-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
oo

Alice and Bob: Reconciling Formal Models and Implementation

Almousa, Omar; Médersheim, Sebastian Alexander; Vigano, Luca

Published in:
Programming Languages with Applications to Biology and Security

Link to article, DOI:
10.1007/978-3-319-25527-9 7

Publication date:
2015

Document Version _
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Almousa, O., Mddersheim, S. A., & Vigano, L. (2015). Alice and Bob: Reconciling Formal Models and
Implementation. In Programming Languages with Applications to Biology and Security: Essays Dedicated to
Pierpaolo Degano on the Occasion of His 65th Birthday (pp. 66-85). Springer. (Lecture Notes in Computer
Science, Vol. 9465). DOI: 10.1007/978-3-319-25527-9 7

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/43254427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-25527-9_7
http://orbit.dtu.dk/en/publications/alice-and-bob-reconciling-formal-models-and-implementation(986c6809-5267-481c-b607-6943c811409e).html

Alice and Bob:
Reconciling Formal Models and Implementation
(Extended Version)*

Omar Almousa', Sebastian Mddersheim®, and Luca Vigano?

! DTU Compute, Lyngby, Denmark
2 Department of Informatics, King’s College London, UK

Abstract. This paper defines the “ultimate” formal semantics for Alice
and Bob notation, i.e., what actions the honest agents have to perform,
in the presence of an arbitrary set of cryptographic operators and their
algebraic theory. Despite its generality, this semantics is mathematically
simpler than any previous attempt. For practical applicability, we intro-
duce the language SPS and an automatic translation to robust real-world
implementations and corresponding formal models, and we prove this
translation correct with respect to the semantics.

1 Introduction

Alice-and-Bob notation is a simple and succinct way to specify security pro-
tocols: one only needs to describe what messages are exchanged between the
protocol agents in an unattacked protocol run. However, it has turned out to be
surprisingly subtle to define a formal semantics for such a notation, i.e., defin-
ing an inference system for how agents should compose, decompose and check
the messages they send and receive. Such a semantics is necessary in order to
automatically generate formal models and implementations from Alice-and-Bob
specifications. However, even modeling messages in the free algebra, defining the
semantics has proved far from trivial [11-13, 20, 22, 23]. To make matters worse,
many modern protocols rely, for instance, on the Diffie-Hellman key agreement
where the algebraic properties of modular exponentiation are necessarily part
of the operational semantics, since the key exchange would be non-executable
in the free algebra. For practical purposes, one can augment the semantics with
support for just this special example like [27], but a general and mathematically
succinct and rigorous theory is desirable.

We give in this work a semantics for an arbitrary set of operators and their
algebraic properties. Despite this generality, the semantics is a much more suc-
cinct and mathematically simple definition than all the previous works (it fits on
half a page) because it is based on a few general and uniform principles to de-
fine the behavior of the participants. This semantics was inspired by the similar

* This work was partially supported by the EU FP7 Projects no. 318424, “FuturelD:
Shaping the Future of Electronic Identity” (futureid.eu), and by the PRIN 2010-2011
Project “Security Horizons”.

works of [24, 14], which we further simplify considerably. Our semantics is also
subsuming the previous works in the free algebra and limited algebraic reason-
ing, as they are instances of our semantics for a particular choice of operators
and algebraic properties (although this is not easy to show as explained below).
We thus see our semantics as one of our main contributions since, from a math-
ematical point of view, a simple general principle that subsumes the complex
definitions of many special cases is the most desirable property of a definition.?

This simple mathematical semantics, however, cannot be directly used as a
translator from Alice-and-Bob notation to formal models or implementations
since it entails an infinite representation and several of the underlying algebraic
problems are in fact not recursive in general. We thus consider a particular
set of operators and their algebraic properties that supports a large class of
protocols, including modular exponentiation and multiplication. This theory not
only subsumes the theories of previous papers, but also clarifies subtle details of
the behavior of operators that were left implicit previously. For this theory, we
define a low-level semantics that is much more complex than the mathematical
high-level one but it is computable, and we formally prove that the low-level
semantics is a correct implementation of the high-level one. The division into a
simple mathematical high-level semantics as a “gold standard” and a low-level
“implementable” semantics not only allows for a reasonable correctness criterion
of the low-level semantics, but is in our opinion a major advantage over previous
works that are a blending between mathematical and technical aspects.

To make our work applicable in practice, we have designed the Security Pro-
tocol Specification language SPS as a variant of existing Alice-and-Bob languages
that contains many novel features valuable in practice. In particular, our notion
of formats allows us to integrate the particular way of structuring messages of
real-world protocols like TLS, rather than academic toy implementations; at the
same time, we can use a sound abstraction of these formats in the formal veri-
fication. We have implemented the low-level semantics in a translator that can
generate both formal models in the input languages of popular security protocol
analysis tools (e.g., Applied 7 calculus in the syntax of ProVerif [10] or ASLAN
for AVANTSSAR [5]) and implementations in JavaScript for the execution en-
vironment of the FutureID project (www.futureid.eu). We have demonstrated
practical feasibility with a number of major and minor case studies, including
TLS and the EAC/PACE protocols used in the German eID card.

We proceed as follows: we give the syntax of SPS in Section 2 and an extension
of strands in Section 3. We define the semantics of SPS in Section 4 and discuss
the connections from SPS to implementations and formal models in Section 5.
In Section 6, we discuss related and future work, and conclude the paper.

3 We have learned that from Pierpaolo Degano, who is renowned for his ability to
explain complex things in a simple way.

2 SPS Syntax

In this section, we briefly introduce the syntax of SPS, which we will illustrate
by referring to the example protocol specification in SPS given in Listing 1.1,
in which two agents A and B use a symmetric key shk(A,B) to establish a fresh
Diffie-Hellman key and securely exchange a Payload message.

Protocol: example
Types:

Agent A,B;

Number g, Payload, X, Y;
Mappings:

shk: Agent,Agent-> SymmetricKey;
Knowledge:

A: A, B, shk(A,B), g;

B: A, B, shk(A,B), g;

Actions:

A : Number X

A ->B : scrypt(shk(A,B), f1(A,B,exp(g,X)))

B : Number Y

B -> A : scrypt(shk(A,B), f1(B,A,exp(g,Y)))

A : Number Payload

A -> B : scrypt(exp(exp(g,Y),X), f2(Payload))
Goals:

Payload secret of A,B

Listing 1.1. Example Protocol in APS

We give the syntax of SPS in EBNF, where we set all meta-symbols in blue
and write Xs (for a non-terminal symbol X) to denote a comma-separated list
X(,X)* of X elements; CONST and FUNC are alphanumeric strings starting with
a lower-case letter (e.g., g and scrypt in the example) and VAR is an alphanu-
meric string starting with an upper-case letter (e.g., X in the example).

SPS ::= Types : (TYPE IDENTs;)™
Mappings : (FuNnc : TYPEs — TYPE;)"
Formats : (FUNC(TYPEs);)"
Knowledge : (ROLE : MsGs;)™ [where ROLE # ROLE (& ROLE # ROLE)*]

Actions : (ROLE CHANNEL ROLE : MsG | ROLE : TYPE VAR)™
Goals : (ROLE authenticates ROLE on MsaG | MsG secret of ROLEs)*

Msa ::= CONST | VAR | Func(Msas)
IDENT ::= CONST | VAR | FuNC
ROLE ::= CONST | VAR
TYPE ::= Agent | Number | PublicKey | PrivateKey | SymmetricKey | Bool | Msg
CHANNEL ::= [@] — [o]

We begin our explanation with the atomic elements: constants (CONST) and
variables (VAR). One may think of the variables as parameters of a protocol
description that must be instantiated for a concrete execution of the protocol;
in our example, the variables A and B shall be instantiated with concrete agent
names such as a, b or the intruder p*, whereas X and Y should be instantiated
with random numbers that are freshly chosen by A and B, respectively.

In the Types section, all constants and variables are declared with one of
the pre-defined types, where the type Msg subsumes all types. By default, the

4 We use p instead of i in honor of our “favorite intruder” Pierpaolo.

interpretation of SPS is untyped, i.e., types are used only by the SPS translator to
check that the user did not specify any ill-typed terms. The types can however be
used to generate a more restrictive typed model and under certain conditions this
restriction is without loss of attacks [3]. The type Agent has a special relevance:
constants and variables of this type we call roles, and the symbol ROLE in the
above grammar must only be used for identifiers of type Agent. (This is an
additional check we cannot directly express in a context-free grammar.)

While the semantics of Alice-and-Bob style languages that we give in the
next section is generic for an arbitrary set of function symbols and their algebraic
properties, the concrete implementation of SPS is for a set of fixed cryptographic
function symbols. These are asymmetric and symmetric encryption (crypt and
scrypt), digital signatures (sign), hash and keyed-hash functions (hash and
mac), and modular exponentiation (exp) and multiplication (mult). There are
of course corresponding operations for decryption and verification, but these
are not part of an SPS specification; instead, their use is derived by the SPS
translator according to the semantics in the next section.

In the Mappings section, one can specify a special kind of function symbols.
These do not represent any actual operation that honest agents or the intruder
can perform, but are used to describe the pre-existing setup of long-term keys.
In our example, the mapping shk assigns to every pair of agents a unique value
of type symmetric key; this is the easiest way to define shared keys for agents—
including the intruder who will then share keys shk(p,A) and shk(A,p) with
every other agent A. Public key infrastructures can be modeled in a similar way.

In the Formats section, one can specify a third kind of function symbols called
formats. They abstractly represent how the concrete implementation structures
the clear-text part of a message, such as XML-tags or explicit message-length
fields. A format thus basically represents a concatenation of information, but
in contrast to a plain concatenation operator as in other formal languages, the
abstract format function symbols allow us to generate implementations with real-
world formats such as TLS (see below). In the example, we have two formats: £1
is used to exchange the Diffie-Hellman half-keys together with the agent names,
and £2 indicates the transmission of the Payload message. For simplicity, we
model a payload message using a fresh random number Payload, representing
a placeholder for an arbitrary message (depending on the concrete application);
alternatively, this could be modeled using a mapping (e.g., payload(A,B)) that
A knows initially and sends to B after the key establishment.

The three kinds of function symbols are thus: the cryptographic function
symbols, the mappings and the formats. Except for the mappings, these are
all public: all agents, including the intruder, can apply them to messages they
know. Additionally, formats are transparent: every agent can extract the fields
of a format. We can now build composed messages with these function symbols,
where we assume the additional check that all SPS messages are well-typed (and
are used with the proper arity). As typing is not essential for this paper, we do
not discuss the details of the type expressions.

