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Den stigende maengde trafik pa vejene giver mere udbredt traengsel, som medferer dels en stigning i de
gennemsnitlige rejsetider, dels at de enkelte rejsetider i stigende grad bliver variable og uforudsigelige.
Denne udforudsigelighed kaldes rejsetidsvariabilitet (TTV, for travel time variability) og har potentielt store
samfundsmaessige omkostninger. Der findes dog ikke pa nuvaerende tidspunkt en veletableret praksis for,
hvordan aendringer i TTV skal opgeres i samfundsgkonomiske projektvurderinger. Forelgbige danske
regneeksempler anslar, at man i den samfundsgkonomiske analyse undervurderer rejsetidsomkostningerne
med 10-20% pa steder med meget rejsetidsvariabilitet, hvis man ikke inkluderer TTV. Det kan have stor
betydning for det samlede resultat af analysen, idet sparede rejsetidsomkostninger som regel udger 60-80%
af gevinsten ved infrastrukturprojekter (DTU Transport, 2008).

Den nuveerende praksis tager til en vis grad hgjde for usikkerhed i rejsetider, ider der skelnes mellem fri
karetid og gennemsnitlige forsinkelser i forhold til denne (dette geelder for privat transport, mens der for
kollektiv transport skelnes mellem kgreplanstid og gennemsnitlige forsinkelser). Gennemsnitlige forsinkelser
vaegtes med hhv. 1,5 for passagerbiler og 1,4 for last-og varebiler (og 2,0 for kollektiv transport) i
beregningen af rejsetidsomkostninger i samfundsgkonomiske analyser. Denne metode tager dog ikke hgjde
for omfanget af uforudseete forsinkelser. Af denne grund er der en risiko for, at den nuvaerende praksis
undervurderer de egentlige omkostninger af traengsel. Det anbefales derfor (DTU Transport, 2008) at skifte
til en opggrelsesmetode, hvor man — i stedet for at skelne mellem fri kgretid/kgreplanstid og gennemsnitlige
forsinkelser - skelner mellem gennemsnitlig rejsetid og TTV, da der er fagligt grundlag for at tillaegge disse
starrelser en samfundsgkonomisk vaerdi. Dette skifte kraever dog to ting: For det fgrste skal man kende den
samfundsgkonomiske veerdi af TTV, og for det andet skal man kunne opggre niveauet af TTV i
trafikscenarier.

Transportministeriet og Vejdirektoratet har derfor bedt DTU Transport udvikle en praktisk anvendelig metode,
der kan bruges til at forudsige niveauet af TTV i trafikprognoser for vejnettet.. Denne rapport beskriver
metoden og giver eksempler pa dens anvendelse. Den udviklede model er taenkt som et
efterberegningsmodul til Landstrafikmodellen (LTM) eller en alternativ trafikmodel, der forudsiger
trafikmaengder fordelt over dggnets forskellige tidsintervaller. Det er afgerende, at tid pa degnet indgar i
trafikmodellen, da trafikfordelingen over degnet selvsagt har afggrende betydning for niveauet af traengsel.
Anvendelse af metoden kraever derfor LTM'’s version 2.0.

Med den nye metode er vi i stand til at male, hvordan omfanget af TTV pa motorvejen pavirkes af aendrede
trafikmegnstre eller eendringer i antallet af spor. | dette sammendrag viser vi fire simple eksempler, der
illustrerer metodens anvendelsesmuligheder:

- Enaendring i trafikmenstret, saledes at en del af bilisterne flyttes fra myldretiden til perioderne fer og
efter (f.eks. som fglge af road pricing).

- Indfersel af et intelligent rampedoseringssystem, der lgbende justerer trafiktilfgrslen til motorvejen
via sluser pa ramperne alt efter trafiksituationen. | illustrationen er dette modelleret ved at
sandsynligheden for at traengsel opstar nedbringes med 20%.

- En udvidelse af en straekning fra tre til fire spor (her forudseettes dog, at trafikefterspargslen ikke
&ndres, da modellering af dette kraever anvendelse af LTM)

- En udvidelse af en straekning fra to til tre spor (her forudseettes dog, at trafikefterspgrgslen ikke
&ndres, da modellering af dette kraever anvendelse af LTM)



Som det diskuteres nedenfor er modellen en prototype, der er estimeret pa data fra Kege Bugt Motorvejen,
og ideelt set ber udvides, sa& den baseres pa flere motorvejsstraekninger samt andre vejtyper. Dette er kun
muligt i det omfang de ngdvendige data er tilgeengelige, hvilket i gjeblikket kun geelder for visse dele af
motorvejsnettet. Modellen ber tillige forsgges udvidet, sa den tager hgjde for spillback-effekter (ogsa kaldet
tilbagestuvning), hvilket ikke er opnaet i Igbet af projektet. Det skennes muligt i det mindste at kunne
approksimere effekten af spillbacks med de anvendte data, mens en detaljeret analyse af flaskehalse og
spillbacks kreever langt mere detaljerede data.

Nar TTV (malt som rejsetidens standardafvigelse) skal omregnes til generaliserede rejsetidsomkostninger i
samfundsgkonomiske analyser, skal der anvendes en samfundsgkonomisk veerdi for TTV. Den anbefalede
veerdi for et minuts standardafvigelse er pt. lig tidsveerdien for et minuts rejsetid (jf. DTU Transport, 2008).
Denne veerdi er baseret pa et review af internationale studier og forventes revideret i Igbet af den naermeste
fremtid i forbindelse med nye internationale erfaringer og et nyt dansk forskningsstudie pa DTU Transport.

Den udviklede metode er en model, der forudsiger niveauet af TTV for en given trafikprofil (trafikmaengder
over dagnets forskellige tidsintervaller) for danske motorveje. Som naevnt er modellen kalibreret pa data fra
Kage Bugt Motorvejen, og bgr udvides til ogsa at daekke flere vejtyper, nar de ngdvendige data er
tilgeengelige. Da datakravene er betydelige (observationer af rejsetid og trafikmesengder malt over
sammenhaengende tidsintervaller over mange dage) er det imidlertid ikke realistisk pa kort sigt at udvikle
separate modeller for alle vejtyper. Vi anbefaler derfor, at man prioriterer at kalibrere separate modeller for
forskellige typer af motorvejsstraekninger (flere end i denne rapport) samt andre sterre veje, hvor
datagrundlaget allerede er til stede. For visse motorvejsstraekninger, f.eks. Helsingar Motorvejen, er de
relevante data tilgeengelige. Det samme er muligvis geeldende for enkelte af de @vrige sterre veje, mens
datagrundlaget for eksempelvis de kommunale veje skgnnes utilstraekkeligt.1

Det er vigtigt at veere opmeerksom pa, hvorvidt givne datakilder indeholder tilstraekkeligt detaljeret
information til at kunne bruges til at kalibrere modellen. Dette gaelder szerligt i forbindelse med fremtidige
dataindsamlinger, der szettes i gang. Farst og fremmest er det ngdvendigt at have malinger af rejsetid og
trafikflow bade far, under og efter myldretiden for at kunne identificerere, hvornar der opstar treengsel, og
analysere den dynamiske proces der foregar under afviklingen af treengsel. Rejsetider pa straekningsniveau
er at foretreekke (frem for pa malepunktniveau, som er anvendt i neervaerende analyse i mangel af bedre).
For at kunne beregne niveauet af TTV pa et tidspunkt med en vis sikkerhed, er det desuden ngdvendigt med
gentagne malinger af rejsetiden pa dette tidspunkt, bade pa en given dag og over mange dage.

Det skal understreges, at man kun kan kalibrere modellen, hvis der er treengsel pa den pagaeldende
vejstreekning. Hvis der ikke er treengsel med den nuveaerende trafikmaengde, kan man ikke identificere, hvilke
trafikmaengder, der skal til, for der opstar treengsel. Har man brug for at forecaste niveauet af TTV for en
sadan vejstraekning (i et scenarie hvor der forventes at opsta treengsel), skal der anvendes modeller
kalibreret pa tilsvarende vejstreekninger.

| forbindelse med en mere detaljeret modellering af spillbacks er det desuden af stor betydning, at man
observerer alle relevante trafikflows hen mod og vaek fra en flaskehals, dvs. det er gavnligt sa vidt muligt at
male trafikken pa til- og frakerselsramper. Sddanne data var ikke tilgeengelige da modellen blev udviklet.

Vi henviser til, at Vejdirektoratet, i forbindelse med et andet projekt om udvikling af indikatorer for traengsel, forventes at udarbejde et
notat med overblik over eksisterende datakilder og deres omfang i foraret 2015.



Vi henviser til rapportens sektion 2 for yderligere information om de anvendte data og
udveelgelsesprocessen.

Metoden bestar af en statistisk model, kalibreret pa data fra Kage Bugt Motorvejen, og en simulationsmodel.
Den statistiske model beskriver, hvordan sandsynligheden for at treengsel opstar i et givet tidsinterval og
sandsynligheden for at treengslen afvikles igen i et givet tidsinterval afheenger af trafikflowet (antal biler pr.
spor pr. minut) i dagnets tidsintervaller. Simulationsmodellen anvender den statistiske model til at simulere
rejsetidens middelveerdi og standardafvigelse for hvert enkelt tidsinterval, baseret pa trafkflows estimeret i
LTM.

Den statistiske model
De vigtigste principper i vores arbejde med at udvikle den statistiske model er:

- Modellen skal kunne forudsige TTV med rimelig sikkerhed pa et aggregeret niveau. Dvs. vi sgger at
modellere et overordnet forhold mellem TTV og trafikmaengden, som kan siges at veere generelt
geldende for alle motorvejsstreekninger. Det viser sig (ikke overraskende), at forholdet mellem
rejsetid og trafikmeengde varierer meget indenfor de forskellige vejstraekninger i analysen, fordi
rejsetid og treengsel afheenger af den enkelte vejstraeknings udformning, som afger hvor
flaskehalsene opstar og hvor store deres konsekvenser er. En model som er i stand til detaljeret at
forudsige rejsetid og TTV for hvert enkelt vejstraekning kraever derfor detaljeret information om
straekningens udformning, samt (potentielt) separat statistisk modellering af hver enkelt straekning for
sig. Det er i teorien muligt at opstile en sadan model, men det skgnnes at vaere et ganske
omfattende arbejde, som i princippet hgrer under den fremtidige udvikling af Landstrafikmodellen.
Det teoretiske grundlag for modellering af flaskehalse er desuden et omrade, der er under stadig
udvikling i forskningsstudier, bl.a. Ph.D.-projekter pa DTU. For at na frem til en metode, som kan
anvendes allerede sammen med LTM’s version 2.0, er det derfor ngdvendigt at fokusere pa at
modellere et mere aggregeret niveau.

- Sammenhaengen mellem trafikflow og rejsetid beskrives traditionelt vha. speed-flow kurver (f.eks. i
LTM). Et veesentligt princip i den nye metode er, at den tager hgjde for to vigtige teoretiske
problemstillinger, som traditionelle speed-flow kurver ikke tager hgjde for. Det drejer sig om:

o0 Nar der er traengsel, afheenger det malte trafikflow af hastigheden, fordi maengden af biler,
der passerer et givent malepunkt pr. tidsenhed afthaenger af hastigheden. Det betyder, at
trafikflowet er en endogen variabel i forhold til rejsetiden (hvilket vil sige, at variablen ikke
kan antages at veere ukorreleret med fejlleddet i en statistisk model). De eksisterende
speed-flow kurver tager ikke hgjde for dette, og der er derfor stor risiko for systematiske fejl i
de estimerede parametre (dvs. at kurverne er misvisende).

o0 Treengsel er et dynamisk faenomen, der afvikles over tid. | traengselsperioderne vil
rejsetiderne i de enkelte tidsperioder typisk vaere indbyrdes afthaengige, fordi det tager tid at
afvikle treengsel igen, nar den farst er opstaet. De eksisterende speed-flow kurver tager ikke
hgjde for dette, hvilket ogsa kan medfgre systematiske fejl.

