View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Meta-Logical Reasoning in Higher-Order Logic

Villadsen, Jgrgen; Schlichtkrull, Anders; Hess, Andreas Viktor

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Villadsen, J., Schlichtkrull, A., & Hess, A. V. (2015). Meta-Logical Reasoning in Higher-Order Logic. Poster
session presented at LOGICA 2015 - 29th Annual International Symposia Devoted to Logic, Hejnice, Czech
Republic.

DTU Library
Technical Information Center of Denmark
General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://core.ac.uk/display/43254645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/metalogical-reasoning-in-higherorder-logic(d305b5eb-5981-4cfb-b4a9-3d5386b1c2d8).html

Meta-Logical Reasoning in Higher-Order Logic

Jgrgen Villadsen, Anders Schlichtkrull & Andreas Viktor Hess
Technical University of Denmark - DTU Compute

Abstract

The semantics of first-order logic (FOL) can be described in the meta-language of higher-order
logic (HOL). Using HOL one can prove key properties of FOL such as soundness and completeness.
Furthermore, one can prove sentences in FOL valid using the formalized FOL semantics. To aid
in the construction of the proof an interactive proof assistant like Isabelle can be used. The proof
assistant can even automate simple proofs using the formalized FOL semantics.

Introduction

In textbooks the language of first-order logic (FOL) is usually presented in English. FOL is the object
language, since it is the logic that is described, and English is the meta-language, since it is the language
that describes the object language. However, instead of using English as meta-language we can also use
a meta-logic. We will show how higher-order logic (HOL) can be used as a meta-logic to describe and
reason about FOL, which is possible as HOL is much more expressive than FOL, cf. Farmer (2008).

Logic itself is about formalizing which arguments are valid. Thus in FOL we have a clear definition
of which theorems are valid and which are not. However, it is also interesting to prove theorems about
FOL, for instance the soundness and completeness of a proof system for FOL. By using HOL as meta-
language we can ensure that there is also a clear definition of which theorems about FOL are valid, cf.
Harrison (1998). Furthermore, we can show the theorems about FOL to be valid by proving them in a
sound proof system for HOL.

Proof systems for HOL have been implemented in interactive proof assistants which are computer
programs that can help their users in proving theorems. In the following we will use the Isabelle proof
assistant, cf. Nipkow (2002). In addition to helping the users to construct correct proofs, the proof
assistants can in some cases even do the proofs automatically.

Formalization in Isabelle

We consider a formalization in Isabelle of FOL with only binary predicates:

theory Semantics imports Main begin
type_synonym id = string

datatype tm = Var nat | Con id
datatype fm = Falsity | Pre id tm tm | Imp fm fm | Uni fm

primrec val :: "(nat => ’u) => (id => ’u) => tm => ’u" where
"val e f (Var v) = e v" |
"val e £ (Con ¢) = f c"

primrec sem :: "(nat => ’u) => (id => ’u) => (id => ’u * ’u => bool) => fm => bool" where
"sem e f g Falsity = False" |

efg (Presab) =gs (valefa, vale f b)" |

"sem e f g (Imp p q) = (if sem e £ g p then sem e f g q else True)" |

"sem e £ g (Uni p) = (!x. sem (%n. if n=0 then x else e (n - 1)) f g p)"

"sem

end

The terms and formulas of the FOL language are defined as the datatypes tm and fm, respectively.
Variables are indexed using de Bruijn indices. The semantics of the language is defined using the
function sem where e is the environment, i.e. a mapping of variables to elements of the universe ’u,
f maps constants to elements of ’u, and g gives the semantics of the predicates. Most of the cases of
sem should be self-explanatory, but the Uni case is complicated. The details are not important here,
but it uses the universal quantifier (!) to consider all values of the universe *u. It also uses the lambda
operator (%) to keep track of the indices of the variables.

Examples of Meta-Logical Reasoning

By using HOL as the meta-language for FOL it is possible to make use of proof assistants such as
Isabelle to reason about certain properties of FOL. For example, let syn be a proof system for FOL
implemented as a predicate in Isabelle of type fm => bool (an inductive definition). If it is sound
then we can prove this in Isabelle as the theorem syn fml ==> le f g. sem e f g fml. Likewise
completeness (le f g. sem e f g fml) ==> syn fml can be proved if the proof system is indeed
complete. For example, in Berghofer (2007) a natural deduction proof system for FOL is proven sound
and complete. A tool for teaching logic based on natural deduction has recently been developed and
proved sound by Villadsen (2015).

Meta-logical reasoning using the formalized semantics also enables formal proofs of sentences us-
ing only the semantics of the object language. For example, we wish to show that the sentence
Vo Vy. P(y,x) — P(y,x) is valid. We can prove this by first fixing two arbitrary elements u,w of
the universe and show P(y,x) — P(y,x) for an arbitrary environment updated to map variable z to u
and y to w, and then use the fact that any denotation g of predicates maps (P, u,w) to either true or
false. In both cases P(y,x) — P(y, ) holds. This proof sketch can then be extended to a readable proof
in Isabelle. The sentence can even be proved automatically in Isabelle using the formalized semantics:

theorem "le f g. sem e £ g (Uni (Uni (Imp (Pre ’’P’’ (Var 0) (Var 1))
(Pre ’’P’’ (Var 0) (Var 1)))))"
by auto

On the other hand the sentence Vz.Vy. P(x,y) — P(y, ) is not valid. Therefore we can ask Isabelle to
search for a counterexample, using the nitpick command, and it is able to find one.

Finally, the approach we have presented can even be used with HOL as the object language, that
is, the semantics of HOL and a proof system for HOL can also be formalized in HOL, most extensively
by Kumar (2014), although of course self-verification is not possible due to the second incompleteness
theorem. Paulson (2014) has recently formalized the incompleteness theorems in Isabelle.
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