In the Knowledge section, we specify the initial knowledge of each of the
protocol roles. This is essential as it determines how (and if) honest agents can
execute the protocol. For instance, if in the example we were to omit the item
shk(A,B) in the knowledge of role B, then B could not decrypt the first message
from A and thus not obtain A’s half key. Moreover, in the next step B would be
unable to build the response message for A. Also, as we will define below, this
specification indirectly determines the initial knowledge of the intruder: if a role
is instantiated with p, then the intruder obtains the corresponding knowledge
(in our case, all shared keys shk(A,B) where A = p or B = p). We require that all
variables in the knowledge section be of type Agent. Finally, one can optionally
forbid some instantiations of the roles, e.g., by the side condition A # p or A # B.

The Actions section is the core of the specification: it specifies the messages
that are exchanged between the roles. Additionally, we specify here explicitly
when agents freshly create new values. In our example, A first creates the secret
exponent X for the Diffie-Hellman exchange, computes the half-key exp(g, X), in-
serts it into format £1 and encrypts the message with the shared key shk(A,B).
To send this message, A uses the standard insecure channel (denoted with —)
on which the intruder can read, intercept, and insert messages arbitrarily. SPS
also supports a notion of authentic, confidential, and secure channels as in [24],
denoted with e— , —e and e—e respectively. For instance, one may have spec-
ified the exchange of the half-keys without the encryption but using authentic
channels where the intruder can see messages, but not insert messages except
under his real name. This represents the assumption that the messages between
A and B cannot be manipulated by an intruder, e.g., in device pairing of mobile
devices, when A and B meet physically in a public place. The assumptions are
reflected only in the formal model (by restricting the intruder behavior on such
channels), while in the implementation it is the duty of the surrounding soft-
ware module to connect a properly secured channel to the protocol module. One
last point about the Actions section is that it shows the simplicity of an SPS
specification, i.e., this section is very similar to the way one would informally
describe a protocol in Alice and Bob notation.

In the final Goals section, we specify the goals the protocol aims to achieve.
SPS provides built-in macros for the standard secrecy and authentication goals.
In general, we instrument the description with events that reflect what is hap-
pening in the protocol execution, e.g., the event secret(A,B, Payload) reflects
that Payload is supposed to be a secret between A and B. We then define attack
states as predicates over these events. The events allow us to formulate security
goals in a protocol-independent way rather than referring to the messages of the
protocol.

3 Operational Strands

As a preparation for defining the SPS semantics, we first clarify the target lan-
guage, i.e., we define an extension of the popular strands [28] that we call op-
erational strands. Here we give in a glance the five extensions that we make. A

concrete example is shown in Fig. 1 and explained below and we give the formal
details of operational strands in Appendix A.

First, send and receive steps can be annotated with a channel. Recall that
SPS supports default insecure channels as well as authentic, confidential and
secure ones. For the SPS semantics, this is only a label on the channels that
is left unchanged in the translation; for the semantics of operational strands,
the channels mean a restriction on the operations that the intruder can perform
on the channel as explained in Appendix A. In textual representation, we write
send(ch,t) and receive(ch,t) for sending and receiving message ¢ over channel
ch.

Second, we annotate each strand with the initial knowledge of the role it
represents, denoted by a box above the strand (we define knowledge formally
in Definition 2). The annotation has no meaning for the behavior of strands
and is only needed during the translation process. In textual representation, we
write the annotation with the knowledge M as M : steps at the beginning of the
strand.

Third, recall that the original strand spaces are used to characterize sets of
protocol executions and contain only ground terms. In contrast, we use them
like a “light-weight” process calculus: terms may contain variables (representing
values that are instantiated during the concrete execution). Also, we have the
construct fresh X where the variable X will be bound to a fresh value. An
important requirement is that operational strands are closed in the following
sense: every variable must be bound by first occurring in the initial knowledge,
in a fresh operation, in a macro (that we introduce shortly), or in a receive step.
A bound variable must not occur subsequently in a fresh operation (i.e., it cannot
be “re-bound”). In contrast, a bound variable may occur in a subsequent receive
step, meaning simply that the agent expects the same value that the variable
was bound to before.

Fourth, we extend strands with events (predicates over terms) to formu-
late security goals in a protocol-independent way. For instance, as we already
remarked above, we may use the event secret(A, B, Payload) to express that mes-
sage Payload is regarded as a secret between protocol roles A and B. Then we
can define (independent of the concrete protocol) a violation of secrecy as a state
where the intruder has learned Payload but is neither A nor B. We do not give
here more details on goals, because from a semantical point of view we just treat
the events as if they were messages on a special channel to a “referee” who de-
cides if the present state is an attack; the handling of these events is uniform for
a wide class of goals [3] and only limited by the abilities of current verification
tools. In textual representation, we will simply write event(t) where ¢ is a term
characterizing the event.

Fifth, we add checks of the form s = t. The meaning is that the agent can
only continue if the terms s and ¢ are equal and aborts otherwise. Also, we
have macros of the form X; := ¢, which mean that we consider the same strand
with all occurrences of X; replaced by t¢. This is helpful for generating protocol

implementations, because the result of a computation ¢ is stored in a variable
X; and does not need to be computed again later.

A formal definition of operational strands can be given as a process (in-
teracting with a given environment). In Appendix A,we define a semantics as
state-transition systems similar to [15], where a state (S; K;E) consists of a
set S of strands, a set K of messages that the intruder currently knows and
a set F of events that have occurred. For instance, if S contains the strand
send(insec, t).rest, where insec represents an insecure channel, then we can make
the transition to a successor state where t is added to K and the send step is
removed from the given strand.

4 SPS Semantics

Above we described the SPS syntax for a fixed set of cryptographic operators
(for which we later give a fixed set of algebraic equations). In this section, we
give a semantics that is parametrized over an arbitrary set of operators and
algebraic properties, inspired by [24,14]. One of the main contributions of our
work is to give this general definition of a semantics for Alice-and-Bob style
languages in a concise, mathematical way that is based on a few simple, general
principles. The semantics is a function from SPS to (operational) strands; this
function is in general not recursive because many of the underlying algebraic
reasoning problems are not. The value of this general definition is its simplicity
and uniformity: this is in fact the best mathematical argument why to define
a concept in a particular way and not differently. In the next section, we then
show that we can actually implement this semantics for the operators of SPS; in
fact, we define a “low-level” semantics that is a computable function from SPS
to strands (that is however so complicated that we give only an overview in this
paper) and prove that it coincides with the general “high-level” semantics.

4.1 Message model

We define messages as algebraic terms and use the words message and term
interchangeably. We distinguish two kinds of messages: (1) the protocol messages
that appear in an SPS specification and (2) labels (or recipes) that are the
messages in the strands the semantics translates to. It is necessary to make this
distinction as the SPS specification reflects the ideal protocol run, while the
semantics reflects the actual actions and checks that an honest agent performs
in the run of the protocol. For the same reason, we will also distinguish between
two kinds of variables: protocol variables and label variables.

Definition 1. A message model is a four-tuple (X, V,L,=). X is a countable
set of function symbols, all denoted by lower-case letters, where: Xy C X is
a countable set of constants, X, C X is a finite set of public operators such
as public-key encryption, and X, C X is a finite set of mappings (or private
operators), disjoint from X,. We assume a global public constant T € X, N Xy.

Table 1. Example of an equational theory ~

(1) dscrypt(k, scrypt(k,m)) ~ m 2) vscrypt(k, scrypt(k,m)) =T
~T

(
(3) derypt(inv(k), crypt(k,m)) =~ m (4) verypt(inv(k), crypt(k,m))
(5) open(sign(k,m))~m (6) vsign(k,sign(inv(k),m))~ T

For every £ € Xy with arity n and for every ¢ € {1,...,n}
(7) get, (£(t1,...,tn)) = t; | (8) verify,(£(t1,...,tn)) = T

(9) exp(exp(t1,t2),t3)) ~ exp(ts, mult(t2, t3))[(10) mult(t1, t2) ~ mult(ts, t1)

(11) mult (¢, mult(t2,ts)) ~ mult(mult(t1,t2),t3)

V' is a countable set of protocol variables. £ = {X1, Xa, X5...} is a countable
set of label variables disjoint from X and V. = is a congruence relation over
ground terms over X (i.e., terms without variables), which are denoted by Tx.
A term is thus a constant, a variable, or an application of a function (of X) on
a term, and we write Tg(A) for the set of terms over signature S and variables
from set A.

As we define in a deduction relation below, the public operators in X, are
those functions that every agent and the intruder can apply to messages they
know, i.e., the cryptographic operators (including operators for decryption that
do not occur in the SPS specification) and the non-cryptographic formats. In
contrast, the mappings in Y, are private, like shk in our example protocol that
maps from two agents to their shared secret key, or inv that maps from public
to private keys.

Ezxample 1. As a concrete example of a message model that is representative for
a large class of security protocols, let X, contain all operators of the equations
in Table 1, where & is the least congruence relation satisfying the equations. For
instance, scrypt represents symmetric encryption, dscrypt is the corresponding
decryption operator and vscrypt is a verifier: given a term ¢ and a key k, it tells
us whether ¢ is a valid symmetric encryption with key k. This models the fact
that most symmetric ciphers include measures to detect when the decryption
fails (e.g., when it is actually not an encrypted message or the given key is not
correct) and in concrete implementations this verification will be part of the
call to dscrypt. We emphasize that our message model explicitly describes such
fine details that most security protocol analysis tools silently assume; we could
similarly define a set of primitives that do not allow verification and the semantics
will accordingly define which verifications honest agents can and cannot do.

Similarly, the operators crypt, dcrypt and vecrypt formalize asymmetric
encryption, and sign, open and vsign formalize digital signatures.

Let X'y C X, be a set of formats declared in an SPS specification. Then, for
each format f € Xy of arity n, get, ; € X, is an extraction function for the i-th
field of the format (for all 1 <4 < n) and verify, € X, is a verifier to check
that a given message has format £.

Moreover, we have exp and mult for modular exponentiation and multipli-
cation as needed in many Diffie-Hellman-based protocols. As is often done, we

omit the modulus for ease of notation. X, also contains hash and mac represent-
ing hash and keyed hash functions, respectively (hash and mac do not appear in
Table 1 since they have no algebraic properties). Finally, a typical set of map-
pings could be: shk : Agent X Agent — SymmetricKey to denote a shared key
of two agents, pk : Agent — PublicKey for the public key of an agent, and
inv : PublicKey — PrivateKey for the private key corresponding to a given
public key. Although pk is typically publicly available, it should not be a public
operator as it does not correspond to a computation that honest agents or the
intruder can perform (rather the initial distribution of keys should be specified
in the knowledge section of SPS). O

Definition 2. A labeled message t! consists of a protocol message t € Tx(V)
and a label | € Tx, (£). A knowledge is a substitution of the form M = [X; —
t1,..., Xy > ty], where X; € L and t; € T (V). We call the set {Xy,...,X,}
the domain of M and write |M| =n for the length of M. We may also refer to
M as a set of entries and write, e.g., MU{X; — t;} to add a new entry (where
X; is not in the domain of M).