- En anden vigtig problemstilling er spillback-effekter, altsd hvordan rejsetiden pa en straekning
pavirkes af trafikforholdene laengere fremme. Dette er ogsa noget, som traditionelle speed-flow
kurver ikke tager hgjde for. | projektoplaegget laegges der op til, at den nye metode skal tage hgjde



for spillback-effekter, men dette har vi ikke opnaet med den nuveerende modelformulering. Vi
anbefaler dog, at dette undersgges naermere i forbindelse med videre udvikling og re-estimation af
modellen.

Den statistiske model er en simplificeret beskrivelse af virkeligheden. Vi antager, at trafikken har to tilstande:
Ikke-treengsel og treengsel. Vi betragter en periode (f.eks. morgenperioden 5:00-12:00 eller
eftermiddagsperioden 12:00-19:00), hvori vi antager trafikken kan skifte tilstand fra ikke-treengsel til treengsel
og tilbage igen hgjst én gang. Modellen bestar af to delmodeller:

- Breakdownmodellen: Bestemmer sandsynligheden for, at traengsel opstar, for hvert 15-minutters
tidsinterval, givet at trafikken stadig er i ikke-traengsels-tilstand. Sandsynligheden er modelleret som
en simpel logistisk funktion af trafikflowet i tidsintervallet. Idet der endnu ikke er opstaet treengsel,
kan vi antage, at trafikflowet ikke er endogent i modellen.

- Recoverymodellen: Bestemmer sandsynligheden for, at treengslen slutter, for hvert 15-minutters
tidsinterval, givet at trafikken stadig er i traengsels-tilstand. Sandsynligheden er modelleret som en
simpel logistisk funktion af det gennemsnitlige flow siden starten pa traengselsperioden, en
formulering med inspiration i flaskehalsmodellen i den teoretiske ftrafiklitteratur (de Palma and
Fosgerau, 2011).

Vi henviser til rapportens sektion 3 og 4 for yderligere information.
Simulationsmodellen

Inputtet i simulationsmodellen er en trafikefterspargselsprofil (trafikefterspergsel fordelt pa et antal tidsband)
for en typisk hverdag. Simulationsmodellen er en algoritme, der forst genererer et stort antal dage med
variable efterspgrgselsprofiler, der gennemsnitligt svarer til inputprofilen. For hver dag simuleres, hvorvidt og
hvornar der opstar traengsel, og hvornar den i sa fald slutter igen — her bruges den statistiske model. Nar
man betragter alle de simulerede dage under et, kan man for hvert 15-minutters tidsinterval beregne
sandsynligheden for, at trafikken er i hhv. lkke-traengsel og traengsel, samt den gennemsnitlige rejsetid og
TTV.

Vi henviser til rapportens sektion 5 for yderligere information.

Vores forste eksempel pa en anvendelse af modellen er simulation af sakaldte volume-delay
sammenhaenge, altsd sammenhaenge mellem gennemsnitlig rejsetid og trafikvolumen hhv. TTV og
trafikvolumen. Vi beregner disse sammenhange ved at skalere den nuveerende trafikefterspargsel med
30%, 40%, 50% .... 170% og simulere gennemsnitsrejsetiden og TTV for hvert scenarie. Figur 1 og Figur 2
viser de resulterende gennemsnitsrejsetider og TTV (vist som veegtede gennemsnit over hele
morgenperioden 4:30-12:00, veegtet med trafikmeengden i hvert tidsinterval). | figurerne er brugt 1000
gentagelser af hvert scenarie.

Som forventet stiger bade gennemsnitsrejsetiden og TTV med trafikvolumen. Ved meget lave trafikmaengder
bliver de konstante. Det skyldes, at sandsynligheden for traengsel bliver sa lille, at det (mere eller mindre)
aldrig indtreeffer. Ved meget hgje trafikmaengder sker det modsatte: | de ekstreme tilfeelde bliver
trafikmaengden sa stor, at der er treengsel i alle tidsintervaller, og modellen antager s, at den hgje (men
konstante) gennemsnitsrejsetid og TTV, vi observerer i treengselstilstand, geelder for alle
tidsperioder. Modellen er derfor ikke helt realistisk ved meget hgje trafikniveauer: Den opererer kun med to

iv



tilstande (treengsel og ikke-traengsel), der hver antages at have en konstant fordeling af rejsetider
uafheengigt af trafikmaengden. Vi forventer, at modellen undervurderer bade gennemsnitsrejsetid og
TTV ved meget hgje trafikmaengder.
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Figur 2: Simuleret standardafvigelse af rejsetiden (gennemsnit over perioden 4:30-12:00) som funktion af
trafikvolumen.

Vi har ogsa anvendt modellen til at simulere effekten af en raekke traengselsreducerende tiltag.
Nedenstaende eksempler er teenkt som en illustration af metodens anvendelsesmuligheder. Det er hgjst
simplificerede case-scenarier, som ikke ngdvendigvis er 100% realistiske. F.eks. antages i alle tilfaelde, at
den samlede trafikefterspargsel er usendret. Mere realistiske beregninger kreever, at trafikefterspgrgslen
farst beregnes i LTM.



Cases I-lll er beregnet for en motorvejsstraekning med tre spor, mens case IV er beregnet for en
motorvejsstraekning med to spor.

Den anvendte tidsveerdi for et minuts gennemsnitlig rejsetid er vaegtede gennemsnit af de geeldende
tidsveerdier for personbiler, varebiler og lastbiler, hvor vaegtningen varierer over dagen og antages at vaere
den samme som i basisscenariet.

Vi henviser til rapportens sektion 5 for yderligere information om case beregningerne.

Case I: Peak spreading med road pricing

Denne case er modelleret ved at trafikefterspargslen jeevnes ud, sa det aldrig overstiger 25
personbilseekvivalenter pr. spor pr. minut. "Overskydende” efterspgrgsel flyttes sa lidt som muligt til
tidsperioder for og efter: Halvdelen flyttes til far den oprindelige myldretid, halvdelen til efter. Mere specifikt
betyder det, at den gennemsnitlige efterspargsel nedjusteres i perioden kl. 5:30-8:30, og opjusteres i
perioderne kl. 5:00-5:30 samt kl. 8:30-9:45. Dette er en simpel imitation af konsekvenserne af en
tidseefhaengige kgrselsafgifter, der er hgjere i den oprindelige myldretidsperiode end udenfor.

Figur 3 sammenligner rejsetidsomkostningerne i case | med basisscenariet. Omkostningerne er fordelt pa
veerdien af den gennemsnitlige rejsetid (rede sajler) og veerdien af TTV (grgnne saijler). | perioderne uden for
den oprindelige myldretid (kl. 5-6 og kl. 9-12) sker der en stigning i omkostningerne, fordi bade gennemsnitlig
rejsetid og TTV stiger som folge af den ekstra trafik. Stigningen mere end opvejes dog af gevinsten i
perioden kl. 6-9, hvor der sker betydelige fald i omkostningerne. Dette er fuldt ud forventeligt i dette scenarie.
Det vaesentlige er her, at omkostninger fra rejsetidsvariabilitet udger en signifikant del af de samlede
omkostninger, jf. Tabel 1. Medregnes disse omkostninger i den samfundsgkonomiske analyse, skgnnes de
derfor at have stor betydning for resultatet. Samlet set falder rejsetidsomkostningerne med ca. 11%, jf. Tabel
1.

Kr. pertime per
vej-km
18000

16000

14000

12000 mTT for
TT efter

10000

mTTV for

8000 +——

6000 -
4000 ~ —
2000 ~ I —
o | HEHT . . .
7-8 8-9

|
5-6 6-7 9-12 Tidsband

TTV efter

Figur 3: Veerdien af gns. rejsetid (TT) og rejsetidsvariabilitet (TTV) i basisscenariet og case I.
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Case Il: Rampedoseringssystem

Denne case er modelleret ved, at sandsynligheden for at traengsel opstar, nedbringes med 20% pa ethvert
tidspunkt pa dagen. Dette er en simpel imitation af et rampedoseringssystem der kontrollerer trafikmeengden
pa motorvejen ved at tilbageholde biler pa ramperne i kortere perioder. De negative effekter fra tilbageholdte
biler er ikke medregnet. Eventuelle eendringer i trafikefterspargslen er ligeledes ikke medregnet.

Figur 4 viser rejsetidsomkostningerne for case Il og sammenligner med basisscenariet. Case |l giver en
begraenset besparelse som fglge af en reduktion af gennemsnitlige rejsetid, mens andringerne i niveauet af
TTV er meget sma. De meget sma eendringer skyldes formenligt, at en aendring i sandsynligheden pa 20%
er sa lille, at den generelt blot udskyder myldretiden en smule og overordnet set kun seenker andelen af
dage med traengsel fra ca. 89% til 83%.
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Figur 4: Veerdien af gns. rejsetid (TT) og rejsetidsvariabilitet (TTV) i basisscenariet og case Il.
Case Ill: Udvidelse fra tre til fire spor

Udvidelsen fra tre til fire spor er modelleret ved, at den samlede nuvaerende trafikmaengde pa en tresporet
motorvejsstraekning simpelthen fordeles pa fire spor i stedet for tre. Vi understreger, at dette er en hgjst
forsimplet antagelse: En mere realistisk modellering kraever, at andringer i trafikefterspargslen simuleres i
LTM.

Figur 5 viser rejsetidsomkostningerne for case Ill og sammenligner med basisscenariet. Case Il giver
markante forbedringer i gennemsnitlig rejsetid inden for myldretiden, og markante forbedringer i TTV i alle
perioder. Igen er omkostningerne forbundet med den sparede rejsetidsvariabilitet tilstrackkeligt store til at
pavirke resultatet i en samfundsgkonomisk analyse. De samlede rejsetidsomkostninger falder med ca. 32%,
jf. Tabel 1.
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Figur 5: Veerdien af gns. rejsetid (TT) og rejsetidsvariabilitet (TTV) i basisscenariet og case Il
Case IV: Udvidelse fra to til tre spor

Udvidelsen fra to til tre spor er modelleret ved, at den samlede nuvaerende trafikmaengde pa en tosporet
motorvejsstraekning fordeles pa tre spor i stedet for to. Der geelder derfor samme bemaerkning som ovenfor:
En mere realistisk modellering kraever, at sendringer i trafikefterspergslen fgrst simuleres i LTM. Beregningen
er yderligere forenklet ved at antage, at hele straekningen i basisscenariet kun har to spor, mens den i
virkeligheden har tre spor pa en del af straekningen.

Figur 6 viser rejsetidsomkostningerne for case IV og sammenligner med basisscenariet. Case IV giver
markante forbedringer i bade gennemsnitlig rejsetid og TTV inden for myldretiden, som for denne straekning
er kl. 7-9, samt en relativt stor forbedring TTV efter myldretiden (kl. 9-12). Igen er omkostningerne forbundet
med den sparede TTV tilstreekkeligt store til at pavirke resultatet i en samfundsgkonomisk analyse. De
samlede rejsetidsomkostninger falder med ca. 28%, jf. Tabel 1.
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Figur 6: Veerdien af gns. rejsetid (TT) og rejsetidsvariabilitet (TTV) i basisscenariet og case IV.
Opsummering af cases og sammenligning med nuvarende metode

| alle fire cases ser vi, at omkostningerne forbundet med rejsetidsvariabilitet udger en veaesentlig del af de
samlede rejsetidsomkostninger, og — mere vigtigt — at omkostningerne forbundet med den sparede TTV i
forhold til basisscenarierne udggr en relativt stor del af den samlede gevinst.

Tabel 2 viser rejsetidsomkostninger opgjort efter den nuvaerende metode, hvor de er baseret pa vaerdien af fri
karetid og gns. forsinkelse. En sammenligning med Tabel 1 viser, at den nuveerende metode i disse simple
scenarier undervurderer de totale omkostninger, men giver den samme rangordning. Betragter vi den
relative gevinst i forhold til basisscenariet, ses at den stort set er ens for de to metoder for case I-lll, mens
der er noget stgrre forskel mellem metoderne for case IV. Forskellen mellem metoderne (malt ud fra den
relative gevinst) afheenger selvsagt af, hvor stor standardafvigelsen i rejsetiden er i forhold til den
gennemsnitlige forsinkelse, men ogsé af forholdet mellem den gennemsnitlig rejsetid og den fri keretid.
Derudover afthaenger den naturligvis direkte af den anvendte veerdi for rejsetidsvariabilitet: En veerdi der,
skent den er baseret pa internationale erfaringer, ma betragtes som et groft overslag, da disse internationale
studier resulterer i hgjst forskellige veerdier.



