend that such scenarios further include occupational and 

environmental burden, combined with information on crop rotation, pest pressure, environmental conditions, 

pesticide authorization, and pesticide-specific application costs, efficacy, and finally application practice as 

function of local conditions and national regulations. 

5. Conclusion 

It was demonstrated that substitution scenarios can be used as a powerful tool to evaluate different 

authorized pesticide combinations with respect to relevant performance indicators, such as human health. 

Guidance can be based on LCIA-based comparative assessment methods, using aggregated metrics (such as 

DALY) to comparatively incorporate multiple indicators, and integrating all relevant aspects influencing 

agricultural pesticide use, fate and exposure into a consistent set of pesticide use scenarios. With that, it will 

be possible for farmers to optimize their day-to-day pesticide use practice with focus on minimizing health 

and environmental impacts. Such substitution scenarios, hence, can contribute to ensuring a world with 

increased food safety and a more sustainable use of pesticides, thereby acknowledging pesticide regulations, 

spatiotemporal differences in pesticide use and efficacy and farming conditions. 
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1. Abstract  

Remotely sensed spectral heterogeneity (SH) is a viable proxy measure for species diversity detection, and is 

introduced here as a complementary approach to current Life Cycle Impact Assessment−LCIA practice to 

expand its scope for evaluation of impacts from human-driven land use change on biodiversity. This 

rationale is based on the ‘spectral variation hypothesis’: the higher the spectral variability, the higher the 

ecological heterogeneity and species community diversity, occupying different niches. Focusing on the local 

scale of food crops cultivation in Southern Alps (area of Trentino Region, IT), we observe the relationships 

between land cover maps and habitat heterogeneity at different time and spatial resolutions, allowing us to 

argue about the robustness and potentials of SH to be a surrogate measure of cross-taxon, within-taxon or 

environmental nuances for species variability detection in LCIA. 

2. Introduction  

One of the major challenges in the field of Life Cycle Impact Assessment (LCIA) is to develop consensual 

and operational methods to assess the human pressure on biodiversity [1, 2]. In this regard, Souza et al. [3] 

observe that there is a general lack of consistent landscape oriented approaches to evaluate biodiversity in 

LCIA, and thus recommend developing impact characterization factors (CF) for application at multiple 

spatial scales (local, regional, global), e.g. by replacing land cover maps with continuous environmental 

information, and including landscape aspects such as habitat fragmentation or connectivity of ecosystems. 

Hence, we seek responding to ‘this’ call, by acquainting on a novel approach that could potentially place a 

step forward the appraisal of spatial variability of vascular plant species in LCIA. This approach is presented 

here with a focus on local scale agri-food croplands taken as a case study. It is based on the use of remotely 

sensed imagery, which is to predict plant species spatial distribution at broad scale, in a timely manner and 

with a certain degree of confidence [4], through e.g. the identification of unique reflectance or absorption 

features [5]. As an example, the variability of the spectral signal over space, i.e. Spectral Heterogeneity−SH, 

is considered a viable proxy for species diversity detection [6]. While the effectiveness of geospatial tools for 

the extrapolation of information on biodiversity is known in LCIA [7], no concrete examples exist of 

incorporating remote sensing information in the LCIA of plant biodiversity. Nevertheless, SH offers a 

plethora of solutions to analyse the relationship between plant species communities or taxonomic groups and 

local biophysical components, allowing to assess the anthropogenic alterations on ecosystems. Assuming the 

latter are described by land uses (LU) and LU Changes (LUC) in LCIA, and that human activities are the 

main cause for changes in habitat heterogeneity, it is ideally possible to refine/establish biodiversity potential 
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damage indicator(s) building on the observation and processing of remotely sensed imagery. An attempt of 

coupling SH with the typical LU information adopted in LCIA is illustrated in this paper. 

3. Materials & Methods 

3.1 Study area 

A study area in the Trentino Region, Italy, was selected for demonstration purposes, and because of raster 

data availability. The analysed area (centre: 48°11’08” N, 11°07’22” E, datum WGS84) is dominated by 

cropland, the majority of it made of viticulture land (> 90%). LUCs related to cropland were analysed to 

argue on the human induced effects on the local biodiversity due to agri-food supply-chain products over 

time. These LUCs were considered within a time frame of 30 years (from 1984 to 2014) using local data 

sources, observing a slight increase over time in viticulture land (as from Eurostat data source). However, the 

total cropland (the remaining cultivations be mostly apple orchards) did not remarkably change over time. 

3.2 Methodological steps 

Land cover data were superimposed to habitat heterogeneity maps at different time periods and spatial 

resolutions (or grains). In general, this can help finding statistically significant relationships between LU and 

LUC effects on plant species diversity, thus considering SH as a surrogate of cross-taxon, within-taxon or 

environmental surrogates. To this end, a Principal Component Analysis (PCA) was performed on two 

satellite images (a 1984 Landsat TM and a 2014 Landsat8 image) acquired in the same seasonal period (end 

of the autumn period). First PCA components (rescaled from 0 to 255) explained respectively 83% and 71% 

in the 1984 and 2014 images. Hence, they were used to calculate heterogeneity by 33 moving windows. 

Reprocesssed pixels of the first component were scaled into the range 0-255 to standardize the magnitude of 

the input values by making the two images comparable on the 30 years. The whole processing was done in 

GRASS GIS 7. 0 [8] and the code is available upon request. Final output of this approach was to obtain 

variation coefficients for the average SH over the 30 years of LUC in the local analysed area, considering 

different grains: total (SH calculated on the full cropland area), and disaggregated (SH for vineyards and the 

rest of croplands). This helped to infer on the statistical discrepancies between the mean heterogeneity in 

1984 and in 2014, and thus to determine the influence of crop-LUC to biodiversity patterns at a very local 

scale. 

4. Results & Discussion 

SH tends to decrease in all cases by 11% on average (increase in mean variability between SH variation 

coefficients in 1984 and in 2014) (Fig.1a, bottom). This is mainly due to shadows in the 2014 image. This 

discrepancy is considered too low to argue on the actual impact on plant biodiversity. In fact, Fig.1b shows 

that, while the mean SH decreases, the overall variability (standard deviation range) increases over time. 

However, the diversity between the three paired cases (total crop area, vineyards and other crops) is not 

statistically significant per p>0.05 and p>0.01. Because of this, and even if occurring in terms of SH change 

according to the ‘spectral variation hypothesis’ [6], we can argue that changes in biodiversity patterns, at this 

very local scale are caused by factors other than LUC patterns (i.e. presence of shadows).  



 

 

275 

A)

Remotely

sensed

imagery

(Landsat)

2014

Spectral 

heterogeneity

maps

1984

N

  B)

30

50

70

90

110

Total Vineyards Other crops

d
im

e
n

s
io

n
le

s
s

Spectral heterogeneity by (crop) land cover class

 

 

Figure 1: A) Elaboration by GRASS GIS of SH maps (bottom) from Landsat remotely sensed imagery (top; land use 

classes of vineyards (pink) and other cultures (green) are superimposed); B) variability (mean and standard deviation) 

in SH over considering different land cover hierarchical aggregations 

 

The proposed SH-based approach can capture the changes associated with plant species diversity over time at 

multiple scales, by possibly linking lifecycle land occupation (~LU) and transformation (~LUC) flows with 

heterogeneity patterns. These could be translated in the LCIA jargon according to the hypothesis that 

variability in the remotely sensed signal relates to landscape diversity, which is considered a good proxy of 

diversity at species level [4, 6]. In this regard, for impact characterization at community and ecosystem scales, 

methods based on the SH rationale could complement existing CF calculations based on species-area 

relationship (SAR) [2, 9, 10], e.g. by improving the calculation of species richness factors in the SAR 

equation. It has been observed, for example, that spectral diversity is correlated with the area of each floras 

bounding box, because more habitats are expected to be present in larger areas, on average (which is 

analogous to the SAR rationale) [11]. Despite these opportunities, still some drawbacks and challenges must 

be overcome: 1) construction of a consistent mathematical framework to incorporate SH in LCIA; 2) 

quantitative comparison and/or combination with current LCIA methods; 3) the proposed SH approach can 

only address plant species diversity, without distinguishing among species abundance [7] or taxonomic 

groups.  

5. Conclusion 

This short paper illustrates a preliminary idea for potential development of SH-based CF for plant 

biodiversity in LCIA. An intensive research activity is still on-going to improve the analytical framework for 

routine assessment at multiple scales of land use and land use change. This could avoid using reference states 

or distance-to-target rationales, which are useful concepts to create archetypes but can also propagate large 

uncertainties in the calculation of CF for local scale assessments. Using times series SH maps (both annual 

and seasonal) can further reduce this subjectivity and uncertainty, while increasing the representativeness of 

biodiversity LCIA indicators (remotely sensed imagery provides ‘real’ state references).  
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1. Abstract  

Aim of the presented case study was to analyse and compare the impacts on biodiversity of beef from milk 

cows produced in southern Germany. For this purpose two farms with different feeding concept but similar 

in size have been analysed. Impact assessment was carried out following a newly developed methodology 

[1], which consists of a screening to identify most relevant processes with respect to biodiversity and a two 

part biodiversity assessment: a detailed assessment for the most relevant processes combined with a rough 

estimation for less relevant processes. Results in this case study show that the farm with the lower feed ration 

causes an one third lower biodiversity impact. The most relevant processes depend on the feeding concept, 

for one farm it is green fodder production, for the other it is grain and corn production. 

2. Introduction  

The presented case study was carried out within a research project developing a methodology for impact 

assessment of land use on biodiversity. Aim of the case study was to analyse and compare the impacts on 

biodiversity of beef from milk cows produced by two farms in South Germany as by-product in dairy 

production. 

3. Methods 

3.1 Functional unit and systems 

Functional unit of the study is 1 kg milk cow at the age of beeing slaughtered. The system bundary was set at 

the gate of the farm.  

The size of the two analysed farms is more or less similar, but there is a big difference in the feeding 

concept: farm A is producing most of the feed on the farm, farm B buys most of the feed needed. Also fodder 

composition is very different: farm A feeds mostly green fodder, farm B mainly concentrated feed. Another 

difference between the two farms is the amount of fodder for the milk cows. The data used for the feeding 

concept and agricultural processes of the two farms are specific, measured data obtained directly from the 

farms. Table 1 and 2 show the data used for feeding. 

3.2 Allocation 

Most important allocation methodology used was economic allocation to allocate impacts to milk, calves, 

and beef, resulting in 2% of material flows allocated to beef. 

Furthermore in fodder production several allocation were necessary. Main allocation method used for this 

purpose was mass allocation, e.g. regarding straw, grain bran, coarse colza meal and soy shred. 

3.3 Impact assessment 

The methodology used for biodiversity impact assessment was developed by Lindner et al. [1] which aims at 

capturing biodiversity as a whole rather than singular aspects like species number, abundance of specific taxa 
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or habitat composition. It consists of a screening to identify the most relevant processes regarding 

biodiversity and the biodiversity impact assessment which is carried out in detail for most relevant processes 

and on a rough basis for less relevant processes. The detailed analysis first requires to identify relevant input 

parameters regarding biodiversity impact in the analysed region. As all relevant processes in this case study 

take place in the same ecoregion (PA0445, Western European broadleaf forests), these input parameters are 

the same for both farms. As input parameters have been identified pesticide use, fertilizer use, biomass use 

and two parameters regarding structural diversity (share of small structural elements such as hedges or tree 

groups, and the number of cultivated crops). Subsequently, for every input parameter a mathematical 

function is defined, and results of the input parameter assessments are aggregated to the biodiversity impact 

of the process under investigation. Finally, biodiversity impacts for all processes are summed up. 

4. Results 

Results of the screening showed that for both farms all agricultural feed production processes on the farm are 

relevant regarding biodiversity and have to be analysed in further detail. But also some of the production 

processes of the purchased fodder are of high relevance. In particular coarse colza meal production but also 

many ingredients of the concentrated feed, like wheat and wheat derivates are of high importance. All other 

processes are of less importance but there is no process which is negligible. Figure 1 shows the results of the 

screening for both farms. 

In the further detailed assessment of biodiversity impacts all green marked processes have been included, the 

orange marked processes have been roughly estimated.  

Results show that the impact of farm A which produces fodder mainly on the farm and uses in particular 

green fodder has a one third lower impact than farm B. The most relevant process for farm A therfore is 

green fodder production (95% of biodiversity impact), with grass having a share of 60% in biodiversity 

impact but 74% in mass. Regarding lucerne it is the other way round: the mass share is 19% but the share in 

biodiversity impact is 30%, reflecting the higher input of fertilizers and pesticides for lucerne production. 

The most relevant processes of farm B are grain (wheat, wheat products, oat) and corn production which 

represent together 95% of the biodiversity impact but only 75% of mass. Tables 1 and 2 show the results of 

the biodiversity impact assessment. 

For soy shred it has been analysed if and in which way the used methodologies for biodiversity impact 

assessment (detailed analysis, rough estimation) influence the results. Based on specific data of three farms 

in Brazil in Mato Grosso do Sul a detailed biodiversity impact assessment has been carried out and results 

have been compared with the results of the rough estimation (Table 3). Results show that on the one hand 

biodiversity impact of soy producing farms is varying by about 25% for the three farms analysed, and on the 

other hand that results of detail ed analysis and roughly estimation are in the same magnitude of order.  
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Figure 1: Relevance of processes due to screening 

(green: high relevance, orange: medium relevance, red: low relevance) 

 

Process Biodiversity 

impact/FU 

Share of 

impact 

Mass 

/energy 

[kg/FU resp. 

MJ/FU] 

share of 

mass / 

energy 

coarse colza meal 9.04 2% 0.137 1.5% 

green fodder 

(lucerne) 

131.20 30% 1.785 19.1% 

grains (winter 

barley) 

0.94 0.2% 0.016 0.2% 

grains (summer 

wheat) 

0.93 0.2% 0.016 0.2% 

grains (triticale) 0.93 0.2% 0.016 0.2% 

green fodder 

(grass) 

286.35 65% 6.930 74.2% 

Maize 9.00 2% 0.134 1.4% 

Straw 0.66 0.1% 0.172 1.8% 

soy shred 2.86 1% 0.137 1.5% 

Fertilizers 1.88E-04 0.00004% 41.390 99.998% 

pesticides 1.09E-05 0.000002% 0.0007 0.002% 

electricity 0.20 0.04% 4.909 3.2% 

Diesel 0.01 0.002% 146.127 96.7% 

other energy 1.46E-05 0.000003% 0.112 0.1% 

SUM 442.11  9.34 kg fodder 

   41.39 kg 

fertilizers&pe

sticides 

   151.15 MJ 

 

Table 1: results of biodiversity impact assessment for farm A per functional unit (FU) (grey: estimated processes, 

yellow: mass of fodder, blue: mass of fertilizers &pesticides, orange: energy) 
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Process Biodivers

ity 

impact/F

U 

Share of 

impact 

Mass 

[kg//FU 

resp. 

MJ/FU] 

Share of 

mass/energ

y 

coarse colza meal 6.30 1.0% 0.092 0.5% 

Wheat 364.02 56.7% 3.666 18.8% 

corn meal 87.47 13.6% 1.222 6.3% 

corn gluten 43.60 6.8% 1.222 6.3% 

wheat bran 68.46 10.7% 4.643 23.8% 

wheat middlings 8.49 1.3% 2.199 11.3% 

oat bran 37.50 5.8% 1.711 8.8% 

green fodder (grass) 22.54 3.5% 1.296 6.6% 

Straw 0.53 0.1% 0.076 0.4% 

soy shred 0.95 0.1% 0.046 0.2% 

sugar beet pulp 2.04E-06 0.0000003% 0.153 0.8% 

distillers grain 0.00 0.0% 2.444 12.5% 

sugar beet molasses 1.47 0.2% 0.733 3.8% 

fertilizers 0.05 0.01% 21.111 99.99% 

pesticides 6.50E-07 0.0000001% 0.002 0.01% 

electricity 0.23 0.04% 15.541 1.9% 

Diesel 0.07 0.01% 799.062 96.7% 

other energy 7.14E-04 0.0001% 11.929 1.4% 

SUM 641.67  19.50 kg fodder 

   21.11 kg 

fertilizers&p

esticides 

   826.53 MJ 

 

 

    

 

Table 2: Results of biodiversity impact assessment for farm B (grey: estimated processes, yellow: mass of fodder, blue: 

mass of fertilizers &pesticides, orange: energy) 

 

 Farm 1 Farm 2 Farm 3 Estimation 

Biodiversity impact 

of soy 
0.530 0.695 0.699 0.65 

 

 
    

 

Table 3: Comparison of detailed biodiversity impact assessment results and results of roughly estimation for soy 

 

5. Conclusions 

Feeding concepts of farm A and farm B are totally different: farm A produces most of the fodder on the 

farm, whereas farm B produces only green fodder itself. Most of the land is cultivated to produce biomass 

for the farm-owned bioenergy plant.  

Furthermore the compostion of fodder is very different. Farm A feeds mostly green fodder (grass, lucerne), 

farm B in a large part dairy concentrate.  
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But the key difference is the daily feed ration and the resulting gain in weight: farm A feeds a ration of 9.343 

kg, farm B 26.116 kg and achieves a daily gain in weight which is 20% higher than that of farm A. But the 

higher gain in weight of farm B can not compensate the needed higher feed ration with respect to 

biodiversity impact. However, due to the huge difference in feed rations, the obtained specific data should be 

verified.  

There are several methods for assessing biodiversity within the LCA framework, aside from the one 

demonstrated here, and they all have their merits and shortcomings. The FAO recently published a document 

listing a number of biodiversity indicators relevant for livestock herding [2]. Some are very similar to the 

inputs we use for our method. As stated above, the method employed in this case study aims at capturing 

biodiversity as a whole rather than singular aspects. It can be seen as a composite indicator. 
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1. Abstract  

Several human interventions are threatening biodiversity at an unprecedented scale and pace, thus 

potentially affecting the provision of critical ecosystem services. Pollination is a crucial component of 

environmental and socio-economic well-being worldwide and accounting for it is fundamental in any effort 

that aims to enhance the sustainability of certain human activities. However, none of the existing life cycle 

impact assessment (LCIA) models effectively accounts for the role of pollinators and pollination services. 

The present study is a review of environmental pressures acting on pollinators and potentially threatening 

pollination services which represents the first step towards their integration in the LCIA framework. Starting 

from pollination as pivotal ecosystem service and pollinators as target group for protection, this review aims 

to identify the modelling needs for the impact assessment in the LCIA context. 

2. Introduction  

In the last decades, several human interventions related to industrial development and agricultural 

intensification have threatened biodiversity at an unprecedented scale and pace, thus potentially affecting the 

provision of critical ecosystem services [1], including those related to insect pollination. Worldwide, a 

variety of insects plays an essential functional role in both managed and natural terrestrial ecosystems, being 

responsible, at the global level, for pollinating more than 80% of wild plant species and almost 75% of 

primary agricultural crop species [2]. Recently, insect pollinator populations have declined at local and 

regional scale, raising concerns in scientific and policy context regarding potential risks to natural ecosystem 

functioning, global food security and socio-economic sustainability. Therefore, accounting for pollination is 

fundamental in any effort that aims to assess the sustainability of human production and consumption 

patterns in certain activities, especially in the agri-food sector. 

Previous studies have highlighted the main threats leading to pollinator population declines and potentially 

menacing the provision of pollination services [3]. However, to our knowledge no study so far has been 

conducted for integrating impacts deriving from  agrochemical emissions, habitat conversion or similar 

human interventions on pollinators in the life cycle impact assessment (LCIA) framework. The present study 

is a review of the anthropogenic and environmental drivers exerting pressures on pollinators and it represents 

the first step towards the integration of pollinators and their services in the LCIA framework. Starting from 

pollination as pivotal ecosystem service and pollinators as target group for protection, this review aims to 

identify the modelling needs for the impact assessment in the LCIA context. 
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3. Methodology 

A review of scientific articles and reports focusing on evidence of impact on pollinator populations and 

pollination services has been conducted using the bibliographic database SCOPUS and the 

‘ConservationEvidence.com’ website, a free authoritative information resource designed to support global 

biodiversity. A preliminary search was performed using headings based on combinations of broader terms 

related to pollination issue ((pollinator* OR pollination) AND (decline* OR loss* OR threat* OR impact* 

OR risk*)), in order to enable an early understanding of the current forces exerting pressures on pollinator 

populations. Then, in order to limit the results to the explicit impact drivers showed off by the preliminary 

search, more detailed literature searches were conducted using relevant and logical keywords referring to the 

specific impact driving forces (e.g. (land OR habitat) AND (transformation* OR degradation), ‘chemical 

emissions’). The search outputs included reviews, laboratory- and field-based studies and scientific reports 

predominantly (>80%) from refereed journal manifesting clear impacts on pollinator communities and 

pollination service and also suggesting which indicators are currently adopted. Except two older papers, the 

publication years range from 2001 to date. Studies reporting no documentation on the effects which 

pollinators are subjected were excluded. A database was created to enable efficient grouping and subsequent 

analysis of these studies. Information including authors and publication date, brief paper description, impact 

driver categories, pollinator group affected, resulting effect in pollinators and their services, data type, 

modelling approach and indicators of impact and damage was recorded. 

4. Results  

We selected 95 published studies investigating different drivers involved in pollinator crisis. Of these, 25 

were reviews (21 were monothematic, whereas the remaining four reviews had a more holistic approach), 12 

scientific reports (six of them proceeding from European Agencies) and 58 research articles. The analysis of 

the scientific outputs revealed that the published research in this area has recently increased. The review led 

to the identification of eight impact drivers (Figure 1), namely: 1) intensified land use as a result of 

uncontrolled expansion of urban areas and modern agricultural practices; 2) use of pesticides; 3) global and 

local climate change; 4) introduction of alien plant; 5) competition with invasive pollinator species; 6) spread 

of pests and pathogens; 7) electro-magnetic fields and 8) genetically modified crops, recently identified as 

potential additional threats to insect pollinators [4]. 

Lately, research has been predominantly focused on ‘land use’ and the impacts derived from it on pollinator 

populations, with authors primarily interested in investigating the effects of habitat fragmentation as a 

consequence of agricultural intensification and cultivated crop expansion [5]. Pesticides, particularly 

systemic insecticides like neonicotinoids and invasive alien species represent the second most serious threat 

to pollinators, posing a risk to the biodiversity of pollinators [6, 7]. Bt-toxins contained in pollen and nectar 

of genetically modified crops and their effects on pollinators correspond to the least covered area. Bt-toxins 

may alter pollinator behaviour potentially limiting their visitations to flowering plants and consequently 

resulting in loss of pollination services [4]. Across all impact drivers, the majority of the reviewed papers 

tends to focus on honeybee species (Apis mellifera spp.), and to a lesser extent on bumblebees species 

(Bombus spp.). Among non-Hymenoptera pollinators, lepidopterans and dipterans resulted to be the most 
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investigated.  

Despite the importance of pollinators for several aspects of the human well-being and for the maintenance of 

terrestrial biodiversity, the current LCIA framework incorporates only a reduced number of the above-

mentioned threats (i.e. land use, ecotoxicity and climate change, see figure 1), whereas the others have not 

yet been included, although there is evidence of the pressure that they put on pollinators. Furthermore, 

current LCIA framework do not effectively account for the functional role of pollinators and pollination 

service, neither at the midpoint nor at endpoint level. Of course, the inclusion of pollinators may need to 

expand the elements currently covered by the area of protection “ecosystem quality”, checking whether 

current metrics such as potentially affected fraction of species (PAF) are suitable for expressing and then 

aggregating ecosystem-related results. 

 

 

Figure 1: Identified drivers of impacts on pollinators; in some cases an impact category already exists within the 

traditional LCIA framework (red boxes), whereas in other cases new impact categories should be included (blue boxes). 

Reduction in provision of ecosystem services may lead to subsequent loss in the global economic system, nutrition 

supply and genetic resources 

 

5. Conclusion 

In this review, we showed that several authors have long recognized the main drivers of impact acting on 

pollinators, potentially threatening pollination services, which primarily derive from intensive agricultural 

practice. Notwithstanding the importance of pollination fro environmental and socio-economic reasons, 

existing LCIA methods and models appear to be incomplete with respect to pollinators. This is principally 

due to a general lack of knowledge on how different anthropogenic pressures affect pollinators and 

pollination services, and on how species diversity is connected to ecosystem functioning and human well-

being. Therefore, there are specific research needs towards the integration of pollinators as a target for 

protection in the LCIA framework. Firstly, future investigations are to be oriented to improve the models and 

the indicators currently used in the LCIA framework. Thus, it is of high priority integrating fate, exposure 

and effects of the chemicals affecting pollination in current models of ecotoxicity and the features which 

highlight the loss of relevant habitats to pollinators in the current land use models. Then, for other categories 

of impacts, novel models and indicators both at midpoint and endpoint levels should be developed in order to 

cover the existing conceptual and methodological gaps.  
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Particularly, new impact categories and related models should be developed and the feasibility of including 

them in the LCIA methodology should be assessed. Considering the role of crucial ecosystem services in 

human life and economic processes, this is an impelling step for increasing comprehensivness of LCA. The 

services provided by pollinators are one important component of social well-being and economic stability 

worldwide, and accounting for them is fundamental in any effort that aims to enhance the sustainability of 

certain human activities. 
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1. Abstract  

We present novel methods to incorporate exposure to chemicals within food contact materials (FCM) (e.g. 

packaging) into life cycle impact assessment (LCIA). Chemical migration into food is modeled as a function 

of contact temperature, time, and various chemical, FCM, and food properties. In order to reduce computing 

time and complexity, a double exponential curve was fit (R
2
≈1) to an exposure model which otherwise 

requires numeric solutions. The model is modified to evaluate the product intake fraction, PiF, which is a 

new metric that accounts for exposure to mass of chemicals embodied in a product in a way compatible with 

intake fraction, iF, a metric traditionally used in LCIA. The model predicts PiF increases with temperature 

and for compounds with lower octanol-water partition coefficients within more permeable materials which 

are in contact with foods with high ethanol equivalencies (fatty foods). 

2. Introduction  

Various life cycle assessment (LCA) studies evaluating food contact materials (FCMs), like baby food 

packaging containers, have found advantages to plastic over glass [1]. Life cycle impact assessment (LCIA) 

includes human toxicity impacts from exposure to chemicals released throughout product life cycles, but 

excludes use stage exposures to chemicals migrating from FCM into food. Generally, regulatory risk 

assessments aim to ensure human exposure to potentially harmful chemicals in food is below certain 

thresholds of ‘safety’ and rely on submitted industry data or migration modeling of supposed worst-case 

scenarios [2]. Such efforts help limit dietary exposure, but actual human intake and levels of some phthalates 

within food nonetheless approach or exceed regulatory thresholds—with indication of FCMs as the 

chemicals source [3]. Furthermore, regulatory thresholds for toxic substances are continuously subject to 

change for various reasons and differ between countries [4, 5]. Unlike risk assessment the primary goal of 

LCIA is not to ensure individual consumer safety with respects to toxicity thresholds, but to indicate 

products with minimal potential for population-scale impact, and thus LCIA methods rely on linear dose-

response relationships (not thresholds) derived from toxicity studies and combine these with average 

population-scale (not worst-case individual) exposure. Accordingly, LCIA is a promising risk-minimization 

and product-optimization approach for FCM; however, methods to include exposure to FCM in LCIA are 

currently lacking although they likely exceed other life cycle exposures [3]. Our goal is to provide LCIA-

compatible methods to close this research gap. 

3. Methods 

To be compatible with the scope of LCIA, which defines a reference flow (e.g. a mass of packaging required 

to contain a volume of food), we built the FCM exposure model to estimate the newly defined product intake 

fraction, PiF (kgintake/kgin product) [6]. This method quantifies PiF as the chemical-specific mass taken in by 

users of the FCM product per kilo of chemical in the FCM—where ingestion is assumed to be the 
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dominating route, and food waste, inhalation, dermal contact, and exposure to environmental emissions are 

assumed negligible. 

 

 Parameter  Parameter  Parameter 

a octanol-water partition coefficient, Kow b root of tan qn = -αqn c volume of FCM 

a molecular weight, MW c initial concentration (migrant) c density of FCM 

b diffusion coefficient (migrant) c temperature c thickness of FCM 

b diffusion parameter (polymer) c time of contact c density of food 

b ethanol equivalency of food, E-eq c activation energy (polymer) c mass of food 

b package-food partition coefficient, KP,F c contact area  c volume of food 

 

Table 1: Required parameters for migration model, and their classification a, b, or c 

 

We adapted a numeric migration model commonly used in regulatory risk assessment and compliance testing 

[7, 8, 10], by deriving an analytical solution and providing average/realistic diffusion and partition 

coefficients for use in LCIA, instead of the default values used by risk assessors. Specifically, the model is 

for chemicals in plastic packaging (see [8]) relying on 19 input parameters (Table 1) which we classified as 

a) available in open-source platforms (e.g. molecular weight), b) estimable (e.g. by a linear regression), and 

c) default assumptions given by regulatory documents [8] which can be updated by the LCA practitioner. 

The model was programmed in MATLAB
®
 and we developed approximation strategies when needed, e.g. 

the plastic-food partition coefficient (KP,F) is a function of ethanol-equivalency (e.g. food fat content) and the 

octanol-water partition coefficient (Kow) of the chemical migrant [9]. We also extracted data from [8] to 

calculate average polymer-specific diffusion parameters. Further, we investigated fitting a double 

exponential to the model: PiF(kgintake/kgin product) =a*exp(b*t) + c*exp(d*t) which could then be programmed 

in a spreadsheet where computing time and required input parameters are reduced.  