Intuitively, the label variables represent memory locations of an honest agent.
A label [is composed from label variables and public operators, and reflects what
actions an honest agent has performed on elements of its knowledge. A labeled
message t! expresses that an honest agent performed the actions of I to obtain
what the SPS specification represents by the term ¢. For instance, we represent
the initial knowledge of A in Listing 1.1 by [X; — A, A5 — B, X3 — shk(A,B),
X4 — g] to express that A stores her name and B’s name in her memory locations
X1 and X, a key shared with B in A3, and the group g in Xj.

4.2 Message Derivation and Checking

We now define how honest agents can derive terms from their knowledge. This is
in the style of Dolev-Yao deduction relations, but extended to labeled messages
to keep track of the operations that have been applied. The relation has the form
M F t' where M is a knowledge and t' a labeled term.?

Definition 3. + is the least relation that satisfies the following rules:

7A$, MKt Egq, M"tlll Ml—tif Cmp ,
MEtY [Ximt]e M g™ sxtilcm MEf(t,... t,) (i) f €D

The rule Az expresses that an agent can deduce any message that it has in
its knowledge, Fq expresses that deduction is closed under equivalence in & (on
terms and their labels), and Cmp allows agents to apply any public operator to
deducible terms.

® One may employ an entirely different model for the intruder (e.g., a cryptographic
one); using a Dolev-Yao style deduction for honest agents is simply the semantic
decision that they perform only standard public operations (that would be part of
a crypto API), but no operations that would amount to cryptographic attacks.

Ezample 2. As an example, consider again the algebraic theory of Table 1 and
the knowledge M = [X; — k, Xy — X, X5 — scrypt(k, exp(g,Y))]. M contains
three messages (or “memory locations”) A7, ..., X3 that we associate with the
corresponding messages of the SPS specification. We explain later how to reach
a particular memory state, but for the intuition let us just consider an example
scenario that would produce M for an agent A: the constant k could be part
of the initial knowledge of A, X could be her secret Diffie-Hellman exponent,
and the message stored in X3 could be what she received from another agent—
supposedly the Diffie-Hellman half-key exp(g, Y) encrypted with the key k. The
tricky part here is that in general A will be unable to check that the received
message has the correct form (i.e., that she did not receive just some garbage);
it is part of the semantics to describe what A can check and what messages she
will construct on the basis of the labels X7, ..., X3. Let us for instance consider
the case that A should now—according to the SPS specification—generate the
Diffie-Hellman full-key ¢ = exp(exp(g, X),Y). That amounts to finding a label [
such that M ¢!, i.e., that would produce the Diffie-Hellman key, if the received
message has the required form. Indeed, there is such a label as the following
proof tree shows:

M AT serypr(x explg 1)
M F dscrypt(k, scrypt(k, exp(g, Y)))decrPe(X1,4s)
M E x*2 M F exp(g, Y)dscrypt(Xl,Xg)
M + exp(exp(g, Y), X)o*P(dscrypt(X1,X3),X2)
MHE exp(exp(g, X), Y)exp(dscrypt(Xl,Xg),Xz)

Cmp
Eq

X

Cmp

Eq

In fact, we see the “recipe” to generate the term exp(exp(g,X),Y) in the label
exp(dscrypt(Xy, &3), Xz), i.e., A has to first apply decryption to term X3 using
the term A&’ as decryption key; if the received X3 message was indeed of the right
form, this gives the other agent’s half-key (exp(g,Y) in SPS), and this is further
exponentiated with X5 to supposedly yield the full key (exp(exp(g, Y), X) in SPS).
Note that the semantics also tells us what happens if A in the actual execution
receives some improper term for Xj3: she will simply apply the operations to it
as prescribed and that may lead for instance to the protocol getting stuck (if
nobody else can generate the key) or to an attack (if the intruder manages to find
a term that breaks some security goals), or the garbage term may actually be
detected by the checks on messages that we describe next, which in this example
amounts to checking that the given term is indeed an encryption with the right
key. O

The definition of the checks that honest agents can make on their knowledge is
in fact based on the deduction relation . The checks will be written as equations
between terms. To that end, we introduce the symbol = and define =-equations
as follows: an interpretation T is a total mapping from L to Tx (V) that we extend
to a function from Tx(V U L) to Tx(V) as expected; then we define Z = s =t
iff Z(s) = Z(t), and extend this to (finite or infinite) conjunctions of equations

10

A:X1D—>A,X2l—> B2X10—>A,X2l—> AZX:[)—)A,XQO—)B,
B, X5 ~ shk(A,B),| .|B, X3 — shk(A,B), X3 > shk(A,B), Xy — g
X4 =g X4 =g I
fresh X5
I

Il
fresh X J

‘Ecrypt(shk(A,B) ,£1(A,B,exp(g,X))
o [0}

scrypt(X3,£1(X1,X2,exp(X4,X5)))
o

I I Xe
fresh Y o<——"—"—

L:r S| ,B), »A,eX s ‘
Berypo(sie(s.8).£1(3. 070 s Y))io vscrypt(Xs, Xs) = T

I X7 := dscrypt(As, Xs)
fresh Payload L verify, (X7) =T

SM)I' exp(ex] ayloa
< ypt (exp(exp(g,X),Y),£2(Payl do) Xs 1= get, 4 (Xr)

I I Xy = gety ¢ (A7)

‘ secret(A, B, Payload) ‘ ‘ secret(A, B, Payload) ‘ Xio := gety ¢ (A7)
Xg = A
Xy = A1
fresh Xll

I
scrygt(exp(xloaxs),fQ(Xll))
—_—
Il
‘secret(z’\ﬁ, Xy, A1) ‘

Fig. 1. (a) Example protocol (b) Operational strand of A

as expected. We define ¢ = ¢ iff Z = ¢ implies Z |= ¢ for every interpretation
Z; and ¢ = ¢ iff both ¢ =4 and ¢ = ¢.

Definition 4. We define a complete set of checks ccs(M) for a knowledge M
as follows: ccs(M) = N{ly =l | I3 m € Tx(V). M = mh A M Fm!2}.

ces(M) yields an infinite conjunction of checks that an agent can perform
on his knowledge. Intuitively, M F m!t and M F m!? expresses that, according
to the SPS specification, computing [; and Il should yield the same result m,
and the agent can thus check that they actually do. For instance, consider M =
[X1 — k, X5 — hash(m), X5 — scrypt(k,m)]. Amongst others, ccs(M) then
entails the checks ¢ = vscrypt(&}, X3)=T A hash(dscrypt(X;, X3)) = Ao, ie.,
the agent A can verify that X3 is an encryption and that X5 is the hash of the
content of the encrypted message X3. Note that there are many more equations
(e.g., X1 = A1) and for every equation s = ¢, we also have h(s) = h(t) for every
unary public operator h. However, it holds that ccs(M) = ¢, i.e., ccs(M) is
logically equivalent to ¢ and thus all other checks are redundant.

4.3 High-level Semantics

Now we can put everything together to define the semantics of SPS specifications
by translation to operational strands. Fig. 1(a) shows our example protocol in the

11

style of message sequence charts. The first step towards an operational semantics
is to split the protocol into different strands, one for each role, as indicated in
Fig. 1(a) by the dotted line. We refer to the resulting strands as plain strands.
Each plain strand shows how the protocol looks like from the point of view of
that role in an ideal protocol run: what messages it is supposed to send and
what messages it receives. The second step towards the operational semantics is
to identify the precise set of actions, i.e., how messages are composed or decom-
posed, and what checks need to be performed on received messages. Fig. 1(b)
shows how this operational description looks like for role A of the example (role
B is very similar). Now we define the high-level semantics as a function [-]g
(with initial case [-] g,) that maps from plain strands like (a) to the operational
strands like (b).

In a nutshell, we use the labeled deduction M F #' to define how an agent
composes an outgoing message (or event), and we use the ccs function whenever
an agent receives a new message, formalizing the set of checks that the agent
can perform at this point. Note that this is an infinite conjunction and we later
show how to obtain an equivalent finite conjunction for the example theory.

Definition 5. [-]g translates from plain to operational strands as follows:
[M : strand] m, =M : ccs(M).[strand] g (M)
[receive(ch, t).rest] (M) = receive(ch, X|arj41).ccs(M U [Xpr141 = 1]).
[rest]m (M U [X|ar)41 = t])
[send(ch,t).rest] g (M) = send(ch,l).[rest] g (M) where M &t for some label |

[event(t).rest] g (M) = event(l).[rest] g (M) where M - t' for some label |
[fresh X.rest] g (M) = fresh Xjpsi11-[rest] (M U{X|ar1 41 — X})
[0] (1) =0

The first rule initializes the translation, by computing the checks that can
be made on the initial knowledge of the strands. The second rule says that each
received message is associated with a new label variable X4, in the agent’s
knowledge and afterwards we use ccs to generate all checks that the agent can
perform on the augmented knowledge. The third rule is for sending the SPS
protocol message t. Here we use the relation M + ¢! to require that the agent can
generate the required term ¢ from the current knowledge M using the concrete
sequence of actions [; this is explained in more detail below. The event rule is
very similar to sending. The fifth rule translates the construct fresh X: we simply
pick a new label variable Xy 1 that will store the fresh value in the translated
strand, and bind it in the knowledge to the protocol variable X. The final rule
is straightforward.

Let us continue Example 2, where we considered an agent with knowledge
M =[x — kX — X, X5 — scrypt(k, exp(g,Y))]. (As explained above, this
may result from a strand that initially knows a key in A}, has freshly generated
an exponent X, and has received the message X’3.) Suppose that the next step is
send(insec, exp(exp(g,X),Y)) (in fact, in a more realistic example, it would be a
message encrypted with this term as a key). The semantics tells us to determine
any label [such that M F exp(exp(g,X),Y)!, which is possible for the label
I = exp(dscrypt(Xy, A3), Az) as shown in the example previously. Thus, the

12

translation can be in this case send(insec, exp(dscrypt(X;, X3), X2)). Note that
we said “can” here, because there are other labels, e.g., any label I’ such that
I=1.