Tabel 1: Resume af case- og basisscenarier

Andel dage Gns. Omkostninger | Omkostninger | Samlede
med Varighed af | fra gns. fraTTV rejsetids-
treengsel treengsel rejsetid omkostninger
el N o -l el
kvarter /vej-km /vej-km /vej-km
Basisscenarie (case I-1ll) 88,9% 8,08 68.718 26.784 95.501
Case |. Peak spreading  67,8% 6,45 61.350 23.633 84.982
Case Il. Rampedosering  82,6% 7,90 67.081 26.150 93.231
Case lll. Fra 3 til4 spor  14,5% 5,83 53.928 11.358 65.287
Basisscenarie (case IV) 52,4% 6,41 32.230 10.696 42.926
Case IV. Fra 2 til 3 spor 1,7% 6,20 28.021 2.813 30.834

Tabel 2: Rejsetidsomkostninger beregnet efter nuvaerende metode

Omkostninger fra | Omkostninger fra | Samlede rejsetids-
fri kgretid gns. forsinkelse omkostninger

Scenarie DKK/morgen/vej- DKK/morgen/vej- DKK/morgen/vej-
km km km

Basisscenarie (case I-1ll) 51.958 24,797 76.756
Case |. Peak spreading 51.958 14.063 66.021
Case Il. Rampedosering 51.958 22.376 74.334
Case lll. Fra 3 til 4 spor 51.958 2915 54.874
Basisscenarie (case V) 27.890 6.423 34.313
Case IV. Fra 2 til 3 spor 27.890 195 28.085

de Palma, A., Fosgerau, M. (2011): Dynamic Traffic Modeling, kap. 9 i A Handbook of Transport Economics.
Edward Elgar Publishing, UK.

DTU Transport: Travel time variability - Definition and valuation, Rapport 1-2008.



This report describes the development of a prototype model to predict travel time variability (TTV) on Danish
motorways.

TTV measures the extent of unpredictability in travel times faced by travellers. Unpredictability can arise due
to day-to-day fluctuations in traffic demand, traffic incidents affecting capacity or weather conditions. In this
report, TTV is measured as the standard deviation of travel times over all typical weekdays in the period of
analysis.

The model has been developed by DTU Transport for the Danish Ministry of Transport and the Danish Road
Directorate, as one of the steps towards including travel time variability in cost-benefit analyses of transport
projects in a theoretically satisfactory way.2 The model takes as input a prediction of travel demand
(stemming e.g. from the national traffic model, LTM) and simulates the travel time mean and variance.

The model is intended as a post-processing module to be applied after a traffic model has been used to
predict travel demand on a road network. Its output (the level of TTV) does not feed back into the traffic
model to account for the behavioural response to TTV. The model is thus an example of a ‘Method 1’
approach in the terminology of de Jong and Bliemer (2015), who recommend using this simple type of model
in the short run. Such approaches have been implemented in the Netherlands, the UK, the US and Sweden.
In the longer run, they recommend working towards implementing the prediction of TTV and the behavioural
response to TTV into the traffic models.

The prediction model is based on a statistical model of the relationship between observed travel times and
traffic flows. Both travel time and traffic flow are dynamic processes that evolve over the day and affect each
other. Our aim has been a simple model which takes into account the dynamic relationship between the two
and avoids the potential endogeneity issues related to this relationship. In this respect, our model constitutes
a significant methodological improvement compared to the traditional speed-flow curves. The model and the
estimation of its parameters in described in sections 3 and 4.

The prediction model enables us to predict mean travel time and TTV (measured as the standard deviation
of travel time over different days) for a given traffic scenario, and to compute the travel costs associated with
both, assuming a known monetary value of TTV. In section 5, we present four simple case scenarios to
illustrate the use of the method. In the scenarios, we apply a reliability ratio of one, i.e. the value of one
minute’s standard deviation equals the value of one minute’s mean travel time, cf. the recommendations in
DTU Transport, 2008. In most scenarios, we find that the change in the costs of TTV makes a significant
contribution to the overall change in travel costs.

% The current Danish practice for private transport distinguishes between free flow travel time and mean delay and values mean delay at
1.5 times the value of travel time, while for public transport it distinguishes between scheduled travel time and mean delay and values
mean delay at 2.0 times the value of travel time. To the extent that the mean delays relative to free flow / scheduled travel time are
related to TTV, this method does somewhat account for TTV. However, most likely the method does not account for the entire
unpredictability of travel times. Hence, DTU Transport (2008) has recommended to implement a new practice, distinguishing instead
between mean travel time and TTV (represented by the variance or standard deviation of travel times or a similar suitable measure
which can be assigned an economic interpretation). This has so far not been implemented in practice because the currently used traffic
models cannot handle TTV.



The prediction model is estimated on data from the Kgge Bugt Motorway, a congested Danish motorway
through the south-western suburban area of Copenhagen towards the city centre. In principle, the model is
general enough to cover other roads, as it is highly simple. However, we recommend extending it by re-
estimating its parameters on data from other roads when the necessary data become available. Moreover,
we recommend further developing the model to take spillback effects into account. We discuss these points
in more detail in section 6.

We remark that de Jong and Bliemer (2015) recommend predicting the standard deviation of travel time from
predicted mean travel times or mean delays, and review several international studies who estimated such
relationships. They prefer this approach over an approach where TTV is predicted based on travel demand,
as in our model, because with the latter approach policies that do not affect demand will not affect TTV. They
admit, however, that the approach of predicting TTV from mean delays has a similar drawback, since it does
not allow policies to affect TTV if they do not affect mean delays. Another reason they reject predicting TTV
from travel demand is that such a prediction model is likely to vary between different routes due to different
locations of on- and off-ramps. However, in our opinion, there is no reason why the relationship between
TTV and mean delays should not also vary between routes for the same reasons. In the end, it is necessary
to make some assumptions about the distribution of travel times in our model, and these assumptions
naturally impose a functional form on the relationship between TTV and mean delay, with parameters that
are estimated from the data. So in this sense, the two approaches are similar. However, in applications, they
will not be similar: The relationship between TTV and mean delay holds for the mean delays predicted by our
dynamic model, which most likely differ from those predicted by the LTM, which stem from speed-flow curves
that do not account for dynamic effects.



Our analysis uses traffic data from the Kege Bugt Motorway (E20 between Kege and Avedgre) in 2012-
2013, direction towards Copenhagen, from the Road Directorate’s Mastra and Hastrid systems. This choice
of data is motivated in the section below. Section 2.2 describes other data sources used together with the
Mastra-Hastrid data. Section 2.3 provides our definitions of relevant analysis variables. Section 2.4 concerns
the selection of the analysis sample and section 2.5 provides some statistics.

Our goal was to have traffic data with:
a) Lots of congestion and travel time variability (to enable an analysis).

b) Data for a series of adjacent road segments (to ensure that we know ftraffic conditions on links
upstream and downstream from the link we analyse, for use as potential instruments).3

c) An adequate coverage to compute travel time variability: To compute variability at a given time of
day t, we need observations from several days at time t. Moreover, to allow for identification of
potential dynamic effects, we need to know travel conditions not just at time t, but also at specific
time intervals prior to t (such as 15 and 30 minutes prior to t). In summary, we need several days
with contiguous series of traffic information.

To keep our analysis as simple as possible, we had planned to analyse motorways only. Modelling dynamic
speed-flow relations on other types of roads with turns and traffic lights is a complicated issue and still an
area of ongoing research.

Initially, we had intended to use travel time data from the Road Directorate’s TRIM system on the motorways
in Trekantsomradet. The reason was that the TRIM system measures travel times at the road segment level,
computed using cameras and licence plate recognition. However, since this part of the motorway network
does not suffer from congestion in the same degree as the roads in the Copenhagen Area, we decided upon
using other data sources. Note that this is not a question of prioritising between different parts of the country,
but merely a question of securing data quality: To develop a model of travel time variability, it is of crucial
importance that we use data where travel times display lots of variation over days.

Point c) above rules out most types of GPS data, as these do not provide sufficient coverage of a specific
road link to compute reliable measures of travel time variability.*

Another option was to use Bluetooth data, where travel times are based on observations of Bluetooth
devices at different locations along a road link. This is potentially a very strong data source: Though analysis
of such data has its challenges with regards to e.g. vehicle identification and representativeness, they have
many advantages: 1) They measure travel times at the level of the individual car (or Bluetooth device). 2) It is
possible to obtain data with a good coverage of specific road links. 3) It is possible to measure travel times
even in very congested conditions, where e.g. loop detectors cannot provide reliable measurements. We

% As it turned out, we did not use this information in the analysis.
“An exception is experimental data, where a GPS-tracked car fleet repeatedly travel the roads of interest. However, such data were not
available.



consider using data from the project “Flaskehalse” (cf. Tetraplan 2013) which recorded Bluetooth travel times
on the Kgge Bugt and Helsinger motorways for an approximate 3 week period in 2013. We rejected this data
partly because the survey period was rather short (as the aim was computing day-to-day variation), partly
due to methodological reasons, as the “Flaskehalse” project considered only few and rather long road
segments whereas we intended our analysis to be based on several adjacent road links, in line with the
analysis in Fosgerau & Small (2012). However, since we ended up using a different methodological
approach, it is possible that the data can be used as a supplementary check.

Finally, we decided on using loop detector/radar travel time data from the Road Directorate’s Hastrid system,
which contain measurements of travel times for major Danish state-owned roads. Though loop detector data
suffer from unreliable estimates of low speeds (<15km/h)’ and from observing travel times at the level of
location points rather than at link level, they have the advantage of providing a good coverage in both time
and space dimensions, for a long contiguous period. We combined the Hastrid data with travel flow data
from the Road Directorate’s Mastra system, which contains traffic counts for a wide range of Danish roads.
For both Hastrid and Mastra, the amount of data available and the level of detail vary greatly over different
locations and different periods of analysis, which naturally affected our choice of locations for analysis.

We decided on two of the “arterial” motorways leading to/from Copenhagen, as these are among the most
congested in Denmark and (as a consequence) quite well covered data-wise. As recommended by the Road
Directorate, we preferred the analysis period to be as recent as possible, since newer data is supposedly of
better quality.

As part of the project, we generated datasets for the Kege Bugt Motorway and the Helsinger Motorway
(direction towards Copenhagen) for the period 2012-2013. As both database setup and analysis took longer
time than anticipated, we were however forced to limit our analysis to the Kege Bugt Motorway, due to time
limitations.

To provide information about road works during the analysis period, we use data from Trafikman, a real-time
traffic information system operated by the Road Directorate. Trafikman provides traffic information to car
drivers via the Road Directorate’s webpage, traffic radio stations, and smartphone app’s. Each data record
consists of a time stamp, an (approximate) location and an incident description from which we can infer
incident type (planned road works, unplanned maintenance work, accident, queue, dropped items blocking
the road, etc.). Incidents are indexed, such that it is possible to identify all records relating to an incident.
There is a record for each update regarding the incident in question, including records of when incidents
have ended.

Our definition of road work is broad and encompasses both planned works and unplanned maintenance
work, since we are interested in all types of work that may temporarily block one or more of the lanes. We

defined road work as an incident:

e with type ‘ROV’ (=road work)®, or

® We were advised to discard observations with speeds below 15km/h, though a specific technical threshold is unknown: The problems
with unreliable speed may also apply to some degree to measured speeds above 15 km/h.
® The incident type ‘ROV’ was implemented during 2013, so all road work incidents in 2012 were of type ‘DRD’.



o with type ‘DRD’ (=Danish Road Directorate), where the description contained one of the Danish
keywords:
o ‘“vejarbejde”, “byggearbejde”, “slaghul” or
o ‘“vejbelaegning i darlig stand” in combination with "vejhjaelp er tilkaldt” or "vejhjeelp er pa vej”.
Finally, we have available weather data (temperature, precipitation, wind speed, sight, and snow depth) from
four weather stations located at Roskilde Airport, Roskilde, Central Copenhagen and Copenhagen Airport.
These data stem from the Danish Meteorological Institute.