Hypothetical migrants across Kow and at two molecular weights (MW) within polyethylene terephthalate 

(PET) were modeled at 5
o
C for 10 days. PiF was also modeled for diethylhexyl phthalate (DEHP) in PET 

and high-density polyethylene (HDPE) as FCMs for milk, clear drinks, and dough (spanning ethanol 

equivalencies), at 125
o
C for in-bottle pasteurization.  

4. Results and Discussion 

We used a regulatory risk assessment FCM migration model, and derived a nearly identical but analytically 

computational solution, solved for the LCIA-compatible PiF metric, and estimated average (not worst-case) 

diffusion and partition coefficients. Our results and work by [7,8,9,10] identify KP,F as an important 

parameter. We developed a linear approximation for KP,F for all ethanol equivalencies (E-eq) i.e. content of 

organic phase, such as fat within foods, from data available in [9] for only three E-eq. More data may be 

needed for an improved approximation, e.g. as provided in background calculations in FACET [10]. When 

regulators apply the migration model [8] parameters classified as b) estimatable, are often set to a fixed 

value. Although stated in regulatory documents that package-food partition coefficient, KP,F=1 is a fixed 

“worst-case,” we found evidence KP,F<1 may occur experimentally [9], and that conveniently, when KP,F=1 
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dependent parameters are also fixed, simplifying the calculation. For various plastic-food combinations we 

found often KP,F >1, which supports the need to better approximate KP,F for model application in LCIA as 

well as for realistic exposure estimates [10].  

 

Figure 1: PiF model results across Kow for hypothetical migrants at MW=300 and 50 g/mol, for foods  

with various ethanol equivalencies (E-eq). 

 

 

Figure 2: Example of the PiF model results for DEHP, where exposure potential was found to be high for DEHP in 

HDPE for foods with 90%E-eq, mid for HPDE for foods with 50%E-eq, and low for DEHP in PET  

with all food types as well as HPDE with 10%E-eq. 

 

Further, via MATLAB
®
 we fit and parameterized a double exponential curve (R

2
≈1), where for example 

parameter c=1-a, and a, b, d are functions of easily obtainable input parameters. In this manor, the difficult to 

obtain input parameters, e.g. iterative solutions of transcendental equations, were no longer needed and 

computational time was decreased.  

Preliminary results, e.g. for PET demonstrate that when contact temperature, T= 5
o
C, PiF<10

-3
 kgintake/kgin 

product and is largely influenced by KP,F which is a function of Kow of the migrant and E-eq of the contacted 

(packaged) food. This reflects that chemicals tend to remain partitioned in plastic when in contact with foods 

with low ethanol-equivalencies (e.g. clear drinks), but increasingly partition into foods with higher ethanol 
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equivalencies (e.g. milk and dough) (Figure 1). A migrant’s MW was unimportant for the T=5
o
C scenarios 

(Figure 1), but has a major influence at T=125
o
C for in-bottle pasteurization (results not shown) because of 

the influence of the diffusion coefficient. For high temperatures, PiF can approach 20% for contact times of 

30 minutes (Figure 2) for foods with high ethanol equivalencies (e.g. >90%) when the model was run for 

DEHP within FCM made of HDPE (which is typically not legally allowed, however may occur at low levels 

via recycling processes and/or contamination). As our model is based on a regulatory model, the trends we 

observed with respect to chemical, food, material, and scenario properties are also considered by risk 

assessors, e.g. reduction factors for certain fatty foods are applied assuming that modeling with a high E-eq 

greatly overestimates exposure [2]. 

5. Conclusion 

We developed a modeling strategy that adapts and parameterizes a numerical FCM migration model 

normally used to ensure risk-based regulatory compliance, to be operational in LCIA by analytically 

estimating an average/realistic PiF. While risk assessment based on supposed worst-case scenarios is 

required to evaluate FCM safety compliance, including FCM migration modeling in LCIA has a different 

goal of comparative risk minimization which accounts for impact trade-offs due to the entire FCM life cycle. 

Including use stage exposures to FCM in LCIA—which judging by preliminary calculation of PiFs has the 

potential for exposure exceeding environmentally mediated exposures by orders of magnitude—may help 

minimize exposure to chemicals within FCM, which is especially important for those which already exceed 

regulatory statutes, like DEHP, and may be due to recycling or other processes along the products’ life 

cycles.  
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1. Abstract  

A run-of-river (ROR) hydropower runs without water storage and uses the river flow. But it decreases the 

river flow and the river velocity, downstream and upstream the weir respectively and the substrate of the 

river can be affected. These physical impacts result in a lower community density, biomass and modify the 

population of macroinvertebrates and fishes. 

In this context, the aim is to develop new characterization factors (CF) for presence/absence of the 

freshwater species biodiversity in Life Cycle Assessment (LCA) of a ROR hydropower. 

The methodology is based on a database of 498 species with their preference score for substrate. For a 

change of substrate, a status is defined for each species: non-affected (NA), affected (A) or disappeared (D). 

Biodiversity impacts CFs of a ROR hydropower were known for 1 kWh produced by the plant in 

PDF.m².year/kWh and PAF.m².year/kWh. 

2. Introduction  

A run-of-river (ROR) hydropower runs without water storage and uses the river flow. Channel weirs regulate 

water levels, allowing a proportion of the flow to be diverted down a secondary channel to a turbine, before 

it returns to the main channel further downstream. Relatively large volumes of water are diverted, for a 

distance between diversion and return, which is tens to hundreds of meters. Moreover, the raised water levels 

upstream of weirs reduce the flow variability, the velocity and the turbulence and induce fine sediment 

deposition. These environment changes induce a lower biodiversity and a populations difference of 

macroinvertebrates and fishes [1]. The definition of biodiversity includes all levels, from genetics to 

population. In our case, biodiversity solely takes into account the presence/absence of different aquatic 

macroinvertebrates and fishes in freshwater. 

Physical, and consequently, ecological impacts of a ROR hydropower are investigated thanks to previous 

studies, but remain sparse. To determine the biodiversity impacts of a ROR hydropower, we wished to 

identify the changes in biodiversity according to changes of flow and velocity of the river. The objective is to 

create new characterization factors (CF) for Life Cycle Assessment (LCA) that addresses the biodiversity 

that is affected and disappeared due to a running ROR hydropower. 

3. Materials and methods 

3.1 Non affected, affected and disappeared status attribution  

The CFs’ development started with a literature search in order to identify the natural parameters of a river 

without a ROR hydropower. For each upstream to downstream river profile, physical parameters like speed, 

slope, and substrate type were searched for. Several databases which determine the preference/affinity of a 
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species with a physical parameter were found. The Tachet’s database for invertebrates including 472 

macroinvertebrates [2] and IRSTEA’s (Institut National de Recherche en Sciences et Technologies pour 

l’Environnement et l’Agriculture) information including 26 preferences fish curves were used. To build these 

curves, fishes were identified and measured in 50 m² area of the river for which substrate, velocity and depth 

were identified. The log-density value obtained during this sampling can be interpreted as habitat preference 

curve [3]. An example of each database is provided Table 1and Figure 1. 

 

Genus Species 
flags/boulders/cob

bles/pebbles 
gravel sand silt 

Spongilla lacustris 4 2 0 0 

Trochospongilla horrida 3 0 0 0 

Heteromyenia baileyi 3 0 0 0 

Table 1: Extract of the Tachet’s database 

 

 

 

Figure 1: Salmon preference for the river substrate (0: litter to 8: flags) 

 

These two databases generated a new affinity database of 498 species with preferences converted into scores 

on a scale of 0 (no affinity) to 5 (very strong affinity) for eight classes of substrate (flags, boulders, cobbles, 

pebbles, gravels, sand, silt and litter). The type of river (Epi-, méta- and hypo-; crenon, rithron and potamon) 

and the geographic affinity (Alps, Pyrenees, Vosges/Jura/Massif Central, Mediterranean lowland and 

Oceanic lowland) are also available in the database. For each decrease of grain size class, the affinity score 

could change. If the score is better when passing through a lower grain size class, the species is considered 

non-affected (NA). If the score is worse when passing through a lower class other than 0, the species is 

considered affected (A), otherwise the species is considered disappeared (D). At the end, the percentage of 

NA, A and D in the population is known for each substrate’s class diminution. The number of NA, A and D 

for each substrate’s class diminution according to the river type is presented for the Alps in Figure 2. This 

database is considered to include data coming from several temporal and geographical samplings. The 

seasonality is not taken into account and the data provided is supposed to present annual average affinity.  
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Figure 2: Number of NA, A and D species for a substrate class diminution according to the river type in the Alps 

3.2 Characterization Factors’ calculation 

The CFs are calculated for one geographic location and one river type. Information originating from nine 

ROR hydropower plants in France is available. For each flow or velocity decrease, a substrate variation is 

associated. Upstream the weir, the finest particules in suspension settle and the initial substrate changes to 

litter. Dowstream the weir, the flow decreasing induces a reduction of the shear force and thus a reduction of 

the granulometry deposited in the river bed. Thanks to the substrate type curves according to the slope and 

the flow for a mean cross section (average of the cross section of the river before and after the water was 

diverted), the change of granulometry can be determined as presented in Figure 3 
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Figure 3: Granulometry curves according to the slope and the flow for a mean cross section of 11.7 m²  

For each granulometry variation, the percentage of affected or disappereared species is known. For the 

riverbed exposure, it is considered that 100% of the species are disappeared in this surface without water. 

The Potential Affected Fraction (number (D+A)/initial population) and the Potential Disappeared Fraction 

(number D/initial population) are integrated over time and space. Time is 100 years of running of the ROR 

hydropower and space is the fraction upstream affected by velocity decrease, the fraction downstream 

affected by flow decrease or the surface of riverbed exposed in m². In order to establish a link between this 

impact and the production of the ROR hydropower, the impact is divided by the production in kWh for 100 

years. Finally, the impacts on biodiversity of a ROR hydropower are calculated in PDF or PAF.m².year/kWh 

and for the global freshwater compartment. When several plants were implented in the same river type and 

geographic location, results were averaged geometrically. 
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4. Results 

The new ROR hydropower impact on biodiversity CFs are presented in Table 2 for different river types and 

geographic locations.  

  
Flow loss Velocity loss 

Riverbed 

exposure 

Geographic location River type 
PAF.m².year/k

Wh 

PDF.m².year/k

Wh 

PAF.m².year/k

Wh 

PDF.m².year/k

Wh 

PDF.m².year/k

Wh 

Vosges/Jura/Massif Central Hyporithron 4.06E-10 1.96E-10 1.57E-12 8.99E-11 3.71E-13 

Vosges/Jura/Massif Central Hypocrénon 1.32E-11 5.28E-12 3.78E-11 1.96E-11 5.44E-14 

Vosges/Jura/Massif Central Epipotamon NA NA 3.35E-11 1.94E-11 NA 

Alps Metarithron NA NA 1.46E-09 8.40E-10 NA 

Oceanic lowland Epipotamon 2.01E-07 1.59E-07 2.33E-09 1.35E-09 2.95E-12 

Table 2: CFs for ROR hydopower plants for the 3 impacts identified in the river for the global freshwater compartment. 

NA: Not applicable 

 

5. Discussion and conclusion 

To date, there are more ROR hydropower plants in France than dams for which impacts are well known. 

ROR hydropowers were thought to have no impact on the river biodiversity because there is no water 

storage. In LCA, this impact is lacking whereas literature shows it. Thanks to this innovative work, it is now 

possible to determine the biodiversity impacts of ROR hydropowers in LCA. Nevertheless, these CFs were 

calculated using a limited number of data collected in plants and should be completed with new data.  
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1. Abstract  

Companies in the agri-food sector managing greenhouse gasses (GHG) emissions from their supply chains 

need site-specific impact analysis that incorporate important factors such as the spatial distribution of GHG, 

specific transportation distance and deforestation at farm level as variations of these factors alter 

environmental impact dramatically. Incorporating spatial and temporal factors into Life Cycle Assessment 

(LCA) is possible by coupling this tool with Geographic Information Systems (GIS). This paper applies LCA 

and GIS to explore spatial and temporal distribution of GHG emission from cocoa farming, complementary 

shade crop (banana) and the associated deforestation from implementing new cocoa farms. Results show 

that in any year deforestation accounts for more than 90% of total GHG and cocoa farms with higher than 

average GHG emissions tend to locate no farther than 40km from the marketplace. 

2. Introduction  

Businesses purchase agri-food products from particular regions in a country, not from all producing areas in 

a country at once. Also, impacts from farming depend on their location and vary over time [1]. These facts 

also apply to the chocolate industry, which in addition faces key challenges in its supply of cocoa such as 

poor road infrastructure, spatial distribution of farms and deforestation. These issues must be addressed by 

accounting for spatial variables over time. Therefore, companies using LCA to identify impacts in their 

supply chains need to incorporate spatial and temporal analytics in their analysis.  

LCA is a tool that identifies environmental impacts throughout the lifecycle of products and services by 

using country-level or global average information and taking a snapshot in time of the process, a fact that in 

many cases do not reflect on-the-ground reality [2]. 

Although there are only a few LCA studies on cocoa and chocolate, these do not account either for the 

spatial variability of farms, temporal variations of input requirements nor GHG emissions from the 

production of complementary shade crops such as banana [3][4]. Also, these studies identify cocoa farming 

to have the lowest contribution on overall GHG emissions from chocolate production, most likely because 

they don’t account for the deforestation incurred when implementing some of the farms. 

Therefore, there is a need to include spatial and temporal analytics into LCA studies. Geographic 

Information Systems (GIS) tools can complement LCA studies in accounting for spatio-temporal 

environmental impacts. The focus of this study is limited to GHG, and it does not consider crucial impacts 

such as those on water resources and land-use change (i.e. Biodiversity loss). This study explores how LCA 

and GIS can complement each other to identify spatio-temporal variations of GHG, taking as a case study 

cocoa farming in the region of San Martin region inPeru. 
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3. Methods 

We used data on cocoa farms from a census conducted by DEVIDA (National Commission for Development 

and Life Without Drugs) in the Tocache province, region of San Martin in Peru in 2011 (Figure 1) [5]. The 

census included farms of different age (implemented between 2006 and 2010) and at different production 

stages. 

 

 

 

 

 

 

 

 

 

Figure 1 : location of the study area, Peru (left) and Tocache province (right) 

 

We calculated global warming impact potential GWP100 (tCO2eq) for each of the first five years of a cocoa 

farm in the region using as a reference unit 1ha (all the data collected by the census was in terms of inputs 

used for 1ha) using OpenLCA, NREL US inventory data and IPCC2004 methodology. 

Cocoa farms in the study area use banana as shade crops. Therefore, banana had to be accounted for as a 

complementary produce; allocation between the two crops was done by mass. In the first two years, there is 

not cocoa production (young trees) but only banana production. In the third year there is both banana and 

cocoa production. From the fourth years onwards there is only cocoa production. Allocation between 

bananas and cocoa was applied to the GWP100 results by applying factors of 0.1 and 0.9, for banana and 

cocoa respectively. GWP100 results were then exported as a shapefile into a GIS system. 

3.1 Transportation GHG 

Using GIS and a shapefile of roads network, we calculated distances from each farm to the closest road and 

then from the roads to the market place. An emission factor was then applied to calculate GHG from 

transportation based on distance and weight of products transported from each farm to the marketplace each 

year. GHG for the third year of each farm had to be allocated between the load of cocoa and bananas 

transported that year using the same factors used to allocate GWP100. We based allocation on a mass 

(weight) basis. 

3.2 Deforestation GHG 

In their first year, some farms cause deforestation when implemented. We estimated deforestation (in 

hectares) for each farm by overlapping them with a forest cover layer for 2011. If in 2011 an area is 

classified as forest but based on the census data we know that a cocoa farm exists in that given area, then we 

can assume that such farm has caused deforestation when it was implemented. 
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To calculate GHG from deforestation we used IPPC’s values of GHG for tropical forests (augmented in 75% 

to account for uncertainty) and for cropland (reduced in 75% to account for uncertainty) [6].  

We conducted allocation of deforestation among the first three years of production. Given the fact that 

deforestation occurs in the first year of the farms when no cocoa is produced, allocation was necessary to 

equally distribute deforestation GHG among the first three years of production. We did not consider 

allocating deforestation GHG throughout the productive lifetime of cocoa farms (about 25 years) because 

that would have reduced the perceived impact of deforestation and could constitute a negative incentive for 

companies sourcing cocoa in the area.  

3.3 GHG for production years 

We calculated GHG for the years 2008- 2010 accounting for 155 farms in 2008, 909 farms in 2009 and 1,187 

farms in 2010, all producing cocoa at different growing stages (first to third production years). Calculations 

were made to account only for cocoa production (farming and transportation) and deforestation (farming, 

transportation and deforestation). Finally, we used spatial statistics to conduct grouping analysis to farms 

producing cocoa in 2008-2010. The variables used were total distance to the marketplace and GHG 

emissions from cocoa production for the given year. 

4. Results 

- Over time, farms with 50% or more GHG than the regional average tend to locate farther from the 

marketplace, but no farther than 40km in any case; 

- Over time, farms with 30% or less GHG than the regional average tend consistently concentrate 

between 50km and 95km from the marketplace; 

- Farms with lower than average GHG emissions from cocoa production tend to be located farther 

than 50km from the marketplace but no farther than 95km;  

- Considering only cocoa production (no banana production or deforestation), in any given year 

farming accounts on average for 97% of the total GHG emissions whereas transportation for 3%;  

- Considering only banana production (no cocoa production or deforestation), in any given year 

farming accounts on average for 45% of the total GHG whereas transportation for 55%;  

- Considering cocoa production and associated deforestation (no banana production), in any given year 

deforestation accounts on average for more than 90% of the total GHG; in the years 2008 and 2009 

GHG emissions from deforestation accounted for more than 98% of the total emissions . 

5. Conclusions 

- For the study period of 2006-2010, GHG emissions from deforestation were on average 33 times as 

much as those from cocoa production (being up to 68 times in 2008) even though GHG emissions 

from deforestation increased on average 17% per year whereas GHG emissions from cocoa 

production (farming and transportation) increased on average 261% per year. 

- Spatio-temporal analysis is key to understand how the different processes required for cocoa 

production (i.e. deforestation, banana growing, transportation, different production levels) contribute 

to overall GHG emissions. 
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1. Abstract 

In the context of life cycle impact assessment, the evaluation of land use impacts needs to be inclusive, 

incorporating models that allow the quantification of the impact of land use on soil. Soil is a key 

compartment, determining the supply of ecosystem services as well as supporting biodiversity. The present 

study reviews and compares a set of models for relating land occupation and land transformation to soil 

indicators at midpoint level, addressing soil properties and functions as well as threats to soil. Based on a 

systematic evaluation of available models, considering among other aspects their scientific soundness and 

ease of applicability for LCA practitioners, this work highlights their strengths and limitations. This allows 

identifying valuable approaches and research needs for improving the assessment of land use impact on soil 

in an LCA. 

2. Introduction  

In recent years, more comprehensive approaches have been adopted for the Life Cycle Impact Assessment 

(LCIA) of land interventions. The land use impact pathway has been updated and new models have been 

incoporated, mostly addressing biodiversity loss (Koellner et al., 2013). Yet, the assessment of land use 

should be more inclusive, incorporating models that allow the quantification of the impact of land use on 

soil, as it determines the supply of ecosystem services –supporting, regulating, and provisioning services– as 

well as supports biodiversity. Thus, land use characterization models should cover indicators on soil 

properties, its functions, and threats, all of them typically covering a midpoint level of the impact pathway.  

The present study reviews and compares a set of models for relating land occupation and land transformation 

to soil indicators at midpoint level, addressing soil properties and functions and/or threats to soil. A 

systematic evaluation has been conducted, which identifies the strengths and limitations of the reviewed 

models, and highlights valuable impact characterization models. 

3. Material and methods 

Based on a systematic literature review, land use models were selected for evaluation, fulfilling minimum 

requirements: (i) having indicators for assessing soil properties, functions and/or threats; (ii) being at least to 

some extent compatible with LCA; (iii) availability or enabling calculation of characterization factors (CFs).  

Selected models were evaluated using an updated version of the International Life Cycle Data System 

(ILCD) handbook [1] set of criteria. The criteria focus on: (i) completeness of the scope, (ii) environmental 
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relevance, (iii) scientific robustness & uncertainty, (iv) documentation, transparency & reproducibility, (v) 

applicability and (vi) stakeholders’ acceptance. 

Based on the review, the land use impact pathway was revisited including the last developments [2-5]. This 

impact pathway was used as reference cause-effect chain during the models’ evaluation and includes the 

functions/properties of and threats to soil, which belong to a midpoint level, and their link to endpoint 

indicators and the Areas of Protection (AoPs). 

4. Results  

4.1 Models for evaluation  

A total of 11 models were pre-selected among those resulting from our literature review: 

- Brandão & Milà i Canals 2013 [6], is an update of the model currently recommended in the ILCD 

handbook, using Soil Organic Carbon (SOC) as stand-alone soil quality indicator. The update model has CFs 

for the world. 

- LANCA [7] and SALCA-SQ [9], and an application of LANCA, Saad et al. (2013) [8] as soil 

properties/function models. LANCA calculates the functions the soil can provide under different land uses 

and management practices. SALCA-SQ, similarly to LANCA, focuses on soil properties and threats to soil. 

Both LANCA and SALCA-SQ require complete, site-specific inventory data, including also land 

management practices and miss ready applicable CFs to elementary flows. Saad et al. (2013) develops a 

global application of LANCA, including some methodological modifications, e.g. it uses land use inventory 

flows directly and the provision of spatially differentiated CFs. 

- model related to soil threats: Nuñez et al. (2010) [10], calculates a desertification index based on aridity, 

erosion, aquifer over-exploitation and fire risk. Garrigues et al. (2013) [11] focuses on soil compaction as a 

result of the use of agricultural machinery and calculates auxiliary indicators i.e. water erosion and SOM 

change. Nuñez et al. (2013) [12],  computes the loss of Net Primary Production (NPP) and emergy as 

indicators of damage on ecosystems and resources, respectively. The three models show limitations 

regarding the availability of CFs: while CFs [10] and [12] requires specific LCI flows, CFs for [11] are not 

detailed in the study. 

- models on ecosystem thermodynamics: exergy by Alvarenga et al. (2013) [13], and Human Appropriation 

of Primary Production (HANPP) by Alvarenga et al. (2015) [14]. [13] computes exergy in a differential way 

for natural and human-made land: exergy of biomass extracted is calculated for natural land, while the 

exergy associated to NPP is used for human-made land. Both models provide CFs associated with land use 

flows. 

- models not specifically linked to LCA based on spatial datasets, Gardi et al. (2013) [15] and Burkhard et al. 

(2012) [16]. [15] presents a composite indicator on pressures to soil biodiversity including land use-related 

data (agriculture intensity, land use change), threats to soil (compaction, erosion, contamination, SOC loss), 

and threats to biodiversity (invasive species). [16] calculates indicators on ecosystem integrity and ecosystem 

services –provisioning, regulating and cultural– directly associated to land use –based on expert judgment for 

several case studies. Among the ecosystem services indicators, the model includes soil functions indicators 

(erosion regulation, water purification), endpoint indicators (water provision). Among the ecological 
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integrity indicators, it includes soil functions (SOC storage), and endpoint indicators (biodiversity, exergy 

capture).  

4.2 Model evaluation results and outlook 

The models evaluated were overall complete in terms of having a consistent link to endpoint indicators and 

closeness to inventory data, except for [11] and [9]. As for the geographic coverage, models [9], [15] and 

[16] did not have a global geographic coverage, as they are based on site-specific data. Among the 

environmental relevance criteria, three models stand out, [6], [13] and [14], which provide different CFs 

values for different land use types. The coverage of ILCD elementary flows is low overall, with the 

exception of [14]. Only [6] and [8] compute the impact of both occupation and transformation according to 

the consensus method −transformation impact computed as area times quality change, considering also the 

recovery/restoration time,and occupation impact as area times quality change times occupation time. And 

only two models –[7] and [14]− were able to distinguish between extensive and intensive land uses.  

Models showed to be scientifically robust overall. All models have been peer reviewed, stated their value 

choices –although generally an explicit, complete list of them was not reported. On the other hand, only three 

models, [11], [14] and [15] are up-to-date, being the remaining models only partially up-to-date, since they 

do not integrate the latest model developments in their respective fields. Most LCA models have conducted 

case studies, but none reported to be ready-to-use for products relevant in the market. 

As for uncertainty assessment, only the model by [15] explicitly states to have undergone input data quality 

tests and uncertainty assessment. 

The overall CFs availability, applicability and replicability is relatively low. As for LCI data, models have 

the required LCI flows available overall, although for many cases those do not correspond to the ILCD land 

use inventory flows and considerable efforts for mapping may be needed. Inventory data for [9], [10], [12] 

and [15]− are only partially available, requiring site specific processing of spatial data. Comprehensiveness 

was also challenged by some models mostly due to the limited coverage of flows by the impact assessment, 

e.g. models only addressing agricultural activities/land use types, e.g. [9], and [11], which might pose a bias 

in the land use impact assessment by these models. In conclusion, several valuable approaches appear for 

addressing the impact of land use on soil in a LCA context, including also two models not coming from the 

LCA community. However, further analysis are on going, especially for the assessment of the applicability 

[17]. 
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1. Abstract  

Environmental emissions of nitrogen (N) from agriculture surplus may enrich coastal waters and trigger 

marine eutrophication impacts. We estimated these impacts for spring barley production in Denmark, under 

present and future climatic conditions with double carbon dioxide concentration and 5 °C increase. 

Characterised emissions of airborne (NH3 and NOx) and waterborne (NO3
-
) forms result in an endpoint 

impact of 2.35*10
-12

 (North Sea) and 8.47*10
-12

 species.yr (Baltic Sea) under present conditions per kg 

spring barley produced. The future scenario shows 67% increase on both spatial units. Spatial 

differentiation shows 3.6 fold higher impacts in the Baltic Sea in any of the temporal scenarios. The need for 

food/feed, efficacy of increasing fertilizers application, and increased competition for productive land may 

alter emissions. Biological processes, species metabolism and displacement, or sensitivity to hypoxia under 

future pressures may alter the impacts assessment. 

2. Introduction  

Agriculture and energy production are the main sources of environmental emissions of reactive nitrogen (N) 

[1]. The The application of fertilizers in agriculture introduces NH4
+
 and NO3

-
 to soil and water, and NH3 to 

air, whereas the combustion of fossil fuels adds NO to air[2]. In agriculture practices, the N added to the soil 

may exceed plant assimilation. This surplus emitted to the environment may constitute the main cause for 

anthropogenic fertilization of freshwater and marine ecosystems that lead to aquatic eutrophication impacts. 

The global increasing application of N in agriculture and the energy production in the last 150 years led to 

more than 10-fold increase in the N-loadings to the environment [1] 

Barley (Hordeum vulgare L.) is cultivated in 21% of the European Union’s crop area [3], with a larger share 

in the Nordic countries, e.g. almost 50% in Denmark [4]; and expected to increase in the future by benefiting 

from the effect of climate change [5]. As such, nutrient supply will most likely increase to match crop 

requirements with potential N emissions increase [6].  

Marine eutrophication (ME) is a syndrome of ecosystem responses to the increase of N availability in the 

euphotic zone of marine waters [7]. The N-enrichment of coastal waters promotes planktonic growth and 

often involves depletion of dissolved oxygen (DO) in bottom waters down to hypoxic or anoxic levels with 

potential impacts on exposed species [8][9][10]. 

We aim at estimating present and future ME impacts by combining a novel LCIA modelling approach and a 

LCI model case study. 

3. Methods 

We applied the LC-IMPACT methodology [11] to estimate the impacts on ME originating from N-

enrichment in a case-study representative of spring barley production in Denmark. The life cycle inventory 

(LCI) model delivers emissions of NO3
-
 to groundwater and NH3 and NOx to air calculated per ha of 
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cultivated land [12] and kg yield. The characterisation method in the impact assessment (LCIA) includes: (i) 

environmental fate of waterborne N from nitrate emissions (NO3
-
-N) and airborne N deposition (NH3- N and 

NO-N) [11]; (ii) ecosystem exposure expressing the potential of the receiving spatial units to assimilate N 

into planktonic biomass and to respire the sunken organic fractions in bottom waters where in consumes DO 

[13], and (iii) effect on benthic and demersal marine species based on their sensitivity to hypoxia by applying 

a Species Sensitivity Distribution (SSD) method [14]. 

We adopted the Large Marine Ecosystems (LME) biogeographical classification system [15] and used 

LME#22 (North Sea) and LME#23 (Baltic Sea) as spatial units receiving the emissions and for which the 

impacts were estimated. We further compare ME impacts under current and future climatic conditions. 

Emissions from future crop yields were obtained from experiments mimicking a worst case climate scenario, 

i.e. double CO2 concentration and 5 °C temperature increase, expected by the end of the century according to 

IPCC 2007 A1FI scenario [12]. Details on the experiment and scenarios modelled are shown in Table 1. The 

LCI model results of emitted quantities per emission route are included in Table 2. 