More generally, given M and ¢, there is in general not a unique [such that
M - t!. First, consider the case that there is no such [. In this case, the agent
has no means (within the deduction relation) to obtain the term ¢ from its cur-
rent knowledge. We thus say the protocol is non-ezecutable and its semantics is
undefined. This executability check is an important sanity check on SPS spec-
ifications, ensuring that all steps of the protocol can actually be performed at
least when no intruder is interfering and the network does not loose messages.
Other formal specification language like Applied 7 that specify the different roles
separately as processes cannot have such an executability check, because unlike
SPS, there is no formal relationship between the messages that one role is send-
ing and another is receiving. Thus, if a modeler accidentally specifies messages
slightly differently in two processes, they may be unable to communicate and get
stuck in their execution; then a flawed protocol may be trivially verified as secure
because of the specification mistake. The executability check in SPS drastically
reduces the chance of such mistakes.

Second, if there is a label [, then there will typically be infinitely many of them
(trivially by performing redundant encryptions and decryptions). Our semantics
does not prescribe which of the labels has to be taken (and the implementation
below will take in some sense the simplest one). A key insight is that this does not
make the semantics ambiguous: if M -t and M F t2 then ccs(M) = 1) = Io.
Thus, since we always perform the checks on the knowledge after each received
message, we know that the choice of labels does not make a difference.

As an example, observe that the operational strand we have given in Fig. 1(b)
for our example protocol is correct according to this semantics (when resolving
the X :=t macros): all outgoing messages have an appropriate label (for which
M = t! holds), and all checks s = t do indeed logically follow from ccs(M) for
the respective M. In fact, we claim that the checks are logically equivalent to
ces(M), i.e., all other checks are redundant; it is part of the results of the next
section to prove that and derive the given checks automatically.

We emphasize the succinctness of the definitions: Definitions 2-5 together
fit on half a page and yet we define the semantics for an arbitrary set of cryp-
tographic operators and algebraic properties. We believe that this is the best
argument that the semantics of Alice-and-Bob notation should be defined this
way—deriving from simple, general, uniform principles. However, this simple
semantics cannot be directly used as a translator from Alice-and-Bob notation
to formal models or implementations as it entails an infinite representation and
several of the underlying algebraic problems are in fact not recursive in general.

Theorem 1 For a given strand S, the problem to compute a finite representa-
tion of [S]u, if it exists, is not recursive.

Proof Sketch. Tt is immediate that - is in general an undecidable relation (take
an undecidable ~). Similarly, the relation {(M,s,t) | ccs(M) | s = t} is un-

13

decidable. It follows that for given a knowledge M, the problem to compute a
finite conjunction ¢, such that ¢ = ces(M), if one exists, is not recursive. O

4.4 Implementing the Semantics

Despite this general undecidability result, for a special theory we can give a
more low-level, procedural semantics that is actually computable and prove that
it correctly implements the high-level semantics. More specifically, we now sketch
how to actually compute the semantics for the example theory in Table 1 and
where we additionally require that the SPS specification (and thus the plain
strands) does not contain any destructors or verifiers.

Theorem 2 For our example theory in Table 1, for every strand S in which no
destructors or verifiers occur, [S] g can be finitely represented and it is recursive.

Implementation/Constructive Proof. First we split the problem into a construc-
tor and a destructor/verifier part (note they are not independent, e.g., in order
to decrypt a message one may need to first compose a key). We also split the
example theory into (i) equations C' that describe destructors and verifiers (the
first 8 equations in the Table 1) and (ii) equations F' that just “rearrange” terms
(the remaining equations). We then use equations C' as rewrite rules and apply
them modulo F' (working on F-equivalence classes); the resulting rewrite relation
—c/F is convergent and we consider only normalized terms.

For our example theory (Table 1), we define two functions, compose,,(t) and
analyze(M, ¢). First, compose,,(t) implements the “constructor” part of the F
relation: find all labels [such that M + t' when using only constructors of 2
(no destructors and verifiers) and using only equations from F. Note that the set
of such labels [is always finite. Second, analyze(M,) starts with a knowledge
M and a set of checks ¢ that have already been performed (so they do not
need to be checked again). It computes a pair (M’, ¢'). Here, M’ is an analyzed
extension by all subterms that can be obtained by applying destructors and
normalizing the result; for this purpose, analyze calls the compose function to
compose decryption keys when necessary. Also, for each decryption, the analysis
will produce as part of ¢’ a new macro X; := [, where X; is the label variable
in the augmented knowledge that holds the result of the decryption and [is the
recipe for obtaining it. Similarly, for each such decomposition step, we have a
check from the respective verifier that is also added to ¢’. Further, analyze will
check for every term whether there is a different way to compose it (using again
the compose function) and, if so, generate the according checks. Finally, for all
pairs of terms where the root operator is mult (and analogously for exp), we
must check if the least common multiple can be generated from each of them.
For instance, knowing [X; +— ab, X5 — ac, X5 — b, Xy — ¢|, we can derive the
check X1X4 = XQX;),.

We then show that for an analyzed knowledge, every derivable term can be
derived using only compose and the checks resulting from analyze are equivalent
to those of ccs modulo resolving the macros that analyze generates. Based on

14

this, we obtain the following computable low-level semantics that translates from
plain strands to operational strands and mirrors the structure of the high-level
semantics:

[M : strand], (9, T) M : ¢.[strand]L(M’, o) where (M’,) = analyze(M, T)

[receive(ch, t).rest] L (M, @) = receive(ch, X|prj41)-¢ - [rest] (M, (0 A ¢'))
where (M', o A ¢") = analyze(M U [X|p41 — t], ©)

[send(ch,t).rest],(M,p) = send(ch,l).[rest]r (M,) where I € compose,,(t)
[event(t).rest] (M,) = event(l).[rest] (M, ¢) where | € compose (t)
[fresh X.rest] (M, o) = fresh Xjpgj41.[rest] (M U {Xa41 = X}, 9)
[01(M,) =0

The full details of compose and analyze and the proofs of their correctness
can be found in Appendix B. Based on this, we also prove that the two levels
of our semantics ([-]i and [-]1) coincide, i.e., given the same plain strand as
input, they produce equivalent operational strands. a

5 Translations from Operational Strands

We now come to the “last mile” of the translation: to translate operational
strands into an actual implementation and into a formal model for automated
verification. Fig. 2 shows this translation for the role A of our example in Fig. 1(b);
as target languages we have here JavaScript for protocol implementations and
Applied 7 for the formal model.%

One can easily see a very close correspondence between the two translations:
roughly, they both use the same operators in the same way, only in the formal
model they are function symbols in an “abstract” term algebra, whereas in the
implementation they are corresponding API calls. It is one of the contributions
of this work to achieve such a close correspondence. While the use of crypto-
APIs is of course standard, our notion of formats extends this API idea also to
the non-cryptographic operations: all the technical details of parsing and pretty-
printing are hidden in the classes for the given formats. Of course, just like the
crypto-API, also the “non-crypto-APIs” require a robust implementation (that
does not suffer from buffer overflows, for instance), but we want to argue that
our setup with APIs is a suitable way to “cut the cake”.

The close correspondence allow us to argue that there is no systematic dis-
crepancy between formal model and implementation, if the function symbols
have the corresponding meaning—but that is indeed subtle. Comparing the
translation with the input strand of Fig. 1(b), there are only two significant
differences: all the explicit verifiers of the strands are removed and the imple-
mentation does not contain events; besides that, the translation is mainly adapt-
ing to the syntax of the target language. For this reason, we do not give here a

5 One may argue that JavaScript is not suitable for implementing security protocols,
but in fact, using systematic mechanisms such as our formats, we can produce robust
implementations that do not suffer from type flaw attacks, for instance. It is relatively
easy to adapt to other languages like Java or the AVANTSSAR Platform [5], e.g.,
for using the tool OFMC, for which we have implemented a connector.

15

formal definition of the translation functions to JavaScript and Applied 7 (that
can be found in Appendix C), but only discuss a few interesting aspects.

5.1 Experimental Results

The translator has been implemented as part of the FutureID project and is
available at [?]. In the project, we have considered several real-world case studies
such as the TLS handshake [16] as one of the most widely used protocols, the
protocols EAC and PACE [19] that are used by the German eID card, and 30
smaller protocols. In particular, for our main case studies TLS, EAC and PACE,
we did implement the precise message formats of the standards [18]. As part of
FuturelD, an execution environment has been defined that invokes the JavaScript
code with suitable values for the parameters [17]. For the formal verification, we
have used our case studies to check that ProVerif finds the known attacks in the
small examples and verifies all other protocols. The entire test suite runs in less
that 11 seconds on a 2.67 GHz machine.

5.2 JavaScript Translation

Crypto API. We of course rely on the execution environment to have suitable im-
plementations of the cryptographic primitives, e.g., the exp operator will in fact
be mapped to elliptic curve cryptography. We assume that the call dscrypt(k, m)
will fail (aborting execution) if m is not a message encrypted with key k. This
is why we do not include verifier checks in this translation. For simplicity, we
omitted the optional annotation of primitives with the precise algorithm and key
length (that is only necessary when using different ones in the same protocol).

Formats. The notion of formats allows us to integrate the actual message for-
mats of real-world protocols like TLS. Similar to the cryptographic operators,
we also rely on an API and implementation of non-cryptographic operators: for
each format declared in the specification, we require a Java class that basically
contains a parser and a pretty printer for that format (a.k.a. serialization/de-
serialization). For the example format £1 the class £1 must have three member
variables of type byte string to represent the three fields of the form (as raw
data). It must have two constructors: the first takes three strings as input and
just stores them in the member variables (cf. the first new £1 in the example),
the second takes a single string and tries to parse it as format £1, and this may
fail (cf. the second new £1 in the example). Further, we have the geti() func-
tions to obtain the i-th field and encode() to output a string. For a more detailed
discussion of formats and TLS see [26].

5.3 Applied © Translation

Algebraic Properties. Let us start with the most subtle problem: the algebraic
properties of the cryptographic and non-cryptographic operators. We can express

16

function proc_A(X1,X2,X3,X4,ch){

Number X5 = genNumber ();

ch.send(scrypt (X3 ,new f1(X1,X2,
exp(X4,X5)) .encode (D)) ;

var X6 = ch.receive();

var X7 = dscrypt(X3, X6);
f1 X7a = new f1(X7);

var X8 = X7a.getl1();

var X9 = X7a.get2(Q);

var X10 = X7a.get3();

if (X8 != X2) error();

if (X9 != X1) error();
Number X11 = genNumber ();

ch.send(scrypt (exp(X10,X5),
new f£2(X11).encode()));

new x5:bitstring;
out (ch,scrypt(x3,f
exp (x4,x5))));
in(ch,x6:bitstring
let x7:bitstring =

let x8:bitstring =
let x9:bitstring =
let x10:bitstring
if (x8 = x2) then
if (x9 = x1) then
new x11:bitstring;
out (ch,scrypt (exp(
£2(x11)));

let proc_A(x1,x2,x3,x4:bitstring,ch:Chann)=

1(x1,x2,

)
dscrypt (x3,x6) in

flget1(x7) in

figet2(x7) in
= figet3(x7) in

x10,x5) ,

event secret(x1,x2,x11);

} 0.

