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1Dept. of Electrical Engineering and 2Dept. of Mechanical Engineering
Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark

E-mail: {lrst,hhn,rg}@elektro.dtu.dk, ifs@mek.dtu.dk

Abstract. Gas bearings are popular for their high speed capabilities, low friction and clean
operation, but require low clearances and suffer from poor damping properties. The poor
damping properties cause high disturbance amplification near the natural frequencies. These
become critical when the rotation speed coincides with a natural frequency. In these regions,
even low mass unbalances can cause rub and damage the machine. To prevent rubbing, the
variation of the rotation speed of machines supported by gas bearings has to be carefully
conducted during run-ups and run-downs, by acceleration and deceleration patterns and
avoidance of operation near the critical speeds, which is a limiting factor during operation,
specially during run-downs. An approach for reducing the vibrations is by feedback controlled
lubrication. This paper addresses the challenge of reducing vibrations in rotating machines
supported by gas bearings to extend their operating range. Using H∞-design methods,
active lubrication techniques are proposed to enhance the damping, which in turn reduces the
vibrations to a desired safe level. The control design is validated experimentally on a laboratory
test rig, and shown to allow safe shaft rotation speeds up to, in and above the two first critical
speeds, which significantly extends the operating range.

1. Introduction
Gas bearings offer clean operation with low friction, but suffer from poor damping properties
and require low clearances. Rotating machines supported by gas bearings are therefore very
sensitive towards mass unbalance and disturbances. The natural frequencies especially become
critical as they coincide with the rotation speed, where the mass unbalance response grows until
the shaft rubs the bearing surface. Operation near the critical speeds is therefore avoided, which
limits the usability of the machines. An ad-hoc approach to reduce vibrations when crossing
the critical speeds, is to quickly accelerate rotation shaft across the critical speed before the full
vibration amplitude is obtained. Such an approach however results in the ”cat in the tree”-
problem - it may be easy to get up, but difficult to get safely down again. Due to the low
viscosity there are almost no friction losses, which in turn results in a slow deceleration of the
shaft. This gives enough time for the undesired vibrations to build up.

For a given fixed machine design, the shaft vibrations can be reduced in two ways. Proper
balancing of the shaft can drastically reduce mass unbalance, but not eliminate it. Further this
obviously does not diminish sensitivity to external disturbances. Active lubrication techniques
through feedback control represent a valid alternative approach, which can handle both mass
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unbalance and external disturbances. Feedback control has been widely applied to active
magnetic bearing (AMB)-systems. Many authors have proposed various control designs, e.g.
linear parameter-varying (LPV)-controllers to eliminate the mass unbalance response by placing
closed-loop zeros in the sensitivity function at the shaft rotation speed. e.g. in [1, 3, 11]. Such
controllers completely eliminate the mass unbalance at the cost of a high control effort. The use
of phase shift filters has also been proposed in literature [12]. These mentioned approaches only
reject disturbances at the rotational frequency.

Previous papers [5,9,10] on control of gas bearings have treated design of classical controllers,
but none of these had sufficient robustness, and therefore were not able to reduce vibrations
enough to allow a safe crossing of the critical speed. In [8] we proposed an H∞ and an LPV
controller to enhance the damping of the gas bearing. The controllers were found able to
both reject the external disturbances and reduce the vibration amplitude within the considered
operating range.

In continuation of that work, this paper explores further the capabilities of such designs. The
same H∞ setup is used to obtain a damping enhancing controller, and the vibration reduction
capabilities are investigated to extend the region of operation. The available model relies on
open loop identification, which poses a challenge, since open loop operation is not possible
in these regions. A controller is therefore required, which should again be validated from a
model of the system at that particular operating condition. Instead, an alternative must be
sought. Our approach therefore relies on designing a controller from the LPV model inside the
identified region, and investigating the controller performance outside the identified region. The
upper limits for safe rotation are investigated both for closed loop experiments and open loop
experiments.

The paper is structured as follows. Section 2 contains an overview of the test rig utilised for
experimental validation and some highlights of the model of the gas bearing. The design of the
H∞ controller is detailed in Section 3, and the available LPV model is used in extrapolation
to provide an expectation of the controller performance for higher rotation speeds. This
performance is investigated experimentally in Section 4. Last, some conclusions are drawn
and future aspects are discussed in Section 5.

Notation
The paper uses upper case bold letters for matrices A, lower case bold letters for vectors a,
the Laplace variable is denoted s. Continuous time signals are addressed a(t). Signals in the
Laplace domain are addressed a(s), and sampled signals at time instants kTs are denoted a(kTs).