From the Hastrid system, the Road Directorate provided travel times at the road segment level for a pre-
defined segmentation of both motorways. This yielded 8 road segments for the Kage Bugt Motorway, cf.
Figure 1. We refer to these road segments as links. The links varied between 2 and 6 kilometres in length
(roughly). The travel time data were available at the 1-minute level. However, since traffic flow data were
available only at the 15-minute level, we aggregated travel time data to this level as well.

Figure 1: The eight road segments (links) on the Kgge Bugt Motorway, separated by red dots. We consider
the direction towards Copenhagen, i.e. from South-West towards North-East.

We extracted traffic count data from the Mastra system for all counting locations along the two motorways
and used them to compute traffic flow:

1. First, we computed traffic flows (at the location point level) as #vehicles per lane per minute.
2. Then we converted this flow into #passenger-car-equivalents (pce) per lane per minute, by using

appropriate conversion factors for vehicles of length 580-1250 metres and 1250- metres and vehicle
length shares obtained from the nearest available location.” The locations where vehicle length

" The number of vehicles of length 580-1250 metres was multiplied by 1.5 and the number of vehicles of length >1250 metres by 2.0.,
cf. The Danish Road Directorate (2010a).



information is registered are listed in Table 3. Since vehicle length information was available only at
very few locations, this nearest location may be several kilometres away, so the conversion should
be seen as an approximation rather than an exact calculation.® Moreover, the vehicle length
information is often only available at the 1-hour level. Despite these circumstances, we believe that
using an approximated #pce per lane per minute is still better than using the exact #vehicles per lane
per minute.

Finally, we aggregated flows from the location point level to the link level by simply averaging over all
available counting locations within each link. This procedure has the advantage of providing as much
data as possible: We obtain data for a link even if data is missing from some of the locations along
the link. Moreover, the method is consistent with the way the Road Directorate computes the link
travel times, as these are computed as averages over all non-missing speed measurements in the
given time interval (The Danish Road Directorate, 2010b). The drawback is that the exact definition
of link flow differs over time, because i) some counting locations may be temporarily out of order in
some periods, and ii) not all counting locations register traffic every day — some only register, e.g.,
three days each week or every second week. This is particularly problematic for link 7 of the Kage
Bugt Motorway, which is why we chose to focus on the remaining links. To mitigate the potential
problems, we left out counting locations with very few observations in the aggregation procedure,
and defined indicator variables with information about flow definition such that we could keep track of
the different definitions in our analysis (see next section about data selection). For future analyses,
we strongly recommend using both travel times and counts at the location level, rather than
aggregating to link levels.

Table 1: The eight links on the Kgge Bugt Motorway (direction Kgge-Copenhagen)

Longth (um)

0 N O O A WDN B

<32> Kagge/dlby - <31> Solrgd S/Roskilde 3.88
<31> Solrgd S/Roskilde - <30> Solrgd 3.19
<30> Solragd - <29> Greve S 5.44
<29> Greve S - <27> Hundige 3.59
<27> Hundige - X Ishgj 1.68
X Ishgj - <25> Vallensbask 4.30
<25> Vallensbeek - X Avedgre 3.16
X Avedgre - <22> Gl. Kgge Landevej 1.89

8 Note that for links 6 and 8, there are in principle closer registrations available, from September 2013 onwards. However, this is not
relevant for link 6, as the analysis sample for other reasons was restricted to be before September 32013 for this link (cf section 2.4).
For link 8, we decided to use the locations in Table 3 throughout the analysis period, for the sake of consistency. It is relevant to note
however that the actual vehicle length shares on link 8 may deviate somewhat from those at the locations in Table 3.



Table 2: The Mastra counting locations used when computing link flows
0 10-0 34/ 145 -

0 10-0 29/ 500 -

0 10-0 30/ 400 -

0 10-0 26/ 300 -

0 10-0 28/ 200 -

0 10-0 28/ 750 -

0 10-0 20/ 620 -

0 10-0 21/ 400 - *
0 10-0 22/ 540 -

0 10-0 18/ 600 -

0 10-0 20/ 620 -

0 10-0 15/ 700 - *
010-0 16/0 -

0 10-0 16/ 500 - *
010-017/1 -

010-0 17/ 60 - *
0 10-0 18/ 600 -

0 10-0 11/ 200 - **
010-012/0 - **
0 10-0 12/ 500 - **
0 10-0 13/ 540 - **
0 10-0 13/ 541 - **
0 10-0 14/ 590 - **
0 10-0 14/ 591 - **

0 3-0 54/ 700 +
010-0 11/ 140 -
0 10-0 11/ 200 -

0 O N ~N~NN~NNNOOOOOO o0 UNDNDN®WWOWWDNN R

(0]

* Not used in current analysis, cf. section 2.4.
** Not used in current analysis, cf. section 2.3.

Table 3: The Mastra counting locations used for vehicle length information

in order of preference *
1,2,3 0 10-0 26/ 300 —
0 10-0 22/ 540 —
0 10-0 20/ 620 —
4,5,6,8 0 10-0 20/ 620 —
0 10-0 22/ 540 —
0 10-0 26/ 300 —
* Order of preference A-B-C means that A is used if available for the entire AM-period of a given day,
otherwise B is used if available for the entire AM-period, otherwise C is used if available for the entire AM-

period, otherwise the day is left out of analysis.



As mentioned, our analysis is limited to the Kage Bugt Motorway. We focused on modelling the AM-period
(4:45 AM — 12 noon) for the direction towards Copenhagen, which has a distinct morning peak with lots of
congestion.

We use observations between 4:45 AM and noon from weekdays (Mon-Fri) that are either characterised as
“Typical weekdays” or “Special days” (but not holidays). We exclude observations from time intervals where
we do not observe vehicle length shares at any location on the Kgge Bugt Motorway. We also exclude
observations from periods with road works, using the traffic information data from Trafikman, since we want
to know the number of lanes available.’

We exclude observations where travel time (per kilometre) exceeds 4 minutes, corresponding to speeds
below 15 km/hour, as the Hastrid data are not reliable for such low speeds. We also exclude observations
where the traffic flow exceeds 40 pce per lane per minute, as these appear to be outliers.

The Hastrid data contains many cases where the measured travel time is constant over several contiguous
15-minute intervals. This is particularly frequent in links 7 and 8. We are not aware of the reason for this, but
due to the risk that it is caused by malfunctioning equipment we have chosen to exclude all observations
where travel time is constant over more than two contiguous intervals and all observations from days with
more than 4 constant-travel-time-spells each lasting at least two intervals.

To ensure data quality, we also impose some restrictions on the counting locations used to compute link
flows (see Table 4 below). Moreover, we excluded observations before January 21% 2012 on links 1, 2 and
3, because the share of long vehicles differed systematically from the remaining period. Finally, the data for
links 4, 5, and 6 reveal a systematic change in the pattern of travel times around the start of September
2013. This may be related to the replacement of equipment at a couple of measurement locations, but we
cannot be sure of the cause and so decided to leave out observations after September 2" 2013 for these
links. For link 8, travel times in the period Jan 1% - Nov 8" 2012 are systematically wrong (according to the
Road Directorate), and so were excluded from our analysis. Moreover, travel times on link 8 in the period
Nov 9" — Dec 16" 2012 are systematically different from the remaining period while the observed flows do
not appear to change. We excluded observations from the affected period, in case the pattern is caused by
malfunctioning equipment.

Table 4: Restrictions imposed in sample selection

1 Observations before Jan 21% 2012 are excluded (share of long vehicles).
2 Observations before Jan 21* 2012 are excluded (share of long vehicles).
3 Count from either “0 10-0 26/ 300 -“ or “0 10-0 28/ 200 —* should be non-missing, as these

are measured after the merging at entry ramp <30>. Observations before Jan 21 2012
are excluded (share of long vehicles).

4 Counts from both “0 10-0 20/ 620 —* and “0 10-0 22/ 540 —* should be non-missing, to
ensure we observe flow both before and after entry ramp <28>.
Observations after September 2" 2013 are excluded (unexplained systematic change).

5 Counts from both “0 10-0 18/ 600 — and “0O 10-0 20/ 620 -“ should be non-missing, to

® For links 3-8, that are not directly upstream from a very congested link, we exclude only observations with road works on the current
link. For links 1 and 2, which are very congested, we can observe that traffic conditions are affected by conditions downstream. So for
link 1 we exclude observations with road works on either link 1, 2 or 3, and for link 2 we exclude observations with road works on either
link 2 or 3.



ensure we observe flow both before and after entry ramp <27>. Note that we do not
observe counts from the two lanes merging with O4, so we have to assume that the flow
(per lane) is the same for these two lanes as for the three lanes remaining on E20.
Observations after September 2™ 2013 are excluded (unexplained systematic change).

6 Counts “0 10-0 16/ 0 —* and either “0 10-0 17/ 1 -” or “0 10-0 18/ 600 -” should be non-

missing, to ensure observe flow both before and after entry ramp <26>.

Observations after September 2™ 2013 are excluded (unexplained systematic change).

<link not used in analysis>

8 Counts from both “0 3-0 54/ 700 +” and “O 10-0 11/ 140 -” should be non-missing, to
ensure we observe flow both before and after the merging with E47.
Observations in the period Jan 1% 2012 - Nov 8" 2012 are excluded: According to the
Road Directorate the travel times from Hastrid from this period are likely to be
systematically wrong. Observations in the period Nov 9" — Dec 16™ 2012 are excluded,
since this period involved unusually large fluctuations in the registered travel times.

~

Figure 2 - Figure 5 show means and standard deviations of travel time and travel flow, as a function of time
of day (mean and standard deviation is computed over different days). For links 1, 2, 3 and 8, we see a
distinct morning peak in both mean flow and flow variability, together with a distinct peak in mean travel time
and travel time variability. For links 4, 5 and 6, the pattern for mean travel time is much less pronounced: The
mean travel time during the morning peak is only slightly higher than outside the peak. Travel time variability
does increase somewhat during 8AM-9AM, but not much compared to the other links.

Figure 6 shows speed-flow plots for the seven road links. It is interesting to notice that the plots have the
characteristic backward bending form for links 1, 2, 3 and 8, where mean travel time is highly affected by the
morning peak congestion, while the plots for links 4, 5 and 6 miss the congested lower “branch” of points.

To understand the dynamics of congestion, it is relevant to study plots as Figure 7-Figure 13, which show
travel time and flow profiles over some given mornings in the sample. The Figures reveal substantial
variation between days, but it is possible to make out a simple general pattern: On days without congestion,
travel time seems unrelated to the flow. On days with congestion, flow increases from a low value in the early
morning to a high value at the beginning of the peak. Before the peak starts, travel time is stable at a low
value and seems to be unrelated to the flow. However, once flow reaches a certain level, travel time
increases sharply and remains high (and highly variable) during some time, until it decreases slowly to a low
and stable midday level. This stylised pattern is depicted in Figure 14 below and used to motivate the model
we develop in section 3.
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Link 1: Some different days
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Link 2: Some different days
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Figure 8: Examples of daily patterns of travel time and flow (link 2)



Link 3: Some different days
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Figure 10: Examples of daily patterns of travel time and flow (link 4)
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Link 5: Some different days
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Figure 11: Examples of daily patterns of travel time and flow (link 5)
Link 6: Some different days
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Figure 12: Examples of daily patterns of travel time and flow (link 6)



Figure 13: Examples of daily patterns of travel time and flow (link 8)
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Link 8: Some different days
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The following model development is motivated by the observed patterns of travel time and flow over the day
(described in the preceding section).

Assume two traffic states: Congested (c) and uncongested (u). Each morning traffic starts out in the
uncongested state. It either stays in the uncongested state for the entire AM-period (from early morning until
noon), or switches to the congested state sometime during the period, remains there for some time, and then
switches back again. We assume that it switches to the congested state and back again at most once. We
refer to the uncongested—congested transition as breakdown and to the congested—uncongested transition
as recovery.

We further assume that travel time follows one distribution with cumulative distribution function (CDF) ®, in
the uncongested state and another distribution with CDF @, in the congested state.

Our model consists of three separate parts: A model predicting if and when breakdown occurs, a model
predicting when recovery occurs — given breakdown time, and a model predicting means and variances of
travel time depending on state.