Fig. 2. Translation to JavaScript and Applied = Calculus of role A of the example

cancelation, e.g., reduc forall m,k : bitstring; dscrypt(k, scrypt(k,m)) =m.
(and the translator will automatically generate corresponding rules for the get-
functions of the declared formats). However, during the verification process of
ProVerif, where processes get translated into Horn clauses, these destructors
get encoded into pattern matching—in the Horn clauses occur no destructors or
verifiers. This transformation corresponds to an implicit verifier: in our example,
the let x7 clause will fail if the message x6 is not of the form scrypt(x3, -). Thus,
also the ProVerif translation does not have verifiers. While this is expressing the
algebraic theory we want at this point, directly formulating the equations for exp
and mult, ProVerif will not terminate. For standard Diffie-Hellman, it is sound
to restrict ourselves to the following equation that works with ProVerif [21, 25]:

equation forall x,y : bitstring; exp(exp(g,x),y) = exp(exp(g,y),%) .

The translator can only give a warning when the SPS specification is outside the
fragment for which the soundness result holds.

Process Instantiation. We formulate all possible instantiations of the protocol:
every role can be played by any agent, including the intruder, and we want to
allow for any number of sessions of the protocol in parallel. It is not trivial to
specify this manually, but the SPS compiler offers a systematic way to gener-
ate the instantiation. Recall that the initial knowledge of each role in the SPS
specification can only contain variables of type Agent and long-term keys have
to be specified using functions like shk. This allows us to instantiate the knowl-
edge for any value of the role variables. For our example, we have the following
specification (where the free name pub represents an insecure channel):

process
'new x:bitstring;out (pub,x)|
'in(pub, (b:bitstring));proc_A(x,b,shk(x,b),g,pub)|

17

out (pub, (p,b,shk(p,b),g)) |
tin(ch,(a:bitstring)) ;proc_B(a,x,shk(a,x),g,pub)|
out (pub, (a,p,shk(a,p),g))

The first replication operator generates an unbounded number of honest
agent names (in variable x) that are broadcast on pub. Then we generate an
unbounded number of instances of proc A for each x and each name b that
we receive from the public channel (thus, the intruder can choose who will play
role B). We also output on pub the initial knowledge that the intruder needs for
playing role A under his real name p. The last two lines are similar for role B.

6 Conclusions and Related Work

The formal definition of languages based on the Alice-and-Bob notation requires
one to identify the concrete set of actions that honest agents have to perform,
which is relevant both for a formal model for verification and for generating im-
plementations. Previous works have proposed fairly involved deduction systems
for this purpose and there is no (even informal) justification why these systems
would be suitable definitions. Our high-level semantics -]z, inspired by [24,
14], gives a mathematically succinct and uniform definition of Alice-and-Bob
notation following a few general principles, and at the same time it supports an
arbitrary set of operators and algebraic properties. The succinctness and gener-
ality is, in our opinion, a strong argument for this semantics as a standard. As
[-]& entails problems that are not recursively computable in general, we defined
the low-level semantics [-]1, for a particular theory and proved its correctness
with respect to [-]z. While -]z is similar (and similarly involved) as previous
definitions of semantics for the Alice-and-Bob notation [22,23,13,12,20,7], we
are the first to give a complete formal treatment of the key algebraic properties
for destructors, verifies, exponentiation and multiplication.”

With respect to other implementation generators like [29,27], our key im-
provements are as follows. First, we give a uniform way to generate both formal
models and implementation from the operational strands, ensuring a one-to-
one correspondence between them. Second, replacing the abstract concatenation
operator from formal models with formats allows us to generate code for any
real-world structuring mechanism like XML formats or TLS-style messages. The
only work that provides similar features is [6], which however starts at the m
calculus level, comparable to the output of our low-level semantics. In reference
to works that consider the verification of the actual implementation source code
like [8], we agree with [9] that the converse problem, i.e., turning formal models
into code like in this paper, is harder. However, in the case of SPS this extra
effort takes a large part of the burden off the user, i.e., SPS carries the task

" Interestingly also the Festschrift for José Meseguer this year received a treatment
of Alice and Bob notation [7] that is very similar to our low-level semantics [-]z,
however cannot handle exponentiation and multiplication. Thus, we can conclude
that Pierpaolo received a strictly stronger Festschrift.

18

of formally verifiable implementations to a higher level of abstraction without
suffering from flaws that are abstracted away in the formal model.

Finally, we point out a strong similarity between our notion of knowledge
and the notion of frames in Applied 7 calculus [2]. We allow ourselves minor
deviations from the frame concept, in particular not using name restrictions;
instead, constants are by default not public in our setting. This makes the treat-
ment in this paper easier but does not fundamentally change the concept (or
its expressive power). For what concerns existing decision results for frames, the
deduction relation - has been studied, e.g., in [1]. It is known that deduction is
decidable for convergent subterm theories (like our equations (1)—(8)) and that
disjoint associate-commutative operators as in (9)-(11) can easily be combined
with it. Many results consider the static equivalence of frames which is interest-
ing for privacy properties, namely whether the intruder is able to distinguish two
frames (“knowledges”). In the SPS semantics, we have a substantially different
problem to solve: we have only one knowledge M (and it is the knowledge of
an honest agent) and we need to finitely characterize ccs(M), i.e., what checks
the agent can make on M to ensure that all received messages have the required
shape. This indeed has some similar traits to static equivalence: also here one
has to check pairs of recipes (albeit with respect to two frames). Despite this
similarity, the problems are so different that it seems not directly possible to re-
use decision procedures for static equivalence for computing ccs(M). Moreover,
our exp/mult theory is not yet supported in static equivalence results. A further
investigation and generalization, namely with inverses for mult, is part of our
ongoing research.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theor. Comput. Sci., 367(1-2):2-32, 2006.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In C. Hankin and D. Schmidt, editors, POPL, pages 104-115. ACM, 2001.

3. O. Almousa, S. Mdédersheim, P. Modesti, and L. Vigano. Typing and Composi-
tionality for Security Protocols: A Generalization to the Geometric Fragment. In
ESORICS 2015, 2015. To appear, Available at http://compute.dtu.dk/~samo.

4. O. Almousa, S. Modersheim, and L. Vigano. Alice and Bob: Reconciling Formal
Models and Implementation (Extended Version). Technical report, DTU Compute,
2015. Available at http://www.imm.dtu.dk/~samo/.

5. A. Armando et al. The AVANTSSAR Platform for the Automated Validation of
Trust and Security of Service-Oriented Architectures. In TACAS, 2012.

6. M. Backes, A. Busenius, and C. Hritcu. On the development and formalization of
an extensible code generator for real life security protocols. In NFM, 2012.

7. D. Basin, M. Keller, S. Radomirovié¢, and R. Sasse. Alice and Bob Meet Equational
Theories. In Festschrift for Jos ‘e Meseguer on his 65th Birthday, 2015.

8. K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Verified Cryptographic
Implementations for TLS. ACM Trans. Inf. Syst. Secur., 15, 2012.

9. K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable im-
plementations of security protocols. In CSF 19, pages 139-152. IEEE, 2006.

19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
CSF, pages 82-96. IEEE, 2001.

C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static vali-
dation of security protocols. Journal of Computer Security, 13(3):347-390, 2005.
S. Briais and U. Nestmann. A formal semantics for protocol narrations. Theoretical
Computer Science, 389(3):484-511, 2007.

C. Caleiro, L. Vigano, and D. Basin. On the semantics of Alice&Bob specifications
of security protocols. Theoretical Computer Science, 367(1):88-122, 2006.

Y. Chevalier and M. Rusinowitch. Compiling and securing cryptographic protocols.
Information Processing Letters, 110(3):116-122, 2010.

C. Cremers and S. Mauw. Operational semantics of security protocols. In Scenar-
i0s: Models, Transformations and Tools, 2005.

T. Dierks and E. Rescorla. RFC 5246: The Transport Layer Security (TLS) Pro-
tocol, Version 1.2, 2008.

FuturelD Project. Deliverable D42.6: Specification of execution environment, 2014.
www.futureid.eu.

FutureID Project. Deliverable D42.8: APS Files for Selected Authentication Pro-
tocols, 2015. www.futureid.eu.

German Federal Office for Information Security (BSI). Advanced Security Mecha-
nism for Machine Readable Travel Documents, 2008. Available at www.bsi.bund.
de/EN/Publications/TechnicalGuidelines/TR03110/BSITR03110.

F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and verifying security
protocols. In LPAR 2000, pages 535-554. Springer, 2000.

R. Kiisters and T. Truderung. Using ProVerif to Analyze Protocols with Diffie-
Hellman Exponentiation. In CSF, pages 157-171. IEEE, 2009.

G. Lowe. Casper: A compiler for the analysis of security protocols. In CSFW,
pages 18-30. IEEE, 1997.

J. Millen. CAPSL: Common authentication protocol specification language. Tech-
nical report, Technical Report MP 97B48, The MITRE Corporation, 1997.

S. Modersheim. Algebraic Properties in Alice and Bob Notation. In ARES’09,
pages 433-440. IEEE, 2009.

S. Moédersheim. Diffie-Hellman without Difficulty. In FAST, pages 214-229, 2011.
S. Médersheim and G. Katsoris. A sound abstraction of the parsing problem. In
CSF, pages 259-273. IEEE, 2014.

P. Modesti. Efficient Java Code Generation of Security Protocols Specified in
AnB/AnBx. In STM, 2014.

F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7(1):191-230, 1999.

B. Tobler and A. C. Hutchison. Generating network security protocol imple-
mentations from formal specifications. In Certification and Security in Inter-
Organizational E-Service. Springer, 2005.

20

A Operational Strands

A.1 The Syntax of Operational Strands

The syntax of operational strands is a slight extension of the well-known strand
spaces:

STRAND ::= KNOWLEDGE: (send(CHANNEL, MsG). | receive(CHANNEL, MSG).
| event(MsG). | Msa = Msa. | VAR:=Msa. | fresh VAR.)* 0

Note that in plain strands, no equalities occur. The non-terminals CHANNEL,
Msa, and VAR are as in the SPS syntax. KNOWLEDGE, typically denoted by
M in concrete strands, stands for a knowledge as defined in Definition 2, i.e., a
substitution from label variables to protocol terms. We may omit this knowledge
prefix of an operational strand when not relevant, as it is mainly used as an
annotation in the semantics of SPS.