4. Results and Discussion 

Preliminary results (Figure 1) show an endpoint impact of 2.35*10
-12

 species.yr (using ReCiPe’s marine 

species density [16]) for emissions to the North Sea and 8.47*10
-12

 species.yr to the Baltic Sea, under present 

conditions, per kg of spring barley produced. The results for the future scenario show an increase to 3.92*10
-

12
 species.yr (North Sea) and 1.41*10

-11
 species.yr (Baltic Sea), per kg of spring barley produced, 

corresponding to a 67% increase in both spatial units. 

Spatial variation on the results (3.6 fold higher in the Baltic Sea) arises from different marine primary 

production rates (embedded in the exposure model) and species sensitivity to hypoxia (input to effect model) 

on both receiving marine coastal areas. Temporal variation towards the future climate scenario is justified by 

the decreased barley yield (-26% in same productive area), increased nitrate leaching (+24%), and assuming 

the same airborne emission rate per hectare. The impact model is kept constant. The uncertainty analysis of 

the LCI model identifies significant changes of the coefficient of variation from the baseline to future 

scenarios [17], thus stressing the need to improve the modelling of N emissions for agricultural systems. 

  

Scenarios Present Future 

Description 

average cultivation sandy loam 

soil, i.e. JB6 of the Danish soil 

classification 

[CO2] = 700 ppm (ca. twice the 

amount of today) 

Temperature increase: +5ºC 

Fertilizer application 
half of the N demand fulfilled by mineral fertilizer (NPK) and half by 

animal manure (50% pig slurry and 50% dairy cattle slurry) 

Crop yield [kg/ha] 5,700 4,207 

Functional unit is production of 1 kg of DM (dry matter) barley grain for malting 

Nitric oxide (NO) to air [kg/ha] 1.77 1.77 

Ammonia (NH3) to air [kg/ha] 7.34 7.34 

Nitrate (NO3
-
) to grwater [kg/ha] 126 157 

Table 1: Present and future scenarios for the barley production system [12] and LCI elementary flows 
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Emissions Present Future Unit 

Nitric oxide (NO) to air 1.45*10
-4

 1.96*10
-4

 kgNO·kgbarley
-1

 

Ammonia (NH3) to air 1.06*10
-3

 1.43*10
-3

 kgNH3·kgbarley
-1

 

Nitrate (NO3
-
) to groundwater 4.99*10

-3
 8.43*10

-3
 kgNO3

-
·kgbarley

-1
 

Characterisation Factors (CF) North Sea (LME#22) Baltic Sea (LME#23) Unit 

NO to air 31.92 115.23 

PAF·m
3
·yr·kgN

-1
 NH3 to air 31.28 112.90 

NO3
-
-N to water 128.20 462.78 

Table 2: Emission flows to environment for the present and future barley production scenarios. 

 

  

Figure 1: Impacts to marine eutrophication in the North Sea and Baltic Sea from the barley production in the present 

and future scenarios covered [species.yr]/FU 

 

5. Conclusion 

FAO’s forecasting for the 1995-2030  

 the increase need for food and feed to sustain population increase (+40%), for efficacy of fertilizers 

application (+37%), and land use competition (only +7% arable land area) as reasons for intensified N 

emissions in addition to climate change effects. As for the LCIA method, future climatic conditions, which 

may alter rates of biological processes or organisms’ metabolism, displace species (translation effect), or 

increase exposed species’ sensitivity to hypoxia, suggest underestimation of ME impacts in that scenario. 
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1. Abstract  

In recent years, scientists worldwide have worked successfully on the implementation of land use aspects 

into Life Cycle Assessment (LCA) [1-6]. However, there are still challenges to be met to get valuable and 

comparable results when using different land use calculation methods. In order to calculate land use 

information, land use types have to be determined and distinguished. The Department Life Cycle 

Engineering at the University of Stuttgart (LBP-GaBi) conducted a study to analyse the influence of the 

choice of the classification system and the respective land use types on the soil quality inndicators used in 

LANCA
®
 (Land Use Indicator Value Calculation) [3-4, 6]. Various classification systems like Global Land 

Cover 2000, GlobCover or the WWF Terrestrial Ecoregions of the World are investigated and analysed with 

respect to the application for the particular land use types [7-9]. Finally, based on these findings an 

approach for a standardized determination of land use types is developed [10].  

2. Introduction  

During the last years, the scarcity of land became an issue in science, politics and society. Land use caused 

by industrial processes such as mining, construction, and transportation, as well as agriculture and forestry, 

has an immense impact on the soil and land quality. It is therefore important to include land use aspects in 

life cycle thinking to assess products regarding their potential environmental impacts. Several methods were 

successfully developed during the last years to address e.g. ecosystem services in LCA [1-5].  

The UNEP/SETAC working group on “Operational Characterization Factors for Land use Impacts on 

Biodiversity and Ecosystem Services” proposes a framework for the calculation of land use impacts [2]. For 

the assessment it is important to determine land use types as essential inventory information that influences 

the results of the impact assessment. Land use types describe the land cover at different times during a use of 

a patch of land (see Figure 1). 

The determination of particular land use types in the UNEP/SETAC framework [2] shows several gaps: 

No consistent approach for the identification of land use types 

No consistent matching of the available global land use datasets 

Differing definitions and suggestions for an appropriate reference situation 
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Due to the mentioned gaps, it is important to propose a methodological approach for a standardized 

determination of land use types in order to improve the comparability of the available land use calculation 

tools. 

Another gap of the framework document is the correlation of the land use types with indicators from certain 

ecosystem services, like the soil funcionality of a land area. The calculation model LANCA
®
 (Land Use 

Indicator Value Calculation) [4], which was developed by the Department of Life Cycle Engineering at the 

University of Stuttgart (LBP-GaBi), allows a comprehensible correlation with indicator specific coefficients, 

however the definition of the land use types is vague and the availability of global land use data for the 

determination of land use types via GIS is not given. 

Based on the gaps of the UNEP/SETAC framework and using the application example of land use impact 

calculation from LANCA
®
, a new method for the determination of land use types is developed [10]. 

3. Method 

With the newly developed approach land use types are consistently derived from global land classification 

systems and correlated to indicators of ecosystem services related to soil functionality. The land use types 

and their determination and integration in the calculation model are displayed below. 

 

Figure 1: Determination of land use types for the calculation of land use impacts 

 

The use of a patch of land is described by four land use types: The land use type before the land use under 

investigation, the specific land use under investigation, the land use type which evolves after a certain 

regeneration time without anthropogenic influences and the reference land use type. In order to match 

different land area characteristics or rather attributes to the defined land use types, land use datasets, which 

can be applied on a global scale, should consistently be used for each land use type. The classification 

systems of these land use datasets should be globally and freely available on a sufficiently fine spatial scale.  
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An analysis of several global land use classification systems identified the following global land use datasets, 

which can be correlated to the land use types, because they meet the mentioned requirements best:  

- Land use type before the use under investigation (Qbefore in Figure 1)  

GlobCover [7]: This dataset is based on a global land use classification from 2009, and is 

appropriate for the use as land use type before the use under investigation, as it is up-to-date. Besides 

the data show high accuracy and are globally available. 

- Land use type under investigation (Qoccupation in Figure 1)  

same classification data from GlobCover can be used, however the land use type is known by the 

user. 

- Land use type after regeneration (Qafter in Figure 1)  

The vegetation forms which will likely evolve depending on the specific land use under 

investigation, on the biogeographic region and on the considered regeneration time, are matched 

with the GlobCover classification dataset. The GlobCover data which correspond to natural land area 

attributes like forest or herb and shrub vegetation can be defined as this land use type.  

- Reference land use type (Qreference in Figure 1)  

 Global land Cover 2000 (GLC 2000) [8]: land use mix from the year 2000 as reference type.  

GLC 2000 is based on the same classification system as GlobCover, but for the year 2000, and thus 

can be consistently used. 

The land use data of the global datasets can be displayed in corresponding geographical maps for a GIS 

related identification on a global scale. In order for the determined land use types to show influence on the 

calculation results, the global land use data are correlated with indicator specific coefficients. The 

coefficients are derived dependent on the attributes of a given of land influencing the respective indicators. 

The indicators considered (e.g. Erosion Resistance of a soil) show different qualities for each land use type. 

A specific land use leads to quality changes of the respective indicator.  

The following example shall quantitatively demonstrate the influence of the choice of different classification 

systems for land use types, particularly the choice of another reference land use type, like the biome 

classification of the WWF – Terrestrial Ecoregions of the World (TEOW) [9]: 

- The indicator considered is the Erosion Resistance of a soil, which is subject to a quality change by the 

specific land use.  

- The land use type under investigation is a mineral extraction site.  

- The reference land use type corresponds to a mixed tree forest if considering the WWF-Terrestrial 

Ecoregions of the World classification and it is defined as cropland if considering the Global Land 

Cover 2000 classification. The results are presented in Table 1.  

 Occupation impact  

= indiator quality (reference land use type) – indicator quality (land use type 

under investigation) * area * land use time 

Indicator GLC 2000 as reference WWF-TEOW as reference 

Erosion in t 332 1.162 

Table 1: Influence of the choice of different reference land use types 
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For the calculation of the occupation impact, the Erosion Resistance quality difference between the particular 

reference land use type and the land use type under investigation is multiplied with the evaluated area and 

land use time to determine the quality change. The choice of the WWF-TEOW results in a higher quality 

change of the Erosion Resistance rate at the evaluated location.  

4. Conclusion 

The developed approach to determine the land use types fits in the UNEP/SETAC guidelines for land use 

impact assessment [2] and provides an improved and more applicable operationalization to evaluate land use 

impacts for the integration in LCA. The approach proposes and facilitates a consistent determination of land 

use types on a global scale and it is possible to identify land use types with the support of geographical 

information systems.  

The choice of the reference land use type for example has a high influence on the results, which 

demonstrates the importance of consistency in the determination of land use types. With the developed 

method the determination of the land use type is made consistent and the calculation results of different 

methods are more reliable and comparable. Therefore one gap in land use modeling is closed. 
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1. Abstract  

Due to water scarcity in a growing number of regions worldwide, the management of water resources has 

become central in international debates. In this context, the scientific community has actively worked on the 

development of tools and methods to address the potential environmental impacts related to water within the 

context of Life Cycle Assessment. The objective of this study was to develop and verify the applicability of a 

modified ecocentric Water Scarcity Index (WSI) starting from the WSI of Smakthin and the method of the 

Variable Monthly Flow (VMF) corrected with the Climate Moisture Index (CMI). Results from the 

application to a tomato sauce show that the introduction of VMF allowed to differentiate water scarcity 

impacts on a monthly basis while the introduction of CMI allowed to reflect the increased need of ecosystems 

that depends on surface water resources when climate conditions become less favourable. 

2. Introduction  

Due to increasing water scarcity in a growing number of regions worldwide, water management has become 

a major challenge that affects users, policymakers and businesses [1]. In this context, the scientific 

community has actively worked on the development of tools and methods to address the potential 

environmental impacts related to water within the context of Life Cycle Assessment [2]. Several impact 

assessment methods have been published in the past few years trying to address the impacts of degradative 

and consumptive uses on humans and/or ecosystems in water scarce regions [3]. One of the widely accepted 

metrics to address this impacts on ecosystems is the Water Scarcity Index (WSI) presented by Smakhtin et 

al. [4]. The WSI was developed to quantify the pressure of anthrpogenic watere use on surface water-

dependent ecosystems. According to a literature review, this index belongs to the family of the so-called 

ecocentric scarcity indices [5] and is assessed as a ratio of water withdrawals for human activities [m3/year] 

on the long-term Mean Annual Flow in a river (MAF) [m3/year] minus the Environmental Water 

Requirements [m3/year] (EWR). Despite its acceptance, this metric does not address temporal and spatial 

climate variability [6][7]. The objective of this study was to develop and verify the applicability of a 

modified ecocentric WSI to overcome the limitations related to climate and temporal variability of the 

method proposed by Smakthin et al. [4]. To test the applicability of the proposed modified index, a case 

study of a tomato sauce produced in the United States (US) has been performed. 

2. Materials and Methods  

2.1 Development of the modified Ecocentric Water Scarcity Index 

To allow for the quantification of monthly values of the WSI, the MAF and EWR have been modified. MAF 

has been replaced by adopting the concept of the mean monthly flow [m3/month] (MMF) [6] that is 

quantified as the sum of the monthly base flow and the monthly quick flow of the water body under study. 

mailto:scipioni@unipd.it
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To better reflet local climate variability, the Climate Moisture Index (CMI) has been used to correct the 

values of the monthly quick flow yielding a modified version of the MMF. The CMI is an aggregate measure 

of potential water availability imposed solely by climate variability [7]. Moreover, the EWR used in 

Smakthin [4] has been replaced by adopting the method of the Variable Monthly Flow of Pastor et al. [6] 

corrected by the modified MMF (equation 1): 

 

 

 

The proposed modified econcetric WSI is then formulated according to equation 2:  

 

2.2 WSI case study 

To test the applicability of the proposed method, the modified ecocentric WSI has been applied to assess the 

impacts on water scarcity of a tomato sauce with life cycle processes located in different locations in the US. 

Table 1 summarizes the main processes and related locations. 

 

Tomato sauce production process Location 

Tomato growing and processing Florida (North of the state) 

Granulated Sugar production Lousiana (Missisipi area) 

Soybean Oil production Ohio (Ohio river area) 

Primary Packaging New York State  

Tomato sauce production New York State 

Other processes (Distribution, Use, End of Life) Different location in the northeast of the US 

Table 1: Most relevant processes related to the  tomato sauce 

The water scarcity footprint has been assessed according to ISO 14046 requirements. The objective of the 

case study was to identify the potential hotspots related to the assessed tomato sauce. The function of the 

product (functional unit of the case study) is to provide high quality tomato sauce corresponding to a 

nutritional value of an equivalent of 6 cups of vegetables. The reference flow is defined as 680g of tomato 

sauce packed in a glass jar. The system boundaries include all the processes of the life cycle stages of the 

tomato sauce except the transport to the consumer from the distribution center and the use of energy to warm 

the sauce. Water use data (input and outputs of each process units) were either primary data collected 

directly from the suppliers and producers or secondary data from Ecoinvent 3. The modified ecocentric WSI 

was quantified for each of the locations under study. The base flow and the quick flow were determined 

using the software Web Based Hydograph Analysis Tool [8]; the CMI was assessed starting from 

CLIMAWAT [9] data on local climate conditions. 
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4. Results and discussion 

Figure 1 shows the results of the quantification of the water scarcity footprint (95,87 liters) using the 

modified ecocentric WSI expressed on a monthly basis. Tomato growing and processing resulted to have the 

biggest footprint followed by granulated sugar production. To effectively reduce impacts on surface water-

dependent ecosysetms,  the water use in agricultural processes should be optimized. By accounting for 

climate varaiability it was possible to identify that pressure on ecosystems is higher in the summer time when 

tomatoes are grown outdoors. 

 

 

Figure 1: Results of water scarcity impact assessment for the tomato sauce case study  

 

Figure 2 contrasts the results of the proposed EWR (EWR modified) with the EWR originally presented by 

Smakthin et al. [4]. Results show that when compared to the original EWR, EWR modified generally yields 

higher values. This means that more water is allocated to ecosystems. These effects depend on the 

introduction of CMI to correct MMF that reflects the potential increase of required water by ecosystems 

when evapotranspiration is higher due to climate conditions. It has to be noted that the proposed WSI index 

takes into account the human water withdrawals. The choice of using withdrawals instead of consumption, as 

proposed in many recent models of assessing water scarcity [3], is related to better represent the water stress 

on ecosystems on a monthly basis. 

 

Figure 2: EWR [4] versus EWR modified in the case of the Ohio River(2012) 
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5. Conclusion 

In this study, a proposal of a modified ecocentric WSI is presented. This index, starting from the method 

presented by Smakthin et al. [4], has been modified to better represent the regional and temporal variability 

related to local climate conditions. The modified WSI has been developed using the CMI to consider the 

potentially increased wate requirements by ecosystems when evapotranspiration is higher mainly because of 

higher temperature, increased solar radiation andd dryer conditions. The applicability of the proposed 

ecocentric WSI was demonstrated in a case study of a tomato sauce. In the case study, it was possible to 

identify the hotspots related to water scarcity and the time of the year when these generate higher pressure on 

ecosystems. 
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1. Abstract  

Sterilisation is a necessary process to ensure the safety of shelf stable milk. Today’s treatments rely on high 

temperatures to achieve it, but at the same time the product experiences losses of nutritional values. Ultra-

High Pressure Homogenisation is an innovative processing technology that, combining sterilisation and 

homogenisation, provides a stable emulsion and has the potential of producing higher quality products. This 

study investigates the environmental impacts of UHPH for the production of milk and fresh cheese. The 

technology is compared to a common thermal process, Ultra-High Temperatures (UHT); moreover power 

laws are used to evaluate the consequences of scaling up. Keeping in mind the immaturity of the technology, 

the results show the potential of UHPH to reduce energy consumption and food waste, representing a valid 

alternative to existing technologies. 

2. Introduction  

The food industry is a major source of greenhouse gas emissions, for instance dairy production contributes to 

2.7% of total global emissions, 4% if meat is included as a coproduct [1]. The food industry therefore is in 

need for innovative ways to lower the impact of its products. In this research milk and fresh cheese 

production are taken as a case study for the environmental assessment of an innovative food processing 

technology, Ultra-High Pressure Homogenisation (UHPH). UHPH combines homogenization and 

sterilisation in a single step through the application of pressure up to 400MPa. The use of UHPH milk for the 

production of fresh cheese is then analysed, accounting for increased shelf life and yield. 

3. Ultra-High Pressure Homogenisation 

Shelf stable milk undergoes sterilisation to ensure the product’s safety without refrigeration. The most 

common treatments applied today rely on the application of high temperatures to reduce the microbial 

(sporulated) flora, but strong thermal processing results in loss of nutritional values [2]. Research on the 

combination of dynamic high pressure and temperature, has shown successful results for sterilisation of food 

item with the potential of preserving the quality of the product [2]. UHPH relies on dynamic pressure from 

200MPa up to 400MPa alimented by pistons or plungers, which force the liquid to pass through a narrow 

valve gap. Equipment usually has a high- and a low-pressure valve, which in combination with the 

chamber’s geometry are determinant for successful processing [3]. Homogenisation is due to a combination 

of pressure, shear stress, turbulence, cavitation, impingement and temperature; in fact the shear effect causes 

an increase of ~20 °C per 100MPa. The application of UHPH for sterilisation purposes is a novelty. Amador-

Espejo et al. [4] and Georget et al. [5] investigated the parameters for spore inactivation finding pressure of 

>300MPa, inlet temperature ~80 °C and a valve temperature of >145 °C for ~0.24s to be effective. These 

parameters were used to test pilot scale UHPH equipment.  
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4. Methods 

To provide an environmental assessment of UHPH, the technology is compared to indirect Ultra High 

Temperature (UHT) treatment by means of life cycle assessment (LCA). The processing of milk is taken as 

baseis for comparison, and its effects on the supply chain of fresh cheese are accounted as well. UHT was 

chosen for the comparative part of the study to assess the performance of emerging versus conventional 

treatments. Moreover, tests were conducted for two different sizes of UHPH equipment, providing the basis 

for scaling considerations. Pilot scale data were collected for the following cases: UHPH equipment 

(Stansted Fluid Power, UK) with capacity of 90 l/h was tested with water, phosphate buffered saline (PBS), 

skimmed milk (1.5%) and whole milk (3.5%); UHPH with capacity of 360 l/h (DIL Prototype, Germany) 

with water; and an 85 l/h indirect UHT system (TetraPak line, Sweden), comprising upstream 

homogenisation, with water. As the test on UHPH 90 l/h showed no difference in energy consumption for the 

four substances, water alone was used for the following equipment in order to determine the energy 

requirements and product flow. The functional unit set for the study was the treatment of 1000 l of raw milk 

to reach commercial sterility. Processing is the only stage included for the comparative part. For cheese 

production distribution, retail, consumer and end-of-life stages are included as well. The indirect UHT 

processing line was built to include pre-heating of the product to 80 °C, as for UHPH, sterilisation at 145 °C 

for 4 seconds and cooling. Moreover a cycle of cleaning in place (CIP) was included for both machineries. 

Consequential LCA modelling was applied in the inventory phase, impact assessment results were obtained 

using “ReCiPe midpoint (E), Europe”. Calculations were performed with the software SimaPro 8.0.4.30 

(PRé Consultants, The Netherlands). Data on the production of fresh cheese from UHPH treated milk were 

taken from Escobar [6] Zamora and Guamis [7], who found an increase in shelf life from ~13 to ~19 days 

and yield from 11 to 14%. The boundaries are set to include stages from production to disposal. The increase 

in shelf life was included deriving the predicted waste percentage according to days of life left modelled by 

WRAP [8].  

Pilot scale results can differ according to the used equipment and a number of parameters vary with scale. It 

is therefore important to include scaling considerations in LCA studies in particular when looking at 

novelties. In order to estimate the possible future development of UHPH for industrial application, power 

laws are used. Caduff et al [9] tested this method for a series of engines. Scaling laws are in the form i = 

a*x
bi
, where “i” is a key parameter, “a” a normalisation constant and “b” the scaling factor. The same 

relationship is then applied to environmental impacts. In the case of the considered UHPH equipment, both 

homogenisers are positive displacement pumps of the reciprocating group. For a given pressure in volumetric 

pumps, capacity and energy consumption are linearly related to speed. These parameters are taken into 

consideration to assess the consequences of industrial application. Additionally empirical data form similar 

pressure pumps were integrated to provide an overview of the technology’s potential. 

5. Results and discussion 

UHPH showed lower energy consumption combining homogenisation and sterilisation in a single process 

and heat loss was predicted as a hotspot [7]. UHPH outperform UHT at pilot scale. For both systems the 

process of sterilisation is the most energy intensive followed by pre-heating. At industrial level indirect UHT 
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can provide up to 90% energy recovery [10] through the use of heat exchangers, which minimise the impact 

of heating and cooling, making it a more energy efficient solution. For this reason the technological 

readiness level was included in the study’s discussion. The inclusions of heat exchanger can potentially 

minimise UHPH energy requirement for heating and cooling, achieving a minimum of energy recovery of 

57% and a decrease of 43% of emissions of kgCO2eq. These considerations are particularly important for the 

assessment of processing technologies as they are usually evaluated in economic terms. Electricity 

production is the activity that is mainly responsible for the selected impact categories: climate change, 

freshwater eutrophication, and human, marine and freshwater ecotoxicity. When energy consumption 

becomes relatively less important cleaning agents and wastewater treatment contribute in particular to 

climate change and eutrophication.  

The model to calculate the consequence of increased shelf life is built for milk but the authors suggest its use 

for product with a similar durability and consumption pattern. Fresh cheese has a similar shelf life but 

frequency of consumption varies according to countries. According to WRAP [8] there is no previous 

empirical study on this topic. It is acknowledged the difficulty of modelling consumers’ behaviour and the 

deriving uncertainties. The analysis of fresh cheese production, which excludes farm stages knowing they 

represent the biggest sources of emissions, shows that 10% of the impacts on climate change derives from 

processing. Transport and refrigeration, and consequently fuel and electricity, are the other activities that 

have large impact for cheese. Increased shelf life does not bring large environmental benefits because the 

amount of food saved is predicted to be small (0.5%). On the other hand food waste, malnutrition and battle 

for land are three of the main concerns of modern society. The overall impact of fresh cheese production was 

estimated integrating Schmidt and Daalgard [11] carbon footprint of dairy at farm. The LCIA methodologies 

were aligned for consistency. Including the farm stage the benefits, in terms of CO2 eq., deriving form 

decreased waste increase by more than 50%. Scaling showed linear relationship between the main variables 

and therefore also for environmental impacts. The main finding was a significant increase in efficiency 

between the two different sizes UHPH and empirical evidence. The impact of the smaller pilot scale is 40% 

higher; this confirms the importance of the inclusion of scaling and of technological readiness in life cycle 

studies for novelties. 

6. Conclusions 

UHPH is a promising technology that could provide a higher quality product and decrease energy 

consumption. The investigation of UHPH is suggested also in other industries, such as cosmetics and 

pharmaceutical, as it could bring significant advantages. 
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1. Abstract  

Food waste is an emerging problem that needs solutions for reducing it. A promising strategy is its 

utilisation as substrate for mass-rearing of edible insects to be used as a protein source for the livestock 

sector. This is a potentialyl valuable solution to two serious problems: the increasing amount of food waste 

and the global rising demand for feed. Plenty of studies have investigated the nutritive composition of insects 

and their utilisation as a source of protein for human consumption and animal feeding but less studied are 

the environmental consequences associated with their mass-rearing. LCA methodology can be applied to 

evaluate the potential environmental impacts of this processthis . In this context, this paper presents the 

results of an LCA of a pilot plant for rearing of “Hermetia illucens”, located in South Italy. 

2. Introduction  

Food waste (FW) is an problem that urgently requires strategies for reducing it. Indeed, the EU [1] estimated 

that FW amounts in the EU27 to 89 million tonnes per annum and the projection for 2020 is 126 million 

tonnes (about 40% increase). Strategies to address the problem are oriented to improving the efficiency of 

food supply and consumption chains on the one hand and to find new solutions for FW treatment and 

valorisation on the other. In the context of waste valorisation, a promising strategy is the utilisation of FW as 

substrate for mass-rearing of edible insects to be used as a protein source for the livestock sector. They 

represent a potential valuable solution to two problems: the increasing amount of FW and the global rising 

demand for feed. In the international literature plenty of studies investigated the nutritive composition of 

insects and their utilisation as a source of protein both for human consumption and animal feeding, but less 

studied are the environmental consequences associated with their mass-rearing [2]. In order to properly 

evaluate the sustainability of insect-based products and their role as a valuable alternative of FW 

valorisation, the quantification of the environmental impacts associated to the whole life cycle of these 

processes should be carried out. 

3. Methods 

Life Cycle Assessment (LCA) is a methodology, standardized by ISO [3-4], which is applied to evaluate the 

environmental impact of the whole life cycle of a product, process or activity. LCA can be applied to 

evaluate the potential environmental impact of insect-based products, but there is still a lack of LCAs in this 

specific field of research and further applicative studies are necessary to broaden the environmental 

knowledge on the production of insect-based products. Following on, this paper presents the results of a 
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LCA, focused on the energy profiles (which are indicated as the main impacting in [2]), applied on a pilot 

plant for mass-rearing of Hermetia illucens, located in South Italy, producing 300 kg/day of dried larvae 

(used as fishmeal) and 3,346 kg/day of larvae manure (used as compost). 

3.1 Scope of the study and Life Cycle Inventory Analysis 

The scope of the analysis is to quantify the environmental impacts, with a specific focus on energy profiles, 

attributed to the production of insect-based feed products from mass-rearing of Hermetia illucens fed with 

FW from different sources. Primary data were collected from a pilot plant located in South Italy. To carry 

out the LCA study four different phases were analysed (Figure 1): eggs and larvae production (phase 1), 

substratum production (phase 2), compost and dried larvae production (phase 3), and distribution (phase 4). 

The input and output data are related to the functional unit of one ton of food waste treated through larvae 

biodigestion. Disposal of inorganic wastes (paper, plastic, etc.), obtained in the de-packing phase, is not 

included in system boundaries because out of the scope of this analysis. Are also excluded from the 

inventory GHG emissions at plant from the different processes, for the following motivations: 

 the main focus of the study is on energy profiles (which are indicated as the main impacting in the only 

published LCA study on larvae meal [2]) 

 according IPPC, CH4 emissions from organic waste occur only after several months, but in the 

investigated plant the whole process is completed in few days, so that these emissions are assumed as 

negligible and they were excluded from the inventory;  

 no specific inventory data are present in the published international literature concerning other GHG 

emissions during the biodigestion activity of Hermetia illucens, so that it was not possible incluse them 

in the inventory; 

 the only published LCA study on larvae meal [2] estimated the CH4 production potential considering 

municipal organic waste and vegetable FW, but to our knowledge, to many uncertainties are associated 

with this choice because it is still unknown the difference between methane production potential of FW 

and larvae manure. So that the inclusion of this aspect would have imposed excessive uncertainty. 

In addition to primary data, secondary data, only for pre-production processes (the ecoinvent database [5]), 

and literature data, for pruning waste combustion emissions [6], were utilized. 

 

Figure 1: Phases and main inventory data for 1 t of food waste treated 
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3.2 Life Cycle Impact Assessment (LCIA) 

SimaPro 8 software [7] was used to assess the environmental impact of the considered system. LCIA was 

conducted using CML 2 baseline 2000 method [8] (considering the ten different impact categories detailed in 

Figure 2), except for Global Warming Potential (GWP) for which the IPCC 2007 GWP 100a v. 1.02 method 

[9] was used. 

 

 

Figure 2: LCIA characterisation and normalisation results 

 

Characterisation results (Figure 2) highlight that higher environmental impacts for each category are caused 

by phases 2 and 3; the lowest impacts are associated to phase 1. For example, considering the total impact 

related to GWP (17.6 kg CO2 eq), the contribution of phases 2 and 3 is respectively 7.6 kg CO2 eq and 6.5 kg 

CO2 eq; while phase 1 contributes for 0.3 kg CO2 eq. An examination in depth underscores that, in the 

substratum production (phase 2), the transport of municipal solid waste contributes about 60% to the total 

impact of each category; on the other hand, in the compost and dried larvae production (phase 3), electric 

energy consumed in the drying sub-process contributes about 90%. The comparison of impact categories 

through normalisation step (Figure 2) highlights that the most influenced compartment is the marine aquatic 

ecotoxicity (6.4E-12 Pt). A detailed analysis shows that the main processes which contribute to this impact 

category result are: the transport of municipal solid waste to the treatment plant (18.1 %), in phase 2, and the 

consumption of electric energy in milling (phase 2) and drying (phase 3) sub-processes (67.3 %). 