Throughout, we index the 15-minute time intervals by their end time t, measured in minutes past midnight.
The time interval [5:00AM; 5:15AM] is thus indexed by 315, and the last interval [11:45AM; 12 noon] is
indexed by 720. In the model, T; is the travel time per km, and F; is the flow per lane per minute, in time
interval t.

Uncongested Congested Uncongested

TB TR Time

Figure 14: lllustration of traffic states. g indicates breakdown time and Ty recovery time.
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The following concepts are central to our analysis:

e The traffic demand D: The number of vehicles (per lane per minute) attempting to travel at the link.

e The exit flow: The number of vehicles (per lane per minute) leaving the link.

e The link flow variable F used in our analysis: A measure of the number of vehicles (per lane per
minute) travelling the link within a 15-minute period, obtained as an average of point observations
along the link (cf. section 2.3).

Consider a short link (meaning free flow travel time is well below 15 minutes). In uncongested circumstances
the average exit flow in a 15-minute period will approximately be equal to the average demand in the period.
In congested circumstances, average exit flow may be less than the average demand, since not all vehicles
attempting to travel are able to get through: Above a certain point, increasing the number of vehicles on the
link will result in reduced speeds, which will cause exit flow to decrease, since at lower speed fewer vehicles
leave the link within a given time interval. This interdependency between speed and exit flow complicates
statistical analyses of the relation between the two: When modelling speed as a function of exit flow one
must take account of exit flow being endogenous, otherwise results will be biased.

As the link flow variable F used in our analysis is an average of point observations along the link, it is neither
equal to the demand or the exit flow. Its interpretation is similar to the exit flow, however, since it is a
measure of the number of vehicles actually passing through the link. Hence we expect it to behave similarly,
i.e. we expect that under uncongested circumstances F will be equal to the average demand within the 15-
minute period, and under congested circumstances F will be an endogenous predictor of speed.

More specifically, we make the following assumption in our analysis:

Assumption 1: Before breakdown, F is exogenous (to speed) and equal to average demand in the 15-
minute interval. This seems a fair assumption, as travel times in uncongested periods (early morning and
during middays) with low mean travel time and low travel time variability, appear to be unrelated to
observed traffic flow. The assumption implies that we can use F to predict traffic states without worrying
about endogeneity problems, and that we can use the estimated prediction model to explain how demand
(from a traffic model) affects the breakdown probability.

We use a simple duration model to model the duration until breakdown. The dependent variable is the
(discrete) breakdown time tp, which we define to be the start time of the 15-minute interval in which
congestion starts (or, equivalently, the end time of the last 15-minute time interval before congestion sets in).

We model the probability that breakdown occurs at the end of time interval |t — 15;t], conditional on not
occurring before, i.e.:

Pg(t) = P(tg = tltg = t) = f(x¢) (1)

Here, x, is a vector of explanatory variables related to the time interval ]t — 15;t]. Note that this probability
does not depend on clock-time or duration of the uncongested state. This is a deliberate choice: Though the
breakdown patterns we observe in the data show a close relationship with clock-time, this effect works
through the demand (flow) pattern and should be modelled as such to be of use in prediction.
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We assume that Pg(t) depends on traffic demand in time intervals prior to time t. Following Assumption 1,
we estimate the effect of demand using observed flow F; instead of demand. Hence the vector x; includes
functions of F,.

We also use a duration model to model the duration until recovery, after breakdown has occurred. The
dependent variable is the (discrete) recovery time tz, which we define to be the end time of the last 15-
minute time interval before recovery.

We model the probability that recovery occurs at the end of time interval |t — 15;t], conditional on not
occurring before, and conditional on g = tg <t — 30, is:

Pg(tltg = tg) = P(1g = tltg = t, 75 = tg) = g(2:(tp)) (2)

Here, z.(tg) is a vector of explanatory variables related to time interval |t — 15;t] that may depend on
breakdown time. To provide a theoretical basis for the choice of variables in z.(tg), we consider the so-called
bottleneck model from the literature of transport economics. This model describes the in- and outflow for a
single bottleneck (a location with limited capacity) in an equilibrium situation where all travellers have
identical preferences and no travellers can lower their generalised travel costs by shifting departure time (de
Palma and Fosgerau, 2011). When traffic demand (inflow) exceeds a certain threshold (the capacity of the
bottleneck), a queue will start building up, and exit flow will be equal to the capacity. The queue keeps
building up as long as demand exceeds capacity. At some point, demand drops below the capacity, and the
queue starts to dissolve. The exit flow remains at the capacity until the queue has dissolved, after which it
drops. Figure 15 illustrates how the accumulated demand and exit flow may look, as function of time of day.
Consider the average exit flow from the point in time (') at which demand exceeds capacity to a time t”,
illustrated in Figure 16 by the slope of the red line. During the congested period (the queue build-up and
dissolution), the average exit flow is equal to capacity. After the queue has dissolved, the average exit flow
drops below the capacity.

Breakdown (t') Recovery Time Breakdown (t') Recovery & Time

Accumulated demand Accumulated demand

Accumulated exit flow | | Accumulated exit flow |

Figure 15: Bottleneck model — accumulated Figure 16: Inspiration to the definition of A(t,tg)
demand and exit flow
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Though the bottleneck model is a very simplified description of the congestion in our data, we
expect that the average exit flow from point 75 on has an effect on the probability of recovery,
such that a lower average exit flow implies a higher probability of recovery. As stated, the flow
variable F; used in our analysis is not exactly identical to the exit flow. However we use it as an
approximation and define A(t, tp) as the average observed flow from point tz on:

ACF(t)—ACF(tB)
t—1p

A(t,Tp) = ; 3)

where ACF(t) is the accumulated flow (F;) at time ¢.

We expect that A(t, tg) has an effect on the probability of recovery, such that a lower value of
A(t,tg) implies a higher probability of recovery. We can easily estimate a model including
A(t, 75). However, information about exit flow or F; is not available from the output of the traffic
model, which predicts demand. Hence we cannot predict A(t, tg). So, in forecasting applications
we are forced to use demand instead of F,. What are the consequences of this? Assuming that
7 is the unobserved link capacity, we know from the bottleneck model that

A(t,tg) =min (AD(t, tg),7) , 4)

where AD(t,tg) is the average demand from point 75 on. This is because average demand
exceeds the capacity n until the queue has dissolved, and afterwards it equals average exit
flow. We assume that eq. (4) also holds as an approximation for the links in our analysis.
Hence, in forecasting applications, we should ideally replace A(t,7g) by min (AD(t,7g),n).
Replacing instead by AD(t, tg) implies that the computed recovery probability will tend to be a
little too low in time intervals with very high average demand. However, since the recovery
probability is already very low in such periods, we do not consider this a major problem.

As stated above, we assume that travel time has distribution function ®, in the uncongested
state and distribution function ®, in the congested state. We do not specify the shape of these
distributions, as we are only interested in their means and variances. We define the random
variable S to indicate the traffic state:

S= {0, if uncongested
“ |1, ifcongested

We estimate the following four state-conditional means and variances by simple sample
averages:

ty = E(T|S = 0)
02 =E((T —ET)?|S = 0)
ue = E(TIS = 1)

02 =E((T-ET)*S=1)
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Given a demand profile {F;};_300,..,720 W€ can simulate the breakdown and recovery times
numerically, and for each time interval t compute the probability p, = P(S; = 1) that traffic is in
the congested state. Given the state-conditional means and variances of travel time, we can
then compute the mean and variance in time interval t as:

Uy =ET, = E(E(T|St)) = E((l = Suy + St#c) = (1 —puy + Peldc (9)

var T, = E(E((T — ET)?|S,)) = E(E((T? + pe* = 2Twy)|Sy))
= (1= p)(0f + (y — 1)) + (08 + (e — 1e)?) (6)

We note that in this simple model where traffic has only two possible states, each with constant
mean and variance of travel time, the mean travel time in any time interval t is bounded
between u,, and u, (since p; is bounded between zero and one). The variance is bounded from
below by the minimum of ¢2 and ¢2, while its maximum value depends on both ¢2, g2 and

(.uc - .uu)z-

It is possible to derive a simple relationship between the mean delay and the variance of travel
time. The functional form of this relation is a direct consequence of the assumption that traffic
has only two possible states, each with constant mean and variance of travel time. While we do
not use this relationship in our prediction model, it is relevant to be aware of when comparing
our prediction approach to international practice. As already mentioned, we assume that u, <
Uc, i.e. that the congested regime has higher mean travel time than the uncongested regime.
Hence we define the mean delay in time interval t as the difference between the actual mean
travel time y, and mean travel time in the uncongested regime y,,. Since y; is bounded between
U, and u., the maximum mean delay allowed in our model is (u. — u,). Using eq. (5), we see
that the mean delay is given by:

de = pe =ty = Pelpe — )
Using this together with eq. (6) yields (for 0 < d; < u. — uy):

oé—of

var T, = 02 + d; (#

ot + U — ”u) - d? (7)
Hence, in our model, the travel time variance (per kilometer) is a concave function of mean
delay (per kilometer). The standard deviation is also a concave function of the mean delay.

If we know the predicted mean delay, we can use eq. (7) to compute the travel time variance
our model would predict. Note however, that applying eq. (7) on mean delays stemming from
the LTM would not yield the same results as using our full model to first simulate the values of
p, over the morning and then applying egs. (5) and (6). This is because the LTM (version 2.0)
computes mean travel times (and hence mean delays) based on speed-flow curves as opposed
to our approach.
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We used the software packages Stata and Biogeme to analyse the data and estimate the
parameters of the breakdown and recovery models.

We distinguish between three link types, defined by the number of lanes. The types are listed in
Table 5. Note that only about two-thirds of link 8 (in terms of length) has two lanes, while the
last third has three lanes. However, link 8 is the closest we get to a two-lane road in our
analysis sample.

Table 5: Definition of link types

2 lanes Link 8
3 lanes Links 1,2,3,6
4-5 lanes Links 4, 5

To make sure traffic starts out in the uncongested state each day in our analysis sample, we
define the analysis start time to be the last 15-minute interval in the LTM night time band (9PM
— 5AM), i.e. the first time interval in the analysis is 4:45AM-5:00AM, which is indexed by end
time t=300. We define that traffic is always in the uncongested state in this first time interval,
such that breakdown can happen no earlier than at t=300 (5:00AM).

To define the uncongested and congested states empirically, we looked at the mean and
standard deviation of travel time as a function of time of day. Based on plots as Figure 7-Figure
13, we defined congestion to be when travel time exceeds 0.7 minutes/km (~85.7km/h) for a
period of at least 30 minutes. This is a somewhat arbitrary threshold supposed to reflect that
travel times in early mornings and at midday appears to be more or less constant (the variability
over days is very low), and that the level of early morning and midday travel time appears to be
somewhere between 0.5 and 0.7 (it varies slightly over links).

For a given day, we define breakdown to occur at the end of the 15-minute interval immediately
before travel time for the first time increases to a level above 0.7 minutes/km and remains
above this level for at least 30 minutes. If this does not happen, the day does not have a
congested state. Given that a breakdown occurs, we define recovery to occur at the end of first
15-minute interval after breakdown where travel time is above 0.7 but drops below 0.7 in the
following interval and either i) stays below 0.7 for at least 30 minutes, or ii) has already been
below 0.7 once during the last hour. We demand that breakdown and recovery — if they occur —
occur before noon, and so delete the few days where this is not so.

This definition implies that travel time can (temporarily) be below 0.7 during the congested

period, but only for a single 15-minute interval within each hour. Note also that since a
congested state must last at least at least 30 minutes, recovery cannot happen before at least
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30 minutes after breakdown, implying that the probability of recovery in eq. (2) must be zero in
the first 15-minute interval after breakdown.

Finally, we note that the definition of breakdown and recovery times allows for more than one
congested period during the day. We are not interested in adding this complexity to the model
and so decided to exclude days with multiple peaks from our analysis (29 link-days in total).

See Figure 17 for an illustration of breakdown and recovery times.

Table 6 lists the resulting sample sizes. As link 6 has only 5 days with breakdowns, we do not
include it in the analysis.