We define the free variables of an operational strand as follows:

fu(M : rest

fu(send(ch, t).rest
fu(receive(ch,t).rest

fu(rest) \ dom(M)

fu(ch) U fu(t) U fo(rest)
(fo(rest) \ fo(t)) U fu(ch)

) =
|
fv(event().rest) = fo(t) U fo(rest)
fu(s = t.rest) = fo(s) U fu(t) U fu(rest)
fo(x :=t.rest) = (fo(rest) \ {z}) U fo(t)
fu(fresh x.rest) = fu(rest) \ {x}
fu(0) =10
fo(x) = {z}
Jo(f(t1, .. tn) = fo(t) U.. U fu(ts)

We require that all operational strands are closed, i.e., all variables, before being
“used”, are bound by occurring in the knowledge, in a received message, or
in a fresh step. Further, a bound variable cannot occur in a fresh step (e.g.,
fresh z.fresh 2.0 is not allowed) or a macro (e.g., * := x cannot occur in a
strand, since then z is bound earlier, violating that it cannot be re-bound, or
x is a free variable of the strand). When a bound variable occurs in a receive
step, it is not “re-bound”, i.e., receive(ch, x).receive(ch, x).rest by the following
semantics will be equivalent to receive(ch, x).receive(ch, y).x = y.rest.

A.2 The Semantics of Operational Strands

Similar to [15], we define the semantics of operational strands as an infinite-
state transition system, where a state (S; K; E) consists of (1) a set S of closed
strands, (i.e., every variable occurs first in a receive message, in a macro, or in
a creation of a fresh value), (2) a set K of messages (the intruder knowledge),
and (3) a set E of events that have occurred. This transition system is defined
by an initial state and a transition relation.

21

The initial state Recall that in an SPS specification, only variables of type
agent may be used in a knowledge declaration; therefore the co-domain of the
knowledge M of each operational strand of the protocol will only contain such
agent-typed variables. The first step in defining the semantics is to consider all
possible instantiations of these agent variables with concrete agent names; and
create infinitely many copies of these operational strands to model an unbounded
number of sessions between any agents.

Let therefore & = {s1,-- -, sx} be the set of operational strands of a protocol,
one for each role of the protocol. Let us further denote by R; the name of
the role (i.e., a constant or variable of type agent) that is described by the
operational strand s;, M; be the knowledge of s, and steps; be the steps of s;,
ie., s; = M; : steps;. Let Ag be a countably infinite set of constants of type
Agent, including p denoting the intruder, and let V4 be the set of all variables
that occur in the M; (and are thus of type Agent in every SPS translation). Let
Subs be the set of substitutions from V4 to Ag. Thus Subs represents all possible
instantiations of the roles of the protocol with concrete agent names. If the SPS
knowledge declarations contains some inequalities, such as A # p or A # B, then
this set Subs is accordingly restricted.

Even though a knowledge itself is a substitution (cf. Definition 2), we now
define what it means to apply a substitution (from Subs) to it. Let o € Subs and
M =[X — t1, -+, X — t] be a knowledge. Then, we define o(M) = [X; —
o(t1), -+, X + o(t;)]. The initial state of the transition system is (So; Ko;0)
where:

So = Ule{U(Ml-)(stepsi.finished(n)) | o € Subs,o(R;) # p,n € N}
Ko = U {o(ul(M,)) | o € Subs,o(R;) = p} U Ag

Here we use a new event finished(n) (for each n € N) to create a countable number
of unique operational strands for each instance o € Subs. Note that we apply the
instantiation o first to the knowledge of the role, and the so instantiated knowl-
edge to the entire operational strand. For instance, for the trivial operational
strand [X; — A, Xy — B, X5 — shk(4A,B)] : fresh Xy.send(insec, scrypt (X3, Xy)
and the instance ¢ = [A — a,B +— p|, we get the countably many operational
strands [X; — a, Xy — p, X3 — shk(a, p)] : fresh X,.send(insec, scrypt(shk(a,p),
X4)).finished(n).0 for each n € N. All remaining variables in the instantiated
operational strands represent freshly created values and (parts of) received mes-
sages.

Note that here we have created only the instances for the honest agents (be-
cause of the side condition o(R;) # p); this is so since the behavior of the honest
agents is subsumed by the abilities of the intruder when given the appropriate
knowledge of the role in all instances where he plays the role.® With Ky we

8 In fact, we define here the semantics of operational strands using a standard Dolev-
Yao style intruder deduction relation; stronger models could be employed, we just
require that the intruder can at least perform the actions that honest agents can,
i.e., encryption and decryption with known keys and the like.

22

therefore define the initial knowledge that the intruder needs to play in all roles
under his real name. Here we model the intruder knowledge simply as a set of
messages (rather than a substitution M as for honest agents) as for the standard
Dolev-Yao intruder deduction, we do not need labels (and we do not consider
notions like behavorial equivalence here). Accordingly, let H' denote the stan-
dard unlabeled intruder deduction on unlabeled messages, and the w! function
mapping from a knowledge to a set of terms by discarding the labels. Thus,
ul([Xy > t1, -, Xy = ta]) = {t1, -+, tn} and ul(M) ' t iff M F ¢ for some I.

The transition relation The transition relation = is defined as the least relation
closed under the following rules:

T1 ({send(insec,t).rest} U S; K; E) = ({rest} US; K U {t}; F)
T2 ({receive(insec, t).rest} U S; K; E) = ({o(rest)} US; K; E)
for any substitution o such that K F o(t)
T3 ({event(t).rest} US; K; E) = ({rest} U S; K; E U {event(t)})
T4 ({s=t.rest} US; K; E) = ({rest} US; K; E) ifs~t
T5 ({fresh X;.rest} US; K; F) = ({o(rest)} US; K; E)
where 0 = [X; — ¢| and ¢ is a fresh constant
T6 ({X; :=t.rest} US; K; E) = ({o(rest)} U S; K; E)
where o = [X; —]
T7 ({0}US; K, F) = (S; K E)

The rules T1 and T2 handle the sending and receiving over an insecure
channel: we add every sent message ¢ to the intruder knowledge; for an agent
who wants to receive a message of the form t (note that ¢ may contain variables
that are bound in this step), the intruder can use any instance o(t) that he
can derive from his knowledge and we apply o to the rest of the strand, i.e.,
instantiating all variables that have been bound in this step. We have only
discussed the standard case of insecure channels here, other kinds of channels
can be defined as in the ideal channel model of [?].

Note that the following invariants holds over all transitions: the intruder
knowledge is a set of ground terms, all strands are closed, and all terms that the
intruder can derive and send are thus also ground.

The other rules should be self-explanatory.

23

B Message Composition and Decomposition

In this section, we define the procedures for message composition and decom-
position (compose and analyze respectively), but we first need some necessary
definitions. First, we need to distinguish in the public operations between con-
structors and destructors. Note that the definitions and proofs of this section
represent the details for the constructive proof of Theorem 2.

Definition 6. Let ¥y = {dscrypt, vscrypt, dcrypt, verypt, open, vsign, get.,
verify } be the destructors, where, abusing notation, we include get. and verify.
for all formats. All other public operators X¥. = X, \ X4 are called constructors.

Let us also denote by ~p the least congruence relation that satisfies proper-
ties (9)-(11) in Table 1 that address modular exponentiation and multiplication.
Since we have here no destructors for exp and mult, ~p is a finite theory; i.e.,
for any term ¢, the equivalence class of ¢t under ~p is finite (and moreover, uni-
fication is finitary, i.e., we can find finitely many most general unifiers for every
pair of terms). We also define k¢ as a restriction of F (Definition 3) where ~
is replaced with ~p and restricting 2}, to X.. Thus, F¢ is the “compositional”
part of the - relation that allows only composing terms and application of ~p
(which never “decomposes” terms).

B.1 Message Composition

We now define the compositional part of message deduction, i.e., computing ¢,
realized by the function compose ,(t) that computes all labels for generating the
term ¢ from knowledge M using only F¢.

Definition 7. Let M be a knowledge and t € Tx (V).

compose;(t) = {X; | . [X; =t] e M At =pt'} U
{f(ll,,ln) ‘ 3t17...,tn. t~p f(tl,...,tn) /\f S EC A
Iy € compose;(t1) N ... Nl € compose,;(tn)}.

The first part of compose,,; checks whether the term ¢ is directly contained
in the knowledge modulo ~p, and returns corresponding label variables if so.
The second part computes all ways to recursively compose ¢ from its direct
subterms (modulo ~p). For instance, for M = [X} — ¢, X — hash(c)] we
have compose,;(hash(c)) = {X2,hash(X})}, and for M = [X] — a - b, Xy —
¢, X3 = a-c, Xy — b] (writing a - b for mult(a,b)), we have compose,;(a-b-c) =
{X - Xy, Xy - Xy}

The compose,; function does not involve any decomposition steps or generate
checks—for this we define an analysis procedure in the next subsection. The
interface between the two procedures is the notion of an analyzed knowledge (in
which every possible analysis step has already been done). We define this notion
succinctly by requiring that every term that can be derived from M using F can
also be derived using ¢, i.e., analysis steps do not yield any further messages:

24

Definition 8. We say a knowledge M is analyzed iff
{teTe, (V) |31 MY ={tcTs, (V) |3I1. MbFct}
For an analyzed knowledge M, compose,, is in fact correct:

Theorem 3 The compose,, function terminates and is sound in the sense that
1 € compose ;(t) implies M = t'. Moreover, if M is analyzed and neither M nor
t contain symbols from X4, then compose,; is also complete in the sense that
M =t implies I € compose y;(t) for some label I with ces(M) =1=1".

Proof. For termination, consider the tree of recursive calls that compose,,(t)
can invoke. The tree is finitely branching since ~p is a finite theory (every
term has a finite equivalence class). Suppose the tree has infinite depth, and let
t1,t2,ts, ... be the terms in the recursive calls. Then there are terms ¢}, 5,5, . ..
such that ¢; ~p t; 3 t;41 for all ¢ > 1. Then there are contexts Ci[-], Ca[],...
and Cj[x] # x such that t; =p Ci[ta] =p C1[Ca[ts]] ~F ... and thus ¢; has an
infinite equivalence class modulo ~, which is absurd, so the tree also has finite
depth.

Soundness is immediate.

For completeness, consider M F t', where M is analyzed and M and ¢ do not
contain any symbols from X;. Since M is analyzed, we also have M ¢ ¢ for
some !', and thus ccs(M) =1 =1'. Due to k¢, I cannot contain any symbol from
X4 either (while [can). Consider now the proof tree for M ¢ t: leaf nodes are
axioms and inner nodes are either composition steps with f € X, or algebraic
equivalences modulo ~p. It is straightforward to map them into corresponding
steps of compose ,,(t) to yield label I'.