4 Conclusion 

The LCA analysis on the production of insect-based products shows that the phases with the highest 

environmental impacts are substratum production and compost and dried larvae production; furthermore, the 

compartment mainly affected is the marine acquatic ecotoxicity, greatly caused by the transport of municipal 

solid waste to the treatment plant and the consumption of electric energy in milling and drying sub-

processes. 

Many uncertainties and data lacks still remain and need to be further investigated in future improvement of 

the research. In particular, a key aspect on which the authors are still working concidering that no specific 

inventory data of Hermetia illucens is present in the published international literature, is to find a solution for 

collecting primary data for air emissions (no emissions in water and soil are caused by the process), carrying 

out experimental studies on the GHG emissions from the whole process.  
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Consequently a sensitivity analysis will be carried out in order to evaluate the consequences associated to 

uncertainty of this and other parameters. 

5. References 

[1] Milani, F.X., Nutter, D. and Thoma, G., ‘Invited review: Environmental impacts of dairy processing and 

products: A review’ J. Dairy Sci. 94 (9) (2011) 4243-4254. 

[2] Georget, E., Miller, B., Callanan, M., Volker, H. and Mathys, A., ‘(Ultra) High Pressure Homogenization for 

Continuous High Pressure Sterilization of Pumpable Foods - A Review’, Frontiers in Nutrition 1 (2014) 1–6. 

[3] Dumay, E., Chevalier-Lucia, D., Picart-Palmade, L., Benzaria, A., Gràcia-Julià, A. and Blayo, C., 

‘Technological aspects and potential applications of (ultra) high-pressure homogenisation’ Trends in Food Sci. & 

Technol. 31 (1) (2013) 13-26. 

[4] Amador Espejo, G.G., Hernández-Herrero, M.M., Juan, B. and Trujillo, A.J., ‘Inactivation of Bacillus spores 

inoculated in milk by Ultra High Pressure Homogenization’, Food Microbiology 44 (2014) 204–210. 

[5] Georget, E., Miller, B., Aganovic, K., Callan, M., Heinz, V. and Mathys, A., ‘Bacterial spore inactivation by 

ultra-high pressure homogenization’, Innov. Food Sci. and Emerg. Technol. 26 (2014) 116-123.  

[6] Escobar, D., Clark, S., Ganesan, V., Repiso, L., Waller, J. and Harte, F., ‘High-pressure homogenization of raw 

and pasteurized milk modifies the yield, composition, and texture of queso fresco cheese’, J. Dairy Sci. 94 (2011) 1201-

1210. 

[7] Zamora, A. and Guamis, B., ‘Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the Food 

Industry’ Food Eng. Rev. 136 (3) (2010) 261-267. 

[8] WRAP, ‘The Milk Model: Simulating Food Waste in the Home’, WRAP (2013). Available at: 

http://www.wrap.org.uk/sites/files/wrap/Milk%20Model%20report.pdf 

[9] Caduff, M., Huijbregts, M.A.J., Koehler, A., Althaus, H. and Hellweg, S., ‘Scaling Relationships in Life Cycle 

Assessment The Case of Heat Production from Biomass and Heat Pumps’, J. of Ind. Ecol. (2014) 1-14. 

[10] Lewis, M.J. and Deeth, H.C., ‘Heat Treatment of Milk’ In A. Y. Tamime, ed. Milk Processing and Quality 

Management. Chichester: Blackwell Publishing, (2009) 168–204. 

[11] Schmidt, J. H. and Dalgaard, R., ‘National and farm level carbon footprint of milk: Methodology and results for 

Danish and Swedish milk 2005 at farm gate’, Arla Foods, Aarhus, Denmark (2012). 

  



 

 

323 

Environmental Impact Assessment of caproic acid production from organic waste: A case 

study of a novel pilot-scale biorefinery in the Netherlands 

Wei-Shan, Chen
1,2

., David PBTB, Strik
2
., Cees JN, Buisman

2
., and Carolien, Kroeze

1
 

1
Environmental Systems Analysis Group, Wageningen University, PO Box 9101,  

6700 HB Wageningen, The Netherlands 

2
Sub-department of Environmental Technology, Wageningen University,  

Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands 

E-mail contact: wei-shan.chen@wur.nl 

 

1. Abstract  

Mixed Culture Chain Elongation (MCCE) is a novel biotechnology process that converts organic waste and 

ethanol into valuable biochemicals. A MCCE-Biorefinery pilot plant has been established in Amsterdam, the 

Netherlands since 2014, which intends to use supermarket food waste and crop-based bioethanol as 

feedstock to produce caproic acid, a saturated 6-carbon carboxylic acid. An Environmental Impact 

Assessment (EIA) on the MCCE-biorefinery is performed based on several previous MCCE studies and the 

MCCE-biorefinery pilot plant: we present the main source(s) of environmental impacts in the MCCE-

Biorefinery and the environmental consequences of potential optimisation strategies. The results can guide 

the future technological researches on MCCE, and also support optimisation and decision making in 

upscaling and actual implementation of the MCCE-Biorefinery. 

2. Introduction  

MCCE is a novel biotechnology process that converts organic waste into valuable biochemicals [1-3]. The 

MCCE process consists of two steps: first, a biological acidification step in which complex organic matters 

in the waste streams are degraded into basic building blocks like Volatile Fatty Acids (VFAs, saturated 

carboxylic acids with 2~4carbons) and/or carbon dioxide (CO2) by microorganism; second, a chain 

elongation step in which acetate and/or CO2 is elongated with externally added bioethanol into caproic acid, 

a saturated 6-carbon carboxylic acid having diverse biochemical applications (Figure 1). MCCE-Biorefinery 

is an integration of MCCE and several essential steps like separation and purification to convert organic 

waste into caproic acid. Such integration has been realised by Chaincraft in a MCCE-Biorefinery pilot in 

Amsterdam, the Netherlands since 2014. This pilot uses supermarket food waste and crop-based bioethanol 

as feedstock to produce caproic acid as the end product. 
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Caproic acid has several chemical applications. It can be directly applied as commodity chemicals; it can 

also serve as precursors of various biofuels and biochemicals [4]. The current production of caproic acid 

relies on plant oils like coconut and palm kernel oils [5]. Producing these oils requires arable land for 

plantations, which may lead to competition with food production for arable land. MCCE-Biorefinery offers 

an alternative process that produces caproic acid from organic waste streams, which is potentially more 

renewable and geographically unbound. 

In this study we evaluate the environmental performance of MCCE-Biorefinery by quantifying the potential 

environmental impacts of the partial life cycle of the caproic acid production from the MCCE-Biorefinery 

pilot (Figure 2). We present th main source(s) of the selected environmental impact categories, which is 

useful in formulating optimisation strategies for MCCE-Biorefinery. Subsequently we will simulate the 

environmental consequence of the potential optimisation strategies for the MCCE-biorefinery. The overall 

results can support decision making when upscaling and actual implementation of MCCE-Biorefinery 

converting supermarket food waste into valuable biochemicals in the Netherlands. 

 

 

 

 

 

 

 

 

 

 

 

3. Methodology 

A life cycle approach is applied in this EIA study. System boundaries are specified as shown in Figure 2. The 

partial life cycle starts from the organic waste entering the plant and ends after the production of the purified 

product, including the waste treatment. The functional unit (f.u.) is set as 1 kg purified caproic acid. 

Descriptions of the processes included and the flows related to each process are presented in Figure 3. The 

Figure 2 : Partial life cycle (from gate to product) of caproic acid production from organic waste. The 

green dot line indicates the system boundary of this study, while the red dot line indicates the processes 

that take place in MCCE-Biorefinery pilot plant. 

Figure 1: Two main steps for caproic acid production from organic waste : the biological 

acidification which degrades complex organic matter into VFAs and the MCCE which 

elongates the VFAs with additional ethanol to form longer chain carboxylic acid. 



 

 

325 

process design is adopted from the actual design of the MCCE-biorefinery pilot plant and several previous 

MCCE studies [6, 7]. The process data and assumptions used in life cycle inventory (LCI) are mainly from 

the aforementioned previous MCCE studies, our own experiments and the literature. The Characterization 

Factor (CF) used in Life Cycle Impact assessment (LCIA) are from Ecoinvent 3 [8].  

4. First results and discussion 

 

 

The environmental impacts generated in the partial life cycle of the caproic acid production for the selected 

environmental impact categories are presented in Figure 4. The life cycle impact on Global Warming (GWP) 

is to a considerable extent from solid waste management in the Biological Acidification (BAc) process. The 

organic waste used in this model is OFMSW (Figure 3) containing 90% lignocellulosic waste and 10% food 

waste [1]. The lignocellulosic part of OFMSW is difficult to be degraded in the BAc process, which resulted 

in large solid waste production. The abovementioned pilot plant will use supermarket food waste that has 

higher conversion efficiency into VFAs, which can reduce the solid waste production. 

For both acidification and eutrophication, the uses of ethanol and ethyl caproate (as extraction solvent) 

dominate the overall impact potential. This dominance is attributed to the production of bioethanol, as 

production of ethyl caproate also requires ethanol as substrate. Potential strategies to reduce the 

environmental impact include (1) the use of ethanol from different feedstocks, (2) reuse of waste water from 

LLEx (Figure 3) that still contains residual ethanol and (3) use of different extraction solvents. The 

feasibility of the first strategy depends on the availability of the ethanol from different feedstocks, while the 

other two strategies have been successfully implemented in experiments. In our study we will further 

elaborate on the potential environmental consequences of these improvement strategies. 

Figure 3: The main processes and material/energy flows included in the life cycle of caproic acid 

production in MCCE-biorefinery. OFMSW= Organic fraction of municipal solid waste, which is used 

as substrate in previous MCCE study for caproic acid production [1] 
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Figure 4: The environmental impact of each process involved in caproic acid production in the MCCE-

biorefinery for the selected impact categories: Global Warming Potential (GWP), acidification and 

eutrophication. See Figure 29 for explanations of other abbreviations 
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1. Abstract  

Industrial Symbiosis can be considered as a strategy for sharing and valorising resources (including 

materials, energy, water, assets, expertise, logistics, capacity, equipments) between companies, so that a 

non-product produced by an industry can be used as an input by someone else (synergy). ENEA (Italian 

National Agency for New Technologies, Energy and Sustainable Economic Development) in 2011 started the 

project “Ecoinnovation Sicily” for the development of the first Italian Industrial Symbiosis Platform 

(Platform) to be implemented in Sicilia Region (among many other issues). The Platform addressed, in 

particularly, to small and medium enterprises (SMEs) and other local stakeholders, offers many other tools, 

beyond the industrial symbiosis, useful for supporting industries for the eco-innovation. This paper explains 

the methodology for the identification of potential synergies and the pathways for their actual 

implementation, with the specific focus on streams coming from agroindustry. 

2. Introduction  

The industrial simbyosis (IS) approach reflects the recent European strategies (EU COM, 2011, 2012, 2014) 

of decoupling economic growth, environmental impacts and natural resource consumption. There is a 

growing interest towards IS since it boost the resource efficency, enhance the circular economy and fosters 

the eco-innovation. Different IS models can be applied, e.g. following the network approach or the industrial 

park one (like e.g. Kalundborg) (Chertow, 2004; Lombardi and Laybourn, 2012). Through IS the closure of 

resources cycle can be realised switching from an open system, where non-products are wasted, to a closed 

one where non-products have added-value destinations, in a Life Cycle Thinking perspective. ENEA in 2011 

started the project “Ecoinnovation Sicily” for the development of the first Italian Industrial Symbiosis 

Platform to be implemented in Sicilia Region (among many other issues) (Cutaia et al, 2014). The Platform, 

addressed, in particularly, to small and medium enterprises (SMEs) and other local stakeholders, offers many 

other tools, beyond the industrial symbiosis, useful for supporting industries for the ecoinnovation 

(regulatory database, simplified tools for LCA and Ecodesign, Best practices database, GIS system) (Cutaia 

et al, 2015 a-b). The ENEA platform started creating a network among companies, willing to share 

resources. . Waste and residues from one company can become resources in input for one other company (or 

companies), in short they can realise a “synergie”. During three operative meetings, about 90 participating 

companies have shared more than 400 input-ouput data (resources requested as input or available as output). 

These data, geo-referred and elaborated by ENEA, allowed the identification of more than 600 potential 

synergies between partecipating companies. Resource streams have been classified in 6 categories: 1) paper 

and cardboard products; 2) excavation materials, construction/demolition waste; 3) plastics/plastic products; 
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4) metals/metal products; 5) equipment; 6) waste/by-products from agroindustry (agricolture, exhausted 

vegetable oils, food products, bio-materials from livestock and fisheries). The last one is focused in this 

paper. 

3. Population of database and recruitment of companies 

The first step of the implementation of IS in Sicily concerns companies recruitment, started by creating a 

regional companies database. First steps of the project have been addressed at networking and promoting 

activities at regional level (in Sicily) and at national and international level too (Cutaia et al, 2015c). After, 3 

operative meetings took place in Sicily, as summarised in Table 1. 

 

 COMPANIES DELEGATES SHARED RESOURCES POTENTIAL SYNERGIES 

IDENTIFIED DURING 

MEETINGS 

SIRACUSA 1 (28/03/2014) 36 44 +200 +160 

CATANIA (24/10/2014) 36 42 +200 500 

SIRACUSA 2 (4/11/2014) 11 12 29 0 

Table 1: Operative meetings held in Sicily in 2014. Summary of results.  

 

Collected data were uploaded on the ENEA IS platform (Cutaia et al., 2015a-b), georeferenced and 

elaborated, so new potential synergies have been identified, in addition to those identified during the 

operative meetings. Resources have been classified as: materials; energy; expertise or consultancy and 

service; logistics and transports; capacity and equipment. 

4. Industrial symbiosis for waste and byproducts from agroindustry in Sicily 

The agro-industry sector in Sicily plays an important role in the regional and national economy. The impact 

of agriculture on the regional economy is 3.6%, resulting slightly higher than the average in south Italy 

(3.1%) and the national average (1.8%), and absolutely one of the highest in Italy (after Basilicata, Molise 

and Calabria). According to the 6th ISTAT Census of Agriculture, Sicily is the second region in Italy, after 

Puglia, for the number of farms, 219,677 in 2010 (13.6% of the total). According to the 9th ISTAT Census of 

industry and services, the food industry and beverage industry in Sicily has 6,828 active businesses, which 

account for 30.2% of the active companies in the manufacturing sector of the island. This quota is the highest 

in Southern regions (24.5%) and in Italy as well (13.7%). 

Among the category “materials”, shared resources identified as “waste and byproducts from agroindustry” 

generated 50 synergies between 21 companies with different size and core business and different types of 

streams (fruit and vegetable scraps, wood cuttings, pasteurized milk whey). For these waste streams, 

different options of treatment and recovery have been investigated. The detailed analysis of these synergies 

has led to the identification of three main final destinations: energy recovery (3 synergies between 4 

companies), material recovery for compost production (14 synergies between 9 companies) and material 

recovery for livestock feed production (9 synergies between 5 companies). The pathways of these synergies 

have been summarized in layouts. The simbiosis pathway on “energy recovery from scraps from agro-

industry” has been sub-divided in: Anaerobic digestion for biogas production, characterized by scraps with a 

high content of organic substance that affects the rate of degradation of the substrate such as citrus scrap, 
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vegetables scrap, fruit scrap, peel of citrus fruit, pasteurized milk whey; Pyrolysis, which includes scraps 

with a lower calorific value very high such as wood cuttings of olive, vines, almonds and carob trees; grape 

and olive pomace, grape marc and dregs; table-grapes scrap processing. 

Using data provided by participating companies, literature and technical data, it was possible to characterize 

those steams according to the characteristics required for the two treatment systems (biogas and pyrolysis 

plant), both for the characteristics of the product in input to the processes, and both for the outgoing one, for 

every step of the synergy’s layout. In this way each potential synergy has been identified and trackeld from 

the point where the scarp is produced to the product obtained. The layout of “livestock feed production from 

agro-industrial scraps” involves 4 Sicilian companies of three different provinces: 3 companies that give 

resources as output (mainly citrus pulp, named “pastazzo”) and one that requires resources as input. Enea has 

identified 7 potential synergies between the 4 companies. 

5. Discussion and conclusion  

Two Operative Handbooks on the symbiosis pathways for the energy recovery and livestock feed production 

from waste agrifood have been realised by ENEA to summarize the synergies and their main issues. 

Concerning the simbiosis pathway on energy recovery, the quantity and availability make these scraps very 

interesting, both from an environmental and economic point of view. As some of these resources are 

landfilled, with very high costs and impacts, ENEA has highlited that there are no obstacles for their 

utilisation, neither legal, as these scraps can be classified as byproducts and not as waste, nor technical, based 

on the characteristics required for the two plants. One concern comes from their seasonal availability; 

therefore the feeding of the plants must be assured by a set of organic scraps and waste streams available 

throughout all the year. A second major concern comes from the distances between the scraps’ production 

sites and the plant, that can influence the cost of transport and the consequently the economic feasibility of 

the synergy. Concerning the livestock feed production, two regulatory aspects are relevant: the regulation on 

citrus pulp (Italian Law, 2013) has clearly recognized it as a byproduct of citrus useful for livestock use, 

taking it away permanently from waste legislation; European regulation on citrus pulp as feed materials on 

livestock feed (EU 68/2013) and regulatory requirements must be met before the feed livestock can be 

placed on the market. 

Industrial Symbiosis approach redefines the waste concept by breaking the traditional meaning; the operative 

meetings represented an opportunity for participating companies to give a new meaning to their waste, to be 

considered as precious resources, which can be shared with other companies with mutual benefit. A 

proactive approach from involved companies is crucial for enhancing the possibilities of finding synergies 

between companies: the more they share information on their resources, the more matches between 

companies can be found through the implementation of the industrial symbiosis platform. 

Industrial symbiosis platform could be used as a planner, if its dataset covers a region or a defined area, since 

it could allow the identification of recoverable and reusable waste streams in that area, attracting sustainable 

inward investment (overcoming magnitude problems, if any). Moreover, companies move their mind toward 

sharing concepts (at the base of sharing economy) and cooperative approach.  
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In this sense IS is a powerful tool for ecoinnovation at systemic level considering not only economic benefits 

and environmental advantages but also social issues and long-term culture change for companies, that are the 

way for the transition to green economy. 
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1. Abstract  

A LCA according to ISO 14040/44 analysed the production of 1 ton live weight (LW) pigs and 1 ton live 

weight broilers at the farm gate. Three different alternatives were analysed for Europe, North America and 

South America: Standard base diet without any specialty feed ingredient (SFI) supplementation, 

supplemented with amino acids only, and supplemented with amino acids and phytase. SFI supplementation 

in pig and broiler diets reduced greenhouse gas emissions (cradle-to-farm gate) by 56 and 54% in Europe, 

17 and 15% in North America and 33 and 19% in South America, respectively, compared to an 

unsupplemented diet. When direct land use change was considered, the benefits were much greater. Overall, 

SFI supplementation substantially reduced the global warming, eutrophication and acidification potentials 

in all regions studied. 

2. Introduction 

Livestock production is expected to double by 2050 (Garnett, 2009). Livestock sector significantly 

contributes to global environmental change. In pig and poultry production, the impact to the environment is 

mainly from (i) excretion of excess nitrogen (N) and phosphorus (P) leading to the deterioration of aquatic 

systems (Conley et al., 2009), (ii) direct greenhouse gas (GHG) emissions from manure storage and 

application to the field, which contributes to climate change (Tubiello et al., 2013), and (iii) ammonia 

emissions responsible for acidification and eutrophication of N-limited ecosystems (Sutton et al., 2008). 

Formulating diets with only natural feedstuffs to meet requirements results in large excess of amino acids 

(NRC, 2012). Similarly, a considerable amount of P in pig and poultry diets is unavailable to the animal 

(Kebreab et al., 2012). Reducing intake of protein and P is the most effective way to reduce environmental 

impacts, however, this has to be achieved without impairing animal performance or negative environmental 

impact. The supplementation of animal feed with the enzyme phytase improves the availability and 

digestibility of organically bound plant P leading to reduced use of inorganic P in feed formulation and 

subsequent decrease in P excretion (Kebreab et al., 2012). The production of specialty feed ingredients (SFI) 

such as supplemental amino acids and phytase also has an environmental footprint. This study assesses the 

impact of multiple use of SFI on the environmental impact of all stages in pig and poultry production with 

cradle-to-farm gate life cycle assessment study of pig and broiler production and compares strategies with 

and without SFI supplementation. 
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3. Method 

The LCA study was performed with GaBi LCA software and databases in accordance to ISO 14040/ 14044 

and critically reviewed by a review panel. The functional unit was considered to be 1 ton of animal live 

weight (LW). The livestock husbandry systems represent typical conventional large-scale production 

systems in the 3 regions Europe, North America, and South America. Each production system was divided 

into 5 processes: production of base feed ingredients, production of specialty feed ingredients, preparation of 

feed, animal husbandry and manure management. 

Three alternatives for each region in the study were analyzed. The alternatives were (i) standard base diet 

without any specialty feed ingredient supplementation (A1), (ii) standard base diet supplemented with 

crystalline amino acids only (A2), and (iii) standard base diet supplemented with crystalline amino acids and 

phytase (A3). Both production systems are influenced by the level of feed conversion ratio (FCR). In 

addition to the 3 alternatives, 5 scenarios for each region and each production system were investigated to 

assess potential improvements in the pig and poultry sectors and their environmental implications (Figure 1). 

Different base feed ingredients and fed phases in the regions are considered. Diets for pigs in North and 

South America were formulated based on NRC (2012) and for pigs in Europe the InraPorc model was used 

(Van Milgen et al., 2008). The first limiting amino acids for pigs are lysine, threonine and tryptophan, and 

for broilers, methionine, lysine and threonine are first limiting (Tokach and DeRouchey, 2012). Amino acid 

requirements were assessed based on standardized ileal digestibility for both pigs and broilers because it 

represents the best available method for routine evaluation of amino acid bioavailability in feedstuffs (NRC, 

2012). Apparent fecal digestibility is used to assess P availability for both poultry and pigs.  

Data for base feed ingriedients are taken from GaBi databases (GaBi 2014) and are modelled with the GaBi 

agrarian model (Liedke et al., 2014). Based on Flynn et al. (2012), an average annual land use change 

emission factor of 34.8 t CO2 eq/ha for South America was applied. The emissions from direct land use 

change per hectare soybeans cultivated are calculated by multiplying the emission factor of South America 

with the area applicable to LUC. This calculation results in annual direct LUC emissions of 18.4 t CO2 eq/ 

ha for soybeans cultivated in Brazil. With estimated annual yield of 2.7 t/ha, 1 kg of soybeans bears an 

environmental impact of 6.8 kg CO2 eq/kg, which leads to global warming impacts of 6.2 kg CO2 eq/kg of 

soybean meal and 16.1 kg CO2 eq/kg of soybean oil. The production of the amino acids lysine, threonine and 

methionine is modelled according to Mosnier et al. (2011) and Garcia-Launay et al. (2014). For phytase 

input details from Nielsen et al., (2007) were used for modelling. Feed preparation in a feed mill is assumed 

for this study (based on Pelletier (2008)). 

Manure management, which includes manure storage and field application was considered. Methane 

emissions from manure were calculated according to IPCC (2006). Ammonia and nitrous oxide emissions 

were calculated based on Rigolot et al 

. (2010), IPCC (2006) and Dammgen et al. (2013). For manure applied on the field a credit is given 

according to the amount of nitrogen available for plant uptake. Nitrogen excretion is calculated as the 

difference between nitrogen uptake and nitrogen retention. The uptake is calculated based on the crude 

protein content in the animal feed, final weight and the feed conversion ratio. P emissions was modelled 

based on Nielsen et al. (2007). 
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CML impact assessment methodology framework (version 3.9, November 2010) was selected for this 

assessment. The environmental indicators or impact assessment categories considered in this study were 

global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), and primary 

energy demand fossil (PED). 

4. Results 

Figure 1 shows exemplarily the results for GWP for pigs and broiler in Europe. The results are also available 

for AP, EP, PED for pigs and broiler in Europe, North- and South America. 

Specialty feed ingredient supplementation in pig and broiler diets reduced greenhouse gas emissions (cradle-

to-farm gate) by 56 and 54% in Europe, 17 and 15% in North America and 33 and 19% in South America, 

respectively, compared to an unsupplemented diet. When direct land use change was considered, the benefits 

were much greater due to reduced demand of soybean meal in European and South American diets. The 

eutrophication potential of unsupplemented diets was up to 165% in pig and 253% in broiler production 

systems compared to supplemented alternatives. The acidification potential of supplemented strategies was 

reduced by up to 30% in pig and 79% in the broiler production system. The primary energy demand was 

similar in all alternatives. 

 

Figure 1: GWP impact assessment in European pig and broiler production systems, with and without dLUC emissions. 

(A1) standard base diet, (A2) supplemented with AA, (A3) supplemented with AA and phytase. (S1) A1 with a higher 

feed conversion ratio (FCR), (S2) A3 with a lower FCR, (S3) A1 with no manure N credits, (S4) A3 with 100% manure 

N credits, (S5) A3 with low FCR and 100% manure credits. 
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5. Conclusion 

Using SFI such as AA or phytase in livestock production can significantly contribute to the sustainability of 

substantially growing livestock production. This was shown for three different regions. By connecting the 

animal feed composition with animal performance and comparing identical functional units, the study 

identified and underlined the environmental improvement potentials which can be achieved by changing 

animal diets from without any supplementation to supplemented diets for different global regions. 
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1. Abstract 

Food-waste is a significant environmental problem in Western countries; FAO (2011) estimates that the 

amount produced worldwide is about 1.3 billion tonnes per year, equivalent to about one third of the total 

production of food intended for human consumption. The growing awareness of the need for sustainable 

strategies for food-waste management is driving an increase in Life Cycle Assessment (LCA) research 

activities in this sector. This paper presents the results of a comparative LCA of five different alternative 

scenarios of food-waste treatment (landfill; incinerator; composting; production of biogas; and valorisation 

of valuable fractions for feed production) produced by a mass retail company operating in Messina (Italy). 

2. Introduction 

The growing awareness of the need for sustainable strategies for food waste (FW) management is driving an 

increase in research activities in this sector oriented to waste prevention (probably the best solution) and 

waste treatment/valorization. Among these studies, particular attention is given to the estimation of 

environmental impacts, in a life cycle perspective, related to the production of FW and its possible treatment 

scenarios. Indeed, in order to fully understand how to phase out landfilling and to obtain a minimisation of 

FW, comparative Life Cycle Assessment (LCA) studies on different FW management techniques (both 

disposal and recycling) are highly necessary and should be increased. In this context, this paper presents the 

results of a comparative LCA of five different alternative scenarios of FW treatment (landfill; incinerator; 

composting; production of biogas; and dry feed production) produced by a mass retail company (MRC) 

operating in the Province of Messina (Italy). 

3. Methods and main results 

3.1 Goal and scope of the study 

The study here presented is part of the research project Smart Cities and Communities and Social Innovation 

- Project ABSIDE, Cod. PON04a2_F, Subsystem BE & SAVE. One of the research actions of the project (N. 

3b.1.7.3), in which the authors of this paper are involved, is to assess the environmental impact of alternative 

potential scenarios for the management of FW produced by a MRC operating in Messina (Italy). The 

analysed scenarios include: 1) LF-Landfill (FW is collected and disposed in landfill with energy recovery 

from biogas); 2) IN-Incineration (FW is collected and disposed in an incineration plant with energy 

recovery)); 3) CO-Compost (FW is collected, transported to a de-packing plant, and the organic fraction is 

treated in a composting plant); 4) BG-Biogas (this scenario differs from 3) only for the organic fraction sent 

to a biogas production plant); 5) FE-Feed (in this case the organic fraction is treated in order to obtain dry 

feed). The scope of the study is to identify the scenario/s with lower environmental impacts and to select the 

one for which to design sustainable management practices. The system boundaries include all the direct and 

indirect activities involved in the management of FW produced by the investigated MRC, from FW 
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collection at the supermarkets to its final disposal: collection (collection of FW from the supermarkets of the 

MRC and transport to the storage site/de-packing plant); pre-treatment (de-packing of FW); treatment 

(treatment for the disposal/valorisation of FW). Recycling of packaging materials is excluded from system 

boundaries. Allocation rules were avoided by expanding system boundaries, including by-products obtained 

in the different treatment processes (by-products are considered as avoided products: there is an avoided 

production of fuels, fertilizers, or other materials, and thereby a negative contribution to the environmental 

impact deriving from the corresponding scenario). A functional unit (FU) of 20 tonnes of organic waste per 

year was considered. 

3.2 Life Cycle Inventory Analysis (LCI) 

Data sources, as well as main inputs and outputs, are summarized in table 1. 