Table 6: Sample sizes

breakdown model recovery model breakdown
70
97

Link 1 3 lanes 1653 obs / 112 days 532 obs / 70 days

Link 2 3 lanes 1512 obs / 129 days 805 obs / 97 days

Link 3 3 lanes 1575 obs / 148 days 958 obs / 118 days 118
Link 4 4 lanes 4569 obs / 168 days 56 obs / 16 days 16
Link 5 5 lanes 5017 obs / 190 days 143 obs / 30 days 30
Link 6 3 lanes 2879 obs / 103 days 18 obs / 5 days 5
Link 8 2-3 lanes 2420 obs / 122 days 303 obs / 64 days 64

40
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Figure 17: lllustration of breakdown and recovery times
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We first looked at nonparametric estimates of the breakdown probability as a function of flow F,
(Figure 18). The nonparametric estimate is a local constant regression over all observations for
which breakdown has not yet occurred. The regression uses an Epanechnikov kernel (Stata
default) with bandwidth 0.1. The bandwidth is deliberately chosen to be a rather small so as not
to disguise variation in data by over-smoothing the curve. The nonparametric estimates reveal
that the probability of breakdown increases with F;, for values of F; above a certain point. This is
in line with expectation.

We applied the duration model in eq. (1) with f being a logistic function of F;:

1

Pp(t) = P(tg = tltg 2 ) = s

(8)

The parameter B, should be positive. With this model, the probability increases with F, from
zero to one following an S-shaped curve. The parameter B; determines how steeply the
probability rises. The logistic probability model allows breakdowns to occur with very small
probabilities with low traffic volumes (due to e.g. accidents), which fits well with the observed
data.

We estimated the parameters B, and B; using Maximum Likelihood Estimation, with the
software package Biogeme. The results are shown in Table 13 in the Appendix. Initially, we
estimated different parameters for each link and link type. We are not able to estimate a
breakdown model for link 5: Clearly, we observe too few days with flows high enough to cause a
traffic breakdown. We note that the models for the different links are somewhat different, but
since we do not have enough links to establish whether this is due to the number of lanes or
other specific link characteristics, we chose to pool the data and use a single set of parameters
for all link types. We stress that the number of lanes in principle still enters the model, as the
flow variable F; is measured in pce/lane/minute. Moreover, since link 3 yields counter-intuitive
results in the analysis of the recovery model and links 4 and 5 have too few breakdowns to
estimate a recovery model, we decided to limit the analysis to links 1,2, and 8 (cf. the discussion
in section 4.4).
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Our preferred models are listed in Table 7 below. These are the specifications applied in the
prediction model. The estimated Pg(t) as a function of F; is shown in Figure 19.

Table 7: Preferred breakdown model specifications

Link type Preferred model

2-3 lanes Model (eq. (8)) with B, = -13.69 and ; = 0.3995
4-5 lanes None
Links 1,2,8
v
95% Cl
— lpoly smooth
— DB
LQ_
O— —
I T 1T 17T 17T 17 17T 1T 17T T T T T 17T T T T T 17T 1T T T T T T T T T T T 1
10 20 30 40
F

kernel = epanechnikov, degree = 0, bandwidth = .1, pwidth = 1.15

Figure 19: Estimated breakdown probability as function of F (preferred formulation, based on
links 1, 2, 8)

To gain intuition, we first considered nonparametric estimates of the recovery probability as a
function of A(t, tg) (Figur 20). The nonparametric estimate is a local constant regression over all
observations for which breakdown has occurred but recovery has not yet occurred (except the
first period after breakdown, for which the recovery probability is zero per definition of the model
states, as the congested state is defined to last at least 30 minutes). Again, the regression uses
an Epanechnikov kernel with bandwidth 0.1.
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Figure 20 reveals an interesting feature: For links 1,2,3,8, the recovery probability is close to
zero for values of A(t,7g) around 20-23 (approximately). For higher values of A(t,7g), the
probability is positive and decreasing in A(t, tg), as theory predicts (actually, for link 3, it is not
entire clear if it is decreasing, increasing or flat). A potential explanation of this pattern is that
there are different types of congested states in our data: One with a clear peak in travel time,
high flow and high values of A(t,tg), and another also with a clear peak in travel time but
relatively lower flow and low values of A(t, tg). The latter type is often associated with very high
levels of travel time, and this together with the low flow suggests that this type of congested
state is related to the link capacity temporarily being reduced, due to some incident blocking
parts of the lanes."®

For a given day with constant capacity, we do not believe that the recovery probability should
suddenly drop to zero or a low value as A(t, tg) decreases. We are therefore not interested in
incorporating this feature in our prediction model, as this model does not explicitly model
incidents blocking parts of the lanes. So we chose to estimate separate functional forms for
values of A(t,tg) above and below a threshold k, and then, when predicting travel time
variability, we use solely the functional form for values values of A(t,7z) above k.

We estimated the recovery model (eq. (2)) using a piece-wise logistic specification with either

PR(ter = tB) = P(TR = tlTR = t,1g = tB)

Yo , for A(t,t5) < k
i { " Ltexp (—nl—yz Altep) for e < A(t, 7p) * ®)
or
Pr(tltp = tg) =P(tg =tltg = t,7p = tp)
Yo , for A(t,t5) < K
- { ~ Trexp (_yl_lyz Aty for k < A(t, Tg) (10)

As mentioned, k is a threshold parameter. The parameter y,should be positive and less than
one, while the parameter y, should be positive (coresponding to a negative effect of A(t,g) on
the recovery probability. In this model, the probability P;(t|75 = tg) is constantly equal to A, for
values of A(t,tg) below x, and decreases following an inverse-S-shaped curve for values of
A(t,7g) above k.

Note that the pattern for the link 4 is very unclear and does not reveal any systematic relation
between the recovery probability and A(t,tz) (cf. Figure 20). We therefore decided not to
estimate a recovery model based on these data. We furthermore excluded link 5, since we were
unable to estimate a breakdown model for this link.

"% In a few cases, we are able to confirm this hypothesis using the Trafikman data. For the remaining days there is no
reporting of incidents. However, according to the Road Directorate, there may be unreported (small) incidents that
could have similar effect, such as a car stopped in the emergency lane or dropped items on the road.
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recovery probability as function of A (by
link)
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We estimated the parameters y,, y; and y, using Maximum Likelihood Estimation, with the
software package Biogeme. As mentioned above, we prefer a common model specification
across link types, but as a data check we estimated different parameters both for each link
separately and for each link type as well as for the combined sample. We estimated both the
model in eq. (9) and the model in eq. (10) for four different values of k: 20, 21, 22 and 23. All
results are shown in Table 14 in the Appendix.

First, we notice that the link-specific models for links 1, 2, 3 are not always identified. The
problem lies in identifying y,: In the link-specific models, there are too few observations with
A(t,tg) < k. As a check, we therefore estimated models with y, fixed to zero (cf. Table 15 in the
Appendix). From these results, we find that the models for links 1 and 2 behave as expected (y,
is consistently positive, though not significantly), while for link 3, y, is consistently of the wrong
sign (though not significantly). This effect from link 3 carries through when we consider a
common model across links: For the sample consisting of links 1, 2, 8, the parameter y, is
always significantly positive, while this is rarely the case for the sample of links 1,2,3,8. This led
us to prefer the common model for links 1, 2, 8.

Second, we used the maximum likelihood value to determine the best k-value and to compare
the models in eq. (9) and eq. (10). The best k value is 23, and for this value the logarithmic
formulation in eq. (10) is slightly better than the formulation in eq. (9) and does not “suffer” from
insignificant parameters. We summarise the preferred results in Table 8.

The estimated recovery probabilities are shown in Figure 21 together with the nonparametric
estimates.

Table 8: Preferred recovery model specifications

Link type Preferred model

2-3 lanes Pr(t|tg = tg)=P(tg = t|Tg = t,Tp = tg)

1
L= 1+exp (8.907—-3.2611n(23)) ’ for A(t,tp) < 23

1
1+exp (8.907—-3.2611n A(t,tg))
4-5 lanes none

, for 23 < A(t, tg)
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Figure 21: Estimated recovery probability as function of A (preferred formulation, eq. (10) with
k=23, based on links 1, 2, 8).

To validate the model, we used it to simulate the breakdown and recovery times for the
estimation sample (links 1, 2, 8), and compared to the pattern of actual breakdown and recovery
times. For the simulation, we used the actual flow pattern over the morning period for all days in
the estimation sample and generated 1000 “copies” of each day. For each day, we then used
the models in Table 7 and Table 8 to predict breakdown and recovery times. Figure 22 and
Figure 23 show the pattern of real and simulated breakdown times, respectively. The rightmost
column in each histogram represents the days without a breakdown. The breakdown model
does not reproduce this share exactly: In the simulation, the share is 42% as opposed to 36% in
the real data. Apart from this, however, the breakdown model reproduces the pattern of
breakdown times almost surprisingly well, considering the very simple model formulation
applied.

Rather than comparing recovery times, we compare the pattern of peak durations. This is
shown in Figure 24 and Figure 25 for the real and simulated data, respectively. Here, the days
without a peak (i.e. without a congested period) are represented by the leftmost column with
zero peak duration. The average peak duration is captured quite well: 118 minutes for the
simulated data and 121 minutes for the real data. However, the spread of the simulated peak
duration is much larger than of the real data (cf. Figure 25), suggesting that the predictive power
of the recovery model is not so strong.
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We attempted to remedy this in several ways, though our options were limited by the fact that
any explanatory variable in the model would have to be available from the output of the national
traffic model. We tried to capture the “multi-peaked”- shape in Figure 24 by including information
about the share of long vehicles, information about the traffic flow in the time period immediately
before breakdown, and information about the value of A(t,7g) in the first time period after
breakdown. We also tried to omit Fridays from the estimation sample. Though some of these
affect the pattern of simulated peak durations, we did not find that they produced a better fit. As
an example, including the share of long vehicles excludes the existence of very long peak

durations, but at the cost of significantly over-predicting the number of peaks lasting 90 minutes
or less.

In conclusion, we chose to stick to the simple model formulation in Table 8. Despite its lack of
(predictive) power, it still serves as a simple approximation of reality.
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Figure 22: Distribution of breakdown times in the sample (links 1, 2, 8).
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Figure 23: Distribution of simulated breakdown times.

Prediction model for travel time variability 33



Percent
30 40
Il

10

T T T T
0 100 200 300 400
peakdur

Figure 24: Distribution of peak durations (in minutes) in the sample (links 1, 2, 8).
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Figure 25: Distribution of simulated peak durations (in minutes).

For each traffic state (congested/uncongested), we computed means and variances of travel
time as simple sample averages over the time periods from “Typical weekdays” in the
estimation sample (i.e. links 1,2,8). Note that when we estimated the breakdown and recovery
models, we used not only “Typical weekdays” but also “Special days” (cf. sec. 2.4) in order to
get sufficient variation in the data. However, when forecasting travel times we used only
“Typical weekdays” for consistency with the national traffic model. Table 9 shows the values,
which we apply in the prediction model.

Table 9: Applied means and variances of travel time by traffic state

|2 | p ] o? ]

0.58 0.00096 1.23 0.19

34 Prediction model for travel time variability



Here we describe the procedure generating travel time variability based on traffic flow output
from LTM. The procedure simulates the transitions between traffic states by simulating the
breakdown and recovery times using the estimated models in sections 4.3 and 4.4. It computes
the probabilities p, that traffic is in the congested state and calculates the mean travel time and
its variance using eq. (5) and (6).

The algorithm below computes mean and standard deviation of travel times for a given link in a
given direction, for the morning (AM) period. A similar algorithm should therefore be run for the
PM-period. In the algorithm, the first 15-minute interval in the simulation is 4:45-5:00AM. The
choice of this starting period is not crucial — in principle the only criteria is that it is sufficiently
early to ensure that breakdowns do not occur before this time. For the application with LTM
output, we therefore suggest that the starting period should be one of the last 15-minute time
intervals in the LTM night time band (9PM — 5AM).

Algorithm to compute mean and standard deviation of travel time for AM-period

1. The traffic flow for the link during the day is read from an LTM run. In addition, the relevant
attributes of the links (number of lanes etc.) is read and flow per lane is computed. Each link
has 10 traffic flows corresponding to the 10 LTM time bands — see Table 10 below. The flow
in a LTM time band is spread out to the 15 minute time intervals of the simulation model
assuming a constant flow in all periods corresponding to a LTM time band.