B.2 Message Decomposition and Checks

To compute an analyzed knowledge and the checks that one can perform on it,
we define the procedure analyze that takes as input a pair (M,) of a knowledge
and a (finite) conjunction of equations and yields a saturated extension (M U
Mo A ¢') of (M,). The notion of saturated means that M U M’ is analyzed
and that ¢ A ¢’ is equivalent to ccs(M U M'). Note that this algorithm works
incrementally, so when augmenting M with a received message in the generation
of operational strands, we do not need to start the analysis from scratch. Also, we
assume that we never add redundant checks, i.e., ones that are already entailed
by previous checks.

Table 2 summarizes the procedure analyze(M,). The table is divided into
two parts: the upper part represents the first phase of the algorithm, saturating
M with derivable subterms, whereas the lower part represents the second phase
saturating ¢ with additional equations.

Phase 1. Here we check for every entry in M whether it can be analyzed,
i.e., if it has one of the forms of column 1 (the head symbol being scrypt, crypt,
sign, or a format) and that has not yet been marked as analyzed (initially no

25

1. Term of the form [2. Condition [3. Derive [4. Check [5. Recipe |

Xi — scrypt(k,m) |l € compose,,(k) Xy —m |vscrypt(l, X;) = T||Xy = dscrypt(l, &;)
X; — crypt(k,m) l € compose,;(inv(k))|| Xy — m |verypt(l, X;) = T Xy := derypt(l, X;)
X; — sign(inv(k), m)|l € compose,, (k) Xy —m |vsign(l, X) X := open(l, &;)
Xi— £(t1, ...y tn) (true) Xy =t verify, (X3) = Xy = gety ¢(Xi) ...
for some f € Xy X = tn Xir = get,, (X))
’1. Term of the form (i # j)‘Q. Condition (where i—‘; = shorten(:;::’n))‘3 Check
X —t {li,...,In} = compose () Lh=la=...=1,
X; — inv(k) 1 € compose (k) verypt(X;, crypt(l, T))=T
Xi—=ti-... ty ly, € compose;(tq) ley, - Xj=ls, - X;
Xj—S1 ... Sm ls, € compose ;(saq)
Xi—>exp(A,t1-...-tn) |y, € compose,;(tq) exp(Xj, 1,)=exp(X;, ls,)
X; — exp(A,s1-...-8m) |ls; € compose,;(sq)
Xi—>exp(A,t1-...-tn) |y, € compose,;(tq) exp(la, Xj - Iy,)=exp(Xi, ls,)
Xj—>81-..."8m la € compose,;(A)

ls, € compose ;(Sa)

Table 2. Tabular overview of analyze(M, @)

term is). We then check according to column 2 whether the necessary decryption
key can be derived. For this, we use the compose,; procedure yielding a label [
if the key is available; if there are several labels, we simply pick one. We then
mark the entry &; — ... as analyzed, choose a new label variable X and add
the analyzed message to the knowledge M according to column 3. Further, we
add the condition of column 4 and the recipe of column 5 to ¢. (We treat the
recipe here like an equation for simplicity.) We repeat this until no more analysis
step can be performed. (Note: whenever new terms are added to M, encrypted
messages that have not been marked as analyzed need to be checked again.)
Phase 2. We now consider every entry of M once and check for all alternative
ways to generate it according to the first row in the lower part of the table. If
we find more than one such label, we add the respective checks to ¢. The second
row is to check if a private key fits to its corresponding public key if it is known.®
Next, we have rules for products and exponents (last three rows of the lower
table). Here we consider any pair of entries in M where the head symbol is exp
or mult (according to the form of column 1), again writing - for multiplication.
Here, we require a match such that none of the s; and ¢; is itself a product. We
then consider the fraction (t1-...-t,)/(s1. .. Sm) and shorten it, i.e., removing
common factors in enumerator and denominator. Let t4/sq be remaining prod-
ucts after shortening. If all the ¢; or all the s; are shortened away (i.e., tg = 1

9 This check is actually quite academic, as the agent has either generated the key pair
itself (and thus knows by construction that they form a key pair) or it has received
it from a key server, e.g., in identity-based encryption (but then needs to trust that
server anyway). However, without this check the correctness theorem and its proof
would require a more complicated formulation.

26

or tsg = 1) we do not apply this rule (as it is already covered by the first row,
saving us from introducing 1 into the algebraic theory). We now try to compose
the products t; and sg according to column 2. If there is at least one label for
each (if there are several, again we pick one), then we add to ¢ the condition of
column 3.

Ezample 3. We compute analyze(M,T) for the knowledge M = [X; — y,
Xo — scrypt(exp(exp(g,y),z),n),Xs — scrypt(k,exp(g,z)), Xs — k, A5 —
hash(n)].

For phase 1, entries X7, Xy, and X5 do not match any entry in the first column
(they cannot possibly be decrypted). For Xs, we have compose ,;(exp(exp(g,y),x)) =
(0, i.e., the decryption key is not (yet) available. However, we can decrypt X3 since
compose (k) = {Xy}. We thus add X — exp(g,z) to the knowledge, and to
¢ the check vscrypt(Xy, X3) = T and the recipe Xp := dscrypt(Xy, X3). We
mark X5 as analyzed, and check again the unanalyzed X. This time (for the up-
dated M) we have compose,,(exp(exp(g,y),z)) = {exp(Xs, X1)}, and thus add
X7 — n to the knowledge, and to ¢ the check vscrypt(exp(Xs, X1), X2) = T and
recipe X7 := dscrypt(exp(Xs, X1), Xa). Since neither Xy and A7 can be further
analyzed, phase 1 is finished. For phase 2, we can of course re-construct the en-
cryptions, e.g., scrypt(Xy, Xs) = X5 but that is already implied by the equation
Xg := dscrypt(Xy, X3) and we do not add redundant checks. The only new check
is for A5, since compose,,(hash(n)) = {X5,hash(Xx7)} yields X5 = hash(X7).

As another example for equational reasoning, analyze([X; — a-b-c, Xy —
a-c-d, X3 b,Xy— d], T) yields the check X - Xy=X; - X3. O

Theorem 4 For a knowledge M with no symbols in X'y and a finite conjunction
¢ of equations, analyze(M, ¢) terminates with a result (M',¢") where M’ = MU
[Xinrj+1 =t Xn = tal, @ = A X1 =LA AXpggn = I A
and M =4 oo M & th such that {t | M '} = {t | M’ - '} (soundness),
analyzed(M') (completeness), and ccs(M) = ¢ N (correctness of checks).

Proof. Soundness is immediate, as we merely add derivable messages to the
knowledge. Termination: The newly added terms of M’ are always subterms
of some term in M, so the M’ component must eventually reach a fixed point.
Adding new equations to ¢’ is bounded by pairs of entries of M’ and the finiteness
of compose ;.

Completeness: We first show that M’ is analyzed, i.e., we have to show that
for any term ¢t € Tx, (V) with M’ F !, we also have M’ ¢ ¢ for some I
(i.e., using only constructors of X', and equivalence in &). For this, we con-
sider the proof tree for M’ I t. Intermediate nodes may well contain destruc-
tors, but we can exclude so-called garbage terms, namely terms that are not
~-equivalent to any term in Ty, (V). For instance, dscrypt(c,c) is garbage
(while dscrypt(k,scrypt(k,m)) ~ m is not). Suppose the proof contains a
node with a garbage term s, then there must be a construction in the proof
to remove s (since the final term must be in Tx,(V)), for instance construct-
ing dscrypt(s, scrypt(s,m)) &~ m eliminates garbage s, but in all such cases,

27

all occurrences of s must have been composed, so there exists a simpler proof
without garbage.

We thus first show the following: for any M’ - ¢! where t is not garbage we
have M’ ¢ s* for some s ~ t and some label k. This is shown by induction
over the proof tree of M’ F t'. For Az and Eq the proof is immediate as well
as for Cmp with f € X.. For f € Y4, consider the term ¢y being analyzed. By
induction M’ ¢ slg" for some sg & g, so this is (modulo ~p) either composed
or an axiom. If it is composed, then the intruder decomposes a term he has
composed himself and this proof can be simplified. If it is an axiom, then the
intruder applies decomposition to a term in his knowledge, and analyze has
already added the resulting term ¢ (modulo =) to M’.

Note we have only proved that for M’ I ! (where t is not garbage) there is
M’ b s* for some s ~ t. We have to show that M’ ¢ ¢! for some ', but only
for t € Tx,(V), i.e., without destructors. We claim that in this case we have
s ~p t (and thus follows M’ ¢ t* as ¢ is closed under ~p). This claim follows
from the fact that our destructor equations (1)—(8) can be read as rewrite rules
(from left to right) that are convergent modulo ~p, and thus terms that do not
contain constructors are in normal form modulo ~p. The idea for proving this
convergence is that the rewriting rules have disjoint symbols from the equations
in ~p (so they cannot conflict) and we can prove convergence for the rewrite
rules using the critical pair method, see e.g. [?].

Correctness of Checks: Now for ccs(M) = ¢ A). For brevity let ¢’ = ¢ A .
The soundness (ccs(M) = 1) is obvious by checking that each step in
analyze adds only sound equations. The completeness we prove again indirectly,
i.e., suppose we have a term t and two derivation proofs M + ¢! and M F ¢
such that [= I’ is not implied by 1)’. Suppose in either of the derivation trees
for [and I’ appears a composition step with a destructor. Suppose the message
being decomposed is tlll and the result of decomposing is tf]" Again assume that
there are no decompositions in the subtrees. One possible case is the analysis of
inv which is covered by the sixth case in analyze (Table 2). In all other cases,
analyze(M, ¢) must have added ¢, under some new label X; to M’ and v’ must
entail X; = [y (and a constraint about verifiability of [1). Let us thus replace the
derivation tf)o with t()f": this changes a subterm in labels [and I/, but for these
changed labels still I = I’ does not follow from ¢’. In this way we can step by
step eliminate all analysis steps and thus have two trees without analysis for ¢!
and ¢ such that [= I’ is not implied by 1.

Now we consider the case that either of the two trees (say for I’) is an ap-
plication of only axiom and equality steps, thus I’ = X; for some variable X.
Then M’ contains [X; — t] for a term that can be composed in a different way
using only constructors and ~p, i.e., | € compose,,(t) and thus ¢’ must contain
I =1, contradicting the assumption. Otherwise it must be two trees consisting
of composition steps. We can exclude composition with any operator but exp
or mult since otherwise we can simply go to one of the subterms. If it is exp or
mult, then it has the form of adding factors to initially known exp or mult terms.
Again we can exclude adding the same factor in both trees (since otherwise we

28

can reduce again to a simpler case). The remaining case is however covered by
our check rules for exp and mult, again showing that [~ [’ must by entailed by

(8

Theorem 5 For our example theory in Table 1, for every strand S in which no
destructors or verifiers occur, [S]r is recursive and has a finite representation.