State-space dynamics is formulated in shorthand as G =
[
A B
C D

]
, which defines the state-space

relation
[
ẋ
y

]
= G

[
x
u

]
=
[
A B
C D

] [
x
u

]
. The identity matrix of size n is denoted In. Shaft

rotation speed units are given in Hz, though the common in rotordynamics is revolutions per
minute: (1 Hz = 60 rpm).

2. Controllable Gas Bearing
2.1. Test Rig
The experimental controllable gas bearing setup at hand is shown in Fig. 1. It consists
of a turbine (1) driving a flexible shaft (2) supported by both a ball bearing (3) and the
controllable gas bearing (4), in which pressurised air is injected through four piezoactuated
injectors numbered as shown. The injection pressure is constant Pinj = 0.3 MPa, which is
measured before splitting up to the four piezoactuators. The pressure is not controlled, but
the variations are negligible. A disc (5) is mounted in one end to pre-load the journal. The
horizontal and vertical disc movement p , [px, py]

T is measured at the disc location using eddy
current sensors (6) in the coordinate frame specified in the figure. For zero input and when the
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Figure 1. The experimental controllable gas bearing setup. A turbine (1) drives a flexible
shaft (2), which is supported by both a ball bearing (3) and the controllable gas bearing (4)
with four piezoactuated injectors. A disc (5) is mounted in one end to pre-load the journal and
displacement sensors (6) measure the lateral movement of the disc in the shown reference frame.
A quadrature encoder (7) measures the angular position.

rotor is at stand still, the position is p = 0. The angular position of the rotor φ is measured by
an optical quadrature encoder (7), from which the rotation speed Ω is calculated. The injectors
are controlled in a pairwise differential mode. Thereby one piezoactuator reference rx is sent
to control the position of the horizontal injectors, and one reference ry is sent to control the
vertical ones. These references are in intervals [−5, 5] V, which corresponds to full-span motion
of the piezoactuator positions in the interval [0, 45] µm. The nominal clearance of the gas
bearing is 25 µm. Given the right conditions of sufficient injection pressure and sufficiently low
rotational speed, the gas film generates restoring forces and thereby keeps the rotor levitating
about a stable equilibrium. All measurements are sampled with period Ts = 0.2 ms. A detailed
description of the setup is available in [4].

For equipment safety, the vibrations must be within a safety region, in this case chosen as a
circle:

xs = r · cos(θ)− x0, ys = r · sin(θ)− y0, θ ∈ [0, 2π[ rad (1)

Manual tests were performed to assess safe limits of the circle parameters, and the following
were found sufficiently conservative: radius r = 20µm, and centre x0 = 10µm, y0 = −3µm.
These limits are deliberately chosen to be conservative for equipment safety.

2.2. Gas Bearing Model
The gas bearing test rig is modelled using the linear parameter-varying (LPV)-identification
approach from [10], where local LTI-models are identified from data collected in a grid of
injection pressures and shaft rotation speeds. For the present work, the injection pressure is
kept constant, and the model is then only function of the rotation speed. The identification grid
contained six uniformly spaced shaft rotation speeds in the interval Ω ∈ [0, 92] Hz. The model
can be decomposed to a cascade coupling of the actuator dynamics Gact, time delays Gτ and
the rotor-bearing dynamics Grb:

G(t,Ω) = Grb(t,Ω)Gτ (t,Ω)Gact(t) (2)
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The actuator dynamics are independent of the scheduling parameter and have the following
diagonal second order form with two real poles and a gain:

Gact(s) =

[
Ga,x(s) 0

0 Ga,y(s)

]
, Ga,j(s) =

κa,j(
1
p1,j

s+1

)(
1
p2,j

s+1

) , j ∈ {x, y} (3)

The rotor-bearing dynamics is modelled as the interconnection of a parameter-varying delay
and a second order parameter-varying mass-spring-damper system. The latter has a state-space
realisation:

Grb =

 02 I2 02

K(Ω) D(Ω) B(Ω)
I2 02 02

 (4)

in which the parameter-varying matrices {K,D,B} are second order polynomials in the rotation
speed Ω. The delays are second order polynomials in rotation speed, and finite models are
obtained by a first order Padé approximation:

Gτ (t,Ω) =

[
Gτx(Ω)(t) 0

0 Gτy(Ω)(t)

]
, Gτj(Ω)(t) =

[
−2/τj(Ω) 1
4/τj(Ω) −1

]
, j ∈ {x, y} (5)

The natural frequencies of the LPV model change with rotation speed but are approximately
ω1 = 105 Hz and ω2 = 115 Hz. It is desired to extend the region of safe operation, which
implies increasing the rotation speed to values outside the identification region. The actuator
dynamics contains only real poles acting at frequencies higher than 400Hz. Since actuation in
this range of frequencies is not desired, the actuator dynamics is approximated by a static gain.
The gas bearing model is then of order n = 6.

