Technical University of Denmark

Chalcogenide compounds made by pulsed laser deposition at 355 and 248 nm

Ettlinger, Rebecca Bolt; Cazzaniga, Andrea Carlo; Crovetto, Andrea; Ravnkilde, Lasse; Youngman, Tomas Hugh; Pryds, Nini; Schou, Jørgen

Publication date: 2015

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Ettlinger, R. B., Cazzaniga, A. C., Crovetto, A., Ravnkilde, L., Youngman, T. H., Pryds, N., & Schou, J. (2015). Chalcogenide compounds made by pulsed laser deposition at 355 and 248 nm. Poster session presented at 2015 E-MRS Spring Meeting, Lille, France.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Chalcogenide compounds made by pulsed laser deposition at 355 and 248 nm

R. B. Ettlinger¹, A. Cazzaniga¹, A. Crovetto², L. Ravnkilde², T. Youngman², N. Pryds³ and J. Schou¹ 1DTU Fotonik, Techn. Univ. Denmark, DK4000 Roskilde; 2DTU Nanotech, Techn. Univ. Denmark, DK2800 Kgs. Lyngby; 3DTU Energy, Techn. Univ Denmark, DK4000 Roskilde

Summary

- · Thin films made by pulsed laser deposition may differ depending on the laser wavelength. We compared ZnS, Cu₂SnS₃ and a target enriched with SnS relative to Cu₂SnS₃ using 355 nm and 248 nm lasers.
- Cu₂SnS₃ deposition gives a high density of droplets at 355 nm. The higher UV 248 nm laser was expected to reduce the droplets but did not.
- The SnS enriched Cu-Sn-S films had different morphology and post-annealing composition using the two lasers

λ	355 nm	248 nm
Laser	Nd:YAG	Kr excimer
Pulse length	5-7 ns	~20 ns
Spot size	2.5 mm ² (see note on deposition rate	2.2 mm ²
Fluence	0.4-2.3 J/cm ²	0.4-2.2 J/cm ²
Target-substrate dist	4-4.5 cm	4 cm
Pulse repetition rate	10 Hz	10 Hz
Target rotation and laser rastering in place in both setups		

Deposition rate

The bandgap of ZnS (3.5-3.6 eV) exceeds the 3.49 eV photon energy of the 355 nm laser, so as expected, ZnS deposition is faster using the 248 nm laser.*

355 nm laser

Deposition of SnS-enriched Cu₂SnS₃ is faster than deposition of stoichiometric Cu₂SnS₃ The deposition is slightly faster at room temperature than at 150-300 ° C.

Cu₂SnS₃

For the deposition rate measurements at 355 nm, the spot size was 1 mm² and the films were measured by Dektak profilometry.

Morphology

Annealed films of Cu₂SnS₃ by the two

lasers had similar

composition and appearance.

In contrast, films of

highly distinct. The

as-deposited films

differed both in

appearance.

composition and

All films except the

had a similar atomic composition. but the annealed films

SnS-enriched Cu₂SnS₃

by the two lasers were

After annealing with S

For the 248 nm measurements, the spot size was 2.2 mm² and a quartz crystal microbalance was used to monitor film growth.

248 nm laser

Morphology As deposited

Films are covered in µmsize droplets from target

The amount and size of droplets does not change significantly with laser wavelength

The morphology of the SnSenriched films S (bottom) was quite ςů different with the 355 nm versus the 248 nm laser. However, the stoichiometry was similar as seen on SnSthe right (under annealing).

-enriched

SnS-enriched film deposited at 355 nm contain bubbles; large burst bubbles were seen in the Cu₂SnS₂ film deposited at 355 nm.

Annealed films contain a mix of SnS (brighter in SEM images) and Cu₂SnS₃ (darker) (12°C/min) to 450 °C followed by slow heating 1 °C/min) composition was measured by Energy Dispersive X-Ray to 570 °C Spectroscopy at 15 keV

*) similar data on 355 nm deposition previously shown in Ettlinger et al., 2015, App. Surf. Sci., Vol 336, pp. 385-390

This work has been supported by a grant from the Danish Council of Strategic Research

DTU Nanotech

Department of Micro- and Nanotechnology

DTU Energy Conversion

Department of Energy Conversion and Storage