Proof. First, by Theorem 3, compose is recursive and produces a finite set of
labels. Second, by Theorem 4, analyze is recursive and produces a finite con-
junction of checks and a finite knowledge. Finally, given a strand S that is finite
(being defined by context-free grammar), one can easily see from the rules of
[]z and from the previous two points that [-]r is recursive and it has a finite
representation.

B.3 Equivalence of Strands

So far we defined the high-level semantics for SPS ([-]z) that is succinct, simple
and general, but as Theorem 1 states it is not recursive in general. To address
that we defined a low-level semantics ([-]) that we proved in Theorem 5 that it is
computable for a fixed set of operators that are representative for a wide range of
real world protocols. FIX'Y The missing point now is the connection between the
two semantics, i.e., given the same plain strand, whether they produce equivalent
operational strands. We thus need to define a notion of equivalence between
strands. Intuitively, two strands are equivalent if they have the same initial
knowledge, corresponding send and receive steps, equivalent checks and events.
Based on this notion of equivalence, we now discuss the rules of the two semantics
to show that they produce equivalent operational strands.

— The initial case:
[M : strand] g, = M : ccs(M).[strand] g (M)
with the corresponding rule:
[M : strand]p,(0, T) = M : @.[strand] (M,),

where (M’ p) = analyze(M, T).

The first difference between the results of the two rules is the checks, i.e.,
in the first one we have ccs(M) and in the second one we have ¢ that is
the conjunction of checks that analyze procedure produce. By Theorem 4
we have that they are equivalent, i.e., ccs(M) = ¢ in our case. The second
difference is the knowledge carried on for the next steps, i.e., in the first rule
we have M while in the second rule we have M’ that is an analyzed version
of M. Recall that a knowledge and its analyzed version are equivalent in a
sense that one can derive the same terms from both. The main difference

10.OM FIX: This introduction is a kind of a summary to help the reader to stay
connected, is this fine?

29

between the two versions of a knowledge (the original and the analyzed) is
that the analyzed version has no further analysis steps and this is needed
for the termination of compose (cf. Definitions 7 and 8). FIX!!

— send case:

[send(ch,t).rest] g (M) = send(ch,l).[rest] g (M),

where M F t! for some label I, with the corresponding rule:

[send(ch,t).rest] (M, @) = send(ch,1).[rest] (M, p) where | € compose,,(t)

The only difference between the two rules is the way the recipe [is derived,
i.e., in the first rule we have M F t! and in the second rule we have | €
compose;(t). By Theorem 3 (soundness and completeness of compose) and
by Theorem 4 we have that we either have the same label for ¢, or if we have
different labels then a check must be added to reflect that (cf. Definition 4).
— event case: similar to the send case.
— receive case:

[receive(ch,t).rest] i (M) = receive(ch, X|ari41).ces(M U [X)pr141 — t]).
[rest]m (M U [X|prj41 — t])

with the corresponding rule:
[receive(ch,t).rest] (M, p) = receive(ch, Xjprj41)-¢" [rest] L (M', (p A ¢)),

where (M', o A ') = analyze(M U [X|pr141 — 1],).

The difference between the two rules is the check parts again, but as we have
in the initial case that by Theorem 4, ccs(M) = . Note that the labels could
be different (because an analyzed knowledge has in general more terms than
the original version of it, cf. analyze procedure), so the result of these two
rules may not be identical as they may be receiving the term ¢t with different
labels, but a proper a-renaming can resolve that and make the two resulting
strands identical except that the knowledge of one of them is the analyzed
version of the other that are in principle equivalent (one can derive the same
terms from both).

— fresh case:

[fresh X.rest] (M) = fresh Xjpp41.[rest] g (M U {41 = X})
with the corresponding rule:
[fresh X.rest] (M,) = fresh Xjppj41.[rest]o (M U {Xp 41 — X}, 0)

Again, the only difference that may occur between the two is the label of the
fresh value X, but as we discussed in the previous case, a proper a-renaming
can resolve it with no semantical effect.

By this, we can conclude that for our example theory in Table 1, [-]1 is an
implementation of [-]z.

1 Tuca FIX: Weird to cite them in different order OM Done

30

C Translating to Applied-7

Here, we present [-]. that translates an operational strand to an applied- cal-
culus process. We use the syntax provided in [?]. Note that the semantics of
operational strands is actually similar to a process calculus and this translation
to it is mainly a matter of pretty-printing, yet some details that we explain
shortly. We define [] as follows (+ denotes string concatenation):

[M:strand] - = let proc_+own(strand)+ “("+ par(M)+%“)=" + [strand],
where: own(strand) is the name of the agent that owns the strand strand,
and par(M) is a list of the process parameters derived from its initial knowledge M

[send(ch,l).rest], = “out("+ ch + “”+ 1+ “);"+ [rest]
[receive(ch,l).rest] . = “in("+ ch + “”+ 1+)7+ [rest]
[fresh l.rest] - = “new” + 14+ “bitstring;”+ [rest],
[z := t.rest]» = “let "4 x+ “="+ t+ “in "+ [rest],
[t = T.rest], = [rest],

[s = t.rest] = “if("+ s+ “="+ t “) then ” + [rest],
[event(t).rest] . = “event(t);” + [rest]~

0]~ = “0.”

The first rule declares the agent’s process; by giving it a name and parametrize
it over the initial knowledge of the agent. For example, Let M# : strand* be
the strand shown in our example in Figure 1(b), then own(strand?) = A, and
par(M4) = x1,x%2,%3,%4 : bitstring, so the process will be proc_A as shown
in the first line of the second column of Figure 2. The second and the third
rules deal with the sending and receiving of messages over a channel ch. The
forth rule deals with the creation of a fresh value, and the fifth rule covers
the macro case of a strand and how it is translated in applied m code. The
sixth and the seventh rules deal with the checks. Note that in the case of a
check that one of its sides is the true value T, we simply ignore such case
since this check is implicitly performed by the next destruction step. For ex-
ample, consider the translation of Figure 1(b), we ignore vscrypt(Xs, Xs) = T
as it is followed by X7 := dscrypt(Xs, Xs), which according to the property
(reduc forall m, k : bitstring; dscrypt(k, scrypt(k,m)) =m.) will not be de-
crypted Xg unless it is a valid encrypted message and X3 is a valid encryption
key. The eighth rule pretty-prints the event event(t) in the process and the last
rule ends the strand.

31

D Translating to JavaScript

We define the function [-] js that translates from operational strand to JavaScript
code. In the definition below we use + for string concatenation.

[M : steps] ;g = head(M : steps) + [steps];

[receive(ch, X;).restlF “byte[] ” + X; + “ = ch.receive();” +[rest]s
[send(ch,l).rest]; = “ch.send(” + 1+ “);” + [rest] s

[verify; (1) = T.rest]= £+ “” +1+ “a=mnew” + £+ “(". + 1+ %);”

+[rest] s

[X; = get, :(I).rest]z “byte[]” + X + “ =" +1+ “a.get” +i+ “();”
+[rest] s

[X; = t.rest] = “byte[|7+ X+ “="+t+ 47 + [rest]s

[t = T.rest]; = [rest]s

[t = s.rest] s =“f(" +t+ ="+ 5+ %) error(); + [rest]s

[0], ="y

where: head(M : steps) = “void proc_”+own(M : steps)+“(” +par(M)+“){”,
own(M : steps) is the agent that owns the strand M : steps, and par(M)
is the knowledge M formed as a list of parameters, i.e., a comma separated
list of the label variables of the knowledge M. We add to this list a channel
object ch given as additional parameter that the code uses to send and receive
messages as we explain later. In a nutshell, the first rule gives the header of the
JavaScript code that we want to generate from the operational strand S. For
example, let S be the operational strand given in Fig. 1(b), then head(S) =
function proc_A(X1,X2,X3,X4, ch){. The left bracket that we have at the end
starts the function.

In the receive rule, we declare a new variable X; of type byte [] (byte string).
We then assign to &; the value received from the channel ch via the method
receive(), i.e., the value obtained from ch.receive() is assigned to that variable
X;. Next, the send rule uses the method send() to send the term [over the channel
ch . Recall that [is a recipe that tells the code how to construct some value in
reference to the given parameters, received messages, or derived messages.

The third rule handles a special case of checks, namely the case of a format
verifier (verify;(l) = T) where [represents what is supposed to be a “serialized”
f object, i.e., a byte string that is supposed to be parsed as an object of type
f. In this case, we create an object of that format where the name of the object
is obtained simply by appending the letter ‘a’ to the string name [(there is
no significance in choosing the letter ‘a’, it is just that we need to distinguish
between the byte string called [and the new object that we need to create when
we parse [, so we called the object | + “a”). Note that The reason behind the
creation of an object is of twofold. First, we need the created object for later use
(in obtaining the different fields of the formatted message as we see in the next
rule); for that we can not directly use the byte string ! directly. Second, we need to
verify that the string [is indeed of the format £. This verification is not explicitly
done, instead it is left to the constructor that maps [to an object of type £. The
constructor here is basically a format parser. The next rule is dedicated for
macros in which format getters are involved. Recall that by a format getter we

32

mean the format methods that obtain different fields of a format object. This is
achieved simply by calling the get method of the format object that we created
when we encountered the format verifier (verify(l)). Here we rely on the fact
that our model generates a format verifier before decomposing a format. Note
that this case is a special case of macros, the next rule ([X; := s.rest] ;) handles
the other cases of macros. When we have the macro X; := ¢, we simply create a
new variable X; and give it the value .

In the seventh rule we handle another special case of checks, namely the
case with operator verifiers except the format verifiers (we already handled for-
mat verifiers in the third rule). The operator verifiers that we have in SPS
as we discussed earlier are {vcrypt,vsign,vscrypt}. In this case, we do not
produce any JavaScript code; simply because the verification is left to the de-
constructorsFIX!? {dcrypt, open, dscrypt }; since they implement a verification
mechanism, e.g., the decryption will raise an exception if it failed to decrypt a
supposedly encrypted message. Here, we rely on the fact that our model calls
the decryption step immediately after the verification (cf. Table ??), so we delay
the verification to the decryption that implements it. The eighth rule is for the
other cases of checks, namely when we require that two terms (none of them is
T) are equal. We translate this check into an if-statement, i.e., if the two labels
of the check are not equal then we arise an error. The last rule handles the end
of the operational strand that we translate to a right bracket (}) closing the left
bracket we opened in the very fist rule (by calling head(-)).

12.0M FIX: I do not want to say destructors to avoid any ambiguity with class
destructors, any suggestions?

33