2. The peaks are simulated (including travel time and travel time variability) using the

estimated model and traffic flow (F5q, F315 --- F720) from step 1.

a) The traffic flow is made stochastic by drawing from a multinomial distribution with 10
outcomes giving the likelihood of a flow in the neighbourhood of the observed, ranging
from 19% below and 18 % above. The same change is used for all periods during a
day. The distribution is based on the observed variation in the flow in the data.

b) For each period, we compute the probability Pg(t) as a function of F;y, F515 ... F750 USing
the prediction model in Table 7.

c) For each period t we draw from a binomial distribution with probability Pg(t) of success.
If a transition occurs (success), the variable B, is assigned the value 1, otherwise B, =
0.

d) We initialise the state variable S,=0 for all ¢. The first period t’ with B,, =1 during the day
(if any) is identified and is chosen as the time of transition from uncongested to
congestion. We set the state variable S,=1 for all periods > t' .

e) For each period we compute the probability of recovery Pg(t|tg =t") as a function of
F300, F315 --- F750 Using the prediction model in Table 8.

f) For all periods t with S;=1 except the first (¢t =t'+ 1), we draw from a binomial
distribution with probability Pg(t|tp =tg) of success. The first time t” for which a
transition occurs (success) is identified. The state variable is changed to S,=0 all
periods t > t"". Thus S;=1 indicates the time period with congestion. A day can only
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have 0 or 1 period with congestion. Py is set to 1 at noon (t = 720) to ensure that peak
hours end at this hour at the latest.

g) The calculations a) to f) is repeated a number of times (e.g. 1000)

h) For each time period t the share p, of instances with S;=1 over all the repetitions is
computed. The number of repetitions is chosen such that these shares converge.

i) The expected mean travel time and variance is computed for each period using the
shares p, from h) using eq. (5) and eq. (6) and the estimated state-dependent travel
time means and variances from Table 10.

j) Costs per minute per road-kilometre are calculated separately for travel time and the
standard deviation taking into account the flow, the number of lanes, and the share of
long vehicles. The cost per car per hour is taken from the unit prices from The Ministry
of Transport.

3. Finally, the resulting travel times, variances and costs are aggregated from 15-minute time
intervals to LTM’s time bands. The resulting travel time means and variances are computed
using simple averages (though they are probably not independent).

Table 10: LTM time bands

9PM -5AM
5AM -6 AM
6AM -7AM
7AM -8AM
8AM -9AM
9AM -3PM
3PM -4PM
4PM -5PM
5PM -6PM
0 6PM -9PM

= ©O© 0O N O O A WO DN =~

For use in our application examples, we implemented the above procedure in SAS and
performed the following test computations on the subsample of typical weekdays:

5.2.1 Test of the flow.

It is checked that the way flow is made stochastic corresponds to the observed flow. This is
done by replacing the static flow input with the observed average flow for each time period. It
turns out that the average flow within each time period is maintained when 1000 repetitions is
applied. The average relative standard deviation (of flow) during the morning is maintained as
well, but there are significant differences when each time period is considered separately. The
graph below (Figure 26) with data (incl. flow variability) for link 1+2 as an example shows how
the modelled standard deviation of flow by construction follows the mean flow, while the
observed standard deviation has a maximum later than the mean flow peak.
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Figure 26: Simulated and observed mean and standard deviation of flow over the morning, links
1+2, 1000 repetitions

This pattern emerges for the other links as well: The observed standard deviation is
approximately proportional to the mean flow, but with a certain time delay. The modelled
standard deviation is very close to proportional to the mean flow and is thus higher than the
observed at the start of the peak, but later in the morning the opposite is the case.

5.2.2 Test of the peak frequency and duration

The frequency of days with peak for the links 1 and 2 is 74.9% in the data. When simulating with
1000 repetitions on the data from these three links, the resulting peak may vary a little from
simulation to simulation, but is typically 78-80% which is satisfactory.

In the data there is a clear pattern that there is a high share of days with peaks shorter than one
hour and a high share of peaks with duration around 2% hour. This pattern is not reproduced in
the simulations since the model by construction gives lower probability to long peaks than to
short peaks. This is illustrated in the histograms in Figure 27. The patterns here are consistent
with those produced in section 4.6, that were computed based on the actual rather than
simulated flow.
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Figure 27 Peak duration (in quarters of an hour), observed (above) and simulated (below), links 1+2, 1000
repetitions

5.2.3 Test of travel time and travel time variability

The mean travel time and travel time variability for the links 1 and 2 are 0.700 and 0.313 (std.
dev.) over the period 4:30AM to noon. The corresponding simulated values are 0.715 and
0.291. The mean travel time is well described, but the model seems to underestimate the travel
time variability to some extent. This is partly caused by the bias in peak duration seen in Figure
27.
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Figure 28: Observed and simulated mean travel time (TT) and TTV, links 1+2, 1000 repetitions

In Figure 28 the relation between the observed and simulated mean travel time and travel time
variability is shown for each 15-minute time interval in the morning. In general, the model seems
to overestimate mean travel time and TTV at the beginning and at the end of the peak hours,
but underestimates them during the most congested hours. The reason is probably partly the
flow simulation that overestimates the flow variation at the start of the peak and underestimates
it later in the morning.

5.3.1 Simulated volume-delay relations

A first application of the model is to simulate mean travel times and TTV for different flow levels.
We re-run the simulations from sec 5.2, scaling the input flow profile such that it is 30%, 40%,
50% .... 170% of the sample average flow. The resulting mean travel time and TTV (as
weighted averages over the entire morning, weighted by the flow in each time period) are
shown in Figure 29 and Figure 30.

As expected, both mean travel time and TTV increase with the traffic volume. For very low traffic
volumes, they become constant. This is because the model then predicts an (almost) zero
probability for a breakdown and thus assigns the uncongested mean and standard deviation
from Table 9 to all time intervals. For very high traffic volumes, the opposite is the case: The
model then predicts that breakdown occurs (almost) with certainty, and assigns the congested
mean and standard deviation from Table 9 to all time intervals. The model is therefore not quite
realistic for very large traffic volumes: It operates with only two states (congested and
uncongested) and each is assumed to have a constant distribution of travel times independent
of the traffic volume. We expect the model to underestimate both mean travel time and TTV for
vary large traffic volumes.
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5.3.2 Applications to congestion-reduction scenarios

The model has been applied to four examples of initiatives directed at reducing congestion and
travel costs. The experiments are in general carried out using the flow data for links 1 and 2 to
ensure that all links have the same number of lanes. The only exception is experiment number
four which is based on flow data for link 8.

The way the time costs are calculated demands some more detailed description: We use the
information on vehicles length in meters (0-5.8, 5.8-12.5 and 12.5-) as indicator for the three
types of vehicles:

e Passenger cars (average load factor and share of business travel)
e Vans
e Trucks

The link between length and vehicle type is simply that passenger cars are assumed to be
short, vans 5.8 to 12.5 m and trucks more than 12.5 m. This is not very accurate, but a
manageable simplification. The value of time for goods in vans and trucks are ignored since we
have no information on this. We value both mean travel time and travel time variability (standard
deviation) using a reliability ratio of 1 (i.e. one minute of travel time standard deviation equals
one minute of travel time). This is based on DTU Transport, 2008.

The costs are presented as DKK-2015 per time unit per road-kilometre and cover all lanes of
the road segment. The expected traffic flow and observed share of long vehicles for each time
of day are used in the calculations.

The applied time values are taken from the Danish Unit Prices for cost-benefit analysis and are:

e Passenger cars: 186 DDK per vehicle per hour
e Vans: 375 DDK per vehicle per hour
e Trucks: 518 DKK per vehicle per hour

We consider four congestion reducing initiatives. The scenarios we consider are meant as
illustrations of the model, and should not be interpreted as more than this. The assumptions we
make regarding implementation of the initiatives are highly simplified and not completely
realistic. For example, we assume throughout that the total traffic demand is unchanged (and
equal to that observed in our data), while a more realistic calculation would demand that new
traffic demand profiles were computed using a traffic model. The four initiatives are defined as
follows:

1. Peak spreading. This could be the result of road user charging differentiated according to
time. The flow is smoothed to be maximum 25 pce’s per lane per minute. The excess flow is
moved as little as possible to time bands before and after the flow peak in a 50-50 split. This
is to mimic the effect of a time varying road user charge with high charges during the peak
and low otherwise.

2. Ramp metering. The probability of breakdown (pg) is reduced by 20% in all time periods to
reflect the effect of ramp metering.
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3. Expanding the road from 3 to 4 lanes, keeping demand fixed — flow per lane is reduced
to % of its current level.
4. Expanding the road on link 8 from 2 to 3 lanes, keeping demand fixed — flow per lane is

reduced to 2/3 of its current value.

The effect from the smoothing (initiative 1) can be seen from Figure 31.
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Figure 31: Average flow before and after smoothing, links 1 and 2.

To ensure convergence 10,000 repetitions have been applied in the simulations and the results
from the four initiatives are summarized in Table 11, which shows the aggregated travel time
costs per morning per road-km. For comparison with current practice, Table 12 presents the
travel time costs that would be attributed to free flow travel time and mean delay, and their sum.

Table 11: Main results from the model simulations (4:30AM - noon)

Experiments Share of Mean peak Cost of Cost of Total travel
peak days duration mean TT TTV time cost

No. of 15- DKK/ DKK/ DKK/
minute morning/ morning/ morning/
Initiative EVES road-km road-km road-km

Base case (links 1 & 2) 88.9% 8.08 68,718 26,784 95,501
1. Peak spreading (F<=25) 67.8% 6.45 61,350 23,633 84,982
2. pg reduced by 20% 82.6% 7.90 67,081 26,150 93,231
3. From 3 to 4 lanes 14.5% 5.83 53,928 11,358 65,287
Base case (link 8) 52.4% 6.41 32,230 10,696 42,926
4. From 2 to 3 lanes 1.7% 6.20 28,021 2,813 30,834

Comparing the four experiments (Table 11) reveals that user charging and ramp metering seem
to have moderate effects on time related travel costs, whereas investments in additional lanes
seem to be stronger tools. Clearly, this should not be taken to imply that the latter initiatives are
better, as we focus on benefits in travel time costs only and consider neither further benefits nor
the size of the investment needed. Again, we stress that the shown experiments should be
considered only as examples of the application possibilities that the model has: The concrete
implementation of the initiatives is much too simple to allow realistic analyses and conclusions.
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Table 12: Travel costs based on current practice (4:30AM - noon)

Experiments Cost of Total travel
free flow time cost
time
DKK/ DKK/ DKK/
morning/ morning/ morning/
Initiative road-km road-km road-km
Base case (links 1 & 2) 51,958 24,797 76,756
1. Peak spreading (F<=25) 51,958 14,063 66,021
2. pg reduced by 20% 51,958 22,376 74,334
3. From 3 to 4 lanes 51,958 2,915 54,874
Base case (link 8) 27,890 6,423 34,313
4. From 2 to 3 lanes 27,890 195 28,085

Comparing Table 11 and Table 12 shows that in these simple scenarios, the current approach
of computing travel costs based on free flow travel time and mean delay would greatly
underestimate the costs, but would result in a similar ranking of the initiatives. For initiatives 1-3,
the relative gain in total cost compared to the base case differs only slightly between Table 11
and Table 12, while for initiative 4, the difference is somewhat larger.

Below in Figure 32, Figure 33 and Figure 34, we present more detailed information about the
four initiatives, in terms of their effect on mean travel time, travel time variability and total travel
time costs in each of the 5 relevant LTM time bands, i.e. 5-6, 6-7, 7-8, 8-9 and 9-12.