The nominal model is chosen as the LPV model evaluated at 91 Hz.

G = G(t,Ω)

∣∣∣∣
Ω=91 Hz

(6)

The mass unbalance is not included in the model, but acts as a force on the shaft given by:

fu = mueuΩ2

[
sin(Ωt+ ϕ)

sin(Ωt− π/2 + ϕ)

]
(7)

in which Ω is the shaft rotation speed, mu is the unknown unbalance mass, and eu is the unknown
distance between the mass unbalance and the geometrical shaft centre, and ϕ is the phase of
the disturbance. This can be modelled as an input disturbance in the gas bearing. The force
from mass unbalance therefore grows by Ω2 as the rotation speed increases, and the response
is greatly amplified near the resonance frequencies. At this point, the mass unbalance remains
largely unknown except for its frequency, which suffices for control design.

3. H∞ Control Design
This section details the damping enhancing H∞ control design from [8] to allow the safe crossing
of the first two critical speeds by reducing the vibrations to be within the desired safety region
from Eq. (1). These requirements are not easily included directly in the H∞ setup especially
since the mass unbalance is largely unknown. Instead, the controller K should enhance the
damping and thereby reduce the gain magnitude at the resonance frequencies without wearing
the actuator out. These disturbance and noise rejection requirements are formulated using the
mixed sensitivity setup [7], which seeks to minimise:

K∗ = arg min
K
‖N‖∞, N =

[
WpS
WuKS

]
, (8)
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GK Wp z1

Wu z2

+

w

r

Figure 2. The augmented plant with controller for LPV controller design with performance
weights Wp and controller sensitivity weight Wu.

where the closed loop sensitivity functions for a given Ω = Ω̄ are :

S(s, Ω̄) , (I + GK)−1 (9)

and KS represents the control sensitivity. They are shaped by the weight functions Wp and
Wu. The external output disturbance w and external outputs z = [zT

1 , z
T
2 ]T are included into

the system to obtain the augmented plant as shown in Fig. 2. The controller then satisfies
‖N‖∞ < γ.

To enhance damping, the controller should have high performance in the frequency range
around the under-damped eigenfrequencies of the rotor-bearing ωx and ωy. The performance
filter is therefore chosen to contain inverse notch like filters:

Wp(s) = diag (wpx(s), wpy(s)) (10)

in which wpx and wpy both have the form:

wpx(s) =
s2 + 2ζ1ωxs+ ω2

xk0

s2 + 2ζ2ωxs+ ω2
x

, wpy(s) =
s2 + 2ζ1ωys+ ω2

yk0

s2 + 2ζ2ωys+ ω2
y

(11)

The natural frequencies ωx, ωy are chosen as the under-damped natural frequencies of the
gas bearing to obtain a high weight around these. The weight at the resonance frequencies
is set to 19 dB, which is obtained by the damping factors ζ1 = 0.3 and ζ2 = 0.05. The low
sensitivity around the natural frequencies must come at the cost of increased sensitivity in
another frequency range due to Bode’s sensitivity integral [2]. It was argued in [9] to place this
sensitivity increase in the low frequency range, where an amplification of mass unbalance and
disturbances is acceptable. The constant k0 = 1/3 determines the low frequency weight, and
the sensitivity at low frequency is guaranteed to be less than γk0. The control signal sensitivity
weight Wu is chosen to penalise control action at high frequency. This is achieved with the
high-pass filter from [7, Sec. 2, Eq. (2.72)]:

Wu(s) = Iwu(s), wu(s) =
s/Mb + ωb
s+ ωbAb

, (12)

where the low frequency gain is 1/Ab, Ab = 10; the high frequency gain is 1/Mb = 15, and the
approximate crossover frequency is ωb = 2000π rad/s. The weights are shown in Fig. 3. Since
|S| > 1 for low frequencies, the controller amplifies mass unbalance for low rotation speeds,
which is affordable, whereas at high rotation speeds, the vibrations are attenuated. A 12-th
order H∞ controller is synthesised with γ = 1.15 and the performance shown in Fig. 4. At low
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frequencies up to above the first two critical speeds, the performance is limited by S as desired,
whereas at high frequency, KS becomes limiting.