 

   Scenario  

 
 

Unit 1 (LF) 2 (IN) 3 (CO) 4 (BG) 5 (FE) Data source 

Input 

data 

Transport tkm 1,813 532 400 400 400 Measured: [1] 

Electricity MJ 4,125 3,974 10,454 6,422 5,768 Calculated: [1;2;3;4;5] 

Heat MJ - 732 - - - Calculated: [1;2]  

Natural gas m
3
 - - - - 616 Calculated: [4;7] 

Diesel kg - - 11 - - Calculated: [3;7] 

Diesel MJ 529 - - - - Calculated: [2;7] 

Water L - 3,214 2,400 1,320 51 Calculated: [1;2;3;4] 

Output 

data 

Electricity MJ 6,103 49,227 
    

Compost kg - - 4,200 4,400 - Calculated: [3] 

Biogas Nm
3
 - - - 1,700 - Calculated: [3] 

Dry feed kg - - - - 2,600 Calculated: [4] 

Avoided 

products 

Electricity MJ 6,103 49,227 - - - Calculated: [2;6] 

Urea kg - - 180 188 - Calculated: [1;3] 

Natural gas  Nm
3
 - - - 1,020 - Calculated: [7;8] 

Soy Meal kg - - - - 1,018 Calculated: [7;9] 

 

Table 1: Main input/output data and sources per FU (20 tonnes of organic waste per year) 

 

Primary data were collected in the supermarkets through questionnaires, interviews, and sampling of FW and 

its packaging, considering vegetable waste as a representative sample of the organic fraction. Indeed, 

vegetable waste represents the major part of the FW produced by the investigated organization (more than 

the 47%) and, for simplification, it was assumed that there is not differentiation in the composition of FW 

treated in the different scenarios.  

3.3 Life Cycle Impact Assessment (LCIA) 

CML 2 baseline 2000 method [10] was chosen as impact assessment methodology. System scenarios were 

analysed with SimaPro 8 software [11]. Impact categories chosen for the assessment were: Acidification 

Potential (AP), Eutrophication Potential (EP), Global Warming Potential (GWP), Ozone Depletion Potential 

(ODP), and Photochemical ozone creation (POCP). LCIA results are summarised in table 2 (characterisation) 

and figure 1 (normalisation). 



 

 

337 

Impact 

categories Unit 

Scenario 

1 (LF) 2 (IN) 3 (CO) 4 (BG) 5 (FE) 

AP kg SO2 eq 3,08E+00 3,30E+01 7,56E+00 1,91E+00 9,54E+00 

EP kg PO4
---

 eq 1,12E+00 6,45E+00 1,41E+00 3,35E-01 1,06E+01 

GWP100 kg CO2 eq 1,39E+04 2,11E+04 1,19E+03 1,70E+02 2,78E+03 

ODP kg CFC-11 eq 1,40E-04 5,26E-04 1,19E-04 -5,61E-06 -3,82E-05 

POCP kg C2H4 eq 2,69E+00 5,75E-01 2,65E-01 7,03E-02 3,88E-01 

Table 2: LCIA characterisation results (CML 2 baseline 2000 V2.05 World, 1990) 

 

 

Figure 1: LCIA normalisation results (CML 2 baseline 2000 V2.05 World, 1990 

4. Interpretation, discussion and conclusive remarks 

Among the considered scenarios, the major environmental impacts are attributable to the scenarios 

incinerator and landfill, in particular for GWP respectively 21,066 kg and 13,931 kg CO2 eq., while the best 

environmental performance is connected to the scenario biogas (GWP 169.85 kg CO2 eq.). Normalisation 

results highlight that for the categories AP and GWP major impacts are caused by the scenario incinerator 

(respectively with values equal to 1.02E-10 and 4.78E-10 Pt), for ODP and POCP by the scenario landfill 

(respectively with values equal to 2.58E-11 and 4.6E-13 Pt) and for EP by the scenario dry feed (7.97E-11 

Pt). The scenario biogas confirms its lower impact relative to the other considered scenarios, for each of the 

analysed categories. 

A sensitivity analysis was conducted taking into consideration the scenarios 1, 2, 3 and 4 (as for the dry feed 

treatment no inventory data was found on available dedicated databases) with the purpose to verify the 

robustness of the results. In the sensitivity analysis data sources for treatment processes were modified using 

data from dedicated databases. The analysis confirmed that the major environmental impacts can be 

attributed to the landfill and incinerator scenarios, while the best impact is associated with the production of 

biogas. 

The biogas scenario was therefore selected to carry out an in-depth analysis oriented to the identification of 

its potential applicability by the local MRC investigated. The analysis allowed to identify the following key 

choices, as more consistent with the characteristics of the case study: use of anaerobic micro-digesters or 

domestic digesters; thermophilic anaerobic digestion (dry technique) with an operating temperature of about 

35  °C and a duration of 30 days; use of two parallel digesters of 2 m
3
 each with a solar heating system.  
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In addition to the environmental benefits already highlighted with the LCA analysis, the economic benefits 

associated with these key choices can be summarized as follows: a) low initial investment costs (200 

€/digester, in addition to the construction costs of installation and authorization), low start up costs 

(immediate) and management (no need of specialized personnel), with payback within a year; b) ability to 

integrate the phases of FW transport within the existing logistic organisation; c) energy valorisation of waste: 

4,000 kg/year of biomethane for a savings on gas bill of 5,000 €/year if used for heating; or savings higher 

than 9,000 €/year if used for the automotive sector (gasoline equivalent = 5,540 L); d) the digestate (about 

13,320 kg/year) can be used as agricultural fertilizer which, shows superior qualities equivalent to compost; 

e) the system requires no special Italian environmental authorizations because it does not produce any impact 

on the landscape or the environment in general. 
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1. Abstract  

Worldwide, about 1.3 billion tonnes of food are wasted every year, of which about 89 million tonnes were 

estimated for Europe, corresponding to almost 200 kg of food waste per capita. This leads to significant 

impacts on the environment. However, the estimation of magnitude of such impacts and the evaluation of the 

relative contributions to environmental impacts arising from specifc life cycle stages or waste management 

technologies is not straightforward. By means of the software EASETECH, this work aims at modelling a 

number or relevant food waste management scenarios – from food waste generation to final treatment – in 

order to provide quantitative understanding of the overall environmental performance, as well as to identify 

the life cycle stages, technologies, technical and environmental factors that mostly influence such 

performance. This, in turn, will help identify options for improving the overall environmental performance of 

food waste management, while minimizing undesirable shifting of burdens. 

2. Introduction  

Worldwide, over 1.3 billion tonnes of food for human consumption is wasted or lost annually [1] throughout 

the food supply chain (from agriculture production, transport, processing, distribution and consumption), 

which represents about 1/3 of the total world food production. In Europe, the 2014 estimates show up to 100 

million tonnes of food waste per year [2], corresponding to approximately 200 kg per capita (considering a 

population of 503 million people in the EU27 in year 2014 Eurostat). 

Such a massive generation of food waste leads to significant environmental impacts. For instance, worldwide 

figures provided by FAO [3] on the consequences of food produced for human consumption that had been 

lost or wasted include (in 2007): 3.3 Gtonnes of CO2 eq. emitted to the atmosphere, 250 km
3
 of surface and 

groundwater consumption (i.e. 2.5*10
11

m
3
) and 1.4 billion hectares of land occupation.  

3. Legislative and methodological background  

To address these issues, Europe is committed in designing and implementing strategies and measures to 

improve the management of food waste and, at the same time, find solutions to prevent/reduce it. In 2011, 

the European Commission (EC) identified food waste as one of the main problems that needed to be 

addressed to increase resource efficiency [4] and invited all Member States (MS) to address food waste in 

their National Waste Prevention Programs. In 2014, the EC announced the intention of reducing generation 

of food waste of at least 30% by the end of 2025 compared to 2017 levels. This proposal was part of the 

Circular Economy package [5,6] but was withdrawn in February 2015 with the intention of replacing it by 

the end of 2015 with a more ambitious one to be integrated in a coherent package containing a wide range of 

other measures to increase the circularity of the European economy [2]. 
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The Waste Framework Directive (2008/98/EC) does not include specific provisions on food waste, nor even 

a definition of what food waste is/includes. However, according to this directive measures shall be taken by 

MS to achieve environmental sound management of bio-waste by following the so-called “waste hierarchy” 

(art 4(1)). Such hierarchy considers waste prevention was identified as the most environmentally sound 

option (but no prevention targets were settled for bio-waste), while landfilling was considered as the worst 

option. The same directive, however, also allows to deviate from such hierarchy if Life Cycle Thinking 

(LCT) based evidence shows that deviating from the hierarchy results in lower environmental impacts. 

Life Cycle Thinking (LCT) can be intended as a conceptual approach that aims at identifying improvements 

and lowering impacts of any goods / services at all stages of the life cycles. Life Cycle assessment (LCA) is 

as a transposition of LCT into quantitative terms. LCA – as defined by the ISO 14044 (ISO, 2006) is a 

decision support tool widely used to evaluate the environmental impacts arising from any goods / services. 

4. Objectives and general modelling approach  

The work being conducted aims at evaluating the environmental performance (based on 14 impact categories 

proposed by the EC Environmental Footprint (EF) methodology [7] shown in table 1) of relevant food waste 

management scenarios and at identifying options for improvements of such performance. The LCA 

functional unit considered is management of 1 tonne of food waste from the moment food waste is 

generated. The LCA system boundaries thus comprise all relevant processes of the food waste management 

chain, including displacement of energy with the energy produced with food waste and replacement of 

chemical fertilisers with compost  

 

Impact Category Impact Assessment Model Impact Category units 

Climate Change Bern model  kg CO2 eq. 

Ozone Depletion EDIP model  kg CFC-11 eq. 

Ecotoxicity for aquatic fresh water USEtox model CTUe*  

Human Toxicity -  cancer effects USEtox model CTUh** 

Human Toxicity – non-cancer effects USEtox model CTUh** 

Particulate Matter/Respiratory Inorganics RiskPoll model kg PM2.5 eq. 

Ionising Radiation – human health effects Human Health effect model kg U
235

 eq. (to air) 

Photochemical Ozone Formation LOTOS-EUROS model kg NMVOC eq. 

Acidification 
Accumulated Exceedance 

model 
mol H+ eq. 

Eutrophication – terrestrial 
Accumulated Exceedance 

model 
mol N eq. 

Eutrophication – aquatic EUTREND model 
fresh water: kg P eq. 

marine: kg N eq. 

Resource Depletion – water Swiss Ecoscarcity model m
3
 water used 

Resource Depletion – mineral, fossil  CML2002 model kg antimony (Sb) eq. 

Land Transformation Soil Organic Matter model kg C (deficit) 

* Comparative Toxic Unit for ecosystems 

** Comparative Toxic Unit for humans 

Table 1:  Impact Categories in the EC EF methodology. 
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Towards this goal, the LCA-based modelling will be used to provide quantitative assessment of a 

comprehensive set of environmental impacts. The software EASETECH (Environmental Assessment System 

for Environmental TECHnologies) will be use to conduct such modelling exercise. EASETECH is an LCA-

based model for assessment of environmental technologies developed by DTU-Environment [8]. It is 

designed to perform life-cycle assessment (LCA) of complex systems handling heterogeneous material 

flows. 

As results of the work being conducted are not yet available, this extended abstract only presents the general 

modelling framework. A complete presentation and analysis of modelling results will be presented in the 

context of the EXPO LCA Food conference. 

5. LCA modelling of food waste management scenarios: an overview 

The food waste management scenarios will include the following stages of the value chain: collection, 

transport and treatment/disposal. The starting point for the modelling exercise will be the estimation of the 

composition of the waste generated (i.e. mass-based percentage of each material fraction that compose the 

food waste), based on real data for a selected region. A number of different scenarios will be developed and 

assessed with EASETECH, representing different combination of technologies for each stage of the food 

waste value chain (see Figure 1). For instance, modelling of food waste collection will consider several 

different collection schemes, e.g.: city center, single-family, multi-family and rural area. 

 

Figure 1: Examples of combinations of technological steps for inclusion in the LCA modelling 

 

With respect to food waste treatment, the technologies that will be considered in the scenarios include: (1) 

anaerobic digestion (AD) with production of biogas used in the production of Combined Heat and Power 

(CHP) and composting of the digestate from the AD to produce compost, and (2) AD with production of 

biogas which is upgraded to biomethane used as transport fuel and composting of the digestate from the AD 

to produce compost. 
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1. Abstract  

Life Cycle Assessment (LCA) methodology is at the core of quantifying the environmental impact of food loss 

and waste (FLW) and to identify pros and cons of the options for food loss minimisation and waste 

management or valorisation. However, dealing with food loss in LCA is a complex task and currently 

different approaches have been adopted. A lack of homogeneity has been observed, both at the 

methodological level and in the choice of inventory data. 

Starting from the analysis of the recent scientific literature, this work discusses the strengths and weaknesses 

of the variety of approaches adopted and provides some recommendations for LCA practitioners on how to 

deal with food loss in LCA applications focused on food products.  

2. Introduction  

With about 30% of food being lost through the supply chain, food loss is a major issue both from 

environmental and social points of view and several initiatives at international and national level have been 

undertaken in order to address this issue, e.g. [1], [2]. LCA can play a major role in quantifying the 

environmental impact of these losses and help to identify the best lost reduction and waste valorisation 

possibilities. Nevertheless, the current lack of consistency in defining and quantifying food loss and waste 

can limit dramatically the usefulness of the LCA results. 

This work aims at opening the way towards the harmonisation of the modelling and methodological 

approach for the assessment of the environmental burdens of FLW within LCA studies. Considering the 

huge amount of works on the assessment of the environmental burdens of food production, an analysis of 

representative articles published in scientific journals was done.  

3. Food loss, food waste and food wastage: definition 

FAO [3] pointed out that a clear definition of FLW is desirable in order to foster collaboration in the food 

loss reduction and has recently proposed a Definitional framework of food loss [3].  

FLW is the amount of food intended for human consumption that, for different reasons, is not used for its 

main purpose. It takes place at each stage of the food supply chain (FSC) (modified from [3]).  

The terms ‘food loss’ and ‘food waste’ have traditionally been referred to food that is left to rotten on fields 

or thrown away respectively during the first stages of the FSC and when food is not fit for human 

consumption. In the recent definition provided by the FAO [3], food loss is considered to happen during the 

entire FSC and food waste is the part of food loss happening at retail and consumer phases. According to [4], 

‘food wastage’ is synonymous with ‘food loss’ (Figure 1). 
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Figure 1: Correspondence between the FSC stages and the definitions of ‘food loss’ and ‘food waste’ and ‘food 

wastage’ according to FAO [3], [4] Food loss in LCA 

 

The impact of FLW has been analysed in LCA studies from different perspectives according to their aim: (1) 

studies on waste management treatments, including the organic component; (2) studies on the environmental 

impact of food loss; (3) studies focused on a food product or dietary choices in which the amount of food 

loss is included. The present study is focused on the last category of works.  

3.1 Food loss generated within the supply chain  

In Table 1 a non-exhaustive summary of the food loss that can occur within the FSC is reported [4], [5]. The 

amount and the type of loss are influenced by the cultural and technological context. In particular the higher 

amount of food loss in low-income countries is generated at the first stages of the FSC due to technical, 

financial and managerial limitations (lack of proper storing chamber, inefficient transportation system, etc.), 

whereas food loss in high-income countries is mainly due to consumers’ behaviour and lack of coordination 

among the actors of the FSC [6]. 3.2 How is food loss accounted in LCA   

FLW, particularly in the first stages of the FSC, is frequently recovered as, for example, animal feed or as a 

co-product for another system. Starting from the distribution stage in the FSC, instead, not consumed food is 

mostly sent to traditional waste management systems, such as anaerobic digestion and incineration. In the 

latter case, when performing an LCA, this waste should not be considered as an elementary flow, but its 

management and treatment should be included in the assessment until the related elementary flows cross the 

system boundary [7]. If the food loss is assumed to be recovered, instead, the choice of including the 

recovery practices depends on the system boundary and on the goal of the study. Both the valorisation of the 

food loss or its disposal can generate valuable products and different approaches can be applied in LCA to 

account for them. Table 2 reports examples of approaches to account for food loss as adopted in LCA studies 

published on scientific journals. 

Some specific issues were observed in LCA studies when dealing with food loss. Disposal treatments, for 

example, can be modelled without considering the specific composition of the disposed flow. This can be a 

critical aspect and result in misleading conclusions, for example, when considering credits of energy from 

incineration [8]. 
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 Crops Animals and animal products 

Primary 

production  

- Not-harvested edible products 

- Edible product harvested but not absorbed by 

the market  

- Rotten fruit or vegetables 

- Damaged products  

- Death during breeding 

- Loss of milk  due to disease or during 

collection 

- Discard during fishing (including discarded by-

catch intended for human consumption but 

excluding by-catch that is not intend for human 

consumption) 

Transport 

and storage 

- Loss due to spillage 

- Loss due to bad handling 

- Loss due to food damages 

- Loss due to wrong storage temperature.  

- Losses during transport to slaughterhouse 

- Loss due to bad storage  

Processing - Process loss of edible parts 

- Unavoidable loss (e.g. skins…) 

- Loss due to contamination   

- Loss due to inappropriate packaging that 

damages the product  

- Edible process loss  

- Unavoidable process loss (e.g. bones, leather 

etc) 

- Loss due to inappropriate packaging that 

damage the product  

Distribution - Loss due to inappropriate cooling, storage facilities, 

- Loss due to passed expiration date 

- Unsold products  

- Rejections after quality controls  

Consumption  - Loss due to lack of storage facilities 

- Not consumed cooked food  

- Loss due to passed expiration date due, for example, to inappropriate packaging size  (more food 

than the quantity wanted) 

- Loss due to low consumers’ appreciation  

- Unavoidable loss (e.g. fruit kernels, bones etc.) 

Table 1: Possible food loss per FSC stage. Modified from [4], [5] 

 

Type of loss Destination  LCA modelling options  Ref 

Not-harvested 

products 
Ploughed into the 

soil/left on the 

field  

Emissions not accounted 
[9] 

 
Rotten products 

Processing co-

products 

Fertilisation  
Emissions not accounted [10] 

System expansion - nutrients content  [11] 

Animal feed  

System expansion (content of energy, protein, mass)  [12], 

Allocation (economic, mass, physical) [13], [14] 

No burden  [15] 

Cosmetic industry  Allocation (economic, mass)  [13] 

Anaerobic 

digestion  

System expansion - electric and thermic energy production 

from biogas  
[9] 

Allocation - economic  [9] 

Unconsumed 

food  

Incineration  System expansion - energy content  [11] 

Composting  Composting accounted for, no credit for compost  [16] 

Landfill  Landfilling accounted for, no credit for CH4 recovery   [17] 

Table 2: Non-exhaustive summary of the different options applied for including losses at the primary stage in  

LCA studies focused on food products 

 

4. Conclusion 

LCA has can help in supporting the FLW reduction challenge by quantifying pros and cons. However lack of 

completeness in the modelling of the food lost through the FSC and methodological choices can substantially 

influence the results. Adopting a shared terminology is at the core of facilitating harmonisation of 

approaches and information exchange.  
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Moreover, LCA practitioners are recommended to consider all the losses that can take place at every stage of 

the FSC, including the unavoidable ones, and report transparently the amount of FLW, the sources of data 

and how FLW is accounted in LCA defining clearly the allocation or the substitution criteria. 
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1. Abstract  

Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insights 

in the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2C 

that need further investigation are the use of lab scale data versus primary data from established 

technologies and the identification of the best option for the end of use stage, e.g. for use as packaging. We 

consider the case of a natural fiber-based composite material obtained from barley straw and present some 

insights from both LCA and C2C perspectives in the identification of the best option for its end of use.  

2. Introduction  

Biodegradability appears as a positive material attribute with regards to environmental impact [1]. However, 

from a Life Cycle Assessment (LCA) perspective there is no predefined answer to the question whether 

biodegradable bio-based polymers are better than fossil based polymers [2]. The answer changes according 

to the feedstock used, the market and context, since the environmental performance of biodegradable bio-

polymers depends mainly on two factors: (i) the farming practices used to grow the feedstock, often carrying 

significant environmental burdens, and the production processes requiring more energy during 

manufacturing than petrochemical polymers; and (ii) the choice of the end-of-life (EoL) option [1]. 

Environmental impacts resulting from agricultural production need to be managed in order to maintain and 

improve any benefits gained by transitioning to bio-based production. Better agricultural nutrient 

management practices and/or the development of new feedstock that require minimal energy and nutrient 

inputs are two ways forward [3]. In the past, LCA of bio-based packaging focused mainly on Global 

Warming Potential (GWP) and fossil resource depletion, while largely ignoring other environmental impacts. 

However, considering only GWP and fossil resource depletion can be misleading, since some trade-offs are 

present if other impact categories are introduced, such as eutrophication, ozone depletion, human toxicity, 

land use and water consumption [3]. A peculiarity of LCA is its focus on eco-efficiency, i.e. reducing the 

negative impact of products per function delivered, in descriptive terms. LCA can be integrated with the eco-

effectiveness concept of the Cradle to Cradle® (C2C) design framework of maximizing the benefit to 

humans and ecological systems. The C2C design framework has a prescriptive approach, which aims at 

designing products that define materials as nutrients or resources by enabling their perpetual flow within one 

of two distinct schemes of metabolism: the biological metabolism and the technical metabolism [4]. Bio-

based, biodegradable polymers are an example of the so-called “products of consumption” that fit into the 

biological metabolism. Within bio-based raw materials, a strategy gaining more attention is the use of 

agricultural residues/by-products to produce polymers, either modified starch- or lignine/cellulose- based.  
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In this context, we discuss the main challenges and opportunities in the combined use of LCA and C2C in 

the design stage and focus on the identification of the end of use option in the case of a natural fiber-based 

composite material obtained from barley straw. 

3. Main challenges and opportunities from LCA and C2C in the design phase  

The main challenges and opportunities emerging when applying LCA and C2C in the design of 

biodegradable bio-based polymer are summarized in Table 1, considering the four steps of the LCA [5] and 

the three guiding C2C principles [6]. What the two approaches can learn from each other, as well as the 

usability of LCA in a C2C process, has already been discussed [7, 8]. 

LCA C2C 

Step Challenge Opportunity Principle Challenge Opportunity 

1. Goal and 

scope 

definition 

Allocation between 

co-products, as well 

as between different 

uses of the residues  

Identification of the 

less environmental 

impacting option  

1. Waste 

= Food 

(Everythi

ng is a 

resource 

for 

something 

else) 

Identify the 

defined use of 

product obtained 

from the 

biobased, 

biodegradable 

material in the 

biological cycle 

through 

identification and 

optimization of 

all components, 

including e.g. 

additives, fillers  

Assess the 

design for 

cascade use/ 

compostability 

or recyclability 

of the product. 
These polymers 

might be 

technical 

nutrients, 

depending on 

additives and 

defined use 

scenario  

2. Life 

Cycle 

Inventory 

- Use of lab scale 

data 

- Identification of 

the substitute 

product when 

system expansion is 

applied 

- Dataset 

availability 

Take into account the 

benefit of recovery of 

material not only from 

a quantitative, but also 

qualitative point of 

view 

3. Life 

Cycle 

Impact 

Assess-

ment 

Avoid burden 

shifting 

Include relevant 

impact categories, e.g. 

land use, land use 

change, water 

consumption-related 

categories; temporary 

carbon storage (e.g. 

[9]) 

2. Use 

current 

solar 

energy 

income 

Use of renewable 

energy during 

product 

manufacturing 

Extend the use 

of renewable 

energy to the 

further steps in 

the upstream and 

downstream 

chain 

4. Life 

Cycle 

Interpreta-

tion 

Include the 

learnings from LCA 

not only ex-post, 

but also ex-ante, i.e. 

at the early design 

phase 

Use sensitivity analysis 

to test the influence of 

relevant assumpions 

3. 

Celebrate 

diversity 

Include 

biodiversity as 

well as cultural 

diversity   

Identify the 

option capable to 

be beneficial to 

the system, and 

not only less 

negative 

Table 1: Non-exhaustive list of LCA and C2C main challenges and opportunities in the design phase. 

4. The case of natural fiber-based composite material  

Meldal and Manat [10] developed a biodegradable polymer with natural fibers with low degree of swelling 

in water, extremely low permeability to gasses such as CO2 and high strength. It is prepared from a 

prepolymerization mixture of grafted plant derived material and monomers and/or cross-linkers [10], for 

possible application as substitutes for fossile based polymers.  

4.1 Production process  

The production process of the biodegradable bio-polymer is represented in Figure 1, which includes the main 

productions steps as well as the input and output. The main input material is barley straw, a residue from 

barley cultivation, which undergoes a series of chemical transformations to produce a biodegradable polymer 

with around 65-85% of bio-based material. The main steps of production rely on the lab scale process, and 

the input and output listed refer to lab scale data, which do not reflect the production at the industrial level, 
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e.g. in terms of energy consumption or yields. Some guidance on how to deal with system boundary 

definition, scaling issues, and uncertainty in LCA of emerging technologies is available, e.g. [11].  

 

Figure 1: Representation of main production steps of the natural fiber-based composite material 

4.2 End-of-use  

One of the main challenges during the development process of the above mentioned natural fiber-based 

material was the identification of the best end of use option. LCA and C2C can provide some insights in this 

regard, even though there are large uncertainties related to the waste management stage of biodegradable 

materials in LCA studies. One reason is the lack of data on the extent of biodegradation of biopolymers in 

the different environments, which is important to determine their suitability for that disposal route and the 

emissions generated and energy recovered (for methane captured from landfill and anaerobic digestion) [1]. 

From a C2C point of view, challenges for biodegradable polymers in packaging applications are to determine 

the suitability of the whole product including additives and fillers for the biosphere and to identify the 

cascade of uses ultimately leading to the return of nutrients into the biosphere, e.g. through composting or 

anaerobic digestion. Specific infrastructures in terms of establishment of appropriate collection, 

transportation, and treatment technologies are considered crucial to the success of widespread applications of 

biodegradable packaging materials [12], together with the capability to secure its correct disposal. From 

LCA perspective, the application of the EU waste hierarchy should be discussed case by case, since 

composting (considered as a form of recycling and therefore high level in the waste hierarchy) performed 

worse in terms of environmental impacts compared to incineration with energy recovery (lower level in the 

waste hierarchy) for biodegradable materials used for dry packaging [13]. 

5. Conclusion 

We qualitatively illustrated which insights LCA and C2C can provide in the design of biodegradable bio-

based polymers, with regard to each step of LCA, as well as the key principles of C2C. Both approaches 

share some challenges that need to be further investigated, e.g. arising from the use of lab scale data versus 

primary data from established technologies and the identification of the best option for the end of use stage. 

In particular, we addressed the last point in the case of a natural fiber-based composite material obtained 

from barley straw, which is dependent on the definition of the cascade of uses of the material in multiple 

cycles.   
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1. Abstract  

In the context of circular economy the focus is not only on recycling from a quantitative point of view, but 

also on improving the quality of materials. We considered the case of aluminium cans, and quantified the 

influence of alloying elements on the overall environmental performances of aluminium can recycling. We 

performed a Life Cycle Assessment (LCA) comparing different sources of aluminium: primary aluminium 

and mixed scraps, Used Beverage Can (UBC) scrap, mixed aluminium packaging scrap and building scrap. 

The preliminary LCA results show that the lowest environmental impacts come from the use of UBC scraps. 

This suggests that in a circular economy context for aluminium cans it is better to be in a closed loop. 

2. Introduction  

It is hard to predict how the beer packaging of the future will look like, but what can be easily guessed are 

the challenges that the beverage packaging sector will have to face; and resource scarcity deserves a central 

role. Nowadays most industrial sectors are still organized according to a linear economy, where resources are 

extracted, transformed to manufacture goods that are used by consumers and finally disposed. An alternative 

is provided by the circular economy, i.e. “an industrial system that is restorative or regenerative by intention 

and design” [1].  

In the context of circular economy, the Cradle to Cradle® (C2C) vision is gaining more and more visibility. 

C2C is a design framework oriented towards product quality and innovation, which aims to increase the 

positive (environmental) footprint of products by designing “eco-effective” solutions, i.e. maximizing the 

benefit to ecological systems [2]. The C2C design framework inspired the creation of the Carlsberg Circular 

Community, a cooperation platform launched in January 2014 featuring Carlsberg Group, the fourth largest 

global brewer in the world, and a selection of global partners with the ultimate aim to eliminate the concept 

of waste by rethinking the design of packaging, including the aluminium can [3].  

According to the European Aluminium Association [4], from an environmental point of view it doesn’t 

matter whether used cans end up again in new cans or in other product systems. When Life Cycle 

Assessment (LCA), based on the eco-efficiency approach, is applied to an aluminium can, the aim is to 

identify which solutions can decrease the environmental impacts of the product, see e.g. [5]. In its current 

status the Life Cycle Inventory (LCI) of aluminium processes is based on a pure aluminium flow, neglecting 

the presence of alloying elements [6]. However, within the circular economy context, the C2C vision calls 

for improving the quality and value of materials, through a characterization of chemicals included in the 

products, the so-called ABC-X assessment, and the development of an optimization strategy [7]. When scrap 
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quality is taken into account in the LCA of aluminium recycling, it turned out that packaging scrap can be 

managed in a separate closed loop recycling strategy for the same application [8].  

In the present study, we focused on a specific type of aluminium packaging, i.e. beverage cans, which are 

made of two parts: the can body (typically A3004 alloy) and the lid (typically 5182 alloy). We considered the 

influence of alloying elements and old scrap composition on the overall environmental performances of 

aluminium can recycling with the aim to identify the best option from an environmental point of view.  