From the figures it can be seen that including travel time variability may change the estimated
effects of various initiatives to mitigate congestion. Often the variability adds around 50% to the
estimated costs and in the cases where the road is expanded the change in variability may
account for more than half of the economic gains related to travel time.
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Figure 32: Simulated mean travel time before and after initiative

Minutes per km Smoothed flow Minutesperkm  Breakdown probability reduced by 20%

0,43 (5
G4 04
1,35 0,23
C.3 0.3
23 0.23

mEBefore ? M [efore
0,2 0,2

W After m AfTer
0,13 0,15
o1 U1
0,00 €03
[} 0
Sk [ IR 89 012 Time haned £ 6/ I L8] 012 Time band
Minutes per km From 3 to 4 lanes Minules per kin From 2 to 3 lanes

045 c4
0 0.2
035 03
03 -

025 G.25 W Hefrre

o2 m3afore G2 W After
W AT 5
0,15 013
01 cl
0,05 0,05
0 \ \ \ 0
- -7 4 Hy 412 Time band e (o 74 ] 912 Time band

Figure 33: Simulated standard deviation of travel time before and after initiative
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Figure 34: Simulated costs from mean travel time and travel time variability before and after initiative
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In this section we discuss the future model development and data collection that we find
necessary to achieve the goal of a simple forecasting approach that is ready to implement and
use with the LTM.

While we are confident that we have succeeded in developing a model that takes account of the
dynamic nature of congestion and the potential endogeneity issues related to modelling travel
times and traffic flows, we have at this point not succeeded in controlling for spillback effects.
Given the nature of our data, that represent a series of short adjacent motorway links from a
road with multiple potential bottlenecks (the entry merging ramps), this remains an important
issue that should somehow be handled before the method can be implemented.

We believe it is possible to get closer to this goal with the current dataset set up for this project,
even though we have not succeeded doing this within the project due to time limitations. It may
not be possible to obtain a theoretically satisfactory modelling of bottlenecks and spillbacks due
to data limitations (no data from ramps available) and the aggregated nature of the data (link
level travel times). However, it is likely possible to approximate spillback effects to some degree
and check if this improves the predictive performance of the recovery model. A more detailed
analysis may demand better data in terms of observations of traffic on relevant ramps.

It may be worth seeking inspiration in an ongoing research project about modelling of spillbacks
in static route choice models, led by Christian Overgard Hansen at DTU Transport (Overgard
Hansen et al., 2014). The objective of the project is a practically applicable approach that can
be applied with the existing static route choice models to make up for the fact that these static
models cannot handle spillback effects. Their approach uses the simple deterministic queue
model described in The Danish Road Directorate (2010a) to compute mean delays caused by
queuing at bottlenecks. This model computes the area between the accumulated demand curve
and the accumulated exit flow curve, and thus has some similarity with our recovery model. At
this point, their approach does not suggest how to model TTV (which is not the point of their
analysis), and compared to our approach it has the drawback that it does not handle dynamic
effects.

In section 2 we discussed our (rather strict) demands on the data we applied in the analysis.
Still, in section 4 it turned out that even these data were not sufficient to allow estimation of the
model parameters for all links in the sample.
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Due to the extensive data demands to estimate the model, we believe that it is not realistic in
the short run to develop separate models for all road types. We suggest prioritizing models for
different types of motorway sections (more than in our analysis) and other larger roads where
the data are already available. For some motorways, i.e. the Helsinggr Motorway, the existing
data would be sufficient. The same might apply to few of the other greater roads, while we
believe that the communal roads are not sufficient covered to estimate a model.

In connection with future model re-estimations, we emphasize the following points: To estimate
the model, data must contain measurements of travel time and traffic flow before, during, and
after the peak periods for each day in the analysis period. This is necessary to identify when
congestion sets in and to analyse the dynamic process that leads to its dissolution. Travel times
measured at segment or link level are preferred to travel times measured at point level (we
apply the latter in our analysis from lack of better options). GPS or Bluetooth data of travel times
are most likely much more accurate than loop detector data and should be applied if they have
sufficient data coverage. To compute TTV at a given time of day it is necessary with repeated
observations of travel times at this time, on a given day and over many days.

Following the discussion of spillback effects in the preceding section, we emphasize that it is
necessary to observe traffic conditions not only on the road links of interest, but also on
adjacent (in particular downstream) road links, preferably including entry and exit ramps and
divergences.

An important, though somewhat obvious, remark is that we can only estimate road-specific
parameters for a road, if the road in question is sufficiently congested. If congestion does not
occur with the current traffic demand, it is impossible to identify the demand levels at which
congestion would occur."

Finally, a lesson from the project is that the data work connected to filtering out data points
affected by road works and short term maintenance works turned out to be extensive. In
connection with future data collection we recommend that such incidents are systematically
logged and registered in both Mastra and Hastrid, or in a separate database which can easily
be merged with these.

"' Note that this is not the same as to say that the model cannot be applied to forecast TTV on roads without sufficient
congestion: We can use the model for this, but one has to apply parameters that are estimated on data for a different
(similar) road.
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Table 13: Estimation results for breakdown model.

Max log robust robust std.err.
Sample likelihood #Obs Bo std.err. (B) By (B
Links 1,2,8 -554.68 5585 -13.689*** 0.714 0.399*** 0.023
Links 1,2,3,8 -893.95 7160 -11.350*** 0.455 0.316*** 0.015
Link 1 -126.34 1653 -21.736*** 2.399 0.647*** 0.075
Link 2 -179.99 1512 -19.041*** 1.673 0.558*** 0.052
Link 3 -316.84 1575 -8.503*** 0.614 0.218*** 0.020
Link 4 -95.12 4569 -11.059*** 1.259 0.222*** 0.045
Link 5 --- Did not converge ---
Link 8 -209.73 2420 -11.936*** 1.235 0.367*** 0.047
*** denotes significance at the 1% level, ** at the 5% level, and * at the 10% level.
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Table 14: Estimation results for recovery model.

robust robust robust
Max log std.err. std.err. std.err.
Sample Model K likelihood #Obs Yo (v0) Y1 (y1) Yo (v2)
Links 1,2,8 eqg. (9) 20 -662.99 1640 0.875 0.532 0.167 0.724 0.063**  0.027
eqg. (9) 21 -663.06 1640 1.792*** 0.483 -0.325 0.778  0.081*** 0.029
eqg. (9) 22 -661.63 1640  2.079*** 0.401 -0.767 0.833  0.097*** 0.032
eqg. (9) 23 -660.50 1640 1.938***  0.252 -1.414 0.964 0.120*** 0.036
eq. (10) 20 -663.26 1640 0.875 0.532 -3.225 2.300 1.544*  0.704
eq. (10) 21 -663.23 1640 1.792*** 0.483 -4.985** 2497  2.077*** 0.764
eq. (10) 22 -661.70 1640  2.079*** 0.401 -6.545** 2.694  2.549*** 0.824
eq. (10) 23 -660.40 1640 1.938*** 0.252 -8.907*** 3.154 3.261***  0.963
Links 1,2,3,8 |eq. (9) 20 -1023.14 2598 1.030** 0.521 1.216** 0.543 0.024 0.020
eqg. (9) 21 -1023.71 2598 1.887***  0.480 0.985* 0.566 0.032 0.020
eqg. (9) 22 -1022.96 2598  2.148** 0.399 0.805 0.589 0.038* 0.021
eqg. (9) 23 -1022.90 2598 1.977** 0.251 0.663 0.640 0.043* 0.023
eq. (10) 20 -1023.12 2598 1.030** 0.521 -0.321 1.756 0.662 0.530
eq. (10) 21 -1023.59 2598 1.887***  0.480 -1.178 1.848 0.917 0.558
eq. (10) 22 -1022.74 2598  2.148*** 0.399 -1.850 1.938 1.118* 0.585
eq. (10) 23 -1022.61 2598 1.977*** 0.251 -2.429 2.126 1.290**  0.641
Link 1 eqg. (9) 20 -206.89 532 --- not identified ---
eqg. (9) 21 -205.81 532 --- not identified ---
eqg. (9) 22 -205.63 532 2.944*  1.026 -0.166 1.586 0.079 0.062
eqg. (9) 23 -206.20 532 2.007***  0.355 -0.810 1.956 0.103 0.076
eqg. (10) 20 -206.94 532 --- not identified ---
eq. (10) 21 -205.86 532 --- not identified ---
eq. (10) 22 -205.67 532 2.944*  1.026 -4.547 5.140 1.979 1.589
eq. (10) 23 -206.23 532 2.007***  0.355 -6.758 6.409 2652 1.972
Link 2 eq. (9) 20 -295.95 805 --- not identified ---
eq. (9) 21 -295.95 805 --- not identified ---
eq. (9) 22 -295.52 805 --- not identified ---
eq. (9) 23 -295.06 805  3.045** 1.024 0.889 1.247 0.039 0.045
eq. (10) 20 -295.98 805 --- not identified ---
eq. (10) 21 -295.98 805 --- not identified ---
eq. (10) 22 -295.55 805 --- not identified ---
eq. (10) 23 -295.09 805  3.045* 1.024 -1.446 4.083 1.030 1.232
Link 3 eq. (9) 20 -356.26 958 --- not identified ---
eq. (9) 21 -356.18 958 --- not identified ---
eq. (9) 22 -356.09 958 --- not identified ---
eq. (9) 23 -356.09 958 --- not identified ---
eq. (10) 20 -356.26 958 --- not identified ---
eq. (10) 21 -356.18 958 --- not identified ---
eq. (10) 22 -356.09 958 --- not identified ---
eq. (10) 23 -355.99 958 --- not identified ---
Link 8 eq. (9) 20 -154.11 303 0.788 0.539 -1.982 1.624 0.131**  0.063
eq. (9) 21 -150.78 303 1.526*** 0.493 -5.938*** 2.264  0.282*** 0.088
eq. (9) 22 -145.79 303 1.705***  0.444 -10.697*** 3.067  0.465** 0.120
eq. (9) 23 -145.79 303 1.531***  0.390 -12.579*** 3.470  0.537*** 0.136
eq. (10) 20 -154.44 303 0.788 0.539 -7.923 4.888 2.867* 1.510
eq.(10) 21 -151.08 303 1.526*** 0.493 -20.844*** 7.021 6.831***  2.166
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eqg. (10) -145.78 303 1.705***  0.444 -37.010*** 9.717  11.790***  2.999
eq. (10) -144.94 303 1.531*** 0.390 -43.762*** 11.002 13.861*** 3.396
*** denotes significance at the 1% level, ** at the 5% level, and * at the 10% level.
Table 15: Estimation results for recovery model with y, fixed to zero.
Max log robust std.err. robust std.err.
Sample Model likelihood #QObs Y1 (y1) Yo (v2)
Link1 eqg. (9) 20 -206.89 532 0.795 1.398 0.043 0.055
eqg. (9) 21 -209.97 532 0.336 1.481 0.060 0.058
eqg. (9) 22 -215.52 532 -0.166 1.586 0.079 0.062
eqg. (9) 23 -231.23 532 -0.804 1.956 0.103 0.076
eq. (10) 20 -206.94 532 -1.278 4.473 0.979 1.384
eq. (10) 21 -210.02 532 -2.862 4.776 1.465 1.478
eq. (10) 22 -215.56 532 -4.547 5.140 1.979 1.589
eq. (10) 23 -231.26 532 -6.759 6.409 2.652 1.972
Link 2 eqg. (9) 20 -296.64 805 1.464 1.142 0.019 0.041
eqg. (9) 21 -296.64 805 1.464 1.142 0.019 0.041
eqg. (9) 22 -298.29 805 1.338 1.162 0.023 0.042
eqg. (9) 23 -306.24 805 0.889 1.247 0.039 0.045
eq. (10) 20 -296.67 805 0.548 3.705 0.435 1.119
eq. (10) 21 -296.67 805 0.548 3.705 0.435 1.119
eq. (10) 22 -298.32 805 0.099 3.781 0.569 1.142
eq. (10) 23 -306.27 805 -1.446 4.083 1.030 1.232
Link 3 eqg. (9) 20 -357.65 958  3.438*** 1.056 -0.050 0.035
eqg. (9) 21 -358.26 958  3.409*** 1.063 -0.049 0.035
eqg. (9) 22 -358.86 958  3.382*** 1.068 -0.048 0.035
eqg. (9) 23 -358.86 958  3.382*** 1.068 -0.048 0.035
eq. (10) 20 -357.64 958 6.929** 3.498 -1.465 1.029
eq. (10) 21 -358.25 958 6.825* 3.527 -1.435 1.038
eq. (10) 22 -358.86 958 6.729* 3.549 -1.407 1.044
eq. (10) 23 -359.46 958 6.638* 3.566 -1.380 1.049

*** denotes significance at the 1% level, ** at the 5% level, and * at the 10% level.
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