To allow implementation on the dSpace system, the controller is converted to discrete time
using Tustin transformation and sampling frequency fs = 5 kHz.

3.1. Closed-Loop Performance Assessment Based on Extrapolated LPV Model
Since no gas bearing model is available for rotational speeds higher than 92 Hz, the performance
of the controller is attempted to be assessed by means of model extrapolation from the identified
LPV model. The performance assessment is strongly affected by the extrapolation, therefore
the obtained results must be carefully interpreted. The LPV model Eq. (6) is extrapolated for
various rotation speeds, and used to calculate the loop sensitivities using Eq. (9). The results are
shown in Fig. 5. In open loop, the input disturbances are greatly amplified near the resonances,
whereas the closed loop disturbance functions SG show a significant reduction in disturbance
gain as desired. The controller has low sensitivity near the resonance frequencies, and obtains
|S| < 1 in an interval above the resonance frequencies. This indicates that the controller reduces
the mass unbalance both before and after the critical speeds are crossed. Investigations also
show, that the control effort KS is sufficiently low. The performance analysis based on the
extrapolated models suggests that the designed controller may succeed in increasing the system
damping at and about the critical frequencies. The validity of these predictions needs to be
verified experimentally, and this is shown in the following section.

4. Experimental Results
The results of the previous section should be investigated experimentally, both the open loop
and the closed loop.

This is done by applying the controller at low speed, and then slowly accelerating the shaft
while monitoring the vibration amplitude. A standard runout filter is applied to remove artefacts
from the measurements from mechanical imperfections in the disk using the procedure described
in [10]. At standstill, the rotor equilibrium position is below the geometric bearing centre [6].
The given shaft positions p correspond to deviations from the equilibrium position. Two different
experiment types where performed to assess the upper limit of safe rotation speed: an open loop
and a closed loop. To avoid rotor-bearing rubbing during experiments, the shaft rotation speed
is increased slowly until the vibrations exceed the safety region. The vibrations of the open
loop experiment are shown in Fig. 6. At Ω = 94.8 Hz, the vibrations exceed the safety region,
and the rotor reaches a speed of Ω = 97.5 Hz before the experiment is stopped. The critical
speeds can therefore not be crossed safely in open loop. During the closed loop experiment,
the shaft is again accelerated slowly allow the vibrations to build up during the operation. A
bias is applied to the control signal to allow a shift of the vibrations’ centre. According to the
model, the critical speeds are expected to be near 105 Hz and 115 Hz. It is evident, that the
shape of the vibrations changes near these speeds. These speeds are crossed very slowly to allow
the vibrations to build up and validate, the critical speeds pose no challenge in closed loop.
The rotation speed can therefore be increased even further. During the experiment, the rotor
reaches a speed of Ω = 153 Hz where the control signals approaches the level of saturation. Such
saturation in best case deteriorates the performance, but potentially destabilises the system. It
is therefore decided to stop the experiment.

The vibrations are often investigated in rotor-dynamics as function of the rotation speed in a
waterfall diagram. This is obtained as the FFT of smaller sections of the data. Such a diagram
is shown for the vertical shaft direction in Fig. 7 for both the open loop and the closed loop
case. The synchronous vibrations for Ω > 50Hz are significantly reduced in the closed loop case,
and the critical speeds can therefore be crossed safely. It may be argued, that the approach of
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Figure 5. Evaluation of open and closed loop input disturbance responses (G , SG) for different
rotation speeds extrapolated with the LPV model. The model shows, that the controller reduce
the peak gain significantly.

applying an input bias should also have been used in the open loop experiment, but the vibration
amplitude would still quickly have grown exceeded the allowed vibration level.

A later experiment was performed, where the rotor speed was increased even further up to
Ω = 161.4 Hz, and the vibrations were within the desired level. This corresponds to an increase
in operating range of approximately 70%.

5. Conclusions and Future Aspects
This paper investigated control designs to reduce the vibrations in rotating machinery supported
by gas bearings. A controller was designed using the developed LPV model, and experimental
results demonstrated the feasibility of using the controller to extend the operation range. The
controller allowed rotation speeds up to, in and above the first two critical speeds, which extended
the operation range by 70%. Future experiments will investigate the performance as the rotation
speed is increased even further. In this region, sub-synchronous whirl dominates the response,
and it is of interest to use controllers to postpone the onset of the whirl [4].
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