3. Methodology   

We considered the case of a 33 cl Carlsberg can produced in the UK market (see Figure 1) and followed the 

approach proposed by Løvik and Müller [9] for quantifying the accumulation of the main alloying elements 

(Mn, Fe, Si, Cu) according to different sources of aluminium: (a) primary aluminium and mixed scraps, (b) 

Used Beverage Can (UBC) scrap, (c) mixed aluminium packaging scrap and (d) building scrap [10].  

 

Figure 1: Life cycle stages of an aluminium can; dashed lines represents exluded phases/flows 

3.1 Main assumptions  

We used mainly primary data to model the life cycle of the aluminium can [11]. The recycling rate was 

considered equal to 57% [12], and 67,8% as average recycled content of the can [13]. We calculated the 

collection rate based on scrap-specific pre-processing ([8] for current system and case (d); [13] for cases 

(a),(b)), and remelting yields [14]. We assumed that a recycling loop takes 60 days [8] and calculated for 

each scenario the amount of alloying elements that should be added in every loop to comply with can body 

composition requirements. The end-of-life of the can was modeled according to the Product Environmental 

Footprint formula [15], being the most suitable method for considering multiple uses of resources in 

continuous loops. 

4. Results  

4.1 Accumulation of Mn in can body  

Mn emerged as the limiting alloying element for can body recycling. Figure 2 includes the variation of Mn 

concentration in can body for the different scenarios, with and without composition adjustment to comply 

with Mn thresholds (1-1,5%) for the can body alloy A3004. 
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Figure 2: Mn concentration (%) in new body can according to different sources. 

4.2 LCIA results  

The preliminary LCIA results obtained with ILCD recommended method [16] (see Figure 3 including a 

selection of relevant impact categories), shows that the lowest environmental impacts refer to the case of 

closed loop, i.e. case b considering UBC scrap. 

 

Figure 3: Preliminary LCIA results of a new body can referring to loop n = 1 

5. Conclusion 

The C2C design framework can inspire LCA in considering the multiple future uses of resources in 

continuous loops for aluminium cans, but the actual alloy composition and accumulation of alloying 

elements under multiple recycling loops should be considered. The preliminary LCA results of the 

production of can body after one recycling loop show that the environmental benefits are greater for 

UBC scraps, therefore suggesting that for aluminium can it is better to be in a closed product loop. 

The implications with a higher number of recycling loops and collection rate should be further 

investigated, as well as the effect of uncertainty analysis on the robustness of the comparative LCA. 
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1. Abstract  

Food redistribution was studied in two areas in southern Finland by conducting surveys, questionnaires and 

interviews for charity organizations redistributing food and nine companies donating food. The aim of the 

study was to gain an estimate of volumes, types and numbers of food bags or cooked meals made from 

donated food, and how the organizations and donating companies operated. The number of cooked food 

meal portions varied up to 10,000 portions per year, while the number of redistributed food bags was on 

most occasions more than 10,000, and up to 270,000 bags per year by one organization. We estimated the 

weight of the food bags and their economic value, and also the type of the food that is donated. The study 

indicates that there can be a great potential for increasing the amount of food being redistributed in Finland, 

and we discuss new strategies for reducing food waste and summarize the initiatives already going on in 

Finland. 

2. Introduction  

In Finland, the retail, hospitality and food industry sectors produce 40–56 kilograms of avoidable food waste 

per year per capita, corresponding to 215–300 million kilograms of food waste per year (Katajajuuri et al. 

2014). The organizations redistributing food include several parishes, organizations of unemployed people, 

and non-governmental organizations. The common way to conduct food redistribution is to give people food 

bags to take and eat at home; organizations can also offer coffee, breakfast or lunch in the canteen. Food 

bags will be redistributed mostly 2–3 times per week and in addition for special events e.g. Christmas and 

New Year’s Eve, when organizations can arrange food distribution or offer meals. Finland’s 226 

municipalities have at least some kind of food-sharing activity once per week. The number of regular visits 

to food aid was around 1.2 million, and the number of all food-sharing contacts was around 1.7 million in 

2013 (Ohisalo et al. 2014). The aim of this study was to gain an estimate of volumes, types and number of 

food bags or cooked meals made from donated food, and how the redistributing organizations and donating 

companies operate. So as to base our study on specialist interviews, we decided to focus on two regions that 

seemed to have a lot of food-sharing activity and many actors. These two areas were the Helsinki 

metropolitan (1.1 million inhabitants) area and the Turku area (300 000 inhabitants), both located in 

Southern Finland and with relatively dense populations. This study was part of the Nordic Council project 

(2013-2014) and was carried out simultaneously in Nordic countries (Hanssen et al 2015). Here, we only 

present results from Finland and consider different aspects, also numbers and volumes that have been 

updated for 2015. 

3. Material and methods 

We sent out questionnaires and interviewed four national level organizations and 14 local organizations. We 

asked for information about types and amounts of food, their views on the challenges and barriers, and from 
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where they acquired their food donations. We made a rough estimate of food bag amounts and weights in 

both study areas based on information gained from the organizations, interviews and conversations. These 

results have been updated for 2015 when it has been possible. Some information we also gained from 

published news articles and internet sites. Organizations did not always know exact numbers of visitors or 

volumes of food bags. If we were given the number of visitors and volume of the bag, we could estimate the 

total volume of the food redistributed. We went on a one-day excursion to one sharing point to see in 

practice how food is handled and distributed. To obtain information also from companies donating food, we 

sent questionnaires to donors located in the same areas as local charity organizations. We asked how often 

and how much, what kind of food, and why they donated food products in 2013. We asked also what kind of 

barriers, possible regulations and responses they have had when donating food. We assessed the climate 

impacts of food redistributed by average food type categories in retail sector using numerous data sources 

(e.g. Katajajuuri 2009, Usva et al., 2009). 

4. Results 

The main form for redistributing food is to give a food bag to needy people; they wait their turn in line (the 

bread line) to receive the bag or select food items themselves from tables. All organizations redistributed 

food bags, and some of them also served cooked food portions or provided sandwiches. All but one answered 

that food they received from donors is very important, and also all but one said they received more than 50% 

of food redistributed as donations, rest of food are bought or received from EU Food Aid Programme. 

Amounts of cooked meals vary from 500 up to more than 10,000 portions per year; the number of food bags 

was almost always more than 10,000, and up to 270,000 bags in one organization. The volume of one food 

bag can vary, but is typically about 3–4 kilos (but can be up to 8–10 kg) and its value is typically 20–30 € 

depending on the products available. Furthermore, corresponding climate impact savings/compensation is 

around 10 kilograms of CO2-equivalent, as average, depending strongly on the products available. 

Altogether, redistribution in the Helsinki and Turku areas was about 3 million kg/year, and about 800,000 

visits were made (Table 1). Producing this overall food redistribution is equivalent to an environmental 

benefit of almost 10 million kilos of CO2-eq-emissions. The retail sector donated fresh bread, fruit, 

vegetables and milk products, but also meat and cheese. Amounts vary daily but bread and vegetables were 

common food donated.  The food industry donated their products not going to the sales process and they did 

not donate as often, mostly 2–3 times per week and about 10,000 kg/year. The main reasons not to donate all 

unsold food were the receiving organizations’ willingness not to receive more, and also laws and food safety 

instructions that can prevent increasing donations. For example, food can be donated after the best before 

date has expired but it is not possible to donate when the used by date has expired. Not all food is suitable for 

donation e.g. having possible safety risks, being damaged or spoiled, and organizations cannot take all 

products e.g. bread. In the retail sector, a 30% discount for product going to reach each day its use by or best 

before date has reduced food waste a great deal in recent few years. If food is near to its use by or best before 

date, some retailers will donate it before the date expires as they see that products are not going to be sold 

before date expires.  An estimation based on interviews is that about half of the Helsinki and Turku areas 

retail outlets donate food to charity organizations. The food that has reached it expiry date and is not donated 
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will be delivered to compost or another organic waste plant. Even only very small amounts of food waste 

will end up into the mixed waste and landfill, it is always better according to waste hierarchy, to redistribute 

food for human consumption than e.g. for energy use.  

5. Discussion and conclusion 

The volume of donated food redistributed by organizations was 3 million kg/year, and this can be cautiously 

compared to food wasted from the retail sector in the same areas of about 20 million kg/year. It must be 

remembered that a large part of the donated food comes also from the food industry and wasted amounts in 

that sector in the areas studied are not known an adequate level to estimate. Even amounts are not estimated 

here, it is a large potential for increased redistribution from retail and industry corresponding to 140–215 

million kilograms of food waste per year in Finland (Katajajuuri et al. 2014). From the hospitality sector75–

85 millions kg/year is wasted e.g. schools. School canteens and other public services could donate more than 

they do today; a large number have even started to organize lunch made from surplus food. Public food 

services are important as they provide up to half of the meals consumed outside the home (YM 2014). Also, 

consumers would like to see restaurants and retail stores donating their surplus and use by and best before 

date food to charities for redistribution (Silvennoinen et al. 2013). The study showed that safety instructions 

can increase food waste when the use by date has expired. In Finland, the food industry can decide whether 

they use best before or use by dates in their products. The food industry could consider more products with 

best before dates when it possible without risking food safety. The Finnish food safety authority Evira has 

launched new guidance for food aid (Evira 2013), and that has made donations more compelling for donors 

and provided new possibilities for activities and initiatives. The purpose of the guidance is to clarify food 

donation procedures and liability concerns and also provide guidance in a manner that the amount of food 

waste can be reduced. The respondents have shown a consensus that, with this guidance, responsibilities are 

clearer and that has increased the amounts of donations.  

 

Organization 
Serving 

meals 
Meals/week 

Number of 

visitors 

Estimate of food 

redistibuted 

(bags) kg/year  

Donators by sectors 

1 no x 15,000 52,500 RE, IND 

2 no x 200,000 700,000 IND, RE 

3 yes 1–2 20,000 70,000 RE 

4 no x 114,000 399,000 IND, RE 

5 no x 10,000 35,000 RE, IND, HOSP, OT, CANT 

6 no x 270,000 945,000 IND, RE, WHOLES 

7 yes 1–2 7,500 26,250 IND 

8 yes 1–2 4,000 10,500 IND, RE, WHOLES, CANT 

9 yes 1–2 20,000 70,000 RE, IND  

10 no x 19,500 68,000 IND, RE, FA 

11 yes 1–2 7,500 26,250 CANT, RE 

12 yes 3–5 58,375 467,000 IND, RE, FA, WHOLES 

13 yes 1–2 10,000 35,000 RE 

14 yes 1–2 24,000 84,000 RE, CANT, IND, FA 

Total kg     779,875 2,988,500   

Table 1: Organizations redistributing food, number of meals/week and visitors/year, volume kg of the bags and 

donating sectors in order of importance RE= retail, IND= food industry, HOSP=hospitality sector, CANT=canteens, 

WHOLES=wholesale, FA=primary production, farms, OT=others 
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1. Abstract  

The pertinence of setting a bio-energy production system needs an holistic and integrated study since its 

assessment has to cope with a complex system, characterized by non-equivalent views, reflecting the 

combined effects of several factors such as the bio-physical capacity of the territory, the societal energy 

demand and structure, the environmental performance of the production chain, the expected social and 

monetary benefits. We present here an embryonic study framework by integrating a standardized LCA into 

the MuSIASEM approach applied to the production system of second generation’s bio-ethanol for road 

transportation from giant reed feedstock cultivated and used in the administrative scale of Campania 

Region. This approach evaluate three levels of performance (feasibility, vaiability and desirability) and LCA 

was integrated as the source of the environmental impact matrix in the feasibility perspective. 

2. Introduction  

Bioethanol is not just a “package of energy” to be compared with an other “package of energy” with similar 

function. Bioethanol is a product made by a complex and dynamic system interconnected with ecological 

and socio-economic systems (the bio-physical capacity of the territory, the societal energy demand and 

structure, the environmental performance of the production chain, the expected social and monetary 

benefits). As reported by the rather recent review on LCA of second generation bioethanol [1], the typical 

study approach is the evaluation of impacts with reference to the conventional fossil oil system. Such 

comparison appears little relevant since the real matter is to evaluate at what degree bioethanol is suitable to 

replace the energy requirement for road transportation as estabilished by fossil fuel availability, thanks to its 

high power density and current low economic costs. Other important questions are generated by some 

scientific, policy related, economic and social narratives, which induce to identify the bioethanol as a 

promising source of energy enabling to reduce the environmental impact compared to fossil fuels (mainly 

climate change), and a driving ecomic factor for marginal areas.  Comprehensive and relevant answers to 

these questions need a complex and integrated study. Therefore, such an assesment for bio-energy sector 

could be deployed accordlingly to the MuSIASEM (Multi-Scale Integrated Analysis of Societal and 
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Ecosystem Metabolism) approach. The purpose is to obtain by simulation a watchful picture, addressed into 

the relevant perspective, since it may largely change land use and deeply affect socio-economic expectations 

due to the low power density of this energy source and the high energy intensity of the passenger 

transportation by car in the society. 

This contribution is an embryonic study framework to integrate into the MuSIASEM approach (Multi-Scale 

Integrated Analysis of Societal and Ecosystem Metabolism) a standardized LCA applied to second 

generation’s bio-ethanol, intended to be used as a fuel for local road transportation, from energy crop (Giant 

reed) cultivated and processed in the administrative scale of Campania Region. 

3. The MuSIASEM toolbox 

The Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) makes it possible 

to develop an analytical toolkit providing an effective assessment when dealing with the complex analysis of 

the sustainability of systems [2] [3] [4], and producing effective information for several actors (policy 

makers, stakeholders, consumers). MuSIASEM integrates two non-equivalent views of the system under 

analysis: the outside view and the inside view. In this study the inside view is about the bioethanol 

production system (techno-economic system) to be integrated in the regional territory with its bio-physical 

capacity and societal structure (outside view). Such framework should be suitable to generate analysis of 

scenarios capable of addressing three criteria of performance: feasibility, viability and desirability [5]. 

Feasibility is in relation to external constraints: In this study, we consider the land (supposed marginal) 

required for energy crop, the structure of the regional agricultural sector (as the source fund of the necessary 

labour force), and  the environmental impacts at global and local scale. Viability is in relation to internal 

constraints (economic costs and technical coefficients of the bioethanol production system). Desirability is in 

relation to the capability of attaining the expected goals at Regional scale, i.e. the degree at which the 

bioethanol production system could produce new jobs and could guarantee the energy supply for 

transportation needs. 

4. LCA integrated in the MuSIASEM toolbox 

LCA study was conceived to be integrated in the sphere of feasibility in order to evaluate the environmental 

impacts of the bioethanol production system. The LCA was applied according to standard procedures (and 

ISO 14040-44: 2006) and implemented by means of SimaPro 8.0.3 software coupled with ReCiPe H Ver 

1.08 as midpoint hierarchic impact assessment method and EcoInvent database (Ver 2.0). The functional unit 

was set as 1 MJ of power delivered to passenger cars. For bioethanol production, the system boundary 

includes biomass production, transport of biomass to an ethanol plant, ethanol conversion, transport and 

distribution of ethanol, and final use in the ethanol fuelled vehicle.  

Primary data were available for the inventory of the Arundo donax feedstock cultivation stage. The ethanol 

conversion plant and related emissions were modeled calibrating the “Ethanol, from wood” record in 

EcoInvent database, according to specific advanced pre-treatment, enzymatic hydrolyses and fermentation 

efficiencies retrieved for Arundo donax from pertinent scientific literature. Similarly to EcoInvent ligno-

cellulosic ethanol, also the conversion plant in this study appeared energy self-sufficient (steam and 

electricity), by combustion of unconverted solids (lignin cake, etc.) in cogeneration combined heat and 
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power (CHP), with an electricity surplus to the national grid. For this reason, in respect of the 

multifunctional process investigated, the impacts of bioethanol production chain have been allocated, on 

exergy basis, for 97% to bioethanol produced and for 3% to the co-produced electricity. 

This study conceived the bioethanol production system functional for the Regional needs in transportation 

energy. Indded sensitivity of different transport distances to the overall LCA outcomes has been largely 

demonstrated. Aaccording to the International Energy Agency (IEA-Bioenergy), one considers maximum 

economic transport distance of biomass for bioenergy is limited to 100 km. 

5. Conclusion 

The preliminary results induce to draw some conclusions revealing poor performances of the bioethanol 

production system for each  of the three levels considered. 

i) The huge land requirement to fill the high Regional fuel demand, based on 2020 EU target, appears 

unfeasible due to the low power density of the overall production chain (0.17 kW m
-2

). This data is 

cause for reflections about the concept of marginal lands. 

ii) Nevertheless the giant reed crop has been conceived as a low input crop management, the most 

impact categories had worse performance than petrol procurement and utilization, acting mainly at 

local scale. 

iii) The mild capability of soil carbon storage detected for giant reed cultivation is paltry compared to 

the carbon emitted by transportation at regional scale. 

iv) The farming sector of Campania Region is in a phase of progressive ageing and barely the low 

income expected from bio-energy crops would attract younger people. 

v) High technical coefficients (economic costs and energy investment) were detected, both for 

agricultural phase and processing phase of feedstock.  

vi) Very limited social and monetary benefits are expected, due to the low margin for farmers and to the 

small potential for creating new jobs in the energy sector. 
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1. Abstract  

In light of environmental concerns about livestock farming and high pressure on profit margins in milk 

production, dairy farmers face the challenge to produce in an environmentally sustainable, yet competitive 

way. In this study, we aim to investigate whether and how economic-environmental win-wins can be 

achieved for dairy farms in the region of Flanders (Belgium). From an environmental viewpoint, we focus on 

natural resource use (land, water, minerals, fossil resources, etc.), quantifying it through Exergetic Life 

Cycle Assessment (ELCA). Combining ELCA and frontier analysis, we assess economic and environmental 

performances of 127 specialized dairy farms by positioning these farms against a best practice frontier.  

2. Introduction  

During the past decades, intensification of agricultural systems in order to improve yields has coincided with 

an increased material and energy throughput and has been accompanied by environmental burdens 

(greenhouse gas emissions, eutrophication, etc.). In addition to rising environmental concerns, farm income 

comes more and more under pressure due to multiple factors, e.g. increasing input costs, unfavourable 

wheather conditions, increased competition and pressure on output prices, etc. Maintaining competitiveness 

in harmony with the environment is a major challenge and research into farm-specific optimization paths is 

needed. In this study, to support the economic and environmental improvement of dairy farms, we combine 

frontier analysis and Exergetic Life Cycle Assessment (ELCA). 

Frontier analysis is used to measure technical, economic and environmental performances by positioning 

farms against a best practice frontier, which is established using production-theoretical principles. Production 

theory considers the technical relationship between inputs and outputs of a production process, being the 

production function [1]. Fully technically efficient farms are located on the best practice frontier. Technical 

efficiency reflects the ability to obtain maximal output(s) from (a) given input(s) or to use minimal input(s) 

to obtain (a) given output(s) [2]. By linking the production function to economic and environmental 

performances, economic and environmental benchmarks can be identified on the best practice frontier. Using 

frontier analysis in this study, we benchmark actual performance levels of dairy farms with the optimal 

performance levels in order to identify win-win possibilities and trade-off situations. 
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In the light of the trend towards more intensively managed high input/high output systems, resource use 

analysis is very relevant to support whole-farm strategies for economic-environmental optimization. In 

assessing overall resource consumption of processes and full production chains, the concept of exergy is 

particularly useful. The exergy concept is put forward as an appropriate quantifier for both material and 

energy flows in one single scale (joules of exergy (Jex)). The exergy concept originates from the second law 

of thermodynamics that postulates that every process transforms resources into work, heat, and/or products, 

by-products and wastes, and generates entropy. The sum of the exergy embodied in these outputs is lower 

than the total input of exergy in the resources, because part of the initial exergy dissipates through 

irreversible entropy production. The quality of resources thus decreases in every transformation step. The 

exergy content of a resource equals the minimum work necessary to produce that resource in its specified 

state (temperature, pressure) and composition in a reversible way from common materials in the reference 

environment [3]. Integrating the exergy concept in LCA results into Exergetic Life Cycle Assessment 

(ELCA), which is used to calculate a production chain’s resource footprint. 

Hoang and Rao proposed to integrate cumulative exergy consumption in frontier analysis to calculate the 

environmental efficiency of agricultural production in 29 OECD countries [4]. In this study, we aim to 

investigate, at farm level, whether and how economic-environmental win-wins can be achieved for dairy 

farms in the region of Flanders (Belgium). In previous work [5], we showed how Exergy Analysis (process 

level) and ELCA (life cycle level) can be used to identify environmental improvement options for dairy 

farms from a resource efficiency viewpoint. For that purpose, we assessed the resource consumption of one 

intensive confinement-based dairy farm. In this study, we calculated the profit and the resource footprint of 

127 specialized dairy farms to provide a broader view on their resource consumption in relation to their 

economic performance.  

3. Materials and methods 

Inventory data of 127 specialized dairy farms in the region of Flanders (Belgium) were retrieved from their 

farm accountancy files for a one-year period in 2010-2011. These accountancy files are essential for the 

calculation of the annual economic result but they also contain information expressed in physical units. Data 

of the farm supply chains were mainly retrieved from the ecoinvent v2.2 database, in addition to other 

literature sources. The boundary of our study included the production chain from cradle to dairy farm gate.  

Exergetic Life Cycle Assessment (ELCA) 

The exergy-based life cycle impact assessment method Cumulative Exergy Extraction from the Natural 

Environment (CEENE) [6] was applied to calculate the life cycle’s resource footprint. The CEENE method is 

coupled to the life cycle inventory database ecoinvent, which contains resource use data for several 

thousands of processes. Calculation of CEENE values involves quantification of the total exergy contained in 

all types of natural resources extracted from the environment throughout the life cycle. The CEENE method 

subdivides natural resources into eight categories: abiotic renewable resources (hydropower and wind), land 

resources, nuclear energy, metals, fossil resources, water, minerals and atmospheric resources. The way in 
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which the original CEENE v2007 method [6] accounted for land resources was modified, leading to CEENE 

v2013 [7], which was applied in our study. 

Frontier analysis 

To assess the production frontier and calculate efficiency scores, we use nonparametric data envelopment 

analysis (DEA). Data envelopment analysis involves the use of linear programming to construct a 

nonparametric piecewise frontier over the data and calculates efficiency scores relative to this frontier [2]. 

Economic and environmental efficiency scores are determined by linking the production function to 

economic and exergy (CEENE) coefficients. Focus is on input oriented efficiency measurement that reflects 

the ability of using minimal amounts of inputs to obtain a given amount of output. 

4. Results 

Figure 1 shows the resource footprint of 127 specialized dairy farms in function of their profit.  As we 

observe no clear association between resource footprint and profit, but we observe farms that perform well 

from both an economic and environmental point of view, this figure justifies to search for economic-

environmental win-wins and trade-offs using frontier analysis. More detailed results on the share of the 

different resource categories and results of the frontier analysis will be shown during the presentation at the 

conference. 
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Figure 1: The resource footprint in terms of CEENEtotal of 127 specialized dairy farms in the region of Flanders 

(Belgium) in function of their profit 

5. Conclusion and perspectives 

With this study, we provide an overall view on the resource consumption of specialized dairy farms in 

Flanders in relation to their economic performance. Future research could focus on the inclusion of other 

environmental burdens, such as greenhouse gas emissions, eutropication and acidification. 
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1. Abstract 

The global ready-made meals market is growing fast, estimated to be worth $1.3 trillion by 2016. At present, 

the USA and the UK hold the largest market share in the world.  This paper considers the sustainability of 

the ready-made meals sector in the UK, with a focus on social aspects. Taking a life cycle approach, the 

sustainability is evaluated using social sustainability indicators developed as part of this research. A range 

of the most popular ready-made meals in the UK are considered in the Italian, Chinese, Indian and British 

cuisines. The results suggest that wages and forced and child labour are critical social impacts in the 

agriculture, worker injuries and fatalities in the manufacture of the meals, while food costs and health are 

important from the consumer point of view. Options for improvements of social impacts are also discussed. 

2. Introduction  

The convenience food sector is growing rapidly, with the value of the global ready-made meals market 

predicted to increase from $1.11 trillion in 2011 to $1.3 trillion by 2016 [
1
]. At present, the USA and the UK 

hold the largest market share in the world, estimated at £7.2 bn [
2
] and £2.6 bn [

3
], respectively. In the UK, a 

third of the British adult population consumes ready-made meals once a week, while in countries such as 

France only 15% of adults buy prepared food [3]. Overall, 8.8 kg of ready-made meals are consumed in the 

UK per capita per year [
4
]. Yet, little is known about the sustainability of the ready-made meals sector, 

particularly social aspects. Therefore, this paper aims to evaluate the social sustainability of the ready-made 

meals sector in the UK, using a life cycle approach. A range of most popular ready-made meals in the Italian, 

Chinese, Indian and British cuisines are considered.  

3. Methodology  

The social sustainability is assessed on a life cycle basis, using a set of social sustainability indicators 

developed in this research. The indicators consider three major groups of stakeholder: employees, local 

communities and consumers (Table 1). For each indicator, the level of risk across the life cycle has been 

estimated, following the criteria in [ ].  

All life cycle stages are considered, including agriculture to produce meal ingredients, meal manufacturing, 

retail and consumption. The analysis is based on the most popular meals in the UK across the above 

mentioned cuisines, representing more than 80% of the market sales by value (Figure 1). Where possible, the 

assessment is specific to the ready-made meal sector but, where data were not available, it is based on the 

food and drink sector and/or the UK as a country. 
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                                              Employees 

Employment  Working hours 

Freedom of association Forced labour 

Collective bargaining Equal 

opportunities/discrimination 

Child labour  Health and safety 

Wages  

Local communities and consumers 

Community and consumer 

engagement  

Consumer health and food costs 

Table 1: Social sustainability indicators considered in the study 

 

British 

Italian 

• Classic lasagne

• Spaghetti Bolognese

Indian 

• Pork and prawns fried rice

• Chicken noodles

31 %

24 %

19 %

11 %

Chinese 

• Chicken korma curry

• Lamb masala curry

• Shepherd’s pie

• Cottage pie

• Fisherman’s pie

• Beef roast

• Lamb roast

• Pork roast

• Chicken roast

 

Figure 2: Market share of most popular ready-made meals in the UK considered in the study 

4. Results  

4.1 Employees 

Table 2 summarises the social sustainability hotspots across the supply chain for the employees in the sector. 

As can be seen, agriculture is a critical stage in the life cycle of ready-made meals for several indicators, 

particularly child labour. Worldwide, agriculture has a high rate of child labour, estimated at around 60% [5]. 

Therefore, the risk of child labour is considered very high, particularly for the parts of supply chain outside 

the UK, such as some of the ingredients imported from abroad. It is also possible that child labour may be 

used in the UK because of people smuggling and trafficking issues.  

 This is also one of the reasons for a high risk with respect to the wages in the agricultural sector which are 

30% lower than the average for the UK. Working hours are 11% above the UK average and are classed as a 

medium risk. On the other hand, agriculture provides 12% of the employment in the whole agro-food supply 

chain and has low fatal injuries. However, the latter represents a very high risk in the manufacturing sector, 

which contributes 18% of the total work-related fatal injuries in the UK [5]. At the same time, this sub-sector 

provides 12% of total UK jobs and has 5% higher wages than the UK average [
5
]; however, the working 

hours are also higher (4%) than the average. 
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Social indicators 
UK/sectoral 

level 
Agriculture Manufacture 

Wholesale 

& retail 

Transport 

& storage 

Contribution to 

employment  
     

Freedom of association      

Collective bargaining      

Child labour      

Wages       

Working hours      

Forced labour      

Equal opportunities      

Fatal injuries      

 

Very high  High Medium Low No data 

     

Table 2: Social hotspots for employees in the ready-made meals supply chain 

  

The wholesale and retail sectors each provide 15% of the total employment in the UK but represent a high 

risk for the wages as they pay 30% lower salaries than the UK average. Finally, transport and storage 

contribute 7% of the total UK employment but have 15% higher fatal injuries and 7% higher working hours 

than the UK average.  

For equal opportunities, the UK is a low risk country [5]. However, based on the global gender gap, it is 

ranked only 18
th
, behind countries such as Nicaragua, Lesotho and South Africa. In the UK food and drink 

sector, 33% of women are considered to be in forced labour [6]. Forced labour is not only an issue for 

women but also for men. In the UK, there is a high risk of forced labour, particularly because of human 

trafficking and modern slavery. Between 3000 and 5000 people have experienced some form of forced 

labour [
6
]. Some of the malpractices include indiscriminate wage deductions and charges, overwork, lack of 

contract, passport retention, threats and bulling. In addition to human trafficking, another reason that the food 

sector is vulnerable to forced labour is its seasonality and use of migratory workforce: workers often 

consider these jobs as temporary and are willing to assume poor working condition for a short period of time 

[7]. 

For the freedom of association and collective bargaining rights, the UK and the food and drink sector are 

ranked as a medium risk [5]. For example, between 1999 and 2008, the number of strikes has decreased by 

30% across all UK sectors. In the same period, the manufacturing sector saw a reduction of 95%. This could 

mean that either the work conditions have been stable or improving, or that these particular rights have been 

oppressed, but there are no data to support either supposition. However, it is important to note that the data 

refer to the period just before the economic crisis, so that the numbers might have changed. 
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4.2 Local communities and consumers 

The UK food sector is involved in a range of community and consumer engagement initiatives to raise 

awareness related to food and health, to attract young people into the sector, etc. Some examples include 

nutrition and healthy-eating initiatives, aimed at reducing the content of fat, sugar and salt in food and 

informing consumers on their content through labelling [
7
]. This has been driven by the increasing rate of 

diet-related chronic diseases (DRCD), such as obesity and diabetes, cardiovascular diseases, hypertension, 

strokes, osteoporosis, dental diseases and certain types of cancer. For example, in 2011, a quarter of the 

British adult population was obese and a third was overweight [
8
]. The increase in DRCD is causing a rise in 

the national health costs because of the need for treatment, disability support, information and prevention 

campaigns. For example, 7.4% of the UK’s annual health budget - £5.8 billion - is spent by NHS on food-

related illnesses [
9
]. Several factors have contributed to the rise of DRCD, including modern lifestyle and 

high consumption of convenience food [
10

]. For these reasons, it is expected that the DRCD will more than 

double by 2020 [
11

]. 

 In addition to health issues, consumers are also affected by food costs which increased sharply since the 

onset of the recession in 2007, with the processed food sector being one of the most affected [
12

]. A recent 

survey showed that 80% of consumers are worried about food prices and 60% have changed their shopping 

options because of the constant rise in food prices [
13

]. The most affected are the lower-income earners and 

households with children. As food affordability is a key factor in food poverty, the rise in food prices also 

affects the welfare of the population as consumers tend to buy cheaper food which is often less healthy. 

5. Conclusions and recommendations 

Based on the findings of this work, the following recommendations can be made to the key stakeholders to 

improve the social sustainability in the ready-made meals sector: 

 Government policy should encourage manufacturers to work with the stakeholders across the whole 

supply chain, including suppliers and consumers, to improve the social sustainability in the sector. 

 Government and industry should ensure that wages in the agricultural and retail sectors are brought 

in line with the UK average. Robust policies should be developed to eradicate forced and child 

labour in the agricultural sector. 

 The food manufacturing sector should formulate a clear strategy and set ambitious targets to 

minimise worker injuries and fatalities as well as to improve nutritional quality of food and reduce 

the amount of added salt, sugar and fat during processing. 

 Government’s advice to the public to “buy British” should not be made indiscriminately as in some 

cases it is more sustainable to import certain food than use local produce, despite long-range 

transport. Thus, the implications for social sustainability of imported vs local food should be 

understood better before providing advice to the consumer. 

 The proliferation of different food labels only serves to confuse the consumer so that the industry 

and the government should develop a single, easy-to-understand food labelling system to improve 

awareness and enable more informed consumer choices. The labelling should be unified across 

different manufacturers. 

 An appropriate communication strategy as well as educational programmes should be developed in 

collaboration between the industry, the government and consumer groups to help consumers make 

more sustainable food choices, particularly with respect to convenience food. 
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1. Abstract  

Product and service sustainability assessment is a process that includes together environmental, economic 

and social evaluations. In the global market this evaluations are coming increasingly important from a 

conscious consumer perspective. This is especially true for food and energy products in particular as a 

consequence of the new alternatives proposed in the recent times (e.g. organic food or renewable energy 

sources). This study summarizes results from a literature review aiming at delineating the development of 

Life Cycle Costing, Social-Life Cycle Assessment and Life Cycle Sustainability Assessment methodologies in 

the food and energy sectors. Results underlines the limited application of these life cycle analysis approach 

in these fields, despite well-developed environmental Life Cycle Assessment, as demonstrated by the great 

number of scientific paper published, especially in the last years. 

2. Introduction  

In the recent developments of the concept of global market, methodologies to evaluate the sustainability 

characteristics of a product, service or product have been studied and implemented [1]. The reference 

approach for all life cycle analysis comes from the standardized approach developed for environmental 

investigation, the life cycle assessment (LCA) analysis. Despite that, the entire scientific community has 

raised the need to evaluate also social and economic aspects in a life cycle perspective for a complete 

sustainability evaluation of a product and service [2]: the common structure suggested for LCA has been so 

adopted also for life cycle costing (LCC), social life cycle assessment (S-LCA) and life cycle sustainability 

assessment (LCSA). Starting from these considerations, it is easy to understand the reason of the great 

number of scientific researches published regarding the implementation of LCA methodology in the context 

of the environmental sustainability analysis of products and services [3]. 

These innovative approaches towards sustainability evaluation have been taken in consideration in a 

significant way also in the food and energy sectors. The public awareness about sustainability assessment in 

a life cycle perspective is increasing, including demand for more ecological and ethical standards when 

selecting products [4].  

Considering the food and energy sectors, the aim of this study is to delineate the development and the 

implementation of the LCC, LCSA and S-LCA methodologies through a literature review of scientific 

papers. The objective of the research is to underline what are the specific food and energy products and 

services on which case studies have been applied, to suggest possible future developments. 
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3. Method and Results 

3.1 Research methodology 

An exploratory qualitative research has been conducted with a bibliographic research review. Starting from 

the experience of LCA development, the research has been made on three relevant editors which published 

many researches in the environmental sustainability field: Springer, Elsevier and Wiley. Working on the 

dedicate research engine, this work has been performed searching specific keywords on books, texts and on 

relevant scientific papers published in the period 1980-2015. The paper or book chapter sections analyzed 

have been the “Title”, “Abstract” or “Keywords”. The specific keywords chosen for the literature research 

were “life cycle costing”, “social life cycle assessment”, “life cycle sustainability assessment” and the 

relative acronyms combined, respectively, with the words “food” and “energy”. All publications founded 

have been singularly analyzed considering the following features: source, year of publication, research field 

(LCA, LCC, S-LCA, LCSA or combination of them) and principal topic (sector of application or specific 

product/service/process analyzed). 

3.2 Results   

The general result is that scientific literature is not yet well developed in the topics analyzed and although 

many papers underline the relevance of these approaches for product analysis, specific case studies and 

applications are not so common. Another interesting result is relative to LCC applications: all studies are 

relative to the entire product/services cost but a well-defined common approach is not shared. S-LCA and 

LCSA approaches are still under development and only a few case studies can be identified although 

indications for a common methodology are published and shared inside the scientific community [5] [6] [1]. 

The analysis shows that this conclusion is particularly valid for agricultural and food production sectors 

unlike the energy one.  Considering the food sector, the research has given 25 publications (tab. 1), of which 

17 papers published in scientific journal. The analysis shows that the development of the researches on the 

food sectors started significantly five years ago, with almost the 90% of the publication in the period 2011-

2015. The highest number of works is regarding the development of LCC and S-LCA. Only 4 works have 

developed a complete sustainability analysis through an LCSA approach.  

The greatest number of publications has been founded in the International Journal of Life Cycle Assessment 

(6 papers) and in the Journal of Cleaner Production (5 papers).  

Table 

1: 

Topics developed in the food sector for LCC, S-LCA and LCSA 

Topic 
Number of 

publications 

Life cycle 

approach 
Specific applications 

Food Packaging 3 LCC, SLCA  

Specific food product 10 
LCC, SLCA, 

LCSA 

Sugar, wine, milk, olive, citrus, fish, 

animals 

End of life 4 
LCC, SLCA, 

LCSA 

Waste management, disposal, food 

recycling 

Other product/processes 

linked to food sector 
8 LCC, SLCA 

Chemical product, supply chain, general 

methodological approach to food sector 
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Results coming from the energy sector analysis show a higher number of scientific research published 

compared to the food sector: 82 papers published, in the time period considered (tab. 2). A significant 

development on these research topics, similar to the food case, started in the last years, with a percentage of 

publication of about 65% in the period 2011-2015. Also in this case the results underline a relevant 

development of economic studies, with 61 LCC analysis founded; despite this, a relevant number (16) of 

LCSA applications has been founded and only 5 application of S-LCA methodology. Not so many 

applications have been founded for case studies on specific food product (e.g. sugar, milk, etc.). More than 

half of the papers were published in the following journals: Applied Energy, Energy, Energy and Buildings, 

Renewable and Sustainable Energy Reviews (Elsevier) and International Journal of LCA (Springer).  

Table 

2: 

Topics developed in the energy sector for LCC, S-LCA and LCSA 

 

Other less relevant results are relative to traditional electricity production and automotive sector. 

Considering the results obtained and with objective to improve them, the literature research has been also 

implemented using only the words LCC, SLCA and LCSA, without other search filters: the result has been 

that other 9 publications of life cycle methodologies (S-LCA and LCSA) in the energy sector have been 

founded. 

4. Conclusion 

This type of investigations allows us to understand in a precise way the development of the scientific 

research on these fields: considering the development of LCA in the food and energy sector, it is possible to 

declare that the number of papers founded about LCC, S-LCA and LCSA is still small. The results of the 

analysis shows that a consistent number of LCC, S-LCA and LCSA analysis are combined in the same study 

with LCA applications and similar (e.g. carbon footprint), in particular in the food sector, where more than 

half studies reported this combination. Besides LCA applications, also LCC analysis is developing in the 

recent years, in line with the LCA approach [7], but cost calculation methods are not similar in different 

studies. 

Topic 
Number of 

publications 

Life cycle 

approach 
Specific applications 

Alternative electric 

energy production 
18 

LCC, 

SLCA, 

LCSA 

Energy from wind, biomass, geothermal and 

solar source, photovoltaic, nuclear power, 

hybrid energy systems 

Traditional and  

alternative fuels 
26 

LCC, 

SLCA, 

LCSA 

Gasoline, diesel oil, biodiesel, biogas, 

hydrogen, cassava-based ethanol, biogas from 

algae, bioethanol, gas storage 

Buildings and 

component 
15 

LCC, 

LCSA 

Net-zero, retrofitting and commercial buildings, 

residential furnaces and boilers, smart window 

Specific energy 

product/process 
15 

LCC, 

SLCA, 

LCSA 

Insulation, electronic devices and motor, clothes 

dryers, fan, alternators,  wind turbine, 

fluorescent lamp, WEEE, energy storage system 
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As possible future developments, starting from existing environmental evaluations appears relevant, first of 

all because sharing a common methodology (in particular for S-LCA and LCSA applications, especially in 

terms of indicators) in line with the last principal shared methodological approaches. This can allow us to 

obtain more complete results in terms of sustainability evaluation and can give more consistence also to the 

comparative analysis, for example regarding different paths for food production, and different alternative 

energy sources. 
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1. Abstract  

Social Life Cycle Assessment (S-LCA) was tested vis-à-vis its applicability for the Thai sugar industry sector. 

The main challenges in applying S-LCA in the Thai sugar industry sector are difficulty in data collection and 

different interpretation of social indicators for different people. It was difficult to get reliable information 

about some sensitive social issues for the workers because data were collected through the sugar factory as 

most sugarcane producers are contracted with the sugar factories. Site visits and interviews with labourers 

working in sugarcane farms were used to validate the data. The suggested social subcategories for the Thai 

sugar industry are shown in this paper. The final results of this study are used to recommend some practical 

ways in conducting S-LCA for the Thai sugar industry sector. 

2. Introduction  

Sugar plays an important role in the Thai economy. In 2012, Thailand was the second largest sugar exporter 

in the world [1]. This implies that a large amount of sugar is produced annually. To achieve sustainability in 

the sugar industry, all environmental, economic and social dimensions needed to be considered. Some 

previous studies assessed environmental and economic performances of sugar in Thailand. However, the 

assessment of its impacts on the social component is limited. In this study, the tool “Social Life Cycle 

Assessment” (S-LCA) was used to test its applicability for the Thai sugar industry sector. Data were 

collected in the northeastern part of Thailand as it is the largest sugarcane producer in the country. S-LCA is 

a tool used to assess the social and socio-economic aspects of products and their potential positive and 

negative impacts along their life cycle encompassing extraction and processing of raw materials; 

manufacturing; distribution; use; re-use; maintenance; recycling; and final disposal. It could be used to 

complement Environmental Life Cycle Assessment [2]. However, data from different stakeholders such as 

workers, consumers, local community, society and value chain actors along all stages in product/service’s 

life cycle are required.  

3. Methodology 

3.1 Selection of social subcategories 

The S-LCA was conducted following the guidelines for Social Life Cycle Assessment of Products of UNEP 

[2]. To find appropriate social subcategories to examine, the main subcategories from the relevant 

international standards/guidelines (namely Sustainability Assessment of Food and Agriculture systems, 

Roundtable on Sustainable Biomaterials, Global Bioenergy Partnership and Bonsucro) were selected by 83 
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stakeholders divided into 5 groups (including workers, consumers, local community, society and value chain 

actors) in the Nakhon Ratchasima province of Thailand during June 2015. In addition, an attempt was made 

to avoid people who share roles in more than one stakeholder groups in order to avoid biased opinion for 

each stakeholder group. They were asked to identify what are most important to them (from the list given). 

In addition, they were asked to identify the subcategories that are socially contributed (both positive and 

negative) by the sugar industry.  

3.2 Data collection 

Before field data collection, the social hot spots of Thai sugar sector were assessed using the Social LCIA 

Method 0.9V0.01/Standard in SimaPro 8.0.4.24. It was found that the sugarcane production sector 

contributes about 84 percent of total impacts of the sugar industry. Therefore, field data collection was 

focused on sugarcane production. The main subcategories that are socially impacted are health & safety and 

labour rights & decent work.  

Data for sugarcane farmers 

Data for workers were collected by face-to-face interview of 71 sugarcane farm owners in April 2015. These 

were conducted by staff of the sugar factory because most farmers are contracted with the sugar factory. 

Thus the factory staff have direct contacts with the farmers. Site visits and interviews with labourers working 

in sugarcane farms were used to validate the data. Data used in this study were from farms that are 

contracted with one sugar factory in Nakhon Ratchasima, the province which produces the largest amount of 

sugarcane in the nation.  

Data for other stakeholders 

Data for labourers working in farms, consumers, local community, society and value chain actors were 

collected by interviewing 83 people (who were selected randomly) in the area nearby the studied sugar 

factory.  

4. Results and Discussion 

Results of the social subcategories investigated are shown in Table 1. Note that the results shown in this table 

are major results for each indicator; and the indicators were designed and interpreted by the researchers of 

the project. Following the social hot spot analaysis, field data collection was focused on sugarcane 

production. The main subcategories to focus on are health & safety and labour rights & decent work. For 

these subcategories, more detailed indicators were assessed. For other subcategories, stakeholders were 

asked to identify whether the sugar industry contributes to social impacts in these subcategories.  
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Stakeholders Subcategories Indicators Results 

Workers 

Fair wage* 
- Workers receive fair wage? 
- At least government regulated minimum 
wage (300B/day)? 

- yes  
- no, about 200B/day but meal is 
provided at work 

Health and safety* 

- Appropriate personal protective 
equipment supplied to and used by all 
workers? 
- All workers present on the field and/or mill 
have access to drinking water in sufficient 
quantity?  
- All workers present on the field and/or mill 
have access to first aid and provision for 
emergency response? 

- No, not supplied in all farms. 
Sometimes, equipment supplied but not 
used by workers 
- yes 
 
 
-yes 

Free of discrimination* 

- Same wage for male/female for same 
task 
- percentage of male/female workers 

- yes 
 
- percentage of female are higher 
because more male workers work in 
other sector such as construction that 
pays higher wage 

Free of forced labour* - Free of forced labour? - yes 

Social benefits* - Workers received social benefits? - no 

Fair working hours 

- Maximum hours worked not exceeding 
60 hours per week?  
- Overtime work is voluntary and paid at 
premium rate? 

- yes 
 
- yes 

Free of child labour - Free of child labour? - yes 

Freedom of association and 
collective bargaining 

- Workers have freedom of association and 
collective bargaining? 

- yes 

Satisfaction of job - Workers are satisfied with job? - mostly yes 

Consumers 

Health & safety* 
Contributed by sugar industry? - Some local consumers claim that 

sugarcane trash burning affects their 
health 

Consumer privacy Contributed by sugar industry? - yes 

End of life responsibility Contributed by sugar industry? - not identified 

Feedback mechanism Contributed by sugar industry? - not identified 

Transparency Contributed by sugar industry? - not identified 

Local 
community 

Local employment* Contributed by sugar industry? - yes 

Delocalization and 
migration* 

Contributed by sugar industry? - yes 

Safe & healthy living 
conditions* 

Contributed by sugar industry? - Some locals claim that sugarcane trash 
burning affects their health 

Access to material 
resources* 

Contributed by sugar industry? - yes 

Access to immaterial 
resources* 

Contributed by sugar industry? - yes 

Community engagement Contributed by sugar industry? - yes 

Respect of cultural heritage Contributed by sugar industry? - yes 

Respect of indigenous rights Contributed by sugar industry? - yes 

Secure living conditions Contributed by sugar industry? - not identified 

Society 

Contribution to economic 
development* 

Contributed by sugar industry? - yes 

Public commitments to 
sustainability issues* 

Contributed by sugar industry? - yes 

Free of corruption* Contributed by sugar industry? - not identified 

Technology development Contributed by sugar industry? - not identified 

Prevention & mitigation of 
armed conflicts 

Contributed by sugar industry? - not identified 

Value chain 
actors 

Water right* 
None of water legitimately contested by 
other users? 

Small number reported 

Land right* 
None of land legitimately contested by 
other users? 

Small number reported 

Fair competition* Contributed by sugar industry? - yes 

Promoting social 
responsibility* 

Contributed by sugar industry? - not identified 

Supplier relationships Contributed by sugar industry? - yes 

Respect of intellectual 
property rights 

Contributed by sugar industry? - not identified 

Table 1: Results of impact categories investigated 
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Note: *subcategories that are identified by stakeholders as being the most important to them 

The suggested social subcategories that are applicable for the Thai sugar industry are those provided in the 

guidelines/standards and also identified important by the stakeholders. We deem that the main social issues  

that should be improved urgently are those identified as important by stakeholders, who are socially harmed 

by the industry (such as problems of canetrash burning that affects local health and safety, low wage, land and 

water rights). However, some social subcategories that are suggested in international standards such as 

prevention & mitigation of armed conflicts, free of corruption and respect of intellectual property rights may 

be less relevant to the Thai sugar industry sector. Results could be used to guide studies in similar topics in 

other agricultural sectors in Thailand. 

5. Conclusion 

Based on the results of this study, it was concluded that S-LCA is applicable for the Thai sugar industry 

sector. However, difficulty in data collection and different interpretation of social indicators for different 

people are the main challenges. Careful explanation of the background of each social indicator examined to 

stakeholders is suggested to help avoid misinterpretation. Results suggest that social subcategories that need 

urgent improvement are problems of canetrash burning that affects local health and safety, low wages, land 

and water rights. 
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1. Abstract  

This research applied Material Flow Analysis to analyse raw material and water flow and use efficiency and 

loss through each process of the cassava starch production system. The conventional system is compared 

with an improved one that recycles water to increase starch recovery.  The results show that water recycling 

can reduce loss and increase productivity by almost 10% as compared to the conventional one and can 

reduce almost 50% of water use in the processing step.  

2. Introduction  

Cassava is a versatile plant that can be used for food, feed and fuel. Thailand is the top cassava product 

exporter in the world. In Thailand, over half of the cassava is used for starch production. About 44% is used 

for producing chips and pelleted cassava for animal feed and only 2% is available for ethanol production. 

The Renewable and Alternative Energy Development Plan (AEDP 2012-2021) has set a target to increase 

ethanol production from cassava. Cassava has been planned to be used for feedstock more than molasses in 

the future. The increasing demand of food, feed and fuel from cassava further underlines the need for 

increasing productivity and resource recovery as well as reducing losses in the cassava starch production 

system.  This research applied the Material Flow Analysis method to analyse raw material and water flow 

and use efficiency and loss through each process of the cassava starch production system.         

3. Method  

This research applied Material Flow Analysis (MFA) as the main tool. MFA is an environmental accounting 

tool that traces and provides an account of valuable resources or toxic substances flowing through a process 

or region based on mass balance and mass conservation principles [1]. e!Sankey
® 

software was used to draw 

the material flow diagram. Water Footprint analysis was conducted based on methodology developed by the 

Water Footprint Network [2]. Here, only irrigated water (blue) is included in the analysis. Green water is 

assumed to be a function of land use and is excluded from the footprint.  Only freshwater use is being 

analyzed; so grey water is also excluded from the calculations. Data were collected from interviewing the 

plant manager and engineers from two starch plants in the same region in Thailand, one using the 

conventional system and another that recycles water from the separation process and hydro cyclone back to 

rasping process to recover starch. The calculation is based on 100 ton cassava input for both factories. 
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4. Results  

In the first starch plant in Figure 1, without water recycle, cassava with 27% moisture content is used as raw 

material. Starch production required a large amount of water and produced a lot of by-products and waste. 

As visualized in the sankey diagram, from every 100 ton of cassava, only 23 ton of starch was extracted; this 

involves use of  almost 600 ton water and generated 600 ton of wastewater and almost 30 ton of residue to be 

managed. Moreover, a large amount of thermal energy was required to dry the wet starch. Fortunately, 

wastewater (effluent) was used to produced biogas which was in turn used to produce enough hot air and 

electricity for the factory. However, after producing biogas, the effluent still needs to be contained and 

evaporated out because of high COD content. Cassava pulp can be sold as feed but at low cost. Therefore, 

more sustainable technologies to reduce water, energy use and mass loss are still required. The water 

footprint flow of starch from the starch plant (without water recycle) is shown in Figure 2. Most of thewater 

footprint was from cultivation of cassava which includes irrigated water and water footprint of fertilizers and 

pesticides. The water footprint from the factory contributed very little to the overall water footprint of starch 

which worked out to 470 m
3
/ton starch.  

In the second starch plant in Figure 3, with water recycle, the effluent from the extraction and separation 

processes and from dewatering and drying processes was returned back to the washing and rasping processes 

and almost 2 ton of mass loss was recovered. Here, the productivity increase from 23 ton to 25 ton of starch 

and fresh water was reduced from 600 ton to 350 ton compared to the first plant. The water footprint flow of 

starch from the starch plant (with water recycle) is shown in Figure 4. The water footprint from the factory 

can be reduced by almost 50%. However, water footprint from the factory contributed very little to the 

overall water footprint of starch which is finally 432 m
3
/ton starch.  

 

 

Figure 1: Material flow in the starch plant without water recycle 
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Figure 2: Water footprint (WFP) flow of strach in the starch plant without water recycle 

 

Figure 3: Material flow in the starch plant with water recycle 

 

 

 

Figure 4: Water footprint flow of starch in the starch plant with water recycle 
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5. Conclusion 

The results show that the plant with water recycling can reduce loss and increase productivity as compared to 

the conventional one and can reduce water use in the processing step. However, the water footprint of starch 

can be reduced only by a small amount because the main water footprint contribution is from the cassava 

cultivation phase.  
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1. Abstract  

Although there are statistics about the decline in the use of traditional cultivars, several researchers are 

supporting the idea that these varieties will continue to play an important role for many crops in a wide 

variety of production systems in the future because of their adaptation to marginal and low-input 

agriculture. Furthermore farmers around the world are still using traditional varieties to help coping with 

climate change. However, few studies have made specific environmental evaluations of traditional crop 

varieties in comparison with their modern relatives. Starting from literature case studies, some remarks on 

the application of the LCA approach to traditional crop varieties are drawn.  

2. Introduction  

Interest in traditional crop varieties has been growing over recent years in many areas of the world and many 

research programmes have been carried out to preserve germplasm with valuable quality features [1]. As 

traditional crop varieties are usually grown in the area they have been selected, they can be also considered 

as a product strongly bounded to a specific territory, reflecting the agricultural tradition of the region and the 

cultural identity of its inhabitants. Since traditional crop varieties are more adapted to the pedoclimatic 

characteristics of the region in which their traits were selected, they usually require fewer treatments and 

field operations per hectare of cultivation in comparison with introduced varieties. As a consequence, the 

agronomic requirements of each crop might be different from variety to variety and the different agronomic 

requirements might affect sensibly the plantation strategy and the field management, resulting in different 

environmental burdens. In particular, traditional cultivars are bound with the area that they were grown 

during centuries of agricultural adaptation to the pedoclimatic conditions, resulting in lower agricultural 

needs (expecially fertilizers and pesticides) compared to introduced cultivars [2]. A low input agriculture, 

theoretically, leads to low environmental impact, nevertheless, the evaluation of the environmental 

performance of such kind of agricultural systems is not straightforward because of the choice of impact 

calculation settings such as the impact categories [3] and the functional unit  [4][5].  

The aim of the paper is to discuss strengths and potential pitfalls in the use of life cycle assessment (LCA) 

for the comparison of traditional and modern cultivars. In particular, a literature review is carried out 

conducted in order to point out representative case studies and methodological issues for LCA application for 

such agricultural productions. 
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3. Case studies from the literature review  

Several papers investigate the role of traditional cultivars for the sustainable developing of rural communities 

[1], but just two papers applied life cycle assessment (LCA) to investigate traditional cultivars [6][7].  

In [6], Kolovi and Adramitiani, two traditional olive varieties in Lesvos Island (Greece) are investigated 

thorough LCA in order to determine the differences in energy flow (renewable and non-renewable) and 

climate change potential among the two varieties and their farming systems (convential and organic). In 

particular, the functional unit was the olive yield per hectare, therefore a mass-based unit which, in practical 

terms, corresponds to the impact of 1 ha of field.  The system boundaries included the soil preparation before 

the installation of the olive grove, the production and the distribution of agricultural inputs (fertilizers and 

pesticides), production and use of machinery and  the removal of the olive grove. The study clearly shows 

that farming practices with lower climate impacts are the ones that use more renewable energy inputs, 

regardless the variety and the agricultural practice. Unfortunately, in the study, a comparison with imported 

cultivars is not present, therefore it is not possible to verify differences in the environmental performance.    

In [7] the environmental performance of three ancient apple cultivars from Torino and Cuneo provinces, 

namely Grigia di Torriana, Magnana and Runsé, has been calculated using LCA. In particular the 

environmental impact potentials (in six impact categories) of the cultivars were compared to those of the 

commercial cultivar Golden Delicious. The study was performed with the cradle-to-gate approach, gathering 

data regarding orchard structure, agricultural inputs, resource consumption and orchard management 

practices directly from the growers. In order to consider minor geographical differences, the life cycle 

inventory for each cultivar included the average of three orchards of each cultivar, spread throughout the two 

provinces. Three functional units were considered: the mass-based functional unit (1 t of fruit), a land-based 

(1 ha of orchard) and a currency-based (1000 € earned). Results of the assessment have similar trends in all 

the six impact categories, therefore here just results on climate change potential are presented (Table 1).  

 

 

Functional unit 
Dimension 

considered 

Cultivars 

Golden 

Delicious 
Grigia T. Magnana Runsè 

Mass-based 
kg CO2-eq /  

t of fruit 
163.9 203.9 192.9 196.5 

Land-based 
kg CO2-eq /  

ha of orchard 
6555.3 5554.8 4775.9 4˙540.8 

Economic-value based 
kg CO2-eq /  

1000€ earned 
327.8 305.2 293.9 291.1 

Table 1: Global warming potential of the four cultivars according to the three functional units considered in the study 

(elaboration from: Cerutti et al., 2013) 
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Considering impacts for 1 t product, the Golden Delicious cultivar showed the lowest global warming 

potential: in particular, the ancient cultivars showed on average 17% higher climate change impact in 

relation to Golden Delicious. However, the results were the opposite considering the impacts for 1 ha and 

1000 € income. According to these functional units, the ancient cultivars had the lowest global warming 

potential and the impacts for Golden Delicious production per ha of orchard were on average 24% higher in 

global warming potential in relation to the ancient cultivars. A smaller difference can be found applying the 

Economic-value based functional unit; in this case ancient cultivars were on average 9% lower climate 

change impact in relation to Golden Delicious. 

4. The environmental performance as a methodological issue  

As highlighted in several studies [4][8], the choice of the functional unit might have a dramatic effect on the 

evaluation of the environmental performance. For fruit products, typical functional units are 1 kg of fresh 

fruit packed and delivered to the customer or 1 tonne of fruit at the farm gate [3]. Nevertheless the use of 

different functional units is reported to lead to a more complete understanding of the environmental impacts 

of a system under study [9]. A land-based functional unit, e.g. 1 ha of orchard, is not frequently used in LCA, 

partly because land use is not directly a service and does not provide a productive function, but it could give 

interesting results on the land use efficiency and intensit of a farm. In general, the land-based functional unit 

in fruit production is complementary to the mass-based functional unit and both should be used. Indeed, 

when considering only impacts per unit area, low input/output systems will have a better ranking in terms of 

decreased impacts at a regional level, but may create a need for more land use elsewhere, giving rise to 

additional impacts [5].  

In [7] the results confirmed the better environmental performance of modern agricultural cultivars, in this 

case recent apple germplasm compared with ancient cultivars. In the pedoclimatic conditions of the Piemonte 

region of Northern Italy, Golden Delicious produced higher fruit yields than ancient cultivars per quantity of 

inputs. However, in terms of environmental sustainability, the ancient cultivars represented lower impacts 

per unit of cultivated land. Thus according to a “strong sustainability” framework, in which producing food 

while maintaining ecosystem services is more important than just production itself, traditional cultivars can 

be considered more environmentally sustainable than modern cultivars.  

5. Conclusions 

As the environmental performance of traditional cultivars depends on some methodological and site-

dependent factors, it is not straightforward to determine what kind of cultivar should be grown in a specific 

case study in order to increase the environmental sustainability of production. When comparing traditional 

and modern varieties for environmental performance, several methodological issues have to be considered; 

in first place the choice to which functional unit, but also the system boundaries, the impact assessment 

methods and other parameters [3]. However, as a general remark, the results obtained from an environmental 

sustainability assessment may be integrated with other parameters, such as food quality, adaptiveness, effects 

on landscape properties and preservation of local heritage, in systematic assessments of different cultivars. 
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1. Abstract  

Wine sector performs economic functions as well as social and environmental functions. Recently, Social 

Life Cycle Assessment (S-LCA) methodology was developed in order to assess real or potential social 

impacts produced in different life cycle stages. This work proposes a set of indicators to assess social 

impacts produced by the Italian wine sector scenario, considering the stakeholder categories identified by 

UNEP/SETAC (2009). Stakeholder categories and subcategories of impacts are identified and classified 

according to the Methodological Sheets Scheme produced by UNEP/SETAC (2013). 

2. Introduction  

Wine sector is a strategic sector for European Union (EU). In EU is located the 44,99% of the total world 

area under wines [1]. Italy is the second country in the world for wine production. The 96,62% of Italian 

vineyards area is used to cultivate wine grapes [2]. In 2014 Italy produced 44,739 mhl of wine [1] and Italian 

firms operating in the sector produced revenues for 6,1 billion of euro in 2013 [3]. As several sectors in agri-

food industry, also wine sector generates multifunctional activities. In addition, to economic functions as 

goods and services production, wine sector carries out social and environmental functions. Moreover, Italian 

environment presents peculiarities which have specific socio-economic impacts such as the prevalence of 

family related employment in the agricultural stage [4], the creation of new occupations and training 

occasions linked to wine sector, the worrying rise of alcohol consumption among young people (under the 

age of legal drinking age) [5]. The relevance at national level of wine sector requires the assessment of socio-

economic aspects to evaluate the overall sustainability level of the sector [6-7]. Social Life Cycle 

Assessment (S-LCA) methodology allows to assess real or potential socio-economic impacts along 

product/service life cycle stages.  

3.Purpose and Methods  

Following the instructions of S-LCA reference documents [8-9], the present research aims to identify socio-

economic impact categories, subcategories and  inventory indicators (Type I) in order to provide a model to 

set up the data inventory necessary to apply S-LCA to Italian wine sector. The functional unit considered is 

the wine contained in a 75cl glass bottle. The analysed system consists in four main life cycle stages, and for 

each one primary and support activities have been specified. The analysis approach used is cradle to grave. 

The main life cycle stages are : viticulture stage; transformation stage; marketing and selling stage; 

consumption stage. Due to wine sector multifunctionality and to the complexity of its supply chain in terms 

of exports, cut-off criteria are established. In order to simplify the system, activities related to exports of 

products, consumption in extra-national territory and activities not strictly related to wine production (such 

as touristic services as wine routes) have not been assess.  
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The study refers to the five main stakeholder categories proposed by Guidelines that have been detailed in 

accordance with specific industrial reports and scientific studies. In each life cycle stage, involved 

stakeholders and the relative impact categories and subcategories have been indicated. Impact subcategories 

which are not relevant in the analysed context were not accounted for. Instead, authors decided to include in 

the model impact subcategories created in previous case studies named Area Reputation [10] and 

Professional Accomplishment [11] (related to Local Community and Workers respectively), to highlight 

aspects relevant for wine sector framework. Revéret et al. (2015) define as Professional Accomplishment 

Workers’ benefits perceived from “a stimulating rewarding workplace that allows personal and professional 

development”. De Luca et al. (2015) assessed social life cycle of citrus farming in southern of Italy. They 

considered the influence of the analysed production on Local Community in terms of “contribution to 

reputation of the area they belong, in terms of quality of products and working conditions”.  Area reputation 

subcategory was used to evaluate the effects on local development due to the role that territory plays in 

qualifying products. Concerning the impacts on Area Reputation caused by working conditions,  we not 

assessed them using this subcategory. 

De Luca et al. (2015) consider illegal work and the risk immigrants mistreatment as the social impacts of the 

of working conditions in Area Reputation subcategory .  We consider appropriate to assess the effects of 

these aspects on Local Community in the subcategory ‘Safe and Healthy Living Conditions’ in terms of 

verifying if workers have access to adequate health services and security systems provided at local level.  

Lastly, inventory indicators were proposed according to the path designed in the UNEP/SETAC 

Methodological Sheets. 

4. Results and discussion 

Stakeholder categories have been detailed based on sector data: 

- Workers: the category is composed by full-time workers, fixed-term workers, seasonal workers (employed 

on a farm for a temporary period), family related workers (full-time workers with family relationship up to 

the third degree).  

- Local community: the category is defined according to the life cycle stage. The viticulture stage involves 

the population of Municipalities where vineyards are settled. The transformation stage involves the 

population of Municipalities where the facilities for producing, bottling and storage the wine are settled. The 

marketing and selling stage involves the population of Municipalities with which the product has a strong 

link (established through specific parameters such as local economic development, certification of product 

origin certificate etc.); 

- Value chain actors: the category refers to inputs and services suppliers. In particular, in the marketing and 

selling stage it refers to wholesalers, Large Scale Retailers, wine bars [3]; 

- Consumers: End-users of wine; 

- Society: the category covers organizations that from micro level (local authorities) to macro level (national 

bodies, associations) directly or indirectly interact with the analysed system. 
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Activity Stakeholders 

categories 

Impact  

subcategory 

Inventory indicator description 
O

rd
er

s 
M

an
ag

em
en

t 

 

Workers Working 

conditions 

Fulfillment of agreed contracts [12] 

Work-life balance: benefits from flexible working arrangements to 

balance work and private life  

Professional 

accomplishment  

Distribution of responsibilities among family related workers 

Willingness to continue working in the same company or sector[12] 

Willingness to be trained regarding the work activities [12] 

Training courses [11-13] 

Fair salary Regular payment [12-13] 

Minimum income according to law [12-13] 

Premium rate to compensate overtime working  

Equal  

opportunities 

Educational level of family related workers 

Unequal treatments [10-13-14]  

Health 

and 

safety 

Work accidents, complaints for injuries [12-10] 

Occupational diseases [12-10] 

Appropriate working equipment [12] 

Training programs for workers regarding occupational health and 

safety[12] 

Social benefit Social benefits provided by law or by sectoral agreements [15] 

Society Contribution to 

economic  

development 

Estimated employment impact [16] 

Estimated contribution to national economy: Export trade; Tax 

incentive [15]; Fiscal contributions / Taxes [15] 

M
ar

k
et

in
g

 &
 S

el
li

n
g
 Consumers Transparency 

 

Well-defined and clear information [13] 

Availability of information about the company and suppliers [9] 

Local  

Community 

Area  

Reputation  

Wine quality certification [10] 

Presence of quality certificates of origin for local products  

Value  

chain actors 

Suppliers  

relations 

Payment on time [9] 

Training courses for retailers 

Table 1: Impact subcategories and Inventory indicators description per Stakeholder category by corresponding support 

activity for the stage ”marketing and selling” 

 

Table 1 presents details related to one of the analysed life cycle stages, specifically Marketing and Selling 

stage. For each activity there, we identified the involved stakeholders, their impact subcategories and we 

provided description of inventory indicators specifying their references. In Marketing and Selling support 

activities we included also ‘Workers’ and ‘Society’ stakeholder categories presenting the same impact 

subcategories and impact indicators that were defined for the ‘Orders Management’ activities (which consist 

in orders intake, lots preparation and lots consignment). 
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5. Conclusion and Future Outlook 

This work presents the initial results of an ongoing research that aims to implement a basic framework for 

applying S-LCA to the Italian wine sector. The next step to consolidate the model will be to check if the 

inventory indicators extrapolated from literature correspond with those chosen by stakeholders. The study 

highlights that further research is necessary to implement S-LCA methodology in order to improve its 

application in agri-food sector.  

For example, in agri-food sector,  raw materials origin is of particular importance more than other sectors. 

We suggest to develop and integrate Area Reputation as an impact subcategory to evaluate social impacts for 

Local Community.  
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1. Abstract  

The goal of this paper is to assess and present the social aspects of the supply chain of honey through the 

Social Life Cycle Assessment (SLCA). Honey, and all its beekeeping products, are the subjects of a thriving 

market; indeed, Italian beekeeping accounts for 1.1 million beehives and an estimated turnover of 70 million 

euros [1]. It is important to note the value of bee pollination for the conservation of natural plant 

biodiversity. Certainly, it has been estimated that about 35% of food consumption depends directly on the 

pollination of fruit and vegetable crops or indirectly on the pollination of cultivated fields to forage for 

livestock. The expected outcome is achieving greater awareness in terms of sustainability, reinforcing 

customer loyalty and strengthening interaction of the supply chain. 

2. Introduction  

Honey is a highly concentrated water solution of two sugar types, dextrose glucose and levulose (fructose), 

which account for about 85% of the solids in honey. The importance of honey is associated not only to 

nutritional reasons (e.g., a high and immediate energy intake, presence of enzymes and amino acids that 

make it an excellent supplement) [2], but also to sustaining the natural cycle of plants. Bees are known to be 

sentinels of the ecosystem, allowing pollination and conservation of plant biodiversity; a reduction in their 

activity would have negative effects on both the entire environmental and industrial systems [1]. A 

sustainable agri-food system can reach a shared responsibility of the entire supply chain also by: - enhancing 

integrated resources in all its components, - considering the impacts of its products beyond its own sphere of 

local operation within a life cycle perspective and - assessing the existing vertical and horizontal linkages 

within the sub-sector as well as the functions and roles of actors from input supply to the market [4, 5]. The 

goal of this paper is to assess and present the social aspects of the supply chain of the honey produced by the 

Apicoltura Luca Finocchio enterprise, following the Social Life Cycle Assessment (SLCA) methodology. 

This case study is based on the "Guidelines for Social Life Cycle Assessment of Products” [6] and on the 

Subcategory Assessment Method (SAM) [7]. The ultimate goal is to provide a complete picture of the social 

impacts associated with honey along its life cycle: from input suppliers to consumers. The honey value chain 

analysis encompasses four phases: 1) the input suppliers, including the organisations producing hive 

equipment, beeswax, supplement feeding, queen bees and bees supply, honey collection and transport by the 

beekeeper; 2) honey processing; 3) honey primary packaging; 4) the wholesale or retail distribution. 

3. Methodological Issues 

The SLCA is based on the methodological framework of the E-LCA [8]. Social and socioeconomic 

performances assessed with SLCA directly affect positively or negatively the stakeholders of the enterprise 

[9] and influence its decisions for the improvement of the product life cycle. The method used for assessing 

the subcategories in this paper is SAM [7]. 
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The object studied in this paper is the life-cycle of 500 gr of honey (equivalent to the sweetening power of 1 

kg of sugar) in a jar in primary packaging. The case study assesses the performances at the level of all five 

stakeholders: workers, consumers, local communities, value chain actors and society. The system boundaries 

comprise the phases from gate to gate of the life cycle of the product; Figure 1 illustrates the different 

processes involved in the honey life cycle. The system boundaries are demonstrated with the dotted line. It 

was not possible in the framework of this study to analyse all background processes in detail. The system 

includes the following phases: 1) Honey production including only the hive equipment; 2) honey harvest; 3) 

honey processing; 4) packaging and 5) distribution. Some process units have not been included in the 

analysis because of the difficulties met whilst looking for primary data especially from the value chain 

actors. The second step was the data collection using field research, interviews and questionnaires, based on 

the Methodological Sheets for Sub-categories [6]. The evaluation of the subcategories of this study has been 

carried out using SAM. 

 

Figure 1: process flow of the honey and system boundaries 

3.1 Discussion and results 

The results of the assessment show an almost uniform behaviour of the organisations of honey supply chain 

with regard to some subcategories, such as:  

Working Hours range between six to eight hours and they usually start from early in the morning. The 

agricultural work is characterised by flexible working hours and by nightlife displacements of bees in the 

different fields of flowers, in order to obtain various types and grades of honey;  

Freedom of association and collective bargaining, the workers do not join a union out of their personal 

choice; also child labour is absent in this organisation, such as forced labour. 

Transparency: the organisations, which monitor the transparency possess a website, but they produce no 

certificates nor sustainability reports for company conduct;  

End of life responsibility: in this case study, the company does not provide accurate and complete 

information to consumers regarding appropriate end-of-life options. Consumers have suggested different 

options for the recycling of the product after it has been used, such as using honey-jar for décor, etc.  

As far as the Local Community is concerned, honey is involved in the promotion of the cultural heritage 

through the implementation of educational programmes: today’s children will be tomorrow’s citizens that are 

aware of the important role of beekeeping. 
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The health and safety of consumers is protected by the organisation and this commitment is spread along the 

honey value chain. 

The stakeholder society received a high score because the organisation is involved in projects of public 

engagement, which give the possibility to improve its sustainability, thanks to the awareness of the role 

played in biodiversity and environmental by beekeeping. Indeed the pollinators strongly influence ecological 

relationships, ecosystem conservation and stability, genetic variation in the plant community, floral diversity, 

specialisation and evolution society itself.  

4. Improvements and conclusions 

The organisation’s website is an excellent showcase for consumer feedback, it also allows consumers to give 

voice to their opinions and complaints, enabling improvement on the whole. Furthermore, the organisation 

pays attention to consumers’ health and safety, but there is room for improvement with regard to the end-of-

life management and transparency. Moreover, this work has revealed a weakness among the honey value 

chain actors, showing a lack of collaboration with the producer. Unfortunately, the largest obstacle is 

cultural; the company does not get involved in helping in this type of analysis. Social responsibility of 

companies can be of benefit towards the rethinking of the business strategy, which brings its mission, vision 

and policy to better focus on the company [10]. For example, the company could apply a sustainability 

policy and implement the sale of unpackaged honey (to save in plastic), to safeguard the environment and 

ensure a good final price. The CSR leads to the strengthening of corporate reputation through a commitment 

to social and environmental aspects [10] thus obtaining a collective agreement. “The ultimate goal of an S-

LCA technique is to promote the improvement of social conditions throughout the life cycle of a product, 

where human well-being” [6, p.16] is a central concept that needs to be defined and articulated. Beekeeping 

has a positive effect on the ecosystem in which it operates; those who play a role in beekeeping perform a 

service for the territory and contribute to the improvement of the environment. On basis of the FAO [3] data, 

the bee pollination not only has results for fruits, berries or seeds, but it may also give a better quality of 

produce, and the efficient pollination of flowers may also serve to protect the crops against pests. Bees are a 

natural resource, freely available in the wild, and beekeeping ensures the continuation of natural assets. As 

bees visit flowers, they are not only collecting food for today, but by their pollinator activities, they are 

ensuring future generations of food plants, available for future generations of bees, and for us too. Flowering 

plants and their associated bees are interdependent: you cannot have one without the other. With regard to 

the definition of a livelihood, it is clear that beekeeping actually helps to sustain the natural resource base. In 

this perspective researching, communicating and promoting this kind of products is something fundamental. 
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1. Abstract   

This research is aimed to evaluating the impacts associated to the change of land use from agricultural and 

forest soils to artificial soils  and estimating the losses of soil functions within the Lombardy region. Due to 

the available data sources, 5 years representative of different historical periods (1926, 1955, 1980, 1999 e 

2007) have been examined, but due to the different scopes of the sources only the territory of  Bergamo, 

Brescia and Cremona provinces where choosen for the completeness of data. As it is evident, each increase 

of the artificial soil reduces the agricultural soil, and it produces negative effects on the functionality of the 

soil. The effects considered in the paper are crops production losses and anthropic emissions increase; they 

are expressed by means of a set of indicators like CO2 sequestration losses, potential agricultural production 

depletion, evapotraspirated water descrease and emission of energy/heat in the atmosphere.  

2. Introduction  

The scope of the paper is to analyse the environmental and social consequences of the land consumption. 

The paper is based on the analysis of the available data of the land (or soil) functions and distributionsover 

the time; the data were examined with the target to identify the agricoltural, forest and artificial soils 

evolution. Due to the available data sources, the soil analysis was applied to an historical period of about 80 

years (1926[1], 1955[2], 1980[3], 1999[4] e 2007[5]). Of course, due to the different origines and scopes of 

the books, not all the data are comparable and only the territory having the full set of required data were 

used, as it is the case for Bergamo, Brescia and Cremona provinces of the Lombardy Region. The data 

evolution could be summarized as an urbanization trend of growth and a rapid decrease of natural areas, 

which, in some way, could be extended to other provinces of the Lombardy and also to other Regions. In this 

research, the soil consumption has been connected to a growing environmental inefficiency, which may be 

represented by means of the following impacts: crops production losses and anthropic emissions increase, 

that could be represented by means of a set of indicators that express the agricultural production losses and 

the climatic regulation capacity losses with the consequent increase of the atmospheric temperature. 

3. Analysis of soil cover data of Lombardy and environmental assessment 

The values of the surface (hectares = ha) of the three categories of land use (agricultural soil, forest soil and 

artificial soil) in the provinces of Bergamo, Brescia and Cremona in the period 1926-1955 show the 

prevalence of agricultural and forest areas; the urban areas are minority and limited to specific areas. The 

land data of 1926 [1] are complete only for the agricultural soil, but they are not sufficient for identifying the 

forest and artificial soils; the reason is the propaganda of the fascim period concerning the campaign of 

Italian wheat production. The successive timeframes show the growth of the urbanization processes, with the 

increase of the artificial surface (28,4% of  Bergamo land area and 35% of Brescia land area) [6]. At the 

same time there is an important decrease of the agricultural land, more than 50% of the total land area.  
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As opposed to agricultural areas, the surface of the forest land and semi-natural areas, show an increase: 

+80,000 ha (from 504,000 in 1955 to 584,000 ha in 2007, according to DUSAF [4] data), against +195,000 

ha of new urbanized areas (increased from 91,000 to 286,000 ha). This trend stems from the abandonment of 

the agricultural activity in the foothills area (with a shift of the land from agricultural to forest). 

 3.1 Indicators and environmental assessment 

The land use change is an irreversible landscape transformation and its increase led to permanent agro-

ecological losses. In order to estimate the environmental damage caused by the process of consumption and 

transformation of soils, several environmental and productive indicators [7] can be associated to the surfaces 

of the category of land use change: 

- emission of CO2 stocked in the soils: 20 kg CO2eq stock/m
2
; 

- loss of the annual capacity of the soil to accumulate CO2: 5 kg CO2eq/y*m
2
 

- loss of evapotranspiration due to the waterproofing of natural soils600 l/y*m
2
; 

- agricultural production depletion potential, wheat production losses 500g/y*m
2
;  

- manpower requirements in agricoltural soils: 0,06 person/ha y [8] 

increase of emission into the atmosphere of energy/heat: 17,50 kWh/y*m
2
.The adopted indicators are known 

literature values used to measure and monitor soils functionality change. 

In the following tables and diagrams are reported the results of the indicators application to the soil 

consumptions. 

Agricultural soils 

 1926-27 1955 1980 1999 2005-2007 

Bergamo ha 173.485 115.360 106.681 82.429 77.976 

Brescia ha 292.548 220.984 209.187 180.206  167.315 

Cremona ha 155.257 161.429 164.989 153.768 151.370 

Amount ha 
621.290 497.773 561.857 416.403 396.661 

Table 1: Agricultural Soil comparing in five historical periods. 

 

 

 

Figure 1: Environmental and productive indicators trend of Agricultural Soils 
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Figure 2: Manpower requirements in Agricoltural Soils 

 

 

Forest soils 

 1955 1980 1999 2005-2007 

Bergamo ha 147.423 143.620 154.563 154.569 

Brescia ha 219.333 216.460 224.910 230.929 

Cremona ha 6.071 1.192 4.328 4.723 

Amount ha 
372.827 361.272 383.801 390.221 

Table 2: Comparison between surface area of Forest soils in four historical periods 

 

 

 

Figure 2: Environmental indicators trend of Forest Soils 

 

 

Artificial soils 

 1955 1980 1999 2005-2007 

Bergamo ha 8.297 21.268 33.887 38.274 

Brescia ha 12.850 28.074 47.273 53.996 

Cremona ha 6.894 9.163 16.524 18.694 

Amount ha 
28.041 58.505 97.683 110.964 

Table 3: Comparison between surface area of Artificialc soils in four historical periods 

 tCO
2
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2
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Figure 3: Environmental indicator trend of Artificial soils 

 

The comparison between results obtained by the association of indicators to land use categories, shows as the 

cropland’s progressive reduction leads to a loss of productive value, evapotranspiration ability and a loss of 

CO2 soil storage. The loss of agricoltural soil is higher in Bergamo and Brescia provinces, due to the highest 

industrialization. They are foothills territories and the availability of croplands is less if compared to 

Cremona province, that is situated in Po valley and bounded to agricultural activities. Forest areas increase, 

between 1980 and 2007, thanks to environmental policies development that incentivize the reforestation, the 

growth of trees for wood production (Reg. 2080/92) and the colonization of abandoned agricultural lands. 

With the increase of forest and natural areas, there is an increase of carbon soil stock, potential CO2 storage 

ability and evapotraspiration of soils. In the timeframes analyzed the growing demand of settlement soil is 

feed by transformation processes in productive and service sectors, due to the location of logistic and 

commercial services. Added to this there is the demand of higher urban life quality, that promote urban 

sprawl and its pressure on the environment, with a consequent and permanent loss of agricultural resources 

(between 1955 and 1999). Artificial areas see an increase of athmospheric temperature (urban heat island) 

due to the growth of energy consumption and the lack of urban green areas. These problems are responsible 

of energy increase for cooling, of surface water temperature increase and of suspension into the athmosphere 

of greenhouse gas emissions (harmful to human health). We can confirm that the loss of croplands depends 

by the increase of other soil use categories: his value is the same to the sum of the increase of artificial areas 

and forest areas. 

4. Conclusion and discussion 

The results show some trends of worsening of environmental and living conditions linked to soils 

artificialization. In some nations the issue of zero land consumption has become regulation, in order to 

promote the riqualification of brownfield sites. In Germany, since 15 years policies to control soil 

consumption are active in order to achieving the threshold of 30 ha/day within 2020 (from 129 ha/day and 

the new goal of zero soil consumption within 2050. In Italy it is estimated a daily soil use of 668 ha/day, that 

is not justified by the demographic growth value. Land consumption cause a reduction of the biocapacity 

available for every citizen and all population. In Italy, using the Global Footprint Network data (revised in 

2008) [9], the ecological footprint is equal to 4,8 ha/pro capite againts a biocapacity of 1,2 ha/procapite. 

Therefore cropland reduction of some Lombardy provinces can be applied to the whole Italy and it identifies 

a soil reduction of 33%, from 1,05 to 0,7 ha/pro capite, in timeframes considered. 
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This situation does not concerns only Italy but the whole western world and shows additional problem: how 

to maintain or increase food production through intensification of land use with fertilizers or with the use of 

marginal soils. However they require a higher environmental burden and a higher economic commitment for 

equal production results [10]. Soil consumption has negative effects also on society: the share of people 

employed in agricultural sector, between 2000 and 2012, shows a descrease about 51% (from 2,26% to 

1,36%). This value seems to be proportional to regional croplands reduction [11]. However, the increase of 

awareness about the effects of soil protection and market recovery have led to occupation growth of 1% in 

2012, breaking the sharp contraction trend of agriculture employment. The low land preservation cause 

phenomena that incentivize natural and cultural heritage depletion. Landscape fragmentation is caused by 

urban sprawl expansion and soil sealing, that exercize a heavy pressure on water resources, ecosystem and 

biodiversity with an irreversible alteration of green spaces quality, a deterioration of life quality and a 

landscape degradation. This cause a damage to historical and cultural land value that has also a great 

economy importance (e.g. as source of tourism). 
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1. Abstract  

This research originates from a wide multi-disciplinary project aimed at developing a self-sufficient 

approach to improve the institutional food system in an area of Northern Italy. The aim of this research is to 

give some guidelines to implement ideal scenarios of food production, processing, consumption, and waste 

management at the local level. A methodology has been developed to analyze the main energy flows and 

matter related to this catering, and to outline possible optimal scenarios. This methodology also allows to 

analyze case studies and to suggest improvements in order to reduce their energy consumption exploring all 

the steps of the supply chain (considering the Life Cycle Assessment  approach). The results for the current 

development level of the research allow the  analysis and the development of improving scenarios  of 20 

supply chains among the main in the menus. The data in the database are mainly related to the production 

phase and transformation. Future investigation will cover more deeply the cooking phase and waste 

management. 

2.  Introduction  

The information here presented show some results of a work, which is part of a wider multidisciplinary 

project called “Bioregione” and  funded by Fondazione Cariplo. The aim of this research is to suggest 

strategies to check the food self-sufficiency in the institutional food system of a “bioregion”, that could be 

defined as an area required to achieve the self-sufficiency in terms of food supply. In this specific case, the 

area includes Lombardia, a region of Northern Italy and the municipality of Novara (a town in Piemonte, the 

region bordering Lombardia to the west).   The paper shows the actual level of development of a tool to 

verify and improve local self-sufficiency. To reach this goal, a database has been developed to bring together 

the bioregional food demand and the food local supply. The model presented in this research (the Food 

Chain Model - FCM) takes care of this issues.  

3. Method  

To outline optimum scenarios of production, processing, consumption, and waste management it has been 

necessary to streamline the food chains, retracing all the stages of the life cycle of the main  food types, 

developing a database able to quantitatively describe the main steps of the food chains and to evaluate the 

environmental impacts of each step by the adopted impact indicators.   

The use of quantitative indicators (Productive Land and Cumulative Energy Demand - CED) allows a 

comparison among the environmental impacts related to different scenarios. In this framework, our work 

package is devoted to the analysis and optimization of the main flows of matter and energy related to the 

several steps of the food chains of the institutional catering [1].  
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The Productive Land indicator is aimed at assessing the balance between local demand and supply and CED 

has been considered as the indicator that would lend transparency to the energy use profile in the supply 

chain in order to identify and choose effective improving options. The method of calculation adopted for this 

indicator (CED) refers to the assumptions set out in the supporting documentation for the database Ecoinvent 

[2]. 

The development of the FCM has been supported by specific databases and by data collected in the scientific 

literature. In particular, the analysis of the embodied energy in products used as agricultural treatments and 

nutrients refers to the Swiss data bank, Ecoinvent [3], as well as the analysis of the transportation phase. 

Field production storage and food processing refer to the database LCAfood [4] and to other scientific 

publications and reports about Environmental Product Declarations. LCAfood collects information related to 

Danish companies and local productions in the context of Northern Europe. The data has been updated about 

the on-field production, by adapting the yields and energy/material budgets with characteristic values of 

Northern Italy [5]. 

The methodology proposed in this research is divided into the following steps: 

- Editing of the FCM database using scientific literature data, concerning the main foods and the 

related stages of the meal life cycle, including waste management. 

-  Integration of the collected  data  with practices adapted to the local agricultural yield and good 

practices in the field of production, consumption and waste management.  

- Breakdown of each food chain  at a level of resolution appropriate to the development of improving 

scenarios. In order to be able to identify the highest impact steps, and then the most effective choices 

to reduce the energy consumption and the related soil occupation (in particular when using 

renewable resources available locally). 

- Compiling the FCM with data on the food demand (in kilograms or tons) of the case study. 

- Quantifying the environmental impacts of the menu related  to different periods of time,  for instance 

the weekly menu (fig. 1) or the annual menu (fig. 3) [6] [7]. 

- Development of improving scenarios by replacing the generally accepted practices with good 

production practices related to  the same kind of food, replacing it with foods of  different kinds but 

with similar nutritional properties, reducing transport distances, etc.. 

4. Results and conclusions 

The FCM model is currently tested on a territorial scale, carrying on  the analysis of the supply chains, which 

constitute the main food scholastic needs in an area made up of a group of municipalities that occupies 26% 

of the area of the province of Milan [6]. It was previously tested on a weekly menu in some schools in the 

city of Milan [7]. Figure 1 shows some of the results relating to this application and refers to the amount of 

non-renewable primary energy (CED) used for production, transport and cooking of some of the main food 

of a weekly menu in three schools of Milan.  
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Figure 1: Non-renewable CED (Cumulative Energy Demand) of some foods on the menu of  the case studies 

(one week consumption / person) 

 

The current level of development of the FCM sees the complete definition of the methodological aspects, a 

comprehensive compilation of the database with scientific literature data and the detailed deepening of some 

of the main food chains representative of the local demand (20 foodchains), integrating data  with practices 

adapted to the local agricultural yield.   

The aggregated results in Figure 2 show the amount of the CED indicator applied to the analysis of one of 

the 20 supply chains. It reports the differences of the primary non-renewable energy used in different 

methods of cultivation and different distances between production and consumption related to one kg of 

bread. 

Figure 3 shows the aggregate data related to the same indicator and referring to the current application of 

FCM in the province of Milan. It is possible to see that significant primary energy consumptions are due to 

the preparation of the meal followed by food production, waste management and meal consumption. It 

follows that the future development of the work cannot exempt itself from a deeper knowledge of the 

preparation of meals and related energy consumption. 
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Figure 2: Comparison among the consumption of non-renewable energy source in the supply chain of 1 kg of bread 

(from in field production to the cooking facility delivery). It considers the production from conventional agriculture, 

organic agriculture (scenario 1),  locally produced conventional (scenario 2), locally produced organic agriculture 

(scenario 3) 

 

 

Figure 3: Primary energy consumption in the main steps of the supply chain of a meal (representative of the average 

annual consumption), correlated to information showing the current level of development of the database supporting 

the assessment model (FCM